

 Toolmaking Best Practices Checklist

 A tool does one thing and one thing only.
 The verb in a tool name accurately describes functionality.
 All input is via parameters.
 Handle pipeline input correctly.
 Enable and use common parameters.
 Objects are the only form of pipeline output emitted.
 Catch and handle anticipated errors.
 Include comment-based help at a minimum.

The Single-Task-Tool Rant
PowerShell is predicated on the idea of small, single-purpose tools (you
know them as cmdlets and functions) that you can string together in a pipe-
lined expression to achieve amazing results with minimal effort. We strug-
gle all the time to help folks understand this “single-task tool” principle,
and we want to say something specific about it here.

It’s easy to think, “Well, provisioning a new user is a single task.” No, it
isn’t. It’s a process, and if you think about how you’d perform it manually,
you’d realize instantly that it consists of multiple actual tasks. You have to
create the user, set up a home folder, create a user library in SharePoint,
and so on. Were you to start coding the process, you’d create a tool for
each task: new user, new home folder, SharePoint account, and so forth
(many of those tasks can be accomplished using tools Microsoft has
already written). You’d then “connect” those tools together, into a process,
by writing what we call a controller script.

Even something as simple as writing information to a CSV file is a single
task (and PowerShell has a tool that does that). If you have a script that
both produces new information and takes the time to format it as CSV and
write it to a file, then you’re not only doing it wrong—you’re working too hard.

From this point on, start thinking about making things smaller. For any given
process that you need to automate, what are the smallest units of work you
can create to accomplish each task within the process? Can anything be
made smaller, or broken into multiple discrete pieces? This is the essence
of toolmaking.

Learn PowerShell Scripting
in a Month of Lunches

Learn PowerShell
Scripting in a Month

of Lunches
DON JONES

JEFFERY HICKS

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2018 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Frances Lefkowitz
20 Baldwin Road Technical development editor: James Berkenbile
PO Box 761 Project editor: Janet Vail
Shelter Island, NY 11964 Copyeditor: Tiffany Taylor

Proofreader: Alyson Brener
Technical proofreader: James Berkenbile

Typesetter: Dennis Dalinnik
Cover designer: Leslie Haimes

ISBN: 9781617295096
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 22 21 20 19 18 17

www.manning.com

brief contents
PART 1 INTRODUCTION TO SCRIPTING1

1 ■ Before you begin 3

2 ■ Setting up your scripting environment 8

3 ■ WWPD: what would PowerShell do? 19

4 ■ Review: parameter binding and the PowerShell
pipeline 25

5 ■ Scripting language crash course 36

6 ■ The many forms of scripting (and which to use) 48

7 ■ Scripts and security 58

PART 2 BUILDING A POWERSHELL SCRIPT................................67

8 ■ Always design first 69

9 ■ Avoiding bugs: start with a command 80

10 ■ Building a basic function and script module 88

11 ■ Going advanced with your function 99

12 ■ Objects: the best kind of output 111

13 ■ Using all the pipelines 122
v

BRIEF CONTENTSvi
14 ■ Simple help: making a comment 136

15 ■ Dealing with errors 146

16 ■ Filling out a manifest 158

PART 3 GROWN-UP SCRIPTING ...169

17 ■ Changing your brain when it comes to scripting 171

18 ■ Professional-grade scripting 190

19 ■ An introduction to source control with git 202

20 ■ Pestering your script 221

21 ■ Signing your script 234

22 ■ Publishing your script 244

PART 4 ADVANCED TECHNIQUES ..253

23 ■ Squashing bugs 255

24 ■ Making script output prettier 272

25 ■ Wrapping up the .NET Framework 292

26 ■ Storing data—not in Excel! 302

27 ■ Never the end 314

contents
preface xvii
acknowledgments xix
about this book xx
about the authors xxii

PART 1 INTRODUCTION TO SCRIPTING1

1 Before you begin 3
1.1 What is toolmaking? 3
1.2 Is this book for you? 4
1.3 Here’s what you need to have 5

PowerShell version 5 ■ Administrative privileges 5
SQL Server 5 ■ Script editor 6

1.4 How to use this book 6
1.5 Expectations 7
1.6 How to ask for help 7
1.7 Summary 7
vii

CONTENTSviii
2 Setting up your scripting environment 8
2.1 The operating system 8
2.2 Windows PowerShell 9
2.3 Administrative privileges and execution policy 9
2.4 A script editor 9
2.5 Setting up a virtual environment 13
2.6 Example code 14
2.7 SQL Server Express 14
2.8 Your turn 18

3 WWPD: what would PowerShell do? 19
3.1 Writing single-task tools 19
3.2 Naming tools 20
3.3 Naming parameters 21
3.4 Producing output 22
3.5 Don’t assume 23
3.6 Avoid innovation 23
3.7 Summary 24

4 Review: parameter binding and the PowerShell pipeline 25
4.1 Visualizing the pipeline 25
4.2 It’s all in the parameters 26
4.3 Plan A: ByValue 27

Introducing Trace-Command 28 ■ Tracing ByValue parameter
binding 28 ■ When ByValue fails 31

4.4 ByPropertyName 31
Let’s trace ByPropertyName 32 ■ When ByPropertyName
fails 34 ■ Planning ahead 35

4.5 Summary 35

5 Scripting language crash course 36
5.1 Comparisons 36

Wildcards 37 ■ Collections 38 ■ Troubleshooting
comparisons 38

5.2 The If construct 38
5.3 The ForEach construct 41

CONTENTS ix
5.4 The Switch construct 44
5.5 The Do/While construct 44
5.6 The For construct 45
5.7 Break 46
5.8 Summary 47

6 The many forms of scripting (and which to use) 48
6.1 Tools vs. controllers 48
6.2 Thinking about tools 49
6.3 Thinking about controllers 51
6.4 Comparing tools and controllers 52
6.5 Some concrete examples 52

Emailing users whose passwords are about to expire 53
Provisioning new users 53 ■ Setting file permissions 54
Helping the help desk 55

6.6 Control more 56
6.7 Your turn 56

7 Scripts and security 58
7.1 PowerShell’s script security goal 58
7.2 Execution policy 59

Execution scope 61 ■ Getting your policies 62
Setting an execution policy 62

7.3 PowerShell isn’t the default application 63
7.4 Running scripts 63
7.5 Recommendations 65
7.6 Summary 66

PART 2 BUILDING A POWERSHELL SCRIPT......................67

8 Always design first 69
8.1 Tools do one thing 69
8.2 Tools are testable 71
8.3 Tools are flexible 72
8.4 Tools look native 72

CONTENTSx
8.5 For example 73
8.6 Your turn 77

Start here 77 ■ Your task 78 ■ Our take 78

9 Avoiding bugs: start with a command 80
9.1 What you need to run 80
9.2 Breaking it down, and running it right 82
9.3 Running commands and digging deeper 83
9.4 Process matters 85
9.5 Know what you need 85
9.6 Your turn 85

Start here 86 ■ Your task 86 ■ Our take 86

10 Building a basic function and script module 88
10.1 Starting with a basic function 88

Designing the input parameters 89 ■ Writing the code 90
Designing the output 91

10.2 Creating a script module 92
10.3 Prereq check 93
10.4 Running the command 93
10.5 Your turn 95

Start here 95 ■ Your task 96 ■ Our take 96

11 Going advanced with your function 99
11.1 About CmdletBinding and common parameters 99

Accepting pipeline input 101 ■ Mandatory-ness 104
Parameter validation 104 ■ Parameter aliases 105
Supporting –Confirm and –WhatIf 106

11.2 Your turn 107
Start here 108 ■ Your task 108 ■ Our take 108

12 Objects: the best kind of output 111
12.1 Assembling the information 112
12.2 Constructing and emitting output 113
12.3 A quick test 114
12.4 An object alternative 116

CONTENTS xi
12.5 Enriching objects 117
12.6 Your turn 118

Start here 118 ■ Your task 119 ■ Our take 120

13 Using all the pipelines 122
13.1 Knowing the six channels 122
13.2 Adding verbose and warning output 123
13.3 Doing more with -Verbose 125
13.4 Information output 127

A detailed information example 129

13.5 Your turn 132
Start here 132 ■ Your task 134 ■ Our take 134

14 Simple help: making a comment 136
14.1 Where to put your help 136
14.2 Getting started 137
14.3 Going further with comment-based help 140
14.4 Broken help 140
14.5 Beyond comments 140
14.6 Your turn 141

Start here 141 ■ Your task 143 ■ Our take 143

15 Dealing with errors 146
15.1 Understanding errors and exceptions 146
15.2 Bad handling 147
15.3 Two reasons for exception handling 148
15.4 Handling exceptions in your tool 148
15.5 Capturing the exception 151
15.6 Handling exceptions for non-commands 151
15.7 Going further with exception handling 152
15.8 Your turn 153

Start here 153 ■ Your task 154 ■ Our take 155

16 Filling out a manifest 158
16.1 Module execution order 158
16.2 Creating a new manifest 159

CONTENTSxii
16.3 Examining the manifest 162
Metadata 162 ■ The root module 162 ■ Prerequisites 162
Scripts, types, and formats 163 ■ Exporting members 163

16.4 Your turn 164
Start here 164 ■ Your task 165 ■ Our take 166

PART 3 GROWN-UP SCRIPTING.....................................169

17 Changing your brain when it comes to scripting 171
17.1 Example 1 171

The critique 172 ■ Our take 173 ■ Thinking beyond
the literal 175

17.2 Example 2 175
The walkthrough 180 ■ Our take 182

17.3 Your turn 188
Start here 188 ■ Your task 189 ■ Our take 189

18 Professional-grade scripting 190
18.1 Using source control 190
18.2 Spelling it out 191
18.3 Commenting your code 192
18.4 Formatting your code 193
18.5 Using meaningful non-Hungarian variable names 196
18.6 Avoiding aliases 196
18.7 Avoiding awkward pipelines 197
18.8 Providing help 197
18.9 Avoiding Write-Host and Read-Host 197

18.10 Sticking with single quotes 198
18.11 Not polluting the global scope 198
18.12 Being flexible 199
18.13 Being secure 199
18.14 Striving for elegance 200
18.15 Summary 201

CONTENTS xiii
19 An introduction to source control with git 202
19.1 Why source control? 202
19.2 What is git? 203

Installing git 203 ■ Git basics 204

19.3 Repository basics 204
Creating a repository 205 ■ Staging a change 205
Committing a change 206 ■ Rolling back a change 207
Branching and merging 209

19.4 Using git with VS Code 211
19.5 Integrating with GitHub 215
19.6 Summary 219

20 Pestering your script 221
20.1 The vision 221
20.2 Problems with manual testing 222
20.3 Benefits of automated testing 222
20.4 Introducing Pester 222
20.5 Coding to be tested 223
20.6 What do you test? 223

Integration tests 223 ■ Unit tests 224 ■ Don’t test what
isn’t yours 224

20.7 Writing a basic Pester test 224
Creating a fixture 226 ■ Writing the first test 227
Creating a mock 227 ■ Adding more tests 228
Code coverage 230

20.8 Summary 232

21 Signing your script 234
21.1 Why sign your scripts? 234
21.2 A word about certificates 235
21.3 Setting your policy 236
21.4 Code-signing basics 237

Getting a code-signing certificate 237 ■ Trusting self-signed
certificates 239 ■ Signing your scripts 240 ■ Testing script
signatures 242

21.5 Summary 243

CONTENTSxiv
22 Publishing your script 244
22.1 Why publish? 244
22.2 Meet the PowerShell Gallery 244
22.3 Other publishing targets 245
22.4 Before you publish 245

Are you reinventing the wheel? 245 ■ Updating your
manifest 245 ■ Getting an API key 246

22.5 Ready, set, publish 246
Managing revisions 247

22.6 Publishing scripts 248
Using the Microsoft script repository 248 ■ Creating
ScriptFileInfo 249 ■ Publishing the script 251
Managing published scripts 251

22.7 Summary 251

PART 4 ADVANCED TECHNIQUES253

23 Squashing bugs 255
23.1 The three kinds of bugs 255
23.2 Dealing with syntax bugs 256
23.3 Dealing with results bugs 257
23.4 Dealing with logic bugs 258

Setting breakpoints 259 ■ Setting watches 264
So much more 264 ■ Don’t be lazy 266

23.5 Your turn 267
Start here 267 ■ Your task 269 ■ Our take 269

24 Making script output prettier 272
24.1 Our starting point 272
24.2 Creating a default view 273

Exploring Microsoft’s views 273 ■ Adding a custom type name
to output objects 276 ■ Creating a new view file 277
Adding the view file to a module 282

24.3 Your turn 285
Start here 285 ■ Your task 286 ■ Our take 286

CONTENTS xv
25 Wrapping up the .NET Framework 292
25.1 Why does PowerShell exist? 292
25.2 A crash course in .NET 293
25.3 Exploring a class 294
25.4 Making a wrapper 296
25.5 A more practical example 299
25.6 Your turn 300

Start here 300 ■ Your task 300 ■ Our take 300

26 Storing data—not in Excel! 302
26.1 Introducing SQL Server! 302
26.2 Setting up everything 303
26.3 Using your database: creating a table 305
26.4 Saving data to SQL Server 308
26.5 Querying data from SQL Server 311
26.6 Summary 313

27 Never the end 314
27.1 Welcome to toolmaking 314
27.2 Taking your next step 315
27.3 What’s in your future? 316

index 318

preface
Way back in 2012, some six years after Windows PowerShell was born, Jeff and I wrote
Learn Windows PowerShell Toolmaking in a Month of Lunches. The word toolmaking was
important to us. My first job out of high school was working as an aircraft mechanic,
and one of the first trades I was exposed to was the machine shop. Imagine a hot,
humid warehouse in Norfolk, Virginia, full of noisy machines chipping away at chunks
of metal. Machinists would spend hours, sometimes, setting up a milling machine with
various tools and dies—fancy drill and router bits, basically—that would carve a block
of metal into a useful aircraft part. You went home with your hair full of metal chips,
your skin covered in lubricants, and your ears ringing from all the noise. I swore I
didn’t want to become one of these tool users. Of course someone has to wield the
tools, and there’s nothing wrong with it. I just didn’t want it to be me.

 But tucked away at the back of the warehouse was a small, enclosed, air-conditioned
office. The men and women there wore dress shirts and sat in front of computers all
day, designing the tools and dies the machinists used. These tool and die makers, or tool-
makers, got paid more, had a better work environment, and generally had—in my post-
teenager view—better lives. I promised myself that in order to escape my personal
hellhole of a workplace, I’d work hard to become one of them.

 That attitude served me well after I shifted into IT a few years later. As a LAN man-
ager for a Bell Atlantic subsidiary (it’s part of Verizon, now), my help desk and Tier 2
guys brought me plenty of problems to solve, and my solution almost every time was to
write a script for them. That way, those tool users could solve problems on their own, and
I could act as a force multiplier, enabling them to solve problems rather than spending
xvii

PREFACExviii
all my time solving them. Making tools for others is, in many ways, the highest IT calling
for me, and I’ve devoted significant effort to making sure I was always in that kind of
enabler position. Plus, I don’t get calls from users or late-night pages—bonus!

 Candidly, this book’s title—Learn PowerShell Scripting in a Month of Lunches—is a
total search engine optimization ploy. People search for “PowerShell Scripting” a lot
more than “PowerShell Toolmaking.” But now that you have the book in your hands,
physically or digitally, know that Jeff and I are going to try and make you a toolmaker,
not just a scripter. If you’re not sure what the difference is, don’t worry—it’ll become
clearer as you go. We’ve rewritten this entire book, dropped content that strayed away
from toolmaking, and added content—like automated testing, publishing your code,
and so on—that sits firmly within the realm of toolmaking. We’ve taken everything
we’ve learned in the last four or five years and brought it to this new title. Our goal is
to make you the best toolmaker you can possibly be, to make you a force multiplier
within your organization, and to put your career on the firmest footing possible.
Thanks for joining us, and enjoy the ride.

DON JONES

acknowledgments
Books simply don’t write, edit, and publish themselves. We would like to thank every-
one at Manning Publications who decided to take a chance on a very different kind of
book for Windows PowerShell, and who worked so hard to make this book happen.
We’d like to acknowledge our peer reviewers who kept us honest, including Bruno
Sonnino, Edul Chikhliwala, Foster Haines, Jan Vinterberg, Justin Coulston, Reka
Horvath, Roman Levchenko, and Shankar Swamy.

 We’d also like to extend a big thank you to everyone who purchased a MEAP edi-
tion, which reflects your confidence in the quality of our work. We hope we meet your
standards.

 Finally, a sincere thank you to the entire PowerShell community. You are a spirited,
hard-driving bunch who keep us motivated and energized.
xix

about this book
In this book, we’re pretty careful to walk you through everything you need to know about
PowerShell scripting and toolmaking, beginning with chapter 1. Don’t skip chapter 1—
it’s important. But there are a few administrative details we should get out of the way:

■ Be prepared to follow along. If a chapter has a hands-on exercise, there’s a rea-
son for that—it’s good for your brain to complete the exercise. We’ll discuss this
a bit more in chapter 1.

■ Read the chapters in order. Again, chapter 1 explains why; for now, know that
it’s in your best interests to follow the narrative we’ve constructed. We’ll expose
you to specific problems so you’ll know more about why things are happening,
and we’ll also show you how to script.

■ Download the code. Manning hosts a zip file with this book’s sample code, and
we suggest you download it from www.manning.com/books/learn-powershell-
scripting-in-a-month-of-lunches. Follow along with the code open in an editor, if
possible, because it’ll look a great deal nicer than what we can print in a book.

Join the community
We suggest that you look around and find a community of active PowerShell enthusi-
asts to become your new best friends. You’re definitely going to run into problems as
you pursue your new scripting avocation, and colleagues are the best source for help.
Find a local user group, or even make a website like PowerShell.org a regular stopping
place. This will take effort on your part, and it’s far easier to ignore this important
aspect of your career. Don’t.
xx

http://www.manning.com/books/learn-powershell-scripting-in-a-month-of-lunches
http://www.manning.com/books/learn-powershell-scripting-in-a-month-of-lunches
http://PowerShell.org

ABOUT THIS BOOK xxi
Book forum
Purchase of Learn PowerShell Scripting in a Month of Lunches includes free access to a pri-
vate web forum run by Manning Publications where you can make comments about
the book, ask technical questions, and receive help from the authors and from other
users. To access the forum, go to https://forums.manning.com/forums/learn-power-
shell-scripting-in-a-month-of-lunches. You can also learn more about Manning’s forums
and the rules of conduct at https://forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and authors can take place.
It isn’t a commitment to any specific amount of participation on the part of the
authors, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the authors some challenging questions, lest their interest stray!
The forum and the archives of previous discussions will be accessible from the pub-
lisher’s website as long as the book is in print.

https://forums.manning.com/forums/learn-powershell-scripting-in-a-month-of-lunches
https://forums.manning.com/forums/learn-powershell-scripting-in-a-month-of-lunches
https://forums.manning.com/forums/about

about the authors
DON JONES has been a Microsoft MVP Award recipient since 2003 for his work with
Windows PowerShell and administrative automation. He has written dozens of books
on information technology, and today he helps design the IT Ops curriculum for
Pluralsight.com. Don is also president, CEO, and cofounder of The DevOps Collective
(devopscollective.org), which offers IT education programs and scholarships and runs
PowerShell.org and PowerShell + DevOps Global Summit (powershellsummit.org).

 Don’s other recent works include the following:

■ Learn Windows PowerShell in a Month of Lunches (https://www.manning.com/
books/learn-windows-powershell-in-a-month-of-lunches)

■ The DSC Book (https://leanpub.com/the-dsc-book)
■ The PowerShell Scripting & Toolmaking Book (https://leanpub.com/powershell-

scripting-toolmaking)
■ Learn SQL Server Administration in a Month of Lunches (www.manning.com/books/

learn-sql-server-administration-in-a-month-of-lunches)

Follow Don on Twitter @concentratedDon, on Facebook at facebook.com/concen-
trateddon, and on LinkedIn at LinkedIn.com/in/concentrateddon. He blogs at
DonJones.com.

JEFFERY HICKS is a grizzled IT veteran with more than 25 years of experience, much of
it spent as an IT infrastructure consultant specializing in Microsoft server technolo-
gies with an emphasis on automation and efficiency. He is a multiyear recipient of
xxii

https://www.manning.com/books/learn-windows-powershell-in-a-month-of-lunches
https://www.manning.com/books/learn-windows-powershell-in-a-month-of-lunches
https://leanpub.com/the-dsc-book
https://leanpub.com/powershell-scripting-toolmaking
https://leanpub.com/powershell-scripting-toolmaking
http://www.manning.com/books/learn-sql-server-administration-in-a-month-of-lunches
http://www.manning.com/books/learn-sql-server-administration-in-a-month-of-lunches
http://Pluralsight.com
http://facebook.com/concentrateddon
http://facebook.com/concentrateddon
http://LinkedIn.com/in/concentrateddon
http://DonJones.com
http://devopscollective.org
http://PowerShell.org
http://powershellsummit.org

ABOUT THE AUTHORS xxiii
the Microsoft MVP Award, initially for Windows PowerShell and now for cloud and
datacenter management. He works today as an independent author, teacher, and con-
sultant. Jeff has taught and presented on PowerShell and the benefits of automation
to IT pros worldwide for more than a decade. He has authored and coauthored a
number of books, writes for numerous online sites and print publications, and is a
contributing editor at Petri.com, a Pluralsight author, and a frequent speaker at tech-
nology conferences and user groups.

 You can keep up with Jeff on Twitter as @JeffHicks and on his blog at https://jdhit-
solutions.com/blog.

https://jdhitsolutions.com/blog
https://jdhitsolutions.com/blog
http://Petri.com

Part 1

Introduction to scripting

Scripting: the act of stringing together a bunch of words and phrases that you
want someone (or something) to repeat, in sequence, every time the script is
run. Think about an actual script from a play or movie—that’s what scripting is
to a computer. In chapters 1–7, we’ll get you started with all the background
information you need. This part of the book sets the stage, giving you the right
tools and providing the right context for your scripting journey.

Before you begin
Windows PowerShell—well, we suppose just PowerShell will do these days, because
it’s available on more than just Microsoft Windows—is an interesting product. It
was originally created to solve the specific problem of automating Windows
administrative tasks, but frankly a much simpler “batch file” language would have
sufficed. PowerShell’s inventor, Jeffrey Snover, and its entire product team, had a
much grander vision. They wanted something that could appeal to a broad,
diverse audience. In their vision, administrators might start very simply, by run-
ning commands to quickly accomplish administrative tasks—that’s what our pre-
vious book, Learn Windows PowerShell in a Month of Lunches, focused on. They also
imagined more complex tasks and processes being automated through scripts of
varying complexity, which is what this book is all about. The PowerShell team also
envisioned developers using PowerShell to create all-new units of functionality,
which we’ll hint at throughout this book. Just as your microwave probably has
buttons you’ve never pushed, PowerShell likely has functionality you may never
touch, because it doesn’t apply to you. But with this book, you’re taking a step
into PowerShell’s deepest functionality: scripting. Or, if you buy into our world-
view, toolmaking.

1.1 What is toolmaking?
We see a lot of people jump into PowerShell scripting much the same way they’d
jump into batch files, VBScript, Python, and so on. Nothing wrong with that—
PowerShell is able to accommodate a lot of different styles and approaches. But you
end up working harder than you need to unless you take a minute to understand
3

4 CHAPTER 1 Before you begin
how PowerShell really wants to work. We believe that toolmaking is the real way to use
PowerShell.

 PowerShell has a strong ability to create highly reusable, context-independent
tools, which it refers to as commands. Commands typically do one small thing, and they
do it very well. A command might not be terribly useful by itself, but PowerShell is
designed to make it easy to “snap” commands together. A single LEGO brick might
not be much fun (if you’ve ever stepped on one in bare feet, you know what we
mean), but a box of those bricks, when snapped together, can be amazing (hello,
Death Star!). That’s the approach we take to scripting, and it’s why we use the word
toolmaking to describe that approach. We believe that your effort is best spent making
small, self-contained tools that can “snap on” to other tools. This approach makes
your code usable across more situations, which saves you work. This approach also
reduces debugging and maintenance overhead, which saves your sanity. And it’s the
approach we’ll teach you in this book.

1.2 Is this book for you?
Before you go any further, you should make sure this is the right place for you. This is
an entry-level book on PowerShell scripting, but because we focus as much on process
and approach as on the syntax, it’s fine if you’ve already been scripting for a while and
are just looking to improve your approach or validate your skill set. That said, this isn’t
an entry-level book on PowerShell itself. If you’re going to continue successfully with
this book, you should be able to answer the following right off the top of your head:

1 What command would you use to query all instances of Win32_LogicalDisk from
a remote computer? (Hint: if you answered Get-WmiObject, you’re behind the
times and need to catch up if this book is going to be useful for you.)

2 What are the two ways PowerShell can pass data from one command to another
in the pipeline?

3 Well-written PowerShell commands don’t output text. What do they output?
What commands can you use to make that output prettier on the screen?

4 How would you figure out how to use the Get-WinEvent command, if you had
never used it before?

5 What are the different shell execution policies, and what does each one mean?

We’re not providing you with answers to these questions—if you’re unsure of any of
them, then this isn’t the right book for you. Instead, we’d recommend Learn Windows
PowerShell in a Month of Lunches from Manning (www.manning.com/books/learn-
windows-powershell-in-a-month-of-lunches-second-edition). Once you’ve worked your
way through that book and its many hands-on exercises, this book will be a logical
next step in your PowerShell education.

 We also assume that you’re pretty experienced with the Windows operating system,
because our examples will pertain to that.

http://www.manning.com/books/learn-windows-powershell-in-a-month-of-lunches-second-edition
http://www.manning.com/books/learn-windows-powershell-in-a-month-of-lunches-second-edition

5Here’s what you need to have
1.3 Here’s what you need to have
Let’s quickly run down some of what you’ll need to have to follow along with this
book.

1.3.1 PowerShell version

We wrote this book using PowerShell 5.1, but honestly, 99% of the book applies to
PowerShell version 3 and later. Download PowerShell from https://msdn.microsoft
.com/powershell—it’s part of a technology package called Windows Management
Framework (WMF). Now, look: Don’t go installing new versions of PowerShell on your
server computers without doing some research. Many server applications (we’re look-
ing at you, Exchange Server) are picky about which version of PowerShell they’ll work
with, and installing the wrong one can break things. Also, be aware that each version
of PowerShell supports only specific versions of Windows—so if you’re somehow still
running Windows XP, you’re not going to be able to follow along with this book (we
used Windows 10 for our examples). We should also note that although the vast
majority of this book will work fine with PowerShell on Linux or macOS, we didn’t test
on those operating systems.

 Do not sweat too much about the PowerShell version you’re using, as long as it’s at least ver-
sion 3 (run $PSVersionTable in the shell to see what version you have). This book has
been very carefully designed to work not only with v3, v4, and v5, but also with v6
(which, as we write this, is just around the corner) and even beyond. The content
we’re covering is so core to PowerShell, so stable, and so mature, that it’s essentially ever-
green, meaning it doesn’t really change from season to season. We use free e-books on
PowerShell.org to help teach the of-the-moment, new-and-shiny stuff that relates to a
specific version of PowerShell; this book is all about the solid core that remains stable.

WARNING As of this writing, Microsoft has deprecated PowerShell v2. That
means it’s no longer supported and shouldn’t be used in production. A lot of
this book is applicable to v2, but we’re going to assume you aren’t using it,
because you shouldn’t be.

1.3.2 Administrative privileges

You need to be able to run PowerShell “as Administrator” on your computer, mainly
so that the administrative examples we’re sharing with you will work. If you don’t
know how to run PowerShell as an Administrator of your computer, then this probably
isn’t the right book to start with.

1.3.3 SQL Server

Although it isn’t required, we recommend installing SQL Server Express (the ver-
sion that includes the SQL Server Management Studio administrative tools). It’s
free, and it’ll let you follow along with the excellent chapter on managing data in
PowerShell. As of this writing, you can start downloading at https://www.microsoft
.com/en-us/sql-server/sql-server-editions-express; we recommend the With Advanced

https://www.microsoft.com/en-us/sql-server/sql-server-editions-express
https://www.microsoft.com/en-us/sql-server/sql-server-editions-express
https://www.microsoft.com/en-us/sql-server/sql-server-editions-express
https://msdn.microsoft.com/powershell
https://msdn.microsoft.com/powershell
https://msdn.microsoft.com/powershell
http://PowerShell.org

6 CHAPTER 1 Before you begin
Services download option, which requires you to join Microsoft’s free Visual Studio
Dev Essentials program.

NOTE This is all “as of this writing.” Microsoft pretty famously juggles the
SQL Server Express edition’s location and what you have to do to get it, which
we’re sure will happen 10 minutes after this book goes to print! We trust in
your Google Fu being able to locate the latest and greatest.

1.3.4 Script editor

Finally, you’ll need a script editor. Windows PowerShell’s Integrated Script Editor (ISE)
is included on client versions of Windows and works great. But it’s a bit creaky and bare-
bones. These days, Microsoft recommends Visual Studio Code (VS Code), which is free
and cross-platform. Download that, and in chapter 2 we’ll show you how to set it up for
use with PowerShell. Start the download at https://code.visualstudio.com.

NOTE Visual Studio Code and PowerShell are both cross-platform (well, Power-
Shell Core is, not the “full” PowerShell). Every single concept and practice in
this book applies to PowerShell running on systems other than Windows. But
the examples we use will, as of this writing, only run on Windows. We recom-
mend sticking with Windows, unless you’re willing to be very patient and
perhaps translate our running examples into ones that will run on other
operating systems.

1.4 How to use this book
You’re meant to read one chapter of this book per day, and it should take you under
an hour to do so—except in one case, where we have a Special Bonus Double Chapter,
which we’ll call to your attention when we get there. Spend some additional time,
even a day or two, completing any hands-on exercises that come at the chapter’s end.
Do not feel the need to press ahead and binge-read several chapters at once, even if
you have an especially long lunch “hour.” Here’s why: We’re going to be throwing a lot
of new facts at you. The human brain needs time—and sleep!—to sort through those
facts, connect them to things you already know, and start turning them into knowledge.
Cognitive science has identified some consistent limits to how much your brain can
successfully digest in a day, and we’ve been careful to construct each chapter with
those limits in mind. So, seriously—one chapter per day. Try to get in at least three or
four chapters per week so that you can keep the narrative in mind, and absolutely make
sure you’re doing the hands-on exercises we’ve provided.

TIP We’d rather see you repeat a chapter and its hands-on exercises for two
or three days in a row, to make sure it’s cemented in your mind. Doing that,
rather than trying to binge-read many chapters in just a day or two, will get
this stuff into your brain more reliably.

And speaking of those exercises—do not just skip ahead and read the sample solutions
we’ve provided. Again, cognitive science is clear that the human brain works best when

https://code.visualstudio.com

7Summary
it learns some new facts and immediately puts them to use. Even if you find a particu-
lar exercise to be a struggle, the struggle itself is what forces your brain to focus and
brings facts together. Before you consult the sample solution for an easy answer, it’s
better to go back and skim through previous chapters. Constructing the answer in that
fashion is what will make the information stick for you. It’s a bit more work for you,
but it’ll pay off, we absolutely promise. If you take the lazy approach, you’re just cheat-
ing yourself, and we don’t want that for you.

1.5 Expectations
Before you get too far into the book, we want to make sure you know what to expect.
As you might imagine, the book’s topic is pretty big, and there’s a lot of material we
could cover. But this book is designed for you to complete in a month of lunches, so
we had to draw the line somewhere. Our goal is to provide you with fundamental
information that we think everyone should have in order to start scripting and creat-
ing basic PowerShell tools. This book was never intended as an all-inclusive tutorial. If
there’s a topic you were expecting us to cover, you might take a look at the follow-up
book, The PowerShell and Scripting Toolmaking Book (http://bit.ly/PSToolmaking).

1.6 How to ask for help
You’re welcome to ask us for help in Manning’s online author forum, which you can
access through www.manning.com/books/learn-powershell-scripting-in-a-month-of-
lunches. But we encourage you to instead consider an online forum like Power-
Shell.org. We monitor the Q&A forums there as well, but, more importantly, you’ll
find hundreds of other like-minded individuals asking and answering questions. The
thing that’s important with PowerShell is for you to engage and become part of its
community, meeting your peers and colleagues and becoming a contributor yourself
in time. PowerShell.org offers tips-and-tricks videos, free e-books, an annual in-person
conference, and a ton more, and it’s a great way to start making PowerShell a formal
part of your career path.

1.7 Summary
Hopefully at this point you’re eager to dive in and start scripting—or, better yet, to
start toolmaking. You should have your prerequisite software lined up and ready to go,
and you should have a good idea of how much time you’ll need to devote to this book
each week. Let’s get started.

http://bit.ly/PSToolmaking
http://www.manning.com/books/learn-powershell-scripting-in-a-message URL month-of-lunches
http://www.manning.com/books/learn-powershell-scripting-in-a-message URL month-of-lunches
http://PowerShell.org
http://PowerShell.org
http://PowerShell.org

Setting up your scripting
environment
OK, it’s time to start actually doing stuff. We’ll begin by making sure you have a
functioning scripting environment ready to go. We strongly recommend that you
work through each step in this chapter, to make sure you have an environment in
which you can follow along with us and where you can complete the hands-on exer-
cises that appear at the end of many chapters.

2.1 The operating system
The first thing you’re going to need, of course, is a computer running an operating
system. Although the techniques we cover in this book apply equally to Linux,
macOS, and Windows, the examples we’re providing—because they use Windows’
Windows Management Instrumentation (WMI) and Common Information Model
(CIM) systems—will only work on Windows. Therefore, we think it makes sense for
you to have a Windows computer handy. And we recommend that you use Windows
10 or later, rather than an older client operating system or a server operating sys-
tem. Acquiring and installing Windows 10 is outside the scope of this book, of
course, but they should be familiar tasks to you (if they’re not, then you’re probably
getting a bit ahead of yourself with this book). You probably can follow along with
this book using Windows 7 Service Pack 1 or Windows 8.1, but we’re not going to
guarantee that you won’t run into some weird problems, because we didn’t test on
those older operating systems.

8

9A script editor
2.2 Windows PowerShell
You need to have Windows PowerShell 5.1 or later installed (technically, v3 or later
should suffice, but we’re big believers in using the latest version on your client com-
puter). We don’t recommend installing a prerelease, preview, beta, or other version of
PowerShell—stick with the latest shipping version, available at http://microsoft
.com/powershell. PowerShell is part of Windows Management Framework, so you’ll
download and install the latest version. Pay close attention to the system require-
ments, because you may need to install a specific version of Microsoft .NET Frame-
work or other prerequisites. Note that Windows 10 comes with the right version of
PowerShell, and you can check it by opening PowerShell and running $PSVersion-
Table.

 It’s also worth noting that Microsoft produces two versions of PowerShell. Windows
PowerShell is the full version, and it’s what comes in the WMF package. That’s what you
want. There’s also PowerShell Core, which is what runs on Linux, macOS, and so on. You
don’t want or need that if you’re using a Windows client operating system.

2.3 Administrative privileges and execution policy
You need to ensure that you have the ability to run PowerShell “as Administrator” on
your computer. On a company-owned computer, that might not be possible, so it’s
worth checking. First, start the PowerShell console (press Windows-R, type power-
shell, and press Enter). If the window title bar doesn’t say Administrator, right-click
the PowerShell icon in the taskbar and select Run as Administrator. That should open
a new window that does say Administrator in the title bar (you may get a User Access
Control prompt beforehand, which you’ll need to allow). If that doesn’t work, stop.
You’re going to have difficulty following along with the examples in this book, and
you need to resolve your Administrator access before you proceed.

 With the shell open as Administrator, run Get-ExecutionPolicy. This needs to
return something other than AllSigned, such as RemoteSigned, Unrestricted, or
Bypass. If it doesn’t, you can try running Set-ExecutionPolicy RemoteSigned. If that
works, you’re good to go. But if you get any errors or warnings, then your execution
policy probably didn’t change, and you need to resolve that with your company’s IT
team before you’ll be able to follow along with this book. Pop over to the forums on
PowerShell.org if you need some help figuring this out!

2.4 A script editor
Most important, you need a script editor. Since PowerShell v2, Microsoft has shipped
the Integrated Script Editor (ISE) with Windows, and we’ve been strong advocates of
using it. But in May 2017, Microsoft announced that the ISE was more or less depre-
cated. That means the company won’t be investing much, if at all, in further ISE fea-
ture development; Microsoft will continue to include it in Windows for the time being
but would like everyone to move on.

http://PowerShell.org
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com

10 CHAPTER 2 Setting up your scripting environment
 The recommended editor these days (short of buying a commercial product from
a company like SAPIEN Technologies) is Microsoft’s free, cross-platform Visual Studio
Code editor, often referred to as VS Code. Head over to https://code.visualstudio.com
to download and install it. We recommend downloading and using the Stable Build
instead of an Insiders Build; the Insiders version can contain a lot of exciting, experi-
mental features, and also a lot of less-exciting bugs. We’re going to assume that you’re
using VS Code in this book, and most of our examples and information will build from
that assumption.

 Once VS Code is installed, open it. Ours looks like figure 2.1 (we’ve changed to
the Light+ theme from the default Dark theme so these screenshots look better in the
printed book).

Every so often, you’ll find that VS Code has updated itself and wants to restart. Let it—
the update takes only a second, and it’s a good way to make sure you have the most sta-
ble release.

Figure 2.1 Opening VS Code

https://code.visualstudio.com

11A script editor
 Right away, you’ll want to install the extension that lets VS Code understand
PowerShell. In the vertical ribbon on the left, the bottom icon provides access to VS
Code’s extensions. Selecting that should bring up a screen somewhat like the one in fig-
ure 2.2; you’ll notice that we have several extensions already installed.

The PowerShell extension is already installed on our system (big surprise). On a
fresh system, it won’t be; type powershell in the search box to find it. On a fresh
system, the extension will appear with an Install button. You can see in figure 2.2
that ours is seriously out of date and is offering an update. We’ll click the Update
button, but you’d click Install to install the extension. Afterward, you’re likely to
see the button turn into a Reload button, which will refresh the window so you can
begin using it.

 The PowerShell extension only kicks in when you’re editing a file that has a known
PowerShell filename extension, such as .ps1, .psm1, .ps1xml, and so on. Start by saving

Figure 2.2 The Extensions panel lets you install and manage VS Code add-ins.

12 CHAPTER 2 Setting up your scripting environment
the empty file. Save it to your Documents folder, naming it Test.ps1. After doing so,
you’ll notice that the screen layout has changed a bit, as shown in figure 2.3.

If you’ve been paying close attention, you’ve noticed that our screenshots have all
been taken on a macOS computer. Although VS Code is happy to run there, we don’t
actually have PowerShell installed, so the VS Code PowerShell extension has returned
an error. We wanted to demonstrate what this looks like, so you’ll know what it means
if you run into this yourself sometime. Going forward, we’ll switch to a Windows
machine. But if you’ve followed along (on Windows) to this point, then you should be
good to go.

Figure 2.3 VS Code’s PowerShell extension has kicked in.

13Setting up a virtual environment
This book isn’t intended to be a tutorial on VS Code, of course, but as we go we’ll point
out useful tips and tricks for working more efficiently with PowerShell in this editor.

NOTE If you’re bound and determined to use the PowerShell ISE, go ahead.
You’ll have a lot less functionality (even with stellar add-ons like ISE Steroids),
especially when it comes to debugging. At this point, VS Code is the official
editor for PowerShell, and we don’t know why you wouldn’t want to use it, but
it’s your computer!

2.5 Setting up a virtual environment
Another option you might consider is setting up a virtualized environment. You can
use whatever virtualization product you’re comfortable with. If you have a Windows
10 system that supports virtualization and has lots of free disk space and 16 GB of
memory, you could take advantage of an open source project called AutoLab. This
project will set up a test environment, completely hands-free. It will even set up Hyper-
V for you, download evaluation ISO images, and create all the virtual machines you
might need.

 If you’re interested, go to https://github.com/theJasonHelmick/PS-AutoLab-Env
and download the latest stable release. Take a few minutes to go through the
README file to familiarize yourself with the process. There’s even a video you can
watch. Note that even though the recommendation is for 16 GB of RAM, you can
sneak by on 8 GB, especially for a smaller configuration.

 For this book, you can get by with the Windows 10 configuration, which will set up
a single virtual machine. If you’d like some remote servers to test with, try using the
POC-Multirole configuration. The nice thing about AutoLab is that you can set up
and tear down lab environments with ease.

Configuring PowerShell as default
If you’ll primarily use VS Code for PowerShell work, you can configure it so that every
new file will be treated as a PowerShell file. In VS Code, choose File > Preferences >
Settings. This will open a settings.json file. In the pane on the right, add this entry:

"files.defaultLanguage": "powershell"

The value "powershell" must be all lowercase. Each entry in the file needs to be
separated by a comma. Close and save the settings.json file. Press Ctrl-N to create
a new file; you’ll see that it’s automatically detected as a PowerShell file.

https://github.com/theJasonHelmick/PS-AutoLab-Env

14 CHAPTER 2 Setting up your scripting environment
2.6 Example code
Finally, we strongly recommend that you download this book’s sample code. Manning
hosts it in a zip file on this book’s page, www.manning.com/books/learn-powershell-
scripting-in-a-month-of-lunches. The file is organized by chapter; there’s a text file for
everything formatted as a code listing in the chapter. Later in the book, we’ll intro-
duce some modules. These too are organized under each chapter.

 After you download the zip file, unzip it to someplace convenient (like your Docu-
ments folder or the root of C:\), and you should be ready to go. As you look through
the code samples, you’ll see that the module names are repeated. That’s because sub-
sequent chapters build on what came before. We don’t necessarily expect you to
import and use the modules, although we’ll provide instructions to do so.

 Finally, so there are no misunderstandings, let us be crystal clear that all the code
samples in the book are for educational purposes only. Nothing should be considered
ready for use in a production environment, even though you may be tempted.

2.7 SQL Server Express
As we noted in chapter 1, we strongly recommend downloading and installing SQL
Server Express, especially the With Advanced Services option. Again, that download—
as of the time we’re writing this—starts at www.microsoft.com/en-us/sql-server/sql-
server-editions-express.

 Later in this book, we’re going to teach you how to use SQL Server as a data store
for PowerShell scripts. We can’t express how important a skill this is in today’s busi-
ness world. If we could physically print this paragraph in bold, italicized, blinking
text at 64 point, we’d do it. Watching administrators struggle to use Excel as a “data-
base” by digging into its deprecated, decade-old, COM-based automation model
makes us sad. Excel isn’t a database, and it isn’t your friend when it comes to data
storage.

 We won’t run you through deep administration tasks on SQL Server Express;
Don has a great book, Learn SQL Server Administration in a Month of Lunches (Manning,
2014, www.manning.com/books/learn-sql-server-administration-in-a-month-of-lunches),
if SQL Server is an all-new tool for you. But we’d like to get you through a basic setup.
We’ll refer you to the Microsoft tutorial “Getting Started with the Database Engine” at
http://mng.bz/u04t, which will show you how to download the SQL Server Manage-
ment Studio (also recommended) and get it up and running.

NOTE This setup changes a bit with each new version. We’re on SQL Server
Express 2016, but we’ll try to explain why we’re doing each thing here, so that
you can translate that to older or newer versions as needed.

http://www.manning.com/books/learn-sql-server-administration-in-a-month-of-lunches
http://mng.bz/u04t
http://www.manning.com/books/learn-powershell-scripting-in-a-month-of-lunches
http://www.manning.com/books/learn-powershell-scripting-in-a-month-of-lunches
http://www.microsoft.com/en-us/sql-server/sql-server-editions-express
http://www.microsoft.com/en-us/sql-server/sql-server-editions-express

15SQL Server Express
The installer download is really, really tiny—it’s basically going to kick off the install
and download everything it needs on demand. You’ll begin with something like fig-
ure 2.4, which shows the installer getting started.

We usually choose the Basic installation, which will handle most of the defaults for
you. You’ll be asked to accept Microsoft’s license agreement after clicking Basic.

NOTE Microsoft is currently loving dark themes for its user interfaces, so the
screenshots in the printed book may not be easy to read. They’re better in
the e-book version, which is included with your print book purchase. Refer
to the voucher inside the front cover of your print book for instructions on
obtaining that download.

Figure 2.4 Starting the SQL Server Express Edition installer

16 CHAPTER 2 Setting up your scripting environment
Figure 2.5 shows the next screen, which prompts for an install location. Leave this
alone. The default will work fine on almost all systems, so go with it and click Install.

The installation will start; keep in mind that this is when all the SQL Server Express
bits are downloaded from the internet. That means the install time will depend a lot
on your internet connection speed. You’re waiting for the big prize, which should
look something like figure 2.6.

 This is really important—be sure to make a note of a few critical items for later:

 In the column on the left, note the Instance ID. This is needed to physically con-
nect to the service. For example, you could connect to localhost\SQLEXPRESS,
but you won’t be able to connect to just localhost. SQLEXPRESS is the default
Instance ID; if you performed a Basic installation, this is what it will be.

Figure 2.5 Specifying the install location for SQL Server Express Edition

17SQL Server Express
 On the right, the Connection String is what you’ll end up feeding to PowerShell
to create a connection to SQL Server. It’d be a great idea to copy that now and
paste it into a text file or a note for easy future reference.

 Also note the SQL Administrators item at left. This should default to making
local Administrators, as well as your user account, administrators on SQL
Server. You’ll need to connect as a SQL Server admin to create new databases,
although it’s possible to set up those databases so that non-admins can read
from, and write to, them.

SQL Server Management Studio, which is SQL Server’s graphical administrative tool,
is a separate download. You might start at http://mng.bz/3Y7Q to find it. It’s pretty
much a no-brains-required installer, with zero options other than “install me.” Boston
University has a great tutorial at http://mng.bz/QBk9 that will help you connect to

Figure 2.6 SQL Server Express’s installation summary screen

http://mng.bz/3Y7Q
http://mng.bz/QBk9

18 CHAPTER 2 Setting up your scripting environment
your new instance and create a new database, once SQL Server and Management Stu-
dio are installed.

2.8 Your turn
Take some time to make sure you’ve downloaded the sample code and successfully
installed VS Code and its PowerShell extension. If VS Code is working, you should be
able to save an empty file with a .ps1 filename extension and then, in the editor, type
something like Get-P. VS Code’s IntelliSense should kick in and offer to autocomplete
command names like Get-Process for you. If that’s working, then you’re clear to pro-
ceed. If not, stop here, and get it working. Again, we’ll keep an eye on the forums at
PowerShell.org for questions; you’re welcome to drop by there if you need help.

http://PowerShell.org

WWPD: what would
PowerShell do?
Before you dive into scripting and toolmaking, it’s worth having a conversation about
“The Right Way to Do Things.” One of PowerShell’s advantages—and also one of its
biggest disadvantages—is that it’s pretty happy to let you take a variety of approaches
when you code. If you’re an old-school VBScript person, PowerShell will let you write
scripts that look a lot like VBScript. If you’re a C# person, PowerShell will happily run
scripts that bear a strong resemblance to C#. But PowerShell is neither VBScript nor
C#; if you want to take the best advantage of it and let it do as much heavy lifting for
you as possible, you need to understand The PowerShell Way of doing things. We’re
going to harp on this a lot in this book, and this is where we’ll start.

 Think of it this way: A car is useful for getting from point A to point B, but there
are many different ways in which you could do so. You could, for example, put the
car in neutral, get out, and push it to point B. Your ancestors were great at walking
from place to place, and if it was good enough for them, it’s good enough for you.
Or, you could hitch a horse to the car, and let the horse pull it. Horses have been a
great approach to transportation for centuries, so why change? But the most effi-
cient way is to use the car as it was meant to be used: Fill it with gas, get in, and step
on the accelerator. You’ll go faster than the horse could, you’ll expend less effort
than you would by pushing, and overall you’ll be a happier, healthier traveler.

 That’s what we want to do with PowerShell. Unhitch the horse, get in the car,
and go.

3.1 Writing single-task tools
PowerShell is predicated on the idea of using small, single-purpose tools (you know
them as cmdlets and functions) that you can string together in a pipelined expression
19

20 CHAPTER 3 WWPD: what would PowerShell do?
to achieve amazing results with minimal effort. If you’ve ever written a VBScript query-
ing information from WMI, you’ll realize how wonderful it is to be able to run a com-
mand like this:

Get-wmiobject win32_logicaldisk -filter 'drivetype=3' -computername SRV1 |
➥ Select PSComputername,DeviceID,Size,FreeSpace

instead of writing a 20-line VBScript.
 You should embrace this principal in your own scripting and toolmaking. This is so

critical that we’ll warn you now that we’ll be repeating this point throughout the book.
Don’t try to write the mother of all tools that does six different things. Write small,
single-purpose tools that do one thing very well. The tools you’ll be creating should be
no different than the PowerShell commands you get out of the box.

3.2 Naming tools
When it comes time to name your tools, what names should you choose? A tool
named QueryUserDataFromDatabase might be self-explanatory, but it doesn’t fit the
PowerShell model. PowerShell’s “verb-noun” naming syntax follows a simple pattern:

 Start with a verb. Specifically, start with one of the approved verbs revealed by
running Get-Verb—although, honestly, we tend to refer to https://msdn.mic-
rosoft.com/en-us/library/ms714428 instead, because the page lists the verbs

The single-task tool rant
We struggle all the time to help folks understand this “single-task tool” principle. In
fact, chapter 17 will focus on some before-and-after examples to help make the point
even clearer. But we want to say something specific about it now.

It’s easy to think, “Well, provisioning a new user is a single task.” No, it isn’t. It’s
a process, and if you think about how you’d perform it manually, you’d realize
instantly that it consists of multiple actual tasks. You have to create the user, set
up a home folder, create a user library in SharePoint, and so on. Were you to start
coding the process, you’d create a tool for each task: new user, new home folder,
SharePoint account, and so forth (many of those tasks can be accomplished using
tools Microsoft has already written). You’d then “connect” those tools together into
a process by writing what we call a controller script. We’ll cover those later in the
book.

Even something as simple as writing information to a CSV file is a single task (and
PowerShell has a tool that does that). If you have a script that both produces new
information and takes the time to format it as CSV and write it to a file, then you’re
not only doing it wrong—you’re working too hard.

From this point on, start thinking about making things smaller. For any given process
that you need to automate, what are the smallest units of work you can create to
accomplish each task within the process? Can anything be made smaller or broken
into multiple discrete pieces? This is the essence of toolmaking.

https://msdn.microsoft.com/en-us/library/ms714428
https://msdn.microsoft.com/en-us/library/ms714428

21Naming parameters
and provides some good examples and guidance on which one to choose. Don’t
be tempted to localize verbs into a language other than English.

 For the noun, always use a singular noun: user, not users.
 Prefix the noun with something meaningful to your company (and never PS),

to help set your command apart from others. Get-GloboUser is good for a com-
pany named Globomantics, for example.

Why so picky? Because PowerShell has a lot of code built around this naming conven-
tion and around the specific approved verbs. Get-Command, for example, understands
the difference between a verb and a noun and can help locate commands based on
either. Import-Module, as another example, knows the approved verb list and issues
warnings when you attempt to load unapproved verbs. Perhaps most important, all
the cool kids in the PowerShell community will chuckle at you for using improperly
constructed command names.

3.3 Naming parameters
Parameter naming is even more important, believe it or not, than command naming.
Parameter naming, as you’ll learn, is key to enabling commands to connect to each
other in the pipeline. Parameter naming is also important for command discovery by
using Get-Command. Try the following quick quiz:

1 If you write a command that can connect to remote computers, what parameter
name will accept those remote computer names or addresses?

2 If you write a command that can output to a data file, what parameter name will
accept the file location and name?

3 If you write a command that can work over an existing PowerShell Remoting
session, what parameter name might accept the session object to use?

You may need to research a bit—and that’s the point. When deciding on a parameter
name, try to focus on the core, native PowerShell commands (rather than add-in mod-
ules like ActiveDirectory or something). What would they use in the same situation?

1 Core commands invariably use –ComputerName rather than an alternative like
–Host, -MachineName, or something else.

2 Core commands are a bit inconsistent here, but most of them use either –FilePath
or –Path. We’d go with a command like Out-File, which uses –FilePath, as our
exemplar.

3 The core remoting commands, like Invoke-Command, perform this task, and
they do so using a –PSSession parameter.

Wondering if a parameter name is a good choice? Use PowerShell to see if other com-
mands are using it:

get-command -CommandType Cmdlet -ParameterName computername

22 CHAPTER 3 WWPD: what would PowerShell do?
If you don’t find a match, that doesn’t mean you shouldn’t use it, but there might be a
better alternative.

 The idea is to be consistent. Again, you’ll see how this becomes crucial when wiring
up commands so that they can connect in the pipeline. A lot of under-the-hood stuff
relies on consistent parameter naming, so don’t go thinking you’ve got a great reason
to diverge from the norm.

3.4 Producing output
This is an area where observing PowerShell’s native approach to things can be mis-
leading, because a lot goes on under the hood with PowerShell output. If you’ve read
our book Learn Windows PowerShell in a Month of Lunches (Manning, 2011), then you
know some of this; if you haven’t, we heartily recommend you do so. But in brief

1 PowerShell commands, as you’ll learn in this book, produce objects as output.
Objects are a form of structured data, not unlike an Excel spreadsheet. An object
represents a row in the sheet, and each column in the sheet is essentially a property
of the object. By referring to the property names, you can access their contents.
Structured data output—that is, objects—are at the deep core of what PowerShell
is. If you ignore this maxim, your PowerShell experience will be miserable.

2 Objects are output and placed into the PowerShell pipeline, which ferries the
objects to the next command in the pipeline. Commands therefore need to, in
many cases, accept input from the pipeline, so that they can work in this execution
model. You can continue this process for as long as you need. But realize that
objects may change in the pipeline depending on what cmdlets you’re using.

3 When the last command has output its objects to the pipeline, the pipeline car-
ries the objects to the formatting system. At this point, the objects are still just
structured data. Their properties don’t appear in any particular order, and they
aren’t specifically destined to be displayed in any particular way.

4 The formatting system, through a fairly complex set of rules we covered in
Learn Windows PowerShell in a Month of Lunches, decides how to draw an onscreen
display for the objects. This involves deciding to display a list or a table, coming
up with column headers, and so on.

5 The result of the formatting system is a bunch of specialized formatting direc-
tives, meaning the original structured data is now gone. These directives are
basically useful only for drawing an onscreen display or sending an equivalent
to a text file, a printer, or another output device.

Your tools shouldn’t be doing any of the work in steps 4 or 5. That is, you should focus
on outputting useful, structured data in the form of objects—and explicitly not worry
about what the results will look like on the screen. We can’t tell you how many people
we’ve seen bang their heads against their desk trying to create “attractive” output.
We’re going to show you how to do that the PowerShell way, which essentially involves
educating the formatting system that fires off in step 4. But for your tools themselves,

23Avoid innovation
focus on getting the right data into the output, and don’t worry about what that will
look like on the screen.

3.5 Don’t assume
We’ve spent years teaching, writing, and speaking PowerShell to IT professionals liter-
ally all over the world. If there’s one constant challenge we see people encounter, it’s
making assumptions about what PowerShell is and how it should behave. There is a
quote attributed to the ancient Greek philosopher Epictetus:

“It is impossible to begin to learn that which one thinks one already knows.”

As you work with PowerShell, especially if you have other programming or scripting
experience, you’ll recognize many patterns. That is to be expected. When PowerShell
was being developed, the product team looked at many, many languages to adopt ideas
and principles that fit the paradigm they were building. But just because you recognize
something that looks like Python, don’t assume it will behave like Python. We find that
the people who approach PowerShell thinking they can treat it like some other lan-
guage they know are the most frustrated. Here are some things to keep in mind:

 Although PowerShell has a rich and robust pipeline, it isn’t Bash. PowerShell’s
pipeline works completely differently.

 Although running a command may produce a certain kind of onscreen output,
that doesn’t mean that’s all the command produced. PowerShell’s “visuals”
don’t always correspond exactly with its “internals.”

 Although PowerShell has scripting constructs like If and ForEach, it isn’t a full
programming language. If you approach it as one, you’ll likely find yourself
working at cross purposes with the shell.

 Although PowerShell uses .NET Framework for much of its functionality, Power-
Shell isn’t C#. PowerShell has become more programming language-ish over
the years, but there are still times when the right answer is “Just do it in C#.” If
you find yourself writing almost entirely in .NET classes and not in PowerShell
commands, you could be at that point.

Perhaps most important, try not to drag your past experiences into PowerShell too
much. PowerShell isn’t VBScript, Perl, Python, KiXtart, or batch; the more you try to
treat it like those things, the more you’re going to struggle and be frustrated. Don’t try
to force PowerShell to meet some preconception you might have. PowerShell is its
own thing. Learn Windows PowerShell in a Month of Lunches should have prepared you
for how PowerShell wants to be used; this book will prepare you to extend the shell the
way it wants to be extended.

3.6 Avoid innovation
We’ll leave you with this related piece of advice: Don’t try to invent new ways of doing
things. The whole strength of PowerShell—quite literally the entire reason for its

24 CHAPTER 3 WWPD: what would PowerShell do?
existence—is to create a consistent administrative surface from a sea of chaos. Don’t
contribute to the chaos by coming up with some novel approach. You may think to
yourself, “Well, Microsoft really missed the boat on this one—I’ve got a much better
way of doing this!” Stop thinking that way. The goal of creating tools in PowerShell
isn’t to do it better than Microsoft; it’s to remain consistent with what has come before.

3.7 Summary
All we’re trying to stress in this chapter is that you need to take the time to observe
how PowerShell approaches problems and try to emulate its approaches, rather than
invent your own. Your results will end up being more comprehensible to others, will
require less effort on your part, and will form a much more consistent solution within
the shell.

 Unlike a car, which you’ve obviously observed in everyday life—presumably notic-
ing the lack of an attached horse—PowerShell’s approach isn’t always obvious. Worse,
it isn’t always consistent, because lots of different people, even inside Microsoft, have
declined to follow our advice from this chapter. It’s worth the time to research a bit,
especially the core commands provided by the PowerShell team, to discover Power-
Shell’s approach and emulate it as best you can.

But contribute
We don’t want to stifle you. If you have a great idea or suggestion about how Microsoft
can do something better, make your voice heard.

PowerShell is now an open source project on GitHub (https://github.com/powershell/
powershell). Have an idea? Post an issue. Or even better, fork the GitHub repo,
develop the improvement, and submit a pull request. You can have a say in what
future versions of PowerShell look like!

https://github.com/powershell/powershell
https://github.com/powershell/powershell
https://github.com/powershell/powershell

Review:
parameter binding and
the PowerShell pipeline
Take traditional pipeline behavior from shells like Bash and Cmd.exe. Mix in
PowerShell’s unique object-oriented nature. Add a dash of Linux-style command
parsing. The result? PowerShell’s pipeline, a fairly complex and deeply powerful
tool for composing tools into administrative solutions. To be a toolmaker is to
understand the pipeline at its most basic level, and to create tools that take full
advantage of the pipeline. Although we covered these concepts in Learn Windows
PowerShell in a Month of Lunches, in this chapter we’ll go deeper and focus on the
pipeline as something to write for, rather than to just use.

4.1 Visualizing the pipeline
Grab a sheet of paper and a pen. Draw yourself something like figure 4.1. Now,
write some command names in those boxes. Maybe Get-Process in the first box,
maybe ConvertTo-HTML in the second box, and perhaps Out-File in the third box.
Use pencil, if you have one, so you can erase those and repeat the exercise with
other commands in the future.

Figure 4.1 Visualizing the pipeline
25

26 CHAPTER 4 Review: parameter binding and the PowerShell pipeline
TRY IT NOW Go on—actually draw the boxes. We could have just repeated the
finished figure here in the book, and believe us, our editor wanted us to, but
there’s value in you doing this physical thing for yourself.

This is a good visual depiction of how PowerShell runs commands in the pipeline: As
one command produces objects, they go into the pipeline one at a time and get passed
on to the next command. At the end of the pipeline, when there are no further com-
mands, any objects in the pipeline are passed to PowerShell’s formatting system to be
formatted for onscreen display.

 The right-pointing arrows in our diagram are concealing a great deal of under-the-
hood functionality, and this is what’s important to understand. It’s easy enough to say,
“PowerShell passes the objects from one command into the next one,” but how does
that happen?

4.2 It’s all in the parameters
PowerShell uses two methods to dynamically figure out how to get data—that is,
objects—out of the pipeline and “into” a command. Both of these methods rely on
the accepting command’s parameters. In other words—and this is important—the only
way a command can accept data is via its parameters. This implies that when you design a
command, and when you design its parameters, you’re deciding how that command
will accept information, including how it will accept information from the pipeline.
This process is therefore not magic; it’s a science, and it’s decided in advance by who-
ever designed the command.

 It can look magic, though. Consider this:

Get-Service |
Where Status –eq "Running" |
ConvertTo-HTML |
Out-File stats.htm

We don’t want you to go any further than this chapter until you understand why that
command works. Start by embracing the fact that all commands only get their input
by means of parameters. Period. No exceptions. Full stop. The problem is that, a lot of
the time, you’re not typing parameter names. Instead, PowerShell lets you use posi-
tional parameters, where the order of the values you provide implies the parameters
those values get fed to. In order to dispel the magic, it’s helpful to rewrite the com-
mand with every parameter spelled out in full:

Get-Service |
Where –Property Status –eq –Value "Running" |
ConvertTo-HTML |
Out-File –Path stats.htm

That Where-Object command (we used its alias, Where) is particularly interesting.
We’ve used three parameters: -Property, the eq operator (which needs no value,
because it’s an operator), and –Value. You’ll never see this written out this way in the

27Plan A: ByValue
real world, but writing it out is a useful way to understand that everything the com-
mand is doing is coming from parameters.

 The last piece of the magic is how objects of data are carried by the pipeline from
one command to another. For that, PowerShell has two techniques it can use.

4.3 Plan A: ByValue
PowerShell has a hardcoded preference to pass entire objects from the pipeline into a
command. Because of that hardcoded preference, it will always attempt to do that
before it tries to do anything else. In order to do so, the following must be true:

 The accepting command must define a parameter that supports accepting pipe-
line input ByValue.

 That parameter must be capable of accepting whatever type of object happens
to be in the pipeline.

For example, let’s refer back to your diagram, with Get-Process in the first block.
What kind of object does that command produce? In PowerShell, try running Get-
Process | Get-Member—the first line of output will contain the TypeName, which
identifies the kind of object that the command produced. Turns out it’s a System
.Diagnostics.Process object.

 Now, peruse the help for the second command we suggested. You’ll want to first
make sure you’ve run Update-Help so that you have help files, and then run Help
ConvertTo-HTML –ShowWindow so that you can explore the complete help. Do you see
any parameters of the command that are capable of accepting a [Process] object?
Probably not.

 But you probably do see a parameter capable of accepting an [Object] (or
[Object[]]), right? In the Microsoft .NET Framework, System.Object is like the
mother type for everything else. That is, everything inherits from the Object type. In
PowerShell, PSObject (or “PowerShell Object”) is more or less equivalent to Object.
So, whenever you see that a parameter accepts PSObject, you know that it can accept
basically anything. In the help for ConvertTo-HTML, you’ll find an –InputObject
parameter, which fulfills our two criteria:

 It can accept pipeline input using the ByValue technique.
 It can accept objects of the type System.Diagnostics.Process, because it can

accept the more-generic PSObject.

Therefore, PowerShell will take the output of Get-Process and attach it to the –Input-
Object parameter of ConvertTo-HTML. Reading the help for the second command,
that parameter “specifies the objects to be represented in HTML.” So, whatever you
pipe into ConvertTo-HTML will be picked up, ByValue, by the –InputObject parame-
ter, and will be “represented in HTML.”

 But don’t take our word for it.

28 CHAPTER 4 Review: parameter binding and the PowerShell pipeline
4.3.1 Introducing Trace-Command

PowerShell has a way for you to see this passing-of-the-objects happening. It’s called
Trace-Command, and it’s a really useful way to debug pipeline parameter binding. It’ll
show you, in detail, the decisions PowerShell is making and the actions it’s attempt-
ing to take. To run the command, you’ll run something like Trace-Command –Name
parameterbinding –Expression { Your command goes here } –PSHost. Keep in mind
that your command will actually run, so you need to be careful not to run anything that
could be damaging, like deleting a bunch of user accounts just to see what happens!

4.3.2 Tracing ByValue parameter binding

Let’s apply Trace-Command to the current example. Here’s the command we ran, which
you should run, too:

PS C:\> trace-command -Expression { get-process | convertto-html |
➥ out-null } -Name ParameterBinding -PSHost

You’ll notice that we ended our command with Out-Null; we did that to suppress the
normal output of ConvertTo-HTML, to keep the output a little cleaner. You will, how-
ever, see PowerShell dealing with getting objects from ConvertTo-HTML into Out-Null,
so it’s a useful illustration.

 You’ll first see PowerShell attempt to bind—that is, attach—any NAMED arguments
for Get-Process. There weren’t any—we didn’t specify any parameters manually in
our command:

DEBUG: ParameterBinding Information: 0 : BIND NAMED cmd line args
[Get-Process]

PowerShell next looks for POSITIONAL parameters, which we also didn’t have. Power-
Shell then checks to make sure that all of the command’s MANDATORY parameters have
been provided, and we pass that check:

DEBUG: ParameterBinding Information: 0 : BIND POSITIONAL cmd line args
[Get-Process]
DEBUG: ParameterBinding Information: 0 : MANDATORY PARAMETER CHECK on
cmdlet [Get-Process]

This entire process—named, positional, and then a mandatory check—repeats for the
ConvertTo-HTML and Out-Null commands. This serves as an important lesson:
Regardless of how a command is wired up to accept pipeline input, specifying named or
positional parameters always takes precedence, because PowerShell binds those first. If we’d
manually specified –InputObject, for example, then we’d have prevented the ByValue
parameter binding from working, because we’d have “bound up” the parameter our-
selves before ByValue was even considered:

DEBUG: ParameterBinding Information: 0 : BIND NAMED cmd line args
[ConvertTo-Html]

29Plan A: ByValue
DEBUG: ParameterBinding Information: 0 : BIND POSITIONAL cmd line args
[ConvertTo-Html]
DEBUG: ParameterBinding Information: 0 : MANDATORY PARAMETER CHECK on
cmdlet [ConvertTo-Html]
DEBUG: ParameterBinding Information: 0 : BIND NAMED cmd line args
[Out-Null]
DEBUG: ParameterBinding Information: 0 : BIND POSITIONAL cmd line args
[Out-Null]
DEBUG: ParameterBinding Information: 0 : MANDATORY PARAMETER CHECK on
cmdlet [Out-Null]

The next thing that happens is PowerShell calling each of the three commands’ BEGIN
code. This is code that is executed once before any pipeline objects are processed. Not
all commands specify any BEGIN code, but PowerShell gives them all the opportunity:

DEBUG: ParameterBinding Information: 0 : CALLING BeginProcessing
DEBUG: ParameterBinding Information: 0 : CALLING BeginProcessing

The next bit is a little surprising, because PowerShell is attempting to bind a pipeline
object to a parameter of Out-Null:

DEBUG: ParameterBinding Information: 0 : BIND PIPELINE object to
parameters: [Out-Null]

How the heck did anything even get into the pipeline at this point? Well, the previous
command, ConvertTo-HTML, has clearly taken the opportunity to produce some out-
put from its BEGIN code. Sneaky. Anyway, PowerShell now has to deal with that, even
though the first command, Get-Process, hasn’t even run yet!

 Then comes something interesting. Here’s what you’ll see:

DEBUG: ParameterBinding Information: 0 : PIPELINE object TYPE =
[System.String]
DEBUG: ParameterBinding Information: 0 : RESTORING pipeline
parameter's original values

PowerShell identifies the type of object in the pipeline as a System.String. Take a
minute and read the full help for Out-Null. Do you see any parameters capable of
accepting a String from the pipeline using the ByValue method?

 PowerShell is about to discover that the –InputObject parameter of Out-Null
accepts either Object or PSObject, and so it’s going to bind the output of ConvertTo-
HTML to that –InputObject parameter:

DEBUG: ParameterBinding Information: 0 : Parameter
[InputObject] PIPELINE INPUT ValueFromPipeline NO COERCION
DEBUG: ParameterBinding Information: 0 : BIND arg [<!DOCTYPE
html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">] to parameter
[InputObject]
DEBUG: ParameterBinding Information: 0 : BIND arg
[<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

30 CHAPTER 4 Review: parameter binding and the PowerShell pipeline
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">] to param
[InputObject] SUCCESSFUL

In fact, it appears to have accepted a couple of String objects from the pipeline.
These look like header lines for an HTML file, which makes sense—ConvertTo-HTML

probably gets these out of the way as boilerplate before it settles down to its real job.
 Next, we see that the MANDATORY check on Out-Null succeeds, and we continue to

deal with initial boilerplate issued by ConvertTo-HTML:

DEBUG: ParameterBinding Information: 0 : MANDATORY PARAMETER CHECK
on cmdlet [Out-Null]
DEBUG: ParameterBinding Information: 0 : BIND PIPELINE object to
parameters: [Out-Null]
DEBUG: ParameterBinding Information: 0 : PIPELINE object TYPE =
[System.String]
DEBUG: ParameterBinding Information: 0 : RESTORING pipeline
parameter's original values
DEBUG: ParameterBinding Information: 0 : Parameter
[InputObject] PIPELINE INPUT ValueFromPipeline NO COERCION
DEBUG: ParameterBinding Information: 0 : BIND arg [<html
xmlns="http://www.w3.org/1999/xhtml">] to parameter [InputObject]
DEBUG: ParameterBinding Information: 0 : BIND arg [<html
xmlns="http://www.w3.org/1999/xhtml">] to param [InputObject]
SUCCESSFUL

OK, let’s skip ahead a bit, past all the boilerplate “header” HTML. We’ll go down to
the point where Get-Process runs and where PowerShell recognizes the type of
object it’s produced:

DEBUG: ParameterBinding Information: 0 : BIND PIPELINE object to
parameters: [ConvertTo-Html]
DEBUG: ParameterBinding Information: 0 : PIPELINE object TYPE =
[System.Diagnostics.Process#HandleCount]

Next we’ll see those Process objects being bound to the –InputObject parameter of
ConvertTo-HTML:

DEBUG: ParameterBinding Information: 0 : Parameter [InputObject]
PIPELINE INPUT ValueFromPipeline NO COERCION
DEBUG: ParameterBinding Information: 0 : BIND arg
[System.Diagnostics.Process] to parameter [InputObject]
DEBUG: ParameterBinding Information: 0 : BIND arg
[System.Diagnostics.Process] to param [InputObject] SUCCESSFUL

The trace output goes on, of course, but this is what we were looking for: proof that
PowerShell is doing what we expected. You’ll notice the phrase NO COERCION quite a
bit in the preceding; that’s an indication that PowerShell was able to bind the output
as is, without trying to convert it to something else. Coercion is one of the things that
can make pipeline parameter binding more confusing, and it’s what this trace output
can help you see and understand. For example, PowerShell is capable of coercing, or

31ByPropertyName
converting, a number into a string so that the resulting string can bind to a parameter
that accepts String.

4.3.3 When ByValue fails

So that’s the ByValue story. But what if it fails? Go back to your paper diagram. Erase
or cross out ConvertTo-HTML and Out-Null, and, in the second box, write Stop-
Service. Don’t run the resulting command yet—we need to talk about what happens.

 You know that the first command produces Process objects. Examining its full help
file, do you see any parameters of Stop-Service that will do both of the following?

 Accept pipeline input ByValue
 Also accept an input type of Process, Object, or PSObject

We don’t see any parameters that fit the criteria, so the ByValue method fails. Time for
Plan B.

4.4 ByPropertyName
You may notice one parameter of Stop-Service that accepts pipeline input ByProperty-
Name: specifically, the –Name parameter. That parameter does accept ByValue, but
we’ve moved past that—it’s the ByPropertyName part that interests us now. Here’s
what it means: Because the parameter is spelled N A M E, PowerShell will look at the
objects in the pipeline to see if they have a property spelled N A M E. If they do, Power-
Shell will take the values from the property and feed them to the parameter—just
because they’re spelled the same.

 Try using Trace-Command to run Get-Process | Stop-Service –whatif (we
included –whatif just to prevent any possibility of something going wrong). Can
you see how PowerShell attempts to bind the object’s Name property to the com-
mand’s –Name parameter?

 PowerShell will try to “pair” as many properties and parameters as it can. If the
object in the pipeline has properties named Name, ID, Description, and Status, and
the next command in the pipeline has parameters named –Name and –Status, then
two of the object’s properties will bind to parameters (assuming that –Name and –Status
were both programmed to accept pipeline input ByPropertyName). This can be a
really useful technique. For example, suppose you have a CSV file named Users.csv
that contains columns named samAccountName, Name, Title, Department, and City.
Looking at the help file for New-ADUser (located at https://technet.microsoft.com/
en-us/library/ee617253.aspx if you don’t have the command installed), what do you
think would happen if you ran this?

