
PROFESSIONAL
JAVASCRIPT® FOR WEB DEVELOPERS

FOREWORD . xlvii

INTRODUCTION . xlix

CHAPTER 1 What Is JavaScript? . 1

CHAPTER 2 JavaScript in HTML . 13

CHAPTER 3 Language Basics . 25

CHAPTER 4 Variables, Scope, and Memory . 101

CHAPTER 5 Basic Reference Types . 125

CHAPTER 6 Collection Reference Types . 167

CHAPTER 7 Iterators and Generators . 225

CHAPTER 8 Objects, Classes, and Object-Oriented Programming 251

CHAPTER 9 Proxies and Reflect . 323

CHAPTER 10 Functions . 349

CHAPTER 11 Promises and Async Functions . 391

CHAPTER 12 The Browser Object Model . 437

CHAPTER 13 Client Detection . 465

CHAPTER 14 The Document Object Model . 491

CHAPTER 15 DOM Extensions . 543

CHAPTER 16 DOM Levels 2 and 3 . 563

CHAPTER 17 Events . 601

CHAPTER 18 Animation and Graphics with Canvas . 671

CHAPTER 19 Scripting Forms . 707

CHAPTER 20 JavaScript APIs . 743

CHAPTER 21 Error Handling and Debugging . 823

CHAPTER 22 XML in JavaScript . 849

CHAPTER 23 JSON . 861

CHAPTER 24 Network Requests and Remote Resources 871

Continues

CHAPTER 25 Client-Side Storage . 919

CHAPTER 26 Modules . 945

CHAPTER 27 Workers . 969

CHAPTER 28 Best Practices . 1035

APPENDIX A ES2018 and ES2019 . 1067

APPENDIX B Strict Mode . 1087

APPENDIX C JavaScript Libraries and Frameworks . 1095

APPENDIX D JavaScript Tools . 1101

INDEX .1113

PROFESSIONAL

JavaScript® for Web Developers

PROFESSIONAL

JavaScript® for Web Developers

Matt Frisbie

Professional Javascript® for Web Developers

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2020 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-119-36644-7
ISBN: 978-1-119-36635-5 (ebk)
ISBN: 978-1-119-36657-7 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online
at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect
to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without
limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional
materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the
understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional
assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author
shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses the information the
organization or Web site may provide or recommendations it may make. Further, readers should be aware that Internet Web
sites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the United
States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard
print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD
or DVD that is not included in the version you purchased, you may download this material at http://booksupport
.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2018956541

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. JavaScript is a registered trademark of Oracle America, Inc. All other
trademarks are the property of their respective owners. John Wiley & Sons, Inc., is not associated with any product or
vendor mentioned in this book.

To Jordan, for her unwavering support no matter

how many times she heard “it’s almost done.”

ABOUT THE AUTHOR

MATT FRISBIE has worked in web development for over a decade. During that time, he’s been a
startup co-founder, an engineer at a Big Four tech company, and the first engineer at a Y Combinator
startup that would eventually become a billion-dollar business. As a Google software engineer, Matt
worked on both the AdSense and Accelerated Mobile Pages (AMP) platforms; his code contribu-
tions run on most of the planet’s web browsing devices. Prior to this, Matt was the first engineer at
DoorDash, where he laid the foundation for their driver scheduling, menu management, and order
dispatch infrastructure. Matt has written two books and recorded two video series for O’Reilly and
Packt, speaks at frontend meetups and webcasts, and is a Level 1 sommelier. He majored in computer
engineering at the University of Illinois at Urbana–Champaign. Matt’s Twitter handle is @mattfriz.

ABOUT THE TECHNICAL EDITORS

CHAIM KRAUSE is a lover of computers, electronics, animals, and electronic music. He’s tickled pink
when he can combine two or more of these interests in one project. The vast majority of his knowl-
edge is through self-learning. He jokes with everyone that the only difference between what he does
at home and what he does at work is the logon he uses. As a lifelong learner, he is often frustrated
with technical errors in documentation that waste valuable time and cause unnecessary frustration.
One of the reasons he works as a technical editor on technology books is to help others avoid those
same pitfalls.

MARCIA WILBUR is a technical communicator, consulting in the semiconductor field, focusing on
Industrial IoT (IIoT) and AI. Marcia holds degrees in computer science, technical communication,
and information technology. As Copper Linux User Group president, she is heavily involved with the
maker community, leading West Side Linux + Pi, and the East Valley, leading regular Raspberry Pi,
Beaglebone, Banana Pi/Pro, and ESP8266 projects. These projects include home automation, gaming
consoles, surveillance, network, multimedia, and other “pi fun.”

In addition to tinkering, she volunteers for different organizations using Pi units and Linux to provide
access to educational content for K–12 schools in rural, underserved, and disaster-stricken areas. For
fun, she serves the community as the lead Debian developer for Linux Respin, a backup and distro
customization tool.

ACKNOWLEDGMENTS

THANKS TO WILEY FOR allowing me to take on this project. Writing the fourth edition of Profes-
sional JavaScript for Web Developers has been one of the most profoundly challenging yet rewarding
projects I’ve ever worked on, and the patience and support at Wiley was fundamental to getting the
book out the door. Thanks to the Wiley staff, specifically Jim Minatel, who put this project in my
hands and saw it through.

I’d like to acknowledge Nicholas C. Zakas, the author of the first three editions, for all the work he
put in before I became involved. The book would not have amounted to much without the ironclad
foundation he laid. I wish him a continued and speedy recovery.

Special thanks to Adaobi Obi Tulton for her guidance. She was an invaluable resource throughout the
entire process, and I could not have done it without her patience and expertise.

I’d also like to thank everyone who provided feedback on the book’s drafts: Samuel Kallner, Chaim
Krause, Marcia Wilbur, Nancy Rapoport, Athiyappan Lalith Kumar, and Evelyn Wellborn. A book
like this would fall apart without your contributions.

Finally, I’d like to thank Zach Tratar for writing the foreword. I was fortunate enough to meet Zach
the same day I moved to San Francisco. In the years since, he has proven himself to be a feverishly
erudite and eminently likeable fellow—not to mention an uncommonly good software engineer. I am
honored that he agreed to contribute to this book.

CONTENTS

FOREWORD xlvii
INTRODUCTION xlix

CHAPTER 1: WHAT IS JAVASCRIPT? 1

A Short History 2
JavaScript Implementations 3

ECMAScript 3
ECMAScript Editions 4
What Does ECMAScript Conformance Mean? 5
ECMAScript Support in Web Browsers 5

The Document Object Model 7
Why the DOM Is Necessary 8
DOM Levels 8
Other DOMs 9
DOM Support in Web Browsers 9

The Browser Object Model 10
JavaScript Versions 11
Summary 12

CHAPTER 2: JAVASCRIPT IN HTML 13

The <script> Element 13
Tag Placement 16
Deferred Scripts 17
Asynchronous Scripts 17
Dynamic Script Loading 18
Changes in XHTML 19
Deprecated Syntax 20

Inline Code versus External Files 21
Document Modes 22
The <noscript> Element 23
Summary 24

CHAPTER 3: LANGUAGE BASICS 25

Syntax 25
Case-Sensitivity 26
Identifiers 26

ConTEnTS

xvi

Comments 26
Strict Mode 27
Statements 27

Keywords and Reserved Words 28
Variables 29

The ’var’ Keyword 29
var Declaration Scope 29
var Declaration Hoisting 30

’let’ Declarations 31
Temporal Dead Zone 32
Global Declarations 32
Conditional Declaration 32
let Declaration in for Loops 34

’const’ Declarations 34
Declaration Styles and Best Practices 35

Don’t Use var 36
Prefer const Over let 36

Data Types 36
The typeof Operator 36
The Undefined Type 37
The Null Type 39
The Boolean Type 40
The Number Type 41

Floating-Point Values 41
Range of Values 42
NaN 43
Number Conversions 44

The String Type 46
Character Literals 47
The Nature of Strings 48
Converting to a String 48
Template Literals 49
Interpolation 50
Template Literal Tag Functions 51
Raw Strings 53

The Symbol Type 54
Basic Symbol Use 54
Using the Global Symbol Registry 55
Using Symbols as Properties 56
Well-Known Symbols 57

The Object Type 67

ConTEnTS

xvii

operators 68
Unary Operators 68

Increment/Decrement 68
Unary Plus and Minus 70

Bitwise Operators 72
Bitwise NOT 73
Bitwise AND 74
Bitwise OR 74
Bitwise XOR 75
Left Shift 76
Signed Right Shift 76
Unsigned Right Shift 76

Boolean Operators 77
Logical NOT 77
Logical AND 78
Logical OR 79

Multiplicative Operators 80
Multiply 80
Divide 81
Modulus 82

Exponentiation Operator 82
Additive Operators 82

Add 83
Subtract 84

Relational Operators 85
Equality Operators 86

Equal and Not Equal 86
Identically Equal and Not Identically Equal 87

Conditional Operator 88
Assignment Operators 88
Comma Operator 89

Statements 90
The if Statement 90
The do-while Statement 90
The while Statement 91
The for Statement 91
The for-in Statement 92
The for-of Statement 93
Labeled Statements 93
The break and continue Statements 94

ConTEnTS

xviii

The with Statement 95
The switch Statement 96

Functions 98
Summary 100

CHAPTER 4: VARIABLES, SCOPE, AND MEMORY 101

Primitive and Reference Values 101
Dynamic Properties 102
Copying Values 103
Argument Passing 103
Determining Type 105

Execution Context and Scope 106
Scope Chain Augmentation 108
Variable Declaration 109

Function Scope Declaration Using var 109
Block Scope Declaration Using let 111
Constant Declaration Using const 112
Identifier Lookup 113

Garbage Collection 114
Mark-and-Sweep 115
Reference Counting 115
Performance 116
Managing Memory 117

Performance Boosts with const and let Declarations 118
Hidden Classes and the delete Operation 118
Memory Leaks 119
Static Allocation and Object Pools 120

Summary 122

CHAPTER 5: BASIC REFERENCE TYPES 125

The Date Type 126
Inherited Methods 128
Date-Formatting Methods 129
Date/Time Component Methods 129

The RegExp Type 131
RegExp Instance Properties 134
RegExp Instance Methods 135
RegExp Constructor Properties 137
Pattern Limitations 139

Primitive Wrapper Types 139
The Boolean Type 141
The Number Type 141

ConTEnTS

xix

The isInteger() Method and Safe Integers 143
The String Type 144

The JavaScript Character 144
The normalize() Method 147
String-Manipulation Methods 148
String Location Methods 150
String Inclusion Methods 151
The trim() Method 151
The repeat() Method 152
The padStart() and padEnd() Methods 152
String Iterators and Destructuring 152
String Case Methods 153
String Pattern-Matching Methods 153
The localeCompare() Method 156
HTML Methods 157

Singleton Built-in objects 157
The Global Object 157

URI-Encoding Methods 158
The eval() Method 159
Global Object Properties 160
The Window Object 161

The Math Object 161
Math Object Properties 162
The min() and max() Methods 162
Rounding Methods 163
The random() Method 163
Other Methods 164

Summary 165

CHAPTER 6: COLLECTION REFERENCE TYPES 167

The object Type 167
The Array Type 170

Creating Arrays 170
Array Holes 172
Indexing into Arrays 174
Detecting Arrays 175
Iterator Methods 176
Copy and Fill Methods 176
Conversion Methods 179
Stack Methods 180
Queue Methods 181
Reordering Methods 182

ConTEnTS

xx

Manipulation Methods 184
Search and Location Methods 186

Strict Equivalence 186
Predicate Search 187

Iterative Methods 188
Reduction Methods 189

Typed Arrays 190
History 190

WebGL 190
Emergence of Typed Arrays 191

Using ArrayBuffers 191
DataViews 192

ElementType 193
Big-Endian and Little-Endian 194
Corner Cases 195

Typed Arrays 196
Typed Array Behavior 197
Merging, Copying, and Changing Typed Arrays 198
Underflow and Overflow 200

The Map Type 201
Basic API 201
Order and Iteration 203
Choosing Between Objects and Maps 206

Memory Profile 206
Insertion Performance 206
Lookup Performance 206
Delete Performance 206

The WeakMap Type 206
Basic API 207
Weak Keys 208
Non-Iterable Keys 209
Utility 209

Private Variables 209
DOM Node Metadata 211

The Set Type 211
Basic API 211
Order and Iteration 213
Defining Formal Set Operations 215

The WeakSet Type 217
Basic API 217
Weak Keys 219
Non-Iterable Values 219

ConTEnTS

xxi

Utility 219
Iteration and Spread operators 220
Summary 222

CHAPTER 7: ITERATORS AND GENERATORS 225

Introduction to Iteration 225
The Iterator Pattern 226

The Iterable Protocol 227
The Iterator Protocol 229
Custom Iterator Definition 231
Early Termination of Iterators 233

Generators 236
Generator Basics 236
Interrupting Execution with “yield” 238

Using a Generator Object as an Iterable 239
Using “yield” for Input and Output 240
Yielding an Iterable 242
Recursive Algorithms Using yield* 244

Using a Generator as the Default Iterator 246
Early Termination of Generators 247

The return() Method 247
The throw() Method 248

Summary 249

CHAPTER 8: OBJECTS, CLASSES, AND OBJECT-ORIENTED
PROGRAMMING 251

Understanding objects 251
Types of Properties 252

Data Properties 252
Accessor Properties 254

Defining Multiple Properties 255
Reading Property Attributes 256
Merging Objects 257
Object Identity and Equality 260
Enhanced Object Syntax 261

Property Value Shorthand 261
Computed Property Keys 262
Concise Method Syntax 263

Object Destructuring 264
Nested Destructuring 266

ConTEnTS

xxii

Partial Destructuring Completion 267
Parameter Context Matching 268

object Creation 268
Overview 268
The Factory Pattern 269
The Function Constructor Pattern 269

Constructors as Functions 272
Problems with Constructors 272

The Prototype Pattern 273
How Prototypes Work 274
Understanding the Prototype Hierarchy 278
Prototypes and the “in” Operator 281
Property Enumeration Order 283

Object Iteration 284
Alternate Prototype Syntax 285
Dynamic Nature of Prototypes 286
Native Object Prototypes 287
Problems with Prototypes 288

Inheritance 289
Prototype Chaining 289

Default Prototypes 291
Prototype and Instance Relationships 291
Working with Methods 292
Problems with Prototype Chaining 294

Constructor Stealing 294
Passing Arguments 295
Problems with Constructor Stealing 296

Combination Inheritance 296
Prototypal Inheritance 297
Parasitic Inheritance 298
Parasitic Combination Inheritance 299

Classes 302
Class Definition Basics 302

Class Composition 303
The Class Constructor 303

Instantiation 304
Understanding Classes as Special Functions 306

Instance, Prototype, and Class Members 307
Instance Members 307
Prototype Methods and Accessors 308
Static Class Methods and Accessors 309

ConTEnTS

xxiii

Non-Function Prototype and Class Members 310
Iterator and Generator Methods 311

Inheritance 312
Inheritance Basics 312
Constructors, HomeObjects, and super() 313
Abstract Base Classes 316
Inheriting from Built-in Types 317
Class Mixins 318

Summary 320

CHAPTER 9: PROXIES AND REFLECT 323

Proxy Fundamentals 324
Creating a Passthrough Proxy 324
Defining Traps 325
Trap Parameters and the Reflect API 326
Trap Invariants 328
Revocable Proxies 329
Utility of the Reflect API 329

Reflect API vs. Object API 330
Status Flags 330
Supplanting Operators with First-Class Functions 331
Safe Function Application 331

Proxying a Proxy 331
Proxy Considerations and Shortcomings 332

’this’ Inside a Proxy 332
Proxies and Internal Slots 333

Proxy Traps and Reflect Methods 333
get() 333

Return value 334
Intercepted operations 334
Trap handler parameters 334
Trap invariants 334

set() 334
Return value 335
Intercepted operations 335
Trap handler parameters 335
Trap invariants 335

has() 335
Return value 336
Intercepted operations 336
Trap handler parameters 336

ConTEnTS

xxiv

Trap invariants 336
defineProperty() 336

Return value 336
Intercepted operations 336
Trap handler parameters 337
Trap invariants 337

getOwnPropertyDescriptor() 337
Return value 337
Intercepted operations 337
Trap handler parameters 337
Trap invariants 338

deleteProperty() 338
Return value 338
Intercepted operations 338
Trap handler parameters 338
Trap invariants 339

ownKeys() 339
Return value 339
Intercepted operations 339
Trap handler parameters 339
Trap invariants 339

getPrototypeOf() 339
Return value 340
Intercepted operations 340
Trap handler parameters 340
Trap invariants 340

setPrototypeOf() 340
Return value 341
Intercepted operations 341
Trap handler parameters 341
Trap invariants 341

isExtensible() 341
Return value 341
Intercepted operations 341
Trap handler parameters 342
Trap invariants 342

preventExtensions() 342
Return value 342
Intercepted operations 342
Trap handler parameters 342
Trap invariants 342

ConTEnTS

xxv

apply() 342
Return value 343
Intercepted operations 343
Trap handler parameters 343
Trap invariants 343

construct() 343
Return value 343
Intercepted operations 344
Trap handler parameters 344
Trap invariants 344

Proxy Patterns 344
Tracking Property Access 344
Hidden Properties 345
Property Validation 345
Function and Constructor Parameter Validation 346
Data Binding and Observables 347

Summary 348

CHAPTER 10: FUNCTIONS 349

Arrow Functions 350
Function names 351
Understanding Arguments 353

Arguments in Arrow Functions 355
no overloading 355
Default Parameter Values 356

Default Parameter Scope and Temporal Dead Zone 358
Spread Arguments and Rest Parameters 359

Spread Arguments 359
Rest Parameter 360

Function Declarations versus Function Expressions 361
Functions as Values 362
Function Internals 364

arguments 364
this 365
caller 366
new.target 367

Function Properties and Methods 367
Function Expressions 370
Recursion 372
Tail Call optimization 373

Tail Call Optimization Requirements 374
Coding for Tail Call Optimization 375

ConTEnTS

xxvi

Closures 376
The this Object 379
Memory Leaks 381

Immediately Invoked Function Expressions 382
Private Variables 384

Static Private Variables 385
The Module Pattern 387
The Module-Augmentation Pattern 388

Summary 389

CHAPTER 11: PROMISES AND ASYNC FUNCTIONS 391

Introduction to Asynchronous Programming 392
Synchronous vs. Asynchronous JavaScript 392
Legacy Asynchronous Programming Patterns 393

Returning Asynchronous Values 393
Handling Failure 394
Nesting Asynchronous Callbacks 394

Promises 395
The Promises/A+ Specification 395
Promise Basics 395

The Promise State Machine 396
Resolved Values, Rejection Reasons, and Utility of Promises 396
Controlling Promise State with the Executor 397
Promise Casting with Promise.resolve() 398
Promise Rejection with Promise.reject() 399
Synchronous/Asynchronous Execution Duality 399

Promise Instance Methods 400
Implementing the Thenable Interface 400
Promise.prototype.then() 400
Promise.prototype.catch() 403
Promise.prototype.finally() 404
Non-Reentrant Promise Methods 405
Sibling Handler Order of Execution 407
Resolved Value and Rejected Reason Passing 408
Rejecting Promises and Rejection Error Handling 408

Promise Chaining and Composition 410
Promise Chaining 410
Promise Graphs 413
Parallel Promise Composition with Promise.all() and Promise.race() 414
Serial Promise Composition 416

ConTEnTS

xxvii

Promise Extensions 418
Promise Canceling 418
Promise Progress Notifications 419

Async Functions 421
Async Function Basics 422

The async keyword 422
The await keyword 424
Restrictions on await 426

Halting and Resuming Execution 427
Strategies for Async Functions 430

Implementing Sleep() 430
Maximizing Parallelization 431
Serial Promise Execution 434
Stack Traces and Memory Management 434

Summary 435

CHAPTER 12: THE BROWSER OBJECT MODEL 437

The window object 438
The Global Scope 438
Window Relationships 439
Window Position and Pixel Ratio 439

Pixel Ratios 439
Window Size 440
Window Viewport Position 441
Navigating and Opening Windows 442

Popping Up Windows 442
Security Restrictions 445
Pop-up Blockers 445

Intervals and Timeouts 446
System Dialogs 448

The location object 450
Query String Arguments 451

URLSearchParams 452
Manipulating the Location 452

The navigator object 454
Detecting Plug-ins 456

Legacy Internet Explorer Plugin Detection 457
Registering Handlers 459

The screen object 459
The history object 460

ConTEnTS

xxviii

Navigation 460
History State Management 461

Summary 462

CHAPTER 13: CLIENT DETECTION 465

Capability Detection 466
Safer Capability Detection 467
Using Capability Detection for Browser Analysis 468

Detecting Feature Support 468
Detecting Browser Identity 468
Capability Detection Limitations 469

User-Agent Detection 470
History of User-Agent Composition 470

Early Browsers 470
Netscape Navigator 3 and Internet Explorer 3 471
Netscape Communicator 4 and Internet Explorer 4 Through 8 472
Gecko 473
WebKit 475
Konqueror 476
Chrome 476
Opera 476
iOS and Android 478

Using User-Agent for Browser Analysis 478
Spoofing a User-Agent 479
Using User-Agents for Browser Analysis 479

Software and Hardware Detection 480
Browser and Operating System Identification 481

The navigator.oscpu Property 481
The navigator.vendor Property 481
The navigator.platform Property 481
The screen.colorDepth and screen.pixelDepth Properties 482
The screen.orientation Property 482

Browser Metadata 482
The Geolocation API 483
Connection State and the NetworkInformation API 486
Battery Status API 487

Hardware 489
Processor Cores 489
Device Memory 489
Maximum Touch Points 489

Summary 489

ConTEnTS

xxix

CHAPTER 14: THE DOCUMENT OBJECT MODEL 491

Hierarchy of nodes 492
The Node Type 492

The nodeName and nodeValue Properties 493
Node Relationships 494
Manipulating Nodes 495
Other Methods 497

The Document Type 498
Document Children 498
Document Information 499
Locating Elements 500
Special Collections 502
DOM Conformance Detection 503
Document Writing 504

The Element Type 506
HTML Elements 507
Getting Attributes 510
Setting Attributes 511
The attributes Property 511
Creating Elements 513
Element Children 513

The Text Type 514
Creating Text Nodes 515
Normalizing Text Nodes 516
Splitting Text Nodes 517

The Comment Type 517
The CDATASection Type 518
The DocumentType Type 518
The DocumentFragment Type 519
The Attr Type 520

Working with the DoM 521
Dynamic Scripts 521
Dynamic Styles 523
Manipulating Tables 525
Using NodeLists 528

Mutation observers 529
Basic usage 529

The observe() method 529
Working with Callbacks and MutationRecords 530
The disconnect() method 532

ConTEnTS

xxx

Multiplexing a MutationObserver 532
Reusing a MutationObserver 533

Controlling the Observer scope with MutationObserverInit 534
Observing attribute mutations 535
Observing character data mutations 536
Observing child mutations 537
Observing subtree mutations 539

Async Callbacks and the Record Queue 540
Behavior of the Record Queue 540
The takeRecords() method 541

Performance, Memory, and Garbage Collection 541
MutationObserver References 541
MutationRecord References 542

Summary 542

CHAPTER 15: DOM EXTENSIONS 543

Selectors API 544
The querySelector() Method 544
The querySelectorAll() Method 544
The matches() Method 545

Element Traversal 546
HTML5 547

Class-Related Additions 547
The getElementsByClassName() Method 547
The classList Property 548

Focus Management 549
Changes to HTMLDocument 550

The readyState Property 550
Compatibility Mode 550
The head Property 551

Character Set Properties 551
Custom Data Attributes 551
Markup Insertion 552

The innerHTML Property 552
Using innerHTML in Legacy Internet Explorer 553
The outerHTML Property 554
The insertAdjacentHTML() and insertAdjacentText() Methods 555
Memory and Performance Issues 555
Cross-Site Scripting Considerations 556

The scrollIntoView() Method 556
Proprietary Extensions 557

The children Property 557

ConTEnTS

xxxi

The contains() Method 557
Markup Insertion 558

The innerText Property 558
The outerText Property 560

Scrolling 560
Summary 560

CHAPTER 16: DOM LEVELS 2 AND 3 563

DoM Changes 564
XML Namespaces 564

Changes to Node 566
Changes to Document 567
Changes to Element 567
Changes to NamedNodeMap 568

Other Changes 568
Changes to DocumentType 568
Changes to Document 569
Changes to Node 570
Changes to iframes 571

Styles 572
Accessing Element Styles 572

DOM Style Properties and Methods 573
Computed Styles 575

Working with Style Sheets 576
CSS Rules 577
Creating Rules 578
Deleting Rules 579

Element Dimensions 579
Offset Dimensions 579
Client Dimensions 581
Scroll Dimensions 582
Determining Element Dimensions 584

Traversals 584
NodeIterator 585
TreeWalker 588

Ranges 590
Ranges in the DOM 590
Simple Selection in DOM Ranges 591
Complex Selection in DOM Ranges 592
Interacting with DOM Range Content 593
Inserting DOM Range Content 596
Collapsing a DOM Range 597

ConTEnTS

xxxii

Comparing DOM Ranges 597
Cloning DOM Ranges 598
Cleanup 598

Summary 599

CHAPTER 17: EVENTS 601

Event Flow 602
Event Bubbling 602
Event Capturing 603
DOM Event Flow 603

Event Handlers 604
HTML Event Handlers 604
DOM Level 0 Event Handlers 606
DOM Level 2 Event Handlers 607
Internet Explorer Event Handlers 608
Cross-Browser Event Handlers 610

The Event object 611
The DOM Event Object 611
The Internet Explorer Event Object 615
The Cross-Browser Event Object 617

Event Types 619
UI Events 619

The load Event 620
The unload Event 622
The resize Event 623
The scroll Event 624

Focus Events 624
Mouse and Wheel Events 625

Client Coordinates 627
Page Coordinates 628
Screen Coordinates 628
Modifier Keys 629
Related Elements 630
Buttons 631
Additional Event Information 632
The mousewheel Event 633
Touch Device Support 633
Accessibility Issues 634

Keyboard and Text Events 634
Key Codes 635
Character Codes 636
DOM Level 3 Changes 637

ConTEnTS

xxxiii

The textInput Event 638
Keyboard Events on Devices 639

Composition Events 640
Mutation Events 641
HTML5 Events 641

The contextmenu Event 641
The beforeunload Event 643
The DOMContentLoaded Event 643
The readystatechange Event 644
The pageshow and pagehide Events 645
The hashchange Event 647

Device Events 647
The orientationchange Event 647
The deviceorientation Event 648
The devicemotion Event 650

Touch and Gesture Events 651
Touch Events 651
Gesture Events 653

Event Reference 654
Memory and Performance 659

Event Delegation 659
Removing Event Handlers 661

Simulating Events 662
DOM Event Simulation 663

Simulating Mouse Events 663
Simulating Keyboard Events 664
Simulating Other Events 667
Custom DOM Events 667

Internet Explorer Event Simulation 668
Summary 669

CHAPTER 18: ANIMATION AND GRAPHICS WITH CANVAS 671

Using requestAnimationFrame 672
Early Animation Loops 672
Problems with Intervals 673
requestAnimationFrame 673
cancelAnimationFrame 674
Performance Throttling with requestAnimationFrame 674

Basic Canvas Usage 676
The 2D Context 677

Fills and Strokes 677
Drawing Rectangles 677

ConTEnTS

xxxiv

Drawing Paths 679
Drawing Text 681
Transformations 683
Drawing Images 686
Shadows 687
Gradients 687
Patterns 689
Working with Image Data 689
Compositing 691

WebGL 692
The WebGL Context 693
WebGL Basics 693

Constants 694
Method Naming 695
Getting Ready to Draw 695
Viewports and Coordinates 695
Buffers 696
Errors 697
Shaders 697
Drawing 701
Textures 703
Reading Pixels 703

WebGL1 versus WebGL2 704
Summary 705

CHAPTER 19: SCRIPTING FORMS 707

Form Basics 707
Submitting Forms 708
Resetting Forms 709
Form Fields 710

Common Form-Field Properties 711
Common Form-Field Methods 713
Common Form-Field Events 714