Import-CSV Users.csv | New-ADUser

Give it some thought. If you have a test domain that you can play with, go ahead and
create a CSV like that, and fill in a few rows’ worth of user information for made-up
users that don’t exist. Run the command, and see if it does what you expect.

https://technet.microsoft.com/en-us/library/ee617253.aspx
https://technet.microsoft.com/en-us/library/ee617253.aspx
https://technet.microsoft.com/en-us/library/ee617253.aspx

32 CHAPTER 4 Review: parameter binding and the PowerShell pipeline
4.4.1 Let’s trace ByPropertyName

Let’s take another example of ByPropertyName binding and look at the portions of a
trace where the binding happens. Here’s our command (we’re limiting Get-Process
to retrieving processes whose names begin with the letter O, because we know we only
have one such process, and it’ll make the output shorter):

PS C:\> trace-command -Expression { Get-Process -Name o* | Stop-Job }
➥ -PSHost -Name ParameterBinding

Let’s see what happens. First, we run through the parameter binding for Get-Process.
This time, we do have a NAMED parameter: -Name, to which we’ve provided the value
o*. There’s a problem, though, in that the parameter wants an array of strings—shown
as [string[]] in its help file—and we’ve provided only one. PowerShell therefore cre-
ates an array, adds our o* to it, and attaches that one-item array to the parameter:

DEBUG: ParameterBinding Information: 0 : BIND NAMED cmd line args
[Get-Process]
DEBUG: ParameterBinding Information: 0 : BIND arg [o*] to parameter
[Name]
DEBUG: ParameterBinding Information: 0 : COERCE arg to [System.String[]]
DEBUG: ParameterBinding Information: 0 : Trying to convert
argument value from System.String to System.String[]
DEBUG: ParameterBinding Information: 0 : ENCODING arg into collection
DEBUG: ParameterBinding Information: 0 : Binding collection parameter Name:
argument type [String], parameter type
[System.String[]], collection type Array, element type [System.String],
coerceElementType
DEBUG: ParameterBinding Information: 0 : Creating array with element type
[System.String] and 1 elements
DEBUG: ParameterBinding Information: 0 : Argument type String is not IList,
treating this as scalar
DEBUG: ParameterBinding Information: 0 : COERCE arg to System.String]
DEBUG: ParameterBinding Information: 0 : Parameter and arg types the same,
no coercion is needed.
DEBUG: ParameterBinding Information: 0 : Adding scalar element of type
String to array position 0
DEBUG: ParameterBinding Information: 0 : Executing VALIDATION metadata:
[System.Management.Automation.ValidateNotNullOrEmptyAttribute]
DEBUG: ParameterBinding Information: 0 : BIND arg [System.String[]] to
param [Name] SUCCESSFUL

Next is the usual check for POSITIONAL parameters, followed by a MANDATORY check:

DEBUG: ParameterBinding Information: 0 : BIND POSITIONAL cmd line args
[Get-Process]
DEBUG: ParameterBinding Information: 0 : MANDATORY PARAMETER CHECK on
cmdlet [Get-Process]

Now we start in on the Stop-Job command, handling NAMED, POSITIONAL, and MANDA-
TORY again:

DEBUG: ParameterBinding Information: 0 : BIND NAMED cmd line args
[Stop-Job]

33ByPropertyName
DEBUG: ParameterBinding Information: 0 : BIND POSITIONAL cmd line args
[Stop-Job]
DEBUG: ParameterBinding Information: 0 : MANDATORY PARAMETER CHECK on
cmdlet [Stop-Job]

PowerShell then gives each of the two commands a chance to run any BEGIN code that
they may contain:

DEBUG: ParameterBinding Information: 0 : CALLING BeginProcessing
DEBUG: ParameterBinding Information: 0 : CALLING BeginProcessing

The only process returned, in our case, is one named OSDUIHelper, and it appears
next in the trace output:

DEBUG: ParameterBinding Information: 0 : BIND arg
[System.Diagnostics.Process (OSDUIHelper)] to parameter [Job]

Let’s see what PowerShell does with that, because we’re pretty sure ByValue won’t
work:

DEBUG: ParameterBinding Information: 0 : Binding collection parameter Job:
argument type [Process], parameter type
[System.Management.Automation.Job[]], collection type Array, element
type [System.Management.Automation.Job], no coerceElementType
DEBUG: ParameterBinding Information: 0 : Creating array with element type
[System.Management.Automation.Job] and 1 elements
DEBUG: ParameterBinding Information: 0 : Argument type Process is not
IList, treating this as scalar
DEBUG: ParameterBinding Information: 0 : BIND arg
[System.Diagnostics.Process (OSDUIHelper)] to param [Job] SKIPPED

That SKIPPED (which we’ve bolded in the output) is what tells us ByValue ultimately
didn’t work out. PowerShell tried! The –Job parameter of Stop-Job accepts input
ByValue, so PowerShell gave it a shot. The parameter expects one or more objects of
the type Job, so PowerShell created an array and added to it our OSDUIHelper
object—which is of the type Process. But it couldn’t do anything to make a Process
into a Job, so it gave up. Time for plan B!

DEBUG: ParameterBinding Information: 0 : Parameter [Id] PIPELINE
INPUT ValueFromPipelineByPropertyName NO COERCION
DEBUG: ParameterBinding Information: 0 : BIND arg [5248] to parameter [Id]
DEBUG: ParameterBinding Information: 0 : Binding collection parameter Id:
argument type [Int32], parameter type [System.Int32[]],
collection type Array, element type [System.Int32], no coerceElementType
DEBUG: ParameterBinding Information: 0 : Creating array with element type
[System.Int32] and 1 elements
DEBUG: ParameterBinding Information: 0 : Argument type Int32 is not IList,
treating this as scalar
DEBUG: ParameterBinding Information: 0 : Adding scalar element of type
Int32 to array position 0
DEBUG: ParameterBinding Information: 0 : Executing VALIDATION metadata:
[System.Management.Automation.ValidateNotNullOrEmptyAttribute]

34 CHAPTER 4 Review: parameter binding and the PowerShell pipeline
DEBUG: ParameterBinding Information: 0 : BIND arg [System.Int32[]] to param
[Id] SUCCESSFUL
DEBUG: ParameterBinding Information: 0 : MANDATORY PARAMETER CHECK on
cmdlet [Stop-Job]

The Process object has an ID property, and the –Id parameter of Stop-Job accepts
pipeline input ByPropertyName. The property contains, and the parameter accepts,
an integer, although the parameter wants an array of them. So, PowerShell creates a
single-item array, adds our ID of 5248 to it, and attaches it to –Id. And it works! Well,
sort of. We know, and you’ve probably guessed, that Stop-Job is expecting the ID
number of a job, whereas we’re providing the ID number of a process. Not quite the
same thing. It’s like trying to use your house number as a phone number: They’re
both numbers, but they refer to different kinds of entities. That’s why we eventually
get an error:

Stop-Job : The command cannot find a job with the job ID 5248. Verify
the value of the Id parameter and then try the command again.
At line:1 char:52
+ trace-command -Expression { Get-Process -Name o* | Stop-Job } -PSHost ...
+ CategoryInfo : ObjectNotFound: (5248:Int32) [Stop-Job],
PSArgumentException
+ FullyQualifiedErrorId : JobWithSpecifiedSessionNotFound,Microsoft.
PowerShell.Commands.StopJobCommand

The trace output, should you care to try this on your own (and you should!), shows
PowerShell attempting to construct the error message record that eventually appears
onscreen, which is a fairly arduous process that involves a few dozen more lines of
trace output. Trace-Command can be a handy cmdlet for troubleshooting, so take the
time to read the full help and examples.

4.4.2 When ByPropertyName fails

What if you get into a situation where you have an object in the pipeline and a com-
mand ready to receive it, but neither ByValue nor ByPropertyName works? It’s entirely
possible—the command may not be able to do anything with the type of object in the
pipeline, for example, or may not accept pipeline input at all. This should be rare,
and we created a simple PowerShell command to demonstrate:

PS C:\> "frances" | set-foo
set-foo : The input object cannot be bound to any parameters for the
command either because the command does not take
pipeline input or the input and its properties do not match any of the
parameters that take pipeline input.
At line:1 char:13
+ "frances" | set-foo
+ ~~~~~~~
 + CategoryInfo : InvalidArgument: (frances:String) [Set-Foo],
ParameterBindingException
 + FullyQualifiedErrorId : InputObjectNotBound,Set-Foo

35Summary
As you can see, the entire pipeline will fail. Because the objects can’t be passed into the
command, and because PowerShell doesn’t want to just discard the pipeline objects,
it’ll throw an error message and quit running.

4.4.3 Planning ahead

When you start designing your tools, which most likely will take advantage of some
form of parameter binding, we want you to keep a few ideas in mind. First, you should
have only one parameter designated to accept pipeline input by value. If you think
about it, this makes sense. Suppose your command had two parameters, -Foo and -Bar,
and they both were designed to accept input by value. If you ran the command like this

Get-content data.txt | get-magic

would the incoming values go to -Foo or -Bar? PowerShell has no way of knowing.
This means only one parameter should take input by value. Technically, you can have
multiple parameters designed to take input by value, but only if you use parameter
sets, which isn’t something you’re likely to get into right away.

 But you can have as many parameters as you want designated to take input by
property name. You can even have one parameter accept input by value and prop-
erty name. You’ll discover that this is as much of an art as anything. Our best recom-
mendation is to think about likely usage patterns for the tools you’re creating. Will
someone most likely pipe the results of a command to your command? Or will they
run it as the initial command in a pipeline expression? Of course, you’ll want to test
different usage patterns to verify that your parameter binding is working as expected.
If not, turn to Trace-Command to get a better idea about what is happening inside
the pipeline.

4.5 Summary
Our goal with this chapter—and we hope we’ve achieved it—was twofold. First, we
wanted you to get a fresh understanding of how pipeline objects move from command
to command. We also wanted you to understand how useful command tracing can be
in visualizing that process and in diagnosing unexpected pipeline behavior. Before
long, you’re going to be designing your own commands that will accept pipeline
input, and we want you to continually think about this process, and how it works, as
you do so.

Scripting language
crash course
We don’t typically enjoy presenting material up front that you won’t put to use right
away. In this case, though, we’re going to make an exception. You’ll be writing
scripts in this book, and that means including a certain amount of code. Power-
Shell’s scripting language is super-simple, containing under two dozen actual key-
words, and we’re only going to use about a dozen in this book. But we need to get
the most important of those into your head so that we can use them at will when
the time comes. Our goal in this chapter is not to provide complete coverage of
these items but to give you a quick introduction. When you see them in use
throughout the rest of the book, they’ll begin to make more sense.

TIP To learn even more about the material in this chapter, the first place
to look is PowerShell’s help system. Much of this is documented in about
topics. You can try looking at things like about_if and about_comparison
_operators. Or grab a copy of PowerShell in Depth (Manning, 2013,
www.manning.com/books/powershell-in-depth).

5.1 Comparisons
Almost all of the scripting bits we’ll introduce in this chapter rely on comparisons.
That is, you give them some statement that must evaluate to either True or False,
and the scripting constructs base their behavior on that result. In order to make a
comparison in PowerShell, you use a comparison operator. PowerShell’s core ones are
as follows:

 -eq—Equal to
 -ne—Not equal to
36

http://www.manning.com/books/powershell-in-depth

37Comparisons
 -gt—Greater than
 -ge—Greater than or equal to
 -lt—Less than
 -le—Less than or equal to

For string comparisons, these are case-insensitive by default, which means “Hello” and
“HELLO” are the same. If you explicitly need a case-sensitive comparison, add a c to
the front of the operator name, as in –ceq or –cne.

 When you use these operators, PowerShell will return a True/False value:

PS C:\> 1 -eq 1
True
PS C:\> 5 -gt 10
False
PS C:\> 'don' -eq 'jeff'
False
PS C:\> 'don' -eq 'Don'
True
PS C:\> 'don' -ceq 'Don'
False

PowerShell doesn’t have the same extensive range of operators as some languages. For
example, there’s no “exactly equal to” comparison that forbids the shell’s parser from
coercing a data type into another type.

5.1.1 Wildcards

There’s a wildcard comparison: -like and –notlike, along with the case-sensitive ver-
sions –clike and –cnotlike. These let you use common wildcard characters like *
(zero or more characters) and ? (a single character) in making string comparisons:

PS C:\> 'don' -eq 'jeff'
False
PS C:\> 'don' -eq 'Don'
True
PS C:\> 'don' -ceq 'Don'
False
PS C:\> 'PowerShell'-like '*shell'
True
PS C:\> 'don' -notlike 'don*'
False
PS C:\> 'don' -like 'd?n'
True
PS C:\> 'donald' -like 'd?n'
False

These wildcards aren’t as rich as the full regular-expression language; PowerShell
does support regular expressions through its –match operator, although we won’t be
diving into that one in this book. Check out the chapter on PowerShell and regular
expressions in PowerShell in Depth.

38 CHAPTER 5 Scripting language crash course
5.1.2 Collections

PowerShell’s –contains and –in operators (-in was introduced in v3, so don’t look
for it in v2) operate against collections of objects. They get a little tricky, and peo-
ple almost always confuse them with wildcard operators. For example, we see this
a lot:

If ("DC" –in $servername) {
 $IsDomainController = $True
}

This doesn’t work the way you might think. It reads just fine in English, but it’s not
what the operator does. If you start with an array, you can use these operators to deter-
mine whether the array (or collection) contains a particular object:

$array = @("one","two","three")
$array –contains "one"
$array –contains "five"
"two" –in $array
"bob" –in $array

TRY IT NOW Go ahead and run those five lines of code in PowerShell, typing
the lines one at a time and pressing Enter after each.

5.1.3 Troubleshooting comparisons

About 4 times out of 10, we find that script bugs are due to a comparison that isn’t
working the way you expect. Our best advice for troubleshooting these is to stop work-
ing on your script, jump into the PowerShell console, and try the comparison there.
For example, what will this produce?

"55" –eq 55

TRY IT NOW We’re not going to give you the answer—try it, and see if you can
explain to yourself why it did what it did.

5.2 The If construct
You’ll often find the need to use an If construct, which allows your code to make log-
ical decisions. In its full form, this construct looks like this:

If (<expression>) {
 # code
} ElseIf (<expression>) {
 # code
} ElseIf (<expression>) {
 # code
} Else {

39The If construct
 # code
}

Here’s what you need to know:

 An <expression> is any PowerShell expression that will result in either $True or
$False. For example, $something -eq 5 will be $True if the variable $something
equals 5. Read PowerShell’s about_comparison_operators for a list of valid
comparison operators, including -eq, -ne, -gt, -like, and so on.

 The expressions in your If statement can be as complicated as they need to be.
Just remember that the entire expression has to result in True in order for the
script block code to execute:

$now = Get-Date
if ($now.DayOfWeek -eq 'Monday' -AND $now.hour -gt 18) {
 #do something
}

 The If portion of the construct is mandatory, and it must be followed by a
{script block} that will execute if the expression is True.

 You may have zero or more ElseIf sections. These sections supply their own
expression and script block, which will execute if the expression is True. But
there’s an important point you must remember: Only the script block of the
first expression that is True will run. So, in the previous skeleton example, if
the first expression is True, then only the first script block will run; none of the
ElseIf expressions will even be evaluated. If you have multiple ElseIf state-
ments, PowerShell will continue to evaluate them until it finds one that’s True.
When it does, PowerShell will jump to the command after the If structure.

 You may have an optional Else section at the end. This defines a script block
that will execute if no preceding expression evaluated to True.

 There is no End If statement like you might find in other languages.
 In the previous skeleton example, you’ll notice lines that start with a # symbol.

Those are comments—PowerShell will ignore everything after a # to the end of
that line.

PowerShell is pretty forgiving about the formatting of these things. For example, we
think this is a nice way to format the construct:

If (<expression>) {
 # code
} ElseIf (<expression>) {
 # code
} ElseIf (<expression>) {
 # code
} Else {
 # code
}

40 CHAPTER 5 Scripting language crash course
Some people like to put the opening { on a separate line:

If (<expression>)
{
 # code
}

But PowerShell will let you do stuff like this as well:

If (<expression>) { # code }
ElseIf (<expression>) { # code }
ElseIf (<expression>) { # code }
Else { # code }

We think that’s harder to read, especially if any of the script blocks need to contain
multiple lines of code. We certainly don’t recommend you using this—but you’ll
see other people do so sometimes. The bottom line is that PowerShell doesn’t care,
but you should. Pick a formatting style that makes your code easy to read, and stick
with it.

Let’s look at a practical example of this construct. Suppose you have a Process object
in the variable $proc, and you want to take some action if the process’s virtual memory
(VM) property exceeds a certain predetermined value:

If ($proc.vm –gt 4) {
 # take some action
}

A quick word on code formatting
Code formatting is important. It may seem like an irrelevant aesthetic detail, but it
makes your code easier to follow, and “easier to follow” means “fewer bugs.” Trust
us. Take a travesty like this:

If ($user) { ForEach ($u in $user) {
Set-ADUser –Identity $user –Pass $True }

It’s hard to tell if that’s valid code or not (it isn’t), given how the curly braces are
mangled and the way the ForEach starts on the same line as the If.

If you’re using a good editor, like VS Code, then it’s pretty easy to keep your code
neat. Basically, just let the editor do its thing. When you open a construct with { and
press Enter, VS Code will automatically add the closing } and place your cursor—
indented a perfect four spaces—inside the construct. Focus on letting VS Code do
the work—use the Tab key when you need to indent a line, for example, rather than
pressing the spacebar.

If things aren’t lining up vertically, here’s a trick: Highlight the affected region (or
your entire script document), right-click, and select Format Selection. VS Code will
“clean up,” properly indenting within each construct.

41The ForEach construct
Notice that we’ve used a comment—remember, anything after a # symbol is ignored,
until the end of that line—to indicate where the action-taking code would go. What if,
instead, you wanted to take an action for VM values less than 2 but greater than 4?

If ($proc.vm –gt 4 –or $proc.vm –lt 2) {
 # take some action
}

The –or Boolean operator lets you “connect” two conditions. There’s an important
point to make here: The comparison on either side of an –or or an –and must be a
complete comparison. This, for example, wouldn’t work:

If ($proc.vm –gt 4 –or –lt 2) {
 # take some action
}

In this “wrong” example, the “less than” comparison isn’t complete. It doesn’t have
anything on the left side; PowerShell will ask, “What, exactly, is supposed to be less
than 2?” and will toss an error. If it helps, you can use parentheses to visually set off
each comparison:

If (($proc.vm –gt 4) –or ($proc.vm –lt 2)) {
 # take some action
}

Let’s look at an example that has additional options:

If ($proc.vm –gt 4) {
 # take some action
} ElseIf ($proc.vm –lt 2) {
 # take some other action
} Else {
 # nothing was true; do this instead
}

As we explained earlier, PowerShell will perform the first of these actions whose con-
dition evaluates to True and then stop evaluating anything after that.

5.3 The ForEach construct
You’ll often use a ForEach construct, which is sometimes referred to as an enumerator.
If you come from a VBScript background, it will look familiar. It works a bit like Power-
Shell’s ForEach-Object command, but it has a different syntax:

ForEach ($item in $collection) {
 # code to run for each object referenced at $item
}

The idea here is to take a collection or an array of objects and go through them one at
a time. Each object, in its turn, is placed into a separate variable so that you can refer

42 CHAPTER 5 Scripting language crash course
to it easily. After you’ve enumerated all the objects in the collection or array, the loop
exits automatically and the rest of your script executes.

 The second variable in the construct, $collection, is expected to contain zero or
more items. The ForEach loop will execute its {script block} one time for each item
that is contained in the second variable. So, if you provided three computer names in
$collection, the ForEach loop would run three times. Each time the loop runs, one
item is taken from the second variable and placed into the first. So, within the previ-
ous script block, $item will contain one thing at a time from $collection.

TIP The variable names $item and $collection are ones we made up. You’d
ordinarily use different variable names that correspond to what those vari-
ables are expected to contain.

You’ll often see people use singular and plural words in their ForEach loops:

$names = Get-Content names.txt
ForEach ($name in $names) {
 # code for each $name
}

This approach makes it easier to remember that $name contains one thing from
$names, but that’s purely for human readability. PowerShell doesn’t magically know
that name is the singular of names, and it doesn’t care. The previous example could
easily be rewritten as

$names = Get-Content names.txt
ForEach ($purple in $unicorns) {
 # code
}

PowerShell would be perfectly happy. That code would be a lot harder to read and
keep track of, but hey, if you like unicorns, go for it. In some cases, though, you’ll
notice that the second variable is not plural, although it feels like it should be:

foreach ($computer in $computername) {

It’s often because $ComputerName is one of a function’s input parameters. Power-
Shell’s convention is to use singular words for command and parameter names. You
won’t see -ComputerNames; you’ll only see -ComputerName as a parameter. You want to
stick with the convention, so in that case your ForEach loop wouldn’t follow a singu-
lar/plural pattern. Again, PowerShell itself doesn’t care, and we feel it’s more import-
ant that your outward-facing elements—command and parameter names—follow
PowerShell naming conventions.

BEST PRACTICE In a script, we greatly prefer the use of ForEach over the
ForEach-Object command. There are a number of advantages: You get to
name your single-item variable rather than using $_ or $PSItem, making your

43The ForEach construct
code more readable; the construct often executes more quickly than the com-
mand over large collections, too. But with large collections of arrays, the con-
struct can force you to use more memory, because the entire array or
collection must be in a single variable to start with. When you use the com-
mand, objects can be piped in one at a time and dealt with, consuming less
memory in some scenarios.

There’s one gotcha with the ForEach construct: It doesn’t write to the pipeline after the
closing curly brace. We’ve seen people try to create something like this:

$numbers=1..10
foreach ($n in $numbers) {
 $n*3
} | out-file data.txt

only to have it fail. If you try this in the PowerShell ISE or other code editors, you’ll
most likely see an error about an empty pipe. Everything inside the script block writes
to the pipeline. You just can’t pipe anything after. But you can write the code like this:

$numbers=1..10
$data = foreach ($n in $numbers) {
 $n*3
}
$data | out-file data.txt

This will work as expected. In this second example, $n*3 is implicitly writing its output
to the pipeline (Write-Output is PowerShell’s default command), and the end result
of the ForEach construct is being captured to the $data variable. That, in turn, is then
piped to Out-File. Honestly, much of this confusion happens because the alias for
the ForEach-Object is ForEach, although it works differently than the ForEach con-
struct. The construct, which is what we’re teaching here, always has the ($x in $y) syn-
tax right after it, whereas the ForEach-Object command doesn’t use that syntax.

 With all this in mind, we urge you to think carefully about when to use the ForEach
enumerator, because it’s easy to fall into a non-PowerShell habit. We’ve seen code like
this from people just getting started or who clearly haven’t grasped the PowerShell
model:

$services = Get-Service –name bits,lanmanserver,spooler
Foreach ($service in $services) {
 Restart-service $service –passthru
}

This will obviously work if you care to try, and it’s what we did in the days of VBScript.
But this isn’t the PowerShell way. There’s no need for such contorted code when this
works just as well:

$services | restart-service -passthru

44 CHAPTER 5 Scripting language crash course
5.4 The Switch construct
This construct is great as a replacement for a huge If block that contains multiple
ElseIf sections. Here’s a prototype:

switch (<principal>) {
 <candidate> { <script block> }
 <candidate> { <script block> }
 <candidate> { <script block> }
 default { <script block {
}

Here’s how it works:

1 The principal is usually a variable containing a single value or object. This is
important, because switch alone won’t enumerate collections or arrays.

2 Each candidate is a value that you think the principal might contain. Each can-
didate is followed by a script block (which can be broken into multiple lines);
and if the principal contains the candidate, then the associated script block will
execute.

3 The default block executes if no candidates match; you can omit default if
you don’t need it.

Each matching candidate will execute. It’s possible to have multiple matches; if so, each
matching script block will execute. This may seem nonsensical until you dive into
some of the construct’s advanced options:

$x = "d1234"

switch -wildcard ($x)
 {
 "*1*" {"Contains 1"}
 "*5*" {"Contains 5"}
 "d*" {"Starts with 'd'"}
 default {"No matches"}
 }

The -wildcard switch makes it possible for multiple candidates to match. For exam-
ple, in this example, if $x contained “1 of 5 dying worms”, then you’d get two lines of
output: “Contains 1” and “Contains 5”. The third pattern doesn’t match; and because
at least one pattern did match, the default block won’t execute. Be sure to read
about_switch.

5.5 The Do/While construct
You’ll be using this guy later on, as well. Basically, While lets you specify a script block of
statements, which will execute while some condition is true. You get two basic variations:

While (<condition>) {
 # code
}

45The For construct
Do {
 # code
} While (<condition>)

These both do essentially the same thing: They repeat the code inside the construct
until the specified <condition> is no longer true. Here’s the difference:

 With the first version, the code inside the construct might not ever run. It will only
run if the <condition> is true to begin with.

 With the second version, the code inside the construct will always run at least once.
That’s because it doesn’t check the <condition> until after the first execution.

You need to be a bit careful about writing these loops, because there’s no automatic
exit the way there is with a Switch, If, or ForEach construct. That is, unless you’re
sure that your <condition> will eventually change and evaluate to false, then a
Do/While construct can basically loop forever—something called an infinite loop. In
most PowerShell hosts, like the console, you can press Ctrl-C to break out of the loop
if you realize you’ve created an infinite one.

5.6 The For construct
Here’s the last of the scripting constructs, although this is one it’s probably safe to skip if
your head is starting to feel full. We use this so rarely that we debated even putting it in
the book, but then we figured somebody would be upset that we left out this one poor
li’l construct, and we don’t want to hurt anyone’s feelings. It typically looks like this:

For (<start>; <condition>; <action>) {
 # code
}

This loop is meant to repeat the code inside the construct a certain number of times. It
can be a bit easier to explain with a more concrete example:

For ($i = 0; $i –lt 3; $i++) {
 Write $i
}

The idea is that the <start> item gets executed before the construct runs, in this case
setting $i to a value of 0. The <condition> keeps the construct running as long as it
evaluates to true. Finally, each time after the construct’s script block executes, the
<action> is performed. So, in this example, the script will execute four times:

1 $i is initially set to 0, and then the script block executes.
2 Because $i is less than 3, $i is incremented by 1, and the script block executes.
3 Because $i is less than 3, $i is incremented by 1 (it’s now 2), and the script

block executes.
4 Because $i is less than 3, $i is incremented by 1 (it’s now 3), and the script

block executes.

46 CHAPTER 5 Scripting language crash course
5 Now, $i is 3, which isn’t less than 3, and so the script block doesn’t execute and
the construct exits.

This isn’t terribly different from using PowerShell’s range operator and a ForEach-
Object command:

0..3 | ForEach-Object { Write $_ }

The For construct is easier to read and feels more declarative, to us, and if we ever
needed to perform that kind of task, we’d probably opt for the construct over the
range-operator trick. But the reason we so rarely use For is that we don’t run into a lot
of situations where we need to do something a set number of times. We tend to find
ourselves using ForEach more often, because we’ve got a collection of objects and
want to perform some operation against each one. To be fair, you can do that with For
as well—but it’s a bit ugly. Assuming $objects contains a collection of objects, here
are two ways you could enumerate them:

For ($i = 0; $i –lt $objects.Count; $i++) {
 Write $objects[$i]
}

ForEach ($thing in $objects) {
 Write $thing
}

We definitely think the second example is easier to read. We suspect that people
using the first technique are coming to PowerShell from a language that doesn’t
have an enumeration construct like ForEach, and they default to For because it’s
what they know.

5.7 Break
There’s one more scripting critter you should know about: the Break keyword. It exits
whatever it’s in—with some caveats:

 In a For, ForEach, While, or Switch construct, Break will immediately exit that
construct.

 In a script, but outside of a construct, Break will exit the script.
 In an If construct, Break won’t exit the construct. Instead, Break will exit what-

ever contains the If construct—either an outer For, ForEach, While, or Switch,
or the script itself. Basically, the If is invisible to Break, and so whatever the If
is within is what Break sees.

Break is useful for aborting an operation. For example, suppose you have a list of com-
puters in the variable $computers. You want to go through each one, pinging them to
see if they respond. But should one computer not respond to its ping, for whatever
reason, you want to immediately stop everything and quit. You might write this:

47Summary
ForEach ($comp in $computers) {
 If (-not (Test-Ping $comp –quiet)) {
 Break
 }
}

There’s a bit of an antipattern that you need to be aware of. Some folks will write a
loop that’s intentionally infinite. Instead of specifying a condition to end the loop nat-
urally, they’ll use Break to abort. Here’s a short example:

While ($true) {
 $choice = Read-Host "Enter a number"
 If ($choice –eq 0) { break }
}

Often, we wonder if those folks just weren’t aware of the loop’s other options. In this
case, for example, it seems as if they wanted to ensure that the loop’s contents exe-
cuted at least once, but they didn’t know how to go into the loop the first time. We’d
rewrite this as follows:

Do {
 $choice = Read-Host "Enter a number"
} While ($choice –ne 0)

This is a little cleaner in terms of code execution. A problem with Break is that it pro-
vides an alternate way out of a construct, creating a secondary flow of logic that’s
harder to follow. Because Break is often used inside an If construct—as we’ve shown
here—it becomes difficult to predict the behavior of the script without running it.
That, in turn, creates all kinds of debugging and troubleshooting problems that we
feel are best avoided. Short story: we try to write constructs that have a meaningful
natural end point, and we try to avoid Break when we can.

TIP We try to avoid using Break when we can. Break creates what we call a
non-natural exit to a loop. That is, the loop isn’t coming to its natural conclu-
sion. Especially in a loop that contains a lot of code, it’s easy to skim through
it and miss the Break keyword, making it harder to understand why the loop
is bailing out prematurely. When we do have to use Break, we make sure to
surround its use with some blank lines and clearly worded comments that
indicate what’s happening.

5.8 Summary
The constructs we covered in this chapter form the core of what we consider to be
PowerShell’s scripting language. That is, unlike commands, these constructs exist to
provide logic and structure to your scripts. If you can keep these four core constructs
in mind, you’ll probably find that they’re all the scripting code you need to know for
most of the scripts you’ll write.

The many forms of scripting
(and which to use)
We’ve used the words tool and toolmaking a lot so far in this book, and we’re almost
ready to start building tools. But we need to acknowledge that the title of this book
uses the word scripting, and that wasn’t meant as a bait and switch. You see, for us,
scripting is a pretty generic word, and in the PowerShell universe we feel that it can
refer to a couple of distinct and valuable things.

6.1 Tools vs. controllers
Think about a hammer. A hammer is a tool, and it’s probably one you’ve at least
seen before, even if you’ve never wielded one. A hammer is a self-contained thing;
it basically only does one thing: Strike other things. A hammer has no context
about its life and no clue about its destiny. A hammer may be used one day to help
build a house, another day to break a window, and another day to smash your
thumb. A hammer, sitting alone in a toolbox, is essentially useless. It takes up space
and doesn’t do anything.

 You, in this analogy, are a controller. You give the hammer meaning and a pur-
pose. You give it context. You decide if it will strike a nail or someone’s head. You
give the hammer input—how hard it’s being swung, what it’s being swung at, and
so on. You take the hammer’s output, like how loud a noise it makes, and you do
something with that output, like decide to go buy some earplugs.

 That’s how things are meant to work in PowerShell. What PowerShell calls a
command—a catchall word referring to cmdlets, functions, and other executable
artifacts—we call a tool. A tool should do one thing, and one thing only. That’s why
we have tools named Get-Process, Start-Process, Stop-Process, and so on—
each of them does one thing, and one thing only. We don’t have a tool called
48

49Thinking about tools
“Manage-Processes”, capable of starting, stopping, or listing processes depending on
the parameters you provide. Such a super-tool goes against the PowerShell ethos of
single-task-ed-ness.

 Think about Stop-Process. What good is it? No good at all, really, on its own. Like
a hammer, it needs to be given context and purpose. It needs to be controlled. When
used as part of a controller script, the tool gains meaning and purpose.

 This chapter is all about learning to draw the line between these two equally
important kinds of script. There are specific techniques suitable for tools, and dif-
ferent ones suitable for controllers. Each set of techniques is designed to reduce
your workload, reduce debugging, reduce maintenance, and increase readability
and reusability. Knowing which kind of script you’re writing will help direct you to
the right set of techniques, and that’s the key to being a successful scripter and ulti-
mately toolmaker!

6.2 Thinking about tools
Tools have some important characteristics in the PowerShell world:

 Tools do one thing, which should be described by the verb portion of their name.
It’s better to make five small tools that each do one thing than to make one big
tool that does five things. Smaller, more tightly scoped tools are easier to write,
easier to test, and easier to debug and maintain.

 Tools don’t know where their input data is generated, any more than a hammer knows
in advance whether it will be held in a hand or duct-taped to some robotic con-
traption. Tools accept all input only from their parameters, just as a hammer
accepts input only from what’s holding its handle. (Yeah, we’re playing pretty
loose with the metaphor, but you get the idea.) Other tools may be used to create
the input that’s then fed to a tool’s parameters.

 Tools don’t know how their output will be used, and they don’t care, any more than a
hammer cares if it will be hitting a nail or a thumb. Tools don’t worry about
making their output pretty—other tools can handle that. Tools don’t worry
about where their output will go—again, other tools can handle that.

We tend to informally think about several different types of tools. This isn’t a strict tax-
onomy, but it does give you an idea of how they can relate to one another:

 Input tools are designed to create data that will primarily be consumed by other
tools. You might write a tool that gets a bunch of computer names from a data-
base, for example. Get is a common verb for input tool names, but you’ll also
see Import and ConvertFrom.

 Action tools usually require some additional input before they do something—
and that “something” can be anything you imagine. Plenty of commands have
verbs like Set and Remove.

 Output tools are usually designed to take the output of an input tool or an action
tool, and render it for some specific purpose. They might create a specially

50 CHAPTER 6 The many forms of scripting (and which to use)
formatted data file, render a particular kind of onscreen display, and so on.
Verbs like Out, Format, ConvertTo, and Export are common for output tools.

Imagine that you have some line-of-business application that tracks customer records.
You’ve been asked to write a script that will generate a list of customers whose records
have gone for a year or more without any activity. That list is to be formatted in a CSV
file that can be fed to other processes, and in an HTML report that can be posted on
the company intranet. How many tools do you need to write? You have to start by
thinking of the discrete tasks involved, and see what tasks are already solved by a
PowerShell tool:

 You’ll have to write a Get-CustomerRecord tool, for sure. Its output should
include the date of each customer’s last activity, plus whatever other data is
needed for that CSV file and that HTML report. You’ll probably include data
like customer name, last activity date, ID number, and so on.

 You’ll need a way to filter the results of Get-CustomerRecord to just those cus-
tomers who’ve had no activity for a year. Fortunately, the native Where-Object
command can do that, so you shouldn’t need to write a thing—although,
depending on the code you’re running to query the customer information, if
there’s any way to filter or limit data as it’s collected, that would be preferable.

 You’ll need to convert those results to CSV and save to a file, and the native
Export-CSV command can do that for you—no work for you, here!

 You’ll also need a way to make an HTML report. If the native ConvertTo-HTML
command isn’t sufficient, then the EnhancedHTML2 module from PowerShell-
Gallery.com includes ConvertTo-EnhancedHTML, which should do the trick.
You’ll need to learn to use it, but you won’t have to code anything.

So, for all of that, you only need to write one tool. That’s the beauty of the tool-based
approach: So many great, generic tools already exist in PowerShell, and out in the
broader world, that you often only need to focus on the stuff that’s entirely specific to
your environment. Do that the right way, and your custom tools will connect seam-
lessly to everything that already exists.

 But your prospective Get-CustomerRecord tool is useless by itself. It needs to be
given purpose and a context. It needs a controller.

NOTE We should point out that you may not find the terms tool and control-
ler in Microsoft documentation or even in the greater PowerShell commu-
nity. For many people, it’s just scripting. But we feel that in order to truly
understand the PowerShell way of automating things, you should keep the
concepts of tool and controller in mind. We’ve seen many beginning students
struggle with writing reusable PowerShell code because they’re trying to do
everything at once. Defining the tool separately from how it will be used is
very important.

51Thinking about controllers
6.3 Thinking about controllers
Whereas tools are generic and lack context, controllers are all about context. The pur-
pose of a controller is to put a tool to a specific use, in a specific kind of situation. This
is a good thing for you because a tool you create can be used in many different scenar-
ios, which is what the controller is all about. We don’t use command-style, verb-noun
names for controllers; we give them friendlier, more English-like names. For example,
CreateStaleCustomerHTMLReport.ps1 is the script we might create to generate that
HTML report of customers who’ve been inactive for a year or more. That script might
be really simple, containing only a single pipeline:

Get-CustomerRecord |
Where-Object { $_.LastActivity –lt (Get-Date).AddDays(-365) } |
ConvertTo-HTML |
Out-File \\intranet\www\reports\inactive-customers.html

It’s not a complex script, and that’s the idea. Controllers often are simple, because
they’re just stringing together some tools. None of these tools knew beforehand that
they’d be involved in creating HTML customer reports, but this controller gave them
purpose. We’d probably have another one, CreateStaleCustomerCSVDataFile.ps1,
that would take care of generating the required CSV data file. Just for fun, we might
also create DisplayStaleCustomers.ps1, which would query inactive customers and
format the output for an attractive onscreen display. It never hurts to go above
and beyond!

 Like tools, controllers have some specific characteristics:

 A controller is tied to a context. It automates a business process, interacts with a
human being, or does some other situation-specific thing.

 A controller often has hardcoded data, such as a filename that will be read as input
or a database connection string that will give output a place to go.

 A controller is responsible for putting its output into a particular form, which may not
be structured data. For example, a controller may display information onscreen
or send it to a printer. The tool just writes objects to the pipeline.

 Whereas a tool performs a task, a controller solves a problem. That “problem” is
often a business need or management directive.

People often ask us about writing “graphical scripts” in PowerShell, using either
.NET Framework’s Windows Forms library or its newer Windows Presentation Frame-
work (WPF) library. You can do it, and we consider such scripts to be controllers. They
should contain minimal code and mainly rely on running tools. The PowerShell par-
adigm is that the commands that are executed from a graphical controller are the
same commands you could run from an interactive console prompt. The graphical
scripts merely put those tools to a specific purpose, tied to the eyes and fingers of
human beings.

52 CHAPTER 6 The many forms of scripting (and which to use)
6.4 Comparing tools and controllers
Think about an automotive assembly line. These days, they’re largely staffed by spe-
cialized robots. One robot paints the car; another one welds two pieces together.
Those robots are tools: In a warehouse all by themselves, they’re useless. It’s when you
add a controller—the production line, which places the robots in sequence and coor-
dinates their activities—that you have something useful. Table 6.1 outlines some of
the key differences.

In this book, we’ll be focusing a great deal on creating tools. How they’re used is no
different than using any other PowerShell command like Get-Eventlog. Anyone who
has access to your tools can create their own controller.

6.5 Some concrete examples
Let’s walk through some real-world examples of this “tools versus controllers” design
concept.

Controllers from commands
If you look at the previous sample controller script that uses our fictitious Get-
CustomerRecord tool, it’s just a PowerShell command. Your “controller” can be you
typing a command interactively in the console. This is a great way to make sure your
tool does what you intend.

Putting the commands in a controller script saves a ton of typing and makes running
your command consistent. A controller script can also be a bit more complex if you
need it to be. And by using a script file, anyone can run it, and the results will be
consistent and predictable.

Table 6.1 Tools vs. controllers

Tools Controllers

Do one thing and one thing only. Connect multiple tools.

Accept input on parameters. May have hardcoded input, and may use tools to retrieve
data that will be fed to other tools.

Produce data as objects. May produce any kind of output, including formatted
data, special files, and so on.

Complete a task. Solve a problem or meet a need.

Are often useless or minimally useful on
their own.

Are self-contained.

Are useable across a variety of situations. Are used only for a specific situation.

53Some concrete examples
6.5.1 Emailing users whose passwords are about to expire

This is a great example, and it’s one we’re going to put some code to later in this
book. Say that you wanted to send a quick email reminder to users whose passwords
were about to expire in a day or two. What’s involved there?

 You’d need to start by getting a list of users who have expiring passwords—that is,
whose accounts aren’t disabled and who don’t have a “password does not expire” set-
ting. You’d probably then need to calculate exactly when their password does expire,
and filter out anyone whose password wasn’t expiring within whatever range you cared
about. You’d then send them all an email and perhaps log that information to a file
for diagnostic purposes.

 You’d basically have five distinct tools you’d need to build, each one performing a
single task from that overall process:

 Get non-expiring user accounts.
 Get password expiration date.
 Filter accounts based on number of days.
 Send email.
 Create audit trail.

If you did it right, your “controller” script might look like this:

Get-EnabledNonExpiringUser |
Add-ExpiryDataToUser |
Where-Object { $_.DaysToExpire –lt 2 } |
Send-PasswordExpiryMessageToUser |
Export-CSV report.csv

Three of those are new tools that you’d need to build, and two of them are native to
PowerShell. You’d maybe be looking at writing a hundred or so lines of code to build
those three tools—and some of them would have uses in other business processes. For
example, getting enabled, non-expiring user accounts could be useful elsewhere. Get-
ting a list of all users and adding password expiration data to them could also be use-
ful in other scenarios. Modularizing these tasks as tools, and then calling them from a
controller, makes a lot of sense. And remember, the controller doesn’t necessarily have
to be a script. It could be you running the commands in a PowerShell session. Using a
script saves typing and ensures consistency.

6.5.2 Provisioning new users

This is our classic “tools versus controllers” example. Think about what goes into pro-
visioning a new user in your organization. You probably have to set up an account,
mailbox-enable it, set up a home folder somewhere, maybe add them to something in
SharePoint, and so on. Each of those is obviously a discrete task within the process,
and each of those tasks should be a tool. Many of those tools—like New-ADUser—are
provided by Microsoft.

54 CHAPTER 6 The many forms of scripting (and which to use)
 There’s an opportunity to be clever here, too. For example, where do you set up the
new home folder? What’s your normal business logic? “Well, we look at the existing
file servers, and we usually don’t put more than 1,000 users per home folder file
server. So we find a server with less than 1,000 home folders already, and use that one.
But if the server we pick has less than 75 GB free, then we leave it alone and pick
another one.” That’s a task, and it’s one you could automate. Perhaps you’d create a
Select-UserHomeFolderFileServer tool that does all the analysis and returns a list of
eligible servers, and then a New-UserHomeFolder tool that uses the first eligible
server to create the new user’s home folder on. Those are two discrete tasks and
should be two discrete tools.

6.5.3 Setting file permissions

Here’s a task that may be a bit trickier to think about: “I want to set a file permission
on an entire hierarchy of files, but I need to exclude certain file types.” What are the
tasks there? This is where it’s sometimes helpful to think about how you’d do this
manually. And we mean really manually, not using the GUI. Like, if you were Windows
itself, how would you do this?

Let the verb be your guide
We had a need, once, to grab a bunch of users from Active Directory. Get-ADUser
does that just fine, but we wanted to enrich the user objects with additional data.
Specifically, we wanted to add a property that indicated how long it had been since
the user account had been used. In some older domains, that requires pinging every
domain controller. We also wanted to filter out user accounts that had never been
used to log on. So we started thinking about the name such a tool would have.

We always start at http://mng.bz/3Pjp, which lists the official, allowed verbs for
command names. In this case, the Add verb seemed like it could work. After all, we
were adding information to the user objects, and the description for that verb says it
means to “…[attach] an item to another item.” But adding doesn’t communicate
the filtering process we also wanted to do. We struggled with it for a while. “What
about Process as a verb, because we’re really processing these user objects?”
Nope, that’s not a valid verb. “Evaluate, maybe?” Nope.

That’s when it dawned on us. We were having trouble because our tool was doing
two things. It was enriching an object by adding information, but it was also filtering
objects out of the processing queue. The existing Where-Object command already
does that kind of filtering—we didn’t need to duplicate that within another tool.

Once we stopped trying to force the verbs to work, everything made sense. We
needed to create one tool to enrich the user objects, and we also needed to use an
existing tool to filter out the ones we wanted. Instead of doing two things in one
tool, we did one thing—and we were better off for it. Listening to PowerShell’s
verbs, and honoring their intent, can help you make better toolmaking decisions.

http://mng.bz/3Pjp

55Some concrete examples
 “Well, I’d start by getting a list of the files.” Great! PowerShell has a tool that can do
that: It can recurse through subfolders and even exclude files based on a specification
you provide. “Then I’d need to get their existing permission object, or ACL.” Correct!
Again, PowerShell has a native command to do that. “Then I’d need to add a permis-
sion to each ACL.” Yes—and again, there’s a command for that. So in this case, your
“script” might just be a complex one-liner. It would be a controller, because all the
tools you need to use already exist.

NOTE This example raises a good point that’s sometimes a hard truth to face:
If you don’t know much about how Windows (or whatever you’re managing)
works under the hood, you’re going to have a hard time automating it in
PowerShell. The GUI hides a lot of how Windows works, and PowerShell
doesn’t; start using PowerShell a lot, and you’ll quickly realize how much of
an expert you are!

6.5.4 Helping the help desk

Suppose your help desk consists mainly of entry-level folks. Not stupid—just with less
experience than you. To help them solve common problems and complete common
tasks, you decide to create a set of tools for them. They’re not command-line comfort-
able yet, so you decide—using WPF or a commercial tool like PowerShell Studio—to
create a GUI for them.

 As we’ve mentioned, a GUI is a form of controller. That means it should have an
absolutely minimal amount of code: In our view, zero code beyond that needed to make the
GUI work. Clicking a button in the GUI might run a separate controller script designed
to automate a given process; that script in turn might call on multiple tools to accom-
plish the tasks within that process. This may seem like a lot of layers, but let us make
an argument in favor of the approach:

 GUIs are hard to write and harder to debug. The less code you have in them,
the happier you’ll be.

 GUIs are never the only place where a given task is accomplished. They should
be a way of triggering the task, but not the place where the task actually “lives.” A
GUI that runs a controller script is great, because that same controller script
could be run from elsewhere, too.

 A standalone controller script that calls standalone tools is easier to develop
and debug. You can focus on solving one task at a time in your tools, bring
them together in the controller script, and then call that from whatever GUI
you’ve built.

 By separating things into layers, you’re going to help your help desk get better
at their jobs. As the I in the name clearly states, a GUI is an interface—a means of
accessing functionality. A PowerShell console is another such interface—a CLI,
or command-line interface. If your help desk can summon functionality from
either interface, then you’ll be able to slowly move them over to the CLI, which

56 CHAPTER 6 The many forms of scripting (and which to use)
will ultimately offer them more flexibility and control as their experience
grows. Building your functionality to be interface independent is a great idea.

6.6 Control more
One last thought on this whole “tools versus controllers” idea is that you shouldn’t for-
get all the other tools you have at your disposal. Sure, this is a PowerShell book, so
we’ve been looking at PowerShell commands and concepts. But if there’s a non-
PowerShell tool—perhaps a Microsoft resource kit tool or a vendor-supplied command-
line tool—and it makes sense to use, then use it. There’s no requirement that your
controller script can only use PowerShell.

 Imagine that, for compliance purposes, you must create a report for each server in
your domain from the MSInfo32.exe command-line tool. What tools might you need
to use? Perhaps Get-ADComputer from the ActiveDirectory module to get the com-
puter accounts. You might want to ping the computer first with Test-Connection and
then, if the computer is online, run the MSInfo32 command. Your boss could even ask
that you record the server names that aren’t online in a separate text file. In the end,
you might not need to create any new tools, but rather a controller script to pull
together this collection of PowerShell and non-PowerShell tools. It might look some-
thing like this:

#GetComplianceInfo.ps1
Get-ADComputer -filter * | foreach {
 if (Test-Connection $_.name -quiet) {
 msinfo32 /computer "\\$($_.name)" /report "c:\work\
➥ $($_.name)-msinfo.txt"
 }
 else {
 $_.name | out-file c:\logs\offline.txt -Append
 }

}

6.7 Your turn
Hopefully, this chapter has gotten you thinking about the most important top-level
element of scripting: what kind of script to make. And although we haven’t explicitly
stated it, often the first step in scripting doesn’t involve writing any code but rather
writing down what you need to accomplish in a very granular fashion. If we did our
job in this chapter, you’re starting to think about tools and controllers in the right
way—the PowerShell way—and you’re beginning to see how they work together to
accomplish business tasks. If you can completely embrace the distinction between
the two and respect their individual purposes, then you’ll be set to succeed in Power-
Shell scripting.

 With that in mind, let’s see how much you’ve understood about what we’ve been
trying to explain and demonstrate in this chapter. Break out a pencil and paper, and
figure out what tools you’d need to accomplish these business problems. Identify

57Your turn
those you might have to create and those that already exist. Finally, draft at least an
outline of how you might use them. This doesn’t have to be actual code:

1 You need to review departmental shares and identify files that haven’t been
modified in over a year. Your boss wants an Excel spreadsheet that shows the file
path, the size, when it was created, when it was last modified, and the file owner.
Here’s a tip: Don’t worry about automating Excel. All you need is a CSV file that
can be opened and saved in Excel.

2 Every week, you get a list of user accounts to be terminated. Your manual pro-
cess is to disable the user account in Active Directory. Add a comment to the user
account indicating the date terminated, add the user account to the Terminated-
Users group, and send an email to the terminated user’s manager.

We won’t be supplying any answers or solutions, because the process you go through is
more important than the end result right now.

Scripts and security
If you’ve been in IT for a while, you may recall the days of rampant macro-based
malware that took advantage of the scripting elements in Microsoft Office. When
PowerShell was first mentioned, many people were concerned about the poten-
tial for abuse. Microsoft was cognizant of this fear and took steps to mitigate
potential problems. After all, a malicious PowerShell script can do a lot of dam-
age with a minimal amount of code. PowerShell scripting by itself isn’t a bad
thing, so they didn’t want to make it completely unavailable. Instead, Microsoft
tried to strike a balance.

 But—and we can’t stress this strongly enough—PowerShell’s security features
are intended to be part of a defense in depth program, where you have multiple layers
of security in place. PowerShell isn’t anti-malware, and it isn’t intended to abso-
lutely protect you, should malware become present in your environment. It’s
important to understand what PowerShell’s security goals are, so that you don’t
overestimate them.

7.1 PowerShell’s script security goal
The most important point to remember about everything we’re going to cover in
this chapter is that PowerShell’s script security mechanisms aren’t a security boundary.
Microsoft’s primary concern is the accidental or unintentional execution of a Power-
Shell script. If one of your users receives an email with a malicious PowerShell
script attachment, and they double-click to launch it (because you know they will),
Microsoft doesn’t want the code to just run. But if the user is savvy (or dumb)
enough to copy and paste the contents of the script into a PowerShell session, and
they have the permissions to execute it, PowerShell will happily do so, because that
58

59Execution policy
was the user’s intention. PowerShell will let you run anything in an interactive console
that your permissions and rights allow.

 But you’re creating tools and scripts for yourself, and most likely others, that you
want to execute (safely) in your organization. To do that, you need to be aware of the
script security concepts we’ll discuss here.

7.2 Execution policy
By default, on client operating systems, PowerShell won’t run any PowerShell script
file, no matter who you are or what permissions you have. These are files with a ps1,
psm1, pssc, or ps1xml file extension. This behavior is controlled by a machine-wide
execution policy. Technically, there are some fine-grained exceptions, but those don’t
matter for our purposes. Policies only need to be set once, and the effect is immedi-
ate. To discover your current setting, run Get-ExecutionPolicy. You should see one
of the values listed in table 7.1.

PowerShell as a malware vector
There’s little doubt that some bad actors consider PowerShell a convenient way to
introduce malware into your environment, just as VBScript was in its day. But
there’s something massively important you need to remember: Anything an attacker
could do in PowerShell, they could do without PowerShell, almost as easily.

PowerShell is really just a set of wrappers around things like .NET Framework. If
PowerShell didn’t exist, those underlying things would still be there, and attackers
could use them instead. Even if your organization completely locks down PowerShell
so that it can’t be used at all, you’re just giving yourself a false sense of security,
because all the underlying functionality would still be available to an attacker.

PowerShell’s original goal was to provide an easier way to use things like COM, .NET
Framework, and WMI; PowerShell doesn’t add any new functionality to your
environment. It just adds new ways of using the same functionality that’s been there
all along. Therefore, “locking down” PowerShell doesn’t really lock down anything
except a way to use something—the “something” is still there.

It’s like telling someone that your house can’t be accessed because you’ve buried
all the door keys. The keys were never the only means of accessing your house,
right? They’re just the most convenient way. Picking a lock, kicking in a door, and
breaking a window are all clearly still on the table—only, with the keys buried, you’ll
have to use those less-convenient means, too.

As product team member Lee Holmes famously repeats, “If you’re pwned, you’re
pwned.” That means, if you’ve got a bad actor in the environment, you’re already
screwed—PowerShell is the least of your concerns. Keeping the bad actors out
should be your goal; and limiting what they can get to, should they break in, should
be your second goal. Simply locking down the tools they might use is a red herring,
from a security perspective.

60 CHAPTER 7 Scripts and security
Remember, you only need to allow script execution where you intend to run scripts,
which should be your desktop or a centralized management server. You should be
able to leave servers at their default settings and only modify your local client setting.
You might also consider leaving the policy as Restricted on end-user desktops, unless
you need them running scripts.

 We’ll get to setting these policies in a moment, but we’ll tell you now that you can
configure them with Group Policy. Read the about_execution_policies help topic
for more details on these policies.

Table 7.1 Execution policies

Policy Description

Restricted This is the default setting. It means no PowerShell script files will be executed,
including profile scripts.

AllSigned Requires that any PowerShell script file contain a valid digital signature from a
code-signing certificate issued by a trusted certificate authority. We’ll cover script
signing in chapter 21.

RemoteSigned PowerShell will run any script created locally, signed or not, but will require any
other script to be digitally signed. This is the default setting starting with Win-
dows Server 2012 R2.

Unrestricted PowerShell will run any script, with very few questions asked. You might get a
prompt when running a script that PowerShell detects as something downloaded
from outside your machine.

Bypass PowerShell will run anything with no questions asked. The implication with this
policy is that you’ve taken your own steps to ensure script safety and integrity.

Undefined No execution policy can be found. PowerShell will move down the scope list and
use the first effective policy it finds. More on that in a moment.

What about servers?
By default, PowerShell disallows script execution on client computers. Those are the
ones most typically manned by less technically sophisticated users who are surfing
the web and accessing email.

Servers, however, are a different animal. Users shouldn’t have interactive access to
them (excepting Remote Desktop servers, which are more of a multiclient-computer
than a server in this sense). Heck, administrators shouldn’t be interactively logging
on to servers, either! Therefore, modern versions of PowerShell, on a server OS,
default to allowing script execution. In many cases, this is because the server’s own
configuration tools—like Server Manager!—require PowerShell for them to do their job.

This gets back to PowerShell’s security goal: to slow down an unintentional script
execution by an uninformed user. Uninformed and unintentional shouldn’t be happening
on a server, and if they are, then you have what Don refers to as a “Human Resources
problem.”

61Execution policy
So what do we use? Jeffery recommends the RemoteSigned policy, but Don throws cau-
tion to the wind and uses Bypass. Is it because Don’s anti-malware powers are so
strong? Nope. Remember, PowerShell’s execution policy has nothing to do with mal-
ware. Don is neither uninformed nor unintentional; he doesn’t feel he needs the
“protection against himself” that the execution policy is meant to provide, so he just
switches it off. Don also doesn’t work in an enterprise environment; he sees value in
AllSigned in those environments because it can be used as a release-control mecha-
nism (access to the signing certificates is controlled, forcing scripts to go through a
review/approve process before they can be signed and deployed). Both Don and
Jeffery wish that more people submitting scripts to PowerShellGallery.com would
sign them.

7.2.1 Execution scope

PowerShell’s execution policy can be set at one of three scope levels, in this order of
precedence:

 LocalMachine—Applies to the entire machine and is stored in the registry at
HKLM:\Software\Microsoft\PowerShell\1\ShellIds\Microsoft.PowerShell

 CurrentUser—Applies only to the current user and is stored in the registry at
HKCU:\Software\Microsoft\PowerShell\1\ShellIds\Microsoft.PowerShell, assum-
ing it isn’t Undefined

 Process—Controls the current session and is stored in the system variable
$env:PSExecutionPolicyPreference

The setting remains in effect for as long as your PowerShell session is open. You can
set this by specifying an execution policy switch when you run PowerShell.exe. This
demonstrates how easy it is for an informed, intentional user to get around the execu-
tion policy—no matter what you do elsewhere, someone can run the shell with Bypass
if they so desire.

 These policies are applied in the order in which we listed them, even if a more
restrictive policy is set lower. For example, if you’ve set the current user policy to be
RemoteSigned, but the machine policy is Restricted, scripts will still be executed.
From a practical point of view, setting a machine policy should be sufficient for most
organizations. We feel the other settings are for special use cases and exceptions.

NOTE Before you get yourself worked up, if someone or something can make
an unauthorized execution policy change, you’re already in trouble. If it’s some
sort of breach, the intruder can already run other arbitrary code outside of
PowerShell, and changing your execution policy is the least of your concerns.

If nothing else, this order of application demonstrates that PowerShell was never
intended to be a security boundary. We think of the execution policy as more like the
little hinged plastic shield that covers the Big Red Button that launches the nuclear
missiles. The execution policy, like that shield, is meant to get in the way of some idiot
who leans their elbow in the wrong place at the wrong time. It’s not intended to stop

62 CHAPTER 7 Scripts and security
someone from taking a deliberate action, nor is it designed to stop an intruder who
breaks into the missile silo with bad intentions. The intruder can flip back the cover
just as easily as an authorized user, meaning the cover itself isn’t a security mechanism.
The security mechanisms would be things like card-keyed doors and armed guards,
not the little button cover.

7.2.2 Getting your policies

To see your current execution policy settings, use Get-ExecutionPolicy:

PS C:\> get-executionpolicy
Restricted

By default, the cmdlet will return the effective policy, based on your scope settings. In
other words, it will return the policy that the current instance of the shell is going to
obey, regardless of where that setting came from. You can also get the settings for all
scopes like this:

PS C:\> get-executionpolicy -List

 Scope ExecutionPolicy
 ----- ---------------
MachinePolicy Undefined
 UserPolicy Undefined
 Process Undefined
 CurrentUser Undefined
 LocalMachine Restricted

The policy scopes are those that would be set via Group Policy, which we’re obviously
not using. Also, it’s worth noting that this list isn’t in order of application—the order of
this list isn’t meaningful. In this situation, the Restricted policy will apply, which we
can verify:

PS C:\> C:\work\test.ps1
C:\work\test.ps1 : File C:\work\test.ps1 cannot be loaded because running
scripts is disabled on this system. For more information, see
about_Execution_Policies at https:/go.microsoft.com/fwlink/?LinkID=135170.
At line:1 char:1
+ C:\work\test.ps1
+ ~~~~~~~~~~~~~~~~
 + CategoryInfo : SecurityError: (:) [], PSSecurityException
 + FullyQualifiedErrorId : UnauthorizedAccess

Naturally, we need to make a change if we want our scripts to run.

7.2.3 Setting an execution policy

The cmdlet to modify the policy is Set-ExecutionPolicy. You need to specify a policy
setting and, optionally, a scope. The default is the local machine. To run this com-
mand, you must have permission to modify the relevant scope. In other words, if
you’re trying to modify the local machine setting, you need to be running the shell As

63Running scripts
Administrator, because the local machine setting is stored in the HKEY_LOCAL_MACHINE
portion of the Windows registry, which only administrators can write to. Note that you
can’t change either of the Group Policy–managed settings this way; you need to—
obviously—use Group Policy for that. You also can’t change the process scope’s execu-
tion policy; that must be established when you run PowerShell, not once it’s already
running and you’re inside it:

PS C:\> set-executionpolicy -ExecutionPolicy RemoteSigned

Execution Policy Change
The execution policy helps protect you from scripts that you do not trust.
Changing the execution policy might expose you to the security risks
described in the about_Execution_Policies help topic at
https:/go.microsoft.com/fwlink/?LinkID=135170. Do you want to change the
execution policy?
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "N"):

Answer Y at the prompt to make the change. The change is immediate. Note that a
normal user can change the execution policy for themselves or the process; that’s why
none of this is considered a security boundary.

7.3 PowerShell isn’t the default application
Remember, all of these settings are intended to prevent the accidental or uninten-
tional execution of PowerShell scripts. So, what happens when Missy clicks the attach-
ment in her email to see the latest juicy picture of Justin Bieber? If it’s a PowerShell
script, it won’t execute automatically. Be default, the associated application for a .ps1
file is Notepad, not PowerShell. When Missy clicks, because she can’t help herself, the
script will be displayed in Notepad. Sure, you can change this association, and some
scripting editors will associate themselves with .ps1 and the other filename extensions
for script editing. This also applies to any PowerShell file exposed in Windows
Explorer: Double-clicking will open the file in Notepad.

 It’s entirely possible to create an Execute association with these filename exten-
sions (as opposed to an Edit association). Doing so would make the files execute when
double-clicked. We think this is stupid, because it takes us back to the bad old days of
VBScript, when users could unintentionally execute things much more easily than they
should be able to.

7.4 Running scripts
Finally, assuming you’re configured to run scripts, you must provide the path to the
script file, even if you’re in the same directory. For example, suppose we have a test
script in the current directory that we try to run:

PS C:\work> test
test : The term 'test' is not recognized as the name of a cmdlet, function,
script file, or operable program. Check the spelling of the name, or if a
path was included, verify that the path is correct and try again.

64 CHAPTER 7 Scripts and security
At line:1 char:1
+ test
+ ~~~~
 + CategoryInfo : ObjectNotFound: (test:String) [],

CommandNotFoundException
 + FullyQualifiedErrorId : CommandNotFoundException

Nope. This is intended to prevent command hijacking, where someone or something
puts in the folder a malicious script that uses a common command name like dir. You
need to tell PowerShell you intend to run a script:

PS C:\work> .\test

Handles NPM(K) PM(K) WS(K) CPU(s) Id SI ProcessName
------- ------ ----- ----- ------ -- -- -----------
 2517 276 1146832 1082780 2,365.03 1328 1 dwm
 0 0 1884 748852 115.84 5408 0 Memory Compress…
 1538 208 992756 353264 4,789.05 8284 1 firefox
 483 62 215324 218868 169.59 12232 1 slack
 1999 111 202616 199176 945.55 4284 1 WINWORD

You aren’t required to include the file extension, but it never hurts. That way, there’s
no mistaking what script you intend to run. If you use tab completion, PowerShell will
add the filename extension anyway.1

You are part of the security system
Keep in mind that, when it comes to security, you’re a part of the overall system. “But
we have administrators who can’t be trusted to know when a script is safe to run!” Well,
that’s again what Don calls an HR problem—those people shouldn’t be administrators.

That’s where command hijacking comes into play. It was a real issue in MS-DOS
back in the day, due to how it prioritized things. If you ran Dir, it would first look for
batch files having that name, then executables, and then internal commands—or
something like that. It was possible, in other words, to drop in an executable or batch
that had the same name as an internal command, and trick people into running the
executable or batch instead of the command.

With PowerShell, the trick is more obvious. Dir is almost always1 going to run Get-
ChildItem; ./Dir would run Dir.ps1 from the current directory. But you have to
know the difference. The security “protection” doesn’t work if you don’t know the
difference or if you don’t pay attention to it. You can still be tricked if you’re not
vigilant, because you are an integral part of what makes the security work.

1 By the way, it’s possible to make Dir run something other than Get-ChildItem. It’s even easy. Just redefine
the alias to run another command, or load an alternate command named Get-ChildItem. It’d be incredibly easy,
for example, for a piece of malware to inject this into your PowerShell profile script, which is, after all, a plain-
text document located in your personal Documents folder, which you obviously have full rights to. It runs every
time you open the shell, and you’d never know anything had gone wrong. That’s one argument for using the
AllSigned execution policy—injecting stuff into your profile would break the signature on it, causing an error
when you opened the shell. Provided your code-signing certificate wasn’t installed locally (which would be
deeply inconvenient), or you password-protected it (better idea), the injection couldn’t re-sign the script.

65Recommendations
7.5 Recommendations
What do we typically recommend to people when it comes to execution policy? You
may be surprised:

 We suggest using AllSigned in cases where certificates will be used to control
script releases. This isn’t a security thing so much as a procedural thing; your
company decides that the signature in the script will certify the script as being
ready for production. This also helps clamp down on profile-script injection,
which we described in the sidebar in the previous section. AllSigned can also
be useful on client computers where you need scripts to run (otherwise, stick
with Restricted) and where you want to impose limitations on which scripts
your users can run. Remember that a user running a script still can’t do anything
they don’t have permission to do, and that a script isn’t the only way malware can
take advantage of your users. This isn’t a security thing—it’s more of a minor
hurdle to stop someone from accidentally doing something they might regret.

 We tend to use RemoteSigned in most cases. It’s a good balance between incon-
venience and protection against accidental stupidity. Scripts downloaded
through a Microsoft application like Internet Explorer, Edge, or Outlook will
be marked as remote by the application, meaning PowerShell won’t run them
without prompting the user. Of course, this isn’t a security feature—it’s just an
extra hurdle. We all know that, confronted with “Are you sure?” all users reflex-
ively answer Yes, so this isn’t intended to stop anyone or even make them think
twice. At most, it makes them think 1.1 times.

 We don’t see much practical difference between RemoteSigned and Unrestricted,
except that most scripts accessed via a UNC will prompt under RemoteSigned
and not under Unrestricted.

 We suggest Bypass when you’re not using AllSigned for one of the reasons
we’ve stated here, and when you don’t want the sometimes-false sense of secu-
rity that RemoteSigned and Unrestricted can present. Using Bypass says, “Hey,
I know this execution policy isn’t a security layer per se; I’m confident enough
in my other security measures, such as strict access control, that I don’t even
want to use this, because I’m afraid some people might perceive it to be a security
layer, and I want to remove that option from their minds.”

Here’s why that last bullet is important: A lot of so-called information security “profes-
sionals” won’t take the time to understand PowerShell’s execution policy. Here’s their
thought process:

1 In college, when VBScript was a thing, we learned that scripts were bad for
security.

2 The execution policy lets me shut down scripting.
3 Malware might not even need scripting, but “defense in depth” means I shut

down as much as possible.
4 Therefore, we’ll use Restricted for our execution policy.

66 CHAPTER 7 Scripts and security
This thought process misses the fact that the Restricted execution policy can be
bypassed by any malware author with two brain cells to rub together. We challenge
these “professionals” by asking, “Okay, how would you protect the environment if we
forced you to set the execution policy to Bypass?” Their answers range from outright
useful—“Make sure our firewalls are multilayered and that our anti-malware defenses
are updated and multilayered”—to the outrageous—“Unplug all the power cords and
run for the hills!” Take the execution policy off the table, so to speak, as a security
layer (because it isn’t one), and start thinking about actual security policies.

7.6 Summary
The settings surrounding script execution in PowerShell are intended to be as restric-
tive as possible out of the box. Any changes you make will only relax these settings.
You should also take into account other typical Windows best practices like least-use
privilege, email filtering, and good file security. You’ll want to use PowerShell scripts—
that’s why you’re reading this book. Your job is to make doing so as safe and secure as
possible. Hopefully, we’ve now given you some guidance in that direction. Your action
plan for this chapter is to figure out how you’ll apply these ideas in your organization.

Part 2

Building
a PowerShell script

Now it’s time to get serious. With the right tools in front of you and the
core concepts in mind, you can start building your first PowerShell tool. This
part is what we regard as the core narrative of the book, and chapters 8–16 truly
do tell a story. Along the way, you’ll discover problems or weak spots—and the
next chapter will probably address them. So, follow along, focus on the extremely
important hands-on exercises, and prepare to become a toolmaker.

Always design first
Before you sit down and start coding up a function or a class, you need to do some
thinking about its design. We almost constantly see toolmaking newcomers start
charging into their code, and before long they’ve made some monstrosity that’s
harder to work with than it should be. In this chapter, we’re going to lay out some of
the core PowerShell tool design principles, to help you stay on the path of Toolmak-
ing Righteousness. To be clear, all we’re doing here is building on what we laid out in
part 1 of this book. Now we’re ready to provide some more concrete examples.

8.1 Tools do one thing
As we’ve mentioned before, the Prime Directive for a PowerShell tool is that it does
one thing. You can see this in almost every single tool—that is, command—that ships
with PowerShell. Get-Service gets services. It doesn’t stop them. It doesn’t read
computer names from a text file. It doesn’t modify services. It does one thing.

 This concept is one we see newcomers violate the most. For example, we’ll see
folks build a command that has a -ComputerName parameter for accepting a remote
machine name, as well as a -FilePath parameter so that they can alternately read
computer names from a file. From PowerShell’s perspective and ours, that’s Dead
Wrong, because it means the tool is doing two things instead of just one. A correct
design to follow the paradigm would be to stick with the -ComputerName parameter
and let it accept strings (computer names) from the pipeline. You could also feed it
names from a file by using a -ComputerName (Get-Content filename.txt) paren-
thetical construct. Or define the -Computername parameter to accept input by value:

get-content filename.txt | get-serverstuff
69

70 CHAPTER 8 Always design first
The Get-Content command reads text files; you shouldn’t duplicate that functionality
in your command without a strong reason. Why reinvent the wheel?

 Let’s explore that antipattern for a moment. Here’s an example of using a com-
pletely fake command (meaning, don’t try this at home) in two different ways:

Specify three computer names
Get-CompanyStuff –Computername ONE,TWO,THREE

Specify a file containing computer names
Get-CompanyStuff –FilePath ./names.txt

That approach overcomplicates the tool, making it harder to write, harder to debug,
harder to test, and harder to maintain. We’d go with this approach to provide the
exact same effect in a simpler tool:

Specify three computer names
Get-CompanyStuff –Computername ONE,TWO,THREE

Specify a file containing computer names
Get-CompanyStuff –Computername (Get-Content ./names.txt)

Or if you were smart in making the tool...
Get-Content ./names.txt | Get-CompanyStuff

Those patterns do a much better job of mimicking how PowerShell’s own core com-
mands work. But let’s explore one more antipattern, which is “but I have the computer
names in a specially formatted file that only I know how to read.” Folks will convince
themselves that this is okay:

Specify three computer names
Get-CompanyStuff –Computername ONE,TWO,THREE

Specify a file containing computer names
Get-CompanyStuff –FilePath ./names.dat

Recognize those? Yeah, it’s the same file-reading pattern that we just said we don’t like.
“But Get-Content can’t read my .DAT file,” the argument goes, “so I’m not duplicat-
ing functionality.” The argument misses the point: The “tools only do one thing” pat-
tern has little or nothing to do with duplicating functionality; it has everything to do
with simplicity. We’d use these patterns instead:

Specify three computer names
Get-CompanyStuff –Computername ONE,TWO,THREE

Specify a file containing computer names
Get-CompanyStuff –Computername (Get-SpecialDataFormat ./names.dat)

Or again, if you were really smart...
Get-SpecialDataFormat ./names.dat | Get-CompanyStuff

The idea here is to take that “special data-format-reading stuff” and put it into its own
standalone tool. Each tool then becomes simpler, easier to test by itself, easier to
debug and maintain, and so on. Not to overplay the hammer analogy from chapter 7,

71Tools are testable
but if we were designing hammers, none of them would have the claw end for remov-
ing nails. That’d be a separate tool.

8.2 Tools are testable
Another thing to bear in mind is that—if you’re trying to make tools like a real pro—
you’re going to want to create automated unit tests for your tools. We’ll get into how
that’s done in chapter 20; but from a design perspective, you want to make sure you’re
designing tools that are, in fact, testable.

 One way to do that is, again, to focus on tightly scoped tools that do just one thing.
The fewer pieces of functionality a tool introduces, the fewer things and permutations
you’ll have to test. The fewer logic branches within your code, the easier it will be to
thoroughly test your code using automated unit tests.

 For example, suppose you decide to design a tool that will query a bunch of
remote computers. Within that tool, you might decide to implement a check to make
sure each computer is reachable, perhaps by pinging it. That might be a bad idea. First
of all, your tool is now doing two things: querying whatever it is you’re querying, but
also pinging computers. That’s two distinct sets of functionality. The pinging part, in
particular, is likely to be code you’d use in many different tools, suggesting that it
should be its own tool. Having the pinging built into the same querying tool will make
testing harder, too, because you’ll have to explicitly write tests to make sure that the
pinging part works the way it’s supposed to.

 An alternate approach would be to write that Test-PCConnection functionality as a
distinct tool. So, if your querying tool is something like Get-Whatever, you might con-
coct a pattern like this:

Get-Content computernames.txt | Test-PCConnection | Get-Whatever

The idea is that Test-PCConnection would filter out whatever computers weren’t reach-
able, perhaps logging the failed ones in some fashion, so that Get-Whatever could focus
on its one job of querying something. Both tools would then become easier to inde-
pendently test, because each would have a tightly scoped set of functionality.

TIP Really, having testable tools is a side effect of having tools that only do
one thing. If you’re being careful with your tool design and creating tightly
scoped tools, you get all the benefits of more testable tools essentially for free.

You also want to avoid building functionality into your tools that will be difficult to
test. For example, you might decide to implement some error logging in a tool. That’s
great—but if that logging is going to a SQL Server database, it will be trickier to test
and make sure the logging is working as desired. Logging to a file might be easier,
because a file would be easier to check. Easier still would be to write a separate tool that
handles logging. You could then test that tool independently and use it in your other
tools. This gets back to the idea of having each tool do one thing, and one thing only,
as a good design pattern.

72 CHAPTER 8 Always design first
8.3 Tools are flexible
You want to design tools that can be used in a variety of scenarios. This often means
wiring up parameters to accept pipeline input. For example, suppose you write a tool
named Set-MachineStatus that changes some setting on a computer. You might specify
a -ComputerName parameter to accept computer names. Will it accept one computer
name, or many? Where will those computer names come from? The correct answers
are, “Always assume there will be more than one, if you can,” and “Don’t worry about
where they come from.” From a design perspective, you want to enable a variety of
approaches.

 It can help to sit down and write some examples of using your command that you
intend to work. These can become help-file examples later, but in the design stage they
can help make sure you’re designing to allow all of them. For example, you might
want to be able to support these usage patterns:

Get-Content names.txt | Set-MachineStatus
Get-ADComputer -filter * | Select -Expand Name | Set-MachineStatus
Get-ADComputer -filter * | Set-MachineStatus
Set-MachineStatus -ComputerName (Get-Content names.txt)

That third example will require some careful design, because you’re not going to
be able to pipe an AD computer object to the same -ComputerName parameter that
also accepts a String object from Get-Content! You may have identified a need for
two parameter sets, perhaps one using -ComputerName <string[]> and another
using -InputObject <ADComputer>, to accommodate both scenarios. Now, creating
two parameter sets will make the coding, and the automated unit testing, a bit
harder—so you’ll need to decide whether the tradeoff is worth it. Will that third
example be used so frequently that it justifies the extra coding and test development?
Or will it be a rare enough scenario that you can exclude it and instead rely on the
similar second example?

 The point is that every design decision you make will have downstream impact on
your tool’s code, its unit tests, and so on. It’s worth thinking about those decisions up
front, which is why it’s called the design phase!

8.4 Tools look native
Finally, be careful with tool and parameter names. We went over this in part 1, but it’s
worth repeating, because we see people get “creative” all the time. Tools should always
adopt the standard PowerShell verb-noun pattern and should only use the most appro-
priate verb from the list returned by Get-Verb. Microsoft also publishes that list online
(http://mng.bz/2vc8); the online list includes incorrect variations and explanations
that you can use to check yourself. Don’t beat yourself up too hard over fine distinctions
between approved verbs, like the difference between Get and Read. If you check out
that website, you’ll realize that Get-Content should probably be Read-Content; it’s
likely a distinction Microsoft came up with after Get-Content was already in the wild.

http://mng.bz/2vc8

73For example
 We also recommend that you get in the habit of using a short prefix on your com-
mand’s noun. For example, if you work for Globomantics, Inc., then you might design
commands named Get-GloboSystemStatus rather than just Get-SystemStatus. The pre-
fix helps prevent your command name from conflicting with those written by other
people and it will make it easier to discover and identify commands and tools created
for your organization.

NOTE One reason we went on about native patterns in part 1 of this book is
that they’re so important. Don’t ever forget that the existing commands, par-
ticularly the core ones authored by the PowerShell team at Microsoft, repre-
sent their vision for how PowerShell works. Break with that vision at your
own peril!

Parameter names should also follow native PowerShell patterns. Whenever you need a
parameter, take a look at a bunch of native PowerShell commands and see what
parameter name they use for similar purposes. For example, if you needed to accept
computer names, you’d use -ComputerName (notice it’s singular!) and not some varia-
tion like “MachineName”. If you need a filename, that’s usually -FilePath or -Path
on most native commands.

8.5 For example
Before we even start thinking about design decisions, we like to review the business
requirements for a new tool. We try to translate those business requirements to usage
examples so it’s clearer to us how a tool might be used. If other stakeholders are
involved—such as the people who might consume this tool, once it’s finished—we get
them to sign off on this functional specification so that we can go into the design

The verb quandary
One area where you can get a bit wound up is in choosing the right verb for your
command name. Honestly, Microsoft probably has too many verbs to choose from,
and although we’re sure someone in the company had a clear idea of the differences
among them all, that hasn’t always been well-communicated to the PowerShell
public. For example, if you’re writing a command that will retrieve information from a
SQL Server database, is the command name Get-MyWhateverData, or is it Read-
MyWhateverData? The company offers some guidance, stating, “The Get verb is used
to retrieve a resource, such as a file. The Read verb is used to get information from a
source, such as a file.” This implies Get would be used to get a file, meaning an
object representing the file itself, whereas Read would be used to retrieve the contents
of the file. Except that Get-Content is a thing, so Microsoft didn’t even take its
own advice.

Our advice? Do what seems to be the most consistent with whatever’s already in
PowerShell. If you’re truly stuck, post a question in the forums at Powershell.org to
get a little feedback from experienced pros.

http://Powershell.org

74 CHAPTER 8 Always design first
phase with clear, mutual expectations for the new tool. We also try to capture problem
statements that this new tool is meant to solve, because those sometimes offer a clearer
business perspective than a specification that someone else may have written.

 We have a lot of different computers deployed in our company, which have differ-
ent hardware vendors, different versions of Windows, different configurations, and so
on. When users call the help desk, it’s often difficult for the technicians to figure out
what kind of computer they’re dealing with. Users aren’t always aware of details like
model numbers, OS versions, installed RAM, and so on. We have a configuration man-
agement system the help desk can check, but it isn’t always up to date or accurate.
We’d like a tool that the help desk can use to quickly query a computer, if it’s online,
and get some key information about its OS and hardware configuration. In some
cases, we have downtime and can query that information from multiple computers
and double-check the accuracy of the configuration management system. The help
desk can update that database if it needs updating.

Be careful of context
When you start designing tools, it’s fine to make business-level problem
statements. That’s a large part of what the design is for, after all! Statements like,
“When users call the help desk, it’s often difficult for the technicians to figure out
what kind of computer they’re dealing with,” are fantastic.

Stating desired outcomes, such as when we wrote, “We’d like a tool that the help
desk can use to quickly query a computer,” is fine as well—it defines a business
need. But it’s hugely important that not every business statement be something
you try to solve with a single tool or command. You may find that you need a suite
of tools, which could be packaged as a module…but we’re getting ahead of
ourselves.

We’ve gone on at length about the need for tools to be as detached as possible
from a particular context, yet our business statement has provided a very clear
context: “We want technicians to query things.” That context leads to certain
assumptions, like, “The output needs to be human-readable,” and maybe, “Our
technicians aren’t that experienced, so a GUI will be needed for them to operate this
thing.” This is good background information, but it doesn’t mean you’re going to
solve it all with a single tool.

Our complete business statement kind of implies the creation of a tool to do the
data retrieval, and perhaps a controller script to provide the help desk with an
input/output interface. The tool doesn’t need to worry about how the technician
uses it or what the technician will see as a result; the controller can worry about
those context-specific things and use the tool under the hood to get the data.

Never lose track of the tool/controller design pattern. Get used to reading business
statements that will ultimately need tools and controllers, and understand which
elements of a business solution will be best solved by each type of script.

75For example
Taking the last part of the previous sidebar to heart would lead us to some more
detailed questions, asking for specifics about what the tool needs to query. Suppose
the answer came back as follows:

 Computer host name
 Manufacturer
 Model
 OS version and build number
 Service pack version, if any
 Installed RAM
 Processor type
 Processor socket count
 Total core count
 Free space on system drive (usually C: but not always)

That’s fine—we know we can get all that information somehow. We know we’re
going to write a tool, maybe called Get-MachineInfo, and it will probably have at
least a -ComputerName parameter that accepts one or more computer names as strings.
Thinking ahead, we might also start making notes for an Update-OrgCMDatabase com-
mand, which could consume the output of Get-MachineInfo and automatically update
the organization’s configuration management database. Nobody asked for that, but it’s
kind of implied in the business problem statements, and we can see them asking for it
once we deliver the first tool—“Hey, because the tool gets all the data, is there any way
we can have it just push that into the CM database?” We’ll keep that in mind as we
design the first tool—we want to ensure that the tool is outputting something that
could be easily consumed by another command sometime in the future.

 We’ll assume that some computers won’t respond to the query, and so we’ll design
a way to deal with that situation. We’ll also assume that we have some old versions of
Windows out there, so we’ll make sure the tool is designed to work with as old a ver-
sion of Windows as possible, as well as the latest and greatest.

 Our design usage examples might be pretty simple:

Get-MachineInfo -ComputerName CLIENT
Get-MachineInfo -ComputerName CLIENTA,CLIENTB
Get-MachineInfo -ComputerName (Get-Content names.txt)
Get-MachineInfo -ComputerName (Get-ADComputer -id CLIENTA |
➥ Select -Expand name)
Get-Content names.txt | Get-MachineInfo
Get-ADComputer -id CLIENTA | Select -Expand name | Get-MachineInfo

The second chunk of examples will all require the same design elements, whereas
the last chunk of examples will all be made possible by another set of design ele-
ments. No problem. The output of these should be pretty deterministic. That is,
given a specific set of inputs, we should get the same output, which will make this a
fairly straightforward design for which to write unit tests. Our command is only doing

76 CHAPTER 8 Always design first
one thing, and it has very few parameters, which gives us a good feeling about the
design’s tight scope.

We’d take that set of examples back to the team and ask what they think. Almost
invariably, doing so will generate questions.

How will we know if a machine fails? Will the tool keep going? Will it log that
information anyplace?

Okay—we need to evolve the design a bit. We know that we need to keep going in the
event of a failure and give the user the option to log failures to, perhaps, a text file:

Get-MachineInfo -ComputerName ONE,TWO,BUCKLE,SHOE
➥ -LogFailuresToPath errorlog.txt

Provided the team is happy with a text file as the error log, we’re good including that
in the design. If they wanted something more complicated—the option to log to a
database or to an event log—then we’d design a separate logging tool to do all of that.
For the sake of argument, though, let’s say they’re okay with the text file.

 What about older computers? We know some machines use WMI and others will
only take CIM. We thought about that, but we didn’t make it explicitly clear in the
design. And, to be fair, we could handle that situation entirely within the tool—but it
could make the tool’s performance slower if it had to repeatedly try WMI and then
CIM for each computer. It might be better to design an option so that if the techni-
cian knew one or the other would work, they could just say so. We could still fall back
automatically if we weren’t told otherwise:

Get-MachineInfo -ComputerName PC1,PC2 -Protocol WMI -ProtocolFallback

The beauty of usage examples in design
Stating usage examples as part of your tool design is a wonderful idea. For one
thing, it helps you make sure you’re not bleeding from tool design into controller
design. If your usage examples start to take up 10 sheets of paper and look
complicated, then you know you’re probably not scoping your tool’s functionality
tightly enough, and you might be looking at several tools instead of just one.

Usage examples can also become part of your eventual help file. There’s a school of
thought that you should start tool design by writing the help file. The help file can then
exist as a kind of functional specification, which you code to. Similarly, writing usage
examples can help support test-driven development (TDD), in which you write automated
tests first, to sort of specify how your tool should work, and then write the code.

Writing usage examples first can also help you avoid bad design decisions. If you’re
struggling to write all the examples you know you need, and you still keep coming up
with an overly long or overly complicated list, then you know you’re on the wrong
track entirely. It might be worth sitting down with a colleague to try and refactor the
whole project to keep it simpler.

77Your turn
We’ll plan to default -Protocol to CIM and allow either WMI or CIM to be specified.
By adding -ProtocolFallback, we’ll always try the specified protocol first, but we’ll try
the other one on a per-computer basis if the first attempt fails. If -ProtocolFallback
isn’t specified, we’ll only try the specified protocol, which will save time when the tool
runs. There’s no need at this stage to figure out how we’ll do all that; right now, we’re
just designing the thing.

 Let’s say that the team is satisfied with these additions and that we have our desired
usage examples locked down. We can now get into the coding. But before we do, why
don’t you take a stab at your own design exercise?

8.6 Your turn
If you’re working with a group, this will make a great discussion exercise. You won’t
need a computer, just a whiteboard or a pen and paper. The idea is to read through
the business requirements and come up with some usage examples that meet the
requirements. We’ll provide all the business requirements in a single statement, so
that you don’t have to “go back to the team” and gather more information.

8.6.1 Start here

Your team has come to you and asked you to design a PowerShell tool that will help
them automate a repetitive, boring task. They’re all skilled in using PowerShell, so
they just need a command or set of commands that will help automate this task.

Designing sets of commands
The forgoing discussion is great when you’re writing a command to do something
self-contained, like retrieving management information from multiple computers.
There’s a slightly different discussion, however, when you start writing sets of
commands to help manage a large system.

For example, suppose you want to write a set of commands to help manage a
customer information-tracking application. What commands might you need to write?

Start by inventorying the nouns in the system. What are the things that the system
works with? Users? Customers? Orders? Items in an order? Addresses? Write down
that list somewhere.

Next, look at each noun and decide what the system can do with it. For users, what
tasks does the system offer? Creating new ones? Removing them? Modifying
existing ones? Listing them all? Those give you your verbs—New, Remove, Set, and
Get, in this case, yielding commands like New-SystemUser, Remove-SystemUser,
Set-SystemUser, and Get-SystemUser (assuming System is a useful prefix for your
organization).

This little inventory exercise helps make sure you’re not missing any key functionality.
Having the command list doesn’t automatically mean you’re going to write all of those
commands, but it does give you a checklist to prioritize and work against.

78 CHAPTER 8 Always design first
 You’ve been lazy about changing service logon passwords. Many have been
switched over to Managed Service Accounts, so you don’t need to, but you have a lot
of services—many of which run on multiple computers in a cluster—that haven’t had
a password change in years. The native Set-Service command doesn’t do it. You’d
like a tool that will let you change the logon user account as well as the password, for a
single service, on one or more machines at once. If any machine fails, you need to
know about it so you can handle it manually. Displaying onscreen and/or logging to a
text file is fine.

 This needs to run on a variety of Windows Server versions, so either WMI or
CIM will work, but usually it’s one or the other, not both. In most cases, the tech
running this won’t know if it has to be CIM or WMI, so the tool will need to han-
dle it. CIM is probably more common right now, but you know you’ve got old
WMI-only machines, too.

 You don’t usually need to script this, so the password can be provided in clear text
on the command line as a parameter. You’d like the command to output something
no matter what happens—such as the name of each computer and whether it suc-
ceeded, the service it was changing, and the logon account the service is now using
(whether that was changed or not). You’ll usually want that output either onscreen, in
a simple HTML report, or in a CSV file you can load into Microsoft Excel.

8.6.2 Your task

Your job is to design the tool that will meet the team’s business requirements. You are
not writing any code at this point. When creating a new tool, you have to consider who
will use the tool, how they might use it, and their expectations. And the user might be
you! The end result of your design will be a list of command usage examples (like
those we’ve shown you), which should illustrate how each of the team’s business needs
will be solved by the tool. It’s fine to include existing PowerShell commands in your
examples, if those commands play a role in meeting the requirements.

TRY IT NOW Stop reading here, and complete the task before resuming.

8.6.3 Our take

We’ll design the command name as Set-TMServiceLogon. The TM stands for Toolmak-
ing, because we don’t have a specific company or organizational name to use. We’ll
design the following use cases:

Set-TMServiceLogon -ServiceName LOBApp
 -NewPassword "P@ssw0rd"
 -ComputerName SERVER1,SERVER2
 -ErrorLogFilePath failed.txt
 -Verbose

Our intent is that -Verbose will generate onscreen warnings about failures, and -Error-
LogFilePath will write failed computer names to a file. Notice that, to make this

79Your turn
specification easier to read, we’ve put each parameter on its own line. The command
won’t execute exactly like that, but that’s fine—clarity is the idea at this point:

Set-TMServiceLogon -ServiceName OurService
 -NewPassword "P@ssw0rd"
 -NewUser "COMPANY\User"
 -ComputerName SERVER1,SERVER2

This example illustrates that -ErrorLogFilePath and -Verbose are optional, as is -New-
User; if a new user isn’t specified, we’ll leave that property alone. We also want to illus-
trate some of our flexible execution options:

Get-Content servers.txt |
➥ Set-TMServiceLogon -ServiceName TheService -NewPassword "P@ssw0rd"

This illustrates our ability to accept computer names from the pipeline. Finally

Import-CSV tochange.csv | Set-TMServiceLogon | ConvertTo-HTML

We’re illustrating two things here. First is that we can accept an imported CSV file,
assuming it has columns named ServiceName, NewPassword, ComputerName, and,
optionally, NewUser. Our output is also consumable by standard PowerShell com-
mands like ConvertTo-HTML, which also implies that Format- commands and Export-
commands will also work.

Big designs don’t mean big coding
We usually create initial designs that are all-encompassing. That doesn’t mean we
immediately sit down and start implementing the entire design. In software, there’s
a difference between vision and execution.

We’re just talking about PowerShell commands, so there’s perhaps no need to go
all philosophical on you, but this is an important point. You may have no desire right
this minute to implement error logging in your command. Fine. That doesn’t mean
you can’t plan for it to someday exist. Planning—in other words, having a vision for
your code—means you can take that into account as you write the code you do need
right away.

“You know, I have no plans to log failed computers right now, but I know I will
someday. I’ll go ahead and implement a code structure that’ll be easier to add
logging to in the future.” Your execution today, in other words, doesn’t have to be
the entire vision. You can create your vision now and then execute it in increments
as you have time and need.

Avoiding bugs:
start with a command
Before we ever fire up a script editor, we start in the basic PowerShell command-
line window. This is your lowest common denominator for testing, and it’s a perfect
way to make sure the commands your tool will run are correct. It’s way easier to
debug or troubleshoot a single command from an interactive console than it is to
debug an entire script. And by “a single command,” we mean a PowerShell expres-
sion—a single thing that we can manually type into the console to see if we’ve got
the right syntax.

9.1 What you need to run
If you’ve already read the previous chapter, then you know that in the example
scenario, you’ve been asked to develop a tool that will query the following
information:

 Computer host name
 Manufacturer
 Model

This is by design
One of the cool parts about PowerShell is that you can open a console, run
commands, and get immediate results (or errors). Traditionally, programmers
have had to write code as best they could, compile it, and possibly even code up
a test harness so that they could test their code. Take advantage of PowerShell’s
immediacy to reduce your overall workload!
80

81What you need to run
 OS version and build number
 Service pack version, if any
 Installed RAM
 Processor type
 Processor socket count
 Total core count
 Free space on system drive (usually C: but not always)

You plan to use either WMI or CIM for this, so you’d like to test both situations by run-
ning commands in the console. You also know you’re going to need to write a text log
file in the event of errors, so you should make sure you know how to do that. You’ll
need to do more in terms of the tool itself, but these are the basic units of functional-
ity you need to figure out.

 The goal in this chapter, then, is to identify what we call the moving parts of your
script. Yeah, the script will involve some logic and stuff, which will control what com-
mands are eventually executed. But we’re not to that point yet. First, you want to fig-
ure out which commands to run, how to run them, and whether you’ve got the right
syntax. You also need to think about the ways in which to run a command.

 Speaking of goals, let’s be specific about what you need to figure out:

 What command or commands will you need to run?
 What classes of data will you need to query?
 What modifications will you need to make in order to try both protocols?
 How do you log errors to a text file?

The discovery process
We’re going to shortchange you a bit in this book and not go through the whole “How
do I find what command to run?” process. That’s because about a quarter of Learn
Windows PowerShell in a Month of Lunches is devoted to that process, and we
assume you’ve read that or have equivalent education or experience.

But it’s super important that you get good at the command-discovery process. If
every toolmaking project you undertake has to start with a three-week Google-based
investigation just to figure out what commands you’ll need to make your tool work,
then you’re going to be inefficient and frustrated—and, frankly, you need some more
basic PowerShell experience before diving into toolmaking.

It’s equally important that you get comfortable experimenting at the command line.
Read examples from the help files, and try things. In classes and at conference
presentations, we’ll always have people ask things like, “What if I try an IP address
instead of a computer name?” For pity’s sake, you’re sitting right in front of the
computer. Try it. See what happens. Playing around is how we learned half of what
we know (“messing around” covered the other half), so get used to experimenting!
Worried about trashing your desktop? Spin up a test virtual machine with Windows
10 or Windows Server 2016, and go to town.

82 CHAPTER 9 Avoiding bugs: start with a command
Sure, there’s a lot that can go wrong here. That’s part of the process. You might get the
wrong command to start with. Once you find the right command, you might make
bad assumptions about the results it creates—and those bad assumptions will create
bugs further down the line. The command might work fine locally, but not against a
remote computer—and you need to figure that out before you do anything else. The
command might work against some versions of Windows, but not others, and you
need to solve that problem, too. These are all things to get out of the way before you
open a script editor. We swear to you, there would be fewer bugs in the world if people
just tested stuff thoroughly in an interactive console before they started coding.

NOTE The reason most .NET Framework developers like PowerShell is that it
lets them interactively play with .NET. They don’t have to write a huge pro-
gram, compile it, and run it to see whether they’ve got the right idea for their
code—they can try it quickly in PowerShell, validate their assumptions, and
code with confidence. It’s the same thing for PowerShell scripters—test it in
the console, get it working in every way it will need to work, and then start
scripting.

9.2 Breaking it down, and running it right
Let’s take a good, concrete example. Suppose we hop into the PowerShell console
and run this:

Get-CimInstance -ClassName Win32_ComputerSystem

TRY IT NOW By the way, feel free to follow along and try these commands.
Nothing in this chapter will break anything, and it’s good experience.

If that works, and there’s no reason to think it won’t, have we successfully tested our
command the way our script will use it? No, we haven’t! That’s because our script will
clearly need to run this command against remote computers, but we’ve only run it against
the local computer here. Not the same thing at all, and running against a remote com-
puter obviously brings in a ton more moving parts.

 Here’s a better test in the console, because it’s closer to what our script will proba-
bly need to run (assuming SERVER2 is a legitimate server name in our environment
that we have admin access to, of course, or substitute your computer name):

Get-CimInstance -ClassName Win32_ComputerSystem -ComputerName SERVER2

The point is to not only identify the moving parts of your script, but also make sure
you’re thinking about how your script will run them, so that you can test them from the
console exactly the same way. We should run this against a few computers with dif-
ferent versions of Windows, too. (Here’s a hint: It’ll fail against Windows XP and
Windows Vista, if you’re still using those dinosaurs, and now’s the time to discover
that fact.)

83Running commands and digging deeper
TIP We can’t tell you how many times we’ve helped people in the forums at
PowerShell.org who’ve started up a script editor and begun typing. We invari-
ably end up asking them to run some command “from the console,” so that
they can more clearly see what they’re doing wrong. You’ll save yourself a ton
of time if you don’t get ahead of yourself!

There’s more to it than just running commands and hoping you don’t get any errors.
You need to look at the results of those commands. Are you hoping the previous com-
mand returns a version number for Windows? Well—you should run the command and
see what happens. Because many commands have a prettified default onscreen display,
we always recommend piping the results to fl * (Format-List *) so that you can see the
full, unadulterated output right in front of you. Which properties will you use? What do
they contain? Do you know what those contents mean? Do they differ from computer to
computer in any way that will affect the script you’re planning to write?

9.3 Running commands and digging deeper
We’re going to assume that you already know how to run PowerShell commands. If
that’s not your strong suit, please stop and go read Learn Windows PowerShell in a Month
of Lunches, because it’s all about discovering and running commands. Our point is that

The importance of a test environment
You need a safe place to play.

Discovering how to use PowerShell commands invariably involves an amount of
experimentation, and your organization’s production network is likely not the best
place for that to happen. That’s why virtualization is so wonderful—using a product
like VMware Workstation, VMware Fusion, VirtualBox, Parallels, and so on, you can
run multiple computers on a single machine and have your own test lab. You can also
set up test labs (with permission) on your organization’s virtual infrastructure, use
cloud-based environments like Microsoft Azure or Amazon Web Services, and so on.

We sometimes run into frustrated individuals who are trying to learn this stuff on
their own and can’t afford an Azure or AWS subscription. They don’t have an
organization’s resources to rely on, and perhaps their home computer doesn’t have
the juice to run two or three virtual machines. Unfortunately, that’s kind of the price
of admission. PowerShell, and toolmaking, is a business-class set of technologies
that require business-class resources. It can be tough to learn on your own. We
ourselves have relied on a decently equipped, yet still affordable, Gigabyte BRIX
micro-PC (under $800 decently equipped). We recognize that even that is out of
reach for some folks, but there isn’t always a super-inexpensive way to experiment
with these kinds of tasks.

Once you have some decent hardware with 8–16 GB of RAM and good disk space, if
it runs Windows 10 or Windows Server 2016, you can use the Autolab project from
https://github.com/theJasonHelmick/PS-AutoLab-Env to make it easy to spin up
preconfigured test environments.

https://github.com/theJasonHelmick/PS-AutoLab-Env
http://PowerShell.org

84 CHAPTER 9 Avoiding bugs: start with a command
you should test and make sure you know how to accomplish everything your tool
needs to accomplish, by manually running commands in the command-line window.

 In this specific case, you want to also make sure you know how to reliably retrieve
all the information in your list, which is going to involve more than one WMI/CIM
class. You’ll need Win32_OperatingSystem and Win32_ComputerSystem at the least.
You’ll also have to use one of those to determine which drive is the system drive and
then retrieve its instance of Win32_LogicalDisk to get the free space. Again—you
should know how to do these things already if you’re reading this book, so we’re not
going to walk through that entire discovery process.

 You see, our “discovery and test” process is about more than just finding what com-
mands to run and what syntax to use. We also, as suggested in the previous section,
spend time looking at the output of those commands. In which exact property of
Win32_OperatingSystem or Win32_ComputerSystem will you find the system drive? Is
it formatted as C: or C or C:\? Or is it a number, like 0 or 1? What value will you need
to use in order to get the corresponding Win32_LogicalDisk instance? The idea is to
figure out all of your “How do I…?” questions up front, test your answers at the con-
sole, and go into the actual scripting process with working commands, notes, and
everything else you need to do it right the first time.

TIP If you don’t use some kind of note-taking application, get one. As you
start to figure out what you’ll need to do in a script, it’s incredibly valuable to
have a place to jot down electronic notes. In many cases, you’ll want to copy
and paste things from those notes, which is why a big spiral notebook and a
pen aren’t as useful.

You’re going to use Get-CimInstance to do the querying; and, because you’ll eventu-
ally end up querying multiple classes, you’ll need to make multiple queries. Might
that be slow? We’d test it. We’d also take the time to read the help—the full help, mind
you, including the examples—and in doing so, we’d discover that there’s a way to cre-
ate and reuse a persistent connection, making multiple queries faster. We love faster!
Therefore, you’ll use New-CimSession and Remove-CimSession to create (and then
remove) a persistent connection to each computer, so that you can run all the queries
over one connection. You’ll need to be able to detect errors in case the connection
doesn’t work, and switch between CIM (WS-Management [WS-Man]) and WMI (Dis-
tributed Component Object Model [DCOM]) protocols when you make that connec-
tion (because older computers might not support CIM, forcing you to fall back to
WMI). Review the help for New-CimSession if you’re not familiar with those tasks—it’s
time for you to figure it all out.

TRY IT NOW Seriously, read the help. Do it right now. How would you go
about creating and removing a persistent session? How would you tell a ses-
sion that you wanted it to use the WS-Man protocol instead of the DCOM pro-
tocol? Try it—see if you can make it work, and query an instance of Win32
_LogicalDisk from a remote computer or two.

85Your turn
9.4 Process matters
We mentioned this at the beginning of the chapter as an aside, but it’s so important
that it bears reinforcement. The process of discovery, testing, and refining your com-
mand should continue throughout your development process. We’ve seen students in
class spend an hour writing lines and lines of code in the PowerShell ISE. Then they
run it. And it fails. And they curse. Despite our best efforts, they ignore our advice to
discover, test, and code as you write your script or tool. Discover/test/code is a great rea-
son to use the PowerShell ISE, or the PowerShell extension in VS Code. You can find
the commands you need, enter them, and run them just that much more easily, right
within the editor. If it fails, you can fix it, then and there, and repeat the process.
Once you get it right, copy and paste the working code into your script, and you’re on
your way. Then, move on to the next part of your script. PowerShell is immediate.
Take advantage of it.

9.5 Know what you need
We’ve developed a little saying that isn’t exactly reassuring, but it’s a hard truth that
you can’t avoid. “PowerShell,” our saying goes, “is easy. Windows is hard.” The point of
this is that a lot of us—thanks to years of being insulated from the operating system by
a GUI—don’t know what it’s doing under the hood. Do you know the difference
between a partition, a disk, a logical disk, and a disk volume? The operating system
knows, but it doesn’t always surface those distinctions in its GUI. If you don’t know the
difference, then working from PowerShell—which is a lower-level form of control
than the GUI—is going to be hard.

 This comes up all the time in the forums on PowerShell.org. Someone will ask for
help with a block of code, and they’ll paste in what amounts to a C# program, because
they’re really using PowerShell to access a bunch of raw .NET Framework stuff. Power-
Shell, in that case, isn’t the question—it’s all the esoteric .NET things. Or, someone
will ask something like, “Where can I find a list of events from USB device insertions?”
That’s a spot-on question. It’s not a PowerShell question, but it highlights what ends up
being difficult: dealing with the underlying operating system.

 All of this is why the discover/test/code process is so vital. First, you’ve got to fig-
ure out what to do, and then how to do it, and the interactive PowerShell console is the
place for that. Once you know what and how, you can start assembling it all into a
script, using your script editor.

9.6 Your turn
The previous chapter included an exercise for you, and this one picks up where it left
off. This is where you’ll get to practice what we’ve preached in this chapter: making
sure you know how to accomplish everything your tool will need to do, by starting in
the PowerShell command-line window. If there’s anything about the tasks to perform
that you don’t know how to do, figure it out before you leave this chapter.

http://PowerShell.org

86 CHAPTER 9 Avoiding bugs: start with a command
9.6.1 Start here

Remember that you’ve designed a tool that will change service logon names and pass-
words. You won’t be able to use Set-Service for this (it doesn’t offer the ability to
change those things); you’ll need to use CIM/WMI.

9.6.2 Your task

Your main task is to discover the CIM/WMI class that will let you change a service’s
logon name and password. A search engine is probably the best way to start looking
for this, and we’ll give you one hint: The class name starts with Win32_.

 You also need to make sure you can use this class to accomplish the task. You’ll
need to invoke something in WMI or, more likely, CIM. Here’s a tip: When experi-
menting with services, we usually play with the Background Intelligent Transfer Ser-
vice (BITS). Messing with it won’t immediately crash Windows, which is great. But if
you’re working on a non-lab computer, keep in mind that BITS is what makes Win-
dows Update and some other important things work. After you’ve finished playing
with it, be sure to reset it so that it’s logging on as LocalSystem, with no password set.

DO IT NOW Stop reading here, and complete the task before resuming.

9.6.3 Our take

We found that the Win32_Service class will do the trick. We learned this, honestly, by
hopping on Google, entering change windows service password, and looking for a
Microsoft.com page (http://mng.bz/1noL) in the results.

 We also ran Get-Command -verb invoke in PowerShell, given that invoke was a
not-so-subtle hint in the lab assignment. We found Invoke-WmiMethod, but also
Invoke-CimMethod; and given our modern way of doing things, we’re going with
Invoke-CimMethod. We read its help file and came up with the following command to
change the startup username and password for the BITS service:

Invoke-CimMethod -Query "SELECT * FROM Win32_Service WHERE Name='BITS'"
 -Method Change
 -Arguments @{'StartName'='DOMAIN\User';
 'StartPassword'='P@ssw0rd'}
 -Computername $env:computername

We won’t lie—coming up with that took a bit of experimentation and searching
(yay, Google!). We wound up using -Query because we need a specific instance of
Win32_Service, not all the services on the computer. Also, we noticed a -Computer-
Name parameter that should be useful later, when we’re targeting remote machines. To
make sure we’re using it properly, we’ll use the environmental variable for the local
computer name. This should verify the complete syntax we’ll eventually incorporate
into our tool.

 DOMAIN is valid in our test environment, but obviously, you’d need to use a
proper username in that DOMAIN\USERNAME form. We noted that the command

http://mng.bz/1noL

87Your turn
returned an object, and ReturnValue was 0 for a success and 22 when we provided an
invalid username. The Change method’s web page, which we gave a link to earlier,
includes all the valid return codes. We could capture that return object into a variable
to make sure each computer is successful when we write our tool.

 Now, look: If WMI/CIM isn’t your thing, this may have been hard to come up
with on your own. We get it. This isn’t a book about WMI/CIM, however, so we’re
hoping you brought that knowledge with you. If not, you might want to grab a copy
of PowerShell and WMI, written by our good friend Richard Siddaway (Manning, 2012,
www.manning.com/books/powershell-and-wmi).

 We were, by the way, careful to reset the service:

Invoke-CimMethod -Query "SELECT * FROM Win32_Service WHERE Name='BITS'"
 -Method Change
 -Arguments @{'StartName'='LocalSystem'}

Take the time to follow the process. It’s really important that you start building some
PowerShell toolmaking muscle memory.

http://www.manning.com/books/powershell-and-wmi

Building a basic function
and script module
In this chapter, you’ll start creating the tool that you designed in chapter 8, using
some of the commands that you figured out and tested in the previous chapter. It’s
important to understand that this chapter isn’t going to attempt to have you build
the entire tool or solve the entire business statement from chapter 8. We’ll take
things one step at a time, because it’s the process of toolmaking that we want to
demonstrate for you.

10.1 Starting with a basic function
Basic functions have existed in PowerShell since v1, and they’re one of the many
types of commands that PowerShell understands (some of the others being cmdlets,
applications, workflows, and so on). Functions make a great unit of work for tool-
making, as long as you follow the basic principle of keeping your function tightly scoped
and self-contained. We’ve written already about the need to have tightly scoped func-
tions—that is, functions that do just one thing. Self-contained means the function
needs to live in its own little world and become a kind of black box. Practically
speaking, that means two things:

 Information to be used inside the function should come only from declared
input parameters. Of course, some functions may look up data from else-
where, like a database or a registry, and that’s fine if it’s what the function
does. But functions shouldn’t rely on external variables or sources other
than intrinsic items like PSDrives to the file system or environmental vari-
ables. You want them as self-contained as possible.
88

89Starting with a basic function
 Output from a function should be to the PowerShell pipeline only. Stuff like cre-
ating a file on disk, updating a database, and other actions aren’t output, they’re
actions. Obviously, a function can perform one of those actions if that’s what the
function does.

10.1.1 Designing the input parameters

Looking back through the design, what information will the function need? The
usage examples already provide pretty clear guidance about what parameters you’ll
have to create, which is one reason you create usage examples as your primary design
deliverable. Now, let’s create basic versions of those parameters:

function Get-MachineInfo {
 Param(
 [string[]]$ComputerName,
 [string]$LogFailuresToPath,
 [string]$Protocol = "wsman",
 [switch]$ProtocolFallback
)}

Notice how careful we’re being with the formatting of this code? In order to conserve
space in this book, we’re only indenting the code a little within the function and
within the Param() block, but you’ll typically indent four spaces (which, in most code
editors, is what the Tab key inserts). Don’t get lazy about your code formatting. Lazy formatting

Designing function output
Let’s harp on this for a moment, because it’s one of the first things people get
wrong. PowerShell’s Write-Output command is the shell’s default command. That
is, if you give the shell some kind of expression all by itself, the shell uses Write-
Output. For example, hop into the shell, type 5+5, and press Enter. You see the
result on the screen, right? Well, in reality, the shell basically ran something like
Write-Output (5+5) and sent the result to the pipeline (because that’s what
Write-Output does); because there was nothing else in the pipeline, the formatting
system took over and created an onscreen display of whatever was in the pipeline
(hopefully, 10).

That means your script should never use Write-Output for anything except your
intended output. And your intended output should always be either nothing, if that’s
appropriate, or some structured data—objects—that can be passed to another
command.

Write-Output should never be used for little status messages that tell you what
the script is doing. It should never output plain, preformatted text (unless that’s the
output or result of your command). We’re going to walk through this output design
process over the course of several chapters, but for right now, we want you to have
in mind that output matters and that PowerShell’s foundational design has certain
expectations for the output’s form and content.

90 CHAPTER 10 Building a basic function and script module
is a sign of the devil and an indication of code that probably has bugs—and will be
hard to debug.

 In the Param() block, you declare four parameters. These are simple declarations,
and you’ll build on them in upcoming chapters. For now, here are some things to
notice:

 Data types are enclosed in square brackets. Common ones include [string],
[int], and [datetime]. You’ll notice [switch] here, which defines a parameter
that will contain $True if the command is run with the parameter or $False
if not.

 Parameters become variables inside the function, meaning their names are pre-
ceded with a $. And for goodness’ sake, don’t try to create a parameter name
with spaces!

 In the Param() section, each parameter is separated from the next with a comma.
You don’t have to put them one per line as we’ve done, but when you start build-
ing on these, it’ll be a lot easier to read if they’re broken out one per line.

 The -ComputerName parameter will accept zero or more values in an array,
which is what [string[]] denotes.

 The $Protocol variable will contain “Wsman” unless someone explicitly speci-
fies something else. Right now, you’re not limiting a user’s choices to “Wsman”
or “Dcom,” but you eventually will.

10.1.2 Writing the code

Now let’s insert some basic functional code. Again, this won’t complete the tool’s entire mis-
sion—you’re just getting started, and we want to walk you through each step. We also
encourage you to pay attention to the process and not necessarily the end result. All of
our samples are intended to be educational, not necessarily the absolute best way to
accomplish a task.

function Get-MachineInfo {
 Param(
 [string[]]$ComputerName,
 [string]$LogFailuresToPath,
 [string]$Protocol = "Wsman",
 [switch]$ProtocolFallback
)

 foreach ($computer in $computername) {

 # Establish session protocol
 if ($protocol -eq 'Dcom') {
 $option = New-CimSessionOption -Protocol Dcom
 } else {
 $option = New-CimSessionOption -Protocol Wsman
 }

Listing 10.1 Basic functional code

Processes each
computer

If construct

91Starting with a basic function
 # Connect session
 $session = New-CimSession -ComputerName $computer -SessionOption $option

 # Query data
 $os = Get-CimInstance -ClassName Win32_OperatingSystem -CimSession $session

 # Close session
 $session | Remove-CimSession

 # Output data
 # TODO

 } #foreach

} #function

TIP Notice that we tagged a #function comment on the closing bracket of
the function. That’s a good habit to get into when you have a closing bracket,
because it can help remind you which construct the bracket closes. You
should also learn the commands for your scripting editor of choice, to be able
to find matching brackets. If your editor supports code folding, that too will
be helpful. We see people run into more than a few bugs due to a missing or
misplaced closing bracket.

The If construct will help prevent problems if someone specifies an illegal protocol
for the -Protocol parameter; if they specify “Dcom,” you’ll set up a Dcom session.
Otherwise, if they specify anything else, you’ll go with a WSman session.

 You’re querying only one of the classes that you’ll ultimately need to query; the
point is to start simply, test, and then, once everything’s working, add more. This is a
conservative coding approach; although it adds little development time, it will help
you prevent complex bugs from creeping into the code. If you test as you go, then
whenever a bug crops up, you’ll probably have only a couple of lines to debug.

10.1.3 Designing the output

Finally, you need to have the command output something.

function Get-MachineInfo {
 Param(
 [string[]]$ComputerName,
 [string]$LogFailuresToPath,
 [string]$Protocol = "Wsman",
 [switch]$ProtocolFallback
)

 foreach ($computer in $computername) {

 # Establish session protocol
 if ($protocol -eq 'Dcom') {
 $option = New-CimSessionOption -Protocol Dcom
 } else {

Listing 10.2 Adding output

Closes the
function

92 CHAPTER 10 Building a basic function and script module

Co

s

 $option = New-CimSessionOption -Protocol Wsman
 }

 $session = New-CimSession -ComputerName $computer -SessionOption $option
 # Query data
 $os = Get-CimInstance -ClassName Win32_OperatingSystem -CimSession
➥ $session

 # Close session
 $session | Remove-CimSession

 # Output data
 $os | Select-Object -Prop @{n='ComputerName';e={$computer}},
 Version,ServicePackMajorVersion

 } #foreach

} #function

This isn’t especially complex output—you’re just grabbing the computer name and
the two OS properties you specified in the design. Eventually, this output will become
more complex as you start adding queries to the mix and incorporating their proper-
ties into your output.

NOTE Again, notice that you’re outputting a data structure—an object—to
the pipeline. You haven’t explicitly used Write-Output, but it’s implicitly
there because you didn’t assign the results of that expression to a variable,
nor did you explicitly pipe your object anyplace else. You piped $os to
Select-Object, and the result of that expression will end up in the pipeline.

10.2 Creating a script module
The last step will be to save all of this code as a script module. These are supported on
PowerShell v2 and later and should ideally be stored in one of the paths specified in
the PSModulePath environment variable ($env:psmodulepath). On PowerShell v4 and
later, that path by default includes C:\Program Files\WindowsPowerShell\Modules, so
that’s where you’ll create the module, under a subfolder called ScriptingMOL. Specifi-
cally, save it as ScriptingMOL.psm1. Notice that the subfolder name and the filename
must match in order for PowerShell to automatically discover the module and load it
on demand.

TIP Actually, when we’re just playing around, we usually save our module to
the path under the Documents folder. That makes it feel personal. We gener-
ally reserve the Program Files location for production modules that are ready
to go. In this case, we want you to get used to that location existing and being
where “real” modules go when you’re finished with them.

We’ve included our module, such as it is at this point, in the code samples for this
book (which are arranged by chapter and downloadable from www.manning.com/
books/learn-powershell-scripting-in-a-month-of-lunches). To load the module, you’ll
need to manually run Import-Module and provide the full path to the .psm1 file on

nnects
the

ession

Queries for
operating

system data

Writes the
output using
Select-Object

http://www.manning.com/books/learn-powershell-scripting-in-a-month-of-lunches
http://www.manning.com/books/learn-powershell-scripting-in-a-month-of-lunches
http://www.manning.com/books/learn-powershell-scripting-in-a-month-of-lunches

93Running the command
your computer from the extracted zip file. That’s because the code samples include
multiple versions of the module, and you aren’t installing the code samples in one of
the locations where PowerShell automatically looks for modules. Providing the full
path to Import-Module ensures that you’re loading the right version of the module
for your purposes. When you’re finished, you should use Remove-Module (or close the
console and open a new one) to ensure that you’ve cleaned up before trying to load a
subsequent version of the same module. You can also use the -Force parameter with
Import-Module to forcibly overwrite existing commands.

TIP Depending on how you download the zip file, its file header may be
flagged, indicating that it came from the internet. Again, depending on
how you unzip it, the individual files may also be flagged that way. Many
PowerShell execution policies block downloaded files from running. Newer
versions of PowerShell include an Unblock-File command, which removes
that “downloaded” flag, clearing the script for execution (or for loading as
a module).

10.3 Prereq check
Before you test the command, especially if you’re planning to run it yourself and fol-
low along, you need to check a few things:

 Make sure your PowerShell window always says Administrator in the title bar. If
it doesn’t, run the shell “as Administrator” by right-clicking the PowerShell Task
Bar icon and selecting the appropriate option.

 Run Get-ExecutionPolicy; the result should be RemoteSigned, Bypass, or
Unrestricted. If not, use Set-ExecutionPolicy to change the setting to one of
those (we use Bypass, and we’ve covered in chapter 7 why you might pick one or
another).

 Run Get-CimInstance win32_service -computername localhost to ensure
that CIM is set up and working.

If any of these aren’t confirmed on your system, stop. You’ll need to fix them. We’ve
covered the first two; the last item should be a problem only on older versions of Win-
dows (pre-Windows 8), where CIM isn’t enabled by default. You can usually correct
this by installing a more recent version of PowerShell (v3 or later should do it), and
you may need to restart afterward. But rest assured that if you don’t get these three
items working, pretty much nothing else in this book is going to work, either.

10.4 Running the command
Now for the real test. First, close your PowerShell window. That will ensure that the test is
in a clean PowerShell environment. Then open a new one (make sure it’s “as Adminis-
trator”), and run this command:

Get-MachineInfo -ComputerName localhost

94 CHAPTER 10 Building a basic function and script module
You should get some output from running the command. In fact, you should be able
to type Get-Machi, press Tab, type a space, type –Comp, press Tab, and then type a
space and localhost. If Tab completion isn’t working, double-check your script for
proper filenames, any typos in the code (indicated in the PowerShell ISE or Visual
Studio Code by red squiggly underlines), and so on. Also make sure you’ve used a
path that’s in your machine’s PSModulePath environment variable:

$env:PSModulePath

If the command runs without trouble, then you’re good to go. Take some time to
make sure that you understand why each line of code is in the command and that you
can explain the reason for each step you’ve performed to this point.

 If you make any changes to your module, it’s important to understand that PowerShell
won’t “see” those changes. That’s because it loaded the module into memory when you
first ran your command; afterward, it runs entirely from memory and doesn’t reload
from disk. So if you make any changes to your code, you need to do one of two things:

 Close the PowerShell console window in which you’ve been testing, and open a
new one. This is a sure-fire way to make sure you get a fresh start every time.
Unload your module, and then run your command again to reload the module.
In this case, that means running Remove-Module ScriptingMOL, because Script-
ingMOL is the module name (as defined by the subfolder name and the .psd1
filename).

 Try to manually force PowerShell to reimport the module with the command
Import-Module ScriptingMOL -force.

You’ll also notice that we tend to test our commands in a normal PowerShell console
window, even though we’re developing in something like the PowerShell ISE, Visual
Studio Code, and so on. That’s because development environments sometimes have a
slightly different way of running scripts, and the console window represents the stan-
dard way your script will run in production. The console represents the production
environment, so that’s where we test.

WARNING The PowerShell ISE in particular has a different notion about keep-
ing things in memory far longer than you’d expect. Its behavior is designed to

No shortcuts
We're assuming that you've been following along and creating your own module from
scratch, not just testing with our provided sample code. As we explained previously,
just running Get-MachineInfo won't automatically work unless you've created a
.psm1 file in the correct, magic location that PowerShell looks in, and our code
samples will not be in the correct, magic location.

Don't try to take shortcuts here by running our samples—follow along and write your
own code. It's the best way to learn.

95Your turn
facilitate development, not testing, and it’s frustrated more than a few people.
VS Code’s behavior is a bit more what you’d expect and more in line with how
the console behaves. But at the end of the day, the console is where you
should be running your real tests, because it represents the canonical produc-
tion execution environment for PowerShell.

10.5 Your turn
Let’s return to the tool we asked you to design in chapter 8. It’s time to start coding
it up.

10.5.1 Start here

To review, you’ve designed the command name as Set-TMServiceLogon. The TM
stands for Toolmaking, because you don’t have a specific company or organizational
name to use. You’ll design the following use cases:

Set-TMServiceLogon -ServiceName LOBApp
 -NewPassword "P@ssw0rd"
 -ComputerName SERVER1,SERVER2
 -ErrorLogFilePath failed.txt
 -Verbose

The intent here is that -Verbose will generate onscreen warnings about failures,
whereas -ErrorLogFilePath will write failed computer names to a file. Notice that,
to make this specification easier to read, we’ve put each parameter on its own line.
The command won’t execute exactly like that, but that’s fine—clarity is the idea at
this point.

 The following example illustrates that -ErrorLogFilePath and -Verbose are
optional, as is -NewUser; if a new user isn’t specified, you’ll leave that property alone:

Set-TMServiceLogon -ServiceName OurService
 -NewPassword "P@ssw0rd"
 -NewUser "COMPANY\User"
 -ComputerName SERVER1,SERVER2

We also want to show some flexible execution options:

Get-Content servers.txt |
➥ Set-TMServiceLogon -ServiceName TheService -NewPassword "P@ssw0rd"

This illustrates your ability to accept computer names from the pipeline. Finally

Import-CSV tochange.csv | Set-TMServiceLogon | ConvertTo-HTML

We’re demonstrating two things here. First is that you can accept an imported CSV
file, assuming it has columns named ServiceName, NewPassword, and Computer-
Name, and optionally NewUser. The output is also consumable by standard Power-
Shell commands like ConvertTo-HTML, which implies that Format- commands and
Export- commands will also work.

96 CHAPTER 10 Building a basic function and script module
10.5.2 Your task

Create a basic function named Set-TMServiceLogon. Specify all the parameters that
are listed in the design, although right now you might not use all of them. Write
enough code so that, given a computer name, service name, and new password, the
function can change the password. If a new username is specified, that should be set
as well. You’ll use both an If and a ForEach construct. Right now, make sure these two
usage examples will work:

Set-TMServiceLogon -ServiceName OurService
 -NewPassword "P@ssw0rd"
 -NewUser "COMPANY\User"
 -ComputerName SERVER1,SERVER2

Set-TMServiceLogon -ServiceName OurService
 -NewPassword "P@ssw0rd"
 -ComputerName SERVER1,SERVER2

Create the function in a script module named MolTools. Test your function against
the BITS service on your local host. Remember, you should have run the necessary
commands in the previous lab to discover the correct syntax. For now, assume that a
WSman (CIM) connection is all you need to implement. Additionally, for now, don’t
worry about logging or other features specified in the design.

 Keep in mind what you learned from the previous chapter, regarding the output of
Invoke-CimMethod. For now, it’s okay to output the computer name and its return
code; you can create that output using Select-Object and custom properties, like
you did in the Get-MachineInfo example. Later, you’ll work on getting the output
closer to the design specification.

 Test your command in the PowerShell console, rather than in the ISE or VS Code,
and bear in mind the caveats we pointed out about unloading your module after mak-
ing changes.

10.5.3 Our take

Here’s our solution for you to compare to your own. Minor variations shouldn’t be
cause for concern, provided your command works when you run it.

function Set-TMServiceLogon {
 Param(
 [string]$ServiceName,
 [string[]]$ComputerName,
 [string]$NewPassword,
 [string]$NewUser,
 [string]$ErrorLogFilePath
)

 ForEach ($computer in $ComputerName) {

Listing 10.3 Our solution

97Your turn

s

 $option = New-CimSessionOption -Protocol Wsman
 $session = New-CimSession -SessionOption $option `
 -ComputerName $Computer

 If ($PSBoundParameters.ContainsKey('NewUser')) {
 $args = @{'StartName'=$NewUser;
 'StartPassword'=$NewPassword}
 } Else {
 $args = @{'StartPassword'=$NewPassword}
 }

 Invoke-CimMethod -ComputerName $computer `
 -MethodName Change `
 -Query "SELECT * FROM Win32_Service WHERE Name =
➥ '$ServiceName'" `
 -Arguments $args |
 Select-Object -Property @{n='ComputerName';e={$computer}},
 @{n='Result';e={$_.ReturnValue}}

 $session | Remove-CimSession

 } #foreach
} #function

Notice that we didn’t include a Verbose parameter. That’s intentional, and you’ll see
why in the next couple of chapters.

 Also, notice our use of $PSBoundParameters to see whether the NewUser para-
meter was specified. This is kind of a trick that we didn’t expect you to know—you
may have done something like If ($NewUser -ne "") or if (-Not $NewUser) to see
whether $NewUser contains anything, and that’s fine. $PSBoundParameters is a hash
table containing all the parameters the command was run with. It’s created automati-
cally. You don’t have to do anything. By using its ContainsKey() method, we can see
whether NewUser is among the parameters used. This is considered a better way of
testing to see whether a parameter is used. But you can see how the If construct is
used to build the CIM arguments hash table, either with just a password or with a pass-
word and a new username. We’re in trouble if someone doesn’t specify a new password,
but we’ll deal with that possibility as we evolve the function.

 In our CIM query (which may get truncated in the book; check the code samples
to see the whole thing), we use PowerShell’s double-quotes trick to insert $Service-
Name into the query. We pipe the result of Invoke-CimMethod—which, in the previous
chapter, you learned returns an object having a ReturnValue property—to Select-
Object so that we can construct our output.

 We created a manifest for this, too:

New-ModuleManifest -Path TMTools.psd1
 -RootModule .\TMTools.psm1
 -FunctionsToExport Set-TMServiceLogon
 -ModuleVersion 1.0.0.0

Uses
PSBoundParameter

CIM query

Method result piped
to Select-Object

98 CHAPTER 10 Building a basic function and script module
We’ve included our solution, to this point, in the code samples for this book, in the
corresponding chapter folder (www.manning.com/books/learn-powershell-scripting-
in-a-month-of-lunches). To load the module, you’ll need to manually run Import-
Module and provide the full path to our .psd1 file on your computer. In the code sam-
ples for this chapter, the module name is MoLTools-Prelim, to avoid conflicting with
the “real” MoLTools module that you’re building on your own.

 Finally, be sure to reset the BITS service, as you did in the previous chapter, after
testing your function.

http://www.manning.com/books/learn-powershell-scripting-in-a-month-of-lunches
http://www.manning.com/books/learn-powershell-scripting-in-a-month-of-lunches

Going advanced
with your function
In this chapter, we’ll focus entirely on the Param() block of the example function
and discuss some of the cool things you can do with it.

11.1 About CmdletBinding and common parameters
Back when PowerShell v2 was being developed, Microsoft toyed with the idea of
having a cmdlet{} construct that was essentially a superset of function{}. The idea
was that these “script cmdlets” would exhibit all the behaviors of a “real” cmdlet
(for example, one written in .NET and compiled into an assembly). By the time v2
released, these had become advanced functions, and they’re differentiated primar-
ily by the [CmdletBinding()] attribute. To illustrate the first major difference, let’s
start with a basic function:

function test {
 Param(
 [string]$ComputerName
)
}

That’s it. No code at all. Now ask PowerShell for help with that function:

PS C:\> help test

NAME
 test

SYNTAX
 test [[-ComputerName] <string>]

ALIASES
 None
99

100 CHAPTER 11 Going advanced with your function
That’s what we’d expect—PowerShell is producing the best help it can, given the com-
plete nonexistence of anything. Now, let’s make one change to the code:

function test {
 [CmdletBinding()]
 Param(
 [string]$ComputerName
)
}

and again ask for help:

PS C:\> help test

NAME
 test

SYNTAX
 test [[-ComputerName] <string>] [<CommonParameters>]

ALIASES
 None

PowerShell has added the common parameters. If you read the about_CommonParameters
help file, you’ll discover that all PowerShell commands support this set of parameters. The
number has grown through the subsequent versions of PowerShell, and there are now
11 parameters. Cmdlet authors don’t need to do anything to make these work—Power-
Shell takes care of everything. And because we added [CmdletBinding()], the func-
tion will support all of these common parameters as well. Some of the cooler ones (with
availability differing based on your version of PowerShell) include the following:

 -Verbose—Enables the output of Write-Verbose in your function, overriding
the global $VerbosePreference variable.

 -Debug—Enables the use of Write-Debug in your function.
 -ErrorAction—Modifies your function’s behavior in the event of an error, and

overrides the global $ErrorActionPreference variable.
 -ErrorVariable—Lets you specify a variable name in which PowerShell will

capture any errors your function generates.
 -InformationAction—Overrides the global $InformationPreference variable,

and enables Write-Information output. This was added in PowerShell v5.
 -InformationVariable—Specifies a variable in which output from Write-

Information will be captured. This too was added in PowerShell v5.
 -OutVariable—Specifies a variable in which PowerShell will place copies of

your function’s output, while also sending copies into the main pipeline. We’ll
cover this more in chapter 15.

 -PipelineVariable—Specifies a variable, in which PowerShell will store a copy
of the current pipeline element. We’ll cover this more in our chapter on trou-
bleshooting.

101About CmdletBinding and common parameters
There are others, and we’ll discuss almost all of them in more detail in upcoming
chapters.

11.1.1 Accepting pipeline input

If you remember the original design for the example tool, we specified a need to cap-
ture input from the pipeline. This requires a modification both to the parameters and
to the code of the function. As a reminder, listing 11.1 shows where you’re starting
after the previous chapter, and listing 11.2 gives the modified function.

function Get-MachineInfo {
 Param(
 [string[]]$ComputerName,
 [string]$LogFailuresToPath,
 [string]$Protocol = "Wsman",
 [switch]$ProtocolFallback
)

 foreach ($computer in $computername) {

 if ($protocol -eq 'Dcom') {
 $option = New-CimSessionOption -Protocol Dcom
 } else {
 $option = New-CimSessionOption -Protocol Wsman
 }

 $session = New-CimSession -ComputerName $computer
 ➥ -SessionOption $option

 #
 $os = Get-CimInstance -ClassName Win32_OperatingSystem
 ➥ -CimSession $session

 $session | Remove-CimSession

 $os | Select-Object -Prop @{n='ComputerName';e={$computer}},
 Version,ServicePackMajorVersion

 } #foreach

} #function

function Get-MachineInfo {
 [CmdletBinding()]
 Param(
 [Parameter(ValueFromPipeline=$True)]
 [string[]]$ComputerName,

 [string]$LogFailuresToPath,

 [string]$Protocol = "Wsman",

 [switch]$ProtocolFallback
)

Listing 11.1 Original Get-MachineInfo function

Listing 11.2 Modified Get-MachineInfo

Establishes session
protocol

Connects
the session

Queries
data

Closes the session

Outputs
the data