Scripting Text Boxes 715
Text Selection 716

The select Event 716
Retrieving Selected Text 717
Partial Text Selection 717

Input Filtering 718
Blocking Characters 719
Dealing with the Clipboard 720

Automatic Tab Forward 721

ConTEnTS

xxxv

HTML5 Constraint Validation API 723
Required Fields 723
Alternate Input Types 723
Numeric Ranges 724
Input Patterns 724
Checking Validity 725
Disabling Validation 726

Scripting Select Boxes 726
Options Selection 728
Adding Options 730
Removing Options 730
Moving and Reordering Options 731

Form Serialization 732
Rich Text Editing 734

Using contenteditable 734
Interacting with Rich Text 735
Rich Text Selections 738
Rich Text in Forms 740

Summary 741

CHAPTER 20: JAVASCRIPT APIS 743

Atomics and SharedArrayBuffer 744
SharedArrayBuffer 744
Atomics Basics 745

Atomic Arithmetic and Bitwise Methods 745
Atomic Reads and Writes 747
Atomic Exchanges 748
Atomics Futex Operations and Locks 749

Cross-Context Messaging 751
Encoding API 753

Encoding Text 753
Bulk Encoding 753
Stream Encoding 754

Decoding Text 755
Bulk Decoding 755
Stream Decoding 756

Blob and File APIs 758
The File Type 758
The FileReader Type 759
The FileReaderSync Type 761
Blobs and Partial Reads 761
Object URLs and Blobs 762

ConTEnTS

xxxvi

Drag-and-Drop File Reading 763
Media Elements 764

Properties 765
Events 767
Custom Media Players 768
Codec Support Detection 769
The Audio Type 770

native Drag and Drop 770
Drag-and-Drop Events 770
Custom Drop Targets 771
The dataTransfer Object 772
dropEffect and effectAllowed 773
Draggability 774
Additional Members 774

notifications API 775
Notification Permissions 775
Showing and Hiding Notification 775
Notification Lifecycle Callbacks 776

Page Visibility API 776
Streams API 777

Introduction to Streams 778
Chunks, Internal Queues, and Backpressure 778

Readable Streams 779
Using the ReadableStreamDefaultController 779
Using the ReadableStreamDefaultReader 780

Writable Streams 781
Creating a WriteableStream 781
Using a WritableStreamDefaultWriter 781

Transform Streams 782
Piping Streams 784

Timing APIs 785
High Resolution Time API 786
Performance Timeline API 788

User Timing API 788
Navigation Timing API 789
Resource Timing API 790

Web Components 791
HTML Templates 791

Using a DocumentFragment 792
Using <template> tags 793
Template Scripts 794

ConTEnTS

xxxvii

Shadow DOM 795
Introduction to Shadow DOM 795
Creating a Shadow DOM 796
Using a Shadow DOM 797
Composition and Shadow DOM Slots 799
Event Retargeting 801

Custom Elements 802
Defining a Custom Element 802
Adding Web Component Content 804
Using Custom Element Lifecycle Hooks 805
Reflecting Custom Element Attributes 806
Upgrading Custom Elements 807

The Web Cryptography API 808
Random Number Generation 808
Using the SubtleCrypto Object 810

Generating Cryptographic Digests 810
CryptoKeys and Algorithms 812
Generating CryptoKeys 814
Exporting and Importing Keys 816
Deriving Keys from Master Keys 817
Signing and Verifying Messages with Asymmetric Keys 819
Encrypting and Decrypting with Symmetric Keys 820
Wrapping and Unwrapping a Key 821

Summary 822

CHAPTER 21: ERROR HANDLING AND DEBUGGING 823

Browser Error Reporting 824
Desktop Consoles 824
Mobile Consoles 824

Error Handling 825
The try-catch Statement 825

The finally Clause 826
Error Types 826
Usage of try-catch 828

Throwing Errors 829
When to Throw Errors 830
Throwing Errors versus try-catch 831

The error Event 831
Error-Handling Strategies 832
Identify Where Errors Might Occur 833

Static Code Analyzer 833

ConTEnTS

xxxviii

Type Coercion Errors 833
Data Type Errors 835
Communication Errors 837

Distinguishing between Fatal and Nonfatal Errors 838
Log Errors to the Server 839

Debugging Techniques 840
Logging Messages to a Console 840
Understanding the Console Runtime 841
Using the JavaScript Debugger 842
Logging Messages to the Page 842
Shimming Console Methods 843
Throwing Errors 843

Common Legacy Internet Explorer Errors 844
Invalid Character 844
Member Not Found 845
Unknown Runtime Error 845
Syntax Error 845
The System Cannot Locate the Resource Specified 846

Summary 846

CHAPTER 22: XML IN JAVASCRIPT 849

XML DoM Support in Browsers 849
DOM Level 2 Core 850
The DOMParser Type 850
The XMLSerializer Type 851

XPath Support in Browsers 852
DOM Level 3 XPath 852
Single Node Results 854
Simple Type Results 854
Default Type Results 855
Namespace Support 856

XSLT Support in Browsers 857
The XSLTProcessor Type 857
Using Parameters 858
Resetting the Processor 859

Summary 859

CHAPTER 23: JSON 861

Syntax 862
Simple Values 862
Objects 862
Arrays 863

ConTEnTS

xxxix

Parsing and Serialization 864
The JSON Object 865
Serialization Options 866

Filtering Results 866
String Indentation 867
The toJSON() Method 868

Parsing Options 869
Summary 870

CHAPTER 24: NETWORK REQUESTS AND REMOTE RESOURCES 871

The XMLHttpRequest object 872
XHR Usage 872
HTTP Headers 875
GET Requests 876
POST Requests 877

XMLHttpRequest Level 2 878
The FormData Type 878
Timeouts 879
The overrideMimeType() Method 879

Progress Events 880
The load Event 880
The progress Event 881

Cross-origin Resource Sharing 881
Preflighted Requests 883
Credentialed Requests 883

Alternate Cross-Domain Techniques 884
Image Pings 884
JSONP 884

The Fetch API 885
Basic API Utilization 886

Dispatching a Request 886
Reading a Response 886
Handling Status Codes and Request Failures 887
Custom Fetch Options 888

Common Fetch Patterns 893
Sending JSON Data 893
Sending Parameters in a Request Body 893
Sending Files 893
Loading Files as Blobs 894
Sending a Cross-Origin Request 894
Aborting a Request 894

The Headers Object 895

ConTEnTS

xl

Exploring Headers-Map Similarity 895
Unique Features of the Headers Object 896
Header Guards 896

The Request Object 897
Creating Request Objects 897
Cloning Request Objects 898
Using Request Objects with fetch() 900

The Response Object 901
Creating Response Objects 901
Reading Response Status Information 903
Cloning Response Objects 905

Requests, Responses, and the Body Mixin 906
Body.text() 906
Body.json() 906
Body.formData() 907
Body.arrayBuffer() 907
Body.blob() 908
Single-Use Streams 908
Using a ReadableStream Body 909

The Beacon API 914
Web Sockets 915

The API 915
Sending/Receiving Data 916
Other Events 916

Security 917
Summary 918

CHAPTER 25: CLIENT-SIDE STORAGE 919

Cookies 919
Restrictions 920
Cookie Parts 921
Cookies in JavaScript 922
Subcookies 925
Cookie Considerations 928

Web Storage 929
The Storage Type 929
The sessionStorage Object 930
The localStorage Object 932
The storage Event 932
Limits and Restrictions 933

IndexedDB 933
Databases 933

ConTEnTS

xli

Object Stores 934
Transactions 935
Insertion 936
Querying with Cursors 937
Key Ranges 939
Setting Cursor Direction 940
Indexes 941
Concurrency Issues 943
Limits and Restrictions 943

Summary 944

CHAPTER 26: MODULES 945

Understanding the module pattern 946
Module Identifiers 946
Module Dependencies 946
Module Loading 946
Entry Points 947
Asynchronous Dependencies 948
Programmatic Dependencies 948
Static Analysis 948
Circular Dependencies 949

Improvising Module Systems 950
Working with pre-ES6 module loaders 953

CommonJS 953
Asynchronous Module Definition 956
Universal Module Definition 957
Module Loader Deprecation 957

Working with ES6 modules 958
Module Tagging and Definition 958
Module Loading 959
Module Behavior 959
Module Exports 960
Module Imports 963
Module Passthrough Exports 965
Worker Modules 965
Backwards Compatibility 966

Summary 967

CHAPTER 27: WORKERS 969

Introduction to Workers 970
Comparing Workers and Threads 970
Types of Workers 971

ConTEnTS

xlii

Dedicated Web Worker 971
Shared Web Worker 971
Service Worker 971

The WorkerGlobalScope 971
WorkerGlobalScope Properties and Methods 972
Subclasses of WorkerGlobalScope 972

Dedicated Workers 973
Dedicated Worker Basics 973

Creating a Dedicated Worker 973
Worker Security Restrictions 974
Using the Worker Object 975
The DedicatedWorkerGlobalScope 976

Dedicated Workers and Implicit MessagePorts 976
Understanding the Dedicated Worker Lifecycle 977
Configuring Worker Options 979
Creating a Worker from Inline JavaScript 979
Dynamic Script Execution Inside a Worker 980
Delegating Tasks to Subworkers 982
Handling Worker Errors 983
Communicating with a Dedicated Worker 983

Communicating with postMessage() 983
Communicating with MessageChannel 984
Communicating with BroadcastChannel 986

Worker Data Transfer 987
Structured Clone Algorithm 987
Transferable Objects 988
SharedArrayBuffer 990

Worker Pools 993
Shared Workers 997

Shared Worker Basics 997
Creating a Shared Worker 997
SharedWorker Identity and Single Occupancy 998
Using the SharedWorker Object 999
The SharedWorkerGlobalScope 999

Understanding the Shared Worker Lifecycle 1000
Connecting to a Shared Worker 1001

Service Workers 1003
Service Worker Basics 1003

The ServiceWorkerContainer 1004
Creating a Service Worker 1004
Using the ServiceWorkerContainer Object 1005

ConTEnTS

xliii

Using the ServiceWorkerRegistration Object 1006
Using the ServiceWorker Object 1007
Service Worker Security Restrictions 1008
The ServiceWorkerGlobalScope 1008
Service Worker Scope Limitations 1010

The Service Worker Cache 1012
The CacheStorage Object 1013
The Cache Object 1014
Maximum Cache Storage 1017

Service Worker Clients 1017
Service Workers and Consistency 1018
Understanding the Service Worker Lifecycle 1019

The Parsed State 1020
The Installing State 1020
The Installed State 1021
The Activating State 1022
The Activated State 1023
The Redundant State 1024
Updating a Service Worker 1024

Inversion of Control and Service Worker Persistence 1024
Managing Service Worker File Caching with
updateViaCache 1025
Forced Service Worker Operation 1025
Service Worker Messaging 1026
Intercepting a fetch Event 1028

Return from Network 1028
Return from Cache 1029
Return from Network with Cache Fallback 1029
Return from Cache with Network Fallback 1029
Generic Fallback 1029

Push Notifications 1030
Displaying Notifications 1030
Handling Notification Events 1031
Subscribing to Push Events 1031
Handling Push Events 1032

Summary 1033

CHAPTER 28: BEST PRACTICES 1035

Maintainability 1035
What Is Maintainable Code? 1036
Code Conventions 1036

ConTEnTS

xliv

Readability 1037
Variable and Function Naming 1037
Variable Type Transparency 1038

Loose Coupling 1039
Decouple HTML/JavaScript 1039
Decouple CSS/JavaScript 1041
Decouple Application Logic/Event Handlers 1041

Programming Practices 1043
Respect Object Ownership 1043
Avoid Globals 1044
Avoid Null Comparisons 1045
Use Constants 1046

Performance 1047
Be Scope-Aware 1047

Avoid Global Lookups 1047
Avoid the with Statement 1048

Choose the Right Approach 1049
Avoid Unnecessary Property Lookup 1049
Optimize Loops 1050
Unrolling Loops 1051
Avoid Double Interpretation 1053
Other Performance Considerations 1054

Minimize Statement Count 1054
Multiple Variable Declarations 1054
Insert Iterative Values 1055
Use Array and Object Literals 1055

Optimize DOM Interactions 1056
Minimize Live Updates 1056
Use innerHTML 1057
Use Event Delegation 1058
Beware of HTMLCollections 1058

Deployment 1059
Build Process 1059

File Structure 1060
Task Runners 1060
Tree Shaking 1060
Module Bundlers 1061

Validation 1061
Compression 1062

ConTEnTS

xlv

Code Minification 1062
JavaScript Compilation 1063
JavaScript Transpilation 1063
HTTP Compression 1064

Summary 1064

APPENDIX A: ES2018 AND ES2019 1067

APPENDIX B: STRICT MODE 1087

APPENDIX C: JAVASCRIPT LIBRARIES AND FRAMEWORKS 1095

APPENDIX D: JAVASCRIPT TOOLS 1101

INDEX 1113

FOREWORD

The industrial revolution was built with steel, and the Internet revolution has been built with Java
Script. Forged and strengthened through constant iteration over the past 25 years, JavaScript’s domi
nance in application development is now hard to question, but that wasn’t always the case.

It took only ten days for Brendan Eich to make the first version of JavaScript. It felt fragile, but as
history would have it, first impressions aren’t everything. Today, every aspect of JavaScript—every
detail you’ll learn in this book—is the product of hours of debate. Not every decision is ideal and
no programming language is perfect, but if you judge one by its ubiquity alone, JavaScript perhaps
comes close. It is the only language you can deploy everywhere: servers, desktop browsers, mobile
web browsers, and even native mobile applications.

JavaScript is now used by software engineers of all experience levels and backgrounds. It’s used by
those who care about welldesigned, elegant software as well as those who simply want to hack
things together to achieve business goals.

How you’ll use it is entirely up to you. That power is yours.

Over my last 15 years of developing software, JavaScript tools and best practices have changed
dramatically. My experience with the language began in 2004—back when Geocities, Yahoo Groups,
and Macromedia Flash player dominated the scene. JavaScript felt like a toy, and I played with some
of the popular sandboxes at the time: RSS and MySpace Profile Pages. Helping others modify and
customize their personal sites felt like the Wild West and got me hooked.

When I started my first company, configuring a host for your database took days and JavaScript was
embedded into your HTML. There were no frontend “applications”—it was all mostly just piecemeal
functions. As Ajax became more popular, spearheaded by jQuery, a new world unfolded and applica
tions grew far more robust. That movement accelerated to a breakneck speed and then, suddenly,
powerful frameworks were released. Frontend models! Data binding! Route management! Reactive
views! It was during this frontend revolution that I moved to Silicon Valley to help start a company
founded by Lady Gaga, and quickly, millions of users began using my code. Having now been in Silicon
Valley for quite some time, I’ve led opensource contributions, mentored more software engineers
than I can count, and hit a bit of luck, too. My last company was acquired by Stripe in 2018, where
I now work to build economic infrastructure for the Internet.

I had the pleasure of meeting Matt the day he first flew out to Palo Alto to lead engineering at a small
startup. It was called Claco, and I had recently joined on as an advisor. His energy and passion for
great software was apparent, and the fledgling company quickly produced a beautiful product. As has
been the Silicon Valley standard since the days of HP, this startup was founded out of a house. But
this was no normal home. It was a “hacker house,” where ten or so brilliant software engineers lived
at any given moment. Although this was not highclass living—discarded bunk beds and chairs found
on the street were commonplace—the quantity and quality of code written there, on a daily basis, was
staggering. After work hours, most would simply shift their focus and instead build their side projects

Foreword

xlviii

for another couple of hours. Those who didn’t know how to code were frequently inspired, would get
the itch to learn, and become capable within just weeks.

Matt was a driving force at the center of this productivity. He was the most experienced software
engineer in the house, and also happened to be the cleanest and most professional, too. Having a
formal degree in computer engineering wasn’t the norm, so when you saw algorithms, performance
calculations, and code written on the windows or whiteboard, you knew Matt was building his next
big project. As I got to know him, we became close friends. His intellect, fondness for mentorship,
and ability to turn most anything into an A joke were all qualities I admired.

Even though Matt is an incredibly talented software engineer and engineering leader, it is truly his
unique set of experiences and knowledge that make him one of the most qualified people in the world
to write this book.

He hasn’t just spent his time teaching others—he’s done the work.

At Claco, he built out multiple entire products, endtoend, to help teachers provide a better learning
experience in their classrooms. At DoorDash, where he was the first engineer, he built out a robust
logistics and delivery network that achieved hypergrowth and is now worth upwards of twelve bil
lion dollars. Finally, at Google, Matt’s software has been used by billions of people across the planet.

Massive ownership, massive growth, and massive scale. Most software engineers can go their entire
career and experience only one of these, if they’re lucky. Matt has not only done all three but has also
become a bestselling author in his “spare time,” having written two other books on JavaScript and
Angular. Honestly, I just hope his next book unveils the time machine schematics he’s clearly hid
ing from us.

This book is a robust tool filled to the brim with JavaScript knowledge and realworld perspectives.
I’m excited for you to continue learning and build whatever you can dream up. Pick it apart, take
notes, and don’t forget to open up that code editor—after all, the internet revolution is still in the
early days!

—Zach Tratar
Software engineer at Stripe

Former co-founder and CEO of Jobstart

INTRODUCTION

A tech lead at Google once shared with me a compelling perspective on JavaScript: It’s not really
a cohesive programming language—at least not in the formal sense. The ECMA-262 specification
defines JavaScript, but there is no single true implementation of it. What’s more, the language is far
from hermetic. It swims in a veritable ocean of adjacent specifications that govern APIs for everything
that JavaScript touches: the DOM, network requests, system hardware, storage, events, files, cryptog-
raphy, and hundreds of others. Web browsers and their various JavaScript engines all implement these
specifications as they see fit. Chrome has Blink/V8, Firefox has Gecko/SpiderMoney, and Safari has
WebKit/JavaScriptCore. Browsers will run nearly all JavaScript in a way that conforms to the specifi-
cations, but the web is littered with examples of each browser’s idiosyncrasies. Therefore, JavaScript
is more accurately characterized as a constellation of browser implementations.

Although web purists might insist that JavaScript should not be an integral component of web pages,
they must concede that the modern web is severely diminished without it. It is not hyperbolic to say
that JavaScript is virtually inescapable: Phones, computers, tablets, televisions, game consoles, smart
watches, refrigerators, and even cars now feature web browsers that run JavaScript. Nearly three
billion people now use a smartphone that includes a web browser. The language’s vibrant community
churns out a deluge of high-quality open source projects. Browsers now feature first-class support for
APIs that emulate native mobile apps. In Stack Overflow’s 2019 Developer Survey, JavaScript was
voted the most popular programming language for the seventh consecutive year.

The JavaScript renaissance is upon us.

In this book, JavaScript is covered from its very beginning in the earliest Netscape browsers to the
present-day incarnations flush with support for a dizzying spectrum of browser technologies. The
book covers a large number of advanced topics in meticulous detail, yet it ensures the reader under-
stands how to use these topics and where they are appropriate. In short, you learn how to apply
JavaScript solutions to business problems faced by web developers everywhere.

WHO THIS BOOK IS FOR

This book is aimed at three groups of readers:

➤➤ Experienced developers familiar with object-oriented programming who are looking to
learn JavaScript as it relates to traditional OO languages such as Java and C++

➤➤ Web application developers attempting to enhance the usability of their web sites and web
applications

➤➤ Novice JavaScript developers aiming to better understand the language

IntroductIon

l

In addition, familiarity with the following related technologies is a strong indicator that this book
is for you:

➤➤ Java

➤➤ PHP

➤➤ Python

➤➤ Ruby

➤➤ Golang

➤➤ HTML

➤➤ CSS

This book is not aimed at beginners lacking a basic computer science background or those looking to
add some simple user interactions to websites. These readers should instead refer to Wrox’s Beginning
JavaScript, 5th Edition (Wiley, 2015).

WHAT THIS BOOK COVERS

Professional JavaScript for Web Developers, 4th Edition, provides a developer-level introduction,
along with the more advanced and useful features of JavaScript.

The book begins with an exploration of how JavaScript originated and evolved into what it is today.
A detailed discussion of the components that make up a JavaScript implementation follows, with
specific focus on standards such as ECMAScript and the Document Object Model (DOM).

Building on that base, the book moves on to cover basic concepts of JavaScript, including classes,
promises, iterators, and proxies. This is followed by an in-depth examination of client detection,
events, animations, forms, errors, and JSON.

The last part of the book is focused on the newest and most important specifications that have
emerged in the past few years. This includes fetch, modules, web workers, service workers, and a col-
lection of emerging APIs.

HOW THIS BOOK IS STRUCTURED

This book comprises the following chapters:

1. What Is JavaScript?—Explains the origins of JavaScript: where it came from, how it evolved,
and what it is today. Concepts introduced include the relationship between JavaScript and
ECMAScript, the Document Object Model (DOM), and the Browser Object Model (BOM).
A discussion of the relevant standards from the European Computer Manufacturer’s Associa-
tion (ECMA) and the World Wide Web Consortium (W3C) is also included.

IntroductIon

li

2. JavaScript in HTML—Examines how JavaScript is used in conjunction with HTML to cre-
ate dynamic web pages. Introduces the various ways of embedding JavaScript into a page
and includes a discussion surrounding the JavaScript content-type and its relationship to the
<script> element.

3. Language Basics—Introduces basic language concepts, including syntax and flow control
statements. Explains the syntactic similarities of JavaScript and other C-based languages and
points out the differences. Type coercion is introduced as it relates to built-in operators. Cov-
ers all language primitives, including the Symbol type.

4. Variables, Scope, and Memory—Explores how variables are handled in JavaScript given their
loosely typed nature. A discussion of the differences between primitive and reference values is
included, as is information about execution context as it relates to variables. Also, a discus-
sion about garbage collection in JavaScript covers how memory is reclaimed when variables
go out of scope.

5. Basic Reference Types—Covers all of the details regarding JavaScript’s built-in reference
types, such as Date, Regexp, primitives, and primitive wrappers. Each reference type is dis-
cussed both in theory and in how they relate to browser implementations.

6. Collection Reference Types—Continues the book’s coverage of built-in reference types with
Object, Array, Map, WeakMap, Set, and WeakSet.

7. Iterators and Generators—Introduces two new fundamental concepts in recent versions of
ECMAScript: iterators and generators. Each is discussed both in terms of its most fundamen-
tal behavior as well as how it is used in relation to existing language constructs.

8. Objects, Classes, and Object-Oriented Programming—Explains how to use classes and
object-oriented programming in JavaScript. Begins with an in-depth discussion of the Java-
Script Object type and continues into coverage of prototypal inheritance. Following this is a
complete discussion of ES6 classes and how they are a close sibling of prototypal inheritance.

9. Proxies and Reflect—Introduces two closely related concepts: Proxy and the Reflect API.
These can be used to intercept and shim additional behavior into fundamental operations
within the language.

10. Functions—Explores one of the most powerful aspects of JavaScript: function expressions.
Topics include closures, the this object, the module pattern, the creation of private object
members, arrow functions, default parameters, and spread operators.

11. Promises and Async Programming—Introduces two new closely related asynchronous pro-
gramming constructs: the Promise type and async/await. The chapter begins with a discus-
sion of the asynchronous JavaScript paradigm and continues into coverage of how promises
are used and their relationship to async functions.

12. The Browser Object Model—Introduces the Browser Object Model (BOM), which is respon-
sible for objects allowing interaction with the browser itself. Each of the BOM objects is
covered, including window, document, location, navigator, and screen.

IntroductIon

lii

13. Client Detection—Explains various approaches to detecting the client machine and its capa-
bilities. Different techniques include capability detection and user-agent string detection. The
chapter covers the pros and cons of each approach, as well as situational appropriateness.

14. The Document Object Model—Introduces the Document Object Model (DOM) objects
available in JavaScript as defined in DOM Level 1. A brief introduction to XML and its
relationship to the DOM gives way to an in-depth exploration of the entire DOM and how it
allows developers to manipulate a page.

15. DOM Extensions—Explains how other APIs, as well as the browsers themselves, extend the
DOM with more functionality. Topics include the Selectors API, the Element Traversal API,
and HTML5 extensions.

16. DOM Levels 2 and 3—Builds on the previous two chapters, explaining how DOM Levels 2
and 3 augmented the DOM with additional properties, methods, and objects. Includes cover-
age of DOM4 additions, such as mutation observers.

17. Events—Explains the nature of events in JavaScript, where they originated, and how the
DOM redefined how events should work.

18. Animation and Graphics with Canvas—Discusses the <canvas> tag and how to use it to
create on-the-fly graphics. Both the 2D context and the WebGL (3D) context are covered,
providing you with a good starting point for creating animations and games. Includes cover-
age of both WebGL1 and WebGL2.

19. Scripting Forms—Explores using JavaScript to enhance form interactions and work around
browser limitations. Discussion focuses on individual form elements such as text boxes and
select boxes and on data validation and manipulation.

20. JavaScript APIs—Covers an assortment of JavaScript APIs, including Atomics, Encoding, File,
Blob, Notifications, Streams, Timing, Web Components, and Web Cryptography.

21. Error Handling and Debugging—Discusses how browsers handle errors in JavaScript code
and presents several ways to handle errors. Debugging tools and techniques are also dis-
cussed for each browser, including recommendations for simplifying the debugging process.

22. XML in JavaScript—Presents the features of JavaScript used to read and manipulate eXtensi-
ble Markup Language (XML) data. Explains the differences in support and objects in various
web browsers and offers suggestions for easier cross-browser coding. This chapter also covers
the use of eXtensible Stylesheet Language Transformations (XSLT) to transform XML data
on the client.

23. JSON—Introduces the JSON data format as an alternative to XML. Discusses browser-native
JSON parsing and serialization as well as security considerations when using JSON.

24. Network Requests and Remote Resources—Explores all of the most common ways that data
and assets are requested by the browser. Includes coverage of the legacy XMLHttpRequest as
well as the modern Fetch API.

IntroductIon

liii

25. Client-Side Storage—Discusses how to detect when an application is offline and provides
various techniques for storing data on the client machine. Begins with a discussion of the
most commonly supported feature, cookies, and then discusses newer functionality such as
Web Storage and IndexedDB.

26. Modules—Discusses the module pattern and its implications on codebases. Following this,
the chapter covers pre-ES6 module loaders such as CommonJS, AMD, and UMD. Ends with
detailed coverage on the new ES6 module pattern and how to use it properly.

27. Workers—Covers dedicated workers, shared workers, and service workers in-depth. Includes
a discussion of how workers behave both at the operating system and browser level, as well
as strategies for how best to use the various types of workers.

28. Best Practices—Explores approaches to working with JavaScript in an enterprise environ-
ment. Techniques for better maintainability are discussed, including coding techniques, for-
matting, and general programming practices. The chapter also covers execution performance
and introduces several techniques for speed optimization. Last, the chapter covers deploy-
ment issues, including how to create a build process.

WHAT YOU NEED TO USE THIS BOOK

To run the samples in the book, you need the following:

➤➤ Any modern operating system, such as Windows, Linux, Mac OS, Android, or iOS

➤➤ Any modern browser, such as IE11+, Edge 12+, Firefox 26+, Chrome 39+, Safari 10+, Opera
26+, or iOS Safari 10+

The complete source code is available for download from https://www.wiley.com/en-us/
Professional+JavaScript+for+Web+Developers%2C+4th+Edition-p-9781119366447.

What Is JavaScript?
WHAT’S IN THIS CHAPTER?

➤➤ Review of JavaScript history

➤➤ What JavaScript is

➤➤ How JavaScript and ECMAScript are related

➤➤ The different versions of JavaScript

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/projavascript4e on the Down-
load Code tab.

When JavaScript first appeared in 1995, its main purpose was to handle some of the input
validation that had previously been left to server-side languages such as Perl. Prior to that time,
a round-trip to the server was needed to determine if a required field had been left blank or an
entered value was invalid. Netscape Navigator sought to change that with the introduction of
JavaScript. The capability to handle some basic validation on the client was an exciting new
feature at a time when use of telephone modems was widespread. The associated slow speeds
turned every trip to the server into an exercise in patience.