Added cmdletbinding

Added a [Parameter]
decorator

102 CHAPTER 11 Going advanced with your function
 BEGIN {}

 PROCESS {
 foreach ($computer in $computername) {

 # Establish session protocol
 if ($protocol -eq 'Dcom') {
 $option = New-CimSessionOption -Protocol Dcom
 } else {
 $option = New-CimSessionOption -Protocol Wsman
 }

 # Connect session
 $session = New-CimSession -ComputerName $computer `
 -SessionOption $option

 # Query data
 $os = Get-CimInstance -ClassName Win32_OperatingSystem `
 -CimSession $session

 # Close session
 $session | Remove-CimSession

 # Output data
 $os | Select-Object -Prop @{n='ComputerName';e={$computer}},
 Version,ServicePackMajorVersion

 } #foreach
} #PROCESS

END {}

} #function

Here’s what we did:

 We added [CmdletBinding()] to the Param() block.
 We used blank lines to visually separate the parameters in the Param() block.
 We added a [Parameter()] decorator, or attribute, to the $ComputerName para-

meter. Although we physically placed it on the preceding line, PowerShell will
read those two lines as one.

 In the decorator, we specified that the $ComputerName parameter is capable of
accepting values ([string] values, to be specific, because that’s what the
parameter is) from the pipeline.

 We added BEGIN{}, PROCESS{}, and END{} script blocks.

Understanding how all this fits together requires you to remember that you want the
function to run in two distinct modes and that each mode has slightly different require-
ments from PowerShell.

RUNNING COMMANDS IN NON-PIPELINE MODE

Imagine running the command like this:

Get-MachineInfo -ComputerName ONE,TWO,THREE

Added script
blocks

103About CmdletBinding and common parameters
In this mode, PowerShell will ignore the BEGIN{}, PROCESS{}, and END{} labels, but it
won’t ignore the code within those labels. In other words, it’s like the labels never existed.
$ComputerName will contain an array, or collection, of three [string] objects: “ONE”,
“TWO”, and “THREE”. The entire command will run one time, from the first line of
code to the last. The ForEach loop will execute three times.

RUNNING COMMANDS IN PIPELINE MODE

Now, imagine running the command this way:

"ONE","TWO","THREE" | Get-MachineInfo

First, PowerShell will construct a three-element array, because that’s what comma-
separated lists do in PowerShell. It will then scan ahead in the pipeline and execute
the BEGIN{} block for each command in the pipeline. That’s true for both advanced
functions and compiled cmdlets. The Begin block (which doesn’t have to be in all-
uppercase, and which can be omitted if you don’t have any code to stick in there) is a
good place to do setup tasks, such as opening database connections, setting up log
files, or initializing arrays. Any variables you create in the Begin block will continue to
exist elsewhere in your function.

 Next, PowerShell will start feeding the elements from that three-element array
down the pipeline, one at a time. So, it will insert “ONE” into $ComputerName and then
run the PROCESS{} block. The ForEach loop will execute, but only once—it’s kind of
redundant in this mode, but we need it for the non-pipeline mode. PowerShell will
then feed “TWO” into $ComputerName and run PROCESS{} again. It’ll then put “THREE”
into $ComputerName and run PROCESS{} one last time.

 Finally, after all the objects have been sent through the pipeline, PowerShell will
rescan the pipeline and ask everyone to run their END{} blocks. Again, you can omit
this if you don’t have anything to put in there, but for visual purposes we like to
include it even if it’s empty. One suggestion is to insert a comment into empty Begin
and End blocks so you don’t think something is missing:

End {
 # intentionally empty
}

VALUES AND PROPERTYNAMES

Notice that the example uses this decorator:

[Parameter(ValueFromPipeline=$True)]

This enables ByValue binding of pipeline input. You can enable this for only one
parameter per data type. Because $ComputerName is a [string], it’s therefore the only
[string] parameter we can mark as accepting pipeline input ByValue.

 You can also enable input ByPropertyName:

[Parameter(ValueFromPipeline=$True,ValueFromPipelineByPropertyName=$True)]

104 CHAPTER 11 Going advanced with your function
Now, if the object in the pipeline isn’t a System.String, but it has a ComputerName
property, the $ComputerName variable will pick that up as well.

 If you’re not deeply familiar with pipeline parameter input ByValue and ByProperty-
Name, we urge you to read Learn Windows PowerShell in a Month of Lunches and learn all
about it. It’s a crucial feature in Windows PowerShell.

11.1.2 Mandatory-ness

Because the function can’t run correctly without a computer name, you want to
ensure that at least one is always provided. Here’s the revised set of parameters:

Param(
 [Parameter(ValueFromPipeline=$True,
 Mandatory=$True)]
 [string[]]$ComputerName,

 [string]$LogFailuresToPath,

 [string]$Protocol = "Wsman",

 [switch]$ProtocolFallback
)

Some notes on our decision-making process:

 Making $ComputerName mandatory makes sense. If a value isn’t provided, Power-
Shell will prompt for it and then fail with an error if one still isn’t given. It’s
important to remember that if you make a parameter mandatory, you can’t also
provide a default value, as we do with the Protocol parameter.

 Making $LogFailuresToPath mandatory doesn’t make sense, because you don’t
want to force people to log errors. We’ll check to see if this is provided, and
enable logging accordingly.

 Although $Protocol is technically mandatory, we’re providing a default value
of “Wsman”, so there’s no need to force people to manually provide a value,
which is what Mandatory=$True would do. We’re happy with someone not spec-
ifying a protocol, because we have a useful default value.

 You never make a [switch] parameter mandatory, because you’re essentially
forcing it to be $True (or forcing someone to run -ProtocolFallback:$false
to turn it off, which is awkward).

 You can make as many parameters mandatory as you require.

11.1.3 Parameter validation

The $Protocol parameter has a weakness in that it’ll accept any string whatsoever.
The code is a little protected from incorrect values, due to the way the If construct is
written, but it’d be nice to prevent incorrect values altogether. It’d also be nice to pro-
vide users with a clue as to what the valid values are. You can do both in one step:

[CmdletBinding()]
Param(

105About CmdletBinding and common parameters
 [Parameter(ValueFromPipeline=$True,
 Mandatory=$True)]
 [string[]]$ComputerName,

 [string]$LogFailuresToPath,

 [ValidateSet('Wsman','Dcom')]
 [string]$Protocol = "Wsman",

 [switch]$ProtocolFallback
)

Here, you add a [ValidateSet()] attribute to the $Protocol parameter. PowerShell
will now disallow any values not in the list, display valid values in the help it automati-
cally generates, and even Tab-complete those values for users. There are other valida-
tion methods available; read about_functions_advanced_parameters for a full list.

11.1.4 Parameter aliases

Finally, although you’ve followed native PowerShell patterns in using -ComputerName
as a parameter name, you might also find value in this addition:

[CmdletBinding()]
Param(
 [Parameter(ValueFromPipeline=$True,
 Mandatory=$True)]
 [Alias('CN','MachineName','Name')]
 [string[]]$ComputerName,

 [string]$LogFailuresToPath,

 [ValidateSet('Wsman','Dcom')]
 [string]$Protocol = "Wsman",

 [switch]$ProtocolFallback
)

Here, you define three aliases for the parameter, making -CN, -MachineName, and -Name
valid alternatives.

Going further
Parameters can get almost infinitely complex, especially as you move into the more
cutting-edge features of newer versions of PowerShell. Although we’ve covered
those in more advanced books (PowerShell in Depth, The PowerShell Scripting &
Toolmaking Book), we don’t cover them here because they’re outside the realm of
“getting started with toolmaking” that this book focuses on.

That said, we do want you to be aware of the possibilities!

One thing you can do is define multiple parameter sets. You’ll see this all the time
on native commands, like Get-WmiObject, which can be run with a –Query parameter
in some cases or a –Class parameter in others. Parameter sets often share certain

106 CHAPTER 11 Going advanced with your function
11.1.5 Supporting –Confirm and –WhatIf

We’re going to step out of our running example for a moment and discuss another
often-misunderstood, but deeply valuable, option. Consider this parameter block:

Function Set-Something {
 [CmdletBinding(SupportsShouldProcess=$True,ConfirmImpact='Low')]
 Param(
)
} #function

The CmdletBinding attribute has gotten a bit more complex. It has declared that it
supports Should Process, a PowerShell feature that will enable the –WhatIf and –Confirm
parameters for the function. This is appropriate for functions that plan to make some
kind of change to the system. If someone runs our command with –WhatIf, and we’ve
taken the proper steps, then the command won’t do anything—it’ll just show what it
would have done, had we let it. Or, if someone runs the command with –Confirm, and
we’ve again taken the proper steps in the code, then PowerShell will ask the user to
confirm each operation, essentially asking them, “Are you sure?”

 It’s worth noting that the –WhatIf and –Confirm switches are inherited by com-
mands inside our function. That is, we don’t have to do anything if all we’re doing is
running some other command that itself supports –WhatIf and –Confirm. Running
our function with one or both of those parameters will pass them through to the
commands inside. But suppose we want to run some command that doesn’t support
–WhatIf and –Confirm—maybe a raw .NET Framework class that might blow up
the system:

Function Invoke-InfoTechExplosion {
 [CmdletBinding(SupportsShouldProcess=$True,ConfirmImpact='Low')]
 Param(
 [Parameter(Mandatory=$True)]

(Continued)

parameters that are common to all of them, while reserving other parameters for
mutually exclusive sets. Your CmdletBinding attribute can even define which set is
the default.

Another topic—and one that could almost be its own book—is dynamic parameters.
These are parameters that magically come into existence—or go out of existence—
based on the exact situation in which the command finds itself at the time. You
might expose certain parameters when a command is in a local disk drive but hide
them when it’s in a network drive. The possibilities are nearly limitless, making
these things pretty tricky to work with.

PowerShell’s parameters provide a ton of depth to support a wide range of sophisti-
cated scenarios. When you’ve mastered the basics that we’ve covered here, you’ll
be ready to explore even further.

107Your turn
 [string[]]$DomainNameToCrash
)
 ForEach ($Domain in $DomainNameToCrash) {
 If ($PSCmdlet.ShouldProcess($Domain)) {
 [System.Directory]::GetDomain($Domain).Destroy()
 }
 }
} #function

This example is obviously all in fun, but you hopefully get the idea. When we call
$PSCmdlet.ShouldProcess() and pass a description of what we’re about to target,
here’s what PowerShell does:

 If the command wasn’t run with either –WhatIf or –Confirm, then the method
returns True, and whatever we’ve put inside the If construct runs.

 If the command was run with –WhatIf, a message is displayed, the method
returns False, and our dangerous code never runs.

 If the command was run with –Confirm, a prompt is produced, and the method
returns True or False based on the response to that prompt, determining
whether our dangerous code runs or not.

The ConfirmImpact setting plays into the built-in $ConfirmPreference variable in the
shell, which defaults to “High.” We can specify “Low,” “Medium,” or “High.” Here’s
the deal: If the specified ConfirmImpact setting is equal to or greater than the content of
$ConfirmPreference, then the –Confirm parameter is automatically used, even if we
don’t explicitly type it.

 As a best practice, you should support the Should Process feature in any command
that might modify the system. Typically, commands with a Get verb wouldn’t do that,
but commands like Set, Invoke, Remove, Add, and so on might—and should support this
feature set. If you’re providing comment-based help with your command (which we’ll
discuss in a bit), you don’t need to document –WhatIf and –Confirm; they’ll be auto-
matically documented for you.

 As a secondary best practice, don’t declare support for Should Process unless you
implement that support. As we’ve noted, sometimes you don’t need to do anything
other than let –WhatIf or –Confirm fall through to the commands you’re already run-
ning. But test that—nothing is more dangerous than someone running your command
with –WhatIf, only to discover that you coded it wrong, and whatever dangerous thing
your command did actually happened. Whoops.

11.2 Your turn
Okay, let’s return to the command you built in the previous chapter, and start making
some improvements.

108 CHAPTER 11 Going advanced with your function
11.2.1 Start here

Here’s where we finished up after the last chapter. You can either use this as a starting
point or use your own lab result.

function Set-TMServiceLogon {
 Param(
 [string]$ServiceName,
 [string[]]$ComputerName,
 [string]$NewPassword,
 [string]$NewUser,
 [string]$ErrorLogFilePath
)

 ForEach ($computer in $ComputerName) {

 $option = New-CimSessionOption -Protocol Wsman
 $session = New-CimSession -SessionOption $option `
 -ComputerName $Computer

 If ($PSBoundParameters.ContainsKey('NewUser')) {
 $args = @{'StartName'=$NewUser;
 'StartPassword'=$NewPassword}
 } Else {
 $args = @{'StartPassword'=$NewPassword}
 }

 Invoke-CimMethod -ComputerName $computer `
 -MethodName Change `
 -Query "SELECT * FROM Win32_Service WHERE Name =
➥ '$ServiceName'" `
 -Arguments $args |
 Select-Object -Property @{n='ComputerName';e={$computer}},
 @{n='Result';e={$_.ReturnValue}}

 $session | Remove-CimSession

 } #foreach
} #function

11.2.2 Your task

Go ahead and make this an advanced function, and accomplish the following:

 Ensure that ServiceName, ComputerName, and NewPassword are mandatory.
Don’t make NewUser mandatory.

 Ensure that ComputerName can accept pipeline input ByValue.
 Ensure that ServiceName, ComputerName, NewPassword, and NewUser can

accept pipeline input ByPropertyName.

11.2.3 Our take

Listing 11.4 shows what we came up with. Notice especially the PROCESS{} label addi-
tion in the body of the code.

Listing 11.3 Set-TMServiceLogon

109Your turn
NOTE We didn’t implement ShouldProcess here, although, because this com-
mand is modifying the system, we probably should. Notice that our change is
being made by using Invoke-CimMethod. Does it support ShouldProcess?
That is, does it support –WhatIf and –Confirm? If so, what would we need to
do to pass that through from our command? Give it a try as a bonus exercise,
and see if you can figure it out!

function Set-TMServiceLogon {
 [CmdletBinding()]
 Param(
 [Parameter(Mandatory=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string]$ServiceName,

 [Parameter(Mandatory=$True,
 ValueFromPipelineByPropertyName=$True,
 ValueFromPipeline=$True)]
 [string[]]$ComputerName,

 [Parameter(Mandatory=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string]$NewPassword,

 [Parameter(ValueFromPipelineByPropertyName=$True)]
 [string]$NewUser,

 [string]$ErrorLogFilePath
)

BEGIN{}

PROCESS{
 ForEach ($computer in $ComputerName) {

 $option = New-CimSessionOption -Protocol Wsman
 $session = New-CimSession -SessionOption $option `
 -ComputerName $Computer

 If ($PSBoundParameters.ContainsKey('NewUser')) {
 $args = @{'StartName'=$NewUser
 'StartPassword'=$NewPassword}
 } Else {
 $args = @{'StartPassword'=$NewPassword}
 }

 Invoke-CimMethod -ComputerName $computer `
 -MethodName Change `
 -Query "SELECT * FROM Win32_Service WHERE Name =
➥ '$ServiceName'" `
 -Arguments $args |
 Select-Object -Property @{n='ComputerName';e={$computer}},
 @{n='Result';e={$_.ReturnValue}}

 $session | Remove-CimSession

Listing 11.4 Modified Set-TMServiceLogon

110 CHAPTER 11 Going advanced with your function
 } #foreach
} #PROCESS

END{}

} #function

We’ve included our solution, to this point, in the code samples for this book at
www.manning.com/books/learn-powershell-scripting-in-a-month-of-lunches.

 Finally, be sure to reset the BITS service, as you did in the previous chapter, after
testing your function. You really don’t want the BITS service messed up!

http://www.manning.com/books/learn-powershell-scripting-in-a-month-of-lunches

Objects:
the best kind of output
So far, the tool you’ve been building isn’t querying all the information originally
specified in the design established back in chapter 8. That was a deliberate deci-
sion we made so that you could get some structure around the tool first. We’ve
also held off because once you start querying a bunch of information, you need
to take a specific approach to combining it, and we wanted to tackle that approach
in a single chapter.

 Right now, the “functional” part of the tool looks like this:

Query data
$os = Get-CimInstance -ClassName Win32_OperatingSystem `
 -CimSession $session

Close session
$session | Remove-CimSession

Output data
$os | Select-Object -Prop @{n='ComputerName';e={$computer}},
 Version,ServicePackMajorVersion

You’re using Select-Object to produce the pieces of output you want. Honestly,
this is a bit of a lazy cheat. You’re just reducing the information you gathered,
which someone could have done entirely on their own. Let’s go back to the list of
information you originally wanted, and add where you’ll get the information from:

 Computer host name (you have this from the parameter).
 Manufacturer (Win32_ComputerSystem).
 Model (Win32_ComputerSystem).
111

112 CHAPTER 12 Objects: the best kind of output
 OS version and build number (Win32_OperatingSystem; Version and Build-
Number).

 Service pack version, if any (Win32_OperatingSystem; ServicePackMajor-
Version).

 Installed RAM (Win32_ComputerSystem; TotalPhysicalMemory is in bytes).
 Processor type (Win32_Processor; AddressWidth is either 32 or 64).
 Processor socket count (Win32_ComputerSystem; NumberOfProcessors).
 Total core count (Win32_ComputerSystem; NumberOfLogicalProcessors).
 Free space on the system drive (usually C: but not always). This one’s harder.

Win32_OperatingSystem has a SystemDrive property that’s something like “C:”;
you’d need to query Win32_LogicalDisk, where the DeviceId property
matches, and then look at its FreeSpace, which is in bytes.

Now let’s start assembling that information.

12.1 Assembling the information
We’re going to move away from using backticks in some places, to keep the code’s col-
umn width under the 80-character count that fits well in this book. Instead, we’ll start
using a technique called splatting. With this technique, you construct a hash table
whose keys are parameter names and whose values are the corresponding parameter
values. You can call the hashtable variable anything you’d like. We tend to use a mean-
ingful name. Here’s an example:

$params = @{'ClassName'='Win32_OperatingSystem'
 'ComputerName'='CLIENT1'}

Put each parameter on a new line. For switch parameters, assign a value of $True:

$params = @{'ClassName'='Win32_OperatingSystem'
 'ComputerName'='CLIENT1'
 'Verbose' = $True}

You then feed those values to the command by prefixing the variable name with @
instead of $:

Get-CimInstance @params

There, now you can tell your family you splatted today!
 So here’s the revised chunk of code that queries the information you need into

variables:

Query data
$os_params = @{'ClassName'='Win32_OperatingSystem'
 'CimSession'=$session}
$os = Get-CimInstance @os_params

$cs_params = @{'ClassName'='Win32_ComputerSystem'
 'CimSession'=$session}
$cs = Get-CimInstance @cs_params

113Constructing and emitting output
$sysdrive = $os.SystemDrive
$drive_params = @{'ClassName'='Win32_LogicalDisk'
 'Filter'="DeviceId='$sysdrive'"
 'CimSession'=$session}
$drive = Get-CimInstance @drive_params

$proc_params = @{'ClassName'='Win32_Processor'
 'CimSession'=$session}
$proc = Get-CimInstance @proc_params |
 Select-Object -first 1

A couple of notes

 Notice where you’re getting the system drive letter into $sysdrive and then
using $sysdrive as part of a filter in Get-CimInstance. This will ensure that
$drive contains only one object.

 Also notice that you’re using Select-Object to ensure that $proc contains only
one object, too. It’s not possible for the processors in a computer to have a dif-
ferent AddressWidth, so limiting the query to one result will make that result a
bit easier to work with as you assemble information.

12.2 Constructing and emitting output
What you absolutely do not want to do at this point is output text. PowerShell should
never use Write-Host for tool output, because that output would be drawn directly on
the screen as text (although in v5 and later, it’s directed to the Information stream,
which is almost as bad for your purposes). You couldn’t reuse, redirect, or re-anything
that output, which is the opposite of the point of a reusable tool. Instead, your tools
should always output structured data in the form of objects, just like real PowerShell
commands do:

Output data
$props = @{'ComputerName'=$computer
 'OSVersion'=$os.version
 'SPVersion'=$os.servicepackmajorversion
 'OSBuild'=$os.buildnumber
 'Manufacturer'=$cs.manufacturer
 'Model'=$cs.model
 'Procs'=$cs.numberofprocessors
 'Cores'=$cs.numberoflogicalprocessors
 'RAM'=($cs.totalphysicalmemory / 1GB)
 'Arch'=$proc.addresswidth
 'SysDriveFreeSpace'=$drive.freespace}
$obj = New-Object -TypeName PSObject -Property $props
Write-Output $obj

Again, some notes

 You’re constructing a hash table in the $props variable—not unlike when splat-
ting—that holds your output. Each key in the hash table is a property name you
want to output, and each value is the corresponding data for that property.

Gets just the
SystemDrive value

Selects the first
processor

114 CHAPTER 12 Objects: the best kind of output
 We’ve used shorter property names for the output than we usually would, mainly
to help the code fit into this book. For example, we’d normally use Architecture
instead of Arch, because it’s clearer. The hash table key will eventually become
the property name. In no case should you try to use names with spaces, and
names with underscores (_) look amateurish.

 You use New-Object to construct a blank object and attach your properties and
values from the hash table.

 You don’t need to save the object in $obj at this point. But we tend to do that
because later you’ll be modifying the object, so it’s useful to have it in a variable.

 You output the object immediately to the pipeline, using Write-Output, rather
than accumulating it in an array or something to output later. The whole point
of the pipeline is to accumulate objects for you and pass them on to whatever’s
next in the pipeline.

12.3 A quick test
After importing the module and running the command, we got the following output:

Arch : 64
Manufacturer : VMware, Inc.
ComputerName : localhost
RAM : 3.9995002746582
OSVersion : 10.0.14393
Procs : 1
SPVersion : 0
Cores : 1
Model : VMware Virtual Platform
SysDriveFreeSpace : 46402207744
OSBuild : 14393

Notice that these properties aren’t in the right order! That’s because we used a normal hash
table to construct the property list, and .NET memory optimizes that storage, which
can result in reordering. That’s fine. At this level of a tool, you shouldn’t be worried
about what the output looks like—you could always use a Format command, or Select-
Object, to specify an order. It is possible to construct an [ordered] hash table instead,
but we rarely do so. Worrying about the raw output of a script is counterproductive
and counter to native PowerShell patterns. Swallow your OCD, and let the output fall
where it may!

NOTE We deliberately left SysDriveFreeSpace in bytes, because it’ll be use-
ful for showing you another trick later.

Here’s the code.

function Get-MachineInfo {
 [CmdletBinding()]

Listing 12.1 Get-MachineInfo

115A quick test
 Param(
 [Parameter(ValueFromPipeline=$True,
 Mandatory=$True)]
 [Alias('CN','MachineName','Name')]
 [string[]]$ComputerName,

 [string]$LogFailuresToPath,

 [ValidateSet('Wsman','Dcom')]
 [string]$Protocol = "Wsman",

 [switch]$ProtocolFallback
)

 BEGIN {}

 PROCESS {
 foreach ($computer in $computername) {

 # Establish session protocol
 if ($protocol -eq 'Dcom') {
 $option = New-CimSessionOption -Protocol Dcom
 } else {
 $option = New-CimSessionOption -Protocol Wsman
 }

 # Connect session
 $session = New-CimSession -ComputerName $computer `
 -SessionOption $option

 # Query data
 $os_params = @{'ClassName'='Win32_OperatingSystem'
 'CimSession'=$session}
 $os = Get-CimInstance @os_params

 $cs_params = @{'ClassName'='Win32_ComputerSystem'
 'CimSession'=$session}
 $cs = Get-CimInstance @cs_params

 $sysdrive = $os.SystemDrive
 $drive_params = @{'ClassName'='Win32_LogicalDisk'
 'Filter'="DeviceId='$sysdrive'"
 'CimSession'=$session}
 $drive = Get-CimInstance @drive_params

 $proc_params = @{'ClassName'='Win32_Processor'
 'CimSession'=$session}
 $proc = Get-CimInstance @proc_params |
 Select-Object -first 1

 # Close session
 $session | Remove-CimSession

 # Output data
 $props = @{'ComputerName'=$computer
 'OSVersion'=$os.version
 'SPVersion'=$os.servicepackmajorversion
 'OSBuild'=$os.buildnumber
 'Manufacturer'=$cs.manufacturer
 'Model'=$cs.model

116 CHAPTER 12 Objects: the best kind of output
 'Procs'=$cs.numberofprocessors
 'Cores'=$cs.numberoflogicalprocessors
 'RAM'=($cs.totalphysicalmemory / 1GB)
 'Arch'=$proc.addresswidth
 'SysDriveFreeSpace'=$drive.freespace}
 $obj = New-Object -TypeName PSObject -Property $props
 Write-Output $obj

 } #foreach
} #PROCESS

END {}

} #function

Keep in mind that this is also in the code samples we’ve mentioned previously, avail-
able at www.manning.com/books/powershell-and-wmi. We’re counting on you to actu-
ally run those code samples so that you can understand how the code works.

12.4 An object alternative
By this point in the book, we hope you’ve gotten the memo that PowerShell is all
about the objects. Using New-Object as we’ve demonstrated is useful. But as an alter-
native, you can also use a type accelerator, [pscustomobject]. You can use this in
front of a hash table definition, and PowerShell will create a custom object, just as if
you’d used New-Object:

[pscustomobject]@{
Name = 'Jason'
Department = 'IT'
Computername = 'LV-130'
Expires = (Get-Date).AddDays(90)
}

This will create an object as follows:

Name Department Computername Expires
---- ---------- ------------ -------
Jason IT LV-130 9/6/2017 10:05:28 AM

We find it handy to use [pscustomobject] in the console when testing pipeline bind-
ing because we can create a simple object on the fly:

[pscustomobject]@{Name='bits';computername='chi-hvr2'} | get-service

As an added bonus, the type accelerator will use the hash table as an ordered hash
table. This means your property names will be displayed in the order you list them. As
we said earlier, this is something you shouldn’t worry too much about, but sometimes
it comes in handy.

 Now, the question we hope you’re asking is, “Which technique do I use?” Using a
cmdlet like New-Object is probably preferred, because if someone new to PowerShell

http://www.manning.com/books/powershell-and-wmi

117Enriching objects
is looking at your code, they can get help for New-Object; and because you’re using
full parameter names, the syntax is more intuitive. Using [pscustomobject] can make
your code a little more cryptic, but if you insert a comment explaining what you’re
doing, there’s probably nothing wrong with using it.

12.5 Enriching objects
In the running example so far, you’re using custom objects to combine information
from other objects you’ve obtained. That’s not the only use case in which you’ll find
yourself, though, and so we wanted to briefly step out of the running example and
explore a different scenario.

 Suppose for a moment that you’re writing a command to retrieve from Active
Directory computer accounts that match provided filter criteria. Your goal is to pro-
duce all of the original information that Active Directory has for each computer
account, but you want to also return the Windows build number that each computer is
running—at least, for those computers that are online and that you have permission
to query.

 You could follow the exact same model we’ve followed thus far and create a brand-
new object that contains the combined information. But those Active Directory com-
puter objects have a lot of properties, which would require a lot of code to copy over.
And all you want to do is add one teeny widdle property…. Can’t you just add it to the
existing computer object?

 Yup. Check out the following listing.

function Add-ADComputerWindowsBuild {
 [CmdletBinding()]
 Param(
 [Parameter(ValueFromPipeline=$True)]
 [object[]]$InputObject
)
 PROCESS {
 ForEach ($comp in $inputobject) {
 $os = Get-CimInstance -ComputerName $comp.name `
 -Class Win32_OperatingSystem
 $comp | Add-Member -MemberType NoteProperty `
 -Name OSBuild `
 -Value $os.BuildNumber
 } #foreach
 } #process
} #function

This is pretty bare bones—we haven’t dealt with a situation where a computer isn’t
online, for example. The key functionality here is the Add-Member cmdlet. When you
pipe an object to it, it lets you add a property. In this case, we’re adding a Note-
Property, which is a static value. We’ve named the new property OSBuild, and we’ve
populated it with the operating system build number that we just queried from CIM.

Listing 12.2 Add-ADComputerWindowsBuild function

118 CHAPTER 12 Objects: the best kind of output
Add-Member automatically modifies the object and then passes it through the pipeline.
Because we didn’t “capture” that output, it winds up becoming the output of the func-
tion. We’d run this like so:

Get-ADComputer –filter * |
Add-ADComputerWindowsBuild

We’re still using the core Get-ADComputer command to do what it does best; we’re just
piping that to a second command that enriches the objects by adding new informa-
tion to them. Again, not much different from producing a new object and copying
whatever we want to it; but in this case, adding one thing is a lot easier than copying
dozens or hundreds of things. This add-a-member technique can also be faster, because
you’re not having to produce a new object and copy a bunch of data to it.

 We’ll point out, however, that from a purist software development perspective,
what we’ve done is probably horrifying. Objects (well, more properly classes, which
define what a class looks like) are meant to be contracts. They’re fixed, unchanging,
and reliable. By tacking stuff on as we’ve done, we’ve—well, maybe not broken the con-
tract, but certainly scribbled with crayon in the margins. But it’s okay—PowerShell’s
Extensible Type System (ETS, the thing that makes Add-Member work) was designed for
this purpose. PowerShell enriches objects of all kinds, every day, and you’ve probably
never even noticed. So, go on and use this technique when it helps you solve your
problems!

12.6 Your turn
As with the previous chapters, let’s turn our attention to the service-changing tool.
You may be thinking, “That tool doesn’t produce any output!” but you’d be wrong. If
you revisit the original design, you do want it to produce output for each computer,
success or fail. Right now, you’re probably just producing a minimal set of output
using Select-Object:

Select-Object -Property @{n='ComputerName';e={$computer}},
@{n='Result';e={$_.ReturnValue}}

But that’s about to change!

12.6.1 Start here

Here’s where we left off with our version of this function. Use this, or your own work
from the previous chapter, as a starting point.

function Set-TMServiceLogon {
 [CmdletBinding()]
 Param(
 [Parameter(Mandatory=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string]$ServiceName,

Listing 12.3 Set-TMServiceLogon

119Your turn
 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string[]]$ComputerName,

 [Parameter(ValueFromPipelineByPropertyName=$True)]
 [string]$NewPassword,

 [Parameter(ValueFromPipelineByPropertyName=$True)]
 [string]$NewUser,

 [string]$ErrorLogFilePath
)

BEGIN{}

PROCESS{
 ForEach ($computer in $ComputerName) {

 $option = New-CimSessionOption -Protocol Wsman
 $session = New-CimSession -SessionOption $option `
 -ComputerName $Computer

 If ($PSBoundParameters.ContainsKey('NewUser')) {
 $args = @{'StartName'=$NewUser
 'StartPassword'=$NewPassword}
 } Else {
 $args = @{'StartPassword'=$NewPassword}
 }

 Invoke-CimMethod -ComputerName $computer `
 -MethodName Change `
 -Query "SELECT * FROM Win32_Service WHERE Name =
➥'$ServiceName'" `
 -Arguments $args |
 Select-Object -Property @{n='ComputerName';e={$computer}},
 @{n='Result';e={$_.ReturnValue}}

 $session | Remove-CimSession

 } #foreach
} #PROCESS

END{}

} #function

12.6.2 Your task

Modify your function so that it outputs an object for each computer it operates
against. The output should include the computer name and a status. Revisit the status
codes at http://mng.bz/c05L, and make it so that 0 displays “Success” in your output,
22 displays “Invalid Account,” and anything else displays “Failed: XX,” where XX is the
numeric return value. As a challenge, try not to add more If constructs to your
code—look into the Switch construct, instead. You should also look for places where
you can use splatting.

http://mng.bz/c05L

120 CHAPTER 12 Objects: the best kind of output
12.6.3 Our take

Here’s our version (remember, you can get the code file in the downloadable samples).

function Set-TMServiceLogon {
 [CmdletBinding()]
 Param(
 [Parameter(Mandatory=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string]$ServiceName,

 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string[]]$ComputerName,

 [Parameter(ValueFromPipelineByPropertyName=$True)]
 [string]$NewPassword,

 [Parameter(ValueFromPipelineByPropertyName=$True)]
 [string]$NewUser,

 [string]$ErrorLogFilePath
)

BEGIN{}

PROCESS{
 ForEach ($computer in $ComputerName) {

 $option = New-CimSessionOption -Protocol Wsman
 $session = New-CimSession -SessionOption $option `
 -ComputerName $Computer

 If ($PSBoundParameters.ContainsKey('NewUser')) {
 $args = @{'StartName'=$NewUser
 'StartPassword'=$NewPassword}
 } Else {
 $args = @{'StartPassword'=$NewPassword}
 }

 $params = @{'CimSession'=$session
 'MethodName'='Change'
 'Query'="SELECT * FROM Win32_Service
 ➥ WHERE Name = '$ServiceName'"
 'Arguments'=$args}
 $ret = Invoke-CimMethod @params

 switch ($ret.ReturnValue) {
 0 { $status = "Success" }
 22 { $status = "Invalid Account" }
 Default { $status = "Failed: $($ret.ReturnValue)" }
 }

 $props = @{'ComputerName'=$computer
 'Status'=$status}
 $obj = New-Object -TypeName PSObject -Property $props
 Write-Output $obj

Listing 12.4 Our version of Set-TMServiceLogon

121Your turn
 $session | Remove-CimSession

 } #foreach
} #PROCESS

END{}

} #function

Hopefully you noticed a few things:

 We changed to using the CIM session instead of a computer name. Bet you were
wondering about that, right? Well, we hope you were. Why’d we do it? Just to
see if you were paying attention.

 We’ve switched to splatting.
 Notice our use of the switch construct to construct the status message. You can

also see that we used the + symbol when defining the query. The only reason we
did this was to format the code to fit properly on the page. Normally, you’d
write out the query as a single line: "SELECT * FROM Win32_Service WHERE Name
= '$ServiceName'", and that’s what you’ll see in the code download.

 Accumulating results will make your command block the pipeline; outputting
objects one at a time allows the pipeline to run multiple commands in parallel.

Using all the pipelines
A couple of chapters ago, we pointed out that adding [CmdletBinding()] to a
Param() block would enable the output of certain commands for verbose, warning,
informational, and other output. Well, it’s time to put that to use and demonstrate
why you’d want to use them.

13.1 Knowing the six channels
It’s useful to understand that PowerShell has six channels, or pipelines, rather
than the one we normally think of. First up is the Success pipeline, which is the
one you’re used to thinking of as “the pipeline.” This gets some special treatment
from the PowerShell engine. For example, it’s the pipeline used to pass objects
from command to command. Additionally, at the end of the pipeline, PowerShell
sort of invisibly adds the Out-Default cmdlet, which has the effect of running any
objects in the pipeline through PowerShell’s formatting system. Whatever hosting
application you’re using—the PowerShell console, ISE, and so on—is responsible
for dealing with that output by placing it onto the screen or doing something else
with it.

 But there are five other pipelines:

1 Success, which we discussed
2 Error
3 Warning
4 Verbose
5 Debug
6 Information
122

123Adding verbose and warning output
Those numbers correspond with how PowerShell references each pipeline for redirec-
tion purposes.

 Each pipeline represents a discrete, independent way of passing information. Each
hosting application decides how to deal with each pipeline. For example, the console
host displays items from pipeline 4 (Verbose) in yellow text, prefixed by “VERBOSE:”.
Other hosts might log that output to an event log or ignore it.

 Additionally, the shell defines several preference variables that control the output of
each pipeline. $VerbosePreference controls pipeline 4, $WarningPreference con-
trols 3, and so on. Setting a preference to SilentlyContinue will suppress that pipe-
line’s output; setting it to Continue will display the output in whatever way the host
application defines. The common parameters override the preference variables on a
per-command basis. For example, adding -Verbose to your command, when you run
it, will enable Write-Verbose output in the command.

13.2 Adding verbose and warning output
Verbose output is disabled by default, but warning output is enabled. With that in
mind, we tend to do something like the following with those two forms of output.

function Get-MachineInfo {
 [CmdletBinding()]
 Param(
 [Parameter(ValueFromPipeline=$True,
 Mandatory=$True)]
 [Alias('CN','MachineName','Name')]
 [string[]]$ComputerName,

 [string]$LogFailuresToPath,

 [ValidateSet('Wsman','Dcom')]
 [string]$Protocol = "Wsman",

 [switch]$ProtocolFallback
)

 BEGIN {}

 PROCESS {
 foreach ($computer in $computername) {

 if ($protocol -eq 'Dcom') {
 $option = New-CimSessionOption -Protocol Dcom
 } else {
 $option = New-CimSessionOption -Protocol Wsman
 }

 Write-Verbose "Connecting to $computer over $protocol"
 $session = New-CimSession -ComputerName $computer `
 -SessionOption $option

 Write-Verbose "Querying from $computer"
 $os_params = @{'ClassName'='Win32_OperatingSystem'

Listing 13.1 Adding output

Uses verbose
messages

124 CHAPTER 13 Using all the pipelines
 'CimSession'=$session}
 $os = Get-CimInstance @os_params

 $cs_params = @{'ClassName'='Win32_ComputerSystem'
 'CimSession'=$session}
 $cs = Get-CimInstance @cs_params

 $sysdrive = $os.SystemDrive
 $drive_params = @{'ClassName'='Win32_LogicalDisk'
 'Filter'="DeviceId='$sysdrive'"
 'CimSession'=$session}
 $drive = Get-CimInstance @drive_params

 $proc_params = @{'ClassName'='Win32_Processor'
 'CimSession'=$session}
 $proc = Get-CimInstance @proc_params |
 Select-Object -first 1

 Write-Verbose "Closing session to $computer"
 $session | Remove-CimSession

 Write-Verbose "Outputting for $computer"
 $obj = [pscustomobject]@{'ComputerName'=$computer
 'OSVersion'=$os.version
 'SPVersion'=$os.servicepackmajorversion
 'OSBuild'=$os.buildnumber
 'Manufacturer'=$cs.manufacturer
 'Model'=$cs.model
 'Procs'=$cs.numberofprocessors
 'Cores'=$cs.numberoflogicalprocessors
 'RAM'=($cs.totalphysicalmemory / 1GB)
 'Arch'=$proc.addresswidth
 'SysDriveFreeSpace'=$drive.freespace}
 Write-Output $obj

 } #foreach
} #PROCESS

END {}

} #function

Sharp-eyed readers will notice two things:

 We sneaked in a change to the New-Object creation. This is mainly to show you
a new technique that you may run across. Rather than defining a hash table of
properties and passing it to New-Object, we use the [pscustomobject] type
accelerator to do the same job in a bit less space. We touched on this type accel-
erator in the previous chapter.

 We’ve replaced a lot of our inline comments with verbose output. This lets the
same message be seen by someone running the code, provided they add -Verbose
when doing so. If the command is run without –Verbose, the Write-Verbose
lines will still be run, but you won’t see the output.

Uses
[pscustomobject]

125Doing more with -Verbose
You haven’t added any warning output yet, because you haven’t needed it. But you
will, eventually—so keep Write-Warning in the back of your brain. Eventually, you’ll
add statements like this:

write-warning "Danger, Will Robinson!"

13.3 Doing more with -Verbose
If you take a moment to think about it, you’ll realize that incorporating Write-
Verbose statements into your tools makes a lot of sense. In fact, we recommend that
you include the statements from the beginning. Don’t wait to add them until after
you’ve finished scripting. Add them first! Insert verbose messages throughout your
script that highlight what action your command is performing, or the values of key
variables. This will help you troubleshoot and debug during the development pro-
cess, because you can run your command with -Verbose. The verbose messages can
also double as internal documentation. Finally, if someone is trying to run your tool
and is encountering problems, you can have them start a transcript, run the com-
mand with -Verbose, and then close the transcript and send it to you. If you’ve writ-
ten good verbose messages, you’ll be able to track what’s happening, and, hopefully,
identify the problem.

 Consider adding verbose messages like this at the beginning of your command:

Write-Verbose "Execution Metadata:"
Write-Verbose "User = $($env:userdomain)\$($env:USERNAME)"
$id = [System.Security.Principal.WindowsIdentity]::GetCurrent()
$IsAdmin = [System.Security.Principal.WindowsPrincipal]::new($id).IsInRole(
➥ 'administrators')
Write-Verbose "Is Admin = $IsAdmin"
Write-Verbose "Computername = $env:COMPUTERNAME"
Write-Verbose "OS = $((Get-CimInstance Win32_Operatingsystem).Caption)"
Write-Verbose "Host = $($host.Name)"
Write-Verbose "PSVersion = $($PSVersionTable.PSVersion)"
Write-Verbose "Runtime = $(Get-Date)"

When this is executed, you’ll get potentially useful information:

VERBOSE: Execution Metadata:
VERBOSE: User = WIN81-ENT-01\Jeff
VERBOSE: Is Admin = False
VERBOSE: Computername = WIN81-ENT-01
VERBOSE: Perform operation 'Enumerate CimInstances' with following
parameters, ''namespaceName' = root\cimv2,'className' =
Win32_Operatingsystem'.
VERBOSE: Operation 'Enumerate CimInstances' complete.
VERBOSE: OS = Microsoft Windows 8.1 Enterprise
VERBOSE: Host = Windows PowerShell ISE Host
VERBOSE: PSVersion = 5.0.10586.117
VERBOSE: Runtime = 01/03/2017 15:05:50

126 CHAPTER 13 Using all the pipelines
Keep in mind that you have no control over other commands that support verbose
output, like the Get-CimInstance cmdlet does in our example, so your verbose output
may not always be perfect.

 Another tip is to add a prefix to each verbose message that indicates what script
block is being called:

Function TryMe {
[cmdletbinding()]
Param(
[string]$Computername
)

Begin {
 Write-Verbose "[BEGIN] Starting: $($MyInvocation.Mycommand)"
 Write-Verbose "[BEGIN] Initializing array"
 $a = @()

} #begin

Process {
 Write-Verbose "[PROCESS] Processing $Computername"
 # code goes here
} #process

End {
 Write-Verbose "[END] Ending: $($MyInvocation.Mycommand)"

} #end

} #function

See how there’s sort of a block-comment effect? This makes it easier to know exactly
where your command is. Note the use of padded spaces. We did this to make the ver-
bose output easier to read in the console:

PS C:\> tryme -Computername FOO -Verbose
VERBOSE: [BEGIN] Starting: TryMe
VERBOSE: [BEGIN] Initializing array
VERBOSE: [PROCESS] Processing FOO
VERBOSE: [END] Ending: TryMe

A variation you might consider is including a timestamp. This is especially useful for
long-running commands:

Function TryMe {
[cmdletbinding()]
Param(
[string]$Computername
)

Begin {
 Write-Verbose "[$((get-date).TimeOfDay.ToString()) BEGIN] Starting:
 ➥ $($MyInvocation.Mycommand)"
 Write-Verbose "[$((get-date).TimeOfDay.ToString()) BEGIN] `

127Information output
 Initializing array"
 $a = @()

} #begin

Process {
 Write-Verbose "[$((get-date).TimeOfDay.ToString()) PROCESS] Processing
➥ $Computername"
 # code goes here
} #process

End {
 Write-Verbose "[$((get-date).TimeOfDay.ToString()) END] Ending:
➥ $($MyInvocation.Mycommand)"

} #end

} #function

You’ll get verbose output like this:

VERBOSE: [15:18:55.3840626 BEGIN] Starting: TryMe
VERBOSE: [15:18:55.4040871 BEGIN] Initializing array
VERBOSE: [15:18:55.4080634 PROCESS] Processing FOO
VERBOSE: [15:18:55.4090586 END] Ending: TryMe

There’s no limit to how you can use verbose messages. It’s up to you to decide what
information would be useful. With that in mind, our last tip is including a verbose
message that indicates the name of your command. That’s what the line $myinvocation
.mycommand provided. The built-in variable $MyInvocation can provide some useful
information; the MyCommand property indicates the name of your command. This is
especially helpful if your command is calling other commands. By including the type
of verbose information we’ve suggested, it becomes much easier to trace the flow of
your PowerShell expression.

13.4 Information output
This new, sixth channel was introduced in PowerShell v5, which more or less did away
with its original Write-Host cmdlet and turned Write-Host into a wrapper around
Write-Information. The Information stream is a bit different from other pipelines
that can carry messages, because it’s designed to carry structured messages. It requires a
bit of preplanning to use well. But there’s still an $InformationPreference variable
that can suppress or allow the output of this stream, and it’s set to SilentlyContinue, or
Off, by default. When you run a command, you can specify -InformationAction
Continue to enable that command’s informational output.

 $InformationPreference and -InformationAction are automatically set to Con-
tinue when you use Write-Host, so that Write-Host behaves as it did in previous ver-
sions of PowerShell. It’s worth noting that Informational output works in PowerShell
jobs, scheduled jobs, and workflows, which isn’t the case with most of the other forms
of messaging—verbose, warning, and so on.

128 CHAPTER 13 Using all the pipelines
 On a basic level, using Write-Information isn’t any different than using Write-
Verbose. The -MessageData parameter is in the first position, so you can often skip
using the parameter name and just add whatever message you want to include—the
same as we just did with Write-Verbose. But messages can also be tagged, usually with
a keyword like information, instructions, or whatever you decide. The information
stream can then be searched based on those tags. You can also run commands using the
-InformationVariable parameter to have informational messages added to a variable
that you designate. This can help keep the information messages from cluttering up
your normal output.

 Here’s an example:

Function Example {

 [CmdletBinding()]
 Param()

 Write-Information "First message" -tag status
 Write-Information "Note that this had no parameters" -tag notice
 Write-Information "Second message" -tag status

}

Example -InformationAction Continue -InformationVariable x

Using Continue this way makes it apply to all Write-Information commands inside
the Example function. And if you run this (in PowerShell v5 or later), you’ll see that
the informational messages do indeed appear. Were you to examine $x, you’d find the
messages in it, as well. Contrast the previous example with this:

function Example {
 [CmdletBinding()]
 Param()

 Write-Information "First message" -tag status
 Write-Information "Note that this had no parameters" -tag notice
 Write-Information "Second message" -tag status

}

Example -InformationAction SilentlyContinue -IV x

This time, the messages don’t appear, because we used SilentlyContinue. But the com-
mands still run and still work, and if you were to examine $x, you’d find all three mes-
sages in there. Notice that we shortened -InformationVariable to its -IV alias to save
some room.

 Let’s now go one step further:

function Example {
 [CmdletBinding()]
 Param()
 Write-Information "First message" -tag status

129Information output
 Write-Information "Note that this had no parameters" -tag notice
 Write-Information "Second message" -tag status

}

Example -InformationAction SilentlyContinue -IV x

$x | where tags -in @('notice')

In this example, only the second message, “Note that this had no parameters”, will dis-
play, because we filtered that out of $x by using the Tags property of the messages.

13.4.1 A detailed information example

Like verbose output, effectively using the Information channel requires some plan-
ning. You have to figure out what needs to be logged and how it might be used, and
you need to implement your Write-Information commands when creating your tool.
Here’s a simple function to illustrate how you might use Write-Information. You can
find a file with these test functions in the code folder for this chapter at www.manning
.com/books/learn-powershell-scripting-in-a-month-of-lunches.

Function Test-Me {
[cmdletbinding()]
Param()

Write-Information "Starting $($MyInvocation.MyCommand) " -Tags Process
Write-Information "PSVersion = $($PSVersionTable.PSVersion)" -Tags Meta
Write-Information "OS = $((Get-CimInstance Win32_operatingsystem).Caption)"`
-Tags Meta

Write-Verbose "Getting top 5 processes by WorkingSet"
Get-process | sort WS -Descending | select -first 5 -OutVariable s

Write-Information ($s[0] | Out-String) -Tags Data

Write-Information "Ending $($MyInvocation.MyCommand) " -Tags Process

}

Running the command normally will give you the top five processes by working set.
Now, run it like this:

PS C:\> test-me -InformationAction Continue
Starting Test-Me
PSVersion = 5.1.16199.1000
OS = Microsoft Windows 10 Pro Insider Preview

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id SI ProcessName
------- ------ ----- ----- ----- ------ -- -- -----------
 2145 249 856976 883488 1931 7,151.38 5948 1 firefox
 2692 126 769444 396928 ...86 1,531.13 8552 1 powershell
 373 59 310584 390504 1421 446.03 7172 1 slack
 395 55 186628 361964 1391 590.89 7508 1 slack
 1181 95 335932 317060 1216 375.38 1004 1 powershell...

Listing 13.2 Using an information variable

http://www.manning.com/books/learn-powershell-scripting-in-a-month-of-lunches
http://www.manning.com/books/learn-powershell-scripting-in-a-month-of-lunches
http://www.manning.com/books/learn-powershell-scripting-in-a-month-of-lunches

130 CHAPTER 13 Using all the pipelines
Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id SI ProcessName
------- ------ ----- ----- ----- ------ -- -- -----------
 2145 249 856976 883488 1931 7,151.38 5948 1 firefox

Ending Test-Me

By setting the common parameter -InformationAction to Continue, you turn on the
Information channel, which also displays the information. This can be useful when
you’re building messages and want to see what they will do.

 Next, run the command using the -InformationVariable parameter:

PS C:\> test-me -InformationVariable inf

You won’t get the information messages, because the command is running with the
default SilentlyContinue setting for information messages, suppressing them. Instead,
they’re directed to the variable inf:

PS C:\> $inf
Starting Test-Me
PSVersion = 5.1.16199.1000
OS = Microsoft Windows 10 Pro Insider Preview

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id SI ProcessName
------- ------ ----- ----- ----- ------ -- -- -----------
 2142 248 857768 883332 1904 7,155.00 5948 1 firefox

Ending Test-Me

You get back a very rich object:

PS C:\> $inf | get-member

 TypeName: System.Management.Automation.InformationRecord

Name MemberType Definition
---- ---------- ----------
Equals Method bool Equals(System.Object obj)
GetHashCode Method int GetHashCode()
GetType Method type GetType()
ToString Method string ToString()
Computer Property string Computer {get;set;}
ManagedThreadId Property uint32 ManagedThreadId {get;set;}
MessageData Property System.Object MessageData {get;}
NativeThreadId Property uint32 NativeThreadId {get;set;}
ProcessId Property uint32 ProcessId {get;set;}
Source Property string Source {get;set;}
Tags Property System.Collections.Generic.List[string] Tags...
TimeGenerated Property datetime TimeGenerated {get;set;}
User Property string User {get;set;}

This means you can work with the data however you’d like:

PS C:\> $inf.where({$_.tags -contains 'meta'}) |
select Computer,Messagedata

131Information output
Computer MessageData
-------- -----------
YPJH10 PSVersion = 5.1.16199.1000
YPJH10 OS = Microsoft Windows 10 Pro Insider Preview

The key takeaway is that if your command doesn’t have any Write-Information com-
mands, the information parameters are irrelevant.

 But as we mentioned earlier, in PowerShell v5, Write-Host was refactored to be a
conduit for Write-Information. Check this revised version of the function.

Function Test-Me2 {
[cmdletbinding()]
Param()

Write-Host "Starting $($MyInvocation.MyCommand) " -foreground green
Write-Host "PSVersion = $($PSVersionTable.PSVersion)" -foreground green
Write-Host "OS = $((Get-CimInstance Win32_operatingsystem).Caption)"
➥ -foreground green

Write-Verbose "Getting top 5 processes by WorkingSet"
Get-Process | sort WS -Descending | select -first 5 -OutVariable s

Write-Host ($s[0] | Out-String) -foreground green

Write-Host "Ending $($MyInvocation.MyCommand) " -foreground green

}

One benefit of using Write-Host is the ability to colorize the output. Unfortunately,
even if you run the command like this

test-me2 -InformationVariable inf2

the information output will be saved to $inf2. But the informational messages will
also be written to the host in green. This may not be desirable. This technique also
loses the ability to add tags.

 Here’s one final version that’s more a proof of concept than anything. You really
need to run it for yourself to see the results.

Function Test-Me3 {
[cmdletbinding()]
Param()

if ($PSBoundParameters.ContainsKey("InformationVariable")) {
 $Info = $True
 $infVar = $PSBoundParameters["InformationVariable"]
}

if ($info) {
 Write-Host "Starting $($MyInvocation.MyCommand) " -foreground green

Listing 13.3 Revised function

Listing 13.4 Proof of concept

132 CHAPTER 13 Using all the pipelines
 (Get-Variable $infVar).value[-1].Tags.Add("Process")
 Write-Host "PSVersion = $($PSVersionTable.PSVersion)" -foreground green
 (Get-Variable $infVar).value[-1].Tags.Add("Meta")
 Write-Host "OS = $((Get-CimInstance Win32_operatingsystem).Caption)"
➥ -foreground green
 (Get-Variable $infVar).value[-1].Tags.Add("Meta")
}
Write-Verbose "Getting top 5 processes by WorkingSet"
Get-process | sort WS -Descending | select -first 5 -OutVariable s

if ($info) {
 Write-Host ($s[0] | Out-String) -foreground green
 (Get-Variable $infVar).value[-1].Tags.Add("Data")
 Write-Host "Ending $($MyInvocation.MyCommand) " -foreground green
 (Get-Variable $infVar).value[-1].Tags.Add("Process")
}
}

This function tests to see whether –InformationVariable was specified; if so, a vari-
able ($Info) is switch on. When information is needed via Write-Host, if $Info is
True, then the Write-Host lines are called. Immediately after each line, a tag is added
to the information variable:

test-me3 -InformationVariable inf3

This displays the information messages in green and generates the information variable:

PS C:\> $inf3 | Group {$_.tags -join "-"}

Count Name Group
----- ---- -----
 2 PSHOST-Process {Starting Test-Me3 , Ending Test-Me3 }
 2 PSHOST-Meta {PSVersion = 5.1.16199.1000, OS = Mi...}
 1 PSHOST-Data {...

Before we move on, don’t forget that information variables are just another type of
object. You could export the variable using Export-Clixml, store the results in a data-
base, or create a custom text log file from the different properties.

 Verbose output is still a good choice when you’re using PowerShell versions prior
to 5. Once you’re using 5, it may make sense to start migrating to information mes-
sages instead, given their flexibility, tags, and searchability. For now, because we’re
aiming for greater compatibility, we’re sticking with verbose output in our examples.

13.5 Your turn
As you might imagine, you’re going to add some verbose output to your tool.

13.5.1 Start here

Here’s where we left off after the previous chapter. You can start here (or use our code
sample from the download), or begin with your result from the previous chapter.

133Your turn
function Set-TMServiceLogon {
 [CmdletBinding()]
 Param(
 [Parameter(Mandatory=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string]$ServiceName,

 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string[]]$ComputerName,

 [Parameter(ValueFromPipelineByPropertyName=$True)]
 [string]$NewPassword,

 [Parameter(ValueFromPipelineByPropertyName=$True)]
 [string]$NewUser,

 [string]$ErrorLogFilePath
)

BEGIN{}

PROCESS{
 ForEach ($computer in $ComputerName) {

 $option = New-CimSessionOption -Protocol Wsman
 $session = New-CimSession -SessionOption $option `
 -ComputerName $Computer

 If ($PSBoundParameters.ContainsKey('NewUser')) {
 $args = @{'StartName'=$NewUser
 'StartPassword'=$NewPassword}
 } Else {
 $args = @{'StartPassword'=$NewPassword}
 }

 $params = @{'CimSession'=$session
 'MethodName'='Change'
 'Query'="SELECT * FROM Win32_Service " +
 "WHERE Name = '$ServiceName'"
 'Arguments'=$args}
 $ret = Invoke-CimMethod @params

 switch ($ret.ReturnValue) {
 0 { $status = "Success" }
 22 { $status = "Invalid Account" }
 Default { $status = "Failed: $($ret.ReturnValue)" }
 }

 $props = @{'ComputerName'=$computer
 'Status'=$status}
 $obj = New-Object -TypeName PSObject -Property $props
 Write-Output $obj

 $session | Remove-CimSession

Listing 13.5 Set-TMServiceLogon

134 CHAPTER 13 Using all the pipelines
 } #foreach
} #PROCESS

END{}

} #function

13.5.2 Your task

Add some meaningful verbose output to your tool. If you see an opportunity to add
warning output, feel free to add that as well.

13.5.3 Our take

Here’s what we came up with.

function Set-TMServiceLogon {
 [CmdletBinding()]
 Param(
 [Parameter(Mandatory=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string]$ServiceName,

 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string[]]$ComputerName,

 [Parameter(ValueFromPipelineByPropertyName=$True)]
 [string]$NewPassword,

 [Parameter(ValueFromPipelineByPropertyName=$True)]
 [string]$NewUser,

 [string]$ErrorLogFilePath
)

BEGIN{}

PROCESS{
 ForEach ($computer in $ComputerName) {

 Write-Verbose "Connect to $computer on WS-MAN"
 $option = New-CimSessionOption -Protocol Wsman
 $session = New-CimSession -SessionOption $option `
 -ComputerName $Computer

 If ($PSBoundParameters.ContainsKey('NewUser')) {
 $args = @{'StartName'=$NewUser
 'StartPassword'=$NewPassword}
 } Else {
 $args = @{'StartPassword'=$NewPassword}
 Write-Warning "Not setting a new user name"
 }

 Write-Verbose "Setting $servicename on $computer"
 $params = @{'CimSession'=$session

Listing 13.6 Our solution

135Your turn
 'MethodName'='Change'
 'Query'="SELECT * FROM Win32_Service " +
 "WHERE Name = '$ServiceName'"
 'Arguments'=$args}
 $ret = Invoke-CimMethod @params

 switch ($ret.ReturnValue) {
 0 { $status = "Success" }
 22 { $status = "Invalid Account" }
 Default { $status = "Failed: $($ret.ReturnValue)" }
 }

 $props = @{'ComputerName'=$computer
 'Status'=$status}
 $obj = New-Object -TypeName PSObject -Property $props
 Write-Output $obj

 Write-Verbose "Closing connection to $computer"
 $session | Remove-CimSession

 } #foreach
} #PROCESS

END{}

} #function

Add as much verbose output as you need to provide meaningful feedback or informa-
tion. It costs you nothing to add the Write-Verbose commands, and they won’t be
activated until you run the command with -Verbose.

 To learn more about using verbose messages, check out Jeff’s article “Doing More
with PowerShell Verbose Messages” (February 24, 2017) at Petri.com: www.petri.com/
doing-more-with-powershell-verbose-messages.

http://www.petri.com/doing-more-with-powershell-verbose-messages
http://www.petri.com/doing-more-with-powershell-verbose-messages
http://www.petri.com/doing-more-with-powershell-verbose-messages

Simple help:
making a comment
One of the things we all love about PowerShell is its help system. Like Linux’s man
pages, PowerShell’s help files can provide a wealth of information, examples,
instructions, and more. So we definitely want to provide help with the tools we cre-
ate—and you should, too. You have two ways of doing so. First, you can write full
PowerShell help that consists of external, XML-formatted Microsoft Assistance
Markup Language (MAML) files, which can even include versions for different lan-
guages. This is an advanced topic that we won’t cover in this book. In fact, with the
advent of modules like PlatyPS, you won’t ever have to learn MAML. For now, we’re
going to use the simpler, single-language, comment-based help that lives right
inside your function.

14.1 Where to put your help
There are three legal places where PowerShell will look for your specially formatted
comments, in order to turn them into help displays:

 Just before your function’s opening function keyword, with no blank lines
between the last comment line and the function. We don’t like this spot,
because we prefer…

 Just inside the function, after the opening function declaration and before
your [CmdletBinding()] or Param parts. We love this spot, because it’s easier
to move your help with the function if you’re copying and pasting your code
someplace else. Your comments will also collapse into the function if you use
an editor that has code-folding features. This is where you’ll find that the
majority of people stick their help.
136

137Getting started
 As the last thing in your function before the closing }. We’re not fans of this
spot, either, because having your comments at the top of the function helps bet-
ter document the function for someone reading the code.

14.2 Getting started
As you’ll see, there’s nothing especially complicated about any of this. The best way to
understand is to dive in and look at an example.

function Get-MachineInfo {
<#
.SYNOPSIS
Retrieves specific information about one or more computers, using WMI or
CIM.
.DESCRIPTION
This command uses either WMI or CIM to retrieve specific information about
one or more computers. You must run this command as a user who has
permission to remotely query CIM or WMI on the machines involved. You can
specify a starting protocol (CIM by default), and specify that, in the
event of a failure, the other protocol be used on a per-machine basis.
.PARAMETER ComputerName
One or more computer names. When using WMI, this can also be IP addresses.
IP addresses may not work for CIM.
.PARAMETER LogFailuresToPath
A path and filename to write failed computer names to. If omitted, no log
will be written.
.PARAMETER Protocol
Valid values: Wsman (uses CIM) or Dcom (uses WMI). Will be used for all
machines. "Wsman" is the default.
.PARAMETER ProtocolFallback
Specify this to automatically try the other protocol if a machine fails.
.EXAMPLE
Get-MachineInfo -ComputerName ONE,TWO,THREE
This example will query three machines.
.EXAMPLE
Get-ADUser -filter * | Select -Expand Name | Get-MachineInfo
This example will attempt to query all machines in AD.
#>
 [CmdletBinding()]
 Param(
 [Parameter(ValueFromPipeline=$True,
 Mandatory=$True)]
 [Alias('CN','MachineName','Name')]
 [string[]]$ComputerName,

 [string]$LogFailuresToPath,

 [ValidateSet('Wsman','Dcom')]
 [string]$Protocol = "Wsman",

 [switch]$ProtocolFallback
)

Listing 14.1 Comment-based help

138 CHAPTER 14 Simple help: making a comment
 BEGIN {}

 PROCESS {
 foreach ($computer in $computername) {

 if ($protocol -eq 'Dcom') {
 $option = New-CimSessionOption -Protocol Dcom
 } else {
 $option = New-CimSessionOption -Protocol Wsman
 }

 Write-Verbose "Connecting to $computer over $protocol"
 $session = New-CimSession -ComputerName $computer `
 -SessionOption $option

 Write-Verbose "Querying from $computer"
 $os_params = @{'ClassName'='Win32_OperatingSystem'
 'CimSession'=$session}
 $os = Get-CimInstance @os_params

 $cs_params = @{'ClassName'='Win32_ComputerSystem'
 'CimSession'=$session}
 $cs = Get-CimInstance @cs_params

 $sysdrive = $os.SystemDrive
 $drive_params = @{'ClassName'='Win32_LogicalDisk'
 'Filter'="DeviceId='$sysdrive'"
 'CimSession'=$session}
 $drive = Get-CimInstance @drive_params

 $proc_params = @{'ClassName'='Win32_Processor'
 'CimSession'=$session}
 $proc = Get-CimInstance @proc_params |
 Select-Object -first 1

 Write-Verbose "Closing session to $computer"
 $session | Remove-CimSession

 Write-Verbose "Outputting for $computer"
 $obj = [pscustomobject]@{'ComputerName'=$computer
 'OSVersion'=$os.version
 'SPVersion'=$os.servicepackmajorversion
 'OSBuild'=$os.buildnumber
 'Manufacturer'=$cs.manufacturer
 'Model'=$cs.model
 'Procs'=$cs.numberofprocessors
 'Cores'=$cs.numberoflogicalprocessors
 'RAM'=($cs.totalphysicalmemory / 1GB)
 'Arch'=$proc.addresswidth
 'SysDriveFreeSpace'=$drive.freespace}
 Write-Output $obj

 } #foreach
} #PROCESS

END {}

} #function

139Getting started
The help here reflects what we believe is the bare minimum for inclusion in the race
of Upright Human Beings. Some notes

 You don’t have to use all-uppercase letters, but the period preceding each help
keyword (.SYNOPSIS, .DESCRIPTION) must be in the first column.

 We used a block comment (<#....#>); you could also use line-by-line com-
ments—that is, each line preceded by a # character. The block comment looks
nicer and is considered a collapsible region in some scripting editors.

 .SYNOPSIS is meant to be a very short description of what your command does.
 .DESCRIPTION is a longer description, which can be full of details, instructions,

and insights.
 .PARAMETER is followed by the parameter name and then a description of the para-

meter’s use. You don’t need to provide a listing for every single parameter.
 .EXAMPLE should be followed immediately by the example itself; PowerShell will

add a PowerShell prompt in front of this line when the help is displayed. If your
tool takes advantage of different providers such as the registry, you can certainly
insert an appropriate prompt to illustrate your example. Subsequent text can
explain the example.

 You can put blank comment lines between each of these settings to make it all
easier to read in code.

 You normally don’t need to worry about line length. PowerShell will wrap lines
as necessary, depending on the console size of the current host. But if you want
to manually break lines, a width of 80 characters is your best bet:

<#
.SYNOPSIS
Retrieves specific information about one or more computers, using WMI or
CIM.
.DESCRIPTION
This command uses either WMI or CIM to retrieve specific information about
one or more computers. You must run this command as a user who has
permission
to remotely query CIM or WMI on the machines involved. You can
specify a starting protocol (CIM by default), and specify that, in the
event of a failure, the other protocol be used on a per-machine basis.
.PARAMETER ComputerName
One or more computer names. When using WMI, this can also be IP addresses.
IP addresses may not work for CIM.
.PARAMETER LogFailuresToPath
A path and filename to write failed computer names to. If omitted, no log
will be written.
.PARAMETER Protocol
Valid values: Wsman (uses CIM) or Dcom (uses WMI). Will be used for all
machines. "Wsman" is the default.
.PARAMETER ProtocolFallback
Specify this to automatically try the other protocol if a machine fails.
.EXAMPLE
Get-MachineInfo -ComputerName ONE,TWO,THREE
This example will query three machines.

140 CHAPTER 14 Simple help: making a comment
.EXAMPLE
Get-ADUser -filter * | Select -Expand Name | Get-MachineInfo
This example will attempt to query all machines in AD.
#>

As we wrote, these elements are the bare minimum. You can do more. A lot more.

14.3 Going further with comment-based help
You can use an .INPUTS section to list .NET class types, one per line, that your com-
mand accepts as input from the pipeline. This is useful for helping others understand
what kinds of input your command can deal with:

.INPUTS
System.String

Similarly, .OUTPUTS lists the type names that your script outputs. Because ours pres-
ently only outputs a generic PSObject, there’s not much point in listing anything.

 A .NOTES section can list additional information, which is only displayed when the
full help is requested by the user:

.NOTES
version : 1.0.0
last updated: 1 February, 2017

A .LINK heading, followed by a topic name or a URL, appears as a Related Topic in
the help. Use one .LINK keyword for each related topic; don’t put multiples under a
single .LINK:

.LINK
https://powershell.org/forums/
.LINK
Get-CimInstance
.LINK
Get-WmiObject

There’s more, too—read the about_comment_based_help topic in PowerShell for the
full list. We’ll include a few of them in upcoming chapters, as we add functionality that
pertains to those help keywords, so be on the lookout.

14.4 Broken help
PowerShell’s a little picky—okay, a lot picky—about help formatting and syntax. Get
just one thing wrong, and none of the help will work, and you won’t get an error mes-
sage or explanation. So if you’re not getting the help display you expect, go review
your help keyword spelling, period locations, and other details very carefully.

14.5 Beyond comments
Comment-based help has more than a few limitations, but it’s important to under-
stand why it exists. Originally, PowerShell only supported external help, stored in

141Your turn
XML-based files written in a dialect called Microsoft Assistance Markup Language.
MAML is incomprehensible—like, seriously unreadable to a human. But it offers advan-
tages over comment-based help. Although it’s harder to create, it

 Is separated from your code, so it can be updated independently. It’s the basis
of how PowerShell’s Update-Help command works.

 Can be delivered in multiple languages, allowing PowerShell to offer localized
help content to different audiences.

 Is parsed by PowerShell into an object hierarchy, providing additional features
and functionality that can make help content useful across a wider range of sit-
uations.

So if MAML is so cool but so hard to make, what do you do? Back in the day, a bunch
of different folks made tools that let you basically copy and paste content into a GUI
that would then spit out MAML files for you. Easier, but super time-consuming.
Nowadays, all the cool kids are using an open source project called PlatyPS. PlatyPS
lets you write your help content in Markdown, which is a simple markup language.
Markdown is the native markup language of GitHub, meaning your help files can be
easily read and edited right on that website, if you’re hosting a project there. PlatyPS
can then take that Markdown and produce a valid MAML file. Other tools can con-
sume Markdown and produce HTML, if you want to have web-based help for some
reason. Markdown becomes the source format for your help (it’s easy to read and
edit with any text editor—you don’t even need a dedicated Markdown editor,
although VS Code has excellent Markdown plugins you can try), and you produce
everything else from there.

 If you’ve never written help for your code, PlatyPS can examine the code and cre-
ate a framework, or stub, for your Markdown help files. The stub will include all of
your parameters and so forth, with as much data as PlatyPS can figure out already
filled in—like which parameters are mandatory, which ones accept pipeline input,
and so on. PlatyPS can help you maintain your help files, too. Say you add a parameter,
or change one, or whatever. It can look at your code, figure that out, and update your
existing help files with stubs, which you can then fill in to fully document whatever’s
new and changed in your code.

 We love PlatyPS and Markdown. Although they’re bigger topics than we were ready
to tackle for this book, we wanted to give you some directions for future exploration.

14.6 Your turn
Time to add some comment-based help to your function.

14.6.1 Start here

Here’s where we left off after chapter 13. You can use this as a starting point, or use
your own result from that chapter.

142 CHAPTER 14 Simple help: making a comment
function Set-TMServiceLogon {
 [CmdletBinding()]
 Param(
 [Parameter(Mandatory=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string]$ServiceName,

 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string[]]$ComputerName,

 [Parameter(ValueFromPipelineByPropertyName=$True)]
 [string]$NewPassword,

 [Parameter(ValueFromPipelineByPropertyName=$True)]
 [string]$NewUser,

 [string]$ErrorLogFilePath
)

BEGIN{}

PROCESS{
 ForEach ($computer in $ComputerName) {

 Write-Verbose "Connect to $computer on WS-MAN"
 $option = New-CimSessionOption -Protocol Wsman
 $session = New-CimSession -SessionOption $option `
 -ComputerName $Computer

 If ($PSBoundParameters.ContainsKey('NewUser')) {
 $args = @{'StartName'=$NewUser
 'StartPassword'=$NewPassword}
 } Else {
 $args = @{'StartPassword'=$NewPassword}
 Write-Warning "Not setting a new user name"
 }

 Write-Verbose "Setting $servicename on $computer"
 $params = @{'CimSession'=$session
 'MethodName'='Change'
 'Query'="SELECT * FROM Win32_Service " +
 "WHERE Name = '$ServiceName'"
 'Arguments'=$args}
 $ret = Invoke-CimMethod @params

 switch ($ret.ReturnValue) {
 0 { $status = "Success" }
 22 { $status = "Invalid Account" }
 Default { $status = "Failed: $($ret.ReturnValue)" }
 }

 $props = @{'ComputerName'=$computer
 'Status'=$status}
 $obj = New-Object -TypeName PSObject -Property $props
 Write-Output $obj

Listing 14.2 Set-TMServiceLogon

143Your turn
 Write-Verbose "Closing connection to $computer"
 $session | Remove-CimSession

 } #foreach
} #PROCESS

END{}

} #function

14.6.2 Your task

Add, at a minimum, the following to your tool:

 Synopsis
 Description
 Parameter descriptions
 Two examples, including descriptions

Import your module, and test your help (Help Set-TMServiceLogon -ShowWindow, for
example) to make sure it works.

14.6.3 Our take

Here’s the help we came up with. As always, you’ll find this in the code downloads at
www.manning.com/books/learn-powershell-scripting-in-a-month-of-lunches, under this
chapter’s folder.

function Set-TMServiceLogon {
<#
.SYNOPSIS
Sets service login name and password.
.DESCRIPTION
This command uses either CIM (default) or WMI to
set the service password, and optionally the logon
user name, for a service, which can be running on
one or more remote machines. You must run this command
as a user who has permission to perform this task,
remotely, on the computers involved.
.PARAMETER ServiceName
The name of the service. Query the Win32_Service class
to verify that you know the correct name.
.PARAMETER ComputerName
One or more computer names. Using IP addresses will
fail with CIM; they will work with WMI. CIM is always
attempted first.
.PARAMETER NewPassword
A plain-text string of the new password.
.PARAMETER NewUser
Optional; the new logon user name, in DOMAIN\USER
format.
.PARAMETER ErrorLogFilePath

Listing 14.3 Our solution

http://www.manning.com/books/learn-powershell-scripting-in-a-month-of-lunches

144 CHAPTER 14 Simple help: making a comment
If provided, this is a path and filename of a text
file where failed computer names will be logged.
#>
 [CmdletBinding()]
 Param(
 [Parameter(Mandatory=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string]$ServiceName,

 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string[]]$ComputerName,

 [Parameter(ValueFromPipelineByPropertyName=$True)]
 [string]$NewPassword,

 [Parameter(ValueFromPipelineByPropertyName=$True)]
 [string]$NewUser,

 [string]$ErrorLogFilePath
)

BEGIN{}

PROCESS{
 ForEach ($computer in $ComputerName) {

 Write-Verbose "Connect to $computer on WS-MAN"
 $option = New-CimSessionOption -Protocol Wsman
 $session = New-CimSession -SessionOption $option `
 -ComputerName $Computer

 If ($PSBoundParameters.ContainsKey('NewUser')) {
 $args = @{'StartName'=$NewUser
 'StartPassword'=$NewPassword}
 } Else {
 $args = @{'StartPassword'=$NewPassword}
 Write-Warning "Not setting a new user name"
 }

 Write-Verbose "Setting $servicename on $computer"
 $params = @{'CimSession'=$session
 'MethodName'='Change'
 'Query'="SELECT * FROM Win32_Service " +
 "WHERE Name = '$ServiceName'"
 'Arguments'=$args}
 $ret = Invoke-CimMethod @params

 switch ($ret.ReturnValue) {
 0 { $status = "Success" }
 22 { $status = "Invalid Account" }
 Default { $status = "Failed: $($ret.ReturnValue)" }
 }

 $props = @{'ComputerName'=$computer
 'Status'=$status}
 $obj = New-Object -TypeName PSObject -Property $props
 Write-Output $obj

145Your turn
 Write-Verbose "Closing connection to $computer"
 $session | Remove-CimSession

 } #foreach
} #PROCESS

END{}

} #function

Adding comment-based help doesn’t have to be a tedious chore. Use the snippets fea-
ture of your scripting editor to create a template. In the PowerShell ISE, if you press
Ctrl-J to access the built-in snippets, the one for Cmdlet (Advanced Function) will
have most of what you need.

 And before we sign off, here’s a quick pro tip: Comment-based help is tolerant of
extra whitespace. So instead of this

.SYNOPSIS
Sets service login name and password.
.DESCRIPTION
This command uses either CIM (default) or WMI to
set the service password, and optionally the logon
user name, for a service, which can be running on
one or more remote machines. You must run this command
as a user who has permission to perform this task,
remotely, on the computers involved.
.PARAMETER ServiceName
The name of the service. Query the Win32_Service class
to verify that you know the correct name.

you could do this:

.SYNOPSIS
Sets service login name and password.

.DESCRIPTION
This command uses either CIM (default) or WMI to
set the service password, and optionally the logon
user name, for a service, which can be running on
one or more remote machines. You must run this command
as a user who has permission to perform this task,
remotely, on the computers involved.

.PARAMETER ServiceName
The name of the service. Query the Win32_Service class
to verify that you know the correct name.

Those extra blank lines go a long way toward making your code more readable, and
they don’t affect the help-file displays that PowerShell creates from your comments.

Dealing with errors
You have a lot of functionality yet to write in the tool you’ve been building, and
we’ve been deferring a lot of it to this point. In this chapter, we’ll focus on how to
capture, deal with, log, and otherwise handle errors the tool may encounter.

NOTE PowerShell.org offers a free eBook, The Big Book of PowerShell Error
Handling, which dives into this topic from a more technical reference per-
spective (https://powershell.org/ebooks). We recommend checking it out,
once you’ve completed this tutorial-focused chapter.

15.1 Understanding errors and exceptions
PowerShell defines two broad types of bad situation: an error and an exception.
Because most PowerShell commands are designed to deal with multiple things at
once, and because in many cases a problem with one thing doesn’t mean you want
to stop dealing with all the other things, PowerShell tries to err on the side of “just
keep going.” So, often, when something goes wrong in a command, PowerShell will
emit an error and keep going. For example

Get-Service -Name BITS,Nobody,WinRM

There’s no service named Nobody, so PowerShell will emit an error on that second
item. But by default, PowerShell will keep going and process the third item in the list.
When PowerShell is in this keep-going mode, you can’t have your code respond to the
problem condition. If you want to do something about the problem, you have to
change PowerShell’s default response to this kind of non-terminating error.
146

https://powershell.org/ebooks
http://PowerShell.org

147Bad handling
 At a global level, PowerShell defines an $ErrorActionPreference variable,
which tells PowerShell what to do in the event of a non-terminating error. That is,
this variable tells PowerShell what to do when a problem comes up, but PowerShell
is able to keep going. The default value for this variable is Continue. Here are the
other options:

 Continue—Emits an error message, and keeps going. Your code can’t detect that
a problem occurred, so you can’t do anything else.

 SilentlyContinue—Doesn’t emit an error message, and keeps going. Again, you
can’t detect the problem or respond to it yourself.

 Inquire—Display a prompt, and ask the user whether to continue or stop.
 Stop—Turns the non-terminating error into a terminating exception, and stops run-

ning the command. This is something your code can detect and respond to.
 Ignore—Not a value for this preference variable, but can be used on the -Error-

Action parameter, which we’ll cover in a moment. Its behavior is similar to
SilentlyContinue.

 Suspend—Only applies to errors in a PowerShell workflow, which is outside the
scope of this book.

Rather than changing $ErrorActionPreference, you’ll typically want to specify a behav-
ior on a per-command basis. You can do this using the -ErrorActionPreference com-
mon parameter or its alias (-EA), which exists on every PowerShell command—even
the ones you write yourself that include [CmdletBinding()].

 For example, try running these commands, and note the different behaviors:

Get-Service -Name BITS,Nobody,WinRM -EA Continue
Get-Service -Name BITS,Nobody,WinRM -EA SilentlyContinue
Get-Service -Name BITS,Nobody,WinRM -EA Inquire
Get-Service -Name BITS,Nobody,WinRM -EA Ignore
Get-Service -Name BITS,Nobody,WinRM -EA Stop

The thing to remember is that you can’t handle exceptions in your code unless PowerShell
actually generates an exception. Most commands won’t generate an exception unless you
run them with the Stop error action. One of the biggest mistakes people make is for-
getting to add -EA Stop to a command where they want to handle the problem.

15.2 Bad handling
We see people engage in two fundamentally bad practices. These aren’t always, always,
always bad, but they’re usually bad, so we want to bring them to your attention.

 First up is globally setting the preference variable right at the top of a script or
function:

$ErrorActionPreference='SilentlyContinue'

In the olden days of VBScript, people used On Error Resume Next. This is essentially
saying, “I don’t want to know if anything is wrong with my code.” People do this in a

148 CHAPTER 15 Dealing with errors
misguided attempt to suppress possible errors that they know won’t matter. For exam-
ple, attempting to delete a file that doesn’t exist will cause an error—but you probably
don’t care, because mission accomplished either way, right? But to suppress that
unwanted error, you should be using -EA SilentlyContinue on the Remove-Item
command, not globally suppressing all errors in your script.

 The other bad practice is a bit more subtle and can come up in the same situation.
Suppose you do run Remove-Item with -EA SilentlyContinue, and then suppose you