Since that time, JavaScript has grown into an important feature of every major web browser on
the market. No longer bound to simple data validation, JavaScript now interacts with nearly all
aspects of the browser window and its contents. JavaScript is recognized as a full programming
language, capable of complex calculations and interactions, including closures, anonymous
(lambda) functions, and even metaprogramming. JavaScript has become such an important part
of the web that even alternative browsers, including those on mobile phones and those designed
for users with disabilities, support it. Even Microsoft, with its own client-side scripting language
called VBScript, ended up including its own JavaScript implementation in Internet Explorer
from its earliest version.

1

Professional JavaScript® for Web Developers, Fourth Edition. Matt Frisbie.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

2 ❘ CHAPTER 1 What Is JavascrIpt?

The rise of JavaScript from a simple input validator to a powerful programming language could not
have been predicted. JavaScript is at once a very simple and very complicated language that takes
minutes to learn but years to master. To begin down the path to using JavaScript’s full potential, it is
important to understand its nature, history, and limitations.

A SHORT HISTORY

As the web gained popularity, a gradual demand for client-side scripting languages developed. At
the time, most Internet users were connecting over a 28.8 kbps modem even though web pages were
growing in size and complexity. Adding to users’ pain was the large number of round-trips to the
server required for simple form validation. Imagine filling out a form, clicking the Submit button,
waiting 30 seconds for processing, and then being met with a message indicating that you forgot to
complete a required field. Netscape, at that time on the cutting edge of technological innovation,
began seriously considering the development of a client-side scripting language to handle simple
processing.

In 1995, a Netscape developer named Brendan Eich began developing a scripting language called
Mocha (later renamed as LiveScript) for the release of Netscape Navigator 2. The intention was to
use it both in the browser and on the server, where it was to be called LiveWire.

Netscape entered into a development alliance with Sun Microsystems to complete the implementation
of LiveScript in time for release. Just before Netscape Navigator 2 was officially released, Netscape
changed LiveScript’s name to JavaScript to capitalize on the buzz that Java was receiving from
the press.

Because JavaScript 1.0 was such a hit, Netscape released version 1.1 in Netscape Navigator 3. The
popularity of the fledgling web was reaching new heights, and Netscape had positioned itself to be
the leading company in the market. At this time, Microsoft decided to put more resources into a com-
peting browser named Internet Explorer. Shortly after Netscape Navigator 3 was released, Microsoft
introduced Internet Explorer 3 with a JavaScript implementation called JScript (so called to avoid any
possible licensing issues with Netscape). This major step for Microsoft into the realm of web brows-
ers in August 1996 is now a date that lives in infamy for Netscape, but it also represented a major
step forward in the development of JavaScript as a language.

Microsoft’s implementation of JavaScript meant that there were two different JavaScript versions
floating around: JavaScript in Netscape Navigator and JScript in Internet Explorer. Unlike C and
many other programming languages, JavaScript had no standards governing its syntax or features,
and the three different versions only highlighted this problem. With industry fears mounting, it was
decided that the language must be standardized.

In 1997, JavaScript 1.1 was submitted to the European Computer Manufacturers Association
(Ecma) as a proposal. Technical Committee #39 (TC39) was assigned to "standardize the
syntax and semantics of a general purpose, cross-platform, vendor-neutral scripting language”
(www.ecma-international.org/memento/TC39.htm). Made up of programmers from Netscape,
Sun, Microsoft, Borland, NOMBAS, and other companies with interest in the future of scripting,

JavaScript Implementations ❘ 3

TC39 met for months to hammer out ECMA-262, a standard defining a new scripting language
named ECMAScript (often pronounced as “ek-ma-script”).

The following year, the International Organization for Standardization and International Electrotech-
nical Commission (ISO/IEC) also adopted ECMAScript as a standard (ISO/IEC-16262). Since that
time, browsers have tried, with varying degrees of success, to use ECMAScript as a basis for their
JavaScript implementations.

JAVASCRIPT IMPLEMENTATIONS

Though JavaScript and ECMAScript are often used synonymously, JavaScript is much more than just
what is defined in ECMA-262. Indeed, a complete JavaScript implementation is made up of the fol-
lowing three distinct parts (see Figure 1-1):

➤➤ The Core (ECMAScript)

➤➤ The Document Object Model (DOM)

➤➤ The Browser Object Model (BOM)

ECMAScript
ECMAScript, the language defined in ECMA-262, isn’t tied to web browsers. In fact, the language has
no methods for input or output whatsoever. ECMA-262 defines this language as a base upon which
more-robust scripting languages may be built. Web browsers are just one host environment in which
an ECMAScript implementation may exist. A host environment provides the base implementation
of ECMAScript and implementation extensions designed to interface with the environment itself.
Extensions, such as the Document Object Model (DOM), use ECMAScript’s core types and syntax
to provide additional functionality that’s more specific to the environment. Other host environments
include NodeJS, a server-side JavaScript platform, and the increasingly obsolete Adobe Flash.

What exactly does ECMA-262 specify if it doesn’t reference web browsers? On a very basic level, it
describes the following parts of the language:

➤➤ Syntax

➤➤ Types

➤➤ Statements

➤➤ Keywords

➤➤ Reserved words

➤➤ Operators

➤➤ Global objects

ECMAScript is simply a description of a language implementing all of the facets described in the
specification. JavaScript implements ECMAScript, but so does Adobe ActionScript.

4 ❘ CHAPTER 1 What Is JavascrIpt?

ECMAScript Editions
The different versions of ECMAScript are defined
as editions (referring to the edition of ECMA-262 in
which that particular implementation is described).
The most recent edition of ECMA-262 is edition 7,
released in 2016. The first edition of ECMA-262 was
essentially the same as Netscape’s JavaScript 1.1 but
with all references to browser-specific code removed
and a few minor changes: ECMA-262 required support for the Unicode standard (to support multiple
languages) and that objects be platform-independent (Netscape JavaScript 1.1 actually had different
implementations of objects, such as the Date object, depending on the platform). This was a major
reason why JavaScript 1.1 and 1.2 did not conform to the first edition of ECMA-262.

The second edition of ECMA-262 was largely editorial. The standard was updated to get into strict
agreement with ISO/IEC-16262 and didn’t feature any additions, changes, or omissions. ECMAScript
implementations typically don’t use the second edition as a measure of conformance.

The third edition of ECMA-262 was the first real update to the standard. It provided updates to
string handling, the definition of errors, and numeric outputs. It also added support for regular
expressions, new control statements, try-catch exception handling, and small changes to better
prepare the standard for internationalization. To many, this marked the arrival of ECMAScript as a
true programming language.

The fourth edition of ECMA-262 was a complete overhaul of the language. In response to the popu-
larity of JavaScript on the web, developers began revising ECMAScript to meet the growing demands
of web development around the world. In response, Ecma TC39 reconvened to decide the future of
the language. The resulting specification defined an almost completely new language based on the
third edition. The fourth edition includes strongly typed variables, new statements and data struc-
tures, true classes and classical inheritance, and new ways to interact with data.

As an alternate proposal, a specification called “ECMAScript 3.1,” was developed as a smaller evolu-
tion of the language by a subcommittee of TC39, who believed that the fourth edition was too big of
a jump for the language. The result was a smaller proposal with incremental changes to ECMAScript
that could be implemented on top of existing JavaScript engines. Ultimately, the ES3.1 subcommittee
won over support from TC39, and the fourth edition of ECMA-262 was abandoned before officially
being published.

ECMAScript 3.1 became ECMA-262, fifth edition, and was officially published on December 3,
2009. The fifth edition sought to clarify perceived ambiguities of the third edition and introduce
additional functionality. The new functionality includes a native JSON object for parsing and serializ-
ing JSON data, methods for inheritance and advanced property definition, and the inclusion of a new
strict mode that slightly augments how ECMAScript engines interpret and execute code. The fifth
edition saw a maintenance revision in June 2011; this was merely for corrections in the specification
and introduced no new language or library features.

The sixth edition of ECMA-262—colloquially referred to as ES6, ES2015, or ES Harmony—was
published in June 2015, and contains arguably the most important collection of enhancements to the
specification since its inception. ES6 adds formal support for classes, modules, iterators, generators,
arrow functions, promises, reflection, proxies, and a host of new data types.

JavaScript

ECMAScript DOM BOM

FIGURE 1-1

JavaScript Implementations ❘ 5

The seventh edition of ECMA-262, dubbed ES7 or ES2016, was published in June of 2016. This revi-
sion included only a handful of syntactical additions such as Array.prototype.includes and the
exponentiation operator.

The eighth edition of ECMA-262, called ES8 or ES2017, was finalized in January of 2017. This revi-
sion included asynchronous iteration, rest and spread properties, a collection of new regular expres-
sion features, a Promise finally() catchall handler, and template literal revisions.

The ninth edition of ECMA-262 is still being finalized, but it already has a large number of features
in stage 3. Its most significant addition will likely be dynamic importing of ES6 modules.

What Does ECMAScript Conformance Mean?
ECMA-262 lays out the definition of ECMAScript conformance. To be considered an implementation
of ECMAScript, an implementation must do the following:

➤➤ Support all "types, values, objects, properties, functions, and program syntax and seman-
tics” as they are described in ECMA-262.

➤➤ Support the Unicode character standard.

Additionally, a conforming implementation may do the following:

➤➤ Add “additional types, values, objects, properties, and functions” that are not specified in
ECMA-262. ECMA-262 describes these additions as primarily new objects or new prop-
erties of objects not given in the specification.

➤➤ Support “program and regular expression syntax” that is not defined in ECMA-262
(meaning that the built-in regular-expression support is allowed to be altered and extended).

These criteria give implementation developers a great amount of power and flexibility for developing
new languages based on ECMAScript, which partly accounts for its popularity.

ECMAScript Support in Web Browsers
Netscape Navigator 3 shipped with JavaScript 1.1 in 1996. That same JavaScript 1.1 specification
was then submitted to Ecma as a proposal for the new standard, ECMA-262. With JavaScript’s explo-
sive popularity, Netscape was very happy to start developing version 1.2. There was, however, one
problem: Ecma hadn’t yet accepted Netscape’s proposal.

Shortly after Netscape Navigator 3 was released, Microsoft introduced Internet Explorer 3. This
version of IE shipped with JScript 1.0, which was supposed to be equivalent to JavaScript 1.1.
However, because of undocumented and improperly replicated features, JScript 1.0 fell far short of
JavaScript 1.1.

Netscape Navigator 4 was shipped in 1997 with JavaScript 1.2 before the first edition of ECMA-262
was accepted and standardized later that year. As a result, JavaScript 1.2 is not compliant with the
first edition of ECMAScript even though ECMAScript was supposed to be based on JavaScript 1.1.

The next update to JScript occurred in Internet Explorer 4 with JScript version 3.0 (version 2.0 was
released in Microsoft Internet Information Server version 3.0 but was never included in a browser).
Microsoft put out a press release touting JScript 3.0 as the first truly Ecma-compliant scripting

6 ❘ CHAPTER 1 What Is JavascrIpt?

language in the world. At that time, ECMA-262 hadn’t yet been finalized, so JScript 3.0 suffered the
same fate as JavaScript 1.2: it did not comply with the final ECMAScript standard.

Netscape opted to update its JavaScript implementation in Netscape Navigator 4.06 to JavaScript
1.3, which brought Netscape into full compliance with the first edition of ECMA-262. Netscape
added support for the Unicode standard and made all objects platform-independent while keeping the
features that were introduced in JavaScript 1.2.

When Netscape released its source code to the public as the Mozilla project, it was anticipated
that JavaScript 1.4 would be shipped with Netscape Navigator 5. However, a radical decision to
completely redesign the Netscape code from the bottom up derailed that effort. JavaScript 1.4 was
released only as a server-side language for Netscape Enterprise Server and never made it into a
web browser.

By 2008, the five major web browsers (Internet Explorer, Firefox, Safari, Chrome, and Opera) all
complied with the third edition of ECMA-262. Internet Explorer 8 was the first to start imple-
menting the fifth edition of ECMA-262 specification and delivered complete support in Internet
Explorer 9. Firefox 4 soon followed suit. The following table lists ECMAScript support in the most
popular web browsers.

BROWSER ECMASCRIPT COMPLIANCE

Netscape Navigator 2 —

Netscape Navigator 3 —

Netscape Navigator 4–4.05 —

Netscape Navigator 4.06–4.79 Edition 1

Netscape 6+ (Mozilla 0.6.0+) Edition 3

Internet Explorer 3 —

Internet Explorer 4 —

Internet Explorer 5 Edition 1

Internet Explorer 5.5–8 Edition 3

Internet Explorer 9 Edition 5*

Internet Explorer 10–11 Edition 5

Edge 12+ Edition 6

Opera 6–7.1 Edition 2

Opera 7.2+ Edition 3

Opera 15–28 Edition 5

Opera 29–35 Edition 6*

Opera 36+ Edition 6

JavaScript Implementations ❘ 7

BROWSER ECMASCRIPT COMPLIANCE

Safari 1–2.0.x Edition 3*

Safari 3.1–5.1 Edition 5*

Safari 6–8 Edition 5

Safari 9+ Edition 6

iOS Safari 3.2–5.1 Edition 5*

iOS Safari 6–8.4 Edition 5

iOS Safari 9.2+ Edition 6

Chrome 1–3 Edition 3

Chrome 4–22 Edition 5*

Chrome 23+ Edition 5

Chrome 42–48 Edition 6*

Chrome 49+ Edition 6

Firefox 1–2 Edition 3

Firefox 3.0.x–20 Edition 5*

Firefox 21–44 Edition 5

Firefox 45+ Edition 6

*Incomplete implementations

The Document Object Model
The Document Object Model (DOM) is an application programming interface (API) for XML that
was extended for use in HTML. The DOM maps out an entire page as a hierarchy of nodes. Each
part of an HTML or XML page is a type of node containing different kinds of data. Consider the
following HTML page:

<html>
 <head>
 <title>Sample Page</title>
 </head>
 <body>
 <p> Hello World!</p>
 </body>
</html>

This code can be diagrammed into a hierarchy of nodes using the DOM (see Figure 1-2).

8 ❘ CHAPTER 1 What Is JavascrIpt?

By creating a tree to represent a document, the DOM allows developers an unprecedented level of
control over its content and structure. Nodes can be removed, added, replaced, and modified easily by
using the DOM API.

Why the DOM Is Necessary
With Internet Explorer 4 and Netscape Navigator 4 each supporting different forms of Dynamic
HTML (DHTML), developers for the first time could alter the appearance and content of a web page
without reloading it. This represented a tremendous step forward in web technology but also a huge
problem. Netscape and Microsoft went separate ways in developing DHTML, thus ending the period
when developers could write a single HTML page that
could be accessed by any web browser.

It was decided that something had to be done to preserve
the cross-platform nature of the web. The fear was that if
someone didn’t rein in Netscape and Microsoft, the web
would develop into two distinct factions that were exclusive
to targeted browsers. It was then that the World Wide Web
Consortium (W3C), the body charged with creating stand-
ards for web communication, began working on the DOM.

DOM Levels
DOM Level 1 became a W3C recommendation in October
1998. It consisted of two modules: the DOM Core, which
provided a way to map the structure of an XML-based
document to allow for easy access to and manipulation
of any part of a document, and the DOM HTML, which
extended the DOM Core by adding HTML-specific
objects and methods.

NOTE Note that the DOM is not JavaScript-specific and indeed has been imple-
mented in numerous other languages. For web browsers, however, the DOM
has been implemented using ECMAScript and now makes up a large part of the
JavaScript language.

Whereas the goal of DOM Level 1 was to map out the structure of a document, the aims of DOM
Level 2 were much broader. This extension of the original DOM added support for mouse and user-
interface events (long supported by DHTML), ranges, and traversals (methods to iterate over a DOM
document), and support for Cascading Style Sheets (CSS) through object interfaces. The original
DOM Core introduced in Level 1 was also extended to include support for XML namespaces.

DOM Level 2 introduced the following new modules of the DOM to deal with new types of
interfaces:

➤➤ DOM views—Describes interfaces to keep track of the various views of a document
(the document before and after CSS styling, for example)

Sample Page

html

head

title

body

p

Hello World!

FIGURE 1-2

JavaScript Implementations ❘ 9

➤➤ DOM events—Describes interfaces for events and event handling

➤➤ DOM style—Describes interfaces to deal with CSS-based styling of elements

➤➤ DOM traversal and range—Describes interfaces to traverse and manipulate a document tree

DOM Level 3 further extends the DOM with the introduction of methods to load and save docu-
ments in a uniform way (contained in a new module called DOM Load and Save) and methods to
validate a document (DOM Validation). In Level 3, the DOM Core is extended to support all of XML
1.0, including XML Infoset, XPath, and XML Base.

Presently, the W3C no longer maintains the DOM as a set of levels, but rather as the DOM Living
Standard, snapshots of which are termed DOM4. Among its introductions is the addition of Muta-
tion Observers to replace Mutation Events.

NOTE When reading about the DOM, you may come across references to DOM
Level 0. Note that there is no standard called DOM Level 0; it is simply a ref-
erence point in the history of the DOM. DOM Level 0 is considered to be the
original DHTML supported in Internet Explorer 4.0 and Netscape Navigator 4.0.

Other DOMs
Aside from the DOM Core and DOM HTML interfaces, several other languages have had their own
DOM standards published. The languages in the following list are XML-based, and each DOM adds
methods and interfaces unique to a particular language:

➤➤ Scalable Vector Graphics (SVG) 1.0

➤➤ Mathematical Markup Language (MathML) 1.0

➤➤ Synchronized Multimedia Integration Language (SMIL)

Additionally, other languages have developed their own DOM implementations, such as Mozilla’s
XML User Interface Language (XUL). However, only the languages in the preceding list are standard
recommendations from W3C.

DOM Support in Web Browsers
The DOM had been a standard for some time before web browsers started implementing it. Internet
Explorer made its first attempt with version 5, but it didn’t have any realistic DOM support until ver-
sion 5.5, when it implemented most of DOM Level 1. Internet Explorer didn’t introduce new DOM
functionality in versions 6 and 7, though version 8 introduced some bug fixes.

For Netscape, no DOM support existed until Netscape 6 (Mozilla 0.6.0) was introduced. After
Netscape 7, Mozilla switched its development efforts to the Firefox browser. Firefox 3+ supports all
of Level 1, nearly all of Level 2, and some parts of Level 3. (The goal of the Mozilla development
team was to build a 100 percent standards-compliant browser, and their work paid off.)

10 ❘ CHAPTER 1 What Is JavascrIpt?

DOM support became a huge priority for most browser vendors, and efforts have been ongoing to
improve support with each release. The following table shows DOM support for popular browsers.

BROWSER DOM COMPLIANCE

Netscape Navigator 1.–4.x —

Netscape 6+ (Mozilla 0.6.0+) Level 1, Level 2 (almost all), Level 3 (partial)

Internet Explorer 2–4.x —

Internet Explorer 5 Level 1 (minimal)

Internet Explorer 5.5–8 Level 1 (almost all)

Internet Explorer 9+ Level 1, Level 2, Level 3

Edge Level 1, Level 2, Level 3

Opera 1–6 —

Opera 7–8.x Level 1 (almost all), Level 2 (partial)

Opera 9–9.9 Level 1, Level 2 (almost all), Level 3 (partial)

Opera 10+ Level 1, Level 2, Level 3 (partial)

Safari 1.0.x Level 1

Safari 2+ Level 1, Level 2 (partial), Level 3 (partial)

iOS Safari 3.2+ Level 1, Level 2 (partial), Level 3 (partial)

Chrome 1+ Level 1, Level 2 (partial), Level 3 (partial)

Firefox 1+ Level 1, Level 2 (almost all), Level 3 (partial)

NOTE The content of this compatibility table is changing all the time and should
only be used as a historical reference.

The Browser Object Model
The Internet Explorer 3 and Netscape Navigator 3 browsers featured a Browser Object Model
(BOM) that allowed access and manipulation of the browser window. Using the BOM, developers
can interact with the browser outside of the context of its displayed page. What made the BOM truly
unique, and often problematic, was that it was the only part of a JavaScript implementation that had
no related standard. This changed with the introduction of HTML5, which sought to codify much of
the BOM as part of a formal specification. Thanks to HTML5, a lot of the confusion surrounding the
BOM has dissipated.

JavaScript Versions ❘ 11

Primarily, the BOM deals with the browser window and frames, but generally any browser-
specific extension to JavaScript is considered to be a part of the BOM. The following are some such
extensions:

➤➤ The capability to pop up new browser windows

➤➤ The capability to move, resize, and close browser windows

➤➤ The navigator object, which provides detailed information about the browser

➤➤ The location object, which gives detailed information about the page loaded in the browser

➤➤ The screen object, which gives detailed information about the user’s screen resolution

➤➤ The performance object, which gives detailed information about the browser’s memory
consumption, navigational behavior, and timing statistics

➤➤ Support for cookies

➤➤ Custom objects such as XMLHttpRequest and Internet Explorer’s ActiveXObject

Because no standards existed for the BOM for a long time, each browser has its own implementation.
There are some de facto standards, such as having a window object and a navigator object, but each
browser defines its own properties and methods for these and other objects. With HTML5 now avail-
able, the implementation details of the BOM are expected to grow in a much more compatible way.
A detailed discussion of the BOM is included in the chapter “Browser Object Model.”

JAVASCRIPT VERSIONS

Mozilla, as a descendant from the original Netscape, is the only browser vendor that has continued
the original JavaScript version-numbering sequence. When the Netscape source code was spun off
into an open-source project (named the Mozilla Project), the last browser version of JavaScript was
1.3. (As mentioned previously, version 1.4 was implemented on the server exclusively.) As the Mozilla
Foundation continued work on JavaScript, adding new features, keywords, and syntaxes, the Java-
Script version number was incremented. The following table shows the JavaScript version progression
in Netscape/Mozilla browsers.

BROWSER JAVASCRIPT VERSION

Netscape Navigator 2 1.0

Netscape Navigator 3 1.1

Netscape Navigator 4 1.2

Netscape Navigator 4.06 1.3

Netscape 6+ (Mozilla 0.6.0+) 1.5

Firefox 1 1.5

Firefox 1.5 1.6

12 ❘ CHAPTER 1 What Is JavascrIpt?

BROWSER JAVASCRIPT VERSION

Firefox 2 1.7

Firefox 3 1.8

Firefox 3.5 1.8.1

Firefox 3.6 1.8.2

Firefox 4 1.8.5

The numbering scheme was based on the idea that Firefox 4 would feature JavaScript 2.0, and each
increment in the version number prior to that point indicates how close the JavaScript implementa-
tion is to the 2.0 proposal. Though this was the original plan, the evolution of JavaScript happened in
such a way that this was no longer possible. There is currently no target implementation for Java-
Script 2.0, and this style of versioning ceased past the Firefox 4 release.

NOTE It’s important to note that only the Netscape/Mozilla browsers followed
this versioning scheme. Internet Explorer, for example, has different version
numbers for JScript. These JScript versions don’t correspond whatsoever to
the JavaScript versions mentioned in the preceding table. Furthermore, most
browsers talk about JavaScript support in relation to their level of ECMAScript
compliance and DOM support.

SUMMARY

JavaScript is a scripting language designed to interact with web pages and is made up of the following
three distinct parts:

➤➤ ECMAScript, which is defined in ECMA-262 and provides the core functionality

➤➤ The Document Object Model (DOM), which provides methods and interfaces for working
with the content of a web page

➤➤ The Browser Object Model (BOM), which provides methods and interfaces for interacting
with the browser

There are varying levels of support for the three parts of JavaScript across the five major web brows-
ers (Internet Explorer, Firefox, Chrome, Safari, and Opera). Support for ECMAScript 5 is generally
good across all browsers, and support for ECMAScript 6 and 7 is growing. Support for the DOM
varies, but Level 3 compliance is increasingly normative. The BOM, codified in HTML5, can vary
from browser to browser, though there are some commonalities that are assumed to be available.

JavaScript in HTML
WHAT’S IN THIS CHAPTER?

➤➤ Using the <script> element

➤➤ Comparing inline and external scripts

➤➤ Examining how document modes affect JavaScript

➤➤ Preparing for JavaScript-disabled experiences

The introduction of JavaScript into web pages immediately ran into the web’s predominant
language, HTML. As part of its original work on JavaScript, Netscape tried to figure out how
to make JavaScript coexist in HTML pages without breaking those pages’ rendering in other
browsers. Through trial, error, and controversy, several decisions were finally made and agreed
upon to bring universal scripting support to the web. Much of the work done in these early
days of the web has survived and become formalized in the HTML specification.

THE <SCRIPT> ELEMENT

The primary method of inserting JavaScript into an HTML page is via the <script> element.
This element was created by Netscape and first implemented in Netscape Navigator 2. It was later
added to the formal HTML specification. There are six attributes for the <script> element:

➤➤ async—Optional. Indicates that the script should begin downloading immediately
but should not prevent other actions on the page such as downloading resources or
waiting for other scripts to load. Valid only for external script files.

➤➤ charset—Optional. The character set of the code specified using the src attribute.
This attribute is rarely used because most browsers don’t honor its value.

➤➤ crossorigin—Optional. Configures the CORS settings for the associated request; by
default, CORS is not used at all. crossorigin="anonymous" will configure the request
for the file to not have the credentials flag set. crossorigin="use-credentials" will
set the credentials flag, meaning the outgoing request will include credentials.

2

Professional JavaScript® for Web Developers, Fourth Edition. Matt Frisbie.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

14 ❘ CHAPTER 2 JavaScript in HtML

➤➤ defer—Optional. Indicates that the execution of the script can safely be deferred until after
the document’s content has been completely parsed and displayed. Valid only for external
scripts. Internet Explorer 7 and earlier also allow for inline scripts.

➤➤ integrity—Optional. Allows for verification of Subresource Integrity (SRI) by checking
the retrieved resource against a provided cryptographic signature. If the signature of the
retrieved resource does not match that specified by this attribute, the page will error and the
script will not execute. This is useful for ensuring that a Content Delivery Network (CDN)
is not serving malicious payloads.

➤➤ language—Deprecated. Originally indicated the scripting language being used by the code
block (such as "JavaScript", "JavaScript1.2", or "VBScript"). Most browsers ignore this
attribute; it should not be used.

➤➤ src—Optional. Indicates an external file that contains code to be executed.

➤➤ type—Optional. Replaces language; indicates the content type (also called MIME type)
of the scripting language being used by the code block. Traditionally, this value has always
been "text/javascript", though both "text/javascript" and "text/ecmascript" are
deprecated. JavaScript files are typically served with the "application/x-javascript"
MIME type even though setting this in the type attribute may cause the script to be
ignored. Other values that work in non–Internet Explorer browsers are "application/
javascript" and "application/ecmascript". If the value is module, the code is treated as
an ES6 module and only then is eligible to use the import and export keywords.

There are two ways to use the <script> element: embed JavaScript code directly into the page or
include JavaScript from an external file.

To include inline JavaScript code, place JavaScript code inside the <script> element directly,
as follows:

<script>
 function sayHi() {
 console.log("Hi!");
 }
</script>

The JavaScript code contained inside a <script> element is interpreted from top to bottom. In the
case of this example, a function definition is interpreted and stored inside the interpreter environ-
ment. The rest of the page content is not loaded and/or displayed until after all of the code inside the
<script> element has been evaluated.

When using inline JavaScript code, keep in mind that you cannot have the string "</script>" any-
where in your code. For example, the following code causes an error when loaded into a browser:

<script>
 function sayScript() {
 console.log("</script>");
 }
</script>

Because of the way that inline scripts are parsed, the browser sees the string "</script>" as if it
were the closing </script> tag. This problem can be avoided easily by escaping the "/" character, as

The <script> Element ❘ 15

in this example:

<script>
 function sayScript() {
 console.log("<\/script>");
 }
</script>

The changes to this code make it acceptable to browsers and won’t cause any errors.

To include JavaScript from an external file, the src attribute is required. The value of src is a URL
linked to a file containing JavaScript code, like this:

<script src="example.js"></script>

In this example, an external file named example.js is loaded into the page. The file itself need only
contain the JavaScript code that would occur between the opening <script> and closing </script>
tags. As with inline JavaScript code, processing of the page is halted while the external file is inter-
preted. (There is also some time taken to download the file.) In XHTML documents, you can omit
the closing tag, as in this example:

<script src="example.js"/>

This syntax should not be used in HTML documents because it is invalid HTML and won’t be han-
dled properly by some browsers, most notably Internet Explorer.

NOTE By convention, external JavaScript files have a .js extension. This is
not a requirement because browsers do not check the file extension of included
JavaScript files. This leaves open the possibility of dynamically generating
JavaScript code using a server-side scripting language, or for in-browser
transpilation into JavaScript from a JavaScript extension language such as
TypeScript or React’s JSX. Keep in mind, though, that servers often use the file
extension to determine the correct MIME type to apply to the response. If you
don’t use a .js extension, double-check that your server is returning the correct
MIME type.

It’s important to note that a <script> element using the src attribute should not include additional
JavaScript code between the <script> and </script> tags. If both are provided, the script file is
downloaded and executed while the inline code is ignored.

One of the most powerful and most controversial parts of the <script> element is its ability to
include JavaScript files from outside domains. Much like an element, the <script> element’s
src attribute may be set to a full URL that exists outside the domain on which the HTML page
exists, as in this example:

<script src="http://www.somewhere.com/afile.js"></script>

When the browser goes to resolve this resource, it will send a GET request to the path specified in the
src attribute to retrieve the resource—presumably a JavaScript file. This initial request is not subject
to the browser’s cross-origin restrictions, but any JavaScript returned and executed will be. Of course,
this request is still subject to the HTTP/HTTPS protocol of the parent page.

16 ❘ CHAPTER 2 JavaScript in HtML

Code from an external domain will be loaded and interpreted as if it were part of the page that is
loading it. This capability allows you to serve up JavaScript from various domains, if necessary. Be
careful, however, if you are referencing JavaScript files located on a server that you don’t control.
A malicious programmer could, at any time, replace the file. When including JavaScript files from a
different domain, make sure you are the domain owner or the domain is owned by a trusted source.
The <script> tag’s integrity attribute gives you a tool to defend against this; however, it has lim-
ited browser support.

Regardless of how the code is included, the <script> elements are interpreted in the order in which
they appear in the page so long as the defer and async attributes are not present. The first <script>
element’s code must be completely interpreted before the second <script> element begins interpreta-
tion, the second must be completed before the third, and so on.

Tag Placement
Traditionally, all <script> elements were placed within the <head> element on a page, as in
this example:

<!DOCTYPE html>
<html>
 <head>
 <title>Example HTML Page</title>
 <script src="example1.js"></script>
 <script src="example2.js"></script>
 </head>
 <body>
 <!-- content here -->
 </body>
</html>

The main purpose of this format was to keep external file references, both CSS files and JavaScript
files, in the same area. However, including all JavaScript files in the <head> of a document means that
all of the JavaScript code must be downloaded, parsed, and interpreted before the page begins render-
ing (rendering begins when the browser receives the opening <body> tag). For pages that require a lot
of JavaScript code, this can cause a noticeable delay in page rendering, during which time the browser
will be completely blank. For this reason, modern web applications typically include all JavaScript
references in the <body> element, after the page content, as shown in this example:

<!DOCTYPE html>
<html>
 <head>
 <title>Example HTML Page</title>
 </head>
 <body>
 <!-- content here -->
 <script src="example1.js"></script>
 <script src="example2.js"></script>
 </body>
</html>

Using this approach, the page is completely rendered in the browser before the JavaScript code is
processed. The resulting user experience is perceived as faster because the amount of time spent on a
blank browser window is reduced.

The <script> Element ❘ 17

Deferred Scripts
HTML 4.01 defines an attribute named defer for the <script> element. The purpose of defer is to
indicate that a script won’t be changing the structure of the page as it executes. As such, the script can
be run safely after the entire page has been parsed. Setting the defer attribute on a <script> element
signals to the browser that download should begin immediately but execution should be deferred:

<!DOCTYPE html>
<html>
 <head>
 <title>Example HTML Page</title>
 <script defer src="example1.js"></script>
 <script defer src="example2.js"></script>
 </head>
 <body>
 <!-- content here -->
 </body>
</html>

Even though the <script> elements in this example are included in the document <head>, they will
not be executed until after the browser has received the closing </html> tag. The HTML5 specifica-
tion indicates that scripts will be executed in the order in which they appear, so the first deferred
script executes before the second deferred script, and both will execute before the DOMContentLoaded
event (see the chapter “Events” for more information). In reality, though, deferred scripts don’t always
execute in order or before the DOMContentLoaded event, so it’s best to include just one when possible.

As mentioned previously, the defer attribute is supported only for external script files. This was a
clarification made in HTML5, so browsers that support the HTML5 implementation will ignore
defer when set on an inline script. Internet Explorer 4–7 all exhibit the old behavior, while Internet
Explorer 8 and above support the HTML5 behavior.

Support for the defer attribute was added beginning with Internet Explorer 4, Firefox 3.5, Safari 5,
and Chrome 7. All other browsers simply ignore this attribute and treat the script as it normally
would. For this reason, it’s still best to put deferred scripts at the bottom of the page.

NOTE For XHTML documents, specify the defer attribute as defer="defer".

Asynchronous Scripts
HTML5 introduces the async attribute for <script> elements. The async attribute is similar to
defer in that it changes the way the script is processed. Also similar to defer, async applies only
to external scripts and signals the browser to begin downloading the file immediately. Unlike defer,
scripts marked as async are not guaranteed to execute in the order in which they are specified.
For example:

<!DOCTYPE html>
<html>
 <head>

18 ❘ CHAPTER 2 JavaScript in HtML

 <title>Example HTML Page</title>
 <script async src="example1.js"></script>
 <script async src="example2.js"></script>
 </head>
 <body>
 <!-- content here -->
 </body>
</html>

In this code, the second script file might execute before the first, so it’s important that there are no
dependencies between the two. The purpose of specifying an async script is to indicate that the page
need not wait for the script to be downloaded and executed before continuing to load, and it also
need not wait for another script to load and execute before it can do the same. Because of this, it’s
recommended that asynchronous scripts not modify the DOM as they are loading.

Asynchronous scripts are guaranteed to execute before the page’s load event and may execute before
or after DOMContentLoaded (see the “Events” chapter for details). Firefox 3.6, Safari 5, and Chrome
7 support asynchronous scripts. Using async scripts also confers to your page the implicit assumption
that you do not intend to use document.write—but good web development practices dictate that
you shouldn't be using it anyway.

NOTE For XHTML documents, specify the async attribute as async="async".

Dynamic Script Loading
You are not limited to using static <script> tags to retrieve resources. Because JavaScript is able to
use the DOM API, you are more than welcome to add script elements, which will, in turn, load the
resources they specify. This can be done by creating script elements and attaching them to the DOM:

let script = document.createElement('script');
script.src = 'gibberish.js';
document.head.appendChild(script);

Of course, this request will not be generated until the HTMLElement is attached to the DOM, and
therefore not until this script itself runs. By default, scripts that are created in this fashion are async.
This can be problematic, however, as all browsers support createElement but not all support async
script requests. Therefore, to unify the dynamic script loading behavior, you can explicitly mark the
tag as synchronous:

let script = document.createElement('script');
script.src = 'gibberish.js';
script.async = false;
document.head.appendChild(script);

Resources fetched in this fashion will be hidden from browser preloaders. This will severely injure
their priority in the resource fetching queue. Depending on how your application works and how it is
used, this can severely damage performance. To inform preloaders of the existence of these dynami-
cally requested files, you can explicitly declare them in the document head:

<link rel="subresource" href="gibberish.js">

The <script> Element ❘ 19

Changes in XHTML
Extensible HyperText Markup Language, or XHTML, is a reformulation of HTML as an application
of XML. Unlike in HTML, where the type attribute is unneeded when using JavaScript, in XHTML,
the <script> element requires that you specify the type attribute as text/javascript.

The rules for writing code in XHTML are stricter than those for HTML, which affects the <script>
element when using embedded JavaScript code. Although valid in HTML, the following code block is
invalid in XHTML:

<script type="text/javascript">
 function compare(a, b) {
 if (a < b) {
 console.log("A is less than B");
 } else if (a > b) {
 console.log("A is greater than B");
 } else {
 console.log("A is equal to B");
 }
 }
</script>

In HTML, the <script> element has special rules governing how its contents should be parsed; in
XHTML, these special rules don’t apply. This means that the less-than symbol (<) in the statement
a < b is interpreted as the beginning of a tag, which causes a syntax error because a less-than symbol
must not be followed by a space.

There are two options for fixing the XHTML syntax error. The first is to replace all occurrences of
the less-than symbol (<) with its HTML entity (<). The resulting code looks like this:

<script type="text/javascript">
 function compare(a, b) {
 if (a < b) {
 console.log("A is less than B");
 } else if (a > b) {
 console.log("A is greater than B");
 } else {
 console.log("A is equal to B");
 }
 }
</script>

This code will now run in an XHTML page; however, the code is slightly less readable. Fortunately,
there is another approach.

The second option for turning this code into a valid XHTML version is to wrap the JavaScript code
in a CDATA section. In XHTML (and XML), CDATA sections are used to indicate areas of the docu-
ment that contain free-form text not intended to be parsed. This enables you to use any character,
including the less-than symbol, without incurring a syntax error. The format is as follows:

<script type="text/javascript"><![CDATA[
 function compare(a, b) {
 if (a < b) {
 console.log("A is less than B");

20 ❘ CHAPTER 2 JavaScript in HtML

 } else if (a > b) {
 console.log("A is greater than B");
 } else {
 console.log("A is equal to B");
 }
 }
]]></script>

In XHTML-compliant web browsers, this solves the problem. However, many browsers are still not
XHTML-compliant and don’t support the CDATA section. To work around this, the CDATA markup
must be offset by JavaScript comments:

<script type="text/javascript">
//<![CDATA[
 function compare(a, b) {
 if (a < b) {
 console.log("A is less than B");
 } else if (a > b) {
 console.log("A is greater than B");
 } else {
 console.log("A is equal to B");
 }
 }
//]]>
</script>

This format works in all modern browsers. Though a little bit of a hack, it validates as XHTML and
degrades gracefully for pre-XHTML browsers.

NOTE XHTML mode is triggered when a page specifies its MIME type as
"application/xhtml+xml". Not all browsers officially support XHTML served
in this manner.

Deprecated Syntax
Since Netscape 2 was released in 1995, all browsers have used JavaScript as their default program-
ming language. The type attribute uses a MIME type string to identify the contents of <script>,
but MIME types are not standardized across browsers. Even though browsers default to JavaScript,
in some cases an invalid or unrecognized MIME type value for the type attribute will cause some
browsers to skip execution of the associated code. Therefore, unless you are using XHTML or the
<script> tag requests or wraps non-JavaScript, the best practice is to not specify a type attrib-
ute at all.

When the <script> element was originally introduced, it marked a departure from traditional
HTML parsing. Special rules needed to be applied within this element, and that caused problems
for browsers that didn’t support JavaScript (the most notable being Mosaic). Nonsupporting brows-
ers would output the contents of the <script> element onto the page, effectively ruining the page’s
appearance.

Inline Code versus External Files ❘ 21

Netscape worked with Mosaic to come up with a solution that would hide embedded JavaScript code
from browsers that didn’t support it. The final solution was to enclose the script code in an HTML
comment, like this:

<script><!--
 function sayHi(){
 console.log("Hi!");
 }
//--></script>

Using this format, browsers like Mosaic would safely ignore the content inside of the <script>
tag, and browsers that supported JavaScript had to look for this pattern to recognize that there was
indeed JavaScript content to be parsed.

Although this format is still recognized and interpreted correctly by all web browsers, it is no longer
necessary and should not be used. In XHTML mode, this also causes the script to be ignored because
it is inside a valid XML comment.

INLINE CODE VERSUS EXTERNAL FILES

Although it’s possible to embed JavaScript in HTML files directly, it’s generally considered a best
practice to include as much JavaScript as possible using external files. Keeping in mind that there are
no hard and fast rules regarding this practice, the arguments for using external files are as follows:

➤➤ Maintainability—JavaScript code that is sprinkled throughout various HTML pages turns
code maintenance into a problem. It is much easier to have a directory for all JavaScript files
so that developers can edit JavaScript code independent of the markup in which it’s used.

➤➤ Caching—Browsers cache all externally linked JavaScript files according to specific settings,
meaning that if two pages are using the same file, the file is downloaded only once. This
ultimately means faster page-load times.

➤➤ Future-proof—By including JavaScript using external files, there’s no need to use the
XHTML or comment hacks mentioned previously. The syntax to include external files is the
same for both HTML and XHTML.

One notable consideration when configuring how external files are requested is their implication
on request bandwidth. With SPDY/HTTP2, the per-request overhead is substantially reduced inso-
far as it may be advantageous to deliver scripts to the client as lightweight independent JavaScript
components.

For example, your first page might have the following:

<script src="mainA.js"></script>
<script src="component1.js"></script>
<script src="component2.js"></script>
<script src="component3.js"></script>
...

A subsequent page loaded might have the following:

<script src="mainB.js"></script>
<script src="component3.js"></script>

22 ❘ CHAPTER 2 JavaScript in HtML

<script src="component4.js"></script>
<script src="component5.js"></script>
...

On the initial request, if the browser supports SPDY/HTTP2, it will be able to efficiently retrieve a
number of files from the same endpoint, and it will enter them into the browser cache on a per-file
basis. From the perspective of the browser, retrieval of these individual resources over SPDY/HTTP2
should have approximately the same latency as delivering a monolithic JavaScript payload.

On the second page request, because you segmented your application into lightweight cacheable files,
some of the components that the second page also depends upon are already in the browser cache.

Of course, this assumes the browser supports SPDY/HTTP2, which is only a valid assumption for
modern browsers. Monolithic payloads may be more appropriate if your aim is to include support for
older browsers.

DOCUMENT MODES

Internet Explorer 5.5 introduced the concept of document modes through the use of doctype switch-
ing. The first two document modes were quirks mode, which made Internet Explorer behave as if
it were version 5 (with several nonstandard features) and standards mode, which made Internet
Explorer behave in a more standards-compliant way. Though the primary difference between these
two modes is related to the rendering of content with regard to CSS, there are also several side effects
related to JavaScript. These side effects are discussed throughout the book.

Since Internet Explorer first introduced the concept of document modes, other browsers have fol-
lowed suit. As this adoption happened, a third mode called almost standards mode arose. That mode
has a lot of the features of standards mode but isn’t as strict. The main difference is in the treatment
of spacing around images (most noticeable when images are used in tables).

Quirks mode is achieved in all browsers by omitting the doctype at the beginning of the document.
This is considered poor practice because quirks mode is very different across all browsers, and no
level of true browser consistency can be achieved without hacks.

Standards mode is turned on when one of the following doctypes is used:

<!-- HTML 4.01 Strict -->
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<!-- XHTML 1.0 Strict -->
<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<!-- HTML5 -->
<!DOCTYPE html>

Almost standards mode is triggered by transitional and frameset doctypes, as follows:

<!-- HTML 4.01 Transitional -->
<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

The <noscript> Element ❘ 23

<!-- HTML 4.01 Frameset -->
<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Frameset//EN"
"http://www.w3.org/TR/html4/frameset.dtd">

<!-- XHTML 1.0 Transitional -->
<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<!-- XHTML 1.0 Frameset -->
<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

Because almost standards mode is so close to standards mode, the distinction is rarely made. People
talking about “standards mode” may be talking about either, and detection for the document mode
(discussed later in this book) also doesn’t make the distinction. Throughout this book, the term stand-
ards mode should be taken to mean any mode other than quirks.

THE <NOSCRIPT> ELEMENT

Of particular concern to early browsers was the graceful degradation of pages when the browser
didn’t support JavaScript. To that end, the <noscript> element was created to provide alternate con-
tent for browsers without JavaScript. Although effectively 100% of browsers now support JavaScript,
this element is still useful for browsers that explicitly disable JavaScript.

The <noscript> element can contain any HTML elements, aside from <script>, that can be
included in the document <body>. Any content contained in a <noscript> element will be displayed
under only the following two circumstances:

➤➤ The browser doesn’t support scripting.

➤➤ The browser’s scripting support is turned off.

If either of these conditions is met, then the content inside the <noscript> element is rendered. In all
other cases, the browser does not render the content of <noscript>.

Here is a simple example:

<!DOCTYPE html>
<html>
 <head>
 <title>Example HTML Page</title>
 <script ""defer="defer" src="example1.js"></script>
 <script ""defer="defer" src="example2.js"></script>
 </head>
 <body>
 <noscript>
 <p>This page requires a JavaScript-enabled browser.</p>
 </noscript>
 </body>
</html>

24 ❘ CHAPTER 2 JavaScript in HtML

In this example, a message is displayed to the user when the scripting is not available. For scripting-
enabled browsers, this message will never be seen even though it is still a part of the page.

SUMMARY

JavaScript is inserted into HTML pages by using the <script> element. This element can be used
to embed JavaScript into an HTML page, leaving it inline with the rest of the markup, or to include
JavaScript that exists in an external file. The following are key points:

➤➤ To include external JavaScript files, the src attribute must be set to the URL of the file to
include, which may be a file on the same server as the containing page or one that exists on
a completely different domain.

➤➤ All <script> elements are interpreted in the order in which they occur on the page. The
code contained within a <script> element must be completely interpreted before code in the
next <script> element can begin so long as defer and async attributes are not used.

➤➤ For nondeferred scripts, the browser must complete interpretation of the code inside a
<script> element before it can continue rendering the rest of the page. For this reason,
<script> elements are usually included toward the end of the page, after the main content
and just before the closing </body> tag.

➤➤ You can defer a script’s execution until after the document has rendered by using the defer
attribute. Deferred scripts always execute in the order in which they are specified.

➤➤ You can indicate that a script need not wait for other scripts and also not block the docu-
ment rendering by using the async attribute. Asynchronous scripts are not guaranteed to
execute in the order in which they occur in the page.

By using the <noscript> element, you can specify that content is to be shown only if scripting sup-
port isn’t available on the browser. Any content contained in the <noscript> element will not be
rendered if scripting is enabled on the browser.

Language Basics
WHAT’S IN THIS CHAPTER?

➤➤ Reviewing syntax

➤➤ Working with data types

➤➤ Working with flow-control statements

➤➤ Understanding functions

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/projavascript4e on the Down-
load Code tab.

At the core of any language is a description of how it should work at the most basic level. This
description typically defines syntax, operators, data types, and built-in functionality upon which
complex solutions can be built. As previously mentioned, ECMA-262 defines all of this infor-
mation for JavaScript in the form of a pseudolanguage called ECMAScript.

ECMAScript as defined in ECMA-262, fifth edition, is the most-implemented version among
web browsers. The sixth edition is the next to be implemented in browsers, and as of the end of
2017, most major browsers have mostly or fully implemented the specification. For this reason,
the following information is based primarily on ECMAScript as defined in the sixth edition.

SYNTAX

ECMAScript’s syntax borrows heavily from C and other C-like languages such as Java and Perl.
Developers familiar with such languages should have an easy time picking up the somewhat
looser syntax of ECMAScript.

3

Professional JavaScript® for Web Developers, Fourth Edition. Matt Frisbie.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

26 ❘ CHAPTER 3 Language Basics

Case-Sensitivity
The first concept to understand is that everything is case-sensitive; variables, function names, and
operators are all case-sensitive, meaning that a variable named test is different from a variable
named Test. Similarly, typeof can’t be the name of a function because it’s a keyword (described in
the next section); however, typeof is a perfectly valid function name.

Identifiers
An identifier is the name of a variable, function, property, or function argument. Identifiers may be
one or more characters in the following format:

➤➤ The first character must be a letter, an underscore (_), or a dollar sign ($).

➤➤ All other characters may be letters, underscores, dollar signs, or numbers.

Letters in an identifier may include extended ASCII or Unicode letter characters such as À and Æ,
though this is not recommended.

By convention, ECMAScript identifiers use camel case, meaning that the first letter is lowercase and
each additional word is offset by a capital letter, like this:

firstSecond
myCar
doSomethingImportant

Although this is not strictly enforced, it is considered a best practice to adhere to the built-in
ECMAScript functions and objects that follow this format.

NOTE Keywords, reserved words, true, false, and null cannot be used as
identifiers. See the section “Keywords and Reserved Words” coming up shortly
for more detail.

Comments
ECMAScript uses C-style comments for both single–line and block comments. A single–line comment
begins with two forward-slash characters, such as this:

// single line comment

A block comment begins with a forward slash and asterisk (/*) and ends with the opposite (*/), as in
this example:

/* This is a multi-line
comment */

Syntax ❘ 27

Strict Mode
ECMAScript 5 introduced the concept of strict mode. Strict mode is a different parsing and execu-
tion model for JavaScript, where some of the erratic behavior of ECMAScript 3 is addressed and
errors are thrown for unsafe activities. To enable strict mode for an entire script, include the following
at the top:

"use strict";

Although this may look like a string that isn’t assigned to a variable, this is a pragma that tells sup-
porting JavaScript engines to change into strict mode. The syntax was chosen specifically so as not to
break ECMAScript 3 syntax.

You may also specify just a function to execute in strict mode by including the pragma at the top of
the function body:

function doSomething() {
 "use strict";
 // function body
}

Strict mode changes many parts of how JavaScript is executed, and as such, strict mode distinctions
are pointed out throughout the book. All modern browsers support strict mode.

Statements
Statements in ECMAScript are terminated by a semicolon, though omitting the semicolon makes the
parser determine where the end of a statement occurs, as in the following examples:

let sum = a + b // valid even without a semicolon - not recommended
let diff = a - b; // valid - preferred

Even though a semicolon is not required at the end of statements, you should always include one.
Including semicolons helps prevent errors of omission, such as not finishing what you were typing,
and allows developers to compress ECMAScript code by removing extra white space (such compres-
sion causes syntax errors when lines do not end in a semicolon). Including semicolons also improves
performance in certain situations because parsers try to correct syntax errors by inserting semicolons
where they appear to belong.

Multiple statements can be combined into a code block by using C-style syntax, beginning with a left
curly brace ({) and ending with a right curly brace (}):

if (test) {
 test = false;
 console.log(test);
}

Control statements, such as if, require code blocks only when executing multiple statements. How-
ever, it is considered a best practice to always use code blocks with control statements, even if there’s
only one statement to be executed, as in the following examples:

// valid, but error-prone and should be avoided
if (test)

28 ❘ CHAPTER 3 Language Basics

 console.log(test);

// preferred
if (test) { console.log(test);
}

Using code blocks for control statements makes the intent clearer, and there’s less chance for errors
when changes need to be made.

KEYWORDS AND RESERVED WORDS

ECMA-262 describes a set of reserved keywords that have specific uses, such as indicating the begin-
ning or end of control statements or performing specific operations. By rule, keywords are reserved
and cannot be used as identifiers or property names. The complete list of keywords for ECMA-262,
sixth edition is as follows:

break do in typeof
case else instanceof var
catch export new void
class extends return while
const finally super with
continue for switch yield
debugger function this
default if throw
delete import try

The specification also describes a set of future reserved words that cannot be used as identifiers
or property names. Though reserved words don’t have any specific usage in the language, they are
reserved for future use as keywords.

The following is the complete list of future reserved words defined in ECMA-262, sixth edition:

Always reserved:

enum

Reserved in strict mode:

implements package public
interface protected static
let private

Reserved in module code:

await

These words may still not be used as identifiers but now can be used as property names in objects.
Generally speaking, it’s best to avoid using both keywords and reserved words as both identifiers and
property names to ensure compatibility with past and future ECMAScript editions.

Variables ❘ 29

VARIABLES

ECMAScript variables are loosely typed, meaning that a variable can hold any type of data. Every
variable is simply a named placeholder for a value. There are three keywords that can be used to
declare a variable: var, which is available in all ECMAScript versions, and const and let, which
were introduced in ECMAScript 6.

The ’var’ Keyword
To define a variable, use the var operator (note that var is a keyword) followed by the variable name
(an identifier, as described earlier), like this:

var message;

This code defines a variable named message that can be used to hold any value. (Without initializa-
tion, it holds the special value undefined, which is discussed in the next section.) ECMAScript imple-
ments variable initialization, so it’s possible to define the variable and set its value at the same time,
as in this example:

var message = "hi";

Here, message is defined to hold a string value of "hi". Doing this initialization doesn’t mark the
variable as being a string type; it is simply the assignment of a value to the variable. It is still possible
to not only change the value stored in the variable but also change the type of value, such as this:

var message = "hi";
message = 100; // legal, but not recommended

In this example, the variable message is first defined as having the string value "hi" and then over-
written with the numeric value 100. Although it’s not recommended to switch the data type that a
variable contains, it is completely valid in ECMAScript.

var Declaration Scope
It’s important to note that using the var operator to define a variable makes it local to the function
scope in which it was defined. For example, defining a variable inside of a function using var means
that the variable is destroyed as soon as the function exits, as shown here:

function test() {
 var message = "hi"; // local variable
}
test();
console.log(message); // error!

Here, the message variable is defined within a function using var. The function is called test(),
which creates the variable and assigns its value. Immediately after that, the variable is destroyed so
the last line in this example causes an error. It is, however, possible to define a variable globally by
simply omitting the var operator as follows:

function test() {
 message = "hi"; // global variable
}
test();
console.log(message); // "hi"

30 ❘ CHAPTER 3 Language Basics

By removing the var operator from the example, the message variable becomes global. As soon as the
function test() is called, the variable is defined and becomes accessible outside of the function once
it has been executed.

NOTE Although it’s possible to define global variables by omitting the var oper-
ator, this approach is not recommended. Global variables defined locally are
hard to maintain and cause confusion because it’s not immediately apparent if
the omission of var was intentional. Strict mode throws a ReferenceError when
an undeclared variable is assigned a value.

If you need to define more than one variable, you can do it using a single statement, separating each
variable (and optional initialization) with a comma like this:

var message = "hi",
 found = false,
 age = 29;

Here, three variables are defined and initialized. Because ECMAScript is loosely typed, variable ini-
tializations using different data types may be combined into a single statement. Though inserting line
breaks and indenting the variables isn’t necessary, it helps to improve readability.

When you are running in strict mode, you cannot define variables named eval or arguments. Doing
so results in a syntax error.

var Declaration Hoisting
When using var, the following is possible because variables declared using that keyword are hoisted
to the top of the function scope:

function foo() {
 console.log(age);
 var age = 26;
}
foo(); // undefined

This does not throw an error because the ECMAScript runtime technically treats it like this:

function foo() {
 var age;
 console.log(age);
 age = 26;
}
foo(); // undefined

This is “hoisting,” where the interpreter pulls all variable declarations to the top of its scope. It also
allows you to use redundant var declarations without penalty:

function foo() {
 var age = 16;
 var age = 26;
 var age = 36;

Variables ❘ 31

 console.log(age);
}
foo(); // 36

’let’ Declarations
let operates in nearly the same way as var, but with some important differences. Most notable is
that let is block scoped, but var is function scoped.

if (true) {
 var name = 'Matt';
 console.log(name); // Matt
}
console.log(name); // Matt

if (true) {
 let age = 26;
 console.log(age); // 26
}
console.log(age); // ReferenceError: age is not defined

Here, the age variable cannot be referenced outside the if block because its scope does not extend
outside the block. Block scope is strictly a subset of function scope, so any scope limitations that
apply to var declarations will also apply to let declarations.

A let declaration also does not allow for any redundant declarations within a block scope. Doing so
will result in an error:

var name;
var name;

let age;
let age; // SyntaxError; identifier 'age' has already been declared

Of course, the JavaScript engine will keep track of identifiers used for variable declarations and the
block scope they were declared inside, so nesting using identical identifiers behaves as you would
expect with no errors because no redeclaration is occurring:

var name = 'Nicholas';
console.log(name); // 'Nicholas'
if (true) {
 var name = 'Matt';
 console.log(name); // 'Matt'
}

let age = 30;
console.log(age); // 30
if (true) {
 let age = 26;
 console.log(age); // 26
}

The declaration redundancy errors are not a function of order, and are not affected if let is mixed
with var. The different keywords do not declare different types of variables—they just specify how
the variables exist inside the relevant scope.

32 ❘ CHAPTER 3 Language Basics

var name;
let name; // SyntaxError

let age;
var age; // SyntaxError

Temporal Dead Zone
Another important behavior of let distinguishing it from var is that let declarations cannot be used
in a way that assumes hoisting:

// name is hoisted
console.log(name); // undefined
var name = 'Matt';

// age is not hoisted
console.log(age); // ReferenceError: age is not defined
let age = 26;

When parsing the code, JavaScript engines will still be aware of the let declarations that appear later
in a block, but these variables will be unable to be referenced in any way before the actual declaration
occurs. The segment of execution that occurs before the declaration is referred to as the “temporal
dead zone,” and any attempted references to these variables will throw a ReferenceError.