try to delete a file that does exist but that you don’t have permission to delete. You’ll
suppress the error and wonder why the file still exists.

 Before you start suppressing errors, make sure you’ve thought it through. Nothing
is more vexing than spending hours debugging a script because you suppressed an
error message that would have told you where the problem was. We can’t tell you how
often this comes up in forum questions.

15.3 Two reasons for exception handling
There are two broad reasons to handle exceptions in your code. (Notice that we’re
using their official name, exceptions, to differentiate them from the non-handle-able
errors that we wrote about previously.)

 Reason one is that you plan to run your tool out of your view. Perhaps it’s a sched-
uled task, or maybe you’re writing tools that will be used by remote customers. In
either case, you want to make sure you have evidence for any problems that occur,
to help you with debugging. In this scenario, you might globally set $ErrorAction-
Preference to Stop at the top of your script, and wrap the entire script in an error-
handling construct. That way, any errors, even unanticipated ones, can be trapped
and logged for diagnostic purposes. Although this is a valid scenario, it isn’t the one
we’re going to focus on in this book.

 We’ll focus on reason two, which is that you’re running a command where you can
anticipate a certain kind of problem occurring, and you want to actively deal with that prob-
lem. This might be a failure to connect to a computer, a failure to log on to some-
thing, or another scenario along those lines. Let’s dig in to that with the tool you’ve
been building.

15.4 Handling exceptions in your tool
In the tool you’ve been building, you can anticipate the New-CimSession command
running into problems: A computer might be offline or nonexistent, or the computer
might not work with the protocol you’ve selected. You want to catch that condition,
and, depending on the parameters you ran with, log the failed computer name to a
text file and/or try again using the other protocol. You’ll start by focusing on the com-
mand that could cause the problem, and make sure it’ll generate a terminating excep-
tion if it runs into trouble. Change this:

Write-Verbose "Connecting to $computer over $protocol"
$session = New-CimSession -ComputerName $computer `
 -SessionOption $option

149Handling exceptions in your tool
to this:

Write-Verbose "Connecting to $computer over $protocol"
$params = @{'ComputerName'=$Computer
 'SessionOption'=$option
 'ErrorAction'='Stop'}
$session = New-CimSession @params

It’s hugely important to notice that you’ve already constructed the command so that it
only ever attempts to connect to one computer at a time by means of the ForEach
loop. Any time you’ll be handling errors, it’s crucial that you construct things so that
only one thing can fail at a time. That’s because you’re telling PowerShell to not continue.
If you attempted five computers at once, a failure in any of them would result in the
rest of them never being attempted. Make sure you understand why this design princi-
ple is so important!

 Just changing the error action to Stop isn’t enough, though. You also need to wrap
your code in a Try/Catch construct. If an exception occurs in the Try block, then all
the subsequent code in the Try block will be skipped, and the Catch block will exe-
cute instead. So the PROCESS{} block of the function now looks like this:

 PROCESS {
 foreach ($computer in $computername) {

 if ($protocol -eq 'Dcom') {
 $option = New-CimSessionOption -Protocol Dcom
 } else {
 $option = New-CimSessionOption -Protocol Wsman
 }

 Try {
 Write-Verbose "Connecting to $computer over $protocol"
 $params = @{'ComputerName'=$Computer
 'SessionOption'=$option
 'ErrorAction'='Stop'}
 $session = New-CimSession @params

 Write-Verbose "Querying from $computer"
 $os_params = @{'ClassName'='Win32_OperatingSystem'
 'CimSession'=$session}
 $os = Get-CimInstance @os_params

 $cs_params = @{'ClassName'='Win32_ComputerSystem'
 'CimSession'=$session}
 $cs = Get-CimInstance @cs_params

 $sysdrive = $os.SystemDrive
 $drive_params = @{'ClassName'='Win32_LogicalDisk'
 'Filter'="DeviceId='$sysdrive'"
 'CimSession'=$session}
 $drive = Get-CimInstance @drive_params

 $proc_params = @{'ClassName'='Win32_Processor'
 'CimSession'=$session}
 $proc = Get-CimInstance @proc_params |
 Select-Object -first 1

Try script
block

150 CHAPTER 15 Dealing with errors
 Write-Verbose "Closing session to $computer"
 $session | Remove-CimSession

 Write-Verbose "Outputting for $computer"
 $obj = [pscustomobject]@{'ComputerName'=$computer
 'OSVersion'=$os.version
 'SPVersion'=$os.servicepackmajorversion
 'OSBuild'=$os.buildnumber
 'Manufacturer'=$cs.manufacturer
 'Model'=$cs.model
 'Procs'=$cs.numberofprocessors
 'Cores'=$cs.numberoflogicalprocessors
 'RAM'=($cs.totalphysicalmemory / 1GB)
 'Arch'=$proc.addresswidth
 'SysDriveFreeSpace'=$drive.freespace}
 Write-Output $obj
 } Catch {

 } #try/catch

 } #foreach
} #PROCESS

The idea here is that if a problem happens with New-CimSession, everything else is aban-
doned. That should make sense: Without a session, you can’t execute queries. Without
queries, you can’t generate results. Without results, you can’t produce output. If one
thing goes wrong, you need to quit.

 Now, let’s focus on what you’ll do if an error—sorry, an exception—does occur:

} Catch {
 Write-Warning "FAILED $computer on $protocol"

 # Did we specify protocol fallback?
 # If so, try again. If we specified logging,
 # we won't log a problem here - we'll let
 # the logging occur if this fallback also
 # fails
 If ($ProtocolFallback) {
 If ($Protocol -eq 'Dcom') {
 $newprotocol = 'Wsman'
 } else {
 $newprotocol = 'Dcom'
 } #if protocol

 Write-Verbose "Trying again with $newprotocol"
 $params = @{'ComputerName'=$Computer
 'Protocol'=$newprotocol
 'ProtocolFallback'=$False}

 If ($PSBoundParameters.ContainsKey('LogFailuresToPath')){
 $params += @{'LogFailuresToPath'=$LogFailuresToPath}
 } #if logging

 Get-MachineInfo @params
 } #if protocolfallback

 # if we didn't specify fallback, but we
 # did specify logging, then log the error,

Catch script
block

Writes a warning
message

Tests for a
parameter

151Handling exceptions for non-commands
 # because we won't be trying again
 If (-not $ProtocolFallback -and
 $PSBoundParameters.ContainsKey('LogFailuresToPath')){
 Write-Verbose "Logging to $LogFailuresToPath"
 $computer | Out-File $LogFailuresToPath -Append
 } # if write to log

} #try/catch

Here’s what’s happening:

1 Within the Catch block, you take the opportunity to write out a warning mes-
sage for the benefit of the user. They can suppress these by adding -Warning-
Action SilentlyContinue when running the command.

2 You look to see whether -ProtocolFallback was specified. If it was, you set $new-
protocol to be whatever protocol you weren’t already running with. You then set
up a parameter hash table with your current computer name and that new proto-
col, and you specify $False for ProtocolFallback. Because you’ve already fallen
back on the protocol, there’s no sense doing it again and falling into an endless
loop. If you’re running with -LogFailuresToPath, you add that parameter to
your hash table, and—here’s the fun part—call your own function using these
parameters. Its output will become part of your output, giving you an easy way to
try the other protocol without having to duplicate a bunch of code.

3 Look to see if you aren’t running with -ProtocolFallback, but are running with
-LogFailuresToPath, so that you can log the failed computer name. Why don’t
you just log the computer name to begin with? Well, if the current protocol
fails, but you’re asked to use protocol fallback, then your self-call to Get-
MachineInfo will take care of the logging if it fails with the second protocol.

This is some complex logic—go through it a few times, and make sure you understand it!

15.5 Capturing the exception
The example so far hasn’t cared what problem happened with New-CimSession; you
have the same response to any possible failure. In some cases, though, you may want
to know what exception happened. An easy way to do this is to specify the -Error-
Variable, or -EV, parameter, and provide the name of a variable (remembering that $
isn’t part of a variable’s name, so you don’t include the $ here). Whatever exception
happens will be placed in the specified variable for you to work with.

15.6 Handling exceptions for non-commands
What if you’re running something—like a .NET Framework method—that doesn’t have
an -ErrorAction parameter? In most cases, you can run it in a Try block as is, because
most of these methods will throw trappable, terminating exceptions if something goes
wrong. The non-terminating exception thing is unique to PowerShell commands like
functions and cmdlets.

No protocol
fallback,
but logging
requested

152 CHAPTER 15 Dealing with errors
 But you still may have instances when you need to do this:

Try {
 $ErrorActionPreference = "Stop"
 # run something that doesn't have -ErrorAction
 $ErrorActionPreference = "Continue"
} Catch {
 # ...
}

This is your error handling of last resort. Basically, you’re temporarily modifying
$ErrorActionPreference for the duration of the one command (or whatever) for
which you want to catch an exception. This isn’t a common situation in our experi-
ence, but we figured we’d point it out.

15.7 Going further with exception handling
It’s possible to have multiple Catch blocks after a given Try block, with each Catch deal-
ing with a specific type of exception. For example, if a file deletion failed, you could react
differently for a File Not Found or an Access Denied situation. To do this, you’ll need to
know the .NET Framework type name of each exception you want to call out separately.
The Big Book of PowerShell Error Handling has a list of common ones and advice for figuring
these out (for example, generating the error on your own in an experiment, and then
figuring out what the exception type name was). Broadly, the syntax looks like this:

Try {
 # something here generates an exception
} Catch [Exception.Type.One] {
 # deal with that exception here
} Catch [Exception.Type.Two] {
 # deal with the other exception here
} Catch {
 # deal with anything else here
} Finally {
 # run something else
}

Also shown in that example is the optional Finally block, which will always run after
the Try or the Catch, whether or not an exception occurs.

Deprecated exception-handling
You may, in your internet travels, run across a Trap construct in PowerShell. This
dates back to v1, when the PowerShell team frankly didn't have time to get Try/
Catch working, and Trap was the best short-term fix they could come up with. Trap
is deprecated, meaning it's left in the product for backward compatibility, but you're
not intended to use it in newly written code. For that reason, we're not covering it
here. It does have some uses in global, “I want to catch and log any possible error”
situations, but Try/Catch is considered a more structured, professional approach to
exception handling, and we recommend that you stick with it.

153Your turn
15.8 Your turn
It’s time to deal with errors in your code.

15.8.1 Start here

This is where we left off at the end of chapter 14. You can use this as a starting point,
or use your own results from that chapter.

function Set-TMServiceLogon {
<#
.SYNOPSIS
Sets service login name and password.
.DESCRIPTION
This command uses either CIM (default) or WMI to
set the service password, and optionally the logon
user name, for a service, which can be running on
one or more remote machines. You must run this command
as a user who has permission to perform this task,
remotely, on the computers involved.
.PARAMETER ServiceName
The name of the service. Query the Win32_Service class
to verify that you know the correct name.
.PARAMETER ComputerName
One or more computer names. Using IP addresses will
fail with CIM; they will work with WMI. CIM is always
attempted first.
.PARAMETER NewPassword
A plain-text string of the new password.
.PARAMETER NewUser
Optional; the new logon user name, in DOMAIN\USER
format.
.PARAMETER ErrorLogFilePath
If provided, this is a path and filename of a text
file where failed computer names will be logged.
#>
 [CmdletBinding()]
 Param(
 [Parameter(Mandatory=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string]$ServiceName,

 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string[]]$ComputerName,

 [Parameter(ValueFromPipelineByPropertyName=$True)]
 [string]$NewPassword,

 [Parameter(ValueFromPipelineByPropertyName=$True)]
 [string]$NewUser,

 [string]$ErrorLogFilePath
)

Listing 15.1 Set TMServiceLogon

154 CHAPTER 15 Dealing with errors
BEGIN{}

PROCESS{
 ForEach ($computer in $ComputerName) {

 Write-Verbose "Connect to $computer on WS-MAN"
 $option = New-CimSessionOption -Protocol Wsman
 $session = New-CimSession -SessionOption $option `
 -ComputerName $Computer

 If ($PSBoundParameters.ContainsKey('NewUser')) {
 $args = @{'StartName'=$NewUser
 'StartPassword'=$NewPassword}
 } Else {
 $args = @{'StartPassword'=$NewPassword}
 Write-Warning "Not setting a new user name"
 }

 Write-Verbose "Setting $servicename on $computer"
 $params = @{'CimSession'=$session
 'MethodName'='Change'
 'Query'="SELECT * FROM Win32_Service " +
 "WHERE Name = '$ServiceName'"
 'Arguments'=$args}
 $ret = Invoke-CimMethod @params

 switch ($ret.ReturnValue) {
 0 { $status = "Success" }
 22 { $status = "Invalid Account" }
 Default { $status = "Failed: $($ret.ReturnValue)" }
 }

 $props = @{'ComputerName'=$computer
 'Status'=$status}
 $obj = New-Object -TypeName PSObject -Property $props
 Write-Output $obj

 Write-Verbose "Closing connection to $computer"
 $session | Remove-CimSession

 } #foreach
} #PROCESS

END{}

} #function

15.8.2 Your task

Your job is to add error handling to your tool. Remember, in the event of an error, the
design calls for you to automatically try the DCOM protocol, because you’re always
starting with the WSman protocol. If a computer fails, you should log it only if logging
was specified, and only after both protocols have been attempted.

 Your task is made a little more difficult by the fact that the parameter design
doesn’t include a parameter for the protocol. That means you can’t just call your own
function again with a different protocol parameter! Instead, you’ll have to write a loop

155Your turn
that will execute your code up to two times. One such loop might look something
like this:

Do {
 # code goes here
} Until ($something -eq 'else')

This kind of loop will always execute its contents at least once. It will continue execut-
ing until the condition, specified at the end of the loop, is $True. See if you can puzzle
out the necessary logic to add to your script.

15.8.3 Our take

Here’s what we came up with.

function Set-TMServiceLogon {
<#
.SYNOPSIS
Sets service login name and password.
.DESCRIPTION
This command uses either CIM (default) or WMI to
set the service password, and optionally the logon
user name, for a service, which can be running on
one or more remote machines. You must run this command
as a user who has permission to peform this task,
remotely, on the computers involved.
.PARAMETER ServiceName
The name of the service. Query the Win32_Service class
to verify that you know the correct name.
.PARAMETER ComputerName
One or more computer names. Using IP addresses will
fail with CIM; they will work with WMI. CIM is always
attempted first.
.PARAMETER NewPassword
A plain-text string of the new password.
.PARAMETER NewUser
Optional; the new logon user name, in DOMAIN\USER
format.
.PARAMETER ErrorLogFilePath
If provided, this is a path and filename of a text
file where failed computer names will be logged.
#>
 [CmdletBinding()]
 Param(
 [Parameter(Mandatory=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string]$ServiceName,

 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string[]]$ComputerName,

Listing 15.2 Our solution

156 CHAPTER 15 Dealing with errors
 [Parameter(ValueFromPipelineByPropertyName=$True)]
 [string]$NewPassword,

 [Parameter(ValueFromPipelineByPropertyName=$True)]
 [string]$NewUser,

 [string]$ErrorLogFilePath
)

BEGIN{}

PROCESS{
 ForEach ($computer in $ComputerName) {

 Do {
 Write-Verbose "Connect to $computer on WS-MAN"
 $protocol = "Wsman"

 Try {
 $option = New-CimSessionOption -Protocol $protocol
 $session = New-CimSession -SessionOption $option `
 -ComputerName $Computer `
 -ErrorAction Stop

 If ($PSBoundParameters.ContainsKey('NewUser')) {
 $args = @{'StartName'=$NewUser
 'StartPassword'=$NewPassword}
 } Else {
 $args = @{'StartPassword'=$NewPassword}
 Write-Warning "Not setting a new user name"
 }

 Write-Verbose "Setting $servicename on $computer"
 $params = @{'CimSession'=$session
 'MethodName'='Change'
 'Query'="SELECT * FROM Win32_Service " +
 "WHERE Name = '$ServiceName'"
 'Arguments'=$args}
 $ret = Invoke-CimMethod @params

 switch ($ret.ReturnValue) {
 0 { $status = "Success" }
 22 { $status = "Invalid Account" }
 Default { $status = "Failed: $($ret.ReturnValue)" }
 }

 $props = @{'ComputerName'=$computer
 'Status'=$status}
 $obj = New-Object -TypeName PSObject -Property $props
 Write-Output $obj

 Write-Verbose "Closing connection to $computer"
 $session | Remove-CimSession
 } Catch {
 # change protocol - if we've tried both
 # and logging was specified, log the computer
 Switch ($protocol) {
 'Wsman' { $protocol = 'Dcom' }
 'Dcom' {
 $protocol = 'Stop'

157Your turn
 if ($PSBoundParameters.ContainsKey('ErrorLogFilePath')) {
 Write-Warning "$computer failed; logged to
➥ $ErrorLogFilePath"
 $computer | Out-File $ErrorLogFilePath -Append
 } # if logging
 }
 } #switch

 } # try/catch
 } Until ($protocol -eq 'Stop')
 } #foreach
} #PROCESS

END{}

} #function

Again, apologies for any word-wrapping; consult the downloadable code samples at
www.manning.com/books/learn-powershell-scripting-in-a-month-of-lunches for a well-
formatted version.

 In this revision, we changed New-CimSessionOption to use a variable for the proto-
col. We manually set this to “Wsman” to begin with, but in the event of a failure, we
switch it to “Dcom.” If it fails again, we set the protocol to Stop, which triggers an exit
from the Do loop; we also take the opportunity to log the computer name, if we’re
asked to do so.

http://www.manning.com/books/learn-powershell-scripting-in-a-month-of-lunches

Filling out a manifest
Up to this point, you’ve been relying on a little PowerShell magic to make your
commands—which are contained within a module—run. It’s worth digging into
this magic a bit, because there’s a ton more you can do with it.

16.1 Module execution order
When PowerShell goes looking for modules, it first enumerates all the folders listed
in the PSModulePath environment variable. Each folder under each of those paths
is considered to be a potential module.

 Within a module folder, PowerShell looks for the following:

1 A .psd1 file having the same filename as the module’s folder name. This is a
module manifest and tells the shell what else needs to be loaded.

2 A .dll file having the same filename as the module’s folder name. This is a
compiled or binary module, usually written in C#.

3 A .psm1 file having the same filename as the module’s folder name. This is a
script module.

You’ve been using number 3 on that list. If you create a file named \Documents\
WindowsPowerShell\Modules\Fred\Fred.psm1, then you’ve created a script module
named “Fred,” and whatever functions are in that .psm1 file will become commands
that PowerShell can run. This is a super quick and easy way to get a module up and
running, but it has some disadvantages.

 First, the module can’t easily take care of things like versioning, establishing pre-
requisites, and loading supporting files (like custom formatting views, which we’ll get
158

159Creating a new manifest
to later in this book). As your modules become more complex and you iterate them
over time, you’ll need all of these things.

 Second, a script module alone, as it becomes larger and contains more commands,
can slow down PowerShell—even if you’re not using the module. That’s because, at
launch time, PowerShell has to figure out what modules you have and what com-
mands they contain. For a standalone script module, that means loading and parsing the
entire file to see what functions are lurking within. That parsing takes time; and for
large modules, or if you have a lot of them, that time can become significant—and it’s
a hit every time you open a new PowerShell window.

 A manifest—which takes advantage of item 1 on the earlier list—solves these
problems. It gives you the ability to specify a great deal of additional information
about your module; and, used correctly, it can vastly speed up PowerShell’s module-
discovery time.

16.2 Creating a new manifest
Creating a new, very basic, manifest is easy. Just change to your module folder, and run
New-ModuleManifest. Specify a filename for the manifest (which should be the same
as the module folder’s name, followed by the .psd1 filename extension), and specify
your existing .psm1 script module as the root module:

New-ModuleManifest –Path MyModule.psd1 –Root ./MyModule.psm1

WARNING PowerShell does exactly nothing to verify that what you’ve typed is
correct. A typo in either of these paths will create a nonfunctional manifest
and can prevent your entire module from loading until you fix your mistakes.

That example assumes you’re in a \MyModule folder, making the official name of the
module MyModule. The result is something like this (which you can, and should, cre-
ate on your own so that you can follow along). The automatically generated com-
ments for each section help explain:

#
Module manifest for module 'MyModule'
#
Generated by: User
#
Generated on: 6/19/2017
#

@{

Script module or binary module file associated with this manifest.
RootModule = 'MyModule.psm1'

Version number of this module.
ModuleVersion = '1.0'

Supported PSEditions
CompatiblePSEditions = @()

160 CHAPTER 16 Filling out a manifest
ID used to uniquely identify this module
GUID = 'ea4d119b-6bcf-4540-a389-67cf7d261726'

Author of this module
Author = 'User'

Company or vendor of this module
CompanyName = 'Unknown'

Copyright statement for this module
Copyright = '(c) 2017 User. All rights reserved.'

Description of the functionality provided by this module
Description = ''

Minimum version of the Windows PowerShell engine required by this module
PowerShellVersion = ''

Name of the Windows PowerShell host required by this module
PowerShellHostName = ''

Minimum version of the Windows PowerShell host required by this module
PowerShellHostVersion = ''

Minimum version of Microsoft .NET Framework required by this module. This
➥ prerequisite is valid for the PowerShell Desktop edition only.
DotNetFrameworkVersion = ''

Minimum version of the common language runtime (CLR) required by this
➥ module. This prerequisite is valid for the PowerShell Desktop edition
➥ only.
CLRVersion = ''

Processor architecture (None, X86, Amd64) required by this module
ProcessorArchitecture = ''

Modules that must be imported into the global environment prior to
➥ importing this module
RequiredModules = @()

Assemblies that must be loaded prior to importing this module
RequiredAssemblies = @()

Script files (.ps1) that are run in the caller's environment prior to
➥ importing this module.
ScriptsToProcess = @()

Type files (.ps1xml) to be loaded when importing this module
TypesToProcess = @()

Format files (.ps1xml) to be loaded when importing this module
FormatsToProcess = @()

Modules to import as nested modules of the module specified in
➥ RootModule/ModuleToProcess
NestedModules = @()

Functions to export from this module, for best performance, do not use
➥ wildcards and do not delete the entry, use an empty array if there are
➥ no functions to export.
FunctionsToExport = '*'

161Creating a new manifest
Cmdlets to export from this module, for best performance, do not use
➥ wildcards and do not delete the entry, use an empty array if there are
➥ no cmdlets to export.
CmdletsToExport = '*'

Variables to export from this module
VariablesToExport = '*'

Aliases to export from this module, for best performance, do not use
➥ wildcards and do not delete the entry, use an empty array if there are
➥ no aliases to export.
AliasesToExport = '*'

DSC resources to export from this module
DscResourcesToExport = @()

List of all modules packaged with this module
ModuleList = @()

List of all files packaged with this module
FileList = @()

Private data to pass to the module specified in
➥ RootModule/ModuleToProcess. This may also contain a PSData hashtable
➥ with additional module metadata used by PowerShell.
PrivateData = @{

 PSData = @{

 # Tags applied to this module. These help with module discovery in
➥ online galleries.
 # Tags = @()

 # A URL to the license for this module.
 # LicenseUri = ''

 # A URL to the main website for this project.
 # ProjectUri = ''

 # A URL to an icon representing this module.
 # IconUri = ''

 # ReleaseNotes of this module
 # ReleaseNotes = ''

 } # End of PSData hashtable

} # End of PrivateData hashtable

HelpInfo URI of this module
HelpInfoURI = ''

Default prefix for commands exported from this module. Override the
➥ default prefix using Import-Module -Prefix.
DefaultCommandPrefix = ''

}

NOTE We’re assuming you’ll be doing this on a system with PowerShell v5 or
later. Earlier versions may not have the same settings shown here.

162 CHAPTER 16 Filling out a manifest
16.3 Examining the manifest
Let’s take a look at a few key sections in a bit more detail. It’s worth mentioning
that almost everything here can be specified in advance, using parameters of New-
ModuleManifest. Often, though, we just create the bare-bones manifest shown here,
and then edit it in VS Code when we want to add things to the module.

16.3.1 Metadata

You’ll notice a great deal of metadata, or data about the module itself, in the manifest:

 ModuleVersion is something you should get in the habit of filling out, using the
standard Microsoft w.x.y.z version notation. If you plan to submit modules to
PowerShellGallery.com, this is mandatory in your manifest.

 A globally unique identifier (GUID) is a requirement and is generated automati-
cally. This uniquely identifies your module.

 Author should be your name, and CompanyName should be your organization, if
appropriate. If you’re submitting to PowerShellGallery, Author is mandatory.

 Copyright and Description are optional, but you should include Description
for PowerShellGallery submissions (it may become mandatory at some point).

 ModuleList is a list of all submodules that your module includes—basically, the
names of any .psm1 files. This doesn’t do anything—it’s just here for documen-
tation purposes, and it’s rare to see this used.

 FileList is similar to ModuleList—it’s just a way to document all the files
included in the module.

16.3.2 The root module

This is the .psm1 file that contains either all of your functions or code to dot source
the required script files. It’s assumed that the .psm1 file is in the same directory as the
manifest. PowerShell won’t complain if you leave this empty, but your module also
won’t behave as you expect.

16.3.3 Prerequisites

A number of manifest properties help PowerShell figure out whether your module
can be run on a given computer:

 CompatiblePSEditions helps differentiate between full PowerShell on Win-
dows and core PowerShell on Nano Server, Linux, or macOS. For example, if
you run $PSVersionTable you’ll see Desktop as the PSEdition on Windows cli-
ent computers.

 PowerShellVersion specifies the minimum version of PowerShell needed for
the module to run.

 PowerShellHostName and PowerShellHostVersion describe the host applica-
tion and version in which your module runs. This can be used to restrict modules

163Examining the manifest
to only certain hosting situations, such as “Windows PowerShell ISE Host,”
“ConsoleHost,” or some other environment.

 DotNetFrameworkVersion and CLRVersion describe any minimum version
requirements of .NET Framework or the Framework’s Common Language Run-
time (CLR).

 ProcessorArchitecture documents any platform dependencies, such as “X86”
or “Amd64.”

 RequiredModules is an array of module names that must be imported before
your module’s commands are loaded. PowerShell will attempt to load these for
you and will fail—and refuse to load your module—if for some reason it can’t
load these prerequisites.

 NestedModules is a little different than RequiredModules. Modules included in
RequiredModules are loaded into the global session, which means they won’t
unload when your module is unloaded. Modules in NestedModules are visible
only to your module and can’t be seen or used by the person who loaded your
module (unless that person also manually imports them).

16.3.4 Scripts, types, and formats

You can specify a number of supporting elements for your module. These are loaded
and unloaded along with the module. Each of these elements is an array, which means
you can specify zero or more elements to load:

 ScriptsToProcess lists PowerShell scripts (.ps1 files) that should be run before
your module is loaded. This is a little unusual to see, but you can use it to run
things like setup tasks. It’s also possible to put those setup commands into the
module .psm1 file, although breaking them into a separate preload script can
help make the code easier to read and maintain.

 TypesToProcess is a list of PowerShell Extensible Type System (ETS) exten-
sions—usually .ps1xml files—that your module needs to load.

 FormatsToProcess is a list of PowerShell formatting view files—usually
.format.ps1xml files—that your module needs to load. We’ll cover these later
in this book.

Although you can provide full paths to any of these, the convention is to include each
supporting element in the module’s folder and to refer to ./filename in the array.

16.3.5 Exporting members

This is where you can save PowerShell some load time. Rather than forcing it to
parse your entire script module and figure out what functions exist, you can declare
those functions as being exported from the module. There’s a side effect: Any func-
tions you don’t export become private to the module. That means anything else
within the module can see and use those functions, but the person who loaded your
module won’t see them or be able to use them. You can use this feature to create

164 CHAPTER 16 Filling out a manifest
helper functions that are used by other commands in your module but that aren’t
exposed to anyone else.

 You can export five types of things. Each of these is an array within the manifest:

 FunctionsToExport holds functions you want people to be able to use as com-
mands.

 CmdletsToExport won’t be used in a script module—this is the equivalent of
FunctionsToExport when publishing a compiled module.

 VariablesToExport holds module-level variables that you want added to the
global scope. This is a good way to publish variables that set things like log file-
names, database connection strings, and so on.

 AliasesToExport holds aliases that you define in your module (using New-
Alias) and that you want exposed when your module is loaded.

 DscResourcesToExport is a special list related to building Desired State Config-
uration (DSC) resource modules. This is a special type of PowerShell tool that
we aren’t covering in this book.

As a note, it’s legal for most of these to just specify *, meaning “export everything.”
Sadly, that doesn’t help PowerShell in a performance sense, because it still forces
PowerShell to open and parse the entire script module in order to see exactly what
“everything” entails. As a best practice, avoid using *, and take the time to explicitly
list exported items.

16.4 Your turn
We’re going to give you a module (as a .psm1 file) and ask you to create a correspond-
ing manifest. This shouldn’t take long!

16.4.1 Start here

The following listing shows the contents of MyTools.psm1, a script module.

Exporting exceptions
You need to be aware of a few exporting exceptions. If you’re creating a script
module, as opposed to a binary, compiled module—which is exporting and which
needs to export variables and aliases—then you must use Export-ModuleMember
at the end of your .psm1 file. There’s no harm in using Export-ModuleMember to
list your functions here as well as in the manifest. You might have a line like this at
the end of your .psm1 file:

Export-modulemember -function Get-Foo,Set-Foo -variable myfoo -alias gf,sf

For the sake of consistency, you might get in the habit of using Export-ModuleMember
and the manifest. PowerShell is a very active product, and you never know when a
future version will allow exporting variables and aliases in a manifest. Cover all your
bases.

165Your turn
function Get-TMIPInfo {
 [CmdletBinding()]
 Param(
 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True)]
 [string[]]$ComputerName
)

 BEGIN {}

 PROCESS {

 ForEach ($comp in $computername) {
 Write-Verbose "Connecting to $comp"
 $s = New-CimSession -ComputerName $comp
 $adapters = Get-NetAdapter -CimSession $s |
 Where Status -ne 'Disconnected'

 ForEach ($adapter in $adapters) {
 Write-Verbose " Interface $($adapter.interfaceindex)"
 $addresses = Get-NetIPAddress -InterfaceIndex
➥ $adapter.InterfaceIndex `
 -CimSession $s

 ForEach ($address in $addresses) {

 $props = @{'ComputerName'=$Comp
 'Index'=$adapter.interfaceindex
 'Name'=$adapter.interfacealias
 'MAC'=$adapter.macaddress
 'IPAddress'=$address.ipaddress}
 New-Object -TypeName PSObject -Property $props

 } #foreach address

 } #adapter

 $s | Remove-CimSession
 } #foreach computer

 } #process

 END {}

} #function

Our assumption is that you’ve saved this as \Documents\WindowsPowerShell\Modules\
MyTools\MyTools.psm1.

16.4.2 Your task

Create a manifest for the MyTools module. In it, do the following:

 Specify at least a version, a description, and an author.
 Specify MyTools.psm1 as the root module.
 Export the Get-TMIPInfo function.

Listing 16.1 MyTools.psm1 script module

166 CHAPTER 16 Filling out a manifest
16.4.3 Our take

We ran this command (we’ve prettied up the formatting here for readability; we typed
it as one long line of text):

New-ModuleManifest -Path MyTools.psd1
 -RootModule ./MyTools.psm1
 -ModuleVersion 1.0.0.0
 -Author 'Jeff and Don'
 -Description 'A test module'
 -FunctionsToExport @('Get-TMIPInfo')

For the sake of the book, we’ve truncated some of the comments. The end result is
something like this:

#
Module manifest for module 'MyModule'
#
Generated by: User
#
Generated on: 6/19/2017
#

@{

Script module or binary module file associated with this manifest.
RootModule = 'MyModule.psm1'

Version number of this module.
ModuleVersion = '1.0'

Supported PSEditions
CompatiblePSEditions = @()

ID used to uniquely identify this module
GUID = 'ea4d119b-6bcf-4540-a389-67cf7d261726'

Author of this module
Author = 'User'

Company or vendor of this module
CompanyName = 'Unknown'

Copyright statement for this module
Copyright = '(c) 2017 User. All rights reserved.'

Description of the functionality provided by this module
Description = ''

Minimum version of the Windows PowerShell engine required by this module
PowerShellVersion = ''

Name of the Windows PowerShell host required by this module
PowerShellHostName = ''

Minimum version of the Windows PowerShell host required by this module
PowerShellHostVersion = ''

Minimum version of Microsoft .NET Framework required by this module. ...
DotNetFrameworkVersion = ''

167Your turn
Minimum version of the common language runtime (CLR) required by this ...
CLRVersion = ''

Processor architecture (None, X86, Amd64) required by this module
ProcessorArchitecture = ''

Modules that must be imported into the global environment prior ...
RequiredModules = @()

Assemblies that must be loaded prior to importing this module
RequiredAssemblies = @()

Script files (.ps1) that are run in the caller's environment prior...
ScriptsToProcess = @()

Type files (.ps1xml) to be loaded when importing this module
TypesToProcess = @()

Format files (.ps1xml) to be loaded when importing this module
FormatsToProcess = @()

Modules to import as nested modules of the module specified in ...
NestedModules = @()

Functions to export from this module, for best performance, do not ...
FunctionsToExport = @('Get-TMIIPInfo')

Cmdlets to export from this module, for best performance, do not ...
CmdletsToExport = '*'

Variables to export from this module
VariablesToExport = '*'

Aliases to export from this module, for best performance, do not ...
AliasesToExport = '*'

DSC resources to export from this module
DscResourcesToExport = @()

List of all modules packaged with this module
ModuleList = @()

List of all files packaged with this module
FileList = @()

Private data to pass to the module specified in ...
PrivateData = @{

 PSData = @{

 # Tags applied to this module. These help with module discovery ...
 # Tags = @()

 # A URL to the license for this module.
 # LicenseUri = ''

 # A URL to the main website for this project.
 # ProjectUri = ''

 # A URL to an icon representing this module.
 # IconUri = ''

168 CHAPTER 16 Filling out a manifest
 # ReleaseNotes of this module
 # ReleaseNotes = ''

 } # End of PSData hashtable

} # End of PrivateData hashtable

HelpInfo URI of this module
HelpInfoURI = ''

Default prefix for commands exported from this module. Override ...
DefaultCommandPrefix = ''

}

Part 3

Grown-up scripting

Scripting and toolmaking are like many other forms of art. As a kid, you
may have played with finger paints, and that’s about the level of scripting you’ve
reached at this point. If you’re going to be a professional toolmaker, then you’ll
need to refine and evolve your technique—and that’s what chapters 17–22 of the
book will help you do.

Changing your brain
when it comes to scripting
Let’s take a quick break from the narrative. In the preceding chapters, we’ve
focused a lot on building tools that conform to PowerShell’s native patterns and
practices. That’s all well and good, but sometimes you can make a point best hit
home by showing its opposite.

NOTE This is our special Bonus Double Chapter, meaning it’s likely to
take you longer than an hour to make it through the whole thing. Obvi-
ously, take as long as you need. Really try to embrace the why of what we’re
writing here, and if it all doesn’t make sense, hop on the forums at Power-
Shell.org and ask a question. Honestly, the concepts in this chapter are the
most important ones in the book—everything else is just technique for
implementing these concepts. If you plan to move on to more advanced
scripting (perhaps as covered in The PowerShell Scripting & Toolmaking Book
(https://leanpub.com/powershell-scripting-toolmaking), then you have to
have an absolute headlock on what this chapter is preaching.

17.1 Example 1
Let’s consider a forum post from PowerShell.org, which we’ve referenced with per-
mission from its original author. The goals were to list the sizes of each user home
folder and to show any orphan folders—that is, folders that no longer corre-
sponded to an AD user. The author posted this code.

$UserNames = Get-ADUser -Filter * -SearchBase `
"OU=NAME_OF_OU_WITH_USERS3,OU=NAME_OF_OU_WITH_USERS2,

Listing 17.1 Typical PowerShell
171

https://leanpub.com/powershell-scripting-toolmaking
http://PowerShell.org
http://PowerShell.org
http://PowerShell.org

172 CHAPTER 17 Changing your brain when it comes to scripting
OU=NAME_OF_OU_WITH_USERS1,DC=DOMAIN_NAME,DC=COUNTRY_CODE" |
Select -ExpandProperty samaccountname

$UserRegex = ($UserNames | ForEach{[RegEx]::Escape($_)}) -join "|"

$myArray = (Get-ChildItem -Path "\\file2\Felles\Home*" -Directory |
Where{$_.Name -notmatch $UserRegex})

#$myArray

foreach ($mapper in $myArray) {
 #Param ($mapper = $(Throw "no folder name specified"))

 # calculate folder size and recurse as needed
 $size = 0
 Foreach ($file in $(ls $mapper -recurse)){
 If (-not ($file.psiscontainer)) {
 $size += $file.length
 }
 }

 # return the value and go back to caller
 echo $size
}

17.1.1 The critique

Now, this isn’t in any way meant to beat up on the original author. People learn differ-
ent things at different times and arrive to their code’s condition through a variety of
paths. Let’s just take the code for what it is:

 If we were asked to solve this problem, we’d write this as two functions, not as
one script. One function would sum up folder sizes, which is a totally useful
function in a lot of scenarios. Another would figure out which folders were
orphans.

 We’d also take a more PowerShell-native approach, avoiding things like echo.
Instead, we’d have a goal of outputting objects, because those could be piped to
commands that made them into CSV files, HTML reports, and lots more. On
most systems, echo should be an alias for Write-Output, which means objects
will be written to the pipeline. But using the alias doesn’t make that clear, and
someone could have used echo as an alias for Write-Host—and then you’d be
back to not having objects in the pipeline.

 We’d probably make more use of native PowerShell commands, because they
tend to run a smidge faster than a script.

 We’d try to keep our functions as generic and non-context-specific as possible,
to maximize reuse. This means no hard-coded names or paths.

One thing to remember is that, in Windows, folders don’t have a size. You have to instead
get all the files within that folder and add up their sizes.

173Example 1
17.1.2 Our take

Here’s our first function. We aren’t going to explain each line in detail. You can (and
should) try the code yourself. Notice that, if a folder doesn’t exist, we’re explicitly out-
putting an empty object.

function Get-FolderSize {
 [CmdletBinding()]
 Param(
 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string[]]$Path
)
 BEGIN {}
 PROCESS {
 ForEach ($folder in $path) {
 Write-Verbose "Checking $folder"
 if (Test-Path -Path $folder) {
 Write-Verbose " + Path exists"
 $params = @{'Path'=$folder
 'Recurse'=$true
 'File'=$true}
 $measure = Get-ChildItem @params |
 Measure-Object -Property Length -Sum
 [pscustomobject]@{'Path'=$folder
 'Files'=$measure.count
 'Bytes'=$measure.sum}
 } else {
 Write-Verbose " - Path does not exist"
 [pscustomobject]@{'Path'=$folder
 'Files'=0
 'Bytes'=0}
 } #if folder exists
 } #foreach
 } #PROCESS
 END {}
} #function

The results of our first function look like this:

Path Files Bytes
---- ----- -----
Z:\Documents\GitHub\ToolmakingBook\code 35 44101
z:\documents\github\toolmakingbook\manuscript 55 63679159
z:\nope 0 0

Obviously, we could pipe that to Select-Object to turn the Bytes count into another
unit, like megabytes, but we feel it’s important for our tool to output the lowest-level
information possible, to maximize its utility. Notice that we didn’t test this against
home folders per se; we want this to be a generic folder-size-adding-up function. Later,

Listing 17.2 Get-FolderSize

174 CHAPTER 17 Changing your brain when it comes to scripting
we’ll write a controller script to put this function to a more specific business use, like
summing up user home folder sizes.

 Now we’re going to write a second function to deal with orphan folders. This will
incorporate our Get-FolderSize function. We’re assuming that this function has already
been loaded into the PowerShell session. This particular tool is a bit more task-specific,
because it needs to understand our need to identify orphaned home folders.

function Get-UserHomeFolderInfo {
 [CmdletBinding()]
 Param(
 [Parameter(Mandatory=$True)]
 [string]$HomeRootPath
)
 BEGIN {}
 PROCESS {
 Write-Verbose "Enumerating $HomeRootPath"
 $params = @{'Path'=$HomeRootPath
 'Directory'=$True}
 ForEach ($folder in (Get-ChildItem @params)) {

 Write-Verbose "Checking $($folder.name)"
 $params = @{'Identity'=$folder.name
 'ErrorAction'='SilentlyContinue'}
 $user = Get-ADUser @params

 if ($user) {
 Write-Verbose " + User exists"
 $result = Get-FolderSize -Path $folder.fullname
 [pscustomobject]@{'User'=$folder.name
 'Path'=$folder.fullname
 'Files'=$result.files
 'Bytes'=$result.bytes
 'Status'='OK'}
 } else {
 Write-Verbose " - User does not exist"
 [pscustomobject]@{'User'=$folder.name
 'Path'=$folder.fullname
 'Files'=0
 'Bytes'=0
 'Status'="Orphan"}
 } #if user exists

 } #foreach
 } #PROCESS
 END {}
}

Here, we’re taking a root location that contains home folders, going through them
one at a time, and checking to see whether a corresponding AD user exists. If one
doesn’t, we output a blank object with an Orphan Status property. We could easily

Listing 17.3 Get-UserHomeFolderInfo

Loops through each
child folder in the root

Tests for an Active
Directory user account

Runs
our Get-
FolderSize
function

175Example 2
use Where-Object to filter for just the orphans, so that someone could deal with
those. If the user does exist, we use Get-FolderSize to get the size info and output the
same kind of object. This time, the object is fully populated, with an OK status. The
idea of writing out the same kind of object either way ensures consistent output and
maximizes the reusability of the information. You’ll find this code in the download-
able samples at www.manning.com/books/learn-powershell-scripting-in-a-month-of-
lunches, under this chapter’s folder.

17.1.3 Thinking beyond the literal

The idea here is to take a given task and break it down. In the original forum post, the
source data was "all users in AD," which created some challenges regarding finding
orphan folders. In our approach, we use the actual list of folders as the source data
and check each one against AD. That won’t tell us if we have users without home fold-
ers, but that wasn’t a stated problem (and, in most cases, we expect users would bring
it up to the help desk if they didn’t have a home folder).

 We took the one generic portion of the task and wrote it out as its own tool: Get-
FolderSize. We made sure it was useful on its own, accepting pipeline input and
such, even though that’s not how Get-UserHomeFolderInfo uses it. We incorporated
verbose output that will make each function a bit easier to follow and debug, if nec-
essary. And, because we’ve used functions, each task is tightly scoped and does just
one thing, making each function less complex, easier to debug, and easier to under-
stand and maintain.

17.2 Example 2
Microsoft MVP Robert Pearman wrote an excellent script that sends an email
reminder to users whose AD passwords are about to expire. The original script is at
http://mng.bz/9X9C; we’re reprinting it in listing 17.4 (with Robert’s permission) in
case the online version changes and evolves at some point. This is a big script; we rec-
ommend opening it in VS Code from this book’s downloadable sample code.

NOTE We think this is a great script. It’s just not quite a tool, in our view. We
wanted to take the opportunity to show a robust, really useful script, and
explain what we’d do to tool-ify it. So please don’t see this as beating up on
Robert’s excellent work!

<#
.Synopsis
 Script to Automated Email Reminders when Users Passwords due to Expire.
.DESCRIPTION
 Script to Automated Email Reminders when Users Passwords due to Expire.
 Robert Pearman (Cloud & Data Center MVP)
 WindowsServerEssentials.com
 Version 2.3 March 2017

Listing 17.4 PasswordChangeNotification.ps1

Comment help block

http://mng.bz/9X9C
http://www.manning.com/books/learn-powershell-scripting-in-a-month-of-lunches
http://www.manning.com/books/learn-powershell-scripting-in-a-month-of-lunches

176 CHAPTER 17 Changing your brain when it comes to scripting
 Requires: Windows PowerShell Module for Active Directory
 For assistance and ideas, visit the TechNet Gallery Q&A Page.
http://gallery.technet.microsoft.com/Password-Expiry-Email-
177c3e27/view/Discussions#content
.EXAMPLE
 PasswordChangeNotification.ps1 -smtpServer mail.domain.com -expireInDays
21 -from "IT Support <support@domain.com>" -Logging -LogPath "c:\logFiles"
-testing -testRecipient support@domain.com
.EXAMPLE
 PasswordChangeNotification.ps1 -smtpServer mail.domain.com -expireInDays
21 -from "IT Support <support@domain.com>"
#>
param(
 # $smtpServer Enter Your SMTP Server Hostname or IP Address
 [Parameter(Mandatory=$True,Position=0)]
 [ValidateNotNull()]
 [string]$smtpServer,
 # Notify Users if Expiry Less than X Days
 [Parameter(Mandatory=$True,Position=1)]
 [ValidateNotNull()]
 [int]$expireInDays,
 # From Address, eg "IT Support <support@domain.com>"
 [Parameter(Mandatory=$True,Position=2)]
 [ValidateNotNull()]
 [string]$from,
 [Parameter(Position=3)]
 [switch]$logging,
 # Log File Path
 [Parameter(Position=4)]
 [string]$logPath,
 # Testing Enabled
 [Parameter(Position=5)]
 [switch]$testing,
 # Test Recipient, eg recipient@domain.com
 [Parameter(Position=6)]
 [string]$testRecipient,
 [Parameter(Position=7)]
 [switch]$status
)

$start = [datetime]::Now
$midnight = $start.Date.AddDays(1)
$timeToMidnight = New-TimeSpan -Start $start -end $midnight.Date
$midnight2 = $start.Date.AddDays(2)
$timeToMidnight2 = New-TimeSpan -Start $start -end $midnight2.Date
System Settings
$textEncoding = [System.Text.Encoding]::UTF8
$today = $start
End System Settings

Get Users From AD who are Enabled, Passwords Expire and are Not Currently
➥ Expired
Import-Module ActiveDirectory
$padVal = "20"
Write-Output "Script Loaded"

A few lines
of code to
calculate
tomorrow

177Example 2
Write-Output "*** Settings Summary ***"
$smtpServerLabel = "SMTP Server".PadRight($padVal," ")
$expireInDaysLabel = "Expire in Days".PadRight($padVal," ")
$fromLabel = "From".PadRight($padVal," ")
$testLabel = "Testing".PadRight($padVal," ")
$testRecipientLabel = "Test Recipient".PadRight($padVal," ")
$logLabel = "Logging".PadRight($padVal," ")
$logPathLabel = "Log Path".PadRight($padVal," ")
if($testing)
{
 if(($testRecipient) -eq $null)
 {
 Write-Output "No Test Recipient Specified"
 Exit
 }
}
if($logging)
{
 if(($logPath) -eq $null)
 {
 $logPath = $PSScriptRoot
 }
}
Write-Output "$smtpServerLabel : $smtpServer"
Write-Output "$expireInDaysLabel : $expireInDays"
Write-Output "$fromLabel : $from"
Write-Output "$logLabel : $logging"
Write-Output "$logPathLabel : $logPath"
Write-Output "$testLabel : $testing"
Write-Output "$testRecipientLabel : $testRecipient"
Write-Output "*".PadRight(25,"*")

$users = get-aduser -filter {(Enabled -eq $true) -and (PasswordNeverExpires
➥ -eq $false)} -properties Name, PasswordNeverExpires, PasswordExpired,
➥ PasswordLastSet, EmailAddress | where { $_.passwordexpired -eq $false }
Count Users
$usersCount = ($users | Measure-Object).Count
Write-Output "Found $usersCount User Objects"
Collect Domain Password Policy Information
➥ $defaultMaxPasswordAge = (Get-ADDefaultDomainPasswordPolicy
➥ -ErrorAction Stop).MaxPasswordAge.Days
Write-Output "Domain Default Password Age: $defaultMaxPasswordAge"
Collect Users
$colUsers = @()
Process Each User for Password Expiry
Write-Output "Process User Objects"
foreach ($user in $users)
{
 $Name = $user.Name
 $emailaddress = $user.emailaddress
 $passwordSetDate = $user.PasswordLastSet
 $samAccountName = $user.SamAccountName
 $pwdLastSet = $user.PasswordLastSet
 # Check for Fine Grained Password
 $maxPasswordAge = $defaultMaxPasswordAge

Gets users
from AD

Counts the
number
of user
accounts

Collects users
into an array

178 CHAPTER 17 Changing your brain when it comes to scripting

 $PasswordPol = (Get-AduserResultantPasswordPolicy $user)
 if (($PasswordPol) -ne $null)
 {
 $maxPasswordAge = ($PasswordPol).MaxPasswordAge.Days
 }
 # Create User Object
 $userObj = New-Object System.Object
 $expireson = $pwdLastSet.AddDays($maxPasswordAge)
 $daysToExpire = New-TimeSpan -Start $today -End $Expireson
 # Round Up or Down
 if(($daysToExpire.Days -eq "0") -and ($daysToExpire.TotalHours -le
➥ $timeToMidnight.TotalHours))
 {
 $userObj | Add-Member -Type NoteProperty -Name UserMessage -Value
➥ "today."
 }
 if(($daysToExpire.Days -eq "0") -and ($daysToExpire.TotalHours -gt
➥ $timeToMidnight.TotalHours) -or ($daysToExpire.Days -eq "1") -and

($daysToExpire.TotalHours -le $timeToMidnight2.TotalHours))
 {
 $userObj | Add-Member -Type NoteProperty -Name UserMessage -Value
➥ "tomorrow."
 }
 if(($daysToExpire.Days -ge "1") -and ($daysToExpire.TotalHours -gt
➥ $timeToMidnight2.TotalHours))
 {
 $days = $daysToExpire.TotalDays
 $days = [math]::Round($days)
 $userObj | Add-Member -Type NoteProperty -Name UserMessage -Value
➥ "in $days days."
 }
 $daysToExpire = [math]::Round($daysToExpire.TotalDays)
 $userObj | Add-Member -Type NoteProperty -Name UserName -Value
➥ $samAccountName
 $userObj | Add-Member -Type NoteProperty -Name Name -Value $Name
 $userObj | Add-Member -Type NoteProperty -Name EmailAddress -Value
➥ $emailAddress
 $userObj | Add-Member -Type NoteProperty -Name PasswordSet -Value
➥ $pwdLastSet
 $userObj | Add-Member -Type NoteProperty -Name DaysToExpire -Value
➥ $daysToExpire
 $userObj | Add-Member -Type NoteProperty -Name ExpiresOn -Value
➥ $expiresOn
 $colUsers += $userObj
}
$colUsersCount = ($colUsers | Measure-Object).Count
Write-Output "$colusersCount Users processed"
$notifyUsers = $colUsers | where { $_.DaysToExpire -le $expireInDays}
$notifiedUsers = @()
$notifyCount = ($notifyUsers | Measure-Object).Count
Write-Output "$notifyCount Users to notify"
foreach ($user in $notifyUsers)
{
 # Email Address

Creates
a custom
object

179Example 2

 $samAccountName = $user.UserName
 $emailAddress = $user.EmailAddress
 # Set Greeting Message
 $name = $user.Name
 $messageDays = $user.UserMessage
 # Subject Setting
 $subject="Your password will expire $messageDays"
 # Email Body Set Here, Note You can use HTML, including Images.
 $body ="

 Dear $name,
 <p> Your Password will expire $messageDays

 To change your password on a PC press CTRL ALT Delete and choose Change
➥ Password

 <p> If you are using a MAC you can now change your password via Web
➥ Mail.

 Login to Web Mail click on
➥ Options, then Change Password.

 <p> Don't forget to Update the password on your Mobile Devices as well!
 <p>Thanks,

 </P>
 IT Support
 <a href=""mailto:support@domain.com""?Subject=Password Expiry
➥ Assistance"">support@domain.com | 0123 456 78910
 "

 # If Testing Is Enabled - Email Administrator
 if($testing)
 {
 $emailaddress = $testRecipient
 } # End Testing

 # If a user has no email address listed
 if(($emailaddress) -eq $null)
 {
 $emailaddress = $testRecipient
 }# End No Valid Email
 $samLabel = $samAccountName.PadRight($padVal," ")
 if($status)
 {
 Write-Output "Sending Email : $samLabel : $emailAddress"
 }
 try
 {
 Send-Mailmessage -smtpServer $smtpServer -from $from -to
➥ $emailaddress -subject $subject -body $body -bodyasHTML -priority High
➥ -Encoding $textEncoding -ErrorAction Stop
 $user | Add-Member -MemberType NoteProperty -Name SendMail -Value
➥ "OK"
 }
 catch
 {
 $errorMessage = $_.exception.Message
 if($status)

Sends an
email to
a user

180 CHAPTER 17 Changing your brain when it comes to scripting
 {
 $errorMessage
 }
 $user | Add-Member -MemberType NoteProperty -Name SendMail -Value
➥ $errorMessage
 }
 $notifiedUsers += $user
}
if($logging)
{
 # Create Log File
 Write-Output "Creating Log File"
 $day = $today.Day
 $month = $today.Month
 $year = $today.Year
 $date = "$day-$month-$year"
 $logFileName = "$date-PasswordLog.csv"
 if(!($logPath.EndsWith("\")))
 {
 $logFile = $logPath + "\"
 }
 $logFile = $logFile + $logFileName
 Write-Output "Log Output: $logfile"
 $notifiedUsers | Export-CSV $logFile
}
$notifiedUsers | select
➥ UserName,Name,EmailAddress,PasswordSet,DaysToExpire,ExpiresOn | sort
➥ DaystoExpire | FT -autoSize

$stop = [datetime]::Now
$runTime = New-TimeSpan $start $stop
Write-Output "Script Runtime: $runtime"
End

17.2.1 The walkthrough

Let’s run through this script in major sections, to get you situated with what’s happen-
ing. We’ll repeat a few lines of code inline so that you don’t have to keep flipping back
and forth:

1 The script starts with a serviceable comment-based help block, which is excel-
lent to see. It’s a little minimal; although the author has taken the time to
describe what each parameter does in inline comments, those would have
been much more useful as .PARAMETER elements in the comment-based help.
As is, the help display PowerShell generates wouldn’t describe the parameters
at all. Also, the Param() block lacks the [CmdletBinding()] attribute, denying
us easy use of several features—such as verbose output—which will become
must-haves later.

2 The next block calculates some date values so that it knows when tomorrow is.
This is so it can remind only users whose passwords are about to expire soon,
and not spam everyone who has a password expiration coming up a couple of

Onscreen
summary

181Example 2
months from now. Our concern is that this is more or less a dedicated task; in
the spirit of toolmaking, we’d have created a standalone function to perform
this task, and had it return whatever bits of data we needed. Here’s that block
of code:

$start = [datetime]::Now
$midnight = $start.Date.AddDays(1)
$timeToMidnight = New-TimeSpan -Start $start -end $midnight.Date
$midnight2 = $start.Date.AddDays(2)
$timeToMidnight2 = New-TimeSpan -Start $start -end $midnight2.Date

3 Next, as clearly indicated in the inline comment, the script gets users from AD
who are enabled, whose passwords expire, and who aren’t currently expired.
Our first red flag here is the use of Write-Output to generate what is essentially
verbose output; we’d switch those to Write-Verbose. Actual script output
should only be objects, containing whatever data the script is meant to pass
along to something else. In this case, that might be user objects representing
the users we’ve sent reminders to. Or, depending on your needs, you might not
produce any output.

4 The actual act of getting the users comes after a big mess of code that sets up
text labels. We’ll deal with that in a bit; the main code is a nice one-liner that
uses Get-ADUser. We’re fine with this, although we’d probably format it a bit dif-
ferently for readability. This is real tool using ; there’s no discrete code here, just
a bunch of commands strung together to perform a task:

$users = get-aduser -filter {(Enabled -eq $true)
➥ -and (PasswordNeverExpires -eq $false)}
➥ properties Name,PasswordNeverExpires,PasswordExpired,PasswordLastSet,
➥ EmailAddress | where { $_.passwordexpired -eq $false}

5 The next line of code—as indicated in the inline comment—counts the users.
We probably wouldn’t do this—at least, not this way. The count is being taken
so that the script can immediately produce more verbose output, albeit still to
the pipeline. We love the idea of verbose output (and maybe we’d do this with
that in mind), but we’d use Write-Verbose.

6 A little further on is a comment for Collect Users, along with a new, empty
array—presumably to store users in:

#Collect Users
$colUsers = @()

This is a major red flag for us. It suggests that we’re going to do the pipeline’s
job for it. That is, rather than emitting output objects to the pipeline one at a
time, which is the PowerShell way, we’re going to amass them in a collection
and do something with them later. In this case, because the proper output pipe-
line is already being used for verbose output, this makes sense. But if we moved

182 CHAPTER 17 Changing your brain when it comes to scripting
the verbose output to the actual Verbose pipe, then we’d free up the real pipe-
line to receive output objects—rather than wasting memory by accumulating
them in an array.

7 A bunch of calculations then ensue, with the end result being a $userObj vari-
able that contains a custom object:

 $userObj | Add-Member -Type NoteProperty -Name UserName -Value
➥ $samAccountName
 $userObj | Add-Member -Type NoteProperty -Name Name -Value $Name
 $userObj | Add-Member -Type NoteProperty -Name EmailAddress -Value
➥ $emailAddress
 $userObj | Add-Member -Type NoteProperty -Name PasswordSet -Value
➥ $pwdLastSet
 $userObj | Add-Member -Type NoteProperty -Name DaysToExpire -Value
➥ $daysToExpire
 $userObj | Add-Member -Type NoteProperty -Name ExpiresOn -Value
➥ $expiresOn
 $colUsers += $userObj

Custom objects are great—we’re fans!—and although this script uses a wordier
syntax to create and populate those objects (Add-Member versus constructing a
hash table as we’ve shown you in this book), it works fine. We’re just sad that the
resulting object is appended to an array rather than being output to the pipe-
line right away.

8 With users in hand, or rather in an array, the script then goes on to send email
notifications to those users.

9 At the end, the list of notified users is sent to Format-Table, resulting in an
onscreen display that can’t be redirected anywhere else. Just before that, the list
of notified users is exported to a CSV file. This is a double effort—we’d proba-
bly have constructed it differently to avoid the repeated work.

17.2.2 Our take

This is a good example of what we call a monolithic script. That is, it’s doing more than
one task as part of a larger process, but it’s performing all of those tasks in a single
sequence, rather than the tasks being modularized into tools. This kind of script takes
a good amount of work to write and can be tough to debug because there’s so much
going on purely in memory. What we like to do with toolmaking is create smaller, self-
contained tools, each of which represents a kind of boundary. That way, each tool can
be written and tested individually, making both coding and debugging a lot easier.

 We’d start with a simple function to get the users who are enabled and who have
an expiring password (that is, not set to never expire). This is a copy-and-paste opera-
tion to modularize this tiny bit of code into its own world:

Function Get-EnabledNonExpiringUser {
 Get-ADUser -filter {(Enabled -eq $true) -and `
 (PasswordNeverExpires -eq $false)} `

183Example 2
 -properties Name, PasswordNeverExpires, `
 PasswordExpired, PasswordLastSet, EmailAddress |
 Where-Object { $_.passwordexpired -eq $false }
}

We’re not proud of those backticks, by the way—they’re to make this fit neatly on the
printed page. In a real script, you’d put everything on one line.

 We’d next go down to the Process Each User section of the script and create a new
function. This would accept the User objects from the previous function, and, rather
than constructing a brand-new object, add the data we need to the existing objects.
We’d use the verb Add:

Function Add-ExpiryDataToUser {
 [CmdletBinding()]
 Param(
 [Paramter(ValueFromPipeline=$True)]
 [object[]]$InputObject

)
 BEGIN {

 $defaultMaxPasswordAge = `
 (Get-ADDefaultDomainPasswordPolicy `
 -ErrorAction Stop).MaxPasswordAge.Days
 Write-Verbose "Max password age $defaultMaxPasswordAge"

 }
 PROCESS {
 ForEach ($user in $inputObject) {

 # determine max password age for user
 # this will either be based on their policy or
 # on the domain defaut if no user specific policy exists
 $passPolicy = Get-ADUserResultantPasswordPolicy $user
 if (($passPolicy) –ne $null) {
 $maxAge = ($passPolicy).MaxPasswordAge.Days
 } else {
 $maxAge = $defaultMaxPasswordAge
 }

 # calculate and round days to expire;
 # create and append text message to
 # user object
 $expiresOn = `
 $user.passwordLastSet.AddDays($maxPasswordAge)
 $daysToExpire = New-TimeSpan -Start $today -End $expiresOn

 if (($daysToExpire.Days -eq "0") -and `
 ($daysToExpire.TotalHours -le $timeToMidnight.TotalHours)) {
 $user | Add-Member -Type NoteProperty `
 -Name UserMessage `
 -Value "today."
 }
 if (($daysToExpire.Days -eq "0") -and `
 ($daysToExpire.TotalHours -gt $timeToMidnight.TotalHours) `

184 CHAPTER 17 Changing your brain when it comes to scripting
 -or `
 ($daysToExpire.Days -eq "1") -and `
 ($daysToExpire.TotalHours -le $timeToMidnight2.TotalHours)) {
 $user | Add-Member -Type NoteProperty `
 -Name UserMessage `
 -Value "tomorrow."
 }
 if (($daysToExpire.Days -ge "1") -and `
 ($daysToExpire.TotalHours -gt $timeToMidnight2.TotalHours)) {
 $days = $daysToExpire.TotalDays
 $days = [math]::Round($days)
 $user | Add-Member -Type NoteProperty `
 -Name UserMessage `
 -Value "in $days days."
 }

 $user | Add-Member -Type NoteProperty `
 -Name DaysToExpire `
 -Value $daysToExpire
 $user | Add-Member -Type NoteProperty `
 -Name ExpiresOn `
 -value $expiresOn

 Write-Output $user

 } #foreach
 } #process
} #function

Notice that the original script creates a new, generic object and basically copies over
a bunch of properties from the original object. We’ve skipped the extra work and
added the new properties to the original user object. At this point, we can run some-
thing like this:

Get-EnabledNonExpiringUser |
Add-ExpiryDataToUser |
Where-Object { $_.DaysToExpire –lt 2 }

We’re on our way to accomplishing what the original script does: Identify all users who
will expire in—for this example—less than two days. But what we’ve done is much
more easily tested and debugged; each of these two functions does one thing, and
each of those things is small and discrete. We’ve switched some output to verbose mes-
sages (and could easily add more if we wanted to).

 Next, we’d probably create a Send-PasswordExpiryMessageToUser function that
accepts the output of our Where-Object command and sends an appropriate message,
relying in part on the UserMessage property we created:

function Send-PasswordExpiryMessageToUser {
 [CmdletBinding()]
 Param(
 [Paramter(ValueFromPipeline=$True)]
 [object[]]$InputObject,

Adds properties
to the user object

185Example 2
 [Parameter(Mandatory=$True)]
 [string]$From,

 [Parameter(Mandatory=$True)]
 [string]$smtpServer
)
 BEGIN {

 }
 PROCESS {
 ForEach ($user in $InputObject) {
 $subject = "Password expires $($user.UserMessage)"
 $body = @"
 Dear $($user.name),

 Your password will expire $($user.UserMessage).
 Please change it.

 Love, the Help Desk.
"@

 if ($PSCmdlet.ShouldProcess("send expiry notice",`
 "$($user.name) who expires $($user.usermessage)")) {
 Send-MailMessage -smtpServer $smtpServer `
 -from $from `
 -to $user.emailaddress `
 -subject $subject `
 -body $body `
 -priority High
 }

 Write-Output $user

 } #foreach
 } #process
} #function

Note that this doesn’t exactly duplicate the original script. We shortened the mail mes-
sage a lot, due to space considerations in the book, and, for clarity, we dropped the
error-handling bits. But notice how we switched to using subexpressions within the
strings, instead of copying the properties of $user to standalone variables. Also notice
how we moved from using a $testing parameter to supporting the native –WhatIf
and –Confirm parameters, by using $psCmdlet.ShouldProcess() to display a useful
“here’s what I’m about to do” message. And we’re outputting the original user object,
so that a subsequent command can use that data.

 At this point, running the process looks like this:

Get-EnabledNonExpiringUser |
Add-ExpiryDataToUser |
Where-Object { $_.DaysToExpire –lt 2 } |
Send-PasswordExpiryMessageToUser |
Export-CSV report.csv

In this specific example, the notified users would be logged to a CSV. Going back and
adding error handling to the mail-sending part would be nice; we’d only output those

186 CHAPTER 17 Changing your brain when it comes to scripting
users whose email attempt didn’t result in an error. Want onscreen display as well as a
log file? Sure:

Get-EnabledNonExpiringUser |
Add-ExpiryDataToUser |
Where-Object { $_.DaysToExpire –lt 2 } |
Send-PasswordExpiryMessageToUser |
Tee-Object –FilePath notificationLog.txt |
Format-Table -AutoSize

Our entire controller script has essentially become a big one-liner, connecting half a
dozen tools to each other in sequence. This is how you know you’ve hit the jackpot
with your toolmaking efforts.

 The following listing shows all of our new code, for your convenience.

Function Get-EnabledNonExpiringUser {
 Get-ADUser -filter {(Enabled -eq $true) -and `
 (PasswordNeverExpires -eq $false)} `
 -properties Name, PasswordNeverExpires, `
 PasswordExpired, PasswordLastSet, EmailAddress |
 Where-Object { $_.passwordexpired -eq $false }
}

Function Add-ExpiryDataToUser {
 [CmdletBinding()]
 Param(
 [Paramter(ValueFromPipeline=$True)]
 [object[]]$InputObject

)
 BEGIN {

 $defaultMaxPasswordAge = `
 (Get-ADDefaultDomainPasswordPolicy `
 -ErrorAction Stop).MaxPasswordAge.Days
 Write-Verbose "Max password age $defaultMaxPasswordAge"

 }
 PROCESS {
 ForEach ($user in $inputObject) {

 # determine max password age for user
 # this will either be based on their policy or
 # on the domain defaut if no user specific policy exists
 $passPolicy = Get-ADUserResultantPasswordPolicy $user
 if (($passPolicy) –ne $null) {
 $maxAge = ($passPolicy).MaxPasswordAge.Days
 } else {
 $maxAge = $defaultMaxPasswordAge
 }

 # calculate and round days to expire;
 # create and append text message to

Listing 17.5 Revised password expiration code

187Example 2
 # user object
 $expiresOn = `
 $user.passwordLastSet.AddDays($maxPasswordAge)
 $daysToExpire = New-TimeSpan -Start $today -End $expiresOn

 if (($daysToExpire.Days -eq "0") -and `
 ($daysToExpire.TotalHours -le $timeToMidnight.TotalHours)) {
 $user | Add-Member -Type NoteProperty -Name UserMessage -Value

"today."
 }
 if (($daysToExpire.Days -eq "0") -and `
 ($daysToExpire.TotalHours -gt $timeToMidnight.TotalHours) `
 -or `
 ($daysToExpire.Days -eq "1") -and `
 ($daysToExpire.TotalHours -le $timeToMidnight2.TotalHours)) {
 $user | Add-Member -Type NoteProperty -Name UserMessage -Value

"tomorrow."
 }
 if (($daysToExpire.Days -ge "1") -and `
 ($daysToExpire.TotalHours -gt $timeToMidnight2.TotalHours)) {
 $days = $daysToExpire.TotalDays
 $days = [math]::Round($days)
 $user | Add-Member -Type NoteProperty -Name UserMessage -Value "in

$days days."
 }

 $user | Add-Member -Type NoteProperty -Name DaysToExpire -Value
$daysToExpire

 $user | Add-Member -Type NoteProperty -Name ExpiresOn -value $expiresOn

 Write-Output $user

 } #foreach
 } #process
} #function

function Send-PasswordExpiryMessageToUser {
 [CmdletBinding()]
 Param(
 [Paramter(ValueFromPipeline=$True)]
 [object[]]$InputObject,

 [Parameter(Mandatory=$True)]
 [string]$From,

 [Parameter(Mandatory=$True)]
 [string]$smtpServer
)
 BEGIN {

 }
 PROCESS {
 ForEach ($user in $InputObject) {
 $subject = "Password expires $($user.UserMessage)"
 $body = @"
 Dear $($user.name),

188 CHAPTER 17 Changing your brain when it comes to scripting
 Your password will expire $($user.UserMessage).
 Please change it.

 Love, the Help Desk.
"@

 if ($PSCmdlet.ShouldProcess("send expiry notice",`
 "$($user.name) who expires $($user.usermessage)")) {
 Send-MailMessage -smtpServer $smtpServer `
 -from $from `
 -to $user.emailaddress `
 -subject $subject `
 -body $body `
 -priority High
 }

 Write-Output $user
 } #foreach
 } #process
} #function

WARNING This exercise was mainly about how we’d reorganize things. We
haven’t tested this extensively, and we’ve omitted a few things from the origi-
nal script due to space considerations in the book. If you decide to finish this,
do so with our blessing, and please share your results with the original script’s
author!

17.3 Your turn
Let’s get your brain engaged in a "change it to the right way" exercise.

17.3.1 Start here

Consider this example (with apologies for the line-wrapping—it’s unavoidable and
part of the problem we want to illustrate).

foreach ($domain in (Get-ADForest).domains) {
 Get-ADDomainController -filter * -server $domain |
 sort hostname |
 foreach {
 Get-CimInstance -ClassName Win32_ComputerSystem -ComputerName
➥ $psitem.Hostname |
 select @{name="DomainController";Expression={$_.PSComputerName}},
Manufacturer, Model,@{Name="TotalPhysicalMemory(GB)";Expression={ "{0:N0}"
-f ($_.TotalPhysicalMemory / 1Gb) }}
 }
}

This isn’t bad code by any stretch. But it’s limited. Let’s say that one day, you wanted its
output on the screen—done! It’ll work fine. But tomorrow, you want the output in a
CSV file. Oh, and the day after, your boss wants it in an HTML report. What would you
change to enable all of those scenarios?

Listing 17.6 Start here

189Your turn
17.3.2 Your task

Rewrite the code to conform to native PowerShell patterns and practices we’ve dis-
cussed to this point. You don’t need to get fancy and add error handling or anything,
although you’re free to do so if you want.

17.3.3 Our take

Here’s how we approached this.

function Get-DiskInfo {
 foreach ($domain in (Get-ADForest).domains) {
 $hosts = Get-ADDomainController -filter * -server $domain |
 Sort-Object -Prop hostname
 ForEach ($host in $hosts) {
 $cs = Get-CimInstance -ClassName Win32_ComputerSystem -ComputerName
➥ $host
 $props = @{'ComputerName' = $host
 'DomainController' = $host
 'Manufacturer' = $cs.manufacturer
 'Model' = $cs.model
 'TotalPhysicalMemory(GB)'=$cs.totalphysicalmemory / 1GB}
 New-Object -Type PSObject -Prop $props
 } #foreach $host
 } #foreach $domain
} #function

Some notes

 We switched to the ForEach scripting construct because it tends to run a little
faster, and we find it easier to read.

 Rather than using Select-Object, we manually constructed an object. We find
this easier to read.

 We added both a DomainController property and a ComputerName property. The
original code produced DomainController, but we always like to have Computer-
Name because it lines up better in the pipeline with -ComputerName parameters.

 Most important, we encased the code in a function. This makes it easier to pipe
the output to Export-CSV, ConvertTo-HTML, and so on.

Even our solution isn’t perfect, because it’s still doing two things: getting computer
accounts from AD and getting disk information. In a proper production environment,
we might write a tool to get domain computer accounts, perhaps based on some criteria.
Then we’d modify this function to handle only the disk information. If we planned the
properties and parameters right, we could use these hypothetical commands like this:

Get-CompanyServers | Get-DiskInfo
Get-CompanyServers | Get-DiskInfo | Convertto-html -title "DiskInfo Report"

We’ll leave it to you to play with this further.

Listing 17.7 Our solution

Professional-grade
scripting
We’re almost ready to call you a professional toolmaker in PowerShell. Almost.
Before you go around adding “PowerShell Toolmaker” to your resume, we think
you should make certain that you’re exhibiting the behaviors and patterns of a true
pro. With that in mind, this chapter is a list of the most common things to do and
to avoid if you want to be seen as an upstanding, right-minded professional in the
PowerShell world.

18.1 Using source control
Professionals worry about their code. They want it to last. They want it to survive
them, should they move on to another organization. They want their code to be
taken seriously, and they want to be able to recover if they make a mistake. That’s
where source control—the subject of chapter 19—comes in.

 A lot of people view source control the same way they do their tax forms. We
mean, you’re supposed to file your taxes, right? But nobody likes to, and a few people
don’t, so maybe it’s okay if I don’t. But source control in these modern times is
pretty frictionless. The best tools (looking at you, VS Code) provide integration
with some of the best source control options (Microsoft Team Foundation Server
[TFS], Git, and so on), so working with source control isn’t much more difficult
than pressing Ctrl-S to save your file and then pressing a key to commit those
changes to source control.

 IT managers know what source control is, because all developers are using it all
the time. Source control, in their minds, is associated with a professional-level cod-
ing effort; and when you use source control, you’ll elevate yourself to that level in
their minds.
190

191Spelling it out
 What are the upsides of source control?

 When you’re working on a team of more than one person, source control helps
make sure you all know who’s changing what, so you don’t step on each other
as often.

 Source control lets you revisit earlier versions of your code, perhaps to undo
a mistake you’ve made or refer to a past approach that might have current
applicability.

 Source control can act as a backup system, because the source control reposi-
tory is usually part of your organization’s overall backup and recovery plan
(make sure that’s the case).

 Source control makes it much easier to share your code with others and to con-
trol their input. For example, community-based code projects (like PowerShell,
now that it’s open source) couldn’t exist without source control.

The best source control systems—like TFS and GitHub—incorporate code manage-
ment tools as well, like the ability to track user-submitted issues or bugs, discuss prob-
lems and possible solutions, and publish point-in-time releases for others to download
and use.

18.2 Spelling it out
When you’re in the console, PowerShell’s aliases, and the ability to truncate or omit
parameter names, can be a huge time saver. We watch PowerShell inventor Jeffrey
Snover do demonstrations, and it’s all icm { ps } –com cl2 and stuff, and it looks amaz-
ing—and inscrutable. Seriously, someone has to stand with him during demos and
explain what he typed.

 Again, if it’s at the console and it’s just for you, fine. Type what you remember, and
save time. We do. But a script is a permanent artifact. It needs to be more readable.
Spell out every command name, spell out every parameter name, and use parameter
names rather than relying on positional values. Your script will be vastly easier for
someone else to read—and, as Don often says, in a few months you’ll be that “someone
else,” and Future You will appreciate the effort that Past You put into spelling every-
thing out.

 It doesn’t even need to take much effort. Are you in front of a computer? Look at
the Tab key. It’s huge, right? Almost the size of the Shift key, and twice the size of any
of the letter keys. It’s like it wants to be pressed. In PowerShell, it’s your key to spelling
things out with less effort: Use Tab completion. You’ll get spelled-out everything, and
you’ll reduce your bug count, because the computer won’t ever typo a command or
parameter name. Double win!

NOTE We’re not the only ones who make a big deal about this point. If
you’re using VS Code, you’ll be bombarded with red squiggly indicators that
something is wrong. That’s because the PowerShell extension in VS Code
relies on the PSScriptAnalyzer tool, which includes rule checking for aliases.

192 CHAPTER 18 Professional-grade scripting
It probably won’t detect if you use a positional parameter, but it will recognize
if you use gsv instead of Get-Service. So write your code the right way from
the beginning.

18.3 Commenting your code
Don’t forget to add inline comments to your code. Now, let’s not be silly. We don’t
mean this:

Query Win32_ComputerSystem object from WMI
Get-WMIObject –Class Win32_ComputerSystem

Gosh, is that what Get-WmiObject does? Wow. No, we’re not saying you need a line-by-
line, blow-by-blow accounting of what your code does. But provide some broad strokes.
For example

see if –NewUser was specified and modify arguments
We use StartPassword either way
If ($PSBoundParameters.ContainsKey('NewUser')) {
 $args = @{'StartName'=$NewUser
 'StartPassword'=$NewPassword}
} Else {
 $args = @{'StartPassword'=$NewPassword}
 Write-Warning "Not setting a new user name"
}

Here, we’ve used a comment to provide a high-level description of what’s happening
and why. Comments document what you were thinking more than anything else, and
that’s useful to someone else—and again, “someone else” will be you a few months
from now.

 We’re also broadly okay with using verbose statements in lieu of some inline com-
ments. For example

Write-Verbose "Closing connection to $computer"
$session | Remove-CimSession

Removing a CimSession is pretty obvious from the command name, so this doesn’t
warrant an inline comment. But the verbose statement does help document the pro-
gression of the script, and here it does so in a way that the verbose output benefits
someone using the script as well as someone reading the script.

NOTE So, um, where are all the inline comments in this book? We’ve omitted
a lot of them, because we want to reduce the amount of space we’re taking
up, and to help you focus on the commands. The examples we use in the
book aren’t, from a practices-and-patterns perspective, the same code we’d
deploy in a production environment.

193Formatting your code
18.4 Formatting your code
There is zero excuse for mangled-looking code. The following listing is unfortunately
an all-too-realistic example of what we often see people post in online forums. Given
the line-wrapping in this book, you probably can’t read it; but look at the download-
able sample code file, and you’ll find it just as hard to read.

function Set-TMServiceLogon {
[CmdletBinding()]
Param(
[Parameter(Mandatory=$True,ValueFromPipelineByPropertyName=$True)][string]$
➥ ServiceName,
[Parameter(Mandatory=$True,ValueFromPipeline=$True,ValueFromPipelineByPrope
➥ rtyName=$True)][string[]]$ComputerName,
[Parameter(ValueFromPipelineByPropertyName=$True)]
[string]$NewPassword,[Parameter(ValueFromPipelineByPropertyName=$True)]
[string]$NewUser,
[string]$ErrorLogFilePath
)
BEGIN{}
PROCESS{
 ForEach ($computer in $ComputerName) {
 Do {
 Write-Verbose "Connect to $computer on WS-MAN"
 $protocol = "Wsman"
 Try
{
 $option = New-CimSessionOption -Protocol $protocol
 $session = New-CimSession -SessionOption $option –
➥ ComputerName $Computer -ErrorAction Stop
 If ($PSBoundParameters.ContainsKey('NewUser'))
{
 $args = @{'StartName'=$NewUser
 'StartPassword'=$NewPassword}
 }
Else {
 $args = @{'StartPassword'=$NewPassword}
 Write-Warning "Not setting a new user name"
 }
 Write-Verbose "Setting $servicename on $computer"
 $params = @{'CimSession'=$session
 'MethodName'='Change'
 'Query'="SELECT * FROM Win32_Service WHERE Name = '$ServiceName'"
 'Arguments'=$args}
 $ret = Invoke-CimMethod @params
 switch ($ret.ReturnValue) {
 0 { $status = "Success" }
 22 { $status = "Invalid Account" }
 Default { $status = "Failed: $($ret.ReturnValue)" }
 }
 $props = @{'ComputerName'=$computer;'Status'=$status}
 $obj = New-Object -TypeName PSObject -Property $props

Listing 18.1 Code that is not formatted

194 CHAPTER 18 Professional-grade scripting
 Write-Output $obj
 Write-Verbose "Closing connection to $computer"
 $session | Remove-CimSession
 } Catch {
 # change protocol - if we've tried both
 # and logging was specified, log the computer
 Switch ($protocol) {
 'Wsman' { $protocol = 'Dcom' }
 'Dcom' {
 $protocol = 'Stop'
 if
➥ ($PSBoundParameters.ContainsKey('ErrorLogFilePath')) {
 Write-Warning "$computer failed; logged to
➥ $ErrorLogFilePath"
 $computer | Out-File $ErrorLogFilePath -Append
 } }
 }
}
 } Until ($protocol -eq 'Stop')
 } }
END{}
}

Go ahead—make sense of that. We dare you. Contrast that to the next listing, which is
the same code, doing the same thing.

function Set-TMServiceLogon {
 [CmdletBinding()]
 Param(
 [Parameter(Mandatory=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string]$ServiceName,

 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string[]]$ComputerName,

 [Parameter(ValueFromPipelineByPropertyName=$True)]
 [string]$NewPassword,

 [Parameter(ValueFromPipelineByPropertyName=$True)]
 [string]$NewUser,

 [string]$ErrorLogFilePath
)

BEGIN{}

PROCESS{
 ForEach ($computer in $ComputerName) {

 Do {
 Write-Verbose "Connect to $computer on WS-MAN"
 $protocol = "Wsman"

Listing 18.2 Code that is formatted

Spacing for
readability

195Formatting your code
 Try {
 $option = New-CimSessionOption -Protocol $protocol
 $session = New-CimSession -SessionOption $option –
➥ ComputerName $Computer -ErrorAction Stop