Global Declarations
Unlike the var keyword, when declaring variables using let in the global context, variables will not
attach to the window object as they do with var.

var name = 'Matt';
console.log(window.name); // 'Matt'

let age = 26;
console.log(window.age); // undefined

However, let declarations will still occur inside the global block scope, which will persist for the
lifetime of the page. Therefore, you must ensure your page does not attempt duplicate declarations in
order to avoid throwing a SyntaxError.

Conditional Declaration
When using var to declare variables, because the declaration is hoisted, the JavaScript engine will
happily combine redundant declarations into a single declaration at the top of the scope. Because
let declarations are scoped to blocks, it’s not possible to check if a let variable has previously been
declared and conditionally declare it only if it has not.

<script>
 var name = 'Nicholas';
 let age = 26;
</script>

Variables ❘ 33

<script>
 // Suppose this script is unsure about what has already been declared in the page.
 // It will assume variables have not been declared.

 var name = 'Matt';
 // No problems here, since this will be handled as a single hoisted declaration.
 // There is no need to check if it was previously declared.

 let age = 36;
 // This will throw an error when 'age' has already been declared.
</script>

Using a try/catch statement or the typeof operator are not solutions, as the let declaration inside
the conditional block will be scoped to that block.

<script>
 let name = 'Nicholas';
 let age = 36;
</script>

<script>
 // Suppose this script is unsure about what has already been declared in
the page.
 // It will assume variables have not been declared.

 if (typeof name !== 'undefined') {
 let name;
 }
 // 'name' is restricted to the if {} block scope,
 // so this assignment will act as a global assignment
 name = 'Matt';

 try (age) {
 // If age is not declared, this will throw an error
 }
 catch(error) {
 let age;
 }
 // 'age' is restricted to the catch {} block scope,
 // so this assignment will act as a global assignment
 age = 26;
</script>

Because of this, you cannot rely on a conditional declaration pattern with this new ES6 declara-
tion keyword.

NOTE Not being able to use let for conditional declaration is a good thing, as
conditional declaration is a bad pattern to have in your codebase. It makes it
harder to understand program flow. If you find yourself reaching for this pattern,
chances are very good that there is a better way to go about writing it.

34 ❘ CHAPTER 3 Language Basics

let Declaration in for Loops
Prior to the advent of let, for loop definition involved using an iterator variable whose definition
would bleed outside the loop body:

for (var i = 0; i < 5; ++i) {
 // do loop things
}
console.log(i); // 5

This is no longer a problem when switching to let declarations, as the iterator variable will be
scoped only to the for loop block:

for (let i = 0; i < 5; ++i) {
 // do loop things
}
console.log(i); // ReferenceError: i is not defined

When using var, a frequent problem encountered was the singular declaration and modification of
the iterator variable:

for (var i = 0; i < 5; ++i) {
 setTimeout(() => console.log(i), 0)
}
// You might expect this to console.log 0, 1, 2, 3, 4
// It will actually console.log 5, 5, 5, 5, 5

This happens because the loop exits with its iterator variable still set to the value that caused the
loop to exit: 5. When the timeouts later execute, they reference this same variable, and consequently
console.log its final value.

When using let to declare the loop iterator, behind the scenes the JavaScript engine will actu-
ally declare a new iterator variable each loop iteration. Each setTimeout references that separate
instance, and therefore it will console.log the expected value: the value of the iterator variable
when that loop iteration was executed.

for (let i = 0; i < 5; ++i) {
 setTimeout(() => console.log(i), 0)
}
// console.logs 0, 1, 2, 3, 4

This per-iteration declarative behavior is applicable for all styles of for loops, including for-in and
for-of loops.

’const’ Declarations
const behaves identically to that of let but with one important difference—it must be initialized
with a value, and that value cannot be redefined after declaration. Attempting to modify a const
variable will result in a runtime error.

const age = 26;
age = 36; // TypeError: assignment to a constant

Variables ❘ 35

// const still disallows redundant declaration
const name = 'Matt';
const name = 'Nicholas'; // SyntaxError

// const is still scoped to blocks
const name = 'Matt';
if (true) {
 const name = 'Nicholas';
}
console.log(name); // Matt

The const declaration is only enforced with respect to the reference to the variable that it points to.
If a const variable references an object, it does not violate the const constraints to modify properties
inside that object.

const person = {};
person.name = 'Matt'; // ok

Even though the JavaScript engine is creating new instances of let iterator variables in for loops, and
even though const variables behave similarly to let variables, you cannot use const to declare for
loop iterators:

for (const i = 0; i < 10; ++i) {} // TypeError: assignment to constant variable

However, if you were to declare a for loop variable that is not modified, const is allowed—precisely
because a new variable is declared for each iteration. This is especially relevant in the case of for-of
and for-in loops:

let i = 0;
for (const j = 7; i < 5; ++i) {
 console.log(j);
}
// 7, 7, 7, 7, 7

for (const key in {a: 1, b: 2}) {
 console.log(key);
}
// a, b

for (const value of [1,2,3,4,5]) {
 console.log(value);
}
// 1, 2, 3, 4, 5

Declaration Styles and Best Practices
The introduction of let and const in ECMAScript 6 bring objectively better tooling to the language
in the form of increased precision of declaration scope and semantics. It is no secret that the bizarre
behavior of var declarations caused the JavaScript community to pull its collective hair out for years
as a result of all the problems it caused. In the wake of the introduction of these new keywords, there
are some increasingly common patterns emerging that can improve code quality.

36 ❘ CHAPTER 3 Language Basics

Don’t Use var
With let and const, most developers will find that they no longer need to use var in their codebase
anywhere. The patterns that emerge from restricting variable declaration to only let and const will
serve to enforce higher codebase quality thanks to careful management of variable scope, declaration
locality, and const correctness.

Prefer const Over let
Using const declarations allows the browser runtime to enforce constant variables, as well as for
static code analysis tools to foresee illegal reassignment operations. Therefore, many developers feel
it is to their advantage to, by default, declare variables as const unless they know they will need to
reassign its value at some point. This allows for developers to more concretely reason about values
that they know will never change, and also for quick detection of unexpected behavior in cases where
the code execution attempts to perform an unanticipated value reassignment.

DATA TYPES

There are six simple data types (also called primitive types) in ECMAScript: Undefined, Null,
Boolean, Number, String, and Symbol. Symbol was newly introduced in ECMAScript 6. There is also
one complex data type called Object, which is an unordered list of name–value pairs. Because there
is no way to define your own data types in ECMAScript, all values can be represented as one of
these seven. Having only seven data types may seem like too few to fully represent data; however,
ECMAScript’s data types have dynamic aspects that make each single data type behave like several.

The typeof Operator
Because ECMAScript is loosely typed, there needs to be a way to determine the data type of a given
variable. The typeof operator provides that information. Using the typeof operator on a value
returns one of the following strings:

➤➤ "undefined" if the value is undefined

➤➤ "boolean" if the value is a Boolean

➤➤ "string" if the value is a string

➤➤ "number" if the value is a number

➤➤ "object" if the value is an object (other than a function) or null

➤➤ "function" if the value is a function

➤➤ "symbol" if the value is a Symbol

The typeof operator is called like this:

let message = "some string";
console.log(typeof message); // "string"
console.log(typeof(message)); // "string"
console.log(typeof 95); // "number"

Data Types ❘ 37

In this example, both a variable (message) and a numeric literal are passed into the typeof operator.
Note that because typeof is an operator and not a function, no parentheses are required (although
they can be used).

Be aware there are a few cases where typeof seemingly returns a confusing but technically correct
value. Calling typeof null returns a value of "object", as the special value null is considered to be
an empty object reference.

NOTE Technically, functions are considered objects in ECMAScript and don’t
represent another data type. However, they do have some special properties,
which necessitates differentiating between functions and other objects via the
typeof operator.

The Undefined Type
The Undefined type has only one value, which is the special value undefined. When a variable is
declared using var or let but not initialized, it is assigned the value of undefined as follows:

let message;
console.log(message == undefined); // true

In this example, the variable message is declared without initializing it. When compared with the
literal value of undefined, the two are equal. This example is identical to the following:

let message = undefined;
console.log(message == undefined); // true

Here the variable message is explicitly initialized to be undefined. This is unnecessary because, by
default, any uninitialized variable gets the value of undefined.

NOTE Generally speaking, you should never explicitly set a variable to be
undefined. The literal undefined value is provided mainly for comparison and
wasn’t added until ECMA-262, third edition, to help formalize the difference
between an empty object pointer (null) and an uninitialized variable.

Note that a variable containing the value of undefined is different from a variable that hasn’t been
defined at all. Consider the following:

let message; // this variable is declared but has a value of undefined

// make sure this variable isn't declared
// let age

console.log(message); // "undefined"
console.log(age); // causes an error

38 ❘ CHAPTER 3 Language Basics

In this example, the first console.log displays the variable message, which is "undefined". In the
second console.log, an undeclared variable called age is passed into the console.log() function,
which causes an error because the variable hasn’t been declared. Only one useful operation can be
performed on an undeclared variable: you can call typeof on it (calling delete on an undeclared
variable won’t cause an error, but this isn’t very useful and in fact throws an error in strict mode).

The typeof operator returns "undefined" when called on an uninitialized variable, but it also
returns "undefined" when called on an undeclared variable, which can be a bit confusing. Consider
this example:

let message; // this variable is declared but has a value of undefined

// make sure this variable isn't declared
// let age

console.log(typeof message); // "undefined"
console.log(typeof age); // "undefined"

In both cases, calling typeof on the variable returns the string "undefined". Logically, this makes
sense because no real operations can be performed with either variable even though they are techni-
cally very different.

NOTE Even though uninitialized variables are automatically assigned a value of
undefined, it is advisable to always initialize variables. That way, when typeof
returns "undefined", you’ll know that it’s because a given variable hasn’t been
declared rather than was simply not initialized.

The value undefined is falsy; therefore, you are able to more succinctly check for it wherever you
might need to. Bear in mind, however, that many other possible values are also falsy, so be careful in
scenarios where you need to test for an exact value of undefined rather than just a falsy value:

let message; // this variable is declared but has a value of undefined
// 'age' is not declared

if (message) {
 // This block will not execute
}

if (!message) {
 // This block will execute
}

if (age) {
 // This will throw an error
}

Data Types ❘ 39

The Null Type
The Null type is the second data type that has only one value: the special value null. Logically, a
null value is an empty object pointer, which is why typeof returns "object" when it’s passed a
null value in the following example:

let car = null;
console.log(typeof car); // "object"

When defining a variable that is meant to later hold an object, it is advisable to initialize the variable
to null as opposed to anything else. That way, you can explicitly check for the value null to deter-
mine if the variable has been filled with an object reference at a later time, such as in this example:

if (car != null) {
 // do something with car
}

The value undefined is a derivative of null, so ECMA-262 defines them to be superficially equal
as follows:

console.log(null == undefined); // true

Using the equality operator (==) between null and undefined always returns true, though keep
in mind that this operator converts its operands for comparison purposes (covered in detail later in
this chapter).

Even though null and undefined are related, they have very different uses. As mentioned previously,
you should never explicitly set the value of a variable to undefined, but the same does not hold true
for null. Any time an object is expected but is not available, null should be used in its place. This
helps to keep the paradigm of null as an empty object pointer and further differentiates it from
undefined.

The null type is falsy; therefore, you are able to more succinctly check for it wherever you might
need to. Bear in mind, however, that many other possible values are also falsy, so be careful in sce-
narios where you need to test for an exact value of null rather than just a falsy value:

let message = null;
let age;

if (message) {
 // This block will not execute
}

if (!message) {
 // This block will execute
}

if (age) {
 // This block will not execute
}

if (!age) {
 // This block will execute
}

40 ❘ CHAPTER 3 Language Basics

The Boolean Type
The Boolean type is one of the most frequently used types in ECMAScript and has only two literal
values: true and false. These values are distinct from numeric values, so true is not equal to 1, and
false is not equal to 0. Assignment of Boolean values to variables is as follows:

let found = true;
let lost = false;

Note that the Boolean literals true and false are case–sensitive, so True and False (and other mix-
ings of uppercase and lowercase) are valid as identifiers but not as Boolean values.

Though there are just two literal Boolean values, all types of values have Boolean equivalents in
ECMAScript. To convert a value into its Boolean equivalent, the special Boolean() casting function
is called, like this:

let message = "Hello world!";
let messageAsBoolean = Boolean(message);

In this example, the string message is converted into a Boolean value and stored in message-
AsBoolean. The Boolean() casting function can be called on any type of data and will always return
a Boolean value. The rules for when a value is converted to true or false depend on the data type
as much as the actual value. The following table outlines the various data types and their specific
conversions.

DATA TYPE VALUES CONVERTED TO TRUE VALUES CONVERTED TO FALSE

Boolean true false

String Any nonempty string "" (empty string)

Number Any nonzero number
(including infinity)

0, NaN (See the “NaN” section later in
this chapter.)

Object Any object null

Undefined n/a undefined

These conversions are important to understand because flow-control statements, such as the if state-
ment, automatically perform this Boolean conversion, as shown here:

let message = "Hello world!";
if (message) {
 console.log("Value is true");
}

In this example, the console.log will be displayed because the string message is automatically con-
verted into its Boolean equivalent (true). It’s important to understand what variable you’re using in a
flow-control statement because of this automatic conversion. Mistakenly using an object instead of a
Boolean can drastically alter the flow of your application.

Data Types ❘ 41

The Number Type
Perhaps the most interesting data type in ECMAScript is Number, which uses the IEEE–754 format
to represent both integers and floating-point values (also called double–precision values in some lan-
guages). To support the various types of numbers, there are several different number literal formats.

The most basic number literal format is that of a decimal integer, which can be entered directly as
shown here:

let intNum = 55; // integer

Integers can also be represented as either octal (base 8) or hexadecimal (base 16) literals. For an octal
literal, the first digit must be a zero (0) followed by a sequence of octal digits (numbers 0 through 7).
If a number out of this range is detected in the literal, then the leading zero is ignored and the number
is treated as a decimal, as in the following examples:

let octalNum1 = 070; // octal for 56
let octalNum2 = 079; // invalid octal - interpreted as 79
let octalNum3 = 08; // invalid octal - interpreted as 8

Octal literals are invalid when running in strict mode and will cause the JavaScript engine to throw a
syntax error.

To create a hexadecimal literal, you must make the first two characters 0x (case insensitive), followed
by any number of hexadecimal digits (0 through 9, and A through F). Letters may be in uppercase or
lowercase. Here’s an example:

let hexNum1 = 0xA; // hexadecimal for 10
let hexNum2 = 0x1f; // hexadecimal for 31

Numbers created using octal or hexadecimal format are treated as decimal numbers in all arithmetic
operations.

NOTE Because of the way that numbers are stored in JavaScript, it is actually
possible to have a value of positive zero (+0) and negative zero (–0). Positive zero
and negative zero are considered equivalent in all cases but are noted in this text
for clarity.

Floating-Point Values
To define a floating-point value, you must include a decimal point and at least one number after the
decimal point. Although an integer is not necessary before a decimal point, it is recommended. Here
are some examples:

let floatNum1 = 1.1;
let floatNum2 = 0.1;
let floatNum3 = .1; // valid, but not recommended

42 ❘ CHAPTER 3 Language Basics

Because storing floating-point values uses twice as much memory as storing integer values,
ECMAScript always looks for ways to convert values into integers. When there is no digit after the
decimal point, the number becomes an integer. Likewise, if the number being represented is a whole
number (such as 1.0), it will be converted into an integer, as in this example:

let floatNum1 = 1.; // missing digit after decimal - interpreted as integer 1
let floatNum2 = 10.0; // whole number - interpreted as integer 10

For very large or very small numbers, floating-point values can be represented using e-notation.
E-notation is used to indicate a number that should be multiplied by 10 raised to a given power. The
format of e-notation in ECMAScript is to have a number (integer or floating-point) followed by an
uppercase or lowercase letter E, followed by the power of 10 to multiply by. Consider the following:

let floatNum = 3.125e7; // equal to 31250000

In this example, floatNum is equal to 31,250,000 even though it is represented in a more compact
form using e-notation. The notation essentially says, “Take 3.125 and multiply it by 107.”

E-notation can also be used to represent very small numbers, such as 0.00000000000000003, which
can be written more succinctly as 3e–17. By default, ECMAScript converts any floating-point value
with at least six zeros after the decimal point into e-notation (for example, 0.0000003 becomes 3e–7).

Floating-point values are accurate up to 17 decimal places but are far less accurate in arithmetic
computations than whole numbers. For instance, adding 0.1 and 0.2 yields 0.30000000000000004
instead of 0.3. These small rounding errors make it difficult to test for specific floating-point values.
Consider this example:

if (a + b == 0.3) { // avoid!
 console.log("You got 0.3.");
}

Here, the sum of two numbers is tested to see if it’s equal to 0.3. This will work for 0.05 and 0.25
and for 0.15 and 0.15. But if applied to 0.1 and 0.2, as discussed previously, this test would fail.
Therefore you should never test for specific floating-point values.

NOTE It’s important to understand that rounding errors are a side effect of the
way floating-point arithmetic is done in IEEE-754–based numbers and is not
unique to ECMAScript. Other languages that use the same format have the same
issues.

Range of Values
Not all numbers in the world can be represented in ECMAScript because of memory constraints.
The smallest number that can be represented in ECMAScript is stored in Number.MIN_VALUE
and is 5e–324 on most browsers; the largest number is stored in Number.MAX_VALUE and is
1.7976931348623157e+308 on most browsers. If a calculation results in a number that cannot be
represented by JavaScript’s numeric range, the number automatically gets the special value of
Infinity. Any negative number that can’t be represented is –Infinity (negative infinity), and any
positive number that can’t be represented is simply Infinity (positive infinity).

Data Types ❘ 43

If a calculation returns either positive or negative Infinity, that value cannot be used in any
further calculations, because Infinity has no numeric representation with which to calculate. To
determine if a value is finite (that is, it occurs between the minimum and the maximum), there is the
isFinite() function. This function returns true only if the argument is between the minimum and
the maximum values, as in this example:

let result = Number.MAX_VALUE + Number.MAX_VALUE;
console.log(isFinite(result)); // false

Though it is rare to do calculations that take values outside of the range of finite numbers, it is pos-
sible and should be monitored when doing very large or very small calculations.

NOTE You can also get the values of positive and negative Infinity by access-
ing Number.NEGATIVE _ INFINITY and Number.POSITIVE _ INFINITY. As you
may expect, these properties contain the values –Infinity and Infinity,
respectively.

NaN
There is a special numeric value called NaN, short for Not a Number, which is used to indicate when
an operation intended to return a number has failed (as opposed to throwing an error). For exam-
ple, dividing any number by 0 typically causes an error in other programming languages, halting
code execution. In ECMAScript, dividing a number by 0 returns NaN, which allows other processing
to continue.

The value NaN has a couple of unique properties. First, any operation involving NaN always returns
NaN (for instance, NaN /10), which can be problematic in the case of multistep computations. Second,
NaN is not equal to any value, including NaN. For example, the following returns false:

console.log(NaN == NaN); // false

For this reason, ECMAScript provides the isNaN() function. This function accepts a single argument,
which can be of any data type, to determine if the value is “not a number.” When a value is passed into
isNaN(), an attempt is made to convert it into a number. Some nonnumerical values convert into num-
bers directly, such as the string "10" or a Boolean value. Any value that cannot be converted into a
number causes the function to return true. Consider the following:

console.log(isNaN(NaN)); // true
console.log(isNaN(10)); // false - 10 is a number
console.log(isNaN("10")); // false - can be converted to number 10
console.log(isNaN("blue")); // true - cannot be converted to a number
console.log(isNaN(true)); // false - can be converted to number 1

This example tests five different values. The first test is on the value NaN itself, which, obviously,
returns true. The next two tests use numeric 10 and the string "10", which both return false
because the numeric value for each is 10. The string "blue", however, cannot be converted into a
number, so the function returns true. The Boolean value of true can be converted into the number 1,
so the function returns false.

44 ❘ CHAPTER 3 Language Basics

NOTE Although typically not done, isNaN() can be applied to objects. In that
case, the object’s valueOf() method is first called to determine if the returned
value can be converted into a number. If not, the toString() method is called
and its returned value is tested as well. This is the general way that built-in
functions and operators work in ECMAScript and is discussed more in the
“Operators” section later in this chapter.

Number Conversions
There are three functions to convert nonnumeric values into numbers: the Number() casting func-
tion, the parseInt() function, and the parseFloat() function. The first function, Number(), can be
used on any data type; the other two functions are used specifically for converting strings to numbers.
Each of these functions reacts differently to the same input.

The Number() function performs conversions based on these rules:

➤➤ When applied to Boolean values, true and false get converted into 1 and 0, respectively.

➤➤ When applied to numbers, the value is simply passed through and returned.

➤➤ When applied to null, Number() returns 0.

➤➤ When applied to undefined, Number() returns NaN.

➤➤ When applied to strings, the following rules are applied:

➤➤ If the string contains only numeric characters, optionally preceded by a plus or
minus sign, it is always converted to a decimal number, so Number("1") becomes 1,
Number("123") becomes 123, and Number("011") becomes 11 (note: leading zeros
are ignored).

➤➤ If the string contains a valid floating-point format, such as "1.1", it is converted into
the appropriate floating-point numeric value (once again, leading zeros are ignored).

➤➤ If the string contains a valid hexadecimal format, such as "0xf", it is converted into
an integer that matches the hexadecimal value.

➤➤ If the string is empty (contains no characters), it is converted to 0.

➤➤ If the string contains anything other than these previous formats, it is con-
verted into NaN.

➤➤ When applied to objects, the valueOf() method is called and the returned value is converted
based on the previously described rules. If that conversion results in NaN, the toString()
method is called and the rules for converting strings are applied.

Converting to numbers from various data types can get complicated, as indicated by the number of
rules there are for Number(). Here are some concrete examples:

let num1 = Number("Hello world!"); // NaN
let num2 = Number(""); // 0

Data Types ❘ 45

let num3 = Number("000011"); // 11
let num4 = Number(true); // 1

In these examples, the string "Hello world" is converted into NaN because it has no corresponding
numeric value, and the empty string is converted into 0. The string "000011" is converted to the num-
ber 11 because the initial zeros are ignored. Last, the value true is converted to 1.

NOTE The unary plus operator, discussed in the “Operators” section later in
this chapter, works the same as the Number() function.

Because of the complexities and oddities of the Number() function when converting strings, the
parseInt() function is usually a better option when you are dealing with integers. The parseInt()
function examines the string much more closely to see if it matches a number pattern. Leading white
space in the string is ignored until the first non–white space character is found. If this first character
isn’t a number, the minus sign, or the plus sign, parseInt() always returns NaN, which means the
empty string returns NaN (unlike with Number(), which returns 0). If the first character is a number,
plus, or minus, then the conversion goes on to the second character and continues on until either
the end of the string is reached or a nonnumeric character is found. For instance, "1234blue" is
converted to 1234 because "blue" is completely ignored. Similarly, "22.5" will be converted to 22
because the decimal is not a valid integer character.

Assuming that the first character in the string is a number, the parseInt() function also recognizes
the various integer formats (decimal, octal, and hexadecimal, as discussed previously). This means
when the string begins with "0x", it is interpreted as a hexadecimal integer; if it begins with "0" fol-
lowed by a number, it is interpreted as an octal value.

Here are some conversion examples to better illustrate what happens:

let num1 = parseInt("1234blue"); // 1234
let num2 = parseInt(""); // NaN
let num3 = parseInt("0xA"); // 10 - hexadecimal
let num4 = parseInt(22.5); // 22
let num5 = parseInt("70"); // 70 - decimal
let num6 = parseInt("0xf"); // 15 - hexadecimal

All of the different numeric formats can be confusing to keep track of, so parseInt() provides a sec-
ond argument: the radix (number of digits). If you know that the value you’re parsing is in hexadeci-
mal format, you can pass in the radix 16 as a second argument and ensure that the correct parsing
will occur, as shown here:

let num = parseInt("0xAF", 16); // 175

In fact, by providing the hexadecimal radix, you can leave off the leading "0x" and the conversion
will work as follows:

let num1 = parseInt("AF", 16); // 175
let num2 = parseInt("AF"); // NaN

46 ❘ CHAPTER 3 Language Basics

In this example, the first conversion occurs correctly, but the second conversion fails. The difference
is that the radix is passed in on the first line, telling parseInt() that it will be passed a hexadecimal
string; the second line sees that the first character is not a number and stops automatically.

Passing in a radix can greatly change the outcome of the conversion. Consider the following:

let num1 = parseInt("10", 2); // 2 - parsed as binary
let num2 = parseInt("10", 8); // 8 - parsed as octal
let num3 = parseInt("10", 10); // 10 - parsed as decimal
let num4 = parseInt("10", 16); // 16 - parsed as hexadecimal

Because leaving off the radix allows parseInt() to choose how to interpret the input, it’s advisable
to always include a radix to avoid errors.

NOTE Most of the time you’ll be parsing decimal numbers, so it’s good to
always include 10 as the second argument.

The parseFloat() function works in a similar way to parseInt(), looking at each character start-
ing in position 0. It also continues to parse the string until it reaches either the end of the string or a
character that is invalid in a floating-point number. This means that a decimal point is valid the first
time it appears, but a second decimal point is invalid and the rest of the string is ignored, resulting in
"22.34.5" being converted to 22.34.

Another difference in parseFloat() is that initial zeros are always ignored. This function will
recognize any of the floating-point formats discussed earlier, as well as the decimal format (leading
zeros are always ignored). Hexadecimal numbers always become 0. Because parseFloat() parses
only decimal values, there is no radix mode. A final note: if the string represents a whole number
(no decimal point or only a zero after the decimal point), parseFloat() returns an integer. Here are
some examples:

let num1 = parseFloat("1234blue"); // 1234 - integer
let num2 = parseFloat("0xA"); // 0
let num3 = parseFloat("22.5"); // 22.5
let num4 = parseFloat("22.34.5"); // 22.34
let num5 = parseFloat("0908.5"); // 908.5
let num6 = parseFloat("3.125e7"); // 31250000

The String Type
The String data type represents a sequence of zero or more 16-bit Unicode characters. Strings can
be delineated by either double quotes ("), single quotes ('), or backticks (`), so all of the following
are legal:

let firstName = "John";
let lastName = 'Jacob';
let lastName = `Jingleheimerschmidt`

Data Types ❘ 47

Unlike some languages in which using different quotes changes how the string is interpreted, there is
no difference in the syntaxes in ECMAScript. Note, however, that a string beginning with a certain
character must end with the same character. For example, the following will cause a syntax error:

let firstName = 'Nicholas"; // syntax error - quotes must match

Character Literals
The String data type includes several character literals to represent nonprintable or otherwise useful
characters, as listed in the following table:

LITERAL MEANING

\n New line

\t Tab

\b Backspace

\r Carriage return

\f Form feed

\\ Backslash (\)

\' Single quote (')—used when the string is delineated by single quotes. Example: 'He
said, \'hey.\''.

\" Double quote (")—used when the string is delineated by double quotes. Example:
"He said, \"hey.\"".

\` Backtick (`)—used when the string is delineated by backticks. Example: `He said,
\`hey.\``.

\xnn A character represented by hexadecimal code nn (where n is a hexadecimal digit
0-F). Example: \x41 is equivalent to "A".

\unnnn A Unicode character represented by the hexadecimal code nnnn (where n is a
hexadecimal digit 0-F). Example: \u03a3 is equivalent to the Greek character Σ.

These character literals can be included anywhere with a string and will be interpreted as if they were
a single character, as shown here:

let text = "This is the letter sigma: \u03a3.";

In this example, the variable text is 28 characters long even though the escape sequence is 6 charac-
ters long. The entire escape sequence represents a single character, so it is counted as such.

The length of any string can be returned by using the length property, as follows:

console.log(text.length); // 28

This property returns the number of 16-bit characters in the string.

48 ❘ CHAPTER 3 Language Basics

NOTE If a string contains double–byte characters, the length property may not
accurately return the number of characters in the string. Mitigation strategies for
this are detailed in the Basic Reference Types chapter.

The Nature of Strings
Strings are immutable in ECMAScript, meaning that once they are created, their values cannot
change. To change the string held by a variable, the original string must be destroyed and the variable
filled with another string containing a new value, like this:

let lang = "Java";
lang = lang + "Script";

Here, the variable lang is defined to contain the string "Java". On the next line, lang is redefined
to combine "Java" with "Script", making its value "JavaScript". This happens by creating a new
string with enough space for 10 characters and then filling that string with "Java" and "Script".
The last step in the process is to destroy the original string "Java" and the string "Script", because
neither is necessary anymore. All of this happens behind the scenes, which is why older browsers
(such as pre–1.0 versions of Firefox and Internet Explorer 6.0) had very slow string concatenation.
These inefficiencies were addressed in later versions of these browsers.

Converting to a String
There are two ways to convert a value into a string. The first is to use the toString() method that
almost every value has. This method’s only job is to return the string equivalent of the value. Consider
this example:

let age = 11;
let ageAsString = age.toString(); // the string "11"
let found = true;
let foundAsString = found.toString(); // the string "true"

The toString() method is available on values that are numbers, Booleans, objects, and strings. (Yes,
each string has a toString() method that simply returns a copy of itself.) If a value is null or
undefined, this method is not available.

In most cases, toString() doesn’t have any arguments. However, when used on a number value,
toString() actually accepts a single argument: the radix in which to output the number. By default,
toString() always returns a string that represents the number as a decimal, but by passing in a
radix, toString() can output the value in binary, octal, hexadecimal, or any other valid base, as in
this example:

let num = 10;
console.log(num.toString()); // "10"
console.log(num.toString(2)); // "1010"
console.log(num.toString(8)); // "12"
console.log(num.toString(10)); // "10"
console.log(num.toString(16)); // "a"

Data Types ❘ 49

This example shows how the output of toString() can change for numbers when providing a radix.
The value 10 can be output into any number of numeric formats. Note that the default (with no argu-
ment) is the same as providing a radix of 10.

If you’re not sure that a value isn’t null or undefined, you can use the String() casting function,
which always returns a string regardless of the value type. The String() function follows these rules:

➤➤ If the value has a toString() method, it is called (with no arguments) and the result
is returned.

➤➤ If the value is null, "null" is returned.

➤➤ If the value is undefined, "undefined" is returned.

Consider the following:

let value1 = 10;
let value2 = true;
let value3 = null;
let value4;

console.log(String(value1)); // "10"
console.log(String(value2)); // "true"
console.log(String(value3)); // "null"
console.log(String(value4)); // "undefined"

Here, four values are converted into strings: a number, a Boolean, null, and undefined. The result
for the number and the Boolean are the same as if toString() were called. Because toString()
isn’t available on "null" and "undefined", the String() method simply returns literal text for
those values.

NOTE You can also convert a value to a string by adding an empty string ("") to
that value using the plus operator (discussed in the “Operators” section later in
this chapter).

Template Literals
New in ECMAScript 6 is the capability to define strings using template literals. Unlike their single
and double quoted counterparts, template literals respect new line characters, and can be defined
spanning multiple lines:

let myMultiLineString = 'first line\nsecond line';
let myMultiLineTemplateLiteral = `first line
second line`;

console.log(myMultiLineString);
// first line
// second line"

50 ❘ CHAPTER 3 Language Basics

console.log(myMultiLineTemplateLiteral);
// first line
// second line

console.log(myMultiLineString === myMultiLinetemplateLiteral); // true

As the name suggests, template literals are especially useful when defining templates, such as HTML:

let pageHTML = `
<div>

 Jake

</div>`;

Because template literals will exactly match the whitespace inside the backticks, special care will
need to be applied when defining them. A correctly formatted template string may appear to have
improper indentation:

// This template literal has 25 spaces following the line return character
let myTemplateLiteral = `first line
 second line`;
console.log(myTemplateLiteral.length); // 47

// This template literal begins with a line return character
let secondTemplateLiteral = `
first line
second line`;
console.log(secondTemplateLiteral[0] === '\n'); // true

// This template literal has no unexpected whitespace characters
let thirdTemplateLiteral = `first line
second line`;
console.log(thirdTemplateLiteral[0]);
// first line
// second line

Interpolation
One of the most useful features of template literals is their support for interpolation, which allows
you to insert values at one or more places inside a single unbroken definition. Technically, template
literals aren’t strings, they are special JavaScript syntactical expressions that evaluate into strings.
Template literals are evaluated immediately when they are defined and converted into a string
instance, and any interpolated variables will be drawn from its immediate scope.

This can be accomplished using a JavaScript expression inside ${}:

let value = 5;
let exponent = 'second';

// Formerly, interpolation was accomplished as follows:
let interpolatedString =
 value + ' to the ' + exponent + ' power is ' + (value * value);

Data Types ❘ 51

// The same thing accomplished with template literals:
let interpolatedTemplateLiteral =
 `${ value } to the ${ exponent } power is ${ value * value }`;

console.log(interpolatedString); // 5 to the second power is 25
console.log(interpolatedTemplateLiteral); // 5 to the second power is 25

The value being interpolated will eventually be coerced into a string using toString(), but any
JavaScript expression can safely be interpolated. Nesting template strings is safe with no escap-
ing required:

console.log(`Hello, ${ `World` }!`); // Hello, World!

toString() is invoked to coerce expression result into string:

let foo = { toString: () => 'World' };
console.log(`Hello, ${ foo }!`); // Hello, World!

Invoking functions and methods inside interpolated expressions is allowed:

function capitalize(word) {
 return `${ word[0].toUpperCase() }${ word.slice(1) }`;
}
console.log(`${ capitalize('hello') }, ${ capitalize('world') }!`); // Hello, World!

Additionally, templates can safely interpolate their previous value:

let value = '';
function append() {
 value = `${value}abc`
 console.log(value);
}
append(); // abc
append(); // abcabc
append(); // abcabcabc

Template Literal Tag Functions
Template literals also support the ability to define tag functions, which are able to define custom
interpolation behavior. The tag function is passed the individual pieces after the template has been
split by the interpolation token and after the expressions have been evaluated.

A tag function is defined as a regular function and is applied to a template literal by being prepended
to it, as shown in the code that follows. The tag function will be passed the template literal split
into its pieces: the first argument is an array of the raw strings, and the remaining arguments are the
results of the evaluated expressions. The return value of this function will be the string evaluated
from the template literal.

This is best demonstrated by example:

let a = 6;
let b = 9;

52 ❘ CHAPTER 3 Language Basics

function simpleTag(strings, aValExpression, bValExpression, sumExpression) {
 console.log(strings);
 console.log(aValExpression);
 console.log(bValExpression);
 console.log(sumExpression);

 return 'foobar';
}

let untaggedResult = `${ a } + ${ b } = ${ a + b }`;
let taggedResult = simpleTag`${ a } + ${ b } = ${ a + b }`;
// ["", " + ", " = ", ""]
// 6
// 9
// 15

console.log(untaggedResult); // "6 + 9 = 15"
console.log(taggedResult); // "foobar"

Because there are a variable number of expression arguments, using the spread operator to combine
them into a single collection is usually prudent:

let a = 6;
let b = 9;

function simpleTag(strings, ...expressions) {
 console.log(strings);
 for(const expression of expressions) {
 console.log(expression);
 }

 return 'foobar';
}
let taggedResult = simpleTag`${ a } + ${ b } = ${ a + b }`;
// ["", " + ", " = ", ""]
// 6
// 9
// 15

console.log(taggedResult); // "foobar"

For a template literal with n interpolated values, the number of expression arguments to the tag func-
tion will always be n, and the number of string pieces in the first argument will always be exactly n + 1.
Therefore, if you wished to “zip” the strings and the evaluated expressions together into the default
returned string, you could do so as follows:

let a = 6;
let b = 9;

function zipTag(strings, ...expressions) {
 return strings[0] +
 expressions.map((e, i) => `${e}${strings[i + 1]}`)
 .join('');
}

let untaggedResult = `${ a } + ${ b } = ${ a + b }`;

Data Types ❘ 53

let taggedResult = zipTag`${ a } + ${ b } = ${ a + b }`;

console.log(untaggedResult); // "6 + 9 = 15"
console.log(taggedResult); // "6 + 9 = 15"

Raw Strings
It is also possible to use template literals to give you access to the raw template literal contents with-
out being converted into actual character representations, such as a new line or Unicode character.
This can be done by using the String.raw tag function, which is available by default.

// Unicode demo
// \u00A9 is the copyright symbol
console.log(`\u00A9`); // ©
console.log(String.raw`\u00A9`); // \u00A9

// Newline demo
console.log(`first line\nsecond line`);
// first line
// second line

console.log(String.raw`first line\nsecond line`); // "first line\nsecond line"

// This does not work for actual newline characters: they do not
// undergo conversion from their plaintext escaped equivalents
console.log(`first line
second line`);
// first line
// second line

console.log(String.raw`first line
second line`);
// first line
// second line

The raw values are also available as a property on each element in the string piece collection inside
the tag function:

function printRaw(strings) {
 console.log('Actual characters:');
 for (const string of strings) {
 console.log(string);
 }

 console.log('Escaped characters;');
 for (const rawString of strings.raw) {
 console.log(rawString);
 }
}

printRaw`\u00A9${ 'and' }\n`;
// Actual characters:
// ©
// (newline)
// Escaped characters:
// \u00A9
// \n

54 ❘ CHAPTER 3 Language Basics

The Symbol Type
New in ECMAScript 6 is the Symbol data type. Symbols are primitive values, and symbol instances
are unique and immutable. The purpose of a symbol is to be a guaranteed unique identifier for object
properties that does not risk property collision.

Although they may seem to share some similarities with private properties, symbols are not intended
to offer private property behavior (especially because the Object API offers methods to easily discover
symbol properties). Instead, symbols are intended to be used as unique tokens that can be used to key
special properties with something other than a string.

Basic Symbol Use
Symbols are instantiated using the Symbol function. Because it is its own primitive type, the typeof
operator will identify a symbol as symbol.

let sym = Symbol();
console.log(typeof sym); // symbol

When invoking the function, you can provide an optional string that can be used for identifying the
symbol instance when debugging. The string you provide is totally separate from the symbol’s defini-
tion or identity:

let genericSymbol = Symbol();
let otherGenericSymbol = Symbol();

let fooSymbol = Symbol('foo');
let otherFooSymbol = Symbol('foo');

console.log(genericSymbol == otherGenericSymbol); // false
console.log(fooSymbol == otherFooSymbol); // false

Symbols do not have a literal string syntax, and this is central to their purpose. The specification
governing how symbols operate allows you to create a new Symbol instance and use it to key a
new property on an object with the guarantee that you will not be overwriting an existing object
property—irrespective of whether it is using a string or symbol as a key.

let genericSymbol = Symbol();
console.log(genericSymbol); // Symbol()

let fooSymbol = Symbol('foo');
console.log(fooSymbol); // Symbol(foo);

Importantly, the Symbol function cannot be used with the new keyword. The purpose of this is to
avoid symbol object wrappers, as is possible with Boolean, String, and Number, which support con-
structor behavior and instantiate a primitive wrapper object:

let myBoolean = new Boolean();
console.log(typeof myBoolean); // "object"

let myString = new String();
console.log(typeof myString); // "object"

Data Types ❘ 55

let myNumber = new Number();
console.log(typeof myNumber); // "object"

let mySymbol = new Symbol(); // TypeError: Symbol is not a constructor

Should you want to utilize an object wrapper, you can make use of the Object() function:

let mySymbol = Symbol();
let myWrappedSymbol = Object(mySymbol);
console.log(typeof myWrappedSymbol); // "object"

Using the Global Symbol Registry
In scenarios where different parts of the runtime would like to share and reuse a symbol instance, it is
possible to create and reuse symbols in a string-keyed global symbol registry.

This behavior can be achieved using Symbol.for():

let fooGlobalSymbol = Symbol.for('foo');
console.log(typeof fooGlobalSymbol); // "object"

Symbol.for() is an idempotent operation for each string key. The first time it is called with a given
string, it will check the global runtime registry, find that no symbol exists, generate a new sym-
bol instance, and add it to the registry. Additional invocations with the same string key will check
the global runtime registry, find that a symbol does exist for that string, and return that symbol
instance instead.

let fooGlobalSymbol = Symbol.for('foo'); // creates new symbol
let otherFooGlobalSymbol = Symbol.for('foo'); // reuses existing symbol

console.log(fooGlobalSymbol === otherFooGlobalSymbol); // true

Symbols defined in the global registry are totally distinct from symbols created using Symbol(), even
if they share a description:

let localSymbol = Symbol('foo');
let globalSymbol = Symbol.for('foo');

console.log(localSymbol === globalSymbol); // false

The global registry requires string keys, so anything you provide as an argument to Symbol.for()
will be converted to a string. Additionally, the key used for the registry will also be used as the symbol
description.

let emptyGlobalSymbol = Symbol.for();
console.log(emptyGlobalSymbol); // Symbol(undefined)

It is possible to check against the global registry using Symbol.keyFor(), which accepts a sym-
bol and will return the global string key for that global symbol, or undefined if the symbol is not a
global symbol.

// Create global symbol
let s = Symbol.for('foo');
console.log(Symbol.keyFor(s)); // foo

// Create regular symbol
let s2 = Symbol('bar');
console.log(Symbol.keyFor(s2)); // undefined

56 ❘ CHAPTER 3 Language Basics

Using Symbol.keyFor() with a non-symbol will throw a TypeError:

Symbol.keyFor(123); // TypeError: 123 is not a symbol

Using Symbols as Properties
Anywhere you can normally use a string or number property, you can also use a symbol. This
includes object literal properties and Object.defineProperty()/Object.defineProperties().
An object literal can only use a symbol as a property inside the computed property syntax.

let s1 = Symbol('foo'),
 s2 = Symbol('bar'),
 s3 = Symbol('baz'),
 s4 = Symbol('qux');

let o = {
 [s1]: 'foo val'
};
// Also valid: o[s1] = 'foo val';

console.log(o);
// {Symbol{foo}: foo val}

Object.defineProperty(o, s2, {value: 'bar val'});

console.log(o);
// {Symbol{foo}: foo val, Symbol(bar): bar val}

Object.defineProperties(o, {
 [s3]: {value: 'baz val'},
 [s4]: {value: 'qux val'}
});

console.log(o);
// {Symbol{foo}: foo val, Symbol(bar): bar val,
// Symbol{baz}: baz val, Symbol(qux): qux val}

Just as Object.getOwnPropertyNames() returns an array of regular properties on an object
instance, Object.getOwnPropertySymbols() returns an array of symbol properties on an
object instance. The return values of these two methods are mutually exclusive. Object
.getOwnPropertyDescriptors() will return an object containing both regular and symbol
property descriptors. Reflect.ownKeys() will return both types of keys:

let s1 = Symbol('foo'),
 s2 = Symbol('bar');

let o = {
 [s1]: 'foo val',
 [s2]: 'bar val',
 baz: 'baz val',
 qux: 'qux val'
};

Data Types ❘ 57

console.log(Object.getOwnPropertySymbols(o));
// [Symbol(foo), Symbol(bar)]

console.log(Object.getOwnPropertyNames(o));
// ["baz", "qux"]

console.log(Object.getOwnPropertyDescriptors(o));
// {baz: {...}, qux: {...}, Symbol(foo): {...}, Symbol(bar): {...}}

console.log(Reflect.ownKeys(o));
// ["baz", "qux", Symbol(foo), Symbol(bar)]

Because a property counts as a reference to that symbol in memory, Symbols are not lost if directly
created and used as properties. However, declining to keep an explicit reference to a property means
that traversing all the object’s symbol properties will be required to recover the property key:

let o = {
 [Symbol('foo')]: 'foo val',
 [Symbol('bar')]: 'bar val'
};

console.log(o);
// {Symbol(foo): "foo val", Symbol(bar): "bar val"}

let barSymbol = Object.getOwnPropertySymbols(o)
 .find((symbol) => symbol.toString().match(/bar/));

console.log(barSymbol);
// Symbol(bar)

Well-Known Symbols
Along with the addition of symbols, ECMAScript 6 also introduced a collection of well-known
symbols that would be used throughout the language to expose internal language behaviors for direct
access, overriding, or emulating. These well-known symbols exist as string properties on the Symbol
factory function.

One of the primary utilities of these well-known symbols is redefining them as to alter the behavior
of the native language constructs. For example, because it is known how the for-of loop will use the
Symbol.iterator property on whatever object is provided to it, it is possible to provide a custom
definition of Symbol.iterator’s value in a custom object in order to control how for-of behaves
when provided that object.

There is nothing special about these well-known symbols, they are regular string properties on the
Symbol global that key an instance of a symbol. Each well-defined symbol property is non-writeable,
non-enumerable, and non-configurable.

NOTE In discussions about the ECMAScript specification, you will frequently
see these symbols referred to by their specification names, which are prefixed
with @@. For example, @@iterator refers to Symbol.iterator.

58 ❘ CHAPTER 3 Language Basics

Symbol.asyncIterator
Per the ECMAScript specification, this symbol is used as a property for “A method that returns the
default AsyncIterator for an object. Called by the semantics of the for-await-of statement”. It is
used to identify the function that implements the asynchronous iterator API.

Language constructs such as the for-await-of loop make use of this function to perform asyn-
chronous iteration. They will invoke the function keyed by Symbol.asyncIterator and expect it
to return an object which implements the Iterator API. In many cases, this will take the form of an
AsyncGenerator, an object which implements this API:

class Foo {
 async *[Symbol.asyncIterator]() {}
}

let f = new Foo();

console.log(f[Symbol.asyncIterator]());
// AsyncGenerator {<suspended>}

Specifically, the object produced by the Symbol.asyncIterator function should sequentially pro-
duce Promise instances via its next() method. This can be through explicit next() method defini-
tion or implicitly through an async generator function:

class Emitter {
 constructor(max) {
 this.max = max;
 this.asyncIdx = 0;
 }

 async *[Symbol.asyncIterator]() {
 while(this.asyncIdx < this.max) {
 yield new Promise((resolve) => resolve(this.asyncIdx++));
 }
 }
}

async function asyncCount() {
 let emitter = new Emitter(5);

 for await(const x of emitter) {
 console.log(x);
 }
}

asyncCount();
// 0
// 1
// 2
// 3
// 4

Data Types ❘ 59

NOTE Symbol.asyncIterator is part of the ES2018 specification, and so only
very modern browser versions will support it. More details on asynchronous
iteration and the for-await-of loop can be found in Appendix A.

Symbol.hasInstance
Per the ECMAScript specification, this symbol is used as a property for “A method that determines if
a constructor object recognizes an object as one of the constructor’s instances. Called by the seman-
tics of the instanceof operator”. The instanceof operator provides a way of determining if an
object instance has a prototype in its prototype chain. Typical use of the instanceof is as follows:

function Foo() {}
let f = new Foo();
console.log(f instanceof Foo); // true

class Bar {}
let b = new Bar();
console.log(b instanceof Bar); // true

In ES6, the instanceof operator is using a Symbol.hasInstance function to evaluate this relation-
ship. The Symbol.hasInstance keys a function which performs the same behavior but with the
operands reversed:

function Foo() {}
let f = new Foo();
console.log(Foo[Symbol.hasInstance](f)); // true

class Bar {}
let b = new Bar();
console.log(Bar[Symbol.hasInstance](b)); // true

This property is defined on the Function prototype, and therefore it is automatically available by
default to all function and class definitions. Because the instanceof operator will seek the property
definition on the prototype chain like any other property, it is possible to redefine the function on an
inherited class as a static method:

class Bar {}
class Baz extends Bar {
 static [Symbol.hasInstance]() {
 return false;
 }
}

let b = new Baz();
console.log(Bar[Symbol.hasInstance](b)); // true
console.log(b instanceof Bar); // true
console.log(Baz[Symbol.hasInstance](b)); // false
console.log(b instanceof Baz); // false

60 ❘ CHAPTER 3 Language Basics

Symbol.isConcatSpreadable
Per the ECMAScript specification, this symbol is used as a property for “A Boolean valued property
that if true indicates that an object should be flattened to its array elements by Array.prototype
.concat()”. The Array.prototype.concat method in ES6 will select how to join an array-like
object to the array instance based on the type of object it is passed. The value of Symbol
.isConcatSpreadable allows you to override this behavior.

Array objects by default will be flattened into the existing array; a value of false or falsy value will
append the entire object to the array. Array-like objects by default will be appended to the array; a
value of true or truthy value will flatten the array-like object into the array instance. Other objects
which are not array-like will be ignored when Symbol.isConcatSpreadable is set to true.

let initial = ['foo'];

let array = ['bar'];
console.log(array[Symbol.isConcatSpreadable]); // undefined
console.log(initial.concat(array)); // ['foo', 'bar']
array[Symbol.isConcatSpreadable] = false;
console.log(initial.concat(array)); // ['foo', Array(1)]

let arrayLikeObject = { length: 1, 0: 'baz' };
console.log(arrayLikeObject[Symbol.isConcatSpreadable]); // undefined
console.log(initial.concat(arrayLikeObject)); // ['foo', {...}]
arrayLikeObject[Symbol.isConcatSpreadable] = true;
console.log(initial.concat(arrayLikeObject)); // ['foo', 'baz']

let otherObject = new Set().add('qux');
console.log(otherObject[Symbol.isConcatSpreadable]); // undefined
console.log(initial.concat(otherObject)); // ['foo', Set(1)]
otherObject[Symbol.isConcatSpreadable] = true;
console.log(initial.concat(otherObject)); // ['foo']

Symbol.iterator
Per the ECMAScript specification, this symbol is used as a property for “A method that returns the
default Iterator for an object. Called by the semantics of the for-of statement”. It is used to identify
the function that implements the iterator API.

Language constructs such as the for-of loop make use of this function to perform iteration. They
will invoke the function keyed by Symbol.iterator and expect it to return an object which imple-
ments the Iterator API. In many cases, this will take the form of a Generator, an object which imple-
ments this API:

class Foo {
 *[Symbol.iterator]() {}
}

let f = new Foo();

console.log(f[Symbol.iterator]());
// Generator {<suspended>}

Data Types ❘ 61

Specifically, the object produced by the Symbol.iterator function should sequentially produce
values via its next() method. This can be through explicit next() method definition or implicitly
through a generator function:

class Emitter {
 constructor(max) {
 this.max = max;
 this.idx = 0;
 }

 *[Symbol.iterator]() {
 while(this.idx < this.max) {
 yield this.idx++;
 }
 }
}

function count() {
 let emitter = new Emitter(5);

 for (const x of emitter) {
 console.log(x);
 }
}

count();
// 0
// 1
// 2
// 3
// 4

NOTE Iterator definition is covered in depth in the Iterators and Generators
chapter.

Symbol.match
Per the ECMAScript specification, this symbol is used as a property for “A regular expression method
that matches the regular expression against a string. Called by the String.prototype.match()
method”. The String.prototype.match() method will use the function keyed by Symbol.match
to evaluate the expression. The regular expression prototype has this function defined by default, and
therefore all regular expression instances are valid parameters to the String method by default:

console.log(RegExp.prototype[Symbol.match]);
// ƒ [Symbol.match]() { [native code] }

console.log('foobar'.match(/bar/));
// ["bar", index: 3, input: "foobar", groups: undefined]

62 ❘ CHAPTER 3 Language Basics

Providing something other than a regular expression to this method will cause it to be converted to
a RegExp object. If you wish to circumvent this behavior and have the method use the parameter
directly, it is possible to pass something other than a regular expression instance to the match()
method by defining a Symbol.match function to supplant the behavior that would otherwise be
exhibited by the regular expression. This function has a single parameter which is the string instance
upon which match() is invoked. The return value is unrestricted:

class FooMatcher {
 static [Symbol.match](target) {
 return target.includes('foo');
 }
}

console.log('foobar'.match(FooMatcher)); // true
console.log('barbaz'.match(FooMatcher)); // false

class StringMatcher {
 constructor(str) {
 this.str = str;
 }

 [Symbol.match](target) {
 return target.includes(this.str);
 }
}

console.log('foobar'.match(new StringMatcher('foo'))); // true
console.log('barbaz'.match(new StringMatcher('qux'))); // false

Symbol.replace
Per the ECMAScript specification, this symbol is used as a property for “A regular expression method
that replaces matched substrings of a string. Called by the String.prototype.replace() method”.
The String.prototype.replace() method will use the function keyed by Symbol.replace to
evaluate the expression. The regular expression prototype has this function defined by default, and
therefore all regular expression instances are valid parameters to the String method by default:

console.log(RegExp.prototype[Symbol.replace]);
// ƒ [Symbol.replace]() { [native code] }

console.log('foobarbaz'.replace(/bar/, 'qux'));
// 'fooquxbaz'

Providing something other than a regular expression to this method will cause it to be converted to
a RegExp object. If you wish to circumvent this behavior and have the method use the parameter
directly, it is possible to pass something other than a regular expression instance to the replace()
method by defining a Symbol.replace function to supplant the behavior that would otherwise be
exhibited by the regular expression. This function has two parameters, the string instance upon which
replace() is invoked and the replacement string. The return value is unrestricted:

class FooReplacer {
 static [Symbol.replace](target, replacement) {
 return target.split('foo').join(replacement);
 }
}

Data Types ❘ 63

console.log('barfoobaz'.replace(FooReplacer, 'qux'));
// "barquxbaz"

class StringReplacer {
 constructor(str) {
 this.str = str;
 }

 [Symbol.replace](target, replacement) {
 return target.split(this.str).join(replacement);
 }
}

console.log('barfoobaz'.replace(new StringReplacer('foo'), 'qux'));
// "barquxbaz"

Symbol.search
Per the ECMAScript specification, this symbol is used as a property for “A regular expression method
that returns the index within a string that matches the regular expression. Called by the String
.prototype.search() method”. The String.prototype.search() method will use the func-
tion keyed by Symbol.search to evaluate the expression. The regular expression prototype has this
function defined by default, and therefore all regular expression instances are valid parameters to the
String method by default:

console.log(RegExp.prototype[Symbol.search]);
// ƒ [Symbol.search]() { [native code] }

console.log('foobar'.search(/bar/));
// 3

Providing something other than a regular expression to this method will cause it to be converted to
a RegExp object. If you wish to circumvent this behavior and have the method use the parameter
directly, it is possible to pass something other than a regular expression instance to the search()
method by defining a Symbol.search function to supplant the behavior that would otherwise be
exhibited by the regular expression. This function has a single parameter which is the string instance
upon which search() is invoked. The return value is unrestricted:

class FooSearcher {
 static [Symbol.search](target) {
 return target.indexOf('foo');
 }
}

console.log('foobar'.search(FooSearcher)); // 0
console.log('barfoo'.search(FooSearcher)); // 3
console.log('barbaz'.search(FooSearcher)); // -1

class StringSearcher {
 constructor(str) {
 this.str = str;
 }

64 ❘ CHAPTER 3 Language Basics

 [Symbol.search](target) {
 return target.indexOf(this.str);
 }
}

console.log('foobar'.search(new StringSearcher('foo'))); // 0
console.log('barfoo'.search(new StringSearcher('foo'))); // 3
console.log('barbaz'.search(new StringSearcher('qux'))); // -1

Symbol.species
Per the ECMAScript specification, this symbol is used as a property for “A function valued property
that is the constructor function that is used to create derived objects”. This is most commonly used
for build-in types which expose methods that instantiate derived objects for the return value of an
instance method. Defining a static getter method with Symbol.species allows you to override the
prototype definition for the newly created instance:

class Bar extends Array {}
class Baz extends Array {
 static get [Symbol.species]() {
 return Array;
 }
}

let bar = new Bar();
console.log(bar instanceof Array); // true
console.log(bar instanceof Bar); // true
bar = bar.concat('bar');
console.log(bar instanceof Array); // true
console.log(bar instanceof Bar); // true

let baz = new Baz();
console.log(baz instanceof Array); // true
console.log(baz instanceof Baz); // true
baz = baz.concat('baz');
console.log(baz instanceof Array); // true
console.log(baz instanceof Baz); // false

Symbol.split
Per the ECMAScript specification, this symbol is used as a property for “A regular expression
method that splits a string at the indices that match the regular expression. Called by the String
.prototype.split() method”. The String.prototype.split() method will use the function
keyed by Symbol.split to evaluate the expression. The regular expression prototype has this func-
tion defined by default, and therefore all regular expression instances are valid parameters to the
String method by default:

console.log(RegExp.prototype[Symbol.split]);
// ƒ [Symbol.split]() { [native code] }

console.log('foobarbaz'.split(/bar/));
// ['foo', 'baz']

Data Types ❘ 65

Providing something other than a regular expression to this method will cause it to be converted to
a RegExp object. If you wish to circumvent this behavior and have the method use the parameter
directly, it is possible to pass something other than a regular expression instance to the split()
method by defining a Symbol.split function to supplant the behavior that would otherwise be
exhibited by the regular expression. This function has a single parameter which is the string instance
upon which split() is invoked. The return value is unrestricted:

class FooSplitter {
 static [Symbol.split](target) {
 return target.split('foo');
 }
}

console.log('barfoobaz'.split(FooSplitter));
// ["bar", "baz"]

class StringSplitter {
 constructor(str) {
 this.str = str;
 }

 [Symbol.split](target) {
 return target.split(this.str);
 }
}

console.log('barfoobaz'.split(new StringSplitter('foo')));
// ["bar", "baz"]

Symbol.toPrimitive
Per the ECMAScript specification, this symbol is used as a property for “A method that converts an
object to a corresponding primitive value. Called by the ToPrimitive abstract operation”. There
are a number of built-in operations which will attempt to coerce an object into a primitive value: a
string, a number, or an unspecified primitive type. For a custom object instance, it is possible to divert
this behavior by defining a function on the instance’s Symbol.toPrimitive property.