 If ($PSBoundParameters.ContainsKey('NewUser')) {
 $args = @{'StartName'= $NewUser
 'StartPassword' = $NewPassword}
 } Else {
 $args = @{'StartPassword' = $NewPassword}
 Write-Warning "Not setting a new user name"
 }

 Write-Verbose "Setting $servicename on $computer"
 $params = @{'CimSession'=$session
 'MethodName'='Change'
 'Query'="SELECT * FROM Win32_Service WHERE Name
➥ = '$ServiceName'"
 'Arguments'=$args}
 $ret = Invoke-CimMethod @params

 switch ($ret.ReturnValue) {
 0 { $status = "Success" }
 22 { $status = "Invalid Account" }
 Default { $status = "Failed: $($ret.ReturnValue)" }
 }

 $props = @{'ComputerName'=$computer
 'Status'=$status}
 $obj = New-Object -TypeName PSObject -Property $props
 Write-Output $obj

 Write-Verbose "Closing connection to $computer"
 $session | Remove-CimSession
 } Catch {
 # change protocol - if we've tried both
 # and logging was specified, log the computer
 Switch ($protocol) {
 'Wsman' { $protocol = 'Dcom' }
 'Dcom' {
 $protocol = 'Stop'

 if
➥ ($PSBoundParameters.ContainsKey('ErrorLogFilePath')) {
 Write-Warning "$computer failed; logged to
➥ $ErrorLogFilePath"
 $computer | Out-File $ErrorLogFilePath -Append
 } # if logging
 }
 } #switch

 } # try/catch
 } Until ($protocol -eq 'Stop')
 } #foreach
} #PROCESS

END{}

} #function

Neatly
structured
hash tables

Comments for
closing braces

196 CHAPTER 18 Professional-grade scripting
Outside of this book—where, admittedly, the longer lines still get a little janky, this
code is a pleasure to read. You can clearly see where each block of code begins and
ends. Look specifically for these things:

 When we close a construct with }, we add a comment indicating what it closes.
 We use blank lines to separate chunks of code, so we can see specific functional

units more easily.
 We indent four spaces inside each construct.
 Hash tables are constructed with one key-value pair per line, all left-aligned to

the same point.

If you’re using VS Code (which, again, we suggest you do), it offers a quick-and-easy
reformat option that will take care of all of this for you! It even tries to format as you type,
to avoid messiness in the first place. That’s the value of a good editor—which in the
case of VS Code, costs you zero.

18.5 Using meaningful non-Hungarian variable names
Variable names should give you a clear idea of what’s in them. Yes, sometimes in this
book we’ve used $c or $s, but that’s to save horizontal space on the page. A variable
that contains a bunch of disk drive objects should be called something like $drives
(plural helps remind you that it’s a collection, not a single object). A username should
be in $username, not $un. The only exception is that variables used to declare
parameters should follow parameter-naming conventions, which call for singular
nouns: $ComputerName, not $ComputerNames.

 Also avoid the Hungarian notation style of variable naming that came with VBScript
back in the 1990s. Yes, the 90s. Think about that before you create variables called
$strComputer and $intCounter. Those were needed in VBScript because it was a
weakly typed, non-object-oriented language; PowerShell has stronger typing and is
object-oriented. A string is an object of the type System.String; there’s no need to
add str to the variable name to remind you of that. Under PowerShell, everything
would technically be $obj anyway, so Hungarian style is meaningless and makes you
look out of touch with current trends.

18.6 Avoiding aliases
Aside from a few super-common cases like using Where instead of Where-Object, try to
avoid aliases in scripts. Where is fine; it’s clear what’s happening. ForEach is less fine,
because it’s easy to visually confuse it with ForEach the language construct; use
ForEach-Object if you mean to use the command. Particularly avoid hard-to-interpret
aliases like icm and gwmi; spell out the command names, and forget aliases entirely in
a script.

197Avoiding Write-Host and Read-Host
18.7 Avoiding awkward pipelines
Scripts are meant to be structured, permanent artifacts. That’s different from the con-
sole, where you’re using one-off commands to get something done quickly, and you’ll
then forget them. For example

Gwmi Win32_operatingsystem | select *,@{n='RAM';e={gwmi
➥ win32_computersystem | select –exp totalphysicalmemory} | % { $_ |
➥ Out-File temp.txt –Append ; $_.Reboot() }

Don’t run this unless you’re feeling brave; but look at how difficult it is to read and fol-
low, with its nested expressions, semicolon-delimited commands, and so on. Again—
this is fine for the command line as an ad hoc, one-off thing. But not for a script.

 We don’t automatically avoid all use of the pipeline in a script; after all, it’s one of
PowerShell’s more PowerFul features. We’d just go about it differently:

$os = Get-WmiObject –Class Win32_OperatingSystem
$cs = Get-WmiObject –Class Win32_ComputerSystem
$os | Add-Member –MemberType NoteProperty –Name RAM –Value
➥ $cs.TotalPhysicalMemory
$os | Out-File temp.txt –Append
$os.Reboot()

Again, we don’t recommend running that unless you’re brave, but you can see that it’s
easier to follow. Each line does one thing, building on the previous lines. And this
isn’t the only correct restructure of the original awkward example; there are a dozen
ways you could do this, have it accomplish the same thing in the same amount of time,
and be more structured and easier to read. The most clever one-liners in PowerShell
are often the hardest to unpack and make sense of—don’t subject your scripts to that
extra mental overhead.

18.8 Providing help
This is an easy one, and in chapter 14 we showed you a great way to provide a mini-
mally viable product (MVP) when it comes to documenting your code. We get it, doc-
umenting is boring. Do it anyway. You know how upset you get every time you try to
look up the help for a command, and it’s either anemic or missing? Yeah. Don’t be
that coder.

 Go one better, and learn how to use PlatyPS, an open source project used by the
PowerShell team to generate external (that is, not comment-based) help.

18.9 Avoiding Write-Host and Read-Host
This issue has gotten more confusing as PowerShell has evolved, but the basic maxim
still stands: Every time you use Write-Host for output, God kills a puppy. The moral is
that the –Host commands are designed to interact with human eyeballs and fingers.
In other words, they tie your command to a specific context—human interaction—
which is what tools are supposed to avoid. There are, of course, exceptions.

198 CHAPTER 18 Professional-grade scripting
 First, if you’re writing a controller script whose purpose is to engage tools in a human-
interactive context, then obviously the –Host commands are fine. They’re also fine if
you’re writing a tool that uses the verb Show, which is one of the official PowerShell
verbs. That verb—which you might use in a command like Show-Menu—implies
human interaction and so again implies a specific context.

 Second, in PowerShell v5 and later, Write-Host in particular becomes a sort of
shortcut to the new Write-Information channel, which alleviates nearly all the
context-tying concerns that used to go along with Write-Host. We still don’t think this
saves any puppies, though; if you mean to use the Information channel, use Write-
Information. Using Write-Host makes it clear that you don’t know Write-Information
exists and you’re using Write-Host for all the wrong reasons.

NOTE The other counterargument we get all the time is, “But I need Write-
Host to show the user what’s happening!” On one hand, this is a valid con-
cern. If you have a script or tool that requires some processing time or is run-
ning through a complex process, it can be useful to provide feedback. But in
that case, take the time to learn how to use the Write-Progress cmdlet
instead of Write-Host.

18.10 Sticking with single quotes
In PowerShell, you should always use single quotation marks to delimit strings unless
you explicitly need the magical properties of double quotes, meaning the ability to
include variables:

$message = "The computer name is $computername"

or subexpressions:

$message = "Yesterday was $((Get-Date).AddDays(-1))"

If you’re not used to using single quotes as string delimiters, this takes some habit-
breaking (we can’t guarantee that we’ve followed this rule throughout the book), but
it’s worth the effort.

18.11 Not polluting the global scope
Do not jam your own variables into the global scope. It’s a horrible practice, it makes
debugging scripts vastly more difficult, and, in several situations, it can result in unre-
liable and inconsistent script execution (as with a host that manages the global scope
differently, such as Workflow). Modules are free to export variables, which will end up
in the global scope, but which PowerShell can manage as part of the module lifecycle.
Nothing else should be dumped into the global scope.

199Being secure
18.12 Being flexible
We hope it goes without saying, but we will anyway: Avoid hard-coding values and ref-
erences. Don’t create a function with a hard-coded value for your Exchange server in
your code. Instead, create a nonmandatory parameter, and set a default value. This
way, you can easily run your function with the default values, but in the rare situation
where you need to specify a different server, you’ll be able to handle that as well.
Don’t write a command that looks like this:

Function Get-ServerStuff {
$server = 'Mail01'
...
}

Sure, you may think you’ll never need to specify a different value, but that might
change tomorrow. Pros write tools with flexibility in mind:

Function Get-ServerStuff {
Param ([string]$Computername = 'Mail01')
...
}

You have to plan not only for how a user might run your tool today, but also for how
the tool might change in the future.

18.13 Being secure
On a related note (which, again, we hope is obvious), you should never hard-code creden-
tials into your code. No username, and for goodness’ sake no plain-text passwords.
Learn how to use the [pscredential] object as a parameter:

Function Get-Diskspace {
[cmdletbinding()]
Param([string]$Computername,[pscredential]$Credential)

$PSBoundParameters.Add("classname","win32_logicaldisk")
$PSBoundParameters.Add("filter","drivetype=3")
Get-WmiObject @PSBoundParameters |
Select PSComputername,DeviceID,Size,Freespace

}

The user of this function can run it like this:

Get-diskspace -computername S1 -credential company\administrator

in which case they will be prompted for a password. Or pass a credential object:

$cred = get-credential company\administrator
Get-diskspace -computername S1 -credential $cred

Writing code that uses the pscredential object maintains security and flexibility.

200 CHAPTER 18 Professional-grade scripting
18.14 Striving for elegance
This last point is a bit esoteric; we added it because Jeff has an artsy background. But it
makes sense once you think about it, and it will make even more sense the more time
you spend looking at other people’s code. This is one of those situations where “you’ll
know it when you see it.”

 As you develop tools, hopefully following the suggestions in this book, try to
achieve a level of simplicity or elegance. We think you’ll find that scripts that are ele-
gant are easier to read and debug, and they often perform better. One concept that
can help is to avoid repeating code.

 Let’s say you’re creating code that will get system information from WMI using
Get-CimInstance based on a variable value. Your initial stab might look like this:

Switch ($value) {

"OS" {
 $data = Get-Ciminstance -class win32_operatingsystem -computername
➥ $computername | Select PSComputername,Version,Caption
}

"CS" {
 $data = Get-Ciminstance -class win32_computersystem -computername
➥ $computername | Select PSComputername,Model,Manufacturer
}

"CPU" {
 $data = Get-Ciminstance -class win32_processor -computername
➥ $computername | Select PSComputername,CPUID,Name,MaxClockSpeed
}

"Memory" {
 $data = Get-Ciminstance -class win32_physicalmemory -computername
➥ $computername | Select PSComputername,Banklabel,Capacity,Speed
}

}

This will work fine, but there’s a lot of cumbersome copying, pasting, and editing of
code. Contrast that with this example:

$cimparams=@{Computername=$Computername}
$props = @('PSComputername')

Switch ($value) {

'OS' {
 $cimparams.Add('classname','win32_operatingsystem')
 $props+='Version','Caption'
}

'CS' {
 $cimparams.Add('classname','win32_computersystem')
 $props+='Model','Manufacturer'
}

Uses a hash table with
parameters for splatting

Modifies the
parameters
on the fly

201Summary
'CPU' {
 $cimparams.Add('classname','win32_processor')
 $props+='CPUID','Name','MaxClockSpeed'
}

'Memory' {
 $cimparams.Add('classname','win32_physicalmemory')
 $props+='Banklabel','Capacity','Speed'
}

}

$data = Get-CimInstance @cimparams | Select-object -Property $props

Notice the use of a hash table with parameters for Get-CimInstance, which we end up
splatting. This is a great technique for simplifying your code. Granted, you need to
know about hash tables, splatting, and arrays, but this example feels easier to read and
not as heavy-handed.

 We provide a lot of techniques in this book. You’ll have to develop them into an
art. Elegant code will come to you over time, as you gain experience and mastery.
Picasso’s line drawings convey a great deal, with what appears to have been minimal
effort, but it took him years to achieve the level of mastery to make that possible. You
may be writing your code in crayons today, but eventually we want you to be creating
elegant masterpieces.

18.15 Summary
We hope you’re taking this Professional Toolmaker thing to heart and maybe rethink-
ing some of the code you’ve written in the past. Perhaps you’re already reaching for
VS Code to reformat some ugliness or getting into the habit of using Tab completion
to spell out command and parameter names. We also hope you’re excited to read
about source control in the next chapter and are rethinking any bad habits we’ve
touched on in this chapter. We want you to be seen as a pro by your colleagues, bosses,
and peers.

Runs Get-
CimInstance

once

An introduction to
source control with git
One sign of a professional toolmaker is their use of source control. Way back in the
olden days of VBScript, we threw together ad hoc scripts, used them in production,
and then forgot about them. But now that we’re in the world of automation and
DevOps, properly maintaining our PowerShell projects is critical. For many orga-
nizations today, this task falls to git, a source control system first made popular on
Linux (it was invented by Linux’s inventor, Linus Torvalds). We thought it would
be helpful to provide a crash course on git fundamentals so that you can begin
incorporating it into your work. As you might expect, this is a large topic, and
you’ll need to devote some time to learning more than the basics. You may want
to take a look at Learn Git in a Month of Lunches, by Rick Umali (Manning, 2015,
www.manning.com/books/learn-git-in-a-month-of-lunches).

19.1 Why source control?
Source control is a means of keeping track of what changes have been made to a
file, often including a log or documentation that indicates who made a change and
why. Source control also makes it easier to know which is the latest, or more author-
itative, version. Some systems require you to check out a file in order to work on it.
When you’re finished, you can check it in, often with a comment about what you
modified and why. While the file is checked out, only you can work with it, which
may be fine for smaller teams.

 Your organization may already be using something for source control—for
example, you may have heard your dev friends talk about Microsoft Team Founda-
tion Server (TFS), Subversion, or Visual SourceSafe. If so, we suggest tagging along
with your PowerShell toolmaking projects.
202

http://www.manning.com/books/learn-git-in-a-month-of-lunches

203What is git?
WARNING Visual SourceSafe is an ancient Microsoft product that’s long since
deprecated. Hopefully, nobody’s using it in your organization. If they are—
run. Run fast.

19.2 What is git?
Many traditional source control systems are centralized. Often, there’s a centralized
server or database with tightly controlled access. As you can imagine, there’s a fair
amount of overhead for these types of systems. Git, on the other hand, was devel-
oped as a decentralized source control system. It was developed in the Linux world
to help manage source code for the Linux kernel, so it’s pretty robust. In the git par-
adigm, everyone has their own copies of source files that can be periodically merged
and updated.

 Git is primarily a command-line tool with only a handful of basic commands you
need to get started. As you explore the git ecosystem, you’ll find a number of graphi-
cal front ends and even some PowerShell modules that are essentially wrappers to the
git command. We recommend that you stick with the traditional git command-line
tools. Once you’ve built up some mastery, feel free to get some GUI tools if that makes
you feel better. We also recommend learning from the command line, because there’s
a wealth of online information that almost always uses the command line.

 Why use git? Mainly because, once you get used to it, it’s dead easy. A ton of tools
are available to make it even easier. And, because of the way it’s built, it lends itself
very well to highly distributed source control. That means you can keep local copies of
files to work on, but keep the master copies on a protected server, on a web-based
source control service like GitHub.com, and so on. There are even git tools available
for mobile devices running iOS and Android, so you can take your work with you. Per-
haps most important, git has become massively popular in the PowerShell world,
meaning many, many, many community projects—including the source code and doc-
umentation for PowerShell Core itself—are hosted in git (specifically, in the web-
based GitHub.com service). Becoming familiar with git will not only help you with
your own projects, but also help you contribute to community projects and Power-
Shell. If you create your own community projects, hosting them someplace like
GitHub will make it easier to recruit other contributors.

19.2.1 Installing git

To get started, go to https://git-scm.com/downloads, and download the latest Win-
dows client. Run the setup; you should be able to accept all the defaults. The setup
will create an option to launch git in a Linux-like terminal window, or you can use the
traditional Windows console and PowerShell. That’s what we usually use.

https://git-scm.com/downloads
http://GitHub.com
http://GitHub.com

204 CHAPTER 19 An introduction to source control with git
19.2.2 Git basics

After the installation is complete, open a PowerShell window. If you had a session
open when you installed, you’ll need to restart it to detect the change to your path
variable. At a prompt, type the git command to get general usage help:

PS C:\> git
usage: git [--version] [--help] [-C <path>] [-c name=value]
 [--exec-path[=<path>]] [--html-path] [--man-path] [--info-path]
 [-p | --paginate | --no-pager] [--no-replace-objects] [--bare]
 [--git-dir=<path>] [--work-tree=<path>] [--namespace=<name>]
 <command> [<args>]
...

As we go through the basics, we encourage you go to back and look at more detailed
command help. Also, run git help tutorial to open an HTML documentation page.
(You should be able to use your web browser.) On that page, you’ll also see a link to a
user manual that’s definitely worth your time.

 For now, we’ll be using git as a local source control system with you as the primary
user. You’ll need to configure a username and email information:

git config --global user.email "Jeff@globomantics.com"
git config --global user.name "Jeff Hicks"

Later, we’ll get you started on integrating with GitHub so that you can collaborate with
others. If you have GitHub credentials, use them here.

19.3 Repository basics
The first thing you need to do is initialize a git repository. This step essentially tells git
to watch this folder. For your scripting projects, this can be the root directory of your
module. For git demo purposes, we created a new folder called MyPSTool and
changed to it:

PS C:\> mkdir MyPSTool

 Directory: C:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 6/14/2017 3:20 PM MyPSTool
PS C:\> cd .\MyPSTool
PS C:\MyPSTool>

When you run a git command you need to be in the repository. We tend to run git
commands from the root.

205Repository basics
19.3.1 Creating a repository

We want this folder to be managed by git, so we initialize it as a repository:

PS C:\MyPSTool> git init
Initialized empty Git repository in C:/MyPSTool/.git/
PS C:\MyPSTool> dir -Hidden

 Directory: C:\MyPSTool

Mode LastWriteTime Length Name
---- ------------- ------ ----
d--h-- 6/14/2017 3:26 PM .git

This process creates a hidden directory; we shouldn’t ever need to access it or modify
anything in it directly. The initialization process also creates the master branch. Later,
we’ll be able to create additional branches:

PS C:\MyPSTool> git status
On branch master

Initial commit

nothing to commit (create/copy files and use "git add" to track)
PS C:\MyPSTool>

We’ll go ahead and create a few new files and then recheck the status:

PS C:\MyPSTool> git status
On branch master

Initial commit

Untracked files:
 (use "git add <file>..." to include in what will be committed)

 file1.ps1
 file2.ps1

nothing added to commit but untracked files present (use "git add" to
track)

Git maintains several virtual areas for tracking your work. As you can see, git is telling
us that we have untracked files. This means they aren’t part of the source control sys-
tem. Let’s take care of that oversight.

19.3.2 Staging a change

The first step is to stage the changes by adding the files. We can either add individual
files or stage all of them:

PS C:\MyPSTool> git add .

Let’s check the status now:

PS C:\MyPSTool> git status
On branch master

206 CHAPTER 19 An introduction to source control with git
Initial commit

Changes to be committed:
 (use "git rm --cached <file>..." to unstage)

 new file: file1.ps1
 new file: file2.ps1

The files are staged and ready to be committed to the repository. If we modify a staged
file, we’ll need to re-add it:

PS C:\MyPSTool> git status
On branch master

Initial commit

Changes to be committed:
 (use "git rm --cached <file>..." to unstage)

 new file: file1.ps1
 new file: file2.ps1

Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: file2.ps1

PS C:\MyPSTool> git add .\file2.ps1

Next let’s commit the changes.

19.3.3 Committing a change

Committing a change makes it possible to roll back to a given state or undo changes.
If it helps, you can think of your git commits as checkpoints, although they’re more
than that.

 Now we commit the files, including a message comment:

PS C:\MyPSTool> git commit -m 'added basic commands'
[master (root-commit) 038b8f9] added basic commands
 2 files changed, 1 insertion(+)
 create mode 100644 file1.ps1
 create mode 100644 file2.ps1
PS C:\MyPSTool>

You have to enter a commit message; it can be as long as you need it to be. We’ve been
known to create a here-string:1

PS C:\MyPSTool> $m=@"
>> this is a sample longer
>> commit message that can
>> cover more than one line.
>> "@

1 See “Using Windows PowerShell ‘Here-Strings,’” TechNet, http://mng.bz/9r4E.

http://mng.bz/9r4E

207Repository basics
>>
PS C:\MyPSTool> git commit -m $m.

We won’t notice any changes to files in the directory—everything is tracked in the hid-
den .git directory. But we can use git’s log feature to review what has happened:

PS C:\MyPSTool> git log
commit 038b8f9ca8b846e9024532e9bda4e272cd24048b
Author: Jeff Hicks <Jeff@globomantics.com>
Date: Wed Jun 14 16:04:11 2017 -0500

 added basic commands

The username makes it easy to detect (or blame someone for) changes made by a spe-
cific user.

19.3.4 Rolling back a change

Let’s take a quick look at why we’re bothering with all this. We created a simple text
file and committed it to the repository:

PS C:\MyPSTool> set-content -value "don" -Path .\data.txt
PS C:\MyPSTool> git add .
PS C:\MyPSTool> git commit -m "Added data.txt"
[master 9113535] Added data.txt
 1 file changed, 1 insertion(+)
 create mode 100644 data.txt
PS C:\MyPSTool> git log
commit 9113535942d0c35a964deda9e869a0193bb284ad
Author: Jeff Hicks <Jeff@globomantics.com>
Date: Wed Jun 14 16:12:31 2017 -0500

 Added data.txt

commit 038b8f9ca8b846e9024532e9bda4e272cd24048b
Author: Jeff Hicks <Jeff@globomantics.com>
Date: Wed Jun 14 16:04:11 2017 -0500

 added basic commands
PS C:\MyPSTool>

Now we’ll modify the data.txt file and commit that change:

PS C:\MyPSTool> set-content -value "jeff" -Path .\data.txt
PS C:\MyPSTool> get-content .\data.txt
jeff
PS C:\MyPSTool> git commit -a -m "set data.txt to jeff"
[master ee546b7] set data.txt to jeff
 1 file changed, 1 insertion(+), 1 deletion(-)
PS C:\MyPSTool>

This time, we used a shortcut to commit all pending files with –a, skipping the need to
run git -add.

208 CHAPTER 19 An introduction to source control with git
 The log is getting long, so let’s just get the last three entries:

PS C:\MyPSTool> git log -n 3
commit ee546b73819f1ebbc8b7073c79113e0b6adb5c33
Author: Jeff Hicks <Jeff@globomantics.com>
Date: Wed Jun 14 16:15:48 2017 -0500

 set data.txt to jeff

commit 9113535942d0c35a964deda9e869a0193bb284ad
Author: Jeff Hicks <Jeff@globomantics.com>
Date: Wed Jun 14 16:12:31 2017 -0500

 Added data.txt

commit 038b8f9ca8b846e9024532e9bda4e272cd24048b
Author: Jeff Hicks <Jeff@globomantics.com>
Date: Wed Jun 14 16:04:11 2017 -0500

 added basic commands
PS C:\MyPSTool>

The last entered commit is the problem. In this particular situation, we can reset git
like this:

PS C:\MyPSTool> git reset --hard head~1
HEAD is now at 9113535 Added data.txt
PS C:\MyPSTool> get-content .\data.txt
don

Or suppose some time has passed, and we’ve made a number of other commits: In our
test repo, we’ve added new files. Then we realize we need to roll everything back to
this commit:

commit 9113535942d0c35a964deda9e869a0193bb284ad
Author: Jeff Hicks <Jeff@globomantics.com>
Date: Wed Jun 14 16:12:31 2017 -0500

 Added data.txt

We can use the reset option again, but this time specify the commit hash number. You
don’t need the full hash; typically a short hash of the first seven digits will suffice.

 Here’s what the repo looks like now:

PS C:\MyPSTool> dir

 Directory: C:\MyPSTool

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 6/14/2017 4:49 PM 13 data.txt
-a---- 6/14/2017 3:47 PM 48 file1.ps1
-a---- 6/14/2017 3:56 PM 66 file2.ps1
-a---- 6/14/2017 4:50 PM 0 foo.txt
-a---- 6/14/2017 4:46 PM 786 num.txt

209Repository basics
PS C:\MyPSTool> get-content .\data.txt
jeff
jason

Next we want to roll back to commit 9113535942d0c35a964deda9e869a0193bb284ad
using the short hash value:

PS C:\MyPSTool> git reset --hard 9113535
HEAD is now at 9113535 Added data.txt

And here’s what the repo looks like after the change:

PS C:\MyPSTool> get-content .\data.txt
don
PS C:\MyPSTool> dir

 Directory: C:\MyPSTool

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 6/14/2017 5:54 PM 5 data.txt
-a---- 6/14/2017 3:47 PM 48 file1.ps1
-a---- 6/14/2017 3:56 PM 66 file2.ps1

This is a tricky process, and not one you want to undertake all the time, but we wanted
to at least demonstrate the value of source control.

 There are a number of other types of operations you might need to undo, as well.
Check “Git Basics—Undoing Things” at https://git-scm.com/book/id/v2/Git-Basics-
Undoing-Things for some helpful guidance.

19.3.5 Branching and merging

One of the benefits of git that can reduce the need to roll back changes is the concept
of branching. A git branch is a copy of your files, perhaps from a particular commit.
You can work on the files all you want without disturbing your master (production)
copies. When you’re ready, the changes can be merged into your master branch.

 Let’s create a branch called dev in the MyPSTool folder:

PS C:\MyPSTool> git branch dev
PS C:\MyPSTool> git branch
 dev
* master

The asterisk indicates the currently active, or checked out, branch. We’ll switch to the
dev branch and add a file using the PowerShell Set-Content cmdlet:

PS C:\MyPSTool> git checkout dev
git : Switched to branch 'dev'
 + CategoryInfo : NotSpecified: (Switched to branch
➥ 'dev':String) [], RemoteException
 + FullyQualifiedErrorId : NativeCommandError

https://git-scm.com/book/id/v2/Git-Basics-Undoing-Things
https://git-scm.com/book/id/v2/Git-Basics-Undoing-Things

210 CHAPTER 19 An introduction to source control with git
PS C:\MyPSTool> set-content -value '12345' -Path devdata.txt
PS C:\MyPSTool> dir

 Directory: C:\MyPSTool

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 6/14/2017 5:54 PM 5 data.txt
-a---- 6/14/2017 6:03 PM 7 devdata.txt
-a---- 6/14/2017 3:47 PM 48 file1.ps1
-a---- 6/14/2017 3:56 PM 66 file2.ps1

Note that PowerShell will detect the branch change as an error; we can ignore it.
We’ve added a file that we can see in the directory. Let’s add and commit:

PS C:\MyPSTool> git add .
PS C:\MyPSTool> git commit -m "added devdata"
[dev 850ca50] added devdata
 1 file changed, 1 insertion(+)
 create mode 100644 devdata.txt
PS C:\MyPSTool> git status
On branch dev
nothing to commit, working tree clean

But watch what happens if we change back to the master branch (we omitted the error
message):

PS C:\MyPSTool> git checkout master
PS C:\MyPSTool> dir

 Directory: C:\MyPSTool

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 6/14/2017 5:54 PM 5 data.txt
-a---- 6/14/2017 3:47 PM 48 file1.ps1
-a---- 6/14/2017 3:56 PM 66 file2.ps1

The file isn’t there. If we’d made changes to the files we wouldn’t see those either.
 We went ahead and switched back to the dev branch and made a few more

changes, and then went back to master. We’re curious about the differences between
the two branches:

PS C:\MyPSTool> git diff dev
diff --git a/data.txt b/data.txt
index f71dff2..910fbb7 100644
--- a/data.txt
+++ b/data.txt
@@ -1,3 +1 @@
 don
-jeff
-jason
diff --git a/devdata.txt b/devdata.txt
deleted file mode 100644
index e56e15b..0000000

211Using git with VS Code
--- a/devdata.txt
+++ /dev/null
@@ -1 +0,0 @@
-12345

Don’t worry if this doesn’t make sense now—checking differences is optional. But now
we’ll integrate or merge the branches:

PS C:\MyPSTool> dir

 Directory: C:\MyPSTool

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 6/14/2017 6:12 PM 5 data.txt
-a---- 6/14/2017 3:47 PM 48 file1.ps1
-a---- 6/14/2017 3:56 PM 66 file2.ps1

PS C:\MyPSTool> git merge dev
Updating 9113535..b62af84
Fast-forward
 data.txt | 2 ++
 devdata.txt | 1 +
 2 files changed, 3 insertions(+)
 create mode 100644 devdata.txt
PS C:\MyPSTool> dir

 Directory: C:\MyPSTool

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 6/14/2017 6:17 PM 18 data.txt
-a---- 6/14/2017 6:17 PM 7 devdata.txt
-a---- 6/14/2017 3:47 PM 48 file1.ps1
-a---- 6/14/2017 3:56 PM 66 file2.ps1

We included before and after directory listings so you can see the changes.
 Using branches is an ideal way to test and develop new code without worrying

about messing up your current version. If you decide to scrap the code or are finished
with the branch, you can delete it:

PS C:\MyPSTool> git branch -d dev
Deleted branch dev (was b62af84).

19.4 Using git with VS Code
Once you understand the core git concepts such as branches, staging, and commit-
ting, you can begin to take advantage of git features in other products, such as Visual
Studio Code (VS Code). Git support is integrated into the product, and there are a
number of third-party git-related extensions. Of course, you have to have git (v2.0.0 or
later) installed on your computer in order for any of this to work.

 In VS Code, you can open an entire folder, which is handy when you’re developing
a module. If the folder is a git repository, VS Code will detect that. Figure 19.1 shows
our test folder open in VS Code.

212 CHAPTER 19 An introduction to source control with git
VS Code detected the current branch. There’s also an icon to access git-related
actions. We’ll make some changes to files in the repository in the editor.

 When changes are detected, VS Code displays a number over the git icon, indicat-
ing the number of files. Click the icon to see the changes, as shown in figure 19.2.

Git branch

Git menu

Figure 19.1 Git support in Visual Studio Code

Figure 19.2 Git changes in VS Code

213Using git with VS Code
In the console, git shows the changes like this:

PS C:\MyPSTool> git status
On branch master
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: file1.ps1

Untracked files:
 (use "git add <file>..." to include in what will be committed)

 file3.ps1

no changes added to commit (use "git add" and/or "git commit -a")

But you don’t have to use git from the command line. In VS Code, you can hover
the mouse over a file and stage or discard changes on a per-file basis, or you can
do the same for all files by hovering over changes. We staged all the changes, as shown
in figure 19.3. All that remains is to commit the changes by typing a commit message
in the box and clicking the checkmark icon. You can also use the … popup menu to
perform other git actions (see figure 19.4).

You can even check out or create other branches. Access the command palette by
pressing the Ctrl-Shift-P shortcut. In the box, type git, and VS Code will auto-populate
the drop-down list with available commands. Scroll down to the option to create a new
branch, and enter a name for the branch. VS Code will create it and automatically
check it out: You can tell because the lower-left corner will indicate the current
branch. When you’re ready, click the branch name at lower left, and, in the command
palette box, click the name of the branch you want to check out.

Figure 19.3 Staged changes in VS Code

214 CHAPTER 19 An introduction to source control with git
VS Code makes it easy to see changes, undo changes, and compare changes. We’ll let
you explore the other git-related icons in the application.

 But VS Code is primarily an editor, not a graphical git tool, so some operations
require the command line. One example is merging. Yes, you can create a new
branch, modify files, and commit them. But there’s no way to merge branches in the
version of VS Code that’s available as we’re working on this book. Fortunately, you can
use the integrated terminal to run git commands (see figure 19.5).

TIP You can discover much more about VS Code and source control integra-
tion at https://code.visualstudio.com/docs/editor/versioncontrol.

Figure 19.4 Other git options

https://code.visualstudio.com/docs/editor/versioncontrol

215Integrating with GitHub
19.5 Integrating with GitHub
The other cool git-related tool is GitHub. This is a web-based git repository hosting
service with its own set of features. Basic access is free, and paid accounts are available
for advanced features like private repositories. You technically don’t have to have git
installed on your computer, but many people do so that they can clone an online
repository locally, make changes locally, and push them back to GitHub. This is also
how a lot of collaboration is happening today. If you’re curious, check out these links:

 https://github.com/jdhitsolutions
 https://github.com/powershellorg
 https://github.com/devops-collective-inc
 https://github.com/powershell

Integrating git with GitHub, especially when you start cloning other repositories and
making changes via pull requests, can be confusing and intimidating. But we wanted
to give you some basic exposure to how you can use GitHub with your work.

 Suppose that, on GitHub, you want to create a copy of the MyPSTool project
you’ve been working with locally. This is a good place to maintain master code while
you develop and revise locally. And if other people need to work on the project, they
can clone their own copy of the repository to their desktop.

 For the sake of simplicity, we’re going to use Jeff’s GitHub repository (https://github
.com/jdhitsolutions), which, as an added benefit, means you can clone the repo and
try things yourself. This also means we’ve modified the username and email in our git
configuration to match Jeff’s GitHub account. We’re assuming that when you sign up
for GitHub (which is free, by the way), you’ll use the same names as you do locally, or
vice versa.

Figure 19.5 Git commands
from the VS Code terminal

https://github.com/jdhitsolutions
https://github.com/powershellorg
https://github.com/devops-collective-inc
https://github.com/powershell
https://github.com/jdhitsolutions
https://github.com/jdhitsolutions
https://github.com/jdhitsolutions

216 CHAPTER 19 An introduction to source control with git
 There are two ways to integrate GitHub with a local git project, and which you
choose ultimately comes down to where you’re starting from. In our case, we already
have a local repo that we want to push to GitHub. In GitHub, we’ll create a new public
repository; or you can opt for a private repo if you have a paid account, by clicking the
+ icon at upper right. From the menu, select New Repository (see figure 19.6).

It isn’t necessarily required, but we recommend using the same name as your local
folder. Feel free to add a description. In this case, you don’t need to add a readme file
or anything else, because you’ll be using an existing local repository.

 On the next screen, GitHub provides the code you need, depending on your situa-
tion. In our case, we want to push an existing repo from the command line. We’ll use
these commands from the root of the local folder:

PS C:\MyPSTool> git remote add origin
➥ https://github.com/jdhitsolutions/MyPSTool.git
PS C:\MyPSTool> git push -u origin master
Counting objects: 17, done.
Delta compression using up to 2 threads.
Compressing objects: 100% (12/12), done.
Writing objects: 100% (17/17), 1.46 KiB | 0 bytes/s, done.
Total 17 (delta 2), reused 0 (delta 0)
remote: Resolving deltas: 100% (2/2), done.
To https://github.com/jdhitsolutions/MyPSTool.git
 * [new branch] master -> master
Branch master set up to track remote branch master from origin.

Figure 19.6 Creating a GitHub repository

Adds a remote
link to GitHub

Pushes the master
branch to the remote

217Integrating with GitHub
You can check the remote configuration like this:

PS C:\MyPSTool> git remote
Origin

or have more verbose detail:

PS C:\MyPSTool> git remote -v
origin https://github.com/jdhitsolutions/MyPSTool.git (fetch)
origin https://github.com/jdhitsolutions/MyPSTool.git (push)

In GitHub, you can now see the repository with the most current files from the local
folder, as shown in figure 19.7.

You could make changes with the editor in GitHub, but we’ll assume that you’ll make
changes locally. Use the local git commands as you normally would, such as commit-
ting files:

PS C:\MyPSTool> git commit -m 'new changes'
[master 737445d] new changes
 3 files changed, 9 insertions(+), 1 deletion(-)
 create mode 100644 file4.ps1

The most recently
added files

Figure 19.7 The local repo is now on GitHub.

218 CHAPTER 19 An introduction to source control with git
But now, the next time you check the status, git tells you that you aren’t in synch with
the GitHub repo:

PS C:\MyPSTool> git status
On branch master
Your branch is ahead of 'origin/master' by 1 commit.
 (use "git push" to publish your local commits)
nothing to commit, working tree clean

It even provides instructions by telling you what to use!

PS C:\MyPSTool> git push
Counting objects: 5, done.
Delta compression using up to 2 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (5/5), 600 bytes | 0 bytes/s, done.
Total 5 (delta 0), reused 0 (delta 0)
To https://github.com/jdhitsolutions/MyPSTool.git
 abeeecd..737445d master -> master

If you go back to the browser and refresh, you’ll see the changes.
 If you or a collaborator modify files in GitHub, you have to manually check and

pull those changes down. Running git status won’t tell you that remote files have
changed:

PS C:\MyPSTool> git status
On branch master
Your branch is up-to-date with 'origin/master'.
nothing to commit, working tree clean

You’ll need to fetch and pull:

PS C:\MyPSTool> git fetch
remote: Counting objects: 6, done.
remote: Compressing objects: 100% (5/5), done.
remote: Total 6 (delta 2), reused 0 (delta 0), pack-reused 0
Unpacking objects: 100% (6/6), done.
From https://github.com/jdhitsolutions/MyPSTool
 737445d..01f65d7 master -> origin/master

The fetch retrieves remote changes. If you just get the prompt, then there are no
changes. But if something comes back when you fetch, you need to pull the files from
the remote repository:

PS C:\MyPSTool> git pull
Updating 737445d..01f65d7
Fast-forward
 data.txt | 1 -
 file1.ps1 | 2 +-
 2 files changed, 1 insertion(+), 2 deletions(-)
PS C:\MyPSTool>

219Summary
These are the changes we made in GitHub. Once again, the local and remote reposi-
tories are in synch.

 The other way you can go is to start your project on GitHub first and then clone it
locally. Follow the same steps to add a new repository in GitHub; we added one with a
readme and license that skips the page with the code commands. Then click Clone Or
Download, and copy the link to the clipboard.

 In PowerShell, set your location to the parent directory of where you want to cre-
ate the repo. For our demonstration, we created a GitHub repo for a SharePoint tool-
set we’re planning to build (well, not really). We wanted the local repo to be under
C:\scripts, so we made sure we were in that location before running the git clone
command:

PS C:\scripts> git clone
https://github.com/jdhitsolutions/sharepointtools.git

Cloning into 'sharepointtools'...
remote: Counting objects: 4, done.
remote: Compressing objects: 100% (3/3), done.
remote: Total 4 (delta 0), reused 0 (delta 0), pack-reused 0
Unpacking objects: 100% (4/4), done.

We then changed to the new repo to see the new files:

PS C:\scripts> cd .\sharepointtools\
PS C:\scripts\sharepointtools> dir

 Directory: C:\scripts\sharepointtools

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 6/19/2017 2:59 PM 1088 LICENSE
-a---- 6/19/2017 2:59 PM 44 README.md

From here on, we used the same steps we showed you.

TRY IT NOW We don’t have any exercises for this topic. Using git is something
you have to do on your own. We encourage you to install git on your test box.
Create a folder, and start playing with the git commands. Experience will be
the best teacher. Fortunately, if you run into a problem, a wealth of informa-
tion and tips are available online.

19.6 Summary
We don’t care what type of source or version control system you use, but we encourage
you to use something. Git is a good choice because it’s widely used, there’s an incredible
amount of online help and references, and it generally seems to be what all the cool
kids are using these days. Git is a technology that’s like a foreign language—you won’t
gain any proficiency unless you use it all the time.

220 CHAPTER 19 An introduction to source control with git
 You don’t have to do anything with GitHub, but it’s a handy collaboration tool,
and, if nothing else, a good off-site location. Your company may already have a corpo-
rate GitHub account you can use or a private repository server that offers the same
functionality.

Pestering your script
As we move into a DevOps-y world, one of the things you’ll need to start thinking
about is how you’ll test your scripts. Here’s the deal: Nobody likes a broken script in
production. And although you might run a few tests on your script, you—or some-
one else—might also modify your script at some point, necessitating a retest. Or,
you might find some odd condition under which your script fails—well, you cer-
tainly don’t want to forget to test that condition again in the future, do you? In this
chapter, we’ll talk about automated unit testing for PowerShell scripts.

20.1 The vision
Here’s where we want to get you:

1 You write some code, or modify some old code.
2 You check your code into a source control repository.
3 The repository triggers a continuous integration pipeline. Usually incorporat-

ing third-party tools (TeamCity is the one used on PowerShell.org’s free
build service, for example), the pipeline builds out a virtual machine to test
your script. The pipeline copies your script into the virtual machine and runs
several automated tests. If the tests fail, you get an email telling you what
happened.

4 If the tests pass, your code is deployed to a deployment repository (maybe
PowerShellGallery.com, or maybe a private repo), making it available for
production.

Step 3 is what we call The Miracle, as in, “You check in your code, The Miracle
occurs, and your code is deployed.” Step 3 is entirely automated—and every tool
221

http://PowerShell.org

222 CHAPTER 20 Pestering your script
you need to make step 3 happen exists today. But the bit you have to contribute to
The Miracle is a way of automatically testing your code. That way, any time you revise
your code, The Miracle can quickly retest it, make sure it’s working, and deploy it—or
bounce it back to you for fixes.

20.2 Problems with manual testing
We’re sure that you’ve manually tested scripts before—possibly even as you wrote
scripts for this book. And that’s fine—you should definitely test your code as you go.
But there are some problems with manual testing:

 You’re lazy. So are we. You’re not going to run every possible test every time
through. And it’ll always be the one test you didn’t run that would have caught
the error you just made in your code.

 It’s time-consuming. Even if you’re not flat-out lazy, manual testing takes time
and effort that could be better spent elsewhere.

 It doesn’t tend to learn. It’s not like you have a huge list of tests you know you
need to run; you’re probably doing what we do, and thinking, “Well, I’ll run it
with parameters one time and pipe some stuff to it another time, and that’s
probably good.” If you fix a problem, you might test that specific problem right
then, but you might or might not retest that specific problem in the future.

 It’s manual. You can’t achieve The Miracle with manual testing. Remember,
PowerShell is all about automation—why should testing be excluded from that?

20.3 Benefits of automated testing
Automated testing, on the other hand, rocks—mainly because it’s automatic, and also
because it learns. If you run across a weird condition that broke your code one time,
you add a test for that condition to your test script, and then you’ll never forget to test
that weird condition again. Automated tests, therefore, serve as a kind of documented
institutional memory. Even if someone else modifies your script, and they don’t know
about that weird condition, the automated test will have their back and make sure the
weird condition gets tested.

 Automated testing can even move you to a world of test-driven development
(TDD). Let’s say you decide to add a new feature to a command. Rather than break-
ing out the command’s script and modifying it, you first write a few tests to test the pro-
posed new feature. Those tests essentially describe how you want the new feature to work, so
they serve as a kind of functional specification. Initially, the tests will fail, because you
haven’t coded up the new feature yet. But then you start coding the new feature, and
you keep coding until all the tests pass. If you did a good job on the tests, then you’ll
know your feature is working correctly.

20.4 Introducing Pester
Pester (PowerShell Tester, sort of) is an open source project that’s bundled with Win-
dows 10 and later (newer versions can be found in the PowerShell Gallery). It’s an

223What do you test?
automated unit-testing framework for PowerShell. In other words, you write your tests
in Pester, and Pester runs your tests for you. Pester’s basic documentation is in the wiki
of its GitHub repository, at https://github.com/pester/Pester/wiki.

NOTE This chapter provides the barest introduction to Pester, with the intent
of whetting your appetite. You need to go read the docs to discover all the
other cool things Pester can do that we aren’t even going to mention.

As an interesting side note, Microsoft uses Pester to automate the testing of its own
PowerShell resources. You’ll find all kinds of Pester tests included in the various open
source PowerShell-based components that the PowerShell team has written. These
tests number in the thousands! That, if nothing else, should tell you how important
and well-regarded Pester is to and by the PowerShell community.

20.5 Coding to be tested
If you want to have a successful relationship with Pester, you need to start writing com-
mands and scripts that lend themselves to testing. Basically, follow all the advice we’ve
provided in this book. Specifically, focus on making self-contained, single-task tools.
Tools that do eight different things will be hard to test, because you’re going to need
to test every one of those eight things in all their possible combinations and permuta-
tions. A tool that does one thing, on the other hand, is a lot easier to write tests for.

 You also have to recognize that Pester is a PowerShell testing framework—not COM,
not .NET, not SQL Server, not anything else. It works best when it only has to deal with
PowerShell commands. If you’re following our advice—which we’ll explore in detail
later in this chapter—then you’re writing PowerShell commands to wrap any non-
PowerShell code you may need to use, meaning at the end of the day you’re only deal-
ing with PowerShell commands. In that scenario, you and Pester will get along fine.

20.6 What do you test?
Because this is intended to be a bare-bones introduction to Pester, we’re going to
fudge a few terms that the automated testing industry takes pretty seriously, to put
them in better context with PowerShell. Specifically, we’ll use the terms unit testing
and integration testing to lay out a couple of scenarios, to help you understand what to
write tests for.

20.6.1 Integration tests

An integration test basically tests the end state of your command. That is, if you wrote a
command to create a SQL Server database, an integration test would run the com-
mand and then check to see whether the database existed. In other words, it tests the
final impact of your code on the world at large. An integration test treats your code as
a kind of black box, meaning it doesn’t necessarily know what’s happening inside the
code. It doesn’t test to see whether you instantiated the right .NET classes to connect
to SQL Server, and it doesn’t test whether the username and password you provided

https://github.com/pester/Pester/wiki

224 CHAPTER 20 Pestering your script
work. It just checks the end result. You might use an integration test to verify that your
tool set accomplishes a specific task under a variety of situations.

 Integration tests are a good thing. But they’re not the only thing.

20.6.2 Unit tests

Unit tests are more granular, and they’re trickier to imagine. They’re not concerned
with whether your code accomplishes anything—they only want to make sure the code
runs. For example, you might have a command that can change a service’s startup
mode and logon password, or it can do just one of those things, depending on which
parameters are provided to it. A unit test will run it all three ways and make sure all
the internal logical decisions and code paths run correctly. Whether any particular
service is changed or not isn’t the concern of the unit test.

 Often, you’ll write unit tests and integration tests. There may be times when you
only write unit tests, because you’re only concerned about your code following the
correct paths and logical decisions, and perhaps because doing something—which is what
an integration test would require—would damage or negatively impact your environ-
ment. This can be a hard concept for folks to grasp. For example, if you wrote a com-
mand that reboots a computer, how could you not check to see whether the computer
rebooted? Well, it depends. If you were calling a command like Restart-Computer, then
you wouldn’t need to test that—you’d want to test your code that led up to Restart-Computer
being called. Which brings us to our next point.

20.6.3 Don’t test what isn’t yours

Particularly with unit tests, your goal is to test your code. The Restart-Computer com-
mand isn’t your code. It’s Microsoft’s code. If Microsoft’s code is broken, that isn’t your
problem. Your unit test is there to make sure the code you can control is working cor-
rectly. Let’s take that exact scenario and turn it into a Pester example.

20.7 Writing a basic Pester test
Let’s start with the command shown in the following listing. It’s deliberately simplistic
so that we can focus on the unit-testing aspect. The command will allow you to either
restart or shut down a computer.

function Set-ComputerState {
 [CmdletBinding()]
 Param(
 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string[]]$ComputerName,

 [Parameter(Mandatory=$True)]
 [ValidateSet('Restart','Shutdown')]
 [string]$Action,

Listing 20.1 A command to test

225Writing a basic Pester test
 [switch]$Force
)
 BEGIN {}
 PROCESS {

 ForEach ($comp in $ComputerName) {

 $params = @{'Computername' = $comp}

 # force?
 if ($force) {
 $params.Add('Force',$true)
 }

 # which action?
 If ($Action -eq 'Restart') {
 Write-Verbose "Restarting $comp (Force: $force)"
 Restart-Computer @params
 } else {
 Write-Verbose "Stopping $comp (Force: $force)"
 Stop-Computer @params
 }
 }

 } #PROCESS
 END {}
}

READ IT NOW Take some time to read through this command, and develop
an expectation for what it does and how it works. You may think of other, and
even better, ways to accomplish its task. We’ve gone this route to help create a
good illustration of Pester testing.

When it comes to unit testing, we know right away two things that we will not be test-
ing: whether Restart-Computer and Stop-Computer work. “But wait!” you might cry.
“Those are the only two things that are doing anything!” Correct—and if we were writ-
ing an integration test, that would matter. Unit tests don’t care about the end result;
they care about whether our code runs correctly. Because those two commands aren’t our
code, we’re not going to unit test them.

Inside or outside?
Another way to think about unit tests and integration tests is like this: How much of
your code does the test know about?

With an integration test, your code is a black box, as we suggested earlier. The test
doesn’t know how you accomplished a restart or a shutdown; it only cares whether
said restart or shutdown occurred. The integration test doesn’t know anything about
the contents of your command; it isn’t going to try to make sure every possible code
path is tested, every possible parameter is used, and so on.

226 CHAPTER 20 Pestering your script
20.7.1 Creating a fixture

We’ll start by loading the Pester module and asking it to create a new test fixture for us:

PS C:> Import-Module Pester
PS C:> Mkdir example
PS C:> New-Fixture –Path example –Name Set-ComputerState

This new fixture is a couple of blank files: one for our code (Set-ComputerState.ps1) and
one for our tests (Set-ComputerState.Tests.ps1). Think of the fixture as a skeleton. We’ll
open both in VS Code. We’ll paste our function into Set-ComputerState.ps1 as a starting
point, replacing the empty Set-ComputerState function that’s already there.

TRY IT NOW Please do follow along with us and get your own fixture set up,
and paste listing 20.1 into the code script.

The test script—which you should create on your own by running the previous com-
mands, so we won’t provide a copy as a downloadable sample—should look like this:

$here = Split-Path -Parent $MyInvocation.MyCommand.Path
$sut = (Split-Path -Leaf $MyInvocation.MyCommand.Path) -replace
➥ '\.Tests\.', '.'
. "$here\$sut"

(Continued)

With a unit test, your code is an open book. The test doesn’t care about the end
result of running your code—it only cares about whether all of your code ran. Was
every parameter used in some way? Did every code path execute? Was every logical
decision run in every possible combination? It’s about the code, not the result.

Again, both kinds of test are important—but for now, we’re focused on unit tests.

Installing and updating Pester
We’re assuming that the Pester module is available on your system; on Windows 10
or later, it will be, by default. If you don’t have the module, you need to install it first
from the PowerShell Gallery by running Install-Module Pester.

If you’re running Windows 10, the shipping version of the Pester module is likely to
be outdated. Unfortunately, updating the module from the PowerShell Gallery is
problematic. You can’t uninstall the shipping version (at least, not easily), and you
may run into problems trying to get the latest version. See the blog post “PowerShell
PackageManagement and PowerShellGet Module Changes in Windows 10 Version
1511, 1607, and 1703” from Microsoft MVP Mike Robbins (August 3, 2017,
http://mng.bz/40c7) for more detail. As a last resort, you should be able to install
the latest version of the Pester module and have it run side by side with the
shipping version with this command:

install-module pester -Repository psgallery -force –SkipPublisherCheck

http://mng.bz/40c7

227Writing a basic Pester test
Describe "Set-ComputerState" {
 It "does something useful" {
 $true | Should Be $false
 }
}

Aside from the first three commands at the top, which basically link this test code to
the code script, there are two sections:

 The Describe block is designed to contain a set of tests. These all execute
within the same scope. Scoping in Pester is both complex and powerful, and as
you get into more complex tests, you’ll often define multiple Describe blocks.
For now, we’ll stick with this one.

 The It block represents a single test, which our code will either pass or fail. A
Describe block often contains many It blocks, with each It testing a specific,
discrete condition.

20.7.2 Writing the first test

Let’s modify the provided It block to test something:

Describe "Set-ComputerState" {
 It "accepts one computer name" {
 Set-ComputerState –computername SERVER1 –Action restart |
 Should Be $true
 }
}

This is kind of the basic model for an It block: You run something, and then you tell
Pester what the result should have been. What we’ve written here won’t work, though,
because our Set-ComputerState function never outputs anything to the pipeline.
Therefore, it isn’t piping anything to Should, so Should will definitely not look at a
$true value as we’ve implied. This brings us to a heck of a problem—when we have
a function that doesn’t produce any output, and we’re not attempting to test if it does
anything, how the heck do we test the dang thing?

 Our dilemma, stated more specifically, is that we need to see how many times Restart-
Computer is called, without calling Restart-Computer. Tricky. And the answer to that
trick is a key element of Pester: the mock.

20.7.3 Creating a mock

Many times, in testing, you’ll want to have some command seem to run, but not run.
For example, you might need to have Import-CSV import a specific CSV file, but you
don’t want to create the file. Or, in our case, we want Restart-Computer to seem to
run, so we can figure out if our code tried to run it, but we by no means want to restart
a computer. This is where Pester’s mocking comes into play. It basically creates a fake
replacement for an existing command, and that fake can do whatever you like:

228 CHAPTER 20 Pestering your script
Describe "Set-ComputerState" {

 Mock Restart-Computer { return 1 }
 Mock Stop-Computer { return 1 }

 It "accepts one computer name" {
 Set-ComputerState -computername SERVER1 -Action Restart |
 Should Be 1
 }
}

Our fake version of Restart-Computer will now output 1. It won’t restart any comput-
ers—it’ll just output 1. And so, if it’s called one time, the result of Set-ComputerState
should be 1. We’ve told Pester as much with our It block. Let’s try running this simple
test to see whether it works. From our example folder, which contains our tests script,
we have to run Invoke-Pester:

Describing Set-ComputerState
 [+] accepts one computer name 678ms
Tests completed in 678ms
Passed: 1 Failed: 0 Skipped: 0 Pending: 0 Inconclusive: 0

TRY IT NOW The results are better in full color, so see if you can get similar
output by copying what we’ve done so far.

The [+] tells us that our single test passed.

20.7.4 Adding more tests

Let’s add a few more tests:

Describe "Set-ComputerState" {

 Mock Restart-Computer { return 1 }
 Mock Stop-Computer { return 1 }

 It "accepts and restarts one computer name" {
 Set-ComputerState -computername SERVER1 -Action Restart |
 Should Be 1
 }

 It "accepts and restarts many names" {
 $names = @('SERVER1','SERVER2','SERVER3')
 $result = Set-ComputerState -computername $names -Action Restart
 $result.Count | Should Be 3
 }

 It "accepts and restarts from the pipeline" {
 $names = @('SERVER1','SERVER2','SERVER3')
 $result = $names | Set-ComputerState -Action Restart
 $result.count | Should Be 3
 }

}

Saves the
results to a

variable

Tests the
result count

229Writing a basic Pester test
We took a different approach on the second two tests. Remember, each time our
mocked Restart-Computer runs, it outputs 1. That means running it three times
doesn’t output 3, it outputs three 1s. We capture that collection of integers into
$result. Then, on a new line, we pipe $result.count to Should, checking to see
whether the array contains three items. This tells us that our mocked command was
called three times. Here are the results:

Describing Set-ComputerState
 [+] accepts and restarts one computer name 252ms
 [+] accepts and restarts many names 374ms
 [+] accepts and restarts from the pipeline 332ms
Tests completed in 959ms
Passed: 3 Failed: 0 Skipped: 0 Pending: 0 Inconclusive: 0

Perfect! But there’s a slightly better way to construct these tests. You see, when you
mock a command in Pester, behind the scenes it automatically keeps track of how
many times the mock was used. Because our only goal is to count the number of times
our fake command was run, we could let Pester do all the work for us. We’ll do this by
using the Assert-MockCalled command:

Describe "Set-ComputerState" {

 Mock Restart-Computer { return 1 }
 Mock Stop-Computer { return 1 }

 It "accepts and restarts one computer name" {
 Set-ComputerState -computername SERVER1 -Action Restart
 Assert-MockCalled Restart-Computer -Exactly 1
 }

 It "accepts and restarts many names" {
 $names = @('SERVER1','SERVER2','SERVER3')
 Set-ComputerState -computername $names -Action Restart
 Assert-MockCalled Restart-Computer -Exactly 3
 }

 It "accepts and restarts from the pipeline" {
 $names = @('SERVER1','SERVER2','SERVER3')
 $names | Set-ComputerState -Action Restart
 Assert-MockCalled Restart-Computer -Exactly 3
 }

}

Let’s try it:

Describing Set-ComputerState
 [+] accepts and restarts one computer name 740ms
 [-] accepts and restarts many names 144ms
 Expected Restart-Computer to be called 3 times exactly but was called 4
times
 18: Assert-MockCalled Restart-Computer -Exactly 3
 at <ScriptBlock>, \\vmware-host\Shared Folders\Documents\example\Set-

Tests how many
times the mock
was called

230 CHAPTER 20 Pestering your script
ComputerState.Tests.ps1: line 18
 [-] accepts and restarts from the pipeline 409ms
 Expected Restart-Computer to be called 3 times exactly but was called 7
times
 24: Assert-MockCalled Restart-Computer -Exactly 3
 at <ScriptBlock>, \\vmware-host\Shared Folders\Documents\example\Set-
ComputerState.Tests.ps1: line 24
Tests completed in 1.29s
Passed: 1 Failed: 2 Skipped: 0 Pending: 0 Inconclusive: 0

That’s not good. Looking at the failure output, it appears as if the counter doesn’t
reset for each It block by default. We have to modify the command so it knows we
want to count for each It block, rather than adding up everything that happened in
the parent Describe block:

Describe "Set-ComputerState" {

 Mock Restart-Computer { return 1 }
 Mock Stop-Computer { return 1 }

 It "accepts and restarts one computer name" {
 Set-ComputerState -computername SERVER1 -Action Restart
 Assert-MockCalled Restart-Computer -Exactly 1 -Scope It
 }

 It "accepts and restarts many names" {
 $names = @('SERVER1','SERVER2','SERVER3')
 Set-ComputerState -computername $names -Action Restart
 Assert-MockCalled Restart-Computer -Exactly 3 -Scope It
 }

 It "accepts and restarts from the pipeline" {
 $names = @('SERVER1','SERVER2','SERVER3')
 $names | Set-ComputerState -Action Restart
 Assert-MockCalled Restart-Computer -Exactly 3 -Scope It
 }

}

And now, let’s try it:

Describing Set-ComputerState
 [+] accepts and restarts one computer name 430ms
 [+] accepts and restarts many names 335ms
 [+] accepts and restarts from the pipeline 283ms
Tests completed in 1.05s
Passed: 3 Failed: 0 Skipped: 0 Pending: 0 Inconclusive: 0

That’s exactly what we were looking for.

20.7.5 Code coverage

If one of the goals of unit testing is to make sure all of your code runs, then you
need to know whether you’ve hit that goal. Pester can help. Running Invoke-Pester

Tracks
asserted
mocks in
the It scope

231Writing a basic Pester test

l
-CodeCoverage ./Set-ComputerState.ps1 will generate a code-coverage report for that
script, like this one:

Describing Set-ComputerState
 [+] accepts and restarts one computer name 1.64s
 [+] accepts and restarts many names 68ms
 [+] accepts and restarts from the pipeline 1.55s
Tests completed in 3.26s
Passed: 3 Failed: 0 Skipped: 0 Pending: 0 Inconclusive: 0

Code coverage report:
Covered 70.00 % of 10 analyzed commands in 1 file.

Missed commands:

File Function Line Command
---- -------- ---- -------
Set-ComputerState.ps1 Set-ComputerState 24 $params.Add('Force',$true)
Set-ComputerState.ps1 Set-ComputerState 32 Write-Verbose "Stopping $comp
➥ (Force: $force)"
Set-ComputerState.ps1 Set-ComputerState 33 Stop-Computer @params

This helps you understand what’s missing. Getting 100% code coverage means every
line of code ran; it doesn’t necessarily mean you’re finished testing, because sometimes
you need to test different variations with that same code. But code coverage does help
you spot code paths that you may have missed. In our case, we can see that we’ve never
run the code that accounts for our –Force parameter, and we’ve never run a test
where we try to stop a computer, rather than restart it. Let’s add some more tests:

Describe "Set-ComputerState" {

 Mock Restart-Computer { return 1 }
 Mock Stop-Computer { return 1 }

 It "accepts and restarts one computer name" {
 Set-ComputerState -computername SERVER1 -Action Restart
 Assert-MockCalled Restart-Computer -Exactly 1 -Scope It
 }

 It "accepts and restarts many names" {
 $names = @('SERVER1','SERVER2','SERVER3')
 Set-ComputerState -computername $names -Action Restart
 Assert-MockCalled Restart-Computer -Exactly 3 -Scope It
 }

 It "accepts and restarts from the pipeline" {
 $names = @('SERVER1','SERVER2','SERVER3')
 $names | Set-ComputerState -Action Restart
 Assert-MockCalled Restart-Computer -Exactly 3 -Scope It
 }

 It "accepts and force-restarts one computer name" {
 Set-ComputerState -computername SERVER1 -Action Restart -Force
 Assert-MockCalled Restart-Computer -Exactly 1 -Scope It
 }

Additiona
tests

232 CHAPTER 20 Pestering your script
 It "accepts and shuts down one computer name" {
 Set-ComputerState -computername SERVER1 -Action Shutdown
 Assert-MockCalled Stop-Computer -Exactly 1 -Scope It
 }

}

And let’s run that:

Describing Set-ComputerState
 [+] accepts and restarts one computer name 552ms
 [+] accepts and restarts many names 64ms
 [+] accepts and restarts from the pipeline 86ms
 [+] accepts and force-restarts one computer name 277ms
 [+] accepts and shuts down one computer name 115ms
Tests completed in 1.1s
Passed: 5 Failed: 0 Skipped: 0 Pending: 0 Inconclusive: 0

Code coverage report:
Covered 100.00 % of 10 analyzed commands in 1 file.

We now have more confidence that we’re testing all of our code paths and that our
code is responding the way we want it to.

20.8 Summary
To close out this chapter, the following listing includes our completed test script, for
your reference.

$here = Split-Path -Parent $MyInvocation.MyCommand.Path
$sut = (Split-Path -Leaf $MyInvocation.MyCommand.Path) -replace '\.Tests\.',

'.'
. "$here\$sut"

Describe "Set-ComputerState" {

 Mock Restart-Computer { return 1 }
 Mock Stop-Computer { return 1 }

 It "accepts and restarts one computer name" {
 Set-ComputerState -computername SERVER1 -Action Restart
 Assert-MockCalled Restart-Computer -Exactly 1 -Scope It
 }

 It "accepts and restarts many names" {
 $names = @('SERVER1','SERVER2','SERVER3')
 Set-ComputerState -computername $names -Action Restart
 Assert-MockCalled Restart-Computer -Exactly 3 -Scope It
 }

 It "accepts and restarts from the pipeline" {
 $names = @('SERVER1','SERVER2','SERVER3')
 $names | Set-ComputerState -Action Restart
 Assert-MockCalled Restart-Computer -Exactly 3 -Scope It
 }

Listing 20.2 Completed Pester test

Additional
tests

233Summary
 It "accepts and force-restarts one computer name" {
 Set-ComputerState -computername SERVER1 -Action Restart -Force
 Assert-MockCalled Restart-Computer -Exactly 1 -Scope It
 }

 It "accepts and shuts down one computer name" {
 Set-ComputerState -computername SERVER1 -Action Shutdown
 Assert-MockCalled Stop-Computer -Exactly 1 -Scope It
 }

}

Of course, this may not be a complete test. We haven’t added any integration tests, for
example, and we haven’t tested to ensure that only values like Restart and Shutdown
are accepted for the –Action parameter. This test could certainly grow to be more
complex—and we invite you to expand it, as a way of further exploring how Pester can
help automate your testing. You can get a jump on all of this by reading the help topic
about_pester.

Signing your script
Another habit of highly effective PowerShell toolmakers is script signing. Many
people think this is too hard or not worth the effort. Obviously, we think otherwise,
or we wouldn’t have written this chapter! Even if you think your tools will never
leave your company, signing your script, along with using source control, is a very
good thing.

21.1 Why sign your scripts?
Why should you bother with code signing? At its most basic, a signed script authen-
ticates the person who wrote it. This doesn’t mean the script is safe or good to run.
But if it’s bad and signed, you can at least track down the author. The other reason
for signing is to verify script integrity. In other words, has the code been modified
since it was signed? You don’t want a bad actor hijacking your code for their own
nefarious goals (although, frankly, if you practice good file security and some com-
mon sense, this is a small risk). If you’ve been breached or infected and something
or someone can modify an existing script, they could just as easily run their own
code. But code integrity means a lot more when you’re sharing code outside your
organization. For example, if Jeff sends you a useful script file, or you download
one from his blog, how sure are you that every line of code is exactly as Jeff intended?
If he signed the file, then you know every character is just what Jeff wrote—and if
that code turns out to be malicious, you can track down Jeff and have some words
with him about it.

 Internally, we’re more concerned about accidental modification. Maybe you
create a tool that gets, but the intern, Greg, accidentally changes it to a set. Oops. Or
perhaps a critical line of code is accidentally deleted by your boss. If you run the
234

235A word about certificates
script without code signing, you may end up with less than optimal results—whereas if
your script were signed, PowerShell would tell you something was broken, and you
could investigate.

 PowerShell is, as the name implies, incredibly powerful. You can cause a tremen-
dous amount of havoc with a minimal amount of code. Protect it, and yourself, with
code signing.

21.2 A word about certificates
Signing your scripts entails getting a certificate, as we’ll cover later in this chapter.
First, we need to discuss what a certificate is and does.

 The purpose of a certificate is identity. It’s literally a digital ID card, and some commer-
cial certificate issuers, called certification authorities (CAs), market them as such. They’re
certifying your identity. Your identity is embedded in your certificate, so that anyone
reading the certificate can see who you are and even figure out how to contact you.

 Certificates are therefore all about trust. For example, if some fly-by-night CA issues
a certificate allegedly for Bill Gates, and you download some code written by this
alleged Bill, do you feel safe running that code? It comes down to trust: Do you trust
that the CA did its due diligence and only issued a certificate to the really real Bill
Gates? Or might they have done a rush job and issued it to some yahoo named Jason
Helmick, who may have written terrible, malicious code? You see, if you trust the CA,
then even if the code is malicious, you know you can track down the author through
the CA.

 Signing code is a big deal. Code can do a lot of harm, which is why CAs that issue
code-signing certificates have a lot of trust on their shoulders. Getting one of these
certificates from a commercial CA is a lot harder than getting an email encryption cer-
tificate. In fact, these Class 3 code-signing certificates are typically only issued to orga-
nizations, not to individuals; and CAs often check things like the organization’s Dun &
Bradstreet credit record, the company’s organizing documents, and other evidence to
make certain a certificate is issued only to the organization named in the certificate.

 Of course, your company could also have an internal public key infrastructure
(PKI), which means you run your own CA—and you set the rules for who gets certifi-
cates of any kind. If your code will run entirely within your organization, that’s proba-
bly all you need, and it’ll be a lot cheaper than buying a commercial code-signing
certificate.

 You can also create a self-signed certificate, and in this chapter we’ll show you how.
This is appropriate only when you and only you will be running your code, and when
you’ll only be doing so on your computer that is entirely under your personal control.
Self-signed certificates are like writing your own driver’s license in crayon, getting pulled
over by a police officer for speeding, showing the officer your self-signed license, and
telling him, “No, I’m self-certifying that I’m me!” Try it, and let us know how it goes. Self-
signed certificates are convenient when you’re developing code, but when it comes time to
deploy that code to anyone else, even internally, you should get a real certificate.

236 CHAPTER 21 Signing your script
Once you have a certificate, you can install it and begin using it—which we’ll cover in
a bit. Because this isn’t a chapter on PKI, we’ll refresh your memory that certificates
consist of key pairs. In particular, yours will have a private key that you should keep
incredibly safe and secure, even password-protecting it within the Windows certificate
store, so that it can’t be used without your permission. The private key is used to gen-
erate script signatures. A signature is basically a copy of your script (or, more com-
monly, a hash, which is still unique to the script but takes up less room), encrypted
using the private key, and bundled along with information about your certificate (but
not the private key).

 Anyone else who trusts the source of your certificate can then decrypt that signa-
ture, using the public key side of the key pair. Their ability to decrypt it, using your pub-
lic key, means they can confirm your identity, because only your closely held private
key could have encrypted the script in the first place. They can then compare the pre-
viously encrypted script to the clear-text version; if the two match, then they know the
code is exactly as you wanted it to be.

21.3 Setting your policy
The first step is to configure your environment to require signed scripts. You can still
sign a script, but unless you tell PowerShell to require it, the script signatures are
ignored. In an elevated PowerShell session, run this command:

Set-Executionpolicy AllSigned -force

Certificates, trust, and pain
Certificates are a pain. Managing certificates—which expire, and which must be
renewed—is a pain. Managing an internal PKI is a pain. Of course, as IT operations
people, this is what we get paid to do, so we should consider it a core competency to
be able to manage the pain.

But the traditional CA model is slowly gaining some competition. For example, a
process called notarizing allows you to create a self-signed certificate as part of a
process where other, trusted people watch you do it (often electronically, not in
person). They counter-sign, or notarize, your certificate. Anyone who trusts them will
therefore trust your certificate. They don’t issue your certificate like a CA does, but
they attest to your identity. This creates a kind of distributed trust system, as
opposed to the traditional CA model of centralized trust.

This is a big topic, and that’s all we’re going to go into here. You can research it
more if you’re interested. For now, know that self-signed certificates are fine while
you’re developing and need a quick, convenient way to sign your scripts so that you
can test your code on your own machine. A CA-issued certificate—from either a
commercial CA or an internal PKI—is a must-have for deploying code, either internally
or to the world at large.

237Code-signing basics
The –Force parameter will suppress the confirmation prompt. You only have to do
this once on any machine where you’ll be running scripts. Presumably this is your
desktop or a centralized management server. You should rarely have to run an interac-
tive script on a remote server, so you can leave those execution polices set to Restricted,
which is the default.

 Even if you use Invoke-Command to run a local script on a remote server, Power-
Shell is running the contents of the script remotely. That said, you should probably ver-
ify the script locally before running it remotely. We’ll show you that in a few minutes.

 If you’re in an Active Directory domain, you can also use Group Policy to config-
ure script-execution policies. Note that these polices aren’t security boundaries, but
rather are like the covers on launch switches for nuclear missiles. We covered all of
this in much greater detail in chapter 7.

21.4 Code-signing basics
We’re not going to dive too deep into the basics of certificates and PKI, beyond what
we’ve said already. Basically, a certificate is a way of cryptographically identifying your-
self. When you sign a script in PowerShell, the identity information from the certifi-
cate is included in the signature block, which appears as a comment at the end of the
file. This verifies you as the author of the script. In addition, PowerShell calculates a
hash value based on the current script’s content and inserts this hash into the script
signature. If the file is changed by even one character or an extra space or carriage
return, then the signature will be broken, and PowerShell will report that the script
has changed.

21.4.1 Getting a code-signing certificate

You can’t use any old certificate to sign your scripts. It technically must be a Class 3
code-signing certificate that supports Microsoft’s Authenticode extension.

NOTE Class 3 is a term that VeriSign used back in the day; it’s rare to see it
now. Most people just call them code-signing certificates.

The certificate must also be issued by a CA that’s trusted by your computer. If you
intend to distribute signed tools outside of your organization, you’ll most likely need a
certificate from a third-party vendor like VeriSign or DigiCert, because anyone who
downloads your code will trust them to have issued your certificate. But we expect that
most of you have an AD domain, ideally with a certificate infrastructure (Active Direc-
tory Certificate Services [AD CS]). With this, you can easily go through the web-based
interface to request a code-signing certificate, pursuant to your organization’s poli-
cies. You can then configure Group Policy so that domain members will trust your cer-
tificate (this will usually be in place if the PKI was set up properly). The details are
beyond the scope of this book, but if you get stuck, we’re confident the residents of
the forums at PowerShell.org can help.

238 CHAPTER 21 Signing your script
NOTE To summarize, step 1 is to find a CA—either commercial or external.
Bear in mind that code-signing certs aren’t cheap, and a cheap one wouldn’t
be worth the digital ink it’s made of. Certificates are usually issued only to
organizations like companies, not to individuals, and when obtained commer-
cially they usually have a fairly extensive identity-verification process.

Another option for testing purposes, or if you intend that your PowerShell scripts and
tools will never leave your desktop, is to use a self-signed certificate. In years past, this
meant mastering the arcane command-line utility makecert.exe. But the PowerShell
PKI module, which you should get when you install the Remote Server Administration
Tools, includes a command that makes this easier. If you want to try out code signing,
run a command like this:

PS C:\> New-SelfSignedCertificate -type CodeSigningCert -Subject "CN=Art
➥ Deco" -CertStoreLocation Cert:\CurrentUser\My\ -testroot

 PSParentPath: Microsoft.PowerShell.Security\Certificate::CurrentUser\My

Thumbprint Subject
---------- -------
9D16AF2573AC6C01A33752CA5135F3700A6FE9CFCN=Art Deco

Naturally, insert your own name in the CN= part. Because this is a self-signed certificate,
be sure to include the -TestRoot parameter. You’ll still get a certificate you can use, but
PowerShell will give you an “unknown error” message because it can’t verify the certifi-
cate chain. That is, your computer doesn’t trust itself as a source of certificates.

 We’ve told PowerShell to store the certificate for the current user. This is easy
enough to verify with the -codesigningcert parameter on Get-ChildItem. We’ll use
the dir alias:

PS C:\> dir Cert:\CurrentUser\My\ -CodeSigningCert

 PSParentPath: Microsoft.PowerShell.Security\Certificate::CurrentUser\My

Thumbprint Subject
---------- -------
9D16AF2573AC6C01A33752CA5135F3700A6FE9CFCN=Art Deco

You can have multiple code-signing certificates installed, but you can only sign with a
single one. If you have multiple certs installed, you’ll need to be able to use Power-
Shell and filter for the exact one.

TIP In the certificate world, a certificate’s thumbprint is basically its official,
unique name. You’ll see references to it a lot, and now you know how to find it.

239Code-signing basics
21.4.2 Trusting self-signed certificates

Before you can use a self-signed cert, you may need to take a few additional steps out-
side of PowerShell. At a prompt, run this command to open the certificate manage-
ment snap-in:

Certmgr.msc

Navigate to where you stored the certificate, as shown in figure 21.1. You’ll see that it’s
issued by CertReq Test Root. The problem you’ll run into is that the certificate for this
root isn’t completely trusted. Why would it be? Again, you can’t use your crayon-made,
self-signed driver’s license, because nobody but you trusts it; it’s the same situation
with a self-signed certificate. You can install that root certificate by dragging and drop-