Based on a string parameter provided to the function (either string, number, or default), you are
able to control the returned primitive:

class Foo {}
let foo = new Foo();

console.log(3 + foo); // "3[object Object]"
console.log(3 - foo); // NaN
console.log(String(foo)); // "[object Object]"

class Bar {
 constructor() {
 this[Symbol.toPrimitive] = function(hint) {
 switch (hint) {
 case 'number':
 return 3;
 case 'string':

66 ❘ CHAPTER 3 Language Basics

 return 'string bar';
 case 'default':
 default:
 return 'default bar';
 }
 }
 }
}
let bar = new Bar();

console.log(3 + bar); // "3default bar"
console.log(3 - bar); // 0
console.log(String(bar)); // "string bar"

Symbol.toStringTag
Per the ECMAScript specification, this symbol is used as a property for “A String valued property that
is used in the creation of the default string description of an object. Accessed by the built-in method
Object.prototype.toString()”.

Object identification via the toString() method will retrieve the instance identifier specified by
Symbol.toStringTag, defaulting to Object. Built-in types have this value already specified, but
custom class instances require explicit definition:

let s = new Set();

console.log(s); // Set(0) {}
console.log(s.toString()); // [object Set]
console.log(s[Symbol.toStringTag]); // Set

class Foo {}
let foo = new Foo();

console.log(foo); // Foo {}
console.log(foo.toString()); // [object Object]
console.log(foo[Symbol.toStringTag]); // undefined

class Bar {
 constructor() {
 this[Symbol.toStringTag] = 'Bar';
 }
}
let bar = new Bar();

console.log(bar); // Bar {}
console.log(bar.toString()); // [object Bar]
console.log(bar[Symbol.toStringTag]); // Bar

Symbol.unscopables
Per the ECMAScript specification, this symbol is used as a property for “An object valued prop-
erty whose own and inherited property names are property names that are excluded from the with
environment bindings of the associated object”. Setting this symbol so it keys an object mapping a
corresponding property to true will prevent a with environment binding, as shown here:

let o = { foo: 'bar' };

Data Types ❘ 67

with (o) {
 console.log(foo); // bar
}

o[Symbol.unscopables] = {
 foo: true
};

with (o) {
 console.log(foo); // ReferenceError
}

NOTE It’s not recommended to use with, so using Symbol.unscopables is also
not recommended.

The Object Type
Objects in ECMAScript start out as nonspecific groups of data and functionality. Objects are created
by using the new operator followed by the name of the object type to create. Developers create their
own objects by creating instances of the Object type and adding properties and/or methods to it, as
shown here:

let o = new Object();

This syntax is similar to Java, although ECMAScript requires parentheses to be used only when pro-
viding arguments to the constructor. If there are no arguments, as in the following example, then the
parentheses can be omitted safely (though that’s not recommended):

let o = new Object; // legal, but not recommended

Instances of Object aren’t very useful on their own, but the concepts are important to understand
because, similar to java.lang.Object in Java, the Object type in ECMAScript is the base from
which all other objects are derived. All of the properties and methods of the Object type are also
present on other, more specific objects.

Each Object instance has the following properties and methods:

➤➤ constructor—The function that was used to create the object. In the previous example, the
constructor is the Object() function.

➤➤ hasOwnProperty(propertyName)—Indicates if the given property exists on the object
instance (not on the prototype). The property name must be specified as a string (for
example, o.hasOwnProperty("name")).

➤➤ isPrototypeof(object)—Determines if the object is a prototype of another object. (Proto-
types are discussed in Chapter 5.)

➤➤ propertyIsEnumerable(propertyName)—Indicates if the given property can be enumerated
using the for-in statement (discussed later in this chapter). As with hasOwnProperty(), the
property name must be a string.

68 ❘ CHAPTER 3 Language Basics

➤➤ toLocaleString()—Returns a string representation of the object that is appropriate for the
locale of execution environment.

➤➤ toString()—Returns a string representation of the object.

➤➤ valueOf()—Returns a string, number, or Boolean equivalent of the object. It often returns
the same value as toString().

Because Object is the base for all objects in ECMAScript, every object has these base properties and
methods. Chapters 5 and 6 cover the specifics of how this occurs.

NOTE Technically speaking, the behavior of objects in ECMA-262 need not
necessarily apply to other objects in JavaScript. Objects that exist in the browser
environment, such as those in the Browser Object Model (BOM) and Document
Object Model (DOM), are considered host objects because they are provided and
defined by the host implementation. Host objects aren’t governed by ECMA-262
and, as such, may or may not directly inherit from Object.

OPERATORS

ECMA-262 describes a set of operators that can be used to manipulate data values. The operators
range from mathematical operations (such as addition and subtraction) and bitwise operators to
relational operators and equality operators. Operators are unique in ECMAScript in that they can be
used on a wide range of values, including strings, numbers, Booleans, and even objects. When used on
objects, operators typically call the valueOf() and/or toString() method to retrieve a value they
can work with.

Unary Operators
Operators that work on only one value are called unary operators. They are the simplest operators in
ECMAScript.

Increment/Decrement
The increment and decrement operators are taken directly from C and come in two versions: prefix
and postfix. The prefix versions of the operators are placed before the variable they work on; the
postfix ones are placed after the variable. To use a prefix increment, which adds 1 to a numeric value,
you place two plus signs (++) in front of a variable like this:

let age = 29;
++age;

In this example, the prefix increment changes the value of age to 30 (adding 1 to its previous value
of 29). This is effectively equal to the following:

let age = 29;
age = age + 1;

Operators ❘ 69

The prefix decrement acts in a similar manner, subtracting 1 from a numeric value. To use a prefix
decrement, place two minus signs (--) before a variable, as shown here:

let age = 29;
--age;

Here the age variable is decremented to 28 (subtracting 1 from 29).

When using either a prefix increment or a prefix decrement, the variable’s value is changed before
the statement is evaluated. (In computer science, this is usually referred to as having a side effect.)
Consider the following:

let age = 29;
let anotherAge = --age + 2;

console.log(age); // 28
console.log(anotherAge); // 30

In this example, the variable anotherAge is initialized with the decremented value of age plus 2.
Because the decrement happens first, age is set to 28, and then 2 is added, resulting in 30.

The prefix increment and decrement are equal in terms of order of precedence in a statement and are
therefore evaluated left to right. Consider this example:

let num1 = 2;
let num2 = 20;
let num3 = --num1 + num2;
let num4 = num1 + num2;
console.log(num3); // 21
console.log(num4); // 21

Here, num3 is equal to 21 because num1 is decremented to 1 before the addition occurs. The variable
num4 also contains 21, because the addition is also done using the changed values.

The postfix versions of increment and decrement use the same syntax (++ and --, respectively) but
are placed after the variable instead of before it. Postfix increment and decrement differ from the
prefix versions in one important way: the increment or decrement doesn’t occur until after the con-
taining statement has been evaluated. In certain circumstances, this difference doesn’t matter, as in
this example:

let age = 29;
age++;

Moving the increment operator after the variable doesn’t change what these statements do, because
the increment is the only operation occurring. However, when mixed together with other operations,
the difference becomes apparent, as in the following example:

let num1 = 2;
let num2 = 20;
let num3 = num1-- + num2;
let num4 = num1 + num2;
console.log(num3); // 22
console.log(num4); // 21

70 ❘ CHAPTER 3 Language Basics

With just one simple change in this example, using postfix decrement instead of prefix, you can see
the difference. In the prefix example, num3 and num4 both ended up equal to 21, whereas this exam-
ple ends with num3 equal to 22 and num4 equal to 21. The difference is that the calculation for num3
uses the original value of num1 (2) to complete the addition, whereas num4 is using the decremented
value (1).

All four of these operators work on any values, meaning not just integers but strings, Booleans,
floating-point values, and objects. The increment and decrement operators follow these rules regard-
ing values:

➤➤ When used on a string that is a valid representation of a number, convert to a number and
apply the change. The variable is changed from a string to a number.

➤➤ When used on a string that is not a valid number, the variable’s value is set to NaN. The vari-
able is changed from a string to a number.

➤➤ When used on a Boolean value that is false, convert to 0 and apply the change. The vari-
able is changed from a Boolean to a number.

➤➤ When used on a Boolean value that is true, convert to 1 and apply the change. The variable
is changed from a Boolean to a number.

➤➤ When used on a floating-point value, apply the change by adding or subtracting 1.

➤➤ When used on an object, call its valueOf() method (discussed more in Chapter 5) to get
a value to work with. Apply the other rules. If the result is NaN, then call toString() and
apply the other rules again. The variable is changed from an object to a number.

The following example demonstrates some of these rules:

let s1 = "2";
let s2 = "z";
let b = false;
let f = 1.1;
let o = {
 valueOf() {
 return -1;
 }
};

s1++; // value becomes numeric 3
s2++; // value becomes NaN
b++; // value becomes numeric 1
f--; // value becomes 0.10000000000000009 (due to floating-point inaccuracies)
o--; // value becomes numeric -2

Unary Plus and Minus
The unary plus and minus operators are familiar symbols to most developers and operate the same
way in ECMAScript as they do in high-school math. The unary plus is represented by a single plus
sign (+) placed before a variable and does nothing to a numeric value, as shown in this example:

let num = 25;
num = +num;
console.log(num); // 25

Operators ❘ 71

When the unary plus is applied to a nonnumeric value, it performs the same conversion as the
Number() casting function: the Boolean values of false and true are converted to 0 and 1, string
values are parsed according to a set of specific rules, and objects have their valueOf() and/or
toString() method called to get a value to convert.

The following example demonstrates the behavior of the unary plus when acting on different
data types:

let s1 = "01";
let s2 = "1.1";
let s3 = "z";
let b = false;
let f = 1.1;
let o = {
 valueOf() {
 return -1;
 }
};

s1 = +s1; // value becomes numeric 1
s2 = +s2; // value becomes numeric 1.1
s3 = +s3; // value becomes NaN
b = +b; // value becomes numeric 0
f = +f; // no change, still 1.1
o = +o; // value becomes numeric -1

The unary minus operator’s primary use is to negate a numeric value, such as converting 1 into –1.
The simple case is illustrated here:

let num = 25;
num = -num;
console.log(num); // -25

When used on a numeric value, the unary minus simply negates the value (as in this example). When
used on nonnumeric values, unary minus applies all of the same rules as unary plus and then negates
the result, as shown here:

let s1 = "01";
let s2 = "1.1";
let s3 = "z";
let b = false;
let f = 1.1;
let o = {
 valueOf() {
 return -1;
 }
};

s1 = -s1; // value becomes numeric -1
s2 = -s2; // value becomes numeric -1.1
s3 = -s3; // value becomes NaN
b = -b; // value becomes numeric 0
f = -f; // change to -1.1
o = -o; // value becomes numeric 1

72 ❘ CHAPTER 3 Language Basics

The unary plus and minus operators are used primarily for basic arithmetic but can also be useful for
conversion purposes, as illustrated in the previous example.

Bitwise Operators
The next set of operators works with numbers at their very base level, with the bits that represent
them in memory. All numbers in ECMAScript are stored in IEEE–754 64-bit format, but the bitwise
operations do not work directly on the 64-bit representation. Instead, the value is converted into a
32-bit integer, the operation takes place, and the result is converted back into 64 bits. To the devel-
oper, it appears that only the 32-bit integer exists because the 64-bit storage format is transparent.
With that in mind, consider how 32-bit integers work.

Signed integers use the first 31 of the 32 bits to rep-
resent the numeric value of the integer. The 32nd bit
represents the sign of the number: 0 for positive or 1
for negative. Depending on the value of that bit, called
the sign bit, the format of the rest of the number is
determined. Positive numbers are stored in true binary
format, with each of the 31 bits representing a power
of 2, starting with the first bit (called bit 0), represent-
ing 20, the second bit represents 21, and so on. If any
bits are unused, they are filled with 0 and essentially
ignored. For example, the number 18 is represented
as 00000000000000000000000000010010, or more succinctly as 10010. These are the five most
significant bits and can be used, by themselves, to determine the actual value (see Figure 3-1).

Negative numbers are also stored in binary code but in a format called two’s complement. The two’s
complement of a number is calculated in three steps:

1. Determine the binary representation of the absolute value (for example, to find –18, first
determine the binary representation of 18).

2. Find the one’s complement of the number, which essentially means that every 0 must be
replaced with a 1, and vice versa.

3. Add 1 to the result.

Using this process to determine the binary representation –18, start with the binary representation of
18, which is the following:

0000 0000 0000 0000 0000 0000 0001 0010

Next, take the one’s complement, which is the inverse of this number:

1111 1111 1111 1111 1111 1111 1110 1101

Finally, add 1 to the one’s complement as follows:

1111 1111 1111 1111 1111 1111 1110 1101
 1

1111 1111 1111 1111 1111 1111 1110 1110

1 0 0 1 0
(24x1) + (23x0) + (22x0) + (21x1) + (20x0)

16 + 0 0 02+ + +

18

FIGURE 3-1:

Operators ❘ 73

So the binary equivalent of –18 is 11111111111111111111111111101110. Keep in mind that you
have no access to bit 31 when dealing with signed integers.

ECMAScript does its best to keep all of this information from you. When outputting a negative num-
ber as a binary string, you get the binary code of the absolute value preceded by a minus sign, as in
this example:

let num = -18;
console.log(num.toString(2)); // "-10010"

When you convert the number –18 to a binary string, the result is –10010. The conversion process
interprets the two’s complement and represents it in an arguably more logical form.

NOTE By default, all integers are represented as signed in ECMAScript. There
is, however, such a thing as an unsigned integer. In an unsigned integer, the 32nd
bit doesn’t represent the sign because there are only positive numbers. Unsigned
integers also can be larger, because the extra bit becomes part of the number
instead of an indicator of the sign.

When you apply bitwise operators to numbers in ECMAScript, a conversion takes place behind the
scenes: the 64-bit number is converted into a 32-bit number, the operation is performed, and then
the 32-bit result is stored back into a 64-bit number. This gives the illusion that you’re dealing with
true 32-bit numbers, which makes the binary operations work in a way similar to the operations of
other languages. A curious side effect of this conversion is that the special values NaN and Infinity
both are treated as equivalent to 0 when used in bitwise operations.

If a bitwise operator is applied to a nonnumeric value, the value is first converted into a number using
the Number() function (this is done automatically) and then the bitwise operation is applied. The
resulting value is a number.

Bitwise NOT
The bitwise NOT is represented by a tilde (~) and simply returns the one’s complement of the number.
Bitwise NOT is one of just a few ECMAScript operators related to binary mathematics. Consider
this example:

let num1 = 25; // binary 00000000000000000000000000011001
let num2 = ~num1; // binary 11111111111111111111111111100110
console.log(num2); // -26

Here, the bitwise NOT operator is used on 25, producing –26 as the result. This is the end effect of
the bitwise NOT: it negates the number and subtracts 1. The same outcome is produced with the
following code:

let num1 = 25;
let num2 = -num1 - 1;
console.log(num2); // "-26"

74 ❘ CHAPTER 3 Language Basics

Realistically, though this returns the same result, the bitwise operation is much faster because it works
at the very lowest level of numeric representation.

Bitwise AND
The bitwise AND operator is indicated by the ampersand character (&) and works on two values.
Essentially, bitwise AND lines up the bits in each number and then, using the rules in the following
truth table, performs an AND operation between the two bits in the same position.

BIT FROM FIRST NUMBER BIT FROM SECOND NUMBER RESULT

1 1 1

1 0 0

0 1 0

0 0 0

A bitwise AND operation returns 1 if both bits are 1. It returns 0 if any bits are 0.

As an example, to AND the numbers 25 and 3 together, use the following code:

let result = 25 & 3;
console.log(result); // 1

The result of a bitwise AND between 25 and 3 is 1. Why is that? Take a look:

 25 = 0000 0000 0000 0000 0000 0000 0001 1001
 3 = 0000 0000 0000 0000 0000 0000 0000 0011

AND = 0000 0000 0000 0000 0000 0000 0000 0001

As you can see, only one bit (bit 0) contains a 1 in both 25 and 3. Because of this, every other bit of
the resulting number is set to 0, making the result equal to 1.

Bitwise OR
The bitwise OR operator is represented by a single pipe character (|) and also works on two num-
bers. Bitwise OR follows the rules in this truth table:

BIT FROM FIRST NUMBER BIT FROM SECOND NUMBER RESULT

1 1 1

1 0 1

0 1 1

0 0 0

Operators ❘ 75

A bitwise OR operation returns 1 if at least one bit is 1. It returns 0 only if both bits are 0.

Using the same example as for bitwise AND, if you want to OR the numbers 25 and 3 together, the
code looks like this:

let result = 25 | 3;
console.log(result); // 27

The result of a bitwise OR between 25 and 3 is 27:

 25 = 0000 0000 0000 0000 0000 0000 0001 1001
 3 = 0000 0000 0000 0000 0000 0000 0000 0011

 OR = 0000 0000 0000 0000 0000 0000 0001 1011

In each number, four bits are set to 1, so these are passed through to the result. The binary code
11011 is equal to 27.

Bitwise XOR
The bitwise XOR operator is represented by a caret (^) and also works on two values. Here is the
truth table for bitwise XOR:

BIT FROM FIRST NUMBER BIT FROM SECOND NUMBER RESULT

1 1 0

1 0 1

0 1 1

0 0 0

Bitwise XOR is different from bitwise OR in that it returns 1 only when exactly one bit has a value of
1 (if both bits contain 1, it returns 0).

To XOR the numbers 25 and 3 together, use the following code:

let result = 25 ^ 3;
console.log(result); // 26

The result of a bitwise XOR between 25 and 3 is 26, as shown here:

 25 = 0000 0000 0000 0000 0000 0000 0001 1001
 3 = 0000 0000 0000 0000 0000 0000 0000 0011

XOR = 0000 0000 0000 0000 0000 0000 0001 1010

Four bits in each number are set to 1; however, the first bit in both numbers is 1, so that becomes 0 in
the result. All of the other 1s have no corresponding 1 in the other number, so they are passed directly
through to the result. The binary code 11010 is equal to 26. (Note that this is one less than when
performing bitwise OR on these numbers.)

76 ❘ CHAPTER 3 Language Basics

Left Shift
The left shift is represented by two less-than signs (<<) and shifts all bits in a number to the left by the
number of positions given. For example, if the number 2 (which is equal to 10 in binary) is shifted
5 bits to the left, the result is 64 (which is equal to 1000000 in binary), as shown here:

let oldValue = 2; // equal to binary 10
let newValue = oldValue << 5; // equal to binary 1000000 which is decimal 64

Note that when the bits are shifted, five empty bits remain to the right of the number. The left shift
fills these bits with 0s to make the result a complete 32-bit number (see Figure 3-2).

Note that left shift preserves the sign of the number it’s operating on. For instance, if –2 is shifted to
the left by five spaces, it becomes –64, not positive 64.

Signed Right Shift
The signed right shift is represented by two greater-than signs (>>) and shifts all bits in a 32-bit
number to the right while preserving the sign (positive or negative). A signed right shift is the exact
opposite of a left shift. For example, if 64 is shifted to the right five bits, it becomes 2:

let oldValue = 64; // equal to binary 1000000
let newValue = oldValue >> 5; // equal to binary 10 which is decimal 2

Once again, when bits are shifted, the shift creates empty bits. This time, the empty bits occur at the
left of the number but after the sign bit (see Figure 3-3). Once again, ECMAScript fills these empty
bits with the value in the sign bit to create a complete number.

Unsigned Right Shift
The unsigned right shift is represented by three greater-than signs (>>>) and shifts all bits in a 32-bit
number to the right. For numbers that are positive, the effect is the same as a signed right shift.
Using the same example as for the signed-right-shift example, if 64 is shifted to the right five bits, it
becomes 2:

let oldValue = 64; // equal to binary 1000000
let newValue = oldValue >>> 5; // equal to binary 10 which is decimal 2

0 1 0

The number 2"Secret" sign bit

0 1 0 0 0 0 0 0

The number 2 shifted to the left five bits (the number 64)

Padded with zeros

FIGURE 3-2:

Operators ❘ 77

For numbers that are negative, however, something quite different happens. Unlike signed right shift,
the empty bits get filled with zeros regardless of the sign of the number. For positive numbers, it
has the same effect as a signed right shift; for negative numbers, the result is quite different. The
unsigned-right-shift operator considers the binary representation of the negative number to be rep-
resentative of a positive number instead. Because the negative number is the two’s complement of its
absolute value, the number becomes very large, as you can see in the following example:

let oldValue = -64; // equal to binary 11111111111111111111111111000000
let newValue = oldValue >>> 5; // equal to decimal 134217726

When an unsigned right shift is used to shift –64 to the right by five bits, the result is 134217726.
This happens because the binary representation of –64 is 11111111111111111111111111000000,
but because the unsigned right shift treats this as a positive number, it considers the value to be
4294967232. When this value is shifted to the right by five bits, it becomes 00000111111111111111
111111111110, which is 134217726.

Boolean Operators
Almost as important as equality operators, Boolean operators are what make a programming lan-
guage function. Without the capability to test relationships between two values, statements such as
if...else and loops wouldn’t be useful. There are three Boolean operators: NOT, AND, and OR.

Logical NOT
The logical NOT operator is represented by an exclamation point (!) and may be applied to any
value in ECMAScript. This operator always returns a Boolean value, regardless of the data type it’s
used on. The logical NOT operator first converts the operand to a Boolean value and then negates it,
meaning that the logical NOT behaves in the following ways:

➤➤ If the operand is an object, false is returned.

➤➤ If the operand is an empty string, true is returned.

➤➤ If the operand is a nonempty string, false is returned.

➤➤ If the operand is the number 0, true is returned.

0 1 0 0 0 0 0 0

The number 64"Secret" sign bit

0 1 0

The number 64 shifted to the right five bits (the number 2)

Padded with zeros

FIGURE 3-3:

78 ❘ CHAPTER 3 Language Basics

➤➤ If the operand is any number other than 0 (including Infinity), false is returned.

➤➤ If the operand is null, true is returned.

➤➤ If the operand is NaN, true is returned.

➤➤ If the operand is undefined, true is returned.

The following example illustrates this behavior:

console.log(!false); // true
console.log(!"blue"); // false
console.log(!0); // true
console.log(!NaN); // true
console.log(!""); // true
console.log(!12345); // false

The logical NOT operator can also be used to convert a value into its Boolean equivalent. By using
two NOT operators in a row, you can effectively simulate the behavior of the Boolean() casting
function. The first NOT returns a Boolean value no matter what operand it is given. The second NOT
negates that Boolean value and so gives the true Boolean value of a variable. The end result is the
same as using the Boolean() function on a value, as shown here:

console.log(!!"blue"); // true
console.log(!!0); // false
console.log(!!NaN); // false
console.log(!!""); // false
console.log(!!12345); // true

Logical AND
The logical AND operator is represented by the double ampersand (&&) and is applied to two values,
as in this example:

let result = true && false;

Logical AND behaves as described in the following truth table:

OPERAND 1 OPERAND 2 RESULT

true true true

true false false

false true false

false false false

Logical AND can be used with any type of operand, not just Boolean values. When either operand is
not a primitive Boolean, logical AND does not always return a Boolean value; instead, it does one of
the following:

➤➤ If the first operand is an object, then the second operand is always returned.

➤➤ If the second operand is an object, then the object is returned only if the first operand evalu-
ates to true.

Operators ❘ 79

➤➤ If both operands are objects, then the second operand is returned.

➤➤ If either operand is null, then null is returned.

➤➤ If either operand is NaN, then NaN is returned.

➤➤ If either operand is undefined, then undefined is returned.

The logical AND operator is a short-circuited operation, meaning that if the first operand determines
the result, the second operand is never evaluated. In the case of logical AND, if the first operand is
false, no matter what the value of the second operand, the result can’t be equal to true. Consider
the following example:

let found = true;
let result = (found && someUndeclaredVariable); // error occurs here
console.log(result); // this line never executes

This code causes an error when the logical AND is evaluated, because the variable some-
UndeclaredVariable isn’t declared. The value of the variable found is true, so the logical AND
operator continued to evaluate the variable someUndeclaredVariable. When it did, an error
occurred because someUndeclaredVariable is not declared and therefore cannot be used in a logical
AND operation. If found is instead set to false, as in the following example, the error won’t occur:

let found = false;
let result = (found && someUndeclaredVariable); // no error
console.log(result); // works

In this code, the console.log is displayed successfully. Even though the variable some-
UndeclaredVariable is undefined, it is never evaluated because the first operand is false. This
means that the result of the operation must be false, so there is no reason to evaluate what’s to the
right of the &&. Always keep in mind short-circuiting when using logical AND.

Logical OR
The logical OR operator is represented by the double pipe (||) in ECMAScript, like this:

let result = true || false;

Logical OR behaves as described in the following truth table:

OPERAND 1 OPERAND 2 RESULT

true true true

true false true

false true true

false false false

Just like logical AND, if either operand is not a Boolean, logical OR will not always return a Boolean
value; instead, it does one of the following:

➤➤ If the first operand is an object, then the first operand is returned.

➤➤ If the first operand evaluates to false, then the second operand is returned.

80 ❘ CHAPTER 3 Language Basics

➤➤ If both operands are objects, then the first operand is returned.

➤➤ If both operands are null, then null is returned.

➤➤ If both operands are NaN, then NaN is returned.

➤➤ If both operands are undefined, then undefined is returned.

Also like the logical AND operator, the logical OR operator is short-circuited. In this case, if the first
operand evaluates to true, the second operand is not evaluated. Consider this example:

let found = true;
let result = (found || someUndeclaredVariable); // no error
console.log(result); // works

As with the previous example, the variable someUndefinedVariable is undefined. However, because
the variable found is set to true, the variable someUndefinedVariable is never evaluated and thus
the output is "true". If the value of found is changed to false, an error occurs, as in the follow-
ing example:

let found = false;
let result = (found || someUndeclaredVariable); // error occurs here
console.log(result); // this line never executes

You can also use this behavior to avoid assigning a null or undefined value to a variable. Consider the
following:

let myObject = preferredObject || backupObject;

In this example, the variable myObject will be assigned one of two values. The preferredObject
variable contains the value that is preferred if it’s available, whereas the backupObject variable
contains the backup value if the preferred one isn’t available. If preferredObject isn’t null, then it’s
assigned to myObject; if it is null, then backupObject is assigned to myObject. This pattern is used
very frequently in ECMAScript for variable assignment and is used throughout this book.

Multiplicative Operators
There are three multiplicative operators in ECMAScript: multiply, divide, and modulus. These opera-
tors work in a manner similar to their counterparts in languages such as Java, C, and Perl, but they
also include some automatic type conversions when dealing with nonnumeric values. If either of the
operands for a multiplication operation isn’t a number, it is converted to a number behind the scenes
using the Number() casting function. This means that an empty string is treated as 0, and the Boolean
value of true is treated as 1.