ping it from the Intermediate Certification Authority container to Trusted Root Certi-
fication Authority, as indicated in figure 21.2.

You’ll be prompted with a warning dialog box. Go ahead and install the certificate.
Now you won’t get PowerShell error messages about an untrusted root when you use a
certificate that was created by your own computer.

NOTE It’s important to know that this procedure won’t compromise your
computer; it’ll just make it trust the certificates that it produced. Certificates
produced elsewhere will still need to be trusted in the usual fashion.

Figure 21.1 Selecting the self-signed certificate

240 CHAPTER 21 Signing your script
21.4.3 Signing your scripts

To sign a PowerShell script, you need a reference to the certificate. We find it easy to
save the code-signing certificate to a variable:

PS C:\> $cert = dir Cert:\CurrentUser\My\ -CodeSigningCert

You may want to add this type of line to your PowerShell profile script so that it’s always
available. In our scripts directory, we have an extremely simple PowerShell script:

PS C:\scripts> get-content psvm.ps1
get-process | sort vm -desc | select -first 5

The cmdlet we’ll use is called Set-AuthenticodeSignature. That is a lot to type and a
good reason to use Tab completion. But because you’re likely to be signing scripts
interactively, we suggest creating an alias in your PowerShell profile:

Set-Alias -Name sign -Value Set-AuthenticodeSignature

We’ll use this alias if for no other reason than to keep our examples short:

PS C:\scripts> sign .\psvm.ps1 -Certificate $cert

 Directory: C:\scripts

SignerCertificate Status Path
----------------- ------ ----
9D16AF2573AC6C01A33752CA5135F3700A6FE9CFCN Valid psvm.ps1

Figure 21.2 Moving the self-signed root certificate

241Code-signing basics
Here’s what the file looks like now:

PS C:\scripts> get-content .\psvm.ps1
get-process | sort vm -desc | select -first 5

SIG # Begin signature block
MIIFWAYJKoZIhvcNAQcCoIIFSTCCBUUCAQExCzAJBgUrDgMCGgUAMGkGCisGAQQB
gjcCAQSgWzBZMDQGCisGAQQBgjcCAR4wJgIDAQAABBAfzDtgWUsITrck0sYpfvNR
AgEAAgEAAgEAAgEAAgEAMCEwCQYFKw4DAhoFAAQUWlS7aTI+/TUJU7Izf4mzM8b1
HmWgggL6MIIC9jCCAd6gAwIBAgIQYcqwRS2cF6ZKK2DMJNsC6DANBgkqhkiG9w0B
AQsFADATMREwDwYDVQQDDAhBcnQgRGVjbzAeFw0xNzA2MTkxNDQ5NDZaFw0xODA2
MTkxNTA5NDZaMBMxETAPBgNVBAMMCEFydCBEZWNvMIIBIjANBgkqhkiG9w0BAQEF
AAOCAQ8AMIIBCgKCAQEAotwzL7nKq3uG1oZ/uMAwSELAeVaoIqFHr+zW1hWwW+UG
h/dftEaGsAmETjPnYRkABkGLqloiXXhmLQjY+QKtn51cue78B85mrSF5dqrfuuK6
XIVm7rjvMGwqyU6mpCs2RA3c+eObqgQZMJeOd/U9BnawlUijTcYGXptxc7M7ewWp
oVGSm2C385hB09pZJ5UpmonW81iZZ+nkoos1oMC2jdhdETR2JC/cfpjU1sP406Et
s2gR5jIiZuBBzTMgAlU4IRU38gXiS8q2UA3oyysyd2/+svRgDx/SrO+HV5ZmEqiF
epsY8DpaWn86MLYn+rjPSLgPbW6SNkwvHg58trEsIwIDAQABo0YwRDAOBgNVHQ8B
Af8EBAMCB4AwEwYDVR0lBAwwCgYIKwYBBQUHAwMwHQYDVR0OBBYEFH1ccCLNFjh0
ZqYdX2NvAASUku2PMA0GCSqGSIb3DQEBCwUAA4IBAQCXxfRfgI4KbsvXk0HKVI65
fJ4CAXDJaZyx2WtuaH4HF1WjhPMh9JjupA2244p/vH1FWERZ5llwR9AcwA8kK8EM
6aPD5Nu0MGis7gFvzK1K/dnxmgv+7ICS9j92GM4qIa8bcfIwBTTPehQKaJS2Q+bg
cm3eipPI4nxPPhSXLdg3FcglNfwU3aqQznHfmWj5cVgiqtMbe/CBh9hDcCFeW+y1
X6aAY1q+ADrMjILnhOETFpIn3eHmdHiC/q0PpKGJzn+uhwLncaVnahRaSXhIbApc
/9VqkPEg4kJFYVbewIeOjPWB+2IVtdtgag9X9HwTTP4nEIQ7KEz4jKMM9hPGacnV
MYIByDCCAcQCAQEwJzATMREwDwYDVQQDDAhBcnQgRGVjbwIQYcqwRS2cF6ZKK2DM
JNsC6DAJBgUrDgMCGgUAoHgwGAYKKwYBBAGCNwIBDDEKMAigAoAAoQKAADAZBgkq
hkiG9w0BCQMxDAYKKwYBBAGCNwIBBDAcBgorBgEEAYI3AgELMQ4wDAYKKwYBBAGC
NwIBFTAjBgkqhkiG9w0BCQQxFgQUsoYetaVPGXeBkFV4ddJTInDikFwwDQYJKoZI
hvcNAQEBBQAEggEARmE9VVlQ+HMYTFnOQ+lJGLvOcm7RKi5+pEVFhxTwoahbu6Zb
oZLEB6zUKx2RxLWkO1+FWiOJWGAAARPnNWCCxBKqAnedtqPNc0UVQ0J5gxuVzfO6
J5Q+3Uu7YbrbgeErC/hYOMmu9hY8a7H7ttxD0p0qHscV7R1kOSxrUGehU3+KLKFU
heKQlOL26DVGdk3KRayZTGzpDXHavkGAtcjcyiQPSPyRdmFcagdZ4VzrKzTT4m1w
i+uHap5xQ80EQBxfgHZT3yXKRA1tl9Mgnmi9XNcUro25i0tiKZTjkZe0voPJ7MX1
ePgJFLinSiRvIvzoqpOgN51CfQ/yWWdCsH+v4w==
SIG # End signature block

You shouldn’t need to mess with the signature block unless you want to completely
delete it. That’s the only way to unsign a file.

 You can also easily sign an entire directory full of scripts:

PS C:\scripts> dir *.ps1 | sign -Certificate $cert -WhatIf
What if: Performing the operation "Set-AuthenticodeSignature" on target
"C:\scripts\DirReport.ps1".
What if: Performing the operation "Set-AuthenticodeSignature" on target
"C:\scripts\psvm.ps1".
What if: Performing the operation "Set-AuthenticodeSignature" on target
"C:\scripts\lastdayofwork.ps1".
What if: Performing the operation "Set-AuthenticodeSignature" on target
"C:\scripts\newhire.ps1".

You can sign .ps1, .psm1, and .ps1xml files.

TIP Note that you can’t sign .psd1 files, which are a manifest for a script
module. If you allow the execution of unsigned scripts on your system, then

242 CHAPTER 21 Signing your script
in theory a piece of malware could find a .psd1 file and modify it to load a
malicious script when you loaded your otherwise-all-signed module! It’s a risk,
but to be fair, that same piece of malware could attack you in a few dozen
other ways, too. Be aware of the possibility so that you can be extra cautious
when the situation calls for it.

21.4.4 Testing script signatures

Use Get-AuthenticodeSignature to test a script’s signature:

PS C:\scripts> Get-AuthenticodeSignature .\psvm.ps1

 Directory: C:\scripts

SignerCertificate Status Path
----------------- ------ ----
9D16AF2573AC6C01A33752CA5135F3700A6FE9CF Valid psvm.ps1

The output from Get-AuthenticodeSignature is another type of object. The object
properties are self-explanatory:

PS C:\scripts> Get-AuthenticodeSignature .\psvm.ps1 | select *

SignerCertificate : [Subject]
 CN=Art Deco

 [Issuer]
 CN=CertReq Test Root, OU=For Test Purposes Only

 [Serial Number]
 5B0A36A612E5A78F400FEE5F02F930BB

 [Not Before]
 6/19/2017 10:07:53 AM

 [Not After]
 6/19/2018 10:27:53 AM

 [Thumbprint]
 9D16AF2573AC6C01A33752CA5135F3700A6FE9CF

TimeStamperCertificate :
Status : Valid
StatusMessage : Signature verified
Path : C:\scripts\psvm.ps1
SignatureType : Authenticode
IsOSBinary : False

If you didn’t follow our suggestion to install the self-signed root certificate, you’ll see
an “unknown error” status. That’s kind of okay, but you won’t be able to run the script.

 If you have an AllSigned execution policy, you can still run the script:

PS C:\scripts> set-executionpolicy allsigned -force
PS C:\scripts> .\psvm.ps1

Do you want to run software from this untrusted publisher?
File C:\scripts\psvm.ps1 is published by CN=Art Deco and is not trusted on
your system. Only run scripts from trusted publishers.

243Summary
[V] Never run [D] Do not run [R] Run once [A] Always run [?] Help
(default is "D"): a

Handles NPM(K) PM(K) WS(K) CPU(s) Id SI ProcessName
------- ------ ----- ----- ------ -- -- -----------
 1179 80 73368 472 9.31 376 2 SearchUI
 873 44 67712 43888 579.25 472 0 svchost
 3395 194 97616 27868 446.81 1116 0 svchost
 948 29 56096 22904 2.19 4920 2 powershell
 876 37 99696 47176 4.33 6080 0 powershell

The first time we run the script, we’re prompted about trusting the certificate. We’ll
go ahead and tell PowerShell to always trust it, and from then on we can run the script
with no prompts.

 Now we’ll make a slight change to the script, but without re-signing it, and attempt
to run it:

PS C:\scripts> .\psvm.ps1
File C:\scripts\psvm.ps1 cannot be loaded. The contents of file
C:\scripts\psvm.ps1 might have been changed by an unauthorized user or
process, because the hash of the file does not match the hash stored in the
digital signature.
The script cannot run on the specified system. For more information, run
Get-Help about_Signing..
 + CategoryInfo : SecurityError: (:) [], PSSecurityException
 + FullyQualifiedErrorId : UnauthorizedAccess

We get a rather severe error message, and the script isn’t executed. We want that! If we
didn’t make any changes, we want to investigate and figure out what changed. When
ready, we can re-sign the script and be ready to go.

21.5 Summary
Implementing script signing isn’t that difficult, especially if you have an Active Direc-
tory PKI (which ends up being easier and cheaper than a commercial CA) or another
brand of PKI internally. You can probably even configure your scripting editor to sign
scripts for you—many of them offer an option to do that when you save the file. If
nothing else, it’s a snap to sign all of your scripts at once. As we’ve explained before,
implementing digital signatures or requiring their use isn’t a security boundary. But it
adds a critical safety check to ensure that the script you, or someone else, are about to
run is exactly the script you wrote.

Publishing your script
Our hope is that while working your way through this book, or shortly thereafter,
you’ll come up with a wonderful, well-written PowerShell tool that solves an imme-
diate problem. It will be even better if it gets you a big raise. But more than that, we
hope you’ll share it with the rest of the PowerShell community. For the last few
years, this has been easy to do using the PowerShell Gallery from Microsoft. Right
now, it contains more than 3,300 modules and 300 scripts.

22.1 Why publish?
One primary advantage of publishing your script is pure altruism: You’re adding
something positive to the greater PowerShell-good. Let us be the first to thank you
in advance. It’s also a great mechanism for sharing your tools with co-workers or
even yourself. You can publish your current version to the PowerShell Gallery (also
referred to as the PSGallery) and install or update it locally as needed. Have a new
version? Publish it to the gallery. Your old versions remain available, so if you need
to install an older version to test something, you can.

22.2 Meet the PowerShell Gallery
The PowerShell Gallery is a free website maintained by Microsoft at www.powershell-
gallery.com, although you’re most likely to interact with it using a set of PowerShell
cmdlets like Find-Module and Install-Module. Microsoft does a pretty good job of
scanning uploads, especially to ensure that they follow scripting best practices. Micro-
soft will run your code through the PowerShell Script Analyzer commands, and it’s
possible to be initially denied if your code fails certain tests. If you use VS Code to
develop your tools and pass the tests there, you should be ok. Microsoft also can’t
244

http://www.powershellgallery.com
http://www.powershellgallery.com

245Before you publish
guarantee the effectiveness of a module, so anything you download and run is at your
own risk. But that’s why you have a test environment, right?

22.3 Other publishing targets
We’re suggesting and using the Microsoft PowerShell Gallery as an easy reference
point. The PowerShell Gallery is just a special type of website that’s a NuGet-based
repository. This has been a well-recognized publication and distribution mechanism
for some time. Anyone can set up a NuGet-based repository; it’s possible your com-
pany has one. Setting up and managing these types of servers is beyond what we can
cover in this book, but publishing to them from PowerShell should be similar to what
we’ll cover with the PowerShell Gallery.

22.4 Before you publish
Before you publish, we’re assuming your project is complete and has been tested and
properly documented. This means it includes at least comment-based help. Your proj-
ect is a reflection of you, so you want to make the best impression possible. But there
are a few other preliminary things to check off first.

22.4.1 Are you reinventing the wheel?

Although there’s no rule against publishing something that already exists, it’s maybe
worth double checking. Is there already a module that offers the same functionality as
yours? How is yours different? Use Find-Module to see what existing modules may
compete with yours. Suppose you have a module with some AD-related commands.
You can run this:

find-module *activedirectory* | Select Version,Name,Author,
➥ Description,PublishedDate

or search by tags:

find-module -tag ad,activedirectory

You can also use your web browser by visiting powershellgallery.com and searching.
You can even refine your search-specific types and categories on the website.

22.4.2 Updating your manifest

You’ll need a proper manifest, as generated by New-ModuleManifest. In it, make sure
you configure these settings:

 ModuleVersion—The accepted standard is known as semantic versioning. Techni-
cally, your value should be in the format a.b.c., such as 1.0.0. But you can get by
with something like 1.0.

 Author—This will most likely be your name. Try to use the same value on all of
your projects so people can identify what belongs to you. Don’t use “Don Jones”

http://powershellgallery.com

246 CHAPTER 22 Publishing your script
on one and “Donald Jones” on another. Pick one and live with it. The only way
to change it is to publish a new version.

 Description—This is a biggie. You need to provide complete information
about why your module exists, what problems it solves, and how it’s different
from related projects.

 PrivateData—This too is a biggie, because Microsoft will pull values from the
manifest to populate metadata for your project in the gallery:
– Tags—You should enter at least one tag. You can enter as many as make

sense, separated by commas. Take a look at existing modules to get a sense
for what tags people are using.

– LicenseUri—Ideally, your project is also in a publicly accessible source con-
trol system like GitHub. Insert the address to your license file here, which of
course you have.

– ProjectUri—This can be the URL to your GitHub repo or wherever your
project lives online. Some people like to be able to check your source
code. Or, in the case of GitHub, use the Issues feature to report bugs or ask
questions.

We’re assuming you’ve already set the expected values for things like RootModule,
Guid, and FunctionsToExport.

22.4.3 Getting an API key

Before you can publish to the PowerShell Gallery, you need to be a registered user
with an API key. On the PowerShellGallery.com website, click the Register link, and
follow the instructions. (Websites change, so we won’t bother with screenshots.) At
some point in the process, you’ll get an API key. You can always find your key by log-
ging in and clicking your name to view your profile. You should see a Credentials sec-
tion: Click the Show Key link to see all of it. One thing you might consider, assuming
you have a secure computer, is copying the value and, in your PowerShell profile, cre-
ating a variable:

$PSGalleryKey = 2dXXX7bd-771d-9999-XXXX-da4XXXXe1XXX

This will come in handy when it comes time to publish your module.

22.5 Ready, set, publish
When you publish a module to the PowerShell Gallery, the Publish-Module cmdlet
will create a NuGet package from your module folder. The person who installs the
module will, in essence, get a copy of your folder. Remember when your Mom told
you to clean your room because company was coming over? This is like that. Take a
few minutes to delete any temporary, scratch, or otherwise superfluous files from your
directory. If you’re using git, the hidden .git directory will be ignored. If you need to

http://PowerShellGallery.com

247Ready, set, publish
retain files for development that aren’t part of the final project, you can create a sepa-
rate, clean directory with just the module files.

 If you have a well-constructed manifest, you should be able to run a command
like this:

Publish-Module -path c:\scripts\MyTools -repository PSGallery
➥ -nugetapikey $psgallerykey

In this example, we’re using the saved API key we set earlier. If you didn’t complete
your manifest as we suggested, then you should run the command and specify addi-
tional parameters like -Tags and -FormatVersion.

 Unfortunately, there’s no way to publish your module without pushing it to the
PowerShell Gallery. We’d love to have an option to publish or save the package
locally so we could verify its contents before sharing with the world. The best you
can do is save the module from the PowerShell Gallery and look at the downloaded
files. If you don’t like something, update your module, increase the version number,
and republish.

22.5.1 Managing revisions

At some point, you may improve your module or fix bugs. You can republish your
module to the PowerShell Gallery using the same steps. The most important task to
remember is to update the version number in your module manifest. Users can get
the most recent version when they run Update-Module.

 Once your module is published, there’s no way to manage it through PowerShell—
you’ll have to use the PowerShellGallery.com page. To do so, follow these steps:

1 Sign in to your account.
2 Click your account name link.
3 Click Manage My Items.
4 Select a module from the list.
5 Scroll down the page until you see the Version History section. You can’t delete

anything, but you can hide a version. Click a link under Listed. All versions
probably say Yes.

6 Uncheck the box on the next page to disable showing this particular version in
search results.

7 Click Save.

Now nobody will be able to see this version with Find-Module.
 On the module page, you’ll also see an Edit Module link. You can modify a few

things like the module description and summary, which appear in Additional Meta-
data when you use Find-Module. These are the same items you can configure in your
module manifest, which is a better place to make those changes.

http://PowerShellGallery.com

248 CHAPTER 22 Publishing your script
22.6 Publishing scripts
Your module should have all the functions and tools you need. How you might use
them will be done with a controller script. The controller script automates the process
so that instead of having to type a specific sequence of actions using commands from
your published module, all you need to do is run the script. You might want to share
your controller scripts. Microsoft recently provided an online repository for scripts,
which might be an option.

22.6.1 Using the Microsoft script repository

You can find scripts with the Find-Script cmdlet. You can run it without parameters,
or search for something in a script name:

PS C:\> find-script *weather*

Version Name Repository Description
------- ---- ---------- -----------
1.0 Get-Weather PSGallery Shows Weather information....

With our example you may see a warning message or two, which appears to be related
to an issue with a script in the repository and not anything you’ve done wrong locally
or in running Find-Script.

 If you see a script you like, you can save it to a folder so you can inspect it, which of
course you will:

PS C:\> save-script get-weather -path c:\dltemp

You can now look at the file—in our case, c:\dltemp\get-weather.ps1—and decide what
to do with it. If you like it, you can copy it to your scripts directory, or you can take
advantage of a PowerShell feature and install it:

PS C:\> install-script get-weather

PATH Environment Variable Change
Your system has not been configured with a default script installation path
yet, which means you can only run a script by specifying the full path to
the script file. This action places the script into the folder 'C:\Program
Files\WindowsPowerShell\Scripts', and adds that folder to your PATH
environment variable. Do you want to add the script installation path
'C:\Program Files\WindowsPowerShell\Scripts' to the PATH environment
variable?
[Y] Yes [N] No [S] Suspend [?] Help (default is "Y"): y

As you can read from the prompt, installed scripts go into a specific directory, which is
added to the path:

PS C:\> get-command get-weather

CommandType Name Version Source
----------- ---- ------- ------
ExternalScript Get-Weather.ps1 C:\Program Files\WindowsPowerShell\...

249Publishing scripts
PS C:\> get-command get-weather | Select path

Path

C:\Program Files\WindowsPowerShell\Scripts\Get-Weather.ps1

As an added benefit, you don’t need to specify the full path to the script file. You can
type the name of the script, and it will run:

PS C:\> get-weather "las vegas"
Weather report: las vegas

 \ / Sunny
 .-. 100-102 °F
 ? () ? ? 0 mph
 `-’ 9 mi
 / \ 0.0 in

Like modules, you can also update and uninstall scripts. And, even better, you can
publish your own scripts. As with modules, the whole world will see your code. So
make sure it’s clean, well-documented, and includes all the other things we’ve talked
about that you should be doing as a professional toolmaker.

22.6.2 Creating ScriptFileInfo

Before you can publish a script, you need to create a special type of header that
includes all the necessary metadata such as tags, versioning, and requirements. You do
this with the New-ScriptFileInfo cmdlet. You can either append your script code to
this file or move the comment block to your script file. We’ll demonstrate by publish-
ing one of Jeff’s scripts that checks for module updates in the PowerShell Gallery:

PS C:\> New-ScriptFileInfo -Path C:\Work\sfi.ps1 -Version 1.0.0
➥ -Author 'Jeff Hicks' -Description 'Check for module updates from the
➥ PowerShell gallery and create a comparison object' -Copyright 2017
➥ -Tags PowerShellget,Module,PSGallery

The filename must have a .ps1 file extension. Here’s the result. The headings should
be self-explanatory and are similar to what you’d use in a module manifest:

<#PSScriptInfo

.VERSION 1.0.0

.GUID 7da2acc6-30d8-4cc9-a3d9-ba645fceebb2

.AUTHOR Jeff Hicks

.COMPANYNAME

.COPYRIGHT 2017

.TAGS PowerShellget Module PSGallery

.LICENSEURI

.PROJECTURI

250 CHAPTER 22 Publishing your script
.ICONURI

.EXTERNALMODULEDEPENDENCIES

.REQUIREDSCRIPTS

.EXTERNALSCRIPTDEPENDENCIES

.RELEASENOTES

#>

<#

.DESCRIPTION
 Check for module updates from the PowerShell gallery and create a
comparison object

#>
Param()

Take everything except the Param() line, and move it to the beginning of the script
file. We’ll clean it up a bit and verify that we haven’t messed up anything:

PS C:\> Test-ScriptFileInfo -Path C:\scripts\Check-ModuleUpdate.ps1 |
➥ select *

Name : Check-ModuleUpdate
Version : 1.0.0
Guid : 7da2acc6-30d8-4cc9-a3d9-ba645fceebb2
Path : C:\scripts\Check-ModuleUpdate.ps1
ScriptBase : C:\scripts
Description : Check for module updates from the PowerShell
 gallery and create a comparison object
Author : Jeff Hicks
CompanyName :
Copyright : 2017
Tags : {PowerShellget, Module, PSGallery}
ReleaseNotes : {This code is described at
http://jdhitsolutions.com/blog/powershell/5…}
RequiredModules :
ExternalModuleDependencies :
RequiredScripts :
ExternalScriptDependencies :
LicenseUri :
ProjectUri : https://gist.github.com/jdhitsolutions/8a49...
IconUri :
DefinedCommands :
DefinedFunctions :
DefinedWorkflows :

We didn’t get any errors, so we’ll assume we’re good. Once you have something like
this, it’s simple to keep as a snippet or file that you can copy, paste, and modify as nec-
essary. Just be sure to generate a new GUID, using the New-Guid cmdlet, for each new
script you intend to publish.

251Summary
22.6.3 Publishing the script

Publishing a script to the PowerShell Gallery also requires the API key. Once you’ve
updated the script file with the necessary metadata, you can easily publish it:

Publish-Script -Path C:\scripts\Check-ModuleUpdate.ps1 -NuGetApiKey
➥ $psgallerykey -Repository PSGallery

In less than a minute, the script will be available for download and installation:

PS C:\> find-script check-moduleupdate
WARNING: Unable to resolve package source ''.
WARNING: Cannot bind argument to parameter 'Path' because it is an empty

string.

Version Name Repository Description
------- ---- ---------- -----------
1.0.0 Check-ModuleUpdate PSGallery Check for module updates from ...

You may see a different version, depending on changes Jeff makes and republishes.

22.6.4 Managing published scripts

As is true for published modules, there are no commands in PowerShell for managing
a published script. If you need to make a change to the script, do so, and then edit the
script file-info header with a new version. You should be able to run Publish-Script
as you did before.

 You can also use the Manage My Items page on PowerShellGallery.com, as we
showed you earlier for modules. Scroll down the list until you find the script. You’ll
see that it has a Script type. As with modules, you can’t delete published items, but you
can hide previous versions. Follow the same steps as described earlier.

22.7 Summary
There’s no requirement that you publish or share your modules and scripts, but this is
a relatively painless process to make your beautiful code available to everyone who
needs it. In the long run, we think Microsoft will offer more guidance and tools for IT
pros to set up internal repositories, which makes a ton of sense. In the meantime, you
can become familiar with the process by publishing to the PowerShell Gallery.

http://PowerShellGallery.com

Part 4

Advanced techniques

This book’s narrative essentially ends here, but your scripting and toolmak-
ing journey continues. There are tons of advanced, useful techniques yet to learn—
we recommend our books PowerShell in Depth (Manning, 2014, www.manning
.com/books/powershell-in-depth-second-edition) and The PowerShell Scripting
and Toolmaking Book (https://leanpub.com/powershell-scripting-toolmaking) as
valuable next steps—but we wanted to use chapters 23–27 to introduce you to
some of the most important advanced techniques. In this part of the book, we’ll
continue to focus on the PowerShell way of doing things, making you a more
effective and professional scripter.

http://www.manning.com/books/powershell-in-depth-second-edition
http://www.manning.com/books/powershell-in-depth-second-edition
http://www.manning.com/books/powershell-in-depth-second-edition
https://leanpub.com/powershell-scripting-toolmaking

Squashing bugs
No book on scripting could be complete without at least a quick word on debugging.
So here it goes: “Debugging sucks.” There you are: Two words on debugging. Actu-
ally, although debugging does suck, we have quite a few more words to share on the
topic, along with some solid tips for making debugging easier on you. Let’s dive in.

23.1 The three kinds of bugs
We tend to categorize bugs as syntax, results, or logic bugs. We used to focus on syn-
tax and logic bugs, but we recently added results bugs to the mix to identify a par-
ticular type of vexing situation and help people work past it. In order of increasing
complexity, these bug families work like this:

 Syntax bugs—You typed something wrong. Perhaps you typed FerEach instead of
ForEach, for example, or you forgot to close a { curly bracket. PowerShell will
try to bring your attention to many syntax bugs in the PowerShell ISE or VS
Code by using a little red squiggly underline thingy. But there’s a more insidi-
ous class of syntax bugs that PowerShell can’t help with: Mistyping a variable
name in a script—for example, $CmputerName instead of $ComputerName—will
create undesired results, but PowerShell won’t be able to help by default. If
you’re using VS Code, you may see a red squiggle under the variable until you
use it somewhere else in your script.

 Results bugs—A command produces something you don’t expect. For exam-
ple, if you expect Test-Connection SERVER1 to return $True when SERVER1
is online, you’ll be disappointed when it doesn’t, and the code that made
that assumption might not work the way you expected.
255

256 CHAPTER 23 Squashing bugs
 Logic bugs—The worst to deal with, because scripts usually run without an obvi-
ous error. Your commands all work without error, but something in the way
your code is written causes a problem. We’ll devote the majority of this chapter
to helping you squash these.

23.2 Dealing with syntax bugs
The easiest answer here is to never make a typo and to watch for the red squigglies
that PowerShell uses to call your attention to typos. Another thing you can do to help
yourself is to add Set-StrictMode –Version 2.0 at the top of each script or command
you write—perhaps in the Begin block of a function, for example. This command will
change how PowerShell behaves about certain things:

 You’re supposed to call PowerShell functions using a specific syntax. For exam-
ple, a function that has three input parameters could be called by running
My-Function 1 2 3, passing the values 1, 2, and 3 to the parameters in order.
Newcomers sometimes use a method-style syntax like My-Function(1,2,3),
which passes a single array of three elements to the first parameter. Strict mode
disallows that and will throw an error. You can also avoid the problem condition
by always using named parameters when calling a function, as in My-Function
–Param 1 –OtherParam 2 –ThirdParam 3.

 Referring to nonexistent properties of objects normally returns a $null value;
in strict mode, doing so produces an error. This will not solve the Select-Object

A sort-of fourth bug family: the PowerShell “gotcha”
This maybe-a-fourth-type-of-bug is kind of unique to PowerShell and kind of a combined
syntax bug and results bug. Consider the following command:

Get-CimInstance –ClassName Win32_OperatingSystem |
Select-Object –Prop PSHostName,Version,BuildNumber

This will run absolutely without error and will produce output with one blank column.
Try it, and you’ll see—it’s worth gazing at for a moment. The problem is in the
PSHostName property we’ve asked Select-Object to display. You see, the CIM class
we’ve retrieved doesn’t have a PSHostName property. In a perfect world, the Select-
Object command would throw an error complaining about that. But it doesn’t.

This is essentially a feature in PowerShell, not a problem. The command has the
ability to create brand-new properties on the fly, which is a useful trick in a lot of
scenarios. In this case, that’s what we’ve done—we’ve asked it to create a new
property named PSHostName. But we’ve neglected to put anything in that property,
so the result is a blank column. If we have later code that depends on PSHostName
being populated with something, we aren’t going to get the results we expect. For
now, we’re going to classify this as a results bug and refer you to section 23.3.

257Dealing with results bugs
gotcha we described in the sidebar earlier—that condition is, as we noted, a
specific feature of the command.

 Referring to a variable that hasn’t been assigned a value in the current scope
will normally cause PowerShell to go up the scope tree to try and find the
variable. For example, when you refer to $ErrorActionPreference in a
script, it works because the global scope, rather than your local scope, con-
tains that predefined variable. In strict mode, this behavior changes. Refer-
ring to variables that haven’t yet been assigned a value in the current scope
will produce an error. This helps avoid “I mistyped the variable name—argh!”
syntax errors.

We recommend using strict mode in all of your scripts. We don’t do so in all of our
sample and demo code, but that’s because they aren’t production-ready files.

23.3 Dealing with results bugs
Results bugs are really easy to avoid if you follow the scripting process we’ve been sug-
gesting throughout this book: Start by running commands right in the console.
Before you use any command in any script, run that command by itself first. You’ll get
to see the output it produces, and you can build safe assumptions from that concrete
evidence. We know this seems like overly simplistic advice; but often, in the rush to get
going on a command or script, people skip this step. They make assumptions about
command output rather than working from concrete data, and they put themselves
into a debugging tailspin.

Using the latest version
If you read the help for Set-StrictMode, which of course you did, you saw that
there’s another option for the -Version parameter: Latest. The theory is that if you
use Set-StrictMode -version latest, you’ll be protected by whatever the most
current strict settings are. As of this writing, using a value of 2.0 is the same as
using Latest, because that is, well, the latest version.

So why not use Latest and not worry about having to revise your script when
Microsoft releases a 3.0 setting? Well, do you know what settings are in a 3.0
version? Do you know whether any of those settings might break your script if
implemented? Of course not, because we have no idea what 3.0 settings might be.
Instead, use 2.0 (for now), because those settings are documented and you can
verify that your code will still run. If Microsoft ever updates Set-StrictMode with an
option for 3.0, we’re guessing there will be enough other significant changes to
PowerShell that you’ll probably want to revisit your code anyway; if it makes sense,
you can make the change then.

258 CHAPTER 23 Squashing bugs
23.4 Dealing with logic bugs
Here’s the biggie. We’ve discovered a simple rule that makes logic bugs easy to under-
stand and easier to squash: Logic errors happen because a property or a variable con-
tains something other than what you thought it contained. As a concrete, common
example, consider the script in listing 23.1. It contains a function that’s supposed to
get disk information using Get-CimInstance.

TRY IT NOW Go ahead and grab this script from the downloadable code sam-
ples at www.manning.com/books/learn-powershell-scripting-in-a-month-of-
lunches and run it. It won’t hurt anything, but it also won’t work correctly. If
you’ve run into this issue yourself at some point, the reason will be obvious,
but we’re going to use this as an example of the procedure we follow to debug
problems like this. We also aren’t annotating the code, because we want you
to follow the debug process.

function Get-DiskInfo {
 [CmdletBinding()]
 Param(
 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True)]
 [string[]]$ComputerName
)
 BEGIN {
 Set-StrictMode -Version 2.0
 }
 PROCESS {

 ForEach ($comp in $ComputerName) {

 $params = @{'ComputerName' = $comp
 'ClassName' = 'Win32_LogicalDisk'}
 $disks = Get-CimInstance @params

 ForEach ($disk in $disks) {

 $props = @{'ComputerName' = $comp
 'Size' = $disk.size
 'DriveType' = $disk.drivetype}
 if ($disk.drivetype -eq 'fixed') {
 $props.Add('FreeSpace',$disk.FreeSpace)
 } else {
 $props.Add('FreeSpace','N/A')
 }

 New-Object -TypeName PSObject -Property $props

Listing 23.1 A buggy script for you to consider

http://www.manning.com/books/learn-powershell-scripting-in-a-month-of-lunches
http://www.manning.com/books/learn-powershell-scripting-in-a-month-of-lunches

259Dealing with logic bugs
 } #foreach disk

 } #foreach computer

 } #PROCESS
 END {}
}

Get-DiskInfo -ComputerName localhost

The problem with this script, as with all logic bugs, is that we have either a variable or
a property that contains something other than what we thought it did. In this particular
example, which is deliberately simplistic, this is really a results-style bug. That is, if we’d
bothered to run the command at the console and see what it produced, we wouldn’t
be in this pickle. But in some scripts, you’re populating variables and properties with
values that you’ve calculated or constructed, and so it’s more complex than running a
command to see what it produces. For this example, then, we’ll treat this as a pure
logic bug and follow the procedure for figuring those out.

 If the core problem is a property or a variable not containing what you expect,
then the fix is to figure out which property or variable that is and determine what it
does contain. We’re going to cover several distinct methods for doing this.

NOTE With the advent of VS Code and PowerShell support therein, we’ve
changed our debugging approach. We don’t use Write-Debug anymore, nor,
in most interactive debugging cases like this, do we use Set-PSBreakpoint as
much. Those are still useful, and in more-advanced books like The PowerShell
Scripting & Toolmaking Book, we get into their intricacies. For beginning debug-
ging, however, we now rely on VS Code’s features.

23.4.1 Setting breakpoints

A breakpoint lets you run a script to a specific place; when it encounters the breakpoint,
the script will pause. That pause lets you examine the script, check the contents of
variables and properties, execute the script line by line, or even resume normal execu-
tion. Breakpoints are the core debugging tool that you have, and they’re tremen-
dously useful.

 We like to set a breakpoint either just after we’ve set a variable’s contents or right
before we’re about to rely on the contents of a variable or a property. Figure 23.1
shows our script in VS Code; we’ve moved to line 21 and pressed F9 to toggle a break-
point. It displays as a red dot just to the left of the line number.

260 CHAPTER 23 Squashing bugs
With the breakpoint set, we can press F5 to run the script and begin debugging. Fig-
ure 23.2 shows what happens when execution reaches line 21: A Debug pane opens
on the left side of the VS Code window, and the PowerShell terminal pane indicates
that we’ve hit a breakpoint. The script is paused, and line 21 is highlighted.

Figure 23.1 Setting a breakpoint in VS Code

261Dealing with logic bugs
While the breakpoint is active, we can use that Terminal pane to examine things. For
example, we’ll run $disk to see what that variable currently contains. Figure 23.3
shows the result.

 Sharp-eyed readers will have spotted the problem: The DriveType property con-
tains 3, but our code clearly expected it to contain a string value like “fixed”. Let’s pre-
tend for a moment that you’re not sharp-eyed—we have another debugging trick up
our sleeves.

TRY IT NOW This next bit is cooler to watch in person than in a book. We sug-
gest that you get VS Code up and running, make sure the PowerShell exten-
sion is active, and start a new file. Save the file with a .ps1 filename extension
(so VS Code knows it’s PowerShell), and paste in the contents of listing 23.1.
Set a breakpoint on line 21 as we’ve done, and run the script.

Figure 23.2 Hitting a breakpoint in VS Code

262 CHAPTER 23 Squashing bugs
At line 21, the script is just about to enter an If construct, where it will make a logical
decision. These decisions are often where logic bugs manifest themselves. The script is
going to decide whether it will create a FreeSpace property that contains an actual
free space value, or if it’ll insert “N/A” as that value. Press F11, the Step Into com-
mand; as shown in figure 23.4, the script will advance one line and pause again. You’re
about to execute the logic construct.

 Press F11 once more. The script jumps to line 27—you’ve able to visually observe
the outcome of the logic. That means $disk.drivetype definitely doesn’t contain
“fixed”. You expected it to—and so you’ve found the exact location of the bug. At
this point, you can press Shift-F5 to stop debugging, so that you can begin fixing the
problem.

Figure 23.3 Checking out a variable’s contents when in debug mode

263Dealing with logic bugs
It’s all about the expectations
We’ve skipped a somewhat valuable lesson—or, rather, saved it for this specific point.
Debugging is all about finding the place where your assumptions and expectations
differ from reality. The implication is that you have expectations. In other words, you
must have an idea in mind of what your script will do. Debugging will let you observe
whether it does those things.

The best way we can explain this—and what we absolutely recommend you do when
you come to the hands-on lab later in this chapter—is to print out your script. On
paper. Take a pencil, and go through the script line by line. What will each command
produce? What will each property contain? Write down these assumptions. What will
each variable contain? Write it down. As each variable changes, write that down.

Figure 23.4 Stepping into the next line of code during debugging

264 CHAPTER 23 Squashing bugs
23.4.2 Setting watches

Because “what the variables and properties contain” is such a crucial part of debug-
ging, VS Code offers a feature called watches that focuses specifically on that part. In
VS Code, you can select Remove All Breakpoints from the Debug menu to give your-
self a clean slate. The Debug pane is still open, though—press Ctrl-Shift-D if you closed
it by accident. Under the WATCH section, click the + icon (it won’t be visible until you
move your cursor over the WATCH section header). In the text box that appears, type
$disk, and press Enter. You should have something that looks like figure 23.5.

We’re seeing that the variable is currently “not available,” which makes sense because
the script isn’t running. We’ll re-enable the breakpoint on line 21, which is just after
$disk is defined in the ForEach loop, and then run the script.

23.4.3 So much more

Under the hood, VS Code uses PowerShell’s PSBreakpoint commands to accomplish
its GUI-based magic. And there’s a lot more magic than we’ve touched on here. Read
the help documentation for VS Code to learn much more. What we’ve covered will

(Continued)

These are your expectations. When it comes time to debug, you’re merely comparing
reality to those expectations, and where they differ, you’ve found your bug.

If you don’t have an expectation for what the script will do each step of the way, and
if you don’t have an expectation for what each variable and property will contain, then
you can’t debug.

Figure 23.5 Adding a watch for $disk

265Dealing with logic bugs
definitely give you the core tools you need to squash bugs in your scripts, but we abso-
lutely encourage you to explore the possibilities that VS Code and Set-PSBreakpoint
offer. (It’s one of PowerShell inventor Jeffrey Snover’s favorite topics; and if you ever
get a chance to hear him speak about debugging in PowerShell and VS Code, seize
the opportunity.) Figure 23.6 shows that the watch is now populated—you can see that
$disk contains Win32_LogicalDisk.

But you kind of knew it was a Win32_LogicalDisk. The next use of the $disk variable is
to check the Size and DriveType properties on line 21. Double-click the watch to edit
it. Add .drivetype to the end of $disk; as figure 23.7 shows, on our system we see
that DriveType is 3.

 The benefit of these watches is that you can press F5 again to run the script until it
re-encounters the line 21 breakpoint. On our computer, we’d see DriveType change

Figure 23.6 Watching $disk reveals what’s in it at this moment.

266 CHAPTER 23 Squashing bugs
to 5—you’ll likely have something different, based on your computer’s configuration.
And rather than having to type out $disk.drivetype every time, you can quickly refer
to the watches and see what all of your variables are doing.

23.4.4 Don’t be lazy

After all that, you may be thinking, “That’s a lot of work.” You know what’s even more
work? Trying to spot a problem by reading the code or making random guesses about
what might be wrong. And we’ve seen real people do exactly that. Take the time to
learn the process and your editor’s debugging features. It may feel like it’s taking for-
ever, but it’s still a faster process than debugging by chance.

 Oh, and make sure you make only one change at a time. Don’t change five things
at once, because you won’t know which change solves your problem, and you run the
risk of introducing more bugs. Change one thing. Test. If it solves your bug, great. If

Figure 23.7 Modifying the watch to focus on a specific property

267Your turn
not, change your code back, and try something else. Also be prepared for the fact that
you might have multiple bugs but not see all of them until the first one or two are fixed.

23.5 Your turn
With these few techniques, believe it or not, you’re equipped to handle most of the
logic bugs you’ll write into a PowerShell script. But don’t take our word for it—put
your new debugging skills to use.

23.5.1 Start here

Listing 23.2 is a buggy script. That’s right, it won’t run as is. We know that—it’s the
whole point of this exercise. We don’t want you to run the script—for now, get it into
VS Code, where you can look at it. Be sure to save it as a file with a .ps1 filename exten-
sion, or VS Code’s PowerShell magic won’t activate.

Function Get-DiskCheck {

 [cmdletbinding(DefaultParameterSetName = "name")]

 Param(
 [Parameter(Position = 0, Mandatory,
 HelpMessage = "Enter a computer name to check",
 ParameterSetName = "name",
 ValueFromPipeline)]
 [Alias("cn")]
 [ValidateNotNullorEmpty()]
 [string[]]$Computername,

 [Parameter(Mandatory,
 HelpMessage = "Enter the path to a text file of computer
➥ names",
 ParameterSetName = "file"
)]
 [ValidateScript({
 if (Test-Path $_) {
 $True
 }
 else {
 Throw "Cannot validate path $_"
 }
 })]
 [ValidatePattern("\.txt$")]
 [string]$Path,

 [ValidateRange(10, 50)]
 [int]$Threshhold = 25,

 [ValidateSet("C:", "D:", "E:", "F:")]
 [string]$Drive = "C:",

 [switch]$Test
)

Listing 23.2 A buggy script that awaits your debugging skills

268 CHAPTER 23 Squashing bugs
 Begin {
 Write-Verbose "[BEGIN] Starting: $($MyInvocation.Mycommand)"

 $cimParam = @{
 Classname = "Win32_LogicalDisk"
 Filter = "DeviceID='$Drive'"
 Computername = $Null
 ErrorAction = "Stop"
 }
 } #begin

 Process {

 if ($PSCmdlet.ParameterSetName = 'name') {
 $names = $Computernme
 }
 else {
 #get list of names and trim off any extra spaces
 Write-Verbose "[PROCESS] Importing names from $path"
 $names = Get-Content -Path $path | Where {$_ -match "\w+"} |
➥ foreach {$_.Trim()}

 }

 if ($test) {
 Write-Verbose "[PROCESS] Testing connectivity"
 #ignore errors for offline computers
 $names = $names | Where {Test-WSMan $_ -ErrorAction
➥ SilentlyContinue}
 }

 foreach ($computer in $names) {
 $cimParam.Computername = $Computer
 Write-Verbose "[PROCESS] Querying $($computer.toUpper())"
 Try {
 $data = Get-Ciminstance @cimParam

 #write custom result to the pipeline
 $data | Select Computername,
 DeviceID, Size, Freespace,
 @{Name = "PctFree"; Expression =
➥ {[math]:Round(($_.freespace / $_.size) * 100, 2)}},
 @{Name = "OK"; Expression = {
 [int]$p = ($_.freespace / $_.size) * 100
 if ($p -ge $Threshhold) {
 $True
 }
 else {
 $false
 }
 }
 }, @{Name = "Date"; Expression = {(Get-Date)}}
 }
 Catch {
 Write-Warning "[$($computer.toUpper())] Failed.
➥ $($_.Exception.message)"

269Your turn
 }
 } #foreach computer

 } #process

 End {
 Write-Verbose "[END] Ending: $($MyInvocation.Mycommand)"
 } #end

}

23.5.2 Your task

Begin by reading the script. What will it do? What will each variable contain along the
way? What will the various properties contain? You may spot several bugs in your read-
through—we’ve included both logic and syntax bugs for your debugging pleasure.
Don’t assume you’ve found all the bugs by reading the script.

 Once you’re finished with the read-through, debug the script. Use the techniques
we’ve introduced in this chapter, and see whether you can produce a flawless version
that runs perfectly. For example, maybe start by finding a good place to enable strict
mode, and see what PowerShell can help you find.

23.5.3 Our take

This chapter is a lot more about the procedure than the code, but just to make sure
you found everything, the following listing shows the corrected script. Looking for a
fun bonus exercise? We didn’t annotate the listing; instead, try using Compare-Object
to compare listings 23.2 and 23.3, or compare your corrected script to either one of
those, to see what changed between them.

Function Get-DiskCheck {

 [cmdletbinding(DefaultParameterSetName = "name")]

 Param(
 [Parameter(Position = 0, Mandatory,
 HelpMessage = "Enter a computer name to check",
 ParameterSetName = "name",
 ValueFromPipeline)]
 [Alias("cn")]
 [ValidateNotNullorEmpty()]
 [string[]]$Computername,

 [Parameter(Mandatory,
 HelpMessage = "Enter the path to a text file of computer
➥ names",
 ParameterSetName = "file"
)]
 [ValidateScript({
 if (Test-Path $_) {
 $True
 }

Listing 23.3 Buggy script, completely debugged

270 CHAPTER 23 Squashing bugs
 else {
 Throw "Cannot validate path $_"
 }
 })]
 [ValidatePattern("\.txt$")]
 [string]$Path,

 [ValidateRange(10, 50)]
 [int]$Threshhold = 25,

 [ValidateSet("C:", "D:", "E:", "F:")]
 [string]$Drive = "C:",

 [switch]$Test
)

 Begin {
 Write-Verbose "[BEGIN] Starting: $($MyInvocation.Mycommand)"

 $cimParam = @{
 Classname = "Win32_LogicalDisk"
 Filter = "DeviceID='$Drive'"
 Computername = $Null
 ErrorAction = "Stop"
 }
 } #begin

 Process {

 if ($PSCmdlet.ParameterSetName -eq 'name') {
 $names = $Computername
 }
 else {
 #get list of names and trim off any extra spaces
 Write-Verbose "[PROCESS] Importing names from $path"
 $names = Get-Content -Path $path | Where {$_ -match "\w+"} |
➥ foreach {$_.Trim()}

 }

 if ($test) {
 Write-Verbose "[PROCESS] Testing connectivity"
 #ignore errors for offline computers
 $names = $names | Where {Test-WSMan $_ -ErrorAction
➥ SilentlyContinue}
 }

 foreach ($computer in $names) {
 $cimParam.Computername = $Computer
 Write-Verbose "[PROCESS] Querying $($computer.toUpper())"
 Try {
 $data = Get-Ciminstance @cimParam

 #write custom result to the pipeline
 $data | Select PSComputername,
 DeviceID, Size, Freespace,
 @{Name = "PctFree"; Expression =
➥ {[math]::Round(($_.freespace / $_.size) * 100, 2)}},

271Your turn
 @{Name = "OK"; Expression = {
 [int]$p = ($_.freespace / $_.size) * 100
 if ($p -ge $Threshhold) {
 $True
 }
 else {
 $false
 }
 }
 }, @{Name = "Date"; Expression = {(Get-Date)}}
 }
 Catch {
 Write-Warning "[$($computer.toUpper())] Failed.
➥ $($_.Exception.message)"
 }
 } #foreach computer

 } #process

 End {
 Write-Verbose "[END] Ending: $($MyInvocation.Mycommand)"
 } #end

}

Making script
output prettier
Throughout this book, we’ve tried to keep you focused on building tools that do
one thing, and one thing only. Tools don’t care where their input comes from, as
long as that input can be fed to a parameter. Tools don’t care where their output
goes or what it will be used for. That means tools don’t try to create nicely format-
ted output—after all, you can use one of the native Format- commands, or even
Select-Object, to pretty up the output if that’s what you need. Perhaps you want
to make the output easier to read or more boss-friendly. In this chapter, however,
we’re going to introduce you to two approaches for prettying up output that go
beyond what the Format- commands can do.

24.1 Our starting point
We’re going to start with the following code, which we copied from the end of
chapter 17.

function Get-DiskInfo {
 foreach ($domain in (Get-ADForest).domains) {
 $hosts = Get-ADDomainController -filter * -server $domain |
 Sort-Object -Prop hostname
 ForEach ($host in $hosts) {
 $cs = Get-CimInstance -ClassName Win32_ComputerSystem `
 -ComputerName $host
 $props = @{'ComputerName' = $host
 'DomainController' = $host
 'Manufacturer' = $cs.manufacturer

Listing 24.1 Starting point for this chapter
272

273Creating a default view
 'Model' = $cs.model
 'TotalPhysicalMemory(GB)'=$cs.totalphysicalmemory / 1GB
 }
 New-Object -Type PSObject -Prop $props
 } #foreach $host
 } #foreach $domain
} #function
Export-ModuleMember -function Get-DiskInfo

Save this as a new module named Test.psm1, which means it’s in a folder also named
Test, under the Documents/WindowsPowerShell/Modules folder. Thus, the complete
filename is Documents/WindowsPowerShell/Modules/Test/Test.psm1. Got all that?

 As is, the output isn’t fantastic looking. The code has five properties, which
exceeds the property count of four that lets PowerShell create a table by default. That
means the output is, by default, returned as a list:

PS C:\> get-diskinfo

DomainController : DC1
ComputerName : DC1
Model : Virtual Machine
Manufacturer : Microsoft Corporation
TotalPhysicalMemory(GB) : 1.99906539916992

We don’t like it. Maybe you really want a table or specific default properties. But you
know not to build any formatting into the command itself, because that would break
the excellent rules laid down by those two great PowerShell guys in their scripting
book, right?

24.2 Creating a default view
Instead, let’s take advantage of the formatting system that’s built into PowerShell. The
goal is to have your command output always display as a table, without using any addi-
tional commands to make that happen (such as piping to Format-Table).You’re going
to create what’s called a default view, which PowerShell’s formatting subsystem will use,
automatically, to render the output of the command. You’ll only change the visual rep-
resentation of the command’s output—you won’t modify the actual output objects in
any way.

24.2.1 Exploring Microsoft’s views

Nearly every native, core command you run in PowerShell has a default view defined
already. Run cd $pshome in PowerShell to switch to PowerShell’s home folder, and
then run Dir. You’ll see several files with a .format.ps1xml filename extension. These
are the ones we’re after, because they’re where Microsoft defines the default views for
the shell’s core commands.

274 CHAPTER 24 Making script output prettier
The file to open—in Notepad, VS Code, or the ISE, as your prefer—is dotnettypes.format
.ps1xml. There are other format files, but this is the biggie that contains the views for
most of the core object types PowerShell works with. Let’s walk through a bit of it,
because you’ll be copying from it. It starts like this:

<?xml version="1.0" encoding="utf-8" ?>
<!-- ***
These sample files contain formatting information used by the Windows
PowerShell engine. Do not edit or change the contents of this file
directly. Please see the Windows PowerShell documentation or type
Get-Help Update-FormatData for more information.

Copyright (c) Microsoft Corporation. All rights reserved.

THIS SAMPLE CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY
OF ANY KIND,WHETHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO

Lies and mysteries
You’re hopefully already aware of the fact that these default views can make it seem
as if PowerShell is lying sometimes. For example, running Get-EventLogsystem
-newest 10 displays a neatly formatted table (try it!), but some of the column
names are different from the underlying property names. That is, when you’re
looking at a predefined list or table, the headers are defined in the view, and they
don’t necessarily represent the underlying objects. When you run Get-Process, the
numbers you see are calculated by the default view; the underlying data is in bytes,
not kilobytes, or megabytes, or whatever. Views are a visual thing, and you have to
be careful about relying on them as descriptors of the actual data in play.

You can do the same sort of lying when you create views. Don’t want the table
header to be ComputerName? No problem—you can have it show up as Mandolin if
you want. This will create no end of confusion for anyone using your command,
because they might try to run something like Get-Whatever | Select-Object
mandolin, only to get a blank column as the output because there’s no actual
“mandolin” property. This continues a fine tradition of PowerShell being a little
sneaky.

We should also point out that we’re about to mess with XML files that have no formal
definition or document type declaration (DTD). This is allegedly because Microsoft wants
the freedom to tinker with this system in the future (although it never has in 10+
years); if Microsoft doesn’t document the file formats, you can’t complain if they
change on you one day. Or so goes the theory. Frankly, we’ve seen the formatting
subsystem’s code (PowerShell is open source now, remember!), and we’d be more
willing to believe that the company is a little embarrassed by it all and doesn’t want
to document it because it brings up painful memories. What documentation does
exist is at http://mng.bz/QBX0, and good luck with that—it’s terse.

We document this stuff more thoroughly in PowerShell in Depth, if you’re interested
(Manning, 2014, https://www.manning.com/books/powershell-in-depth-second-edition).
This chapter will serve more as a tutorial than a comprehensive look at what you can
accomplish.

https://www.manning.com/books/powershell-in-depth-second-edition
http://mng.bz/QBX0

275Creating a default view
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR
PURPOSE. IF THIS CODE AND INFORMATION IS MODIFIED, THE ENTIRE RISK OF USE
OR RESULTS IN CONNECTION WITH THE USE OF THIS CODE AND INFORMATION
REMAINS WITH THE USER.
** -->

<Configuration>
<ViewDefinitions>

The first line and last two lines are important for making your own file. Start up a new
file in VS Code right now, and copy and paste those three lines at the top of the new file.
Save the new file in the same folder as your .psm1 file (we’re assuming you’re follow-
ing along with us). Name it TestViews.format.ps1xml. Saving it will cue VS Code to
provide the correct syntax coloring for XML, which is what this is.

WARNING In PowerShell v1 and v2, the XML is case-sensitive, so be careful
about anything you type manually. It’s case-insensitive as of v3, but it still pays
to be careful with the casing when it comes to tags.

Go ahead and finish the file by closing those two opening tags:

<?xml version="1.0" encoding="utf-8" ?>
<Configuration>
<ViewDefinitions>
</ViewDefinitions>
</Configuration>

Everything in XML comes in paired sets of tags, and each pair needs to be nested
within another pair. The opening <?xml ?> bit isn’t a tag; it’s a document definition,
which is why there’s only one of those.

 Everything else in the file consists of <View></View> sections. Each of these is a
view, as the tag name implies, and defines a single way of displaying a single kind of
object. Here’s one as an example:

<View>
<Name>System.CodeDom.Compiler.CompilerError</Name>
<ViewSelectedBy>
<TypeName>System.CodeDom.Compiler.CompilerError</TypeName>
</ViewSelectedBy>
<ListControl>
<ListEntries>
<ListEntry>
<ListItems>
<ListItem>
<PropertyName>ErrorText</PropertyName>
</ListItem>
<ListItem>
<PropertyName>Line</PropertyName>
</ListItem>
<ListItem>
<PropertyName>Column</PropertyName>
</ListItem>

Name of the view

Optional
selection
criteria

View type

List definition

276 CHAPTER 24 Making script output prettier
<ListItem>
<PropertyName>ErrorNumber</PropertyName>
</ListItem>
<ListItem>
<PropertyName>LineSource</PropertyName>
</ListItem>
</ListItems>
</ListEntry>
</ListEntries>
</ListControl>
</View>

Let’s break this down:

 The view has a name. These are often object type names, but that’s not required.
Frankly, the idea of views having a name you could refer to never played out. The
idea was that a single object type could have multiple view options, and that using
the Format- commands, you could tell PowerShell which one to use. But there’s
no way to list them all, and the idea never went anywhere.

 The view is selected by a particular object type name. This is important! Right
now, the command is producing objects of the type System.PSCustomObject.
That’s a commonly used type, and it’s not unique to this command—which is a
problem. You can only make a view if your command produces an object having
a unique type. You’ll have to fix this in your command.

 This example shows a list-type view, as opposed to a table-type view.
 The list view consists of list entries, and each entry includes a list item. In this

example, they specify the property names to display in the list.

TRY IT NOW Scroll through the file, and examine some of the other types of
views and some of the other elements—besides property names—that they
include. Notice that table controls in particular are more complex, including
an entire section just for the column headers, followed by sections for what
those columns will contain.

24.2.2 Adding a custom type name to output objects

You know you need to modify the code. The following listing shows that change.

function Get-DiskInfo {
 foreach ($domain in (Get-ADForest).domains) {
 $hosts = Get-ADDomainController -filter * -server $domain |
 Sort-Object -Prop hostname
 ForEach ($host in $hosts) {
 $cs = Get-CimInstance -ClassName Win32_ComputerSystem -ComputerName $host
 $props = @{'ComputerName' = $host
 'DomainController' = $host
 'Manufacturer' = $cs.manufacturer

Listing 24.2 Adding a custom type name to an object

277Creating a default view
 'Model' = $cs.model
 'TotalPhysicalMemory(GB)'=$cs.totalphysicalmemory / 1GB
 }
 $obj = New-Object -Type PSObject -Prop $props
 $obj.psobject.typenames.insert(0,'Toolmaking.DiskInfo')
 Write-Output $obj
 } #foreach $host
 } #foreach $domain
} #function
Export-ModuleMember -function Get-DiskInfo

This isn’t a major change: You saved the output object into a variable, $obj, rather
than immediately emitting it to the pipeline. You then insert a type name, Toolmaking
.DiskInfo, and place the object into the pipeline. The new type name will replace the
original generic type name.

24.2.3 Creating a new view file

The next listing shows the start of the new view file. Notice that we found a table view
that we like the look of, to use as a starting point.

<?xml version="1.0" encoding="utf-8" ?>
<Configuration>
<ViewDefinitions>
<View>
<Name>System.Reflection.Assembly</Name>
<ViewSelectedBy>
<TypeName>System.Reflection.Assembly</TypeName>
</ViewSelectedBy>
<TableControl>
<TableHeaders>

Selecting a type name
.NET Framework’s type-naming conventions are designed to make each type name
universally unique. You wouldn’t want to add a custom type name like “System
.DiskInfo”, because for all you know, it either already exists or could exist in the
future. System is considered a namespace, and it’s “owned” by Microsoft. That is,
everything starting with System. is under Microsoft control, and you shouldn’t intrude
into the company’s playground.

We essentially defined a new Toolmaking namespace, under which we have free
reign to create whatever we want—and you should do the same, perhaps using a
form of your organization’s name as the top-level namespace. If you work in IT
operations, and you’re specifically on the Storage team, perhaps you’d select
MyCompany.ITOps.Storage.DiskInfo as your custom type name in this example.
The idea is to create a hierarchy that allows individual groups to have full control
over their own namespace, without fear of overlapping each other.

Listing 24.3 Starting a new view file

Saves the
object to
a variable

Inserts a new
type name

Table
definition

278 CHAPTER 24 Making script output prettier
<TableColumnHeader>
<Label>GAC</Label>
<Width>6</Width>
</TableColumnHeader>
<TableColumnHeader>
<Label>Version</Label>
<Width>14</Width>
</TableColumnHeader>
<TableColumnHeader/>
</TableHeaders>
<TableRowEntries>
<TableRowEntry>
<TableColumnItems>
<TableColumnItem>
<PropertyName>GlobalAssemblyCache</PropertyName>
</TableColumnItem>
<TableColumnItem>
<PropertyName>ImageRuntimeVersion</PropertyName>
</TableColumnItem>
<TableColumnItem>
<PropertyName>Location</PropertyName>
</TableColumnItem>
</TableColumnItems>
</TableRowEntry>
</TableRowEntries>
</TableControl>
</View>

</ViewDefinitions>
</Configuration>

You have some work to do, like adding the custom type name and arranging the table
the way you like. But we want to call your attention to this line in particular:

<TableColumnHeader/>

This is a sneaky XML thing that Microsoft uses a lot, and it’ll mess you up big time.
Remember how we said that XML elements come in pairs? Well, not always. This sin-
gleton tag both opens and closes itself—that’s what the slash at the end means. It’s
exactly the same as

<TableColumnHeader>
</TableColumnHeader>

Go count the number of table column headers in the file right now. You should come
up with three. The number of table column entries must match! If they don’t, the view won’t
load into the shell. Those singleton tags, however, can be super easy to miss when
you’re copying and pasting, resulting in a broken formatting file. So, watch for them.
They essentially mean, “I want a column here, but I don’t want to specify anything for
the header—just use the underlying property name, and figure out the width on your
own, thanks.” Here’s the finalized file.

Defines table
headers

Singleton
tag

Corresponding
values

279Creating a default view
<?xml version="1.0" encoding="utf-8" ?>
<Configuration>
<ViewDefinitions>

<View>
<Name>DiskInfo</Name>
<ViewSelectedBy>
<TypeName>Toolmaking.DiskInfo</TypeName>
</ViewSelectedBy>

<TableControl>
<TableHeaders>

<TableColumnHeader>
<Label>Host</Label>
<Width>16</Width>
</TableColumnHeader>

<TableColumnHeader>
<Label>DC</Label>
<Width>16</Width>
</TableColumnHeader>

<TableColumnHeader>
<Label>Model</Label>
</TableColumnHeader>

<TableColumnHeader>
<Label>RAM</Label>
<Alignment>Right</Alignment>
</TableColumnHeader>

</TableHeaders>

<TableRowEntries>
<TableRowEntry>
<TableColumnItems>

<TableColumnItem>
<PropertyName>ComputerName</PropertyName>
</TableColumnItem>

<TableColumnItem>
<PropertyName>DomainController</PropertyName>
</TableColumnItem>

<TableColumnItem>
<PropertyName>Model</PropertyName>
</TableColumnItem>

<TableColumnItem>
<PropertyName>TotalPhysicalMemory(GB)</PropertyName>
</TableColumnItem>

</TableColumnItems>
</TableRowEntry>

Listing 24.4 Final view file

View name

Uses the custom
type name

Table
headers

Forces this
column to
align right

Table
values

280 CHAPTER 24 Making script output prettier
</TableRowEntries>
</TableControl>
</View>

</ViewDefinitions>
</Configuration>

We’ve made liberal use of carriage returns to make the sections easier to perceive, but
there’s still some unintentional word-wrapping happening in the book. We suggest
opening the XML file in a text editor or VS Code to review it. Some notes

 You provide a name (which must only be unique for each type name; it’s fine if
there’s a view with this same name for another type) and the custom type name.

 You can ensure the same number of column headers and entries by not using
those annoying singleton tags.

 You specify a right alignment for the numeric RAM column.
 The column headers don’t match the underlying property names. That’s

because the property names are too darn long—there’s no way you can make a
great-looking display with those long names.

The big takeaway here is that we didn’t do a good job of designing the tool. Look at that prop-
erty—TotalPhysicalMemory(GB). That’s horrible. We only did that so the default out-
put of the tool would look nice, and we shouldn’t have cared. What we’ve done is make an
awkward-looking, difficult-to-refer-to property that will be difficult to type forever.

 Let’s change the code. Listing 24.5 includes the new code, and listing 24.6 shows
the revised view file to go with it. This was designed explicitly to illustrate why it’s a bad
idea to worry about appearance from inside a tool, and the importance of fixing mis-
takes like these when you realize you’ve made them.

function Get-DiskInfo {
 foreach ($domain in (Get-ADForest).domains) {
 $hosts = Get-ADDomainController -filter * -server $domain |
 Sort-Object -Prop hostname
 ForEach ($host in $hosts) {
 $cs = Get-CimInstance -ClassName Win32_ComputerSystem -ComputerName $host
 $props = @{'ComputerName' = $host
 'DomainController' = $host
 'Manufacturer' = $cs.manufacturer
 'Model' = $cs.model
 'TotalPhysicalMemory'=$cs.totalphysicalmemory / 1GB
 }
 $obj = New-Object -Type PSObject -Prop $props
 $obj.psobject.typenames.insert(0,'Toolmaking.DiskInfo')
 Write-Output $obj
 } #foreach $host
 } #foreach $domain
} #function
Export-ModuleMember -function Get-DiskInfo

Listing 24.5 Revised tool code

281Creating a default view
<?xml version="1.0" encoding="utf-8" ?>
<Configuration>
<ViewDefinitions>

<View>
<Name>DiskInfo</Name>
<ViewSelectedBy>
<TypeName>Toolmaking.DiskInfo</TypeName>
</ViewSelectedBy>

<TableControl>
<TableHeaders>

<TableColumnHeader>
<Label>Host</Label>
<Width>16</Width>
</TableColumnHeader>

<TableColumnHeader>
<Label>DC</Label>
<Width>16</Width>
</TableColumnHeader>

<TableColumnHeader>
<Label>Model</Label>
</TableColumnHeader>

<TableColumnHeader>
<Label>RAM</Label>
<Alignment>Right</Alignment>
</TableColumnHeader>

</TableHeaders>

<TableRowEntries>
<TableRowEntry>
<TableColumnItems>

<TableColumnItem>
<PropertyName>ComputerName</PropertyName>
</TableColumnItem>

<TableColumnItem>
<PropertyName>DomainController</PropertyName>
</TableColumnItem>

<TableColumnItem>
<PropertyName>Model</PropertyName>
</TableColumnItem>

<TableColumnItem>
<PropertyName>TotalPhysicalMemory</PropertyName>
</TableColumnItem>

</TableColumnItems>
</TableRowEntry>
</TableRowEntries>

Listing 24.6 Revised view

282 CHAPTER 24 Making script output prettier
</TableControl>
</View>

</ViewDefinitions>
</Configuration>

That feels much better!

24.2.4 Adding the view file to a module

You’ve already saved the view file in the same folder as your module’s .psm1 file. But
that won’t magically tell PowerShell to use the view file. Instead, you need to create a
module manifest, just as you’ve done previously, and save it as Test.psd1 (because Test
is the name of the module). When creating the manifest, you need to specify the for-
mat view. Or, if you’ve already created a manifest, you can add the format view to it.
Let’s take the latter approach, so you can see how it’s done. Run this command:

new-modulemanifest -Path test.psd1 -RootModule test.psm1

This creates the .psd1 file but doesn’t specify the view. Open it, and edit it as shown in
the following listing.

#
Module manifest for module 'test'
#
Generated by: User
#
Generated on: 6/19/2017
#

@{

Script module or binary module file associated with this manifest.
RootModule = 'test.psm1'

Version number of this module.
ModuleVersion = '1.0'

Supported PSEditions
CompatiblePSEditions = @()

ID used to uniquely identify this module
GUID = '3308cc98-f832-4389-93d1-2df122c70a19'

Author of this module
Author = 'User'

Company or vendor of this module
CompanyName = 'Unknown'

Copyright statement for this module
Copyright = '(c) 2017 User. All rights reserved.'

Description of the functionality provided by this module
Description = ''

Listing 24.7 Completed module manifest

283Creating a default view
Minimum version of the Windows PowerShell engine required by this module
PowerShellVersion = ''

Name of the Windows PowerShell host required by this module
PowerShellHostName = ''

Minimum version of the Windows PowerShell host required by this module
PowerShellHostVersion = ''

Minimum version of Microsoft .NET Framework required by this module. This
➥ prerequisite is valid for the PowerShell Desktop edition only.
DotNetFrameworkVersion = ''

Minimum version of the common language runtime (CLR) required by this
➥ module. This prerequisite is valid for the PowerShell Desktop edition
➥ only.
CLRVersion = ''

Processor architecture (None, X86, Amd64) required by this module
ProcessorArchitecture = ''

Modules that must be imported into the global environment prior to
➥ importing this module
RequiredModules = @()

Assemblies that must be loaded prior to importing this module
RequiredAssemblies = @()

Script files (.ps1) that are run in the caller's environment prior to
➥ importing this module.
ScriptsToProcess = @()

Type files (.ps1xml) to be loaded when importing this module
TypesToProcess = @()

Format files (.ps1xml) to be loaded when importing this module
FormatsToProcess = @('./TestView.format.ps1xml')

Modules to import as nested modules of the module specified in
➥ RootModule/ModuleToProcess
NestedModules = @()

Functions to export from this module, for best performance, do not use
➥ wildcards and do not delete the entry, use an empty array if there are no
➥ functions to export.
FunctionsToExport = '*'

Cmdlets to export from this module, for best performance, do not use
➥ wildcards and do not delete the entry, use an empty array if there are no
➥ cmdlets to export.
CmdletsToExport = '*'

Variables to export from this module
VariablesToExport = '*'

Aliases to export from this module, for best performance, do not use
➥ wildcards and do not delete the entry, use an empty array if there are no
➥ aliases to export.
AliasesToExport = '*'

DSC resources to export from this module
DscResourcesToExport = @()

284 CHAPTER 24 Making script output prettier
List of all modules packaged with this module
ModuleList = @()

List of all files packaged with this module
FileList = @()

Private data to pass to the module specified in
➥ RootModule/ModuleToProcess. This may also contain a PSData hashtable with
➥ additional module metadata used by PowerShell.
PrivateData = @{

 PSData = @{

 # Tags applied to this module. These help with module discovery in
➥ online galleries.
 # Tags = @()

 # A URL to the license for this module.
 # LicenseUri = ''

 # A URL to the main website for this project.
 # ProjectUri = ''

 # A URL to an icon representing this module.
 # IconUri = ''

 # ReleaseNotes of this module
 # ReleaseNotes = ''

 } # End of PSData hashtable

} # End of PrivateData hashtable

HelpInfo URI of this module
HelpInfoURI = ''

Default prefix for commands exported from this module. Override the
➥ default prefix using Import-Module -Prefix.
DefaultCommandPrefix = ''

}

If you’re having trouble spotting it, this is all we changed:

Format files (.ps1xml) to be loaded when importing this module
FormatsToProcess = @('./TestView.format.ps1xml')

We uncommented the FormatsToProcess line and added the TestView.format.ps1xml
file, which—based on this—is in the same folder as the .psd1 and .psm1 files. With
everything in place, you should be able to run the command and see the new view as
its default output:

PS C:\> get-diskinfo

Host DC Model RAM
---- -- ----- ---
DC1 DC1 Virtual Machine 1.99906539916992

285Your turn
24.3 Your turn
We want to give you a chance to run through this on your own. We’ll provide you with
a tool and then ask you to make a custom view for it.

24.3.1 Start here

The next listing shows a PowerShell tool. This should work fine (and should look
familiar, because we used it earlier); you need to create a custom view for it. That’ll
also mean saving it as a module.

function Get-MachineInfo {
 [CmdletBinding()]
 Param(
 [Parameter(ValueFromPipeline=$True,
 Mandatory=$True)]
 [Alias('CN','MachineName','Name')]
 [string[]]$ComputerName,

 [ValidateSet('Wsman','Dcom')]
 [string]$Protocol = "Wsman"

)

 BEGIN {}

 PROCESS {
 foreach ($computer in $computername) {

 # Establish session protocol
 if ($protocol -eq 'Dcom') {
 $option = New-CimSessionOption -Protocol Dcom
 } else {
 $option = New-CimSessionOption -Protocol Wsman
 }

 # Connect session
 $session = New-CimSession -ComputerName $computer `
 -SessionOption $option

 # Query data
 $os_params = @{'ClassName'='Win32_OperatingSystem'
 'CimSession'=$session}
 $os = Get-CimInstance @os_params

 $cs_params = @{'ClassName'='Win32_ComputerSystem'
 'CimSession'=$session}
 $cs = Get-CimInstance @cs_params

 $sysdrive = $os.SystemDrive
 $drive_params = @{'ClassName'='Win32_LogicalDisk'
 'Filter'="DeviceId='$sysdrive'"
 'CimSession'=$session}
 $drive = Get-CimInstance @drive_params

 $proc_params = @{'ClassName'='Win32_Processor'
 'CimSession'=$session}

Listing 24.8 Starting-point script

286 CHAPTER 24 Making script output prettier
 $proc = Get-CimInstance @proc_params |
 Select-Object -first 1

 # Close session
 $session | Remove-CimSession

 # Output data
 $props = @{'ComputerName'=$computer
 'OSVersion'=$os.version
 'SPVersion'=$os.servicepackmajorversion
 'OSBuild'=$os.buildnumber
 'Manufacturer'=$cs.manufacturer
 'Model'=$cs.model
 'Procs'=$cs.numberofprocessors
 'Cores'=$cs.numberoflogicalprocessors
 'RAM'=($cs.totalphysicalmemory / 1GB)
 'Arch'=$proc.addresswidth
 'SysDriveFreeSpace'=$drive.freespace}
 $obj = New-Object -TypeName PSObject -Property $props
 Write-Output $obj

 } #foreach
} #PROCESS

END {}

} #function

24.3.2 Your task

We want your custom view to include five columns: ComputerName, OSVersion, Model,
Cores, and RAM. Use the original property names for all columns, rather than making
up different column headers.

24.3.3 Our take

Listing 24.9 shows our modified tool—we needed to add the custom type name.

function Get-MachineInfo {
 [CmdletBinding()]
 Param(
 [Parameter(ValueFromPipeline=$True,
 Mandatory=$True)]
 [Alias('CN','MachineName','Name')]
 [string[]]$ComputerName,

 [ValidateSet('Wsman','Dcom')]
 [string]$Protocol = "Wsman"

)

 BEGIN {}

 PROCESS {
 foreach ($computer in $computername) {

Listing 24.9 Modified .psm1 file

287Your turn
 # Establish session protocol
 if ($protocol -eq 'Dcom') {
 $option = New-CimSessionOption -Protocol Dcom
 } else {
 $option = New-CimSessionOption -Protocol Wsman
 }

 # Connect session
 $session = New-CimSession -ComputerName $computer `
 -SessionOption $option

 # Query data
 $os_params = @{'ClassName'='Win32_OperatingSystem'
 'CimSession'=$session}
 $os = Get-CimInstance @os_params

 $cs_params = @{'ClassName'='Win32_ComputerSystem'
 'CimSession'=$session}
 $cs = Get-CimInstance @cs_params

 $sysdrive = $os.SystemDrive
 $drive_params = @{'ClassName'='Win32_LogicalDisk'
 'Filter'="DeviceId='$sysdrive'"
 'CimSession'=$session}
 $drive = Get-CimInstance @drive_params

 $proc_params = @{'ClassName'='Win32_Processor'
 'CimSession'=$session}
 $proc = Get-CimInstance @proc_params |
 Select-Object -first 1

 # Close session
 $session | Remove-CimSession

 # Output data
 $props = @{'ComputerName'=$computer
 'OSVersion'=$os.version
 'SPVersion'=$os.servicepackmajorversion
 'OSBuild'=$os.buildnumber
 'Manufacturer'=$cs.manufacturer
 'Model'=$cs.model
 'Procs'=$cs.numberofprocessors
 'Cores'=$cs.numberoflogicalprocessors
 'RAM'=($cs.totalphysicalmemory / 1GB)
 'Arch'=$proc.addresswidth
 'SysDriveFreeSpace'=$drive.freespace}
 $obj = New-Object -TypeName PSObject -Property $props
 $obj.psobject.typenames.insert('Toolmaking.MachineInfo')
 Write-Output $obj

 } #foreach
} #PROCESS

END {}

} #function

Inserts
the custom
type name

288 CHAPTER 24 Making script output prettier
Listing 24.10 shows our view file. Because we wanted to use property names as column
headers, we could have resorted to the singleton tag trick for most of these (we
wanted Cores and RAM right-aligned, so we needed the full tags). But those single-
tons have messed us up so many times that we felt better about making each column
header a full tag pair.

<?xml version="1.0" encoding="utf-8" ?>
<Configuration>
<ViewDefinitions>

<View>
<Name>MachineInfo</Name>
<ViewSelectedBy>
<TypeName>Toolmaking.MachineInfo</TypeName>
</ViewSelectedBy>

<TableControl>
<TableHeaders>

<TableColumnHeader>
<Label>ComputerName</Label>
</TableColumnHeader>

<TableColumnHeader>
<Label>OSVersion</Label>
</TableColumnHeader>

<TableColumnHeader>
<Label>Model</Label>
</TableColumnHeader>

<TableColumnHeader>
<Label>Cores</Label>
<Alignment>Right</Alignment>
</TableColumnHeader>

<TableColumnHeader>
<Label>RAM</Label>
<Alignment>Right</Alignment>
</TableColumnHeader>

</TableHeaders>

<TableRowEntries>
<TableRowEntry>
<TableColumnItems>

<TableColumnItem>
<PropertyName>ComputerName</PropertyName>
</TableColumnItem>

<TableColumnItem>
<PropertyName>OSVersion</PropertyName>
</TableColumnItem>

Listing 24.10 Our new .format.ps1xml file

289Your turn
<TableColumnItem>
<PropertyName>Model</PropertyName>
</TableColumnItem>

<TableColumnItem>
<PropertyName>Cores</PropertyName>
</TableColumnItem>

<TableColumnItem>
<PropertyName>RAM</PropertyName>
</TableColumnItem>

</TableColumnItems>
</TableRowEntry>
</TableRowEntries>
</TableControl>
</View>

</ViewDefinitions>
</Configuration>

Listing 24.11 shows our manifest file for the module.

#
Module manifest for module 'test'
#
Generated by: User
#
Generated on: 6/19/2017
#

@{

Script module or binary module file associated with this manifest.
RootModule = 'test.psm1'

Version number of this module.
ModuleVersion = '1.0'

Supported PSEditions
CompatiblePSEditions = @()

ID used to uniquely identify this module
GUID = '3308cc98-f832-4389-93d1-2df122c70a19'

Author of this module
Author = 'User'

Company or vendor of this module
CompanyName = 'Unknown'

Copyright statement for this module
Copyright = '(c) 2017 User. All rights reserved.'

Description of the functionality provided by this module
Description = ''

Listing 24.11 Our new .psd1 file

290 CHAPTER 24 Making script output prettier
Minimum version of the Windows PowerShell engine required by this module
PowerShellVersion = ''

Name of the Windows PowerShell host required by this module
PowerShellHostName = ''

Minimum version of the Windows PowerShell host required by this module
PowerShellHostVersion = ''

Minimum version of Microsoft .NET Framework required by this module. This
➥ prerequisite is valid for the PowerShell Desktop edition only.
DotNetFrameworkVersion = ''

Minimum version of the common language runtime (CLR) required by this
➥ module. This prerequisite is valid for the PowerShell Desktop edition
➥ only.
CLRVersion = ''

Processor architecture (None, X86, Amd64) required by this module
ProcessorArchitecture = ''

Modules that must be imported into the global environment prior to
➥ importing this module
RequiredModules = @()

Assemblies that must be loaded prior to importing this module
RequiredAssemblies = @()

Script files (.ps1) that are run in the caller's environment prior to
➥ importing this module.
ScriptsToProcess = @()

Type files (.ps1xml) to be loaded when importing this module
TypesToProcess = @()

Format files (.ps1xml) to be loaded when importing this module
FormatsToProcess = @('./TestView.format.ps1xml')

Modules to import as nested modules of the module specified in
RootModule/ModuleToProcess

NestedModules = @()

Functions to export from this module, for best performance, do not use
➥ wildcards and do not delete the entry, use an empty array if there are no
➥ functions to export.
FunctionsToExport = '*'

Cmdlets to export from this module, for best performance, do not use
➥ wildcards and do not delete the entry, use an empty array if there are no
➥ cmdlets to export.
CmdletsToExport = '*'

Variables to export from this module
VariablesToExport = '*'

Aliases to export from this module, for best performance, do not use
➥ wildcards and do not delete the entry, use an empty array if there are no
➥ aliases to export.
AliasesToExport = '*'

291Your turn
DSC resources to export from this module
DscResourcesToExport = @()

List of all modules packaged with this module
ModuleList = @()

List of all files packaged with this module
FileList = @()

Private data to pass to the module specified in RootModule/ModuleToProcess.
This may also contain a PSData hashtable with

➥ additional module metadata used by PowerShell.
PrivateData = @{

 PSData = @{

 # Tags applied to this module. These help with module discovery in
➥ online galleries.
 # Tags = @()

 # A URL to the license for this module.
 # LicenseUri = ''

 # A URL to the main website for this project.
 # ProjectUri = ''

 # A URL to an icon representing this module.
 # IconUri = ''

 # ReleaseNotes of this module
 # ReleaseNotes = ''

 } # End of PSData hashtable

} # End of PrivateData hashtable

HelpInfo URI of this module
HelpInfoURI = ''

Default prefix for commands exported from this module. Override the
➥ default prefix using Import-Module -Prefix.
DefaultCommandPrefix = ''

}

Wrapping up
the .NET Framework
As you start exploring the edges of what PowerShell can do, you’ll run across
instances where there’s no command built that will do what you need done. In
many instances, you may discover something lurking in the massive .NET Frame-
work that can do what you need (or perhaps it’s an external command, an old COM
object, or something else). Is it okay to use that raw .NET stuff in your scripts?

 Well, no. But also, yes.

25.1 Why does PowerShell exist?
Let’s go back to the base reason PowerShell exists. Microsoft Windows, as an oper-
ating system, is and always has been chock-full of things to help make automation
possible. It’s an operating system, after all, running on a computer, and computers
are all about doing things automatically. The problem with Windows is, and always
has been, that those automation things are friendly to professional software devel-
opers and not so friendly to administrators who may lack deep programming expe-
rience (or lack the time to do deep programming).

 You’ve always been able to automate the heck out of Windows if you happened
to know—and had time to code in—C++, C#, and the other first-class languages
that were built to talk to Windows’ application programming interfaces (APIs). The
problems started only if you didn’t know, or didn’t have time to code in, those
lower-level languages or to learn those APIs.

 PowerShell wasn’t invented to add new automation capabilities to Windows. Period.
PowerShell brings absolutely nothing unique, novel, or innovative in terms of
automation capabilities. What PowerShell was invented to do was provide a more
administrator-friendly way of using what was already there. When you run Get-Process,
292

293A crash course in .NET
you’re not executing some brand-new code that someone at Microsoft invented. Inside
that command, you’ll find some basic .NET Framework references, written in C#. In
other words, someone who was a C# programmer basically created a translator for
you. You run the PowerShell command, and it’s translated into the C# and .NET
Framework that Windows understands.

 That’s all PowerShell is: a translator. A wrapper. PowerShell commands wrap .NET
Framework, they wrap CIM, they wrap COM, and they wrap many other Windows
APIs. The result is a more consistent experience for you: Command names follow a
consistent naming convention, commands accept input via parameters, and so on.
You don’t have to know the thousands of APIs that Windows supports, or the half-
dozen languages needed to access them all. PowerShell translates for you, thanks to
the work of the developers who wrote PowerShell’s commands.

 So: is it okay to use raw .NET Framework in your scripts? No. What is okay, how-
ever, is doing the work of a developer and writing your own wrappers around that
.NET stuff. Instead of jamming random, C#-looking, .NET stuff into a script, write
your own command to turn that .NET into a normal-looking PowerShell command.
That’s what you’ll do in this chapter.

NOTE Over the years, we’ve had a harder and harder time coming up with
slick examples for this particular topic, because Microsoft has done so much
work in producing commands. We used to do this example with DNS, but
now we have a great set of DNS PowerShell commands. So, we appreciate
your patience if our example seems a little lightweight or less-than-totally real
world. It’s the process and pattern we want to teach, and that’s as valid as ever.

25.2 A crash course in .NET
If you’re going to use .NET, you have to know some of the lingo. Otherwise, the docs
make no sense:

 A type is a definition of a software thing. You see this word in PowerShell all the
time—whenever you run Get-Member, for example, you see the type name of
whatever you piped to Get-Member.

 A class is a kind of type. That is, a class is a definition for a piece of functioning
software. The class describes how you can interact with the software, but it’s just
a definition. For example, System.Diagnostics.Process is the type name for a
class that describes running processes on Windows.

 An instance is a concrete implementation of a class. For example, the lsass process
is represented by an instance of System.Diagnostics.Process. In most cases,
you need to have an instance of a class in order to interact with it. You can’t termi-
nate a process, for example, unless you have a specific one to terminate.

 Some classes are abstract, meaning you don’t need a concrete instance in order to
interact. For example, the Math class in .NET is abstract, meaning you don’t have
to instantiate the class in order to do things like calculate tangents and cosines.

294 CHAPTER 25 Wrapping up the .NET Framework
 Classes consist of members. These are the things that make up the definition that
is the class, and it’s where Get-Member takes its name from. There are some
common kinds of members:
– Properties describe whatever the class represents, like a process name or a ser-

vice status. Sometimes, properties are read-only; other times, you can change
them. For example, you might be able to change a service name, but you
can’t modify the Status property to change whether the service is running.

– Methods take actions. A method might terminate a process or start a service.
Sometimes, methods take arguments, which are like command parameters.
Restarting a computer might let you specify a forced restart or a power-off,
for example.

– Events are triggered when something happens to an instance, such as a ser-
vice completing its startup. Although PowerShell isn’t great at event-driven
coding, you can sort of subscribe to an event, giving you an opportunity to
execute code when the event occurs.

The first big question people ask us about working with .NET is, “How do I find the bit
of .NET that will do what I need?” This is a bit like asking, “Who in the government
can make such-and-such happen?” We dunno. We use Google a lot. Look, .NET is
huge. Vastly huge. You may think it’s a huge distance down the road to your grocery
store, but that’s peanuts compared to .NET. And half the stuff Microsoft sells adds to
.NET. So, yeah. Google.

 Once you think you’ve found the bit of .NET you want, you’ll usually find its docu-
mentation on Microsoft’s website, generally by following a Google query for the class
name. For example, plug in System.Diagnostics.Process, and you’ll find a page like
https://msdn.microsoft.com/en-us/library/system.diagnostics.process(v=vs.110).aspx.
Those pages are version-specific, so you have to make sure you’re selecting (from the
drop-down at the top of the page) the right .NET Framework version. Also, that URL
will probably cease to exist the minute this book hits paper—Microsoft is like that.
That’s why we Google.

25.3 Exploring a class
One of the neato things about PowerShell is its ability to act as a kind of immediate
window for .NET. That is, instead of having to code up a program, compile it, and run
it, you can fuss around with .NET on the fly right in the shell. For example

[Math]::Abs(-5)

TRY IT NOW Go ahead and try this on a computer running Windows 8 or later
(client operating systems only—servers won’t run this correctly in most cases).

This example uses the Math class from .NET, which consists entirely of static members:

 The []square brackets are PowerShell’s convention for identifying types. By
putting a type name in these brackets, you’re telling PowerShell to look up the

https://msdn.microsoft.com/en-us/library/system.diagnostics.process(v=vs.110).aspx

295Exploring a class
corresponding type—in this case, a class—in .NET. This is exactly the same as
declaring a variable as a [string]—in that case, you’re referring to the System
.String class.

 The :: double colons are used to refer to static members of a class. These are
always used with a [classname], because you’re not instantiating the class. In
other words, you wouldn’t use double colons with an instance that’s been stored
in a variable (as in, $myobject::method).

 Abs() is a static method of the Math class, which we looked up in MSDN. It
returns the absolute value of whatever input you provide.

Let’s do something a little more complex—and a little more fun. Thanks to Mark
Minasi for this suggestion: making your computer talk to you. Make sure your audio is
turned on and turned up to 11 for this one, and definitely follow along.

 We Googled “.NET speech synthesis” and found ourselves at https://msdn.microsoft
.com/en-us/library/system.speech.synthesis(v=vs.110).aspx. The System.Speech.
Synthesis namespace is documented there. In other words, System.Speech.Synthesis
isn’t the name of a type (meaning it isn’t the name of a class). Instead, it’s the top-level
portion of the name of several types (including classes). The top part of the documen-
tation page lists the classes that fall under this namespace. Other types include enumer-
ations, which are basically structures that define various allowable input arguments
(and assign easier-to-remember names, rather than numbers, to those arguments).
The remarks toward the end of the page provide some basic overviews of how to use
the classes in this namespace.

 The remarks seem to indicate that System.Speech.Synthesis.SpeechSynthesizer
is the class we want to play with, so we’ll click through to https://msdn.microsoft
.com/en-us/library/system.speech.synthesis.speechsynthesizer(v=vs.110).aspx, the doc-
umentation page for that.

NOTE Remember, Microsoft sometimes reorganizes their documentation, so
if these URLs don’t work, don’t panic! Google for the class name, and you’ll
get to wherever the docs are at the time.

Of particular interest is the fact that none of the methods—remember, methods do
things, and we want to do something, so we’re looking at methods—are static. We can
tell, because none of them have the little S icon that Microsoft uses to denote static
members. Lacking any static methods, we’ll need to instantiate the class to create a
concrete instance of it that will provide access to methods. Instantiating a class
requires us to use a special kind of method called a constructor, which constructs the
instance. Many classes have lots of constructors, which often accept input arguments
to tell the new instance how to build itself. In this case, the class is only listed with one
constructor, and it has no input arguments, so this should be easy:

PS C:\> $talk = new-object system.speech.synthesis.speechsynthesizer
new-object : Cannot find type
[system.speech.synthesis.speechsynthesizer]: verify that the

https://msdn.microsoft.com/en-us/library/system.speech.synthesis(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.speech.synthesis(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.speech.synthesis(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.speech.synthesis.speechsynthesizer(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.speech.synthesis.speechsynthesizer(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.speech.synthesis.speechsynthesizer(v=vs.110).aspx

296 CHAPTER 25 Wrapping up the .NET Framework
assembly containing this type is loaded.
At line:1 char:9
+ $talk = new-object system.speech.synthesis.speechsynthesizer
+ ~~
 + CategoryInfo : InvalidType: (:) [New-Object], PSArgum
 entException
 + FullyQualifiedErrorId : TypeNotFound,Microsoft.PowerShell.Comm
 ands.NewObjectCommand

Well, crud. Not so easy. We’re guessing that PowerShell probably doesn’t load the
Speech portion of the System namespace automatically. Why would it? We probably
have to manually load that assembly to get that part of .NET into memory. The top of
the documentation says that the assembly is System.Speech.dll:

PS C:\> Add-Type -AssemblyName System.Speech
PS C:\> $talk = new-object system.speech.synthesis.speechsynthesizer

It’s important to specify the –AssemblyName parameter and to omit the .dll filename
extension. This should work for any core part of .NET that’s part of the Global Assembly
Cache (GAC); .NET knows how to find the correct physical file. And, as you can see, we
now have a $talk variable with our SpeechSynthesizer instance. Let’s make it talk.

 The docs list a few Speak() methods, each of which accepts a different type of
input argument. These are called overloads. In .NET, you can have multiple methods
with the same name, as long as each one accepts a unique combination of input argu-
ments. It looks like one overload accepts a string, so we should be able to run this:

PS C:\> $talk.speak('PowerShell to the rescue!')

Huzzah! It worked! From here, we can start playing around with other methods and
properties of the instance to see what they do.

25.4 Making a wrapper
We’re not finished. Remember, this .NET stuff is ugly—we want to make it PowerShell
Pretty. So, let’s write a wrapper. Check out the following listing, which includes a call
to the new function so we can test it.

function Invoke-Speech {
 [CmdletBinding()]
 Param(
 [Parameter(Mandatory=$true,
 ValueFromPipeline=$true)]
 [string[]]$Text
)
 BEGIN {
 Add-Type -AssemblyName System.Speech
 $speech = New-Object -TypeName
➥ System.Speech.Synthesis.SpeechSynthesizer
 }

Listing 25.1 Wrapper for the speech synthesizer

Command that
takes pipeline
input

Loads the
assembly once

297Making a wrapper
 PROCESS {
 foreach ($phrase in $text) {
 $speech.speak($phrase)
 }
 }
 END {}
}
"One","Two","Three" | Invoke-Speech

We’d like to call out a few items:

 We’ve tried to stick with native PowerShell patterns as much as possible. The
function accepts pipeline input, for example, and we use that technique in the
test call.

 In pipeline mode, there’s no reason to repeatedly add the assembly and instan-
tiate the synthesizer, so that’s done in a Begin block.

 When $speech goes out of scope, the synthesizer will cease to exist automati-
cally, so there’s no need to remove the object in the End block. Similarly, we
don’t feel the need to unload the assembly (it’s not hurting anything or taking
up memory), so we don’t do so.

This isn’t ideal, though. In playing with the speech object, we noticed that it has a
Speak() method for synchronous speech—meaning the script will pause while the
speech happens—and a SpeakAsync() method, which will fire off the speaking and
allow the script to continue. We can see uses for both models, so we’d like to include
those as options for someone using our wrapper command. Here’s the new code.

function Invoke-Speech {
 [CmdletBinding()]
 Param(
 [Parameter(Mandatory=$true,
 ValueFromPipeline=$true)]
 [string[]]$Text,

 [switch]$Asynchronous
)
 BEGIN {
 Add-Type -AssemblyName System.Speech
 $speech = New-Object -TypeName
➥ System.Speech.Synthesis.SpeechSynthesizer
 }
 PROCESS {
 foreach ($phrase in $text) {
 if ($Asynchronous) {
 $speech.SpeakAsync($phrase)
 } else {
 $speech.speak($phrase)
 }
 }

Listing 25.2 Adding SpeakAsync() support

Adds a new
parameter

Invokes SpeakAsync()
if a new parameter
is used

Otherwise uses the
Speak() method

298 CHAPTER 25 Wrapping up the .NET Framework
 }
 END {}
}

1..10 | Invoke-Speech -Asynchronous
Write-Host "This appears"

“This appears” will be displayed before any of the…uh…other output:

This appears
IsCompleted

 False
 False
 False
 False
 False
 False
 False
 False
 False
 False

Well, that’s awkward looking. Going back and reading the docs, it appears that Speak-
Async() returns an object indicating whether the speech is completed. We don’t care
about that, so we need to suppress it. Here’s our final attempt.

function Invoke-Speech {
 [CmdletBinding()]
 Param(
 [Parameter(Mandatory=$true,
 ValueFromPipeline=$true)]
 [string[]]$Text,

 [switch]$Asynchronous
)
 BEGIN {
 Add-Type -AssemblyName System.Speech
 $speech = New-Object -TypeName
➥ System.Speech.Synthesis.SpeechSynthesizer
 }
 PROCESS {
 foreach ($phrase in $text) {
 if ($Asynchronous) {
 $speech.SpeakAsync($phrase) | Out-Null
 } else {
 $speech.speak($phrase)
 }
 }
 }
 END {}
}

Listing 25.3 Suppressing the SpeakAsync() output

Sends the
output to NULL

299A more practical example
1..10 | Invoke-Speech -Asynchronous
Write-Host "This appears"

TRY IT NOW Seriously, give this a run. It’s fun. And then check out https://
t.co/G7ILxakk8Z, which is a more complex version of our wrapper that you’ll
love playing with. Bravo Zulu!

Wrapping this small amount of code may seem like a waste of time, but it isn’t—it’s an
investment. Here are a few of the things you gain:

 Nobody else on your team will need to research this object again—they can use
your simple, PowerShell-compliant command. We’d obviously add help to this
to make it even more PowerShell-native.

 If you start getting into unit testing with Pester, you can’t mock .NET stuff—but
because you’ve written a wrapper, you could mock calls to Invoke-Speech, if you
needed to.

 Documentation—if you take the time to produce at least comment-based help—
is built-in, rather than requiring a Google search and MSDN spelunking.

25.5 A more practical example
Here’s a more practical example, which you might use in a controller script. Let’s say
you want to provide a graphical input box for your script. We used to do this in
VBScript, and the functionality is still available in the VisualBasic part of the .NET
Framework. First you need to add the assembly:

Add-Type -AssemblyName "microsoft.visualbasic"

The [microsoft.visualbasic.interaction] class has a static method called Input-
Box() that takes three arguments, in this order: a prompt, a title, and a default choice.
Run this code to create the input box shown in figure 25.1:

[microsoft.visualbasic.interaction]::inputbox("Enter a server name",
➥ "PSServer Management",$null)

The user enters a value and clicks OK, and the value is written to the pipeline. You
would, of course, need to add error-handling and validation in case they entered
nothing or clicked Cancel. If this were something you wanted to use often, you

Figure 25.1 An input box

https://t.co/G7ILxakk8Z
https://t.co/G7ILxakk8Z
https://t.co/G7ILxakk8Z

300 CHAPTER 25 Wrapping up the .NET Framework
could create a function around it. For example, we’ve written a short one in the fol-
lowing listing.

function Invoke-InputBox {
 [CmdletBinding()]
 Param(
 [Parameter(Mandatory=$True)]
 [string]$Prompt,

 [Parameter(Mandatory=$True)]
 [string]$Title,

 [Parameter()]
 [string]$Default = ''
)
 Add-Type -Assembly Microsoft.VisualBasic
 [microsoft.visualbasic.interaction]::inputbox($prompt,$title,$default)
} #function

This illustrates how small a wrapper can be and how easy it is to create, and how much
easier wrappers can make it for someone else to use .NET.

25.6 Your turn
This is such an important task that we’d like you to give it a try.

25.6.1 Start here

The System.Net.Dns class has a static method named GetHostByAddress(). It’s
designed to look up a host name, given its IP address. Go on—look it up online, and
experiment with it in the shell.

25.6.2 Your task

Write a Get-DnsHostByAddress wrapper function. It should accept one or more IP
addresses, and, for each one, emit an object containing the IP address and the corre-
sponding host name. If no host name is available, it should return a null for the host-
name.

25.6.3 Our take

Playing with this on the command line, we discovered that the method returns an
object with three properties: HostName, which is great; Aliases, which could be fun;
and AddressList, which looks to be an array. We decided to keep this simple and
focus only on HostName in our wrapper.

function Get-DnsHostByAddress {
 [CmdletBinding()]

Listing 25.4 Quick and easy InputBox wrapper

Listing 25.5 Our wrapper for looking up DNS host names

301Your turn
 Param(
 [Parameter(Mandatory=$true,
 ValueFromPipeline=$true)]
 [string[]]$Address
)
 BEGIN {}
 PROCESS {

 ForEach ($Addr in $Address) {
 $props = @{'Address'=$addr}
 Try {
 $result = [System.Net.Dns]::GetHostByAddress($addr)
 $props.Add('HostName',$result.HostName)
 } Catch {
 $props.Add('HostName',$null)
 }
 New-Object -TypeName PSObject -Property $props
 } #foreach

 } #PROCESS
 END {}

} #function

Get-DnsHostByAddress -Address '204.79.197.200','192.168.254.254',
➥ '35.166.24.88'

There are a few things we’d like you to notice:

 We made sure to test both a legitimate IP address (hi, Bing.com!) as well as a
bad one, because we have different output in each situation.

 In normal command error-handling, we’d have to specify an –ErrorAction to
ensure a trappable exception. .NET methods don’t work that way—when they
fail, they pretty much always produce a trappable exception, so our Try block
works perfectly.

 You might prefer to use Unknown or some value other than $null for failed
hosts. We like $null, so we used that.

 We started a hash table for our eventual output object’s properties right up
front. Then, depending on the outcome of the query, we added a HostName
property. We like this technique—it lets us dynamically construct our output a
piece at a time and then push it all out into the pipeline as an object when
we’re finished.

Storing data—
not in Excel!
PowerShell can programmatically create and update Excel documents. You can
also jump off the roof of your house into a pile of sharp glass. But just because you
can do those things, doesn’t mean you should do them. Excel isn’t a database, and it
pains us to see people struggling to use it as one. Programming against Excel, in
PowerShell, requires you to use the Microsoft Office Programmability components,
which are added into .NET when you install Office. Those components, in turn,
use a decade-old Component Object Model (COM) interface that Microsoft hasn’t
updated in, well, ever. We cry when we see administrators write scripts that literally
include hundreds of lines of Excel-related code. It’s time consuming, frustrating,
and wasteful. Please don’t do it.

 But you will need to store data someplace, some time. That’s fine. There’s a bet-
ter way.

26.1 Introducing SQL Server!
We’re pretty sure you’ve heard of Microsoft SQL Server. If you have one in your
environment, see if you can get a small database set up on it for your use. You won’t
be loading it with work, and it won’t cost a dime. Or, if nothing else, install the free
SQL Server Express (the 2016 edition can be found at www.microsoft.com/en-us/
sql-server/sql-server-editions-express, but you can use whatever version you like as
far as this chapter is concerned). We recommend downloading the one with
Advanced Services (although the name is slightly different from version to ver-
sion), which includes Reporting Services. We also recommend downloading SQL
Server Management Studio (SSMS); frankly, it’s easier to Google “SQL Server
302

http://www.microsoft.com/en-us/sql-server/sql-server-editions-express
http://www.microsoft.com/en-us/sql-server/sql-server-editions-express
http://www.microsoft.com/en-us/sql-server/sql-server-editions-express

303Setting up everything
Management Studio download” than it is for us to give you a URL, because Microsoft
moves that around a good bit.

NOTE We don’t want this chapter to get bogged down in teaching you about
SQL Server or how to manage it. If you need some place to start, you might
take a look at Don’s Learn SQL Server Administration in a Month of Lunches
(Manning, 2014, www.manning.com/books/learn-sql-server-administration-
in-a-month-of-lunches). Manning has a live video “book” titled SQL in Motion
by Ben Brumm (2017, www.manning.com/livevideo/sql-in-motion). And if
you’re a Plural sight subscriber (www.pluralsight.com), you’ll find many courses
on the subject.

Here are some of the advantages of using SQL Server (or, honestly, any relational
database management system—if you prefer one over SQL Server, most of what’s in
this chapter will still work fine for you):

 Databases make it incredibly easy to add, delete, update, and query data. Very easy.
 SQL Server Reporting Services can then produce beautiful reports, which you

design in a friendly, drag-and-drop designer environment. The non-Express
Reporting Services can run and deliver those reports on a schedule for you.

 PowerShell works great with SQL Server (and other databases).

You’ll need to master a few pieces of terminology and a couple of concepts:

 You connect to a server, of course, but you also connect to a specific database.
There’s a special database called master that you connect to when you want to
create a new database for yourself.

 The connection is made by specifying a connection string, which is essentially the
contact location for a database. It also includes authentication information.

 A database consists of tables, each of which is roughly analogous to an Excel sheet.
You can therefore, very roughly, think of a database as an Excel workbook.

 A table consists of rows and columns, like an Excel sheet. Database geeks some-
times refer to these as entities and domains as well.

26.2 Setting up everything
Frankly, the one-time server and database setup takes longer to explain and perform
than using the dang thing. First, we’re going to assume, as already stated, that you’ve
installed SQL Server Express. We’re using 2016, and we performed a Basic install
(which doesn’t prompt for anything else). Subsequent editions won’t be much differ-
ent to install, and you can accept all the defaults if there are any setup prompts. If
you’re using a SQL Server that’s on your network somewhere, have the administrator
of it give you the server name, and, if there is one, the instance name.

NOTE Whatever user account you used to install SQL Server Express will usu-
ally be set up as Administrator of the SQL Server Express instance. This is true
whether you’re in a domain environment or not.

http://www.manning.com/books/learn-sql-server-administration-in-a-month-of-lunches
http://www.manning.com/books/learn-sql-server-administration-in-a-month-of-lunches
http://www.manning.com/livevideo/sql-in-motion
http://www.pluralsight.com

304 CHAPTER 26 Storing data— not in Excel!
Second, you need a database. If you’re using a SQL Server that’s on your network, the
administrator will need to create a database (2 to 3GB is fine; advise them that the
Simple Recovery model is okay for now). They’ll need to give you the database name
and let you know whether you can connect using your Windows log on credentials, or
if there’s a separate username and password for you to use.

 If you installed SQL Server Express locally and used all the default settings, then
you’ve installed an instance named SQLEXPRESS. Run the PowerShell script in list-
ing 26.1 to create a new database named Scripting. Use your Windows log on creden-
tials to connect; the new database will be the default, minimum size (usually about
2GB). We should note that this isn’t suitable for a production environment, because
there are several database options you’d normally set, and you’d want to arrange for
backups; read Learn SQL Server Administration in a Month of Lunches if you’d like to
explore those tasks.

$conn_string =
➥ "Server=localhost\SQLEXPRESS;Database=master;Trusted_Connection=True;"

$conn = New-Object System.Data.SqlClient.SqlConnection
$conn.ConnectionString = $conn_string
$conn.Open()

$sql = @"
CREATE DATABASE Scripting;
"@

$cmd = New-Object System.Data.SqlClient.SqlCommand
$cmd.CommandText = $sql
$cmd.Connection = $conn
$cmd.ExecuteNonQuery()

$conn.close()

Third, there’s no third thing. You’ll need a connection string, but you should already
have everything you need for it. Ours is this:

Server=localhost\SQLEXPRESS;Database=master;Trusted_Connection=True;

As you can see, we used that in the code to create a new database; when we’re ready to
use that database, we’ll change master to Scripting in the connection string. That
same connection string works for any database where you can use your Windows log
on credentials to connect. If instead you need to specify a username and password, it
will look like this:

Server=localhost\SQLEXPRESS;Database=master;un=xxxxx;pw=yyyyyy;

Listing 26.1 Setting up a new database on a local SQL Server Express instance

Defines the
connection string

Creates the
connection object

Configures the
connection object

Defines a
SQL query

Creates a SQL
Command object

Configures the
command to use
the query

Configures the
command to use
the connection

Executes the
command

Closes the database
connection

305Using your database: creating a table
where xxxxx and yyyyy are your SQL Server username and password, respectively.

TIP We use ConnectionStrings.com to come up with our connection strings.
It’s an invaluable reference. Why remember that stuff when you can look it up?

26.3 Using your database: creating a table
You first need to decide what you’re going to put in the database. This isn’t a one-
time decision; just as with Excel, you can add and remove sheets (tables) at any time,
and you can modify the columns used in each table at any time as well. Let’s start
with the command in listing 26.2. Like most commands we write, this produces
objects as output, so it’s a perfect starting point (and yes, we’ve used this particular
command before).

TIP For development and testing purposes, you’re going to save this script as
its own script module. You’ll add additional commands to this .psm1 file as you
go, keeping everything nicely grouped together.

function Get-DiskInfo {
 [CmdletBinding()]
 Param(
 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True)]
 [string[]]$ComputerName
)
 BEGIN {
 Set-StrictMode -Version 2.0
 }
 PROCESS {

 ForEach ($comp in $ComputerName) {

 $params = @{'ComputerName' = $comp
 'ClassName' = 'Win32_LogicalDisk'}
 $disks = Get-CimInstance @params

 ForEach ($disk in $disks) {

 $props = @{'ComputerName' = $comp
 'Size' = $disk.size
 'Drive' = $disk.deviceid
 'FreeSpace' = $disk.freespace
 'DriveType' = $disk.drivetype}

 New-Object -TypeName PSObject -Property $props

 } #foreach disk

 } #foreach computer

 } #PROCESS
 END {}
}

Listing 26.2 Starting with a command that produces objects as output

http://ConnectionStrings.com

306 CHAPTER 26 Storing data— not in Excel!
Examining the command, it produces the following:

 Computer name—A string
 Disk size—A large integer
 Drive type—A small (single-digit) integer
 Disk free space—A large integer
 Drive ID—A string

You therefore need to create a table that can contain these kinds of information. In
addition, you’ll add a field to track the date that each row is added to the table. That
way, you can periodically inventory drive information and construct a trend line of
free space. (We’d use Reporting Services to produce that trend report; it’s beyond the
scope of this book to get into report production, but PowerShell.org offers a free
eBook on the subject if you’d like to investigate further on your own.) The following
listing shows what we’re adding to our .psm1 file (the downloadable version of this
listing at www.manning.com/books/learn-powershell-scripting-in-a-month-of-lunches
is the entire thing; we’re saving some space in the book by only showing the additional
code here). Most of the code should start looking familiar, because we used it earlier.

function New-DiskInfoSQLTable {
 [CmdletBinding()]
 param()

 $conn = New-Object System.Data.SqlClient.SqlConnection
 $conn.ConnectionString = $DiskInfoSqlConnection
 $conn.Open()

 $sql = @"
 IF NOT EXISTS (SELECT * FROM sysobjects WHERE name='diskinfo' AND
➥ xtype='U')
 CREATE TABLE diskinfo (
 ComputerName VARCHAR(64),
 DiskSize BIGINT,
 DriveType TINYINT,
 FreeSpace BIGINT,
 DriveID CHAR(2),
DateAdded DATETIME2
)
"@

 $cmd = New-Object System.Data.SqlClient.SqlCommand
 $cmd.Connection = $conn
 $cmd.CommandText = $sql
 $cmd.ExecuteNonQuery() | Out-Null

 $conn.Close()

}

$DiskInfoSqlConnection =
➥ "Server=localhost\SQLEXPRESS;Database=Scripting;Trusted_Connection=True;"

Listing 26.3 Adding code for table creation

http://www.manning.com/books/learn-powershell-scripting-in-a-month-of-lunches

307Using your database: creating a table
Export-ModuleMember -Function Get-DiskInfo
Export-ModuleMember -Variable DiskInfoSqlConnection

We want to point out that we’ve added a module-level variable, outside any function, to
contain the database connection string. That makes it easier to reuse that information
in numerous functions. You explicitly export that variable, along with the first func-
tion, so that all will be added to the global scope of the shell whenever the module is
loaded. Similarly, they’ll all be neatly removed from the global scope if the module
is unloaded. Why don’t you export the new table-creation function? Because there’s
no reason for anyone outside this module to run that, and so by not exporting it, you
make it private to this module.

 The new command does what we think is a neat trick: It first checks to see whether
the table exists. If it doesn’t, the command creates the table. This way, you can repeat-
edly call the new command, and it’ll always make sure the table exists.

 This is probably a good time to go over the broad process this code uses, because
you’ll see it again two more times:

1 Create a new System.Data.SqlClient.SqlConnection object. This represents
the connection to SQL Server. Set its ConnectionString property to your con-
nection string, and then call its Open() method. If the connection string isn’t
right, this is where you’ll generate an error. You also fill in a call to the Close()
method at the end of the command.

2 Build the query in a here-string, mainly so that it can be nicely formatted. You
use double quotes for the here-string, because SQL Server uses single quotes
as its string delimiter. Using double quotes makes it easy to then use single
quotes inside the here-string, as well as giving you the ability to insert variables
and subexpressions. Having the query in a variable makes it easy to output it
using Write-Verbose, so you can double-check the query syntax easily if there’s
an error.

3 Create a new System.Data.SqlClient.SqlCommand, and set its Connection
property to the opened Connection object. Set its CommandText property to
your query, and ask it to ExecuteNonQuery(). That method is used when you
know your query won’t return any results; it will return -1 for a successful query,
so you pipe that to Out-Null to suppress it.

You’ll use these same two objects, in the same way, in the upcoming commands.

NOTE If you aren’t using SQL Server, .NET also includes the equivalent System
.Data.OleDbClient namespace along with OleDbConnection and OleDbCommand
classes for connecting to other databases.

By the way, you may be wondering how we came up with all the data types for the CREATE
TABLE statement. Simple: we looked them up. Googling “SQL Server data types” took

308 CHAPTER 26 Storing data— not in Excel!
us to https://docs.microsoft.com/en-us/sql/t-sql/data-types/data-types-transact-sql,
which was pretty useful. In reality, we find ourselves lazily using just a few data types:

 VARCHAR()—Lets you specify a maximum field length, and takes up less space if
you’re using less than the max. VARCHAR(MAX) lets you store any amount of text.

 CHAR()—Creates fixed-length text columns.
 TINYINT—Holds integers from 0 to 255.
 BIGINT—Holds pretty much any size integer.
 DATETIME2—Holds date/time values.

You may also have use for FLOAT or INT, and you can read all about them in the SQL
documentation.

26.4 Saving data to SQL Server
Now you’re ready to make a third command, shown in the next listing, which will
accept the output of the disk inventory command and export that information into
your SQL Server table. Once again, the downloadable version of this includes the
entire script module, for your convenience.

function Export-DiskInfoToSQL {
 [CmdletBinding()]
 param(
 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True)]
 [object[]]$DiskInfo
)
 BEGIN {
 New-DiskInfoSQLTable
 $conn = New-Object System.Data.SqlClient.SqlConnection
 $conn.ConnectionString = $DiskInfoSqlConnection
 $conn.Open()

 $cmd = New-Object System.Data.SqlClient.SqlCommand
 $cmd.Connection = $conn
 }
 PROCESS {

 ForEach ($object in $DiskInfo) {

 if ($object.size -eq $null) {
 $size = 0
 } else {
 $size = $object.size
 }
 if ($object.freespace -eq $null) {
 $freespace = 0
 } else {
 $freespace = $object.freespace
 }

Listing 26.4 Adding a command to export data to SQL Server

https://docs.microsoft.com/en-us/sql/t-sql/data-types/data-types-transact-sql

309Saving data to SQL Server
 $sql = @"
 INSERT INTO DiskInfo (ComputerName,
 DiskSize,DriveType,FreeSpace,DriveID,DateAdded)
 VALUES('$($object.ComputerName)',
 $size,
 $($object.DriveType),
 $freespace,
 '$($object.Drive)',
 '$(Get-Date)')
"@
 $cmd.CommandText = $sql
 Write-Verbose "EXECUTING QUERY `n $sql"
 $cmd.ExecuteNonQuery() | Out-Null

 } #ForEach

 } #PROCESS
 END {
 $conn.Close()
 }
}

NOTE Notice how we’re checking to see whether Size and FreeSpace are
Null? That can happen with disks like optical drives. We set those values to 0
in those cases so that we have a valid value to add to the database.

There’s a big caveat that we need to point out. The new command’s –DiskInfo
parameter does accept pipeline input—but you’ll notice that it accepts anything,
because its data type is System.Object. It’s therefore entirely possible to pipe it a
service object, a process object, or something else it won’t know how to deal with.
You can’t do much about that. Yes, you could modify the Get-DiskInfo function to
add a custom type name, but that won’t allow you to specify that type name as the
only allowable input to Export-DiskInfoToSQL; PowerShell unfortunately doesn’t
work that way. If you wanted to tightly couple these two commands and ensure that
Export-DiskInfoToSQL could only accept the objects produced by Get-DiskInfo,
you’d need to create a class of your own. PowerShell v5 and later can do that, but it’s
a more complex topic that’s out of scope for this book. (The PowerShell Scripting &
Toolmaking Book does get into it, and because that book is online only, it can be
updated. The situation with classes in PowerShell is highly fluid and ever-changing
at this time.) For right now, you must accept the fact that you need to be careful
about how you use Export-DiskInfoToSQL.

function Export-DiskInfoToSQL {
 [CmdletBinding()]
 param(
 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True)]
 [object[]]$DiskInfo
)

Listing 26.5 Adding member checks for input objects

310 CHAPTER 26 Storing data— not in Excel!
 BEGIN {
 New-DiskInfoSQLTable
 $conn = New-Object System.Data.SqlClient.SqlConnection
 $conn.ConnectionString = $DiskInfoSqlConnection
 $conn.Open()

 $cmd = New-Object System.Data.SqlClient.SqlCommand
 $cmd.Connection = $conn

 $checks = 0
 }
 PROCESS {

 if ($checks -eq 0) {
 $checks++
 $props = $DiskInfo[0] |
 Get-Member -MemberType Properties |
 Select-Object -Expand name
 if ($props -contains 'Computername' -and
 $props -contains 'Drive' -and
 $props -contains 'DriveType' -and
 $props -contains 'FreeSpace' -and
 $props -contains 'Size') {
 Write-Verbose "Input object passes check"
 } else {
 Write-Error "Illegal input object"
 Break
 }
 }

 ForEach ($object in $DiskInfo) {

 if ($object.size -eq $null) {
 $size = 0
 } else {
 $size = $object.size
 }
 if ($object.freespace -eq $null) {
 $freespace = 0
 } else {
 $freespace = $object.freespace
 }

 $sql = @"
 INSERT INTO DiskInfo (ComputerName,
 DiskSize,DriveType,FreeSpace,DriveID,DateAdded)
 VALUES('$($object.ComputerName)',
 $size,
 $($object.DriveType),
 $freespace,
 '$($object.Drive)',
 '$(Get-Date)')
"@
 $cmd.CommandText = $sql
 Write-Verbose "EXECUTING QUERY `n $sql"
 $cmd.ExecuteNonQuery() | Out-Null

 } #ForEach

Checks the first
input object

311Querying data from SQL Server
 } #PROCESS
 END {
 $conn.Close()
 }
}

Go ahead and put some data into the database:

get-diskinfo $env:computername | Export-DiskInfoToSQL

26.5 Querying data from SQL Server
Although we don’t think there’s an immediate real-world use for this—our intent
would be to load data into SQL Server and leave it there for Reporting Services to cre-
ate reports from—we want to show you an example of querying data. The following
listing is the final chunk of code to add to your module. Again, we suggest using the
downloadable version if you want to try this, because it has all the code in one place.

function Import-DiskInfoFromSQL {
 [CmdletBinding()]
 Param()

 $conn = New-Object System.Data.SqlClient.SqlConnection
 $conn.ConnectionString = $DiskInfoSqlConnection
 $conn.Open()

 $cmd = New-Object System.Data.SqlClient.SqlCommand
 $cmd.Connection = $conn

 $sql = @"
 SELECT ComputerName,DiskSize,DriveType,FreeSpace,
 DriveID,DateAdded
 FROM DiskInfo
 ORDER BY DateAdded ASC
"@

Avoiding SQL injection
In listing 26.5, we left intact something that’s a no-no for most public-facing
applications: dynamically constructing a query by inserting variable contents into a
string. In production-style applications, this opens you to a type of attack called SQL
injection. We’re fairly safe from it because we’re the only one using this database,
but it’s something you need to be aware of and read up on if you start to accept
data provided by other people.

What you could do, and what the listing does, is create some checks on the input to
the command. We decided to make sure the objects fed to us have the expected
properties. This will slightly slow things down as we make the check, so we only
check the first object fed to us and assume all the others are just like it.

Listing 26.6 Adding a command to retrieve data from SQL Server

312 CHAPTER 26 Storing data— not in Excel!

 $cmd.CommandText = $sql
 $reader = $cmd.ExecuteReader()

 # spin through the results
 while ($reader.read()) {
 $props = @{'ComputerName' = $reader['ComputerName']
 'Size' = $reader['DiskSize']
 'DriveType' = $reader['DriveType']
 'FreeSpace' = $reader['FreeSpace']
 'Drive' = $reader['DriveId']
 'DateAdded' = $reader['DateAdded']}
 New-Object -TypeName PSObject -Property $props
 }

 $conn.Close()

}

Notice again that you follow the toolmaking patterns that we’ve taught throughout this
book—you produce a command, it uses parameters for its input (and, in this case, a
module-level variable), it produces objects as output, and so on. The only thing we’ve
omitted, purely for space considerations in this book, is the comment-based help we’d
normally always include.

 We also want to acknowledge that not everyone would code this command the way
we did. Some folks prefer to use a DataTable object versus a DataReader, and we
admit that for this precise scenario, a DataTable can be faster. We took this approach
because we feel it’s more educational and more procedural. It reads the result set one
line at a time and constructs output objects one at a time, which reinforces the pattern
we’ve presented throughout this book.

 Finally, if you’ve been paying close attention, you’ll notice a discrepancy. The orig-
inal Get-DiskInfo outputs an object having Size and Drive properties, and Import-
DiskInfoFromSQL mirrors those output property names. But the table in SQL Server
uses DiskSize and DriveID as column names. Why the mismatch? So that we could
emphasize that the table structure doesn’t need to exactly match the object structure. In this
case, the Import and Export functions take care of translating the property names
into what the table uses. This is a useful technique when you don’t have control over
either the object structure or the table structure and need to switch things up as you
store and retrieve data.

 To complete the circle, let’s pull the information we just added:

PS C:\> Import-DiskInfoFromSQL

DateAdded : 6/23/2017 5:24:01 PM
Drive : C:
FreeSpace : 27722903552
ComputerName : WIN10
DriveType : 3
Size : 206266429440

DateAdded : 6/23/2017 5:24:01 PM
Drive : D:

Loops through
the results,
and creates a
custom object

313Summary
FreeSpace : 16025034752
ComputerName : WIN10
DriveType : 3
Size : 26843541504

26.6 Summary
We hope this chapter has demonstrated how relatively straightforward it is to use SQL
Server as a database, rather than something database-esque like Excel. You’ve contin-
ued to follow proper toolmaking practices and have created a set of commands that
work with disk-inventory information. You’ve enabled automated reporting through
SQL Server Reporting Services, in case you decide to sit down and design the reports
there. By using a scheduled task to periodically run the inventory and Reporting Ser-
vices to automatically create periodic reports, you could completely automate data
collection and data reporting processes, taking yourself out of the loop and freeing up
your time to work on other tasks.

Never the end
Welcome to the end! Or is it? Of course not—you’re really just beginning, but
you’ve made it to the point where you can start to be an effective toolmaker. Now
it’s time to begin thinking about what comes next.

27.1 Welcome to toolmaking
At this point, we’re hoping you’ve seen the light about this toolmaking word. It isn’t
just about scripting, is it? It’s about making small units of work that follow Power-
Shell’s rules, so that they can connect to each other. It’s about making controllers
that put those tools into a specific situation and context, giving those tools a pur-
pose for that moment in time—but leaving the tools themselves free to have
another purpose at another time. Hopefully, you’ve also seen the value in examin-
ing how PowerShell does things natively and in duplicating its approaches in your
own work.

 The best compliment we get when we teach this material—whether in a class, at
a conference, or in a book like this—is something along the lines of, “Well, thanks a
lot—now I have to go and rewrite all of my scripts!” We love that, because it shows that
we’ve not only taught someone effectively, but also done a good job of making
them realize how valuable this approach is. Of course, this doesn’t literally mean
they need to rewrite all of their existing work. If you have something that works, let
it be. But if the occasion arises where you need to fix a bug or add a feature, then
by all means begin to incorporate the changes inspired by this book.

 Of course, we can only take you so far in one book. You’re going to need to go fur-
ther, and you’ll need to do that soon. Like, as soon as you finish reading this chap-
ter—because until you start doing this stuff for real, your brain won’t completely
314

315Taking your next step
lock on to the concepts and the techniques. You’re already forgetting stuff from chap-
ter 2—so it’s crucial to start putting things to work, right now.

27.2 Taking your next step
Our best advice is to stop learning for a minute and start doing. You have plenty of facts
and techniques to begin tackling your first tool and your first controller. As soon as
you do, you’ll realize that you forgot a few things—and that’s great news! No, really—
you’ll realize that you forgot something, flip to the right chapter, and refresh yourself.
This act of relearning strengthens the bonds between the neurons in your brain that
are responsible for remembering this material, which will make it easier to recall the
information the next time. But you won’t realize you’ve forgotten, and you won’t take
the steps to relearn, until you dive in and start doing.

 With that in mind, we have a few recommendations for your next step:

 Don’t try to tackle the biggest problem on your plate. Look for something small that
you may already have a pretty good idea of how to conquer. That way, you can
focus on the new approaches and techniques you’ve learned. As you gain confi-
dence, you can start building ever-more-complex tools and controllers.

 Don’t give in to expediency. The approaches and techniques we’ve shared don’t
add a lot of time to your coding, but they do add a bit. You’re going to have to
take time to do parameter design, for example, and code for accepting pipeline
input. The investment is worth it, because you’ll quickly begin to do those
things almost by reflex. The alternative—“I’ll bang it out for now and go back
and fix it later”—is a bad idea. You may not have time later to do it right, and
then you’ll be stuck with something that is, well, wrong.

 Get stuck. For better or for worse, human brains seem to learn better when
they’re conquering a problem than when they’re being passively fed informa-
tion. With that in mind, dive into something, get stuck, and unstick yourself.
Forums like the ones at ServerFault.com and PowerShell.org are valuable
resources—state your problem, describe what you’ve tried, and provide some
details (like error messages) about what didn’t work. Don’t ask people to write your
script for you—be clear that you only need a nudge in the right direction.

 Share. Every time you figure out a problem, blog about it. The act of recalling
the problem and the solution is what strengthens neural connections in your
brain. Writing down what you did—even if it’s for an internal company blog
that nobody but you and your team will read—helps you learn. And if you’re
able to blog publicly, you’ll help someone. Remember, a lot of people are
smarter than you, but due to this thing called a birth rate, there are always new
people who are struggling with the same thing you just solved. Help them out.

 Do the math. Anytime you’re automating something, begin by figuring out how
much time your organization spends doing it manually per year. Calculate that
in hours, if you can, perhaps by looking at your help desk ticketing solution for
a report. Get an average salary for the people who spend time solving that

http://ServerFault.com
http://PowerShell.org

316 CHAPTER 27 Never the end
problem manually. Multiply that salary by 1.14 (a rough way of calculating a
fully loaded salary, at least in most of North America), and then divide by 2,000
(the average number of working hours in a year). The result is a fully loaded
hourly rate for that person, which you can multiply by the number of hours
being spent performing a task manually. The end result is the amount of money
your organization spends on that problem. It becomes easy to calculate a return
on investment when you know how much was being spent, how long it took you
to automate the problem, and how much time needs to be spent now that the
problem is automated.

 Don’t “script by Google.” That is, when starting a new project, your first step should
not be to open a browser and search for an existing script. Even if you find
something, how do you know it works? Will it work in your environment? Do
you have the PowerShell chops to determine whether it’s good PowerShell?
Plus, you’ll most likely spend a lot of time revising hard-coded variables and the
like. That’s a waste of time. You’d be better off beginning with PowerShell’s
help system and going through the process yourself. Yeah, it might seem to take
longer, but you’ll learn; and at the end, you’ll have a tool that you know works
in your environment. It’s fine to search for examples of how to use a particular
cmdlet or parameter, but you’ll never succeed with copy-and-paste scripting.

This is all about becoming a more professional toolmaker.

27.3 What’s in your future?
So, what’s in the long term? What are some of the things you should be exploring in
the PowerShell universe? Keep in mind that it’s a rapidly changing space and requires
constant attention if you want to keep up. Here are some areas to think about:

 PowerShell Core is an open source project at GitHub.com/powershell that will
run on macOS, a variety of Linux distros, and of course Windows. Explore it.

 Open source projects like PlatyPS, Pester, and the PowerShell Script Analyzer
are great tools—look into them, and start learning to use them in your everyday
toolmaking. Even better, get involved by posting issues and maybe even contrib-
uting code.

 Community events like PowerShell Saturdays, the annual PowerShell + DevOps
Global Summit (powershellsummit.org), and regional PowerShell Conferences
(PowerShell Conference Europe and PowerShell Conference Asia, for exam-
ple) are all worth your time—as are the dozens of local PowerShell user groups
scattered throughout the world.

 Microsoft Virtual Academy (MVA) is a great free source of videos for a variety of
PowerShell topics, including Desired State Configuration (DSC—a topic Don
has written a book on: The DSC Book, https://leanpub.com/the-dsc-book). Use
these MVA videos to get a quick jump-start into a topic, and then jump off and
explore independently.

https://leanpub.com/the-dsc-book
http://GitHub.com/powershell
http://powershellsummit.org

317What’s in your future?
 Finally, always be on the lookout for new sources of learning material. Manning
has a number of books and new things coming out all the time that may help.
We’re also responsible for a lot of content on Pluralsight.com. If nothing else,
follow us on Twitter (@concentrateddon and @jeffhicks) to see what we’re up
to and pointing people toward.

PowerShell and toolmaking are a big, exciting universe with a lot to explore. Set aside
a little time each week to catch up with the latest and explore something new. And, of
course, keep toolmaking in your own organization!

http://Pluralsight.com

index
Symbols

:: (double colons) 295
[] (square brackets) 294
symbol 41
+ icon 121, 216, 264

A

abbreviations, avoiding 191
about_comparison_operator 36
about_execution_policies 60
about_if operator 36
Abs() method 295
abstract classes 293
–Action parameter 233
action tools 49
ActiveDirectory module 56
AD CS (Active Directory Certificate

Services) 237
Add-ADComputerWindowsBuild function 117
Add-Member cmdlet 117
AddressList property 300
administrative privileges 5, 9
administrators 60
aliases, avoiding 196
AliasesToExport array 164
AllSigned policy 60, 65, 242
antipatterns 47
API key 246
APIs (application programming interfaces) 292
–AssemblyName parameter 296
Assert-MockCalled command 229
assumptions, avoiding making 23
Autolab project 83
automated testing, benefits of 222

B

backticks 183
BEGIN{} block 103
BIGINT 308
BITS (Background Intelligent Transfer

Service) 86
block comment 139
branching repositories 209–211
Break keyword 46–47
bugs 255–269

exercise 267–269
kinds of 255–256
logic bugs 258–267

setting breakpoints 259–262
setting watches 264

results bugs 257
syntax bugs 256–257

Bypass setting 60
ByPropertyName parameter 31–35

failure of 34–35
planning ahead 35
tracing 32–34

ByValue parameter 27–31
failure of 31
Trace-Command 28
tracing 28–31

C

capturing exceptions 151
CAs (certification authorities) 235
certificates 235–236

commercial 238
external 238
managing 236
319

INDEX320
certificates (continued)
notarizing 236
self-signed 235
trusting self-signed 239
using 237–238

CertReq Test Root 239
changes

committing 206–207
merging 209–211
rolling back 207–209
staging 205–206

CHAR() method 308
CIM (Common Information Model) 8
Close() method 307
CLR (Common Language Runtime) 163
CLRVersion property 163
CmdletBinding attribute

accepting pipeline input 101–104
running commands in non-pipeline

mode 102–103
running commands in pipeline mode 103
values and property names 103–104

mandatory computer name 104
parameter aliases 105
parameter validation 104–105
supporting -Confirm and -WhatIf switches

106–107
[CmdletBinding()] attribute 180
CmdletsToExport array 164
code

deploying 236
for table creation 306
formatting 193–196
writing for testing 223

code coverage 230–233
code formatting 40, 89
code-signing 237–243

getting certificates 237–238
testing script signatures 242–243
trusting self-signed certificates 239

-codesigningcert parameter 238
coercing 30
collection operators 38
$collection variable 42
COM (Component Object Model) 302
command hijacking 64
command results 83
command-discovery process 81
commands

designing sets of 77
example project 95–98
functions, building basic 88–92

designing input parameters 89–90
designing output 91–92
writing code 90–91

pipeline input
running commands in non-pipeline

mode 102–103
running commands in pipeline mode 103

pre-testing check 93
running 93–94
script modules, creating 92–93
testing and debugging individually 80–87

example project 82–83, 85–87
goals 80–82
importance of process 85
running commands 83–84
understanding needs 85

CommandText property 307
comment-based help system 136–145

comment placement 136–137
error messages 140
example project 137–145
external help versus 140–141

comments. See inline comments
commercial certificates 238
commit messages 206
committing changes 206–207
Common Information Model. See CIM
Common Language Runtime. See CLR
common parameters 99–107

accepting pipeline input 101–104
running commands in non-pipeline

mode 102–103
running commands in pipeline mode 103
values and property names 103–104

mandatory computer name 104
parameter aliases 105
parameter validation 104–105
supporting -Confirm and -WhatIf switches

106–107
comparisons 36–38

collection operators 38
comparison operators 36–37
troubleshooting 38
wildcard operators 37

CompatiblePSEditions property 162
-ComputerName parameter 69, 72, 75, 86, 90
$ComputerName variable 104
$computers variable 46
–Confirm parameter 106–107, 185
–Confirm switch 106–107
ConfirmImpact setting 107
$ConfirmPreference variable 107
Connection String item, SQL Server Express 17
ConnectionString property 307
constructor method 295
–contains operator 38
ContainsKey() method 97
context, designing 74

INDEX 321
contracts 118
controller design 76
controller script 20, 49, 55
controllers

characteristics of 51
defined 48–49
tools versus 52

controls
benefits of using 202
with git 202–220

integrating with GitHub 215–220
repositories 204–211
using with VS Code 211–214

ConvertTo-HTML command 27–28, 50
CreateStaleCustomerCSVDataFile.ps1 51
CreateStaleCustomerHTMLReport.ps1 51
creating wrappers 296–299
Ctrl-N shortcut 13
Ctrl-Shift-P shortcut 213
CurrentUser 61
CustomerRecord tool 52

D

data
accepting 26
hardcoded 51
input 49

data storage. See SQL Server
DataTable object 312
DATETIME2 308
DCOM (Distributed Component Object

Model) 84
Debug parameter 100
debugging single commands 80–87

example project 82–83, 85–87
goals 80–82
importance of process 85
running commands 83–84
understanding needs 85

default command 89
default view 273
defense in depth program 58
Describe block 227, 230
design principles 69–79

example project 73–79
tools

business requirements for 77–78
flexibility of 72
native appearance of 72–73
singular purpose of 69–71
testability of 71

designing
function output 89
sets of commands 77

tool context 74
usage examples 76

DigiCert 237
Do/While construct 44–45
DomainController property 189
DotNetFrameworkVersion property 163
double colons 295
DriveType property 261
DSC (Desired State Configuration) 164, 316
DscResourcesToExport array 164
DTD (document type declaration) 274
dynamic parameters 106

E

ElseIf statements 39
emailing passwords 53
END{} block 103
enumerator 41
environments, testing 83
-eq (equal to) operator 26, 36
error handling 146–157
ErrorAction parameter 100, 147, 151
$ErrorActionPreference variable 100,

147, 257
-ErrorLogFilePath 78, 95
ErrorVariable parameter 100
ETS (Extensible Type System) 163
events 294
evergreen 5
example code 14
Example function 128
exception handling 146–152

bad practices 147–148
for non-commands 151–152
reasons for 148

exception-handling 152
exceptions

capturing 151
exporting 164

ExecuteNonQuery() method 307
execution policies 59–63

recommendations for 65–66
scope levels 61–62
setting 62–63
viewing current policy settings 62

execution policy 9
expediency 315
Export-Clixml command 132
Export-DiskInfoToSQL function 309
exporting members 163–164
Export-ModuleMember 164
Extensible Type System extensions. See ETS
extensions 11, 163
external certificates 238

INDEX322
F

file permissions, setting 54–55
-FilePath parameter 69
filtering process 54
Find-Module cmdlet 244
Find-Script cmdlet 248
fixtures, creating 226–227
flexibility 199
For construct 45–46
Force parameter 93, 231
ForEach construct 41–43
ForEach loop 149, 264
ForEach-Object command 42
Format command 114, 272, 276
formats 163
FormatsToProcess element 163, 284
formatting code 40, 89, 193–196
-FormatVersion parameter 247
FreeSpace property 262
function keyword 136
functions 99–110

building basic 88–92
designing input parameters 89–90
designing output 91–92
writing code 90–91

CmdletBinding attribute and common
parameters 99–107

accepting pipeline input 101–104
mandatory computer name 104
parameter aliases 105
parameter validation 104–105
supporting -Confirm and -WhatIf 106–107

designing output 89
example project 107–110
output from 89
scoped 88
self-contained 88

FunctionsToExport array 164

G

GAC (Global Assembly Cache) 296
-ge (greater than or equal to) operator 37
Get-ADComputer command 118
Get-AuthenticodeSignature 242
Get-CimInstance cmdlet 84, 126, 201, 258
Get-Command 21
Get-CustomerRecord tool 50
Get-DiskInfo function 309
Get-DnsHostByAddress function 300
Get-Eventlog command 52
Get-EventLogsystem 274
Get-ExecutionPolicy command 9, 59, 93
Get-FolderSize function 174

GetHostByAddress() method 300
Get-MachineInfo function 94, 101, 114
Get-Process 274
Get-WinEvent command 4
git

installing 203
integrating with GitHub 215–220
overview 203–204
repositories 204–211

branching 209–211
committing changes 206–207
creating 205
merging changes 209–211
rolling back changes 207–209
staging changes 205–206

source control with 202–220
using with VS Code 211–214

git command 203–204, 219
GitHub, integrating git with 215–220
global scope 198
-gt (greater than) operator 37
GUID (globally unique identifier) 162

H

hard-code credentials 199
hardcoded data 51
hashtable variable 112
help desk GUI 55–56
help system 136–145

comment placement 136–137
error messages 140
example project 137–145
external help versus comment-based 140–141

help, providing 197
HKEY_LOCAL_MACHINE 63
Host commands 198
HostName property 300

I

If construct 38–41, 262
Import-CSV command 227
Import-DiskInfoFromSQL function 312
Import-Module command 21, 92
–in operator 38
inf variable 130
information output

detailed information example 129–132
overview 127–132

InformationAction parameter 100, 130
$InformationPreference variable 100, 127
InformationVariable parameter 100, 128, 130
inline comments, adding 192
innovation, avoiding 23

INDEX 323
input arguments 296
input tools 49
InputBox() method 299
–InputObject parameter 27, 29–30
.INPUTS section 140
installing git 203
Install-Module cmdlet 226, 244
Instance ID item, SQL Server Express 16
$intCounter variable 196
integration tests 223–224
interfaces 55
internal commands 64
Invoke-CimMethod 86
Invoke-Command 237
Invoke-Pester command 228
Invoke-Speech command 299
ISE (Integrated Script Editor) 6, 9
ISE Steroids 13
It blocks 227
IT operations 277
$item variable 42
-IV alias 128

L

-le (less than or equal to) operator 37
line-by-line comments 139
.LINK heading 140
LocalMachine 61
$LogFailuresToPath 104
logic bugs 258–267

setting breakpoints 259–262
setting watches 264

-lt (less than) operator 37

M

malware 59
MAML (Microsoft Assistance Markup Language)

files 136
MANDATORY parameters 28
manifests 158–166

creating 159
examining 162–164

exporting members 163–164
formats 163
metadata 162
prerequisites 162–163
root modules 162
scripts 163
types 163

module execution orders 158–159
manual testing, problems with 222
Markdown 141
master database 303

–match operator 37
Math class 293–295
members, exporting 163–164
merging changes 209–211
-MessageData parameter 128
messages, tagged 128
metadata 162
methods 294
Microsoft script repository 248–249
Microsoft’s views 273–276
[microsoft.visualbasic.interaction] class 299
mocks, creating 227–228
modules, execution orders 158–159
monolithic script 182
MSInfo32 command 56
MVA (Microsoft Virtual Academy) 316
MVP (minimally viable product) 197
MyCommand property 127
MyCompany.ITOps.Storage.DiskInfo 277
$MyInvocation variable 127
MyPSTool folder 204, 209

N

–Name parameter 31
NAMED parameter 28, 32
namespace 277
naming

parameters 21–22
tools 20–21

-ne (not equal to) operator 36
NestedModules property 163
.NET 293–294
New-ADUser tool 31, 53
New-CimSession command 84, 148, 150
New-Guid cmdlet 250
New-ModuleManifest 159, 162, 245
New-Object command 114
New-ScriptFileInfo cmdlet 249
NewUser parameter 97
notarizing 236
.NOTES section 140
$null value 256

O

$obj variable 277
objects 111–121

as output 22
assembling information 112–113
constructing and emitting output 113–114
enriching 117–118
example project 118–121
quick testing 114–116
type accelerators as alternative 116–117

INDEX324
OleDbCommand class 307
Open() method 307
operating system 8
–or operator 41
OSBuild property 117
OSDUIHelper object 33
Out-Default cmdlet 122
Out-File command 21
Out-Null command 28
output

adding 91, 123
designing for functions 89
producing 22–23
saving 131

output tools 49
.OUTPUTS section 140
OutVariable parameter 100
overloads 296

P

Param() block 89–90
parameter aliases 105
parameter binding and pipeline 25–35

ByPropertyName parameter 31–35
failure of 34–35
planning ahead 35
tracing 32–34

ByValue parameter 27–31
failure of 31
Trace-Command 28
tracing 28–31

parameters, importance of 26–27
visualizing pipeline 25–26

.PARAMETER elements 180
parameter sets 105
parameter validation 104–105
parameters

importance of 26–27
naming 21–22

password expiration code 186
passwords, emailing users 53
path variables 204
Pester (PowerShell Tester) 316

installing 226
overview 222–223
updating 226
writing tests 224, 227–233

adding tests 228–230
code coverage 230–233
creating fixtures 226–227
creating mocks 227–228

pipeline input 101–104
running commands in non-pipeline mode

102–103

running commands in pipeline mode 103
values and property names 103–104

pipelines
example project 132–135
information output 127–132
six channels 122–123
verbose output 123–125
-Verbose switch 123–127
warning output 123–125
See also parameter binding and pipeline

PipelineVariable parameter 100
piping 273
PKI (public key infrastructure) 235
PlatyPS 141, 197, 316
policies, setting 236–237
positional parameters 26, 28
PowerShell

purpose of 292–293
version used in book 5

PowerShell + DevOps Global Summit 316
PowerShell Conferences 316
PowerShell extension 11
PowerShell Gallery 244–245
PowerShell Saturdays 316
PowerShell Script Analyzer 316
PowerShell scripting language 36–47

Break keyword 46–47
comparisons 36–38

collection operators 38
comparison operators 36–37
troubleshooting 38
wildcard operators 37

Do/While construct 44–45
For construct 45–46
ForEach construct 41–43
If construct 38–41
switch construct 44

PowerShell Tester. See Pester (PowerShell Tester)
PowerShell Way of doing things 19–24

avoid innovation 23
don't assume 23
naming parameters 21–22
naming tools 20–21
producing output 22–23
writing single-task tools 19–20

PowerShellHostName property 162
PowerShellHostVersion property 162
PowerShellVersion property 162
preference variables 123
prerequisites 162–163
problem statements 74
$proc variable 40
Process scope 61
PROCESS{} block 103
ProcessorArchitecture property 163

INDEX 325
producing output 22–23
properties 294
$props variable 113
$Protocol parameter 90, 105
-ProtocolFallback 77
$PSBoundParameters 97
PSBreakpointcommands 264
$PSCmdlet.ShouldProcess() function 107
[pscustomobject] accelerator 116, 124
PSHostName property 256
PSModulePath variable 92
–PSSession parameter 21
$PSVersionTable 5, 9
public key 236
public key infrastructure. See PKI
publishing scripts

creating ScriptFileInfo 249–250
managing published scripts 251
other publishing targets 245
preparing for 245–246

getting API key 246
updating manifest 245–246

reasons for 244
revisions, managing 247
to PowerShell Gallery 244–245
using Microsoft script repository 248–249

Publish-Module cmdlet 246
pwned 59

Q

querying data, from SQL Server 311–313
QueryUserDataFromDatabase 20
quotation marks 198

R

Read-Host, avoiding 197–198
remote computers 82
RemoteSigned setting 60, 65
Remove-CimSession 84
Remove-Item command 148
Remove-Module command 93
reports, code-coverage 231
repositories 204–211

branching 209–211
committing changes 206–207
creating 205
merging changes 209–211
rolling back changes 207–209
staging changes 205–206

RequiredModules property 163
Restart-Computer command 224, 228
Restricted setting 60
results bugs 255, 257

revisions, managing 247
rollbacks, of changes 207–209
root modules 162

S

SAPIEN Technologies 10
scoped functions 88
script blocks 102
script editor 9–13, 82
Script Editor (ISE) 6
script modules, creating 92–93
script output 272–289

default view 273–284
adding custom type name to output

objects 276–277
adding view file to module 282–284
creating new view file 277–282
Microsoft's views 273–276

exercise 285–289
ScriptFileInfo cmdlet, creating 249–250
scripting 171–201

adding inline comments 192
avoiding abbreviations 191
avoiding aliases 196
avoiding awkward pipelines 197
avoiding Read-Host 197–198
avoiding Write-Host 197–198
examples 171–186

critiquing 172
thinking beyond literal 175
walkthrough 180–182

formatting code 193–196
providing help 197
security 199
striving for elegance 200–201
tool flexibility 199
using global scope 198
using meaningful variable names 196
using single quotation marks 198
using source controls 190–191

scripting environment, setting up 8–18
administrative privileges and execution policy 9
example code 14
operating system 8
script editor 9–13
SQL Server Express 14–18
virtual environment 13
Windows PowerShell 9

scripts
publishing 244, 248–251

creating ScriptFileInfo 249–250
managing published scripts 251
other publishing targets 245
preparing for 245–246

INDEX326
scripts (continued)
reasons for 244
revisions, managing 247
to PowerShell Gallery 244–245
using Microsoft script repository 248–249

signing
benefits of 234–235
certificates 235–236
code-signing 237–243
setting policies 236–237

testing signatures 242–243
unintentional execution of 58

ScriptsToProcess element 163
security features 58, 65–66

default application 63
execution policies 59–63

recommendations for 65–66
scope levels 61–62
setting 62–63
viewing current policy settings 62

goal of 58–59
running scripts 63–64

security systems 64
Select-Object command 92, 256
self-contained functions 88
self-signed certificates

overview 235
trusting 239

semantic versioning 245
Send-PasswordExpiryMessageToUser function 184
servers 60
Set-AuthenticodeSignature cmdlet 240
Set-ComputerState function 226–227
Set-Content cmdlet 209
Set-ExecutionPolicy RemoteSigned 9
Set-MachineStatus tool 72
Set-PSBreakpoint cmdlet 259
Set-Service command 78, 86
Set-StrictMode cmdlet 257
Set-TMServiceLogon function 78, 118, 120, 133,

142
shortcuts 94
signatures, testing 242–243
signing scripts 234, 240–243

benefits of 234–235
certificates 235–236
code-signing 237–243
setting policies 236–237

single commands 80–87
example project 82–83, 85–87
goals 80–82
importance of process 85
running commands 83–84
understanding needs 85

single-task tools, writing 19–20

source controls 190–191
benefits of using 202
with git 202–220

integrating with GitHub 215–220
repositories 204–211
using with VS Code 211–214

Speak() method 296–297
SpeakAsync() method 297–298
SpeechSynthesizer 296
splatting 112–113, 119, 121
SQL Administrators item, SQL Server Express 17
SQL injection 311
SQL Server 302–313

creating table 305–308
overviw 302–303
querying data from 311–313
saving data to 308–311
setting up 303–305

SQL Server Express 5–6, 14–18
square brackets 294
SSMS (SQL Server Management Studio) 302
staging changes 205–206
standalone variables 185
starting-point script 285
–Status parameter 31
Step Into command 262
Stop-Computer command 225
Stop-Job command 34
Stop-Service command 31
storing data. See SQL Server
$strComputer variable 196
structured messages 127
Success pipeline 122
switch construct 44, 121
[switch] parameter 104
synchronous speech 297
syntax bugs 255–257
$sysdrive 113
SysDriveFreeSpace 114
System.Data.OleDbClient namespace 307
System.Data.SqlClient.SqlConnection object 307
System.Diagnostics.Process 27, 30, 293–294
System.PSCustomObject 276

T

tables, SQL Server 305–308
tagged messages 128
tags 275
Tags property 129, 247
tasks 54–55
TDD (test-driven development) 76, 222
TerminatedUsers group 57
terminating exception 148
test environment 83

INDEX 327
testing
signatures 242–243
single commands 80–87

example project 82–83, 85–87
goals 80–82
importance of process 85
running commands 83–84
understanding needs 85

$testing parameter 185
Test-PCConnection 71
-TestRoot parameter 238
tests

adding 228–230
automated, benefits of 222
integration tests 223–224
manual, problems with 222
unit tests 224
writing code for 223
writing for Pester 224, 227–233

code coverage 230–233
creating fixtures 226–227
creating mocks 227–228

TFS (Team Foundation Server) 190, 202
TINYINT 308
TM (Toolmaking) 95
toolmaking 3–4, 314–315
Toolmaking namespace 277
Toolmaking.DiskInfo 277
tools

business requirements for 77–78
characteristics and types of 49–50
controllers versus 52
defined 48–49
flexibility of 72
naming 20–21
native appearance of 72–73
single-task, writing 19–20
singular purpose of 69–71
testability of 71

tools versus controllers scripting 48–57
controllers

characteristics of 51
defined 48–49
tools versus 52

example projects 52–56
emailing users whose passwords are about to

expire 53
help desk GUI 55–56
provisioning new users 53–54
setting file permissions 54–55

TotalPhysicalMemory property 280
Trace-Command 28, 31, 35
tracing

ByPropertyName parameter 32–34
ByValue parameter 28–31

triggering tasks 55
$true value 227
Try/Catch construct 149
type accelerators 116–117
TypesToProcess element 163
typing parameter 26

U

Unblock-File command 93
Undefined setting 60
uninformed user 60
unit tests 224
Unrestricted setting 60
Update-Help command 141
Update-OrgCMDatabase command 75
usage examples 76
UserHomeFolderFileServer tool 54
UserMessage property 184
$userObj variable 182
users

emailing user passwords 53
provisioning new 53–54

V

[ValidateSet()] attribute 105
VARCHAR() method 308
variable names, using 196
VariablesToExport array 164
VBScript 59
verb-noun pattern 72
verbose output 123–125
Verbose parameter 100
-Verbose switch 78, 123–127
$VerbosePreference variable 100, 123
verbs 73
VeriSign 237
-Version parameter 257
virtual environment, setting up 13
visualizing pipeline 25–26
VM (virtual memory) 40
VS (Virtual Studio) Code

overview 6, 10–11
using with git 211–214

W

warning output 123–125
$WarningPreference variable 123
Way of doing things. See PowerShell Way of doing

things
–WhatIf parameter 185
–WhatIf switch 106–107
Where-Object command 26, 50, 54

INDEX328
wildcard operators 37
Win32_ComputerSystem 84
Win32_LogicalDisk 84, 265
Win32_OperatingSystem 84
Win32_Service class 86
Windows PowerShell 9
With Advanced Services option 14
withOleDbConnection class 307
WMF (Windows Management Framework) 9
WMI (Windows Management Instrumentation) 8
WPF (Windows Presentation Framework) 51
wrappers

creating 296–299
overview 293

Write-Debug cmdlet 259

Write-Host cmdlet
avoiding 197–198
overview 127

Write-Information command 128–129
Write-Output command 89
writing

code for testing 223
single-task tools 19–20
tests for Pester 224, 227–233

adding tests 228–230
code coverage 230–233
creating fixtures 226–227
creating mocks 227–228

WS-Man (WS-Management) 84
WSman connection 96

	Front cover
	brief contents
	Part 1 Introduction to scripting 1
	1 n Before you begin 3
	2 n Setting up your scripting environment 8
	3 n WWPD: what would PowerShell do? 19
	4 n Review: parameter binding and the PowerShell pipeline 25
	5 n Scripting language crash course 36
	6 n The many forms of scripting (and which to use) 48
	7 n Scripts and security 58
	Part 2 Building a PowerShell script 67

	8 n Always design first 69
	9 n Avoiding bugs: start with a command 80
	10 n Building a basic function and script module 88
	11 n Going advanced with your function 99
	12 n Objects: the best kind of output 111
	13 n Using all the pipelines 122
	14 n Simple help: making a comment 136
	15 n Dealing with errors 146
	16 n Filling out a manifest 158
	Part 3 Grown-up scripting 169

	17 n Changing your brain when it comes to scripting 171
	18 n Professional-grade scripting 190
	19 n An introduction to source control with git 202
	20 n Pestering your script 221
	21 n Signing your script 234
	22 n Publishing your script 244
	Part 4 Advanced techniques 253

	23 n Squashing bugs 255
	24 n Making script output prettier 272
	25 n Wrapping up the .NET Framework 292
	26 n Storing data—not in Excel! 302
	27 n Never the end 314

	contents
	preface
	acknowledgments
	about this book
	Join the community
	Book forum

	about the authors
	Part1—Introduction to scripting
	1 Before you begin
	1.1 What is toolmaking?
	1.2 Is this book for you?
	1.3 Here’s what you need to have
	1.3.1 PowerShell version
	1.3.2 Administrative privileges
	1.3.3 SQL Server
	1.3.4 Script editor

	1.4 How to use this book
	1.5 Expectations
	1.6 How to ask for help
	1.7 Summary

	2 Setting up your scripting environment
	2.1 The operating system
	2.2 Windows PowerShell
	2.3 Administrative privileges and execution policy
	2.4 A script editor
	2.5 Setting up a virtual environment
	2.6 Example code
	2.7 SQL Server Express
	2.8 Your turn

	3 WWPD: what would PowerShell do?
	3.1 Writing single-task tools
	3.2 Naming tools
	3.3 Naming parameters
	3.4 Producing output
	3.5 Don’t assume
	3.6 Avoid innovation
	3.7 Summary

	4 Review: parameter binding and the PowerShell pipeline
	4.1 Visualizing the pipeline
	4.2 It’s all in the parameters
	4.3 Plan A: ByValue
	4.3.1 Introducing Trace-Command
	4.3.2 Tracing ByValue parameter binding
	4.3.3 When ByValue fails

	4.4 ByPropertyName
	4.4.1 Let’s trace ByPropertyName
	4.4.2 When ByPropertyName fails
	4.4.3 Planning ahead

	4.5 Summary

	5 Scripting language crash course
	5.1 Comparisons
	5.1.1 Wildcards
	5.1.2 Collections
	5.1.3 Troubleshooting comparisons

	5.2 The If construct
	5.3 The ForEach construct
	5.4 The Switch construct
	5.5 The Do/While construct
	5.6 The For construct
	5.7 Break
	5.8 Summary

	6 The many forms of scripting (and which to use)
	6.1 Tools vs. controllers
	6.2 Thinking about tools
	6.3 Thinking about controllers
	6.4 Comparing tools and controllers
	6.5 Some concrete examples
	6.5.1 Emailing users whose passwords are about to expire
	6.5.2 Provisioning new users
	6.5.3 Setting file permissions
	6.5.4 Helping the help desk

	6.6 Control more
	6.7 Your turn

	7 Scripts and security
	7.1 PowerShell’s script security goal
	7.2 Execution policy
	7.2.1 Execution scope
	7.2.2 Getting your policies
	7.2.3 Setting an execution policy

	7.3 PowerShell isn’t the default application
	7.4 Running scripts
	7.5 Recommendations
	7.6 Summary

	Part 2—Building a PowerShell script
	8 Always design first
	8.1 Tools do one thing
	8.2 Tools are testable
	8.3 Tools are flexible
	8.4 Tools look native
	8.5 For example
	8.6 Your turn
	8.6.1 Start here
	8.6.2 Your task
	8.6.3 Our take

	9 Avoiding bugs: start with a command
	9.1 What you need to run
	9.2 Breaking it down, and running it right
	9.3 Running commands and digging deeper
	9.4 Process matters
	9.5 Know what you need
	9.6 Your turn
	9.6.1 Start here
	9.6.2 Your task
	9.6.3 Our take

	10 Building a basic function and script module
	10.1 Starting with a basic function
	10.1.1 Designing the input parameters
	10.1.2 Writing the code
	10.1.3 Designing the output

	10.2 Creating a script module
	10.3 Prereq check
	10.4 Running the command
	10.5 Your turn
	10.5.1 Start here
	10.5.2 Your task
	10.5.3 Our take

	11 Going advanced with your function
	11.1 About CmdletBinding and common parameters
	11.1.1 Accepting pipeline input
	11.1.2 Mandatory-ness
	11.1.3 Parameter validation
	11.1.4 Parameter aliases
	11.1.5 Supporting –Confirm and –WhatIf

	11.2 Your turn
	11.2.1 Start here
	11.2.2 Your task
	11.2.3 Our take

	12 Objects: the best kind of output
	12.1 Assembling the information
	12.2 Constructing and emitting output
	12.3 A quick test
	12.4 An object alternative
	12.5 Enriching objects
	12.6 Your turn
	12.6.1 Start here
	12.6.2 Your task
	12.6.3 Our take

	13 Using all the pipelines
	13.1 Knowing the six channels
	13.2 Adding verbose and warning output
	13.3 Doing more with -Verbose
	13.4 Information output
	13.4.1 A detailed information example

	13.5 Your turn
	13.5.1 Start here
	13.5.2 Your task
	13.5.3 Our take

	14 Simple help: making a comment
	14.1 Where to put your help
	14.2 Getting started
	14.3 Going further with comment-based help
	14.4 Broken help
	14.5 Beyond comments
	14.6 Your turn
	14.6.1 Start here
	14.6.2 Your task
	14.6.3 Our take

	15 Dealing with errors
	15.1 Understanding errors and exceptions
	15.2 Bad handling
	15.3 Two reasons for exception handling
	15.4 Handling exceptions in your tool
	15.5 Capturing the exception
	15.6 Handling exceptions for non-commands
	15.7 Going further with exception handling
	15.8 Your turn
	15.8.1 Start here
	15.8.2 Your task
	15.8.3 Our take

	16 Filling out a manifest
	16.1 Module execution order
	16.2 Creating a new manifest
	16.3 Examining the manifest
	16.3.1 Metadata
	16.3.2 The root module
	16.3.3 Prerequisites
	16.3.4 Scripts, types, and formats
	16.3.5 Exporting members

	16.4 Your turn
	16.4.1 Start here
	16.4.2 Your task
	16.4.3 Our take

	Part 3—Grown-up scripting
	17 Changing your brain when it comes to scripting
	17.1 Example 1
	17.1.1 The critique
	17.1.2 Our take
	17.1.3 Thinking beyond the literal

	17.2 Example 2
	17.2.1 The walkthrough
	17.2.2 Our take

	17.3 Your turn
	17.3.1 Start here
	17.3.2 Your task
	17.3.3 Our take

	18 Professional-grade scripting
	18.1 Using source control
	18.2 Spelling it out
	18.3 Commenting your code
	18.4 Formatting your code
	18.5 Using meaningful non-Hungarian variable names
	18.6 Avoiding aliases
	18.7 Avoiding awkward pipelines
	18.8 Providing help
	18.9 Avoiding Write-Host and Read-Host
	18.10 Sticking with single quotes
	18.11 Not polluting the global scope
	18.12 Being flexible
	18.13 Being secure
	18.14 Striving for elegance
	18.15 Summary

	19 An introduction to source control with git
	19.1 Why source control?
	19.2 What is git?
	19.2.1 Installing git
	19.2.2 Git basics

	19.3 Repository basics
	19.3.1 Creating a repository
	19.3.2 Staging a change
	19.3.3 Committing a change
	19.3.4 Rolling back a change
	19.3.5 Branching and merging

	19.4 Using git with VS Code
	19.5 Integrating with GitHub
	19.6 Summary

	20 Pestering your script
	20.1 The vision
	20.2 Problems with manual testing
	20.3 Benefits of automated testing
	20.4 Introducing Pester
	20.5 Coding to be tested
	20.6 What do you test?
	20.6.1 Integration tests
	20.6.2 Unit tests
	20.6.3 Don’t test what isn’t yours

	20.7 Writing a basic Pester test
	20.7.1 Creating a fixture
	20.7.2 Writing the first test
	20.7.3 Creating a mock
	20.7.4 Adding more tests
	20.7.5 Code coverage

	20.8 Summary

	21 Signing your script
	21.1 Why sign your scripts?
	21.2 A word about certificates
	21.3 Setting your policy
	21.4 Code-signing basics
	21.4.1 Getting a code-signing certificate
	21.4.2 Trusting self-signed certificates
	21.4.3 Signing your scripts
	21.4.4 Testing script signatures

	21.5 Summary

	22 Publishing your script
	22.1 Why publish?
	22.2 Meet the PowerShell Gallery
	22.3 Other publishing targets
	22.4 Before you publish
	22.4.1 Are you reinventing the wheel?
	22.4.2 Updating your manifest
	22.4.3 Getting an API key

	22.5 Ready, set, publish
	22.5.1 Managing revisions

	22.6 Publishing scripts
	22.6.1 Using the Microsoft script repository
	22.6.2 Creating ScriptFileInfo
	22.6.3 Publishing the script
	22.6.4 Managing published scripts

	22.7 Summary

	Part 4—Advanced techniques
	23 Squashing bugs
	23.1 The three kinds of bugs
	23.2 Dealing with syntax bugs
	23.3 Dealing with results bugs
	23.4 Dealing with logic bugs
	23.4.1 Setting breakpoints
	23.4.2 Setting watches
	23.4.3 So much more
	23.4.4 Don’t be lazy

	23.5 Your turn
	23.5.1 Start here
	23.5.2 Your task
	23.5.3 Our take

	24 Making script output prettier
	24.1 Our starting point
	24.2 Creating a default view
	24.2.1 Exploring Microsoft’s views
	24.2.2 Adding a custom type name to output objects
	24.2.3 Creating a new view file
	24.2.4 Adding the view file to a module

	24.3 Your turn
	24.3.1 Start here
	24.3.2 Your task
	24.3.3 Our take

	25 Wrapping up the .NET Framework
	25.1 Why does PowerShell exist?
	25.2 A crash course in .NET
	25.3 Exploring a class
	25.4 Making a wrapper
	25.5 A more practical example
	25.6 Your turn
	25.6.1 Start here
	25.6.2 Your task
	25.6.3 Our take

	26 Storing data— not in Excel!
	26.1 Introducing SQL Server!
	26.2 Setting up everything
	26.3 Using your database: creating a table
	26.4 Saving data to SQL Server
	26.5 Querying data from SQL Server
	26.6 Summary

	27 Never the end
	27.1 Welcome to toolmaking
	27.2 Taking your next step
	27.3 What’s in your future?

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Back cover