Multiply
The multiply operator is represented by an asterisk (*) and is used, as one might suspect, to multiply
two numbers. The syntax is the same as in C, as shown here:

let result = 34 * 56;

Operators ❘ 81

However, the multiply operator also has the following unique behaviors when dealing with spe-
cial values:

➤➤ If the operands are numbers, regular arithmetic multiplication is performed, meaning that
two positives or two negatives equal a positive, whereas operands with different signs yield a
negative. If the result cannot be represented by ECMAScript, either Infinity or –Infinity
is returned.

➤➤ If either operand is NaN, the result is NaN.

➤➤ If Infinity is multiplied by 0, the result is NaN.

➤➤ If Infinity is multiplied by any finite number other than 0, the result is either Infinity or
–Infinity, depending on the sign of the second operand.

➤➤ If Infinity is multiplied by Infinity, the result is Infinity.

➤➤ If either operand isn’t a number, it is converted to a number behind the scenes using
Number() and then the other rules are applied.

Divide
The divide operator is represented by a slash (/) and divides the first operand by the second operand,
as shown here:

let result = 66 / 11;

The divide operator, like the multiply operator, has special behaviors for special values. They are
as follows:

➤➤ If the operands are numbers, regular arithmetic division is performed, meaning that two
positives or two negatives equal a positive, whereas operands with different signs yield a
negative. If the result can’t be represented in ECMAScript, it returns either Infinity or
–Infinity.

➤➤ If either operand is NaN, the result is NaN.

➤➤ If Infinity is divided by Infinity, the result is NaN.

➤➤ If zero is divided by zero, the result is NaN.

➤➤ If a nonzero finite number is divided by zero, the result is either Infinity or –Infinity,
depending on the sign of the first operand.

➤➤ If Infinity is divided by any number, the result is either Infinity or –Infinity, depending
on the sign of the second operand.

➤➤ If either operand isn’t a number, it is converted to a number behind the scenes using
Number() and then the other rules are applied.

82 ❘ CHAPTER 3 Language Basics

Modulus
The modulus (remainder) operator is represented by a percent sign (%) and is used in the fol-
lowing way:

let result = 26 % 5; // equal to 1

Just like the other multiplicative operators, the modulus operator behaves differently for special val-
ues, as follows:

➤➤ If the operands are numbers, regular arithmetic division is performed, and the remainder of
that division is returned.

➤➤ If the dividend is an infinite number and the divisor is a finite number, the result is NaN.

➤➤ If the dividend is a finite number and the divisor is 0, the result is NaN.

➤➤ If Infinity is divided by Infinity, the result is NaN.

➤➤ If the dividend is a finite number and the divisor is an infinite number, then the result is
the dividend.

➤➤ If the dividend is zero and the divisor is nonzero, the result is zero.

➤➤ If either operand isn’t a number, it is converted to a number behind the scenes using
Number() and then the other rules are applied.

Exponentiation Operator
New in ECMAScript 7, Math.pow() now gets its own ** operator, which behaves identically.

console.log(Math.pow(3, 2); // 9
console.log(3 ** 2); // 9

console.log(Math.pow(16, 0.5); // 4
console.log(16** 0.5); // 4

What’s more, the operator also gets its own exponentiate assignment operator, **=, which performs
the exponentiation and subsequent assignment of the result:

let squared = 3;
squared **= 2;
console.log(squared); // 9

let sqrt = 16;
sqrt **= 0.5;
console.log(sqrt); // 4

Additive Operators
The additive operators, add and subtract, are typically the simplest mathematical operators in pro-
gramming languages. In ECMAScript, however, a number of special behaviors are associated with
each operator. As with the multiplicative operators, conversions occur behind the scenes for different
data types. For these operators, however, the rules aren’t as straightforward.

Operators ❘ 83

Add
The add operator (+) is used just as one would expect, as shown in the following example:

let result = 1 + 2;

If the two operands are numbers, they perform an arithmetic add and return the result according to
the following rules:

➤➤ If either operand is NaN, the result is NaN.

➤➤ If Infinity is added to Infinity, the result is Infinity.

➤➤ If –Infinity is added to –Infinity, the result is –Infinity.

➤➤ If Infinity is added to –Infinity, the result is NaN.

➤➤ If +0 is added to +0, the result is +0.

➤➤ If –0 is added to +0, the result is +0.

➤➤ If –0 is added to –0, the result is –0.

If, however, one of the operands is a string, then the following rules apply:

➤➤ If both operands are strings, the second string is concatenated to the first.

➤➤ If only one operand is a string, the other operand is converted to a string and the result is
the concatenation of the two strings.

If either operand is an object, number, or Boolean, its toString() method is called to get a string
value and then the previous rules regarding strings are applied. For undefined and null, the
String() function is called to retrieve the values "undefined" and "null", respectively.

Consider the following:

let result1 = 5 + 5; // two numbers
console.log(result1); // 10
let result2 = 5 + "5"; // a number and a string
console.log(result2); // "55"

This code illustrates the difference between the two modes for the add operator. Normally, 5 + 5
equals 10 (a number value), as illustrated by the first two lines of code. However, if one of the oper-
ands is changed to a string, "5", the result becomes "55" (which is a primitive string value) because
the first operand gets converted to "5" as well.

One of the most common mistakes in ECMAScript is being unaware of the data types involved with
an addition operation. Consider the following:

let num1 = 5;
let num2 = 10;
let message = "The sum of 5 and 10 is " + num1 + num2;
console.log(message); // "The sum of 5 and 10 is 510"

84 ❘ CHAPTER 3 Language Basics

In this example, the message variable is filled with a string that is the result of two addition opera-
tions. One might expect the final string to be "The sum of 5 and 10 is 15"; however, it actually
ends up as "The sum of 5 and 10 is 510". This happens because each addition is done separately.
The first combines a string with a number (5), which results in a string. The second takes that result
(a string) and adds a number (10), which also results in a string. To perform the arithmetic calculation
and then append that to the string, just add some parentheses like this:

let num1 = 5;
let num2 = 10;
let message = "The sum of 5 and 10 is " + (num1 + num2);
console.log(message); // "The sum of 5 and 10 is 15"

Here, the two number variables are surrounded by parentheses, which instruct the interpreter to cal-
culate its result before adding it to the string. The resulting string is "The sum of 5 and 10 is 15".

Subtract
The subtract operator (-) is another that is used quite frequently. Here’s an example:

let result = 2 - 1;

Just like the add operator, the subtract operator has special rules to deal with the variety of type con-
versions present in ECMAScript. They are as follows:

➤➤ If the two operands are numbers, perform arithmetic subtract and return the result.

➤➤ If either operand is NaN, the result is NaN.

➤➤ If Infinity is subtracted from Infinity, the result is NaN.

➤➤ If –Infinity is subtracted from –Infinity, the result is NaN.

➤➤ If –Infinity is subtracted from Infinity, the result is Infinity.

➤➤ If Infinity is subtracted from –Infinity, the result is –Infinity.

➤➤ If +0 is subtracted from +0, the result is +0.

➤➤ If –0 is subtracted from +0, the result is –0.

➤➤ If –0 is subtracted from –0, the result is +0.

➤➤ If either operand is a string, a Boolean, null, or undefined, it is converted to a number
(using Number() behind the scenes) and the arithmetic is calculated using the previous rules.
If that conversion results in NaN, then the result of the subtraction is NaN.

➤➤ If either operand is an object, its valueOf() method is called to retrieve a numeric value
to represent it. If that value is NaN, then the result of the subtraction is NaN. If the object
doesn’t have valueOf() defined, then toString() is called and the resulting string is con-
verted into a number.

The following are some examples of these behaviors:

let result1 = 5 - true; // 4 because true is converted to 1
let result2 = NaN - 1; // NaN
let result3 = 5 - 3; // 2

Operators ❘ 85

let result4 = 5 - ""; // 5 because "" is converted to 0
let result5 = 5 - "2"; // 3 because "2" is converted to 2
let result6 = 5 - null; // 5 because null is converted to 0

Relational Operators
The less-than (<), greater-than (>), less-than-or-equal-to (<=), and greater-than-or-equal-to (>=) rela-
tional operators perform comparisons between values in the same way that you learned in math class.
Each of these operators returns a Boolean value, as in this example:

let result1 = 5 > 3; // true
let result2 = 5 < 3; // false

As with other operators in ECMAScript, there are some conversions and other oddities that happen
when using different data types. They are as follows:

➤➤ If the operands are numbers, perform a numeric comparison.

➤➤ If the operands are strings, compare the character codes of each corresponding character in
the string.

➤➤ If one operand is a number, convert the other operand to a number and perform a numeric
comparison.

➤➤ If an operand is an object, call valueOf() and use its result to perform the comparison
according to the previous rules. If valueOf() is not available, call toString() and use that
value according to the previous rules.

➤➤ If an operand is a Boolean, convert it to a number and perform the comparison.

When a relational operator is used on two strings, an interesting behavior occurs. Many expect that
less-than means “alphabetically before” and greater-than means “alphabetically after,” but this is not
the case. For strings, each of the first string’s character codes is numerically compared against the
character codes in a corresponding location in the second string. After this comparison is complete,
a Boolean value is returned. The problem here is that the character codes of uppercase letters are all
lower than the character codes of lowercase letters, meaning that you can run into situations like this:

let result = "Brick" < "alphabet"; // true

In this example, the string "Brick" is considered to be less than the string "alphabet" because the
letter B has a character code of 66 and the letter a has a character code of 97. To force a true alpha-
betic result, you must convert both operands into a common case (upper or lower) and then compare
like this:

let result = "Brick".toLowerCase() < "alphabet".toLowerCase(); // false

Converting both operands to lowercase ensures that "alphabet" is correctly identified as alphabeti-
cally before "Brick".

Another sticky situation occurs when comparing numbers that are strings, such as in this example:

let result = "23" < "3"; // true

This code returns true when comparing the string "23" to "3". Because both operands are strings,
they are compared by their character codes (the character code for "2" is 50; the character code for

86 ❘ CHAPTER 3 Language Basics

"3" is 51). If, however, one of the operands is changed to a number as in the following example, the
result makes more sense:

let result = "23" < 3; // false

Here, the string "23" is converted into the number 23 and then compared to 3, giving the expected
result. Whenever a number is compared to a string, the string is converted into a number and then
numerically compared to the other number. This works well for cases like the previous example, but
what if the string can’t be converted into a number? Consider this example:

let result = "a" < 3; // false because "a" becomes NaN

The letter "a" can’t be meaningfully converted into a number, so it becomes NaN. As a rule, the result
of any relational operation with NaN is false, which is interesting when considering the following:

let result1 = NaN < 3; // false
let result2 = NaN >= 3; // false

In most comparisons, if a value is not less than another, it is always greater than or equal to it. When
using NaN, however, both comparisons return false.

Equality Operators
Determining whether two variables are equivalent is one of the most important operations in pro-
gramming. This is fairly straightforward when dealing with strings, numbers, and Boolean values,
but the task gets a little complicated when you take objects into account. Originally ECMAScript’s
equal and not-equal operators performed conversions into like types before doing a comparison.
The question of whether these conversions should, in fact, take place was then raised. The end result
was for ECMAScript to provide two sets of operators: equal and not equal to perform conversion
before comparison, and identically equal and not identically equal to perform comparison without
conversion.

Equal and Not Equal
The equal operator in ECMAScript is the double equal sign (==), and it returns true if the operands
are equal. The not-equal operator is the exclamation point followed by an equal sign (!=), and it
returns true if two operands are not equal. Both operators do conversions to determine if two oper-
ands are equal (often called type coercion).

When performing conversions, the equal and not-equal operators follow these basic rules:

➤➤ If an operand is a Boolean value, convert it into a numeric value before checking for
equality. A value of false converts to 0, whereas a value of true converts to 1.

➤➤ If one operand is a string and the other is a number, attempt to convert the string into a
number before checking for equality.

➤➤ If one of the operands is an object and the other is not, the valueOf() method is called on
the object to retrieve a primitive value to compare according to the previous rules.

Operators ❘ 87

The operators also follow these rules when making comparisons:

➤➤ Values of null and undefined are equal.

➤➤ Values of null and undefined cannot be converted into any other values for
equality checking.

➤➤ If either operand is NaN, the equal operator returns false and the not-equal operator
returns true. Important note: even if both operands are NaN, the equal operator returns
false because, by rule, NaN is not equal to NaN.

➤➤ If both operands are objects, then they are compared to see if they are the same object. If
both operands point to the same object, then the equal operator returns true. Otherwise,
the two are not equal.

The following table lists some special cases and their results:

EXPRESSION VALUE

null == undefined true

"NaN" == NaN false

5 == NaN false

NaN == NaN false

NaN != NaN true

false == 0 true

true == 1 true

true == 2 false

undefined == 0 false

null == 0 false

"5" == 5 true

Identically Equal and Not Identically Equal
The identically equal and not identically equal operators do the same thing as equal and not equal,
except that they do not convert operands before testing for equality. The identically equal operator
is represented by three equal signs (===) and returns true only if the operands are equal without
conversion, as in this example:

let result1 = ("55" == 55); // true - equal because of conversion
let result2 = ("55" === 55); // false - not equal because different data types

88 ❘ CHAPTER 3 Language Basics

In this code, the first comparison uses the equal operator to compare the string "55" and the number
55, which returns true. As mentioned previously, this happens because the string "55" is converted to
the number 55 and then compared with the other number 55. The second comparison uses the identi-
cally equal operator to compare the string and the number without conversion, and of course, a string
isn’t equal to a number, so this outputs false.

The not identically equal operator is represented by an exclamation point followed by two equal
signs (!==) and returns true only if the operands are not equal without conversion. For example:

let result1 = ("55" != 55); // false - equal because of conversion
let result2 = ("55" !== 55); // true - not equal because different data types

Here, the first comparison uses the not-equal operator, which converts the string "55" to the
number 55, making it equal to the second operand, also the number 55. Therefore, this evaluates to
false because the two are considered equal. The second comparison uses the not identically equal
operator. It helps to think of this operation as saying, “Is the string 55 different from the number 55?”
The answer to this is yes (true).

Keep in mind that while null == undefined is true because they are similar values, null ===
undefined is false because they are not the same type.

NOTE Because of the type conversion issues with the equal and not-equal
operators, it is recommended to use identically equal and not identically equal
instead. This helps to maintain data type integrity throughout your code.

Conditional Operator
The conditional operator is one of the most versatile in ECMAScript, and it takes on the same form
as in Java, which is as follows:

variable = boolean_expression ? true_value : false_value;

This basically allows a conditional assignment to a variable depending on the evaluation of the
boolean_expression. If it’s true, then true_value is assigned to the variable; if it’s false, then
false_value is assigned to the variable, as in this instance:

let max = (num1 > num2) ? num1 : num2;

In this example, max is to be assigned the number with the highest value. The expression states that if
num1 is greater than num2, then num1 is assigned to max. If, however, the expression is false (meaning
that num1 is less than or equal to num2), then num2 is assigned to max.

Assignment Operators
Simple assignment is done with the equal sign (=) and simply assigns the value on the right to the
variable on the left, as shown in the following example:

let num = 10;

Operators ❘ 89

Compound assignment is done with one of the multiplicative, additive, or bitwise–shift operators
followed by an equal sign (=). These assignments are designed as shorthand for such common situa-
tions as this:

let num = 10;
num = num + 10;

The second line of code can be replaced with a compound assignment:

let num = 10;
num += 10;

Compound-assignment operators exist for each of the major mathematical operations and a few
others as well. They are as follows:

➤➤ Multiply/assign (*=)

➤➤ Divide/assign (/=)

➤➤ Modulus/assign (%=)

➤➤ Add/assign (+=)

➤➤ Subtract/assign (-=)

➤➤ Left shift/assign (<<=)

➤➤ Signed right shift/assign (>>=)

➤➤ Unsigned right shift/assign (>>>=)

These operators are designed specifically as shorthand ways of achieving operations. They do not
represent any performance improvement.

Comma Operator
The comma operator allows execution of more than one operation in a single statement, as illus-
trated here:

let num1 = 1, num2 = 2, num3 = 3;

Most often, the comma operator is used in the declaration of variables; however, it can also be used
to assign values. When used in this way, the comma operator always returns the last item in the
expression, as in the following example:

let num = (5, 1, 4, 8, 0); // num becomes 0

In this example, num is assigned the value of 0 because it is the last item in the expression. There
aren’t many times when commas are used in this way; however, it is helpful to understand that this
behavior exists.

90 ❘ CHAPTER 3 Language Basics

STATEMENTS

ECMA-262 describes several statements (also called flow-control statements). Essentially, statements
define most of the syntax of ECMAScript and typically use one or more keywords to accomplish a
given task. Statements can be simple, such as telling a function to exit, or complicated, such as speci-
fying a number of commands to be executed repeatedly.

The if Statement
One of the most frequently used statements in most programming languages is the if statement. The
if statement has the following syntax:

if (condition) statement1 else statement2

The condition can be any expression; it doesn’t even have to evaluate to an actual Boolean value.
ECMAScript automatically converts the result of the expression into a Boolean by calling the
Boolean() casting function on it. If the condition evaluates to true, statement1 is executed; if the
condition evaluates to false, statement2 is executed. Each of the statements can be either a single
line or a code block (a group of code lines enclosed within braces). Consider this example:

if (i > 25)
 console.log("Greater than 25."); // one–line statement
else {
 console.log("Less than or equal to 25."); // block statement
}

It’s considered best coding practice to always use block statements, even if only one line of code is to
be executed. Doing so can avoid confusion about what should be executed for each condition.

You can also chain if statements together like so:

if (condition1) statement1 else if (condition2) statement2 else statement3

Here’s an example:

if (i > 25) {
 console.log("Greater than 25.");
} else if (i < 0) {
 console.log("Less than 0.");
} else {
 console.log("Between 0 and 25, inclusive.");
}

The do-while Statement
The do-while statement is a post-test loop, meaning that the escape condition is evaluated only after
the code inside the loop has been executed. The body of the loop is always executed at least once
before the expression is evaluated. Here’s the syntax:

do {
 statement
} while (expression);

Statements ❘ 91

And here’s an example of its usage:

let i = 0;
do {
 i += 2;
} while (i < 10);

In this example, the loop continues as long as i is less than 10. The variable starts at 0 and is incre-
mented by two each time through the loop.

NOTE Post-test loops such as this are most often used when the body of the loop
should be executed at least once before exiting.

The while Statement
The while statement is a pretest loop. This means the escape condition is evaluated before the code
inside the loop has been executed. Because of this, it is possible that the body of the loop is never
executed. Here’s the syntax:

while(expression) statement

And here’s an example of its usage:

let i = 0;
while (i < 10) {
 i += 2;
}

In this example, the variable i starts out equal to 0 and is incremented by two each time through the
loop. As long as the variable is less than 10, the loop will continue.

The for Statement
The for statement is also a pretest loop with the added capabilities of variable initialization before
entering the loop and defining postloop code to be executed. Here’s the syntax:

for (initialization; expression; post-loop-expression) statement

And here’s an example of its usage:

let count = 10;
for (let i = 0; i < count; i++) {
 console.log(i);
}

This code defines a variable i that begins with the value 0. The for loop is entered only if the condi-
tional expression (i < count) evaluates to true, making it possible that the body of the code might

92 ❘ CHAPTER 3 Language Basics

not be executed. If the body is executed, the postloop expression is also executed, iterating the vari-
able i. This for loop is the same as the following:

let count = 10;
let i = 0;
while (i < count) {
 console.log(i);
 i++;
}

Nothing can be done with a for loop that can’t be done using a while loop. The for loop simply
encapsulates the loop-related code into a single location.

It’s important to note that there’s no need to use the variable declaration keyword inside the for loop
initialization. However, the overwhelming majority of the time you will find that the iterator variable
is not useful after the loop completes. In these cases, the cleanest implementation is to use a let dec-
laration inside the loop initialization to declare the iterator variable because its scope will be limited
to only the loop itself.

The initialization, control expression, and postloop expression are all optional. You can create an
infinite loop by omitting all three, like this:

for (;;) { // infinite loop
 doSomething();
}

Including only the control expression effectively turns a for loop into a while loop, as shown here:

let count = 10;
let i = 0;
for (; i < count;) {
 console.log(i);
 i++;
}

This versatility makes the for statement one of the most used in the language.

The for-in Statement
The for-in statement is a strict iterative statement. It is used to enumerate the non-symbol keyed
properties of an object. Here’s the syntax:

for (property in expression) statement

And here’s an example of its usage:

for (const propName in window) {
 document.write(propName);
}

Here, the for-in statement is used to display all the properties of the BOM window object. Each
time through the loop, the propName variable is filled with the name of a property that exists on the
window object. This continues until all of the available properties have been enumerated. As with the
for statement, the const operator in the control statement is not necessary but is recommended for
ensuring the use of a local variable that will not be altered.

Statements ❘ 93

Object properties in ECMAScript are unordered, so the order in which property names are returned
in a for-in statement cannot necessarily be predicted. All enumerable properties will be returned
once, but the order may differ across browsers.

Note that the for-in statement simply doesn’t execute the body of the loop if the variable represent-
ing the object to iterate over is null or undefined.

The for-of Statement
The for-of statement is a strict iterative statement. It is used to loop through elements in an iterable
object. Here’s the syntax:

for (property of expression) statement

And here’s an example of its usage:

for (const el in [2,4,6,8) {
 document.write(el);
}

Here, the for-of statement is used to display all the elements inside the four-element array. This
continues until each element in the array has been looped over. As with the for statement, the const
operator in the control statement is not necessary but is recommended for ensuring the use of a local
variable that will not be altered.

The for-of loop will iterate in the order that the iterable produces values via its next() method.
This is covered in-depth in the Iterators and Generators chapter.

Note that the for-of statement will throw an error if the entity that it is attempting to iterate over
does not support iteration.

NOTE In ES2018, the for-of statement is extended as a for-await-of loop to
support async iterables which produce promises. This is covered in Appendix A.

Labeled Statements
It is possible to label statements for later use with the following syntax:

label: statement

Here’s an example:

start: for (let i = 0; i < count; i++) {
 console.log(i);
}

In this example, the label start can be referenced later by using the break or continue statement.
Labeled statements are typically used with nested loops.

94 ❘ CHAPTER 3 Language Basics

The break and continue Statements
The break and continue statements provide stricter control over the execution of code in a loop.
The break statement exits the loop immediately, forcing execution to continue with the next state-
ment after the loop. The continue statement, on the other hand, exits the loop immediately, but
execution continues from the top of the loop. Here’s an example:

let num = 0;

for (let i = 1; i < 10; i++) {
 if (i % 5 == 0) {
 break;
 }
 num++;
}

console.log(num); // 4

In this code, the for loop increments the variable i from 1 to 10. In the body of a loop, an if state-
ment checks to see if the value of i is evenly divisible by 5 (using the modulus operator). If so, the
break statement is executed and the loop is exited. The num variable starts out at 0 and indicates the
number of times the loop has been executed. After the break statement has been hit, the next line
of code to be executed is the console.log, which displays 4. The number of times the loop has been
executed is four because when i equals 5, the break statement causes the loop to be exited before
num can be incremented. A different effect can be seen if break is replaced with continue like this:

let num = 0;

for (let i = 1; i < 10; i++) {
 if (i % 5 == 0) {
 continue;
 }
 num++;
}

console.log(num); // 8

Here, the console.log displays 8, the number of times the loop has been executed. When i reaches a
value of 5, the loop is exited before num is incremented, but execution continues with the next itera-
tion, when the value is 6. The loop then continues until its natural completion, when i is 10. The final
value of num is 8 instead of 9 because one increment didn’t occur due to the continue statement.

Both the break and continue statements can be used in conjunction with labeled statements to
return to a particular location in the code. This is typically used when there are loops inside of loops,
as in the following example:

let num = 0;

outermost:
for (let i = 0; i < 10; i++) {
 for (let j = 0; j < 10; j++) {
 if (i == 5 && j == 5) {
 break outermost;
 }

Statements ❘ 95

 num++;
 }
}

console.log(num); // 55

In this example, the outermost label indicates the first for statement. Each loop normally executes 10
times, meaning that the num++ statement is normally executed 100 times and, consequently, num should
be equal to 100 when the execution is complete. The break statement here is given one argument: the
label to break to. Adding the label allows the break statement to break not just out of the inner for
statement (using the variable j) but also out of the outer for statement (using the variable i). Because
of this, num ends up with a value of 55, because execution is halted when both i and j are equal to 5.
The continue statement can be used in the same way, as shown in the following example:

let num = 0;

outermost:
for (let i = 0; i < 10; i++) {
 for (let j = 0; j < 10; j++) {
 if (i == 5 && j == 5) {
 continue outermost;
 }
 num++;
 }
}

console.log(num); // 95

In this case, the continue statement forces execution to continue—not in the inner loop but in the
outer loop. When j is equal to 5, continue is executed, which means that the inner loop misses five
iterations, leaving num equal to 95.

Using labeled statements in conjunction with break and continue can be very powerful but can
cause debugging problems if overused. Always use descriptive labels and try not to nest more than a
few loops.

The with Statement
The with statement sets the scope of the code within a particular object. The syntax is as follows:

with (expression) statement;

The with statement was created as a convenience for times when a single object was being coded to
over and over again, as in this example:

let qs = location.search.substring(1);
let hostName = location.hostname;
let url = location.href;

Here, the location object is used on every line. This code can be rewritten using the with statement
as follows:

with(location) {
 let qs = search.substring(1);
 let hostName = hostname;
 let url = href;
}

96 ❘ CHAPTER 3 Language Basics

In this rewritten version of the code, the with statement is used in conjunction with the location
object. This means that each variable inside the statement is first considered to be a local variable. If
it’s not found to be a local variable, the location object is searched to see if it has a property of the
same name. If so, then the variable is evaluated as a property of location.

In strict mode, the with statement is not allowed and is considered a syntax error.

WARNING It is widely considered a poor practice to use the with statement in
production code because of its negative performance impact and the difficulty in
debugging code contained in the with statement.

The switch Statement
Closely related to the if statement is the switch statement, another flow-control statement adopted
from other languages. The syntax for the switch statement in ECMAScript closely resembles the
syntax in other C-based languages, as you can see here:

switch (expression) {
 case value1:
 statement
 break;
 case value2:
 statement
 break;
 case value3:
 statement
 break;
 case value4:
 statement
 break;
 default:
 statement
}

Each case in a switch statement says, “If the expression is equal to the value, execute the statement.”
The break keyword causes code execution to jump out of the switch statement. Without the break
keyword, code execution falls through the original case into the following one. The default keyword
indicates what is to be done if the expression does not evaluate to one of the cases. (In effect, it is an
else statement.)

Essentially, the switch statement prevents a developer from having to write something like this:

if (i == 25) {
 console.log("25");
} else if (i == 35) {
 console.log("35");
} else if (i == 45) {
 console.log("45");
} else {
 console.log("Other");
}

Statements ❘ 97

The equivalent switch statement is as follows:

switch (i) {
 case 25:
 console.log("25");
 break;
 case 35:
 console.log("35");
 break;
 case 45:
 console.log("45");
 break;
 default:
 console.log("Other");
}

It’s best to always put a break statement after each case to avoid having cases fall through into the
next one. If you need a case statement to fall through, include a comment indicating that the omission
of the break statement is intentional, such as this:

switch (i) {
 case 25:
 /* falls through */
 case 35:
 console.log("25 or 35");
 break;
 case 45:
 console.log("45");
 break;
 default:
 console.log("Other");
}

Although the switch statement was borrowed from other languages, it has some unique charac-
teristics in ECMAScript. First, the switch statement works with all data types (in many languages
it works only with numbers), so it can be used with strings and even with objects. Second, the case
values need not be constants; they can be variables and even expressions. Consider the following
example:

switch ("hello world") {
 case "hello" + " world":
 console.log("Greeting was found.");
 break;
 case "goodbye":
 console.log("Closing was found.");
 break;
 default:
 console.log("Unexpected message was found.");
}

In this example, a string value is used in a switch statement. The first case is actually an expression
that evaluates a string concatenation. Because the result of this concatenation is equal to the switch

98 ❘ CHAPTER 3 Language Basics

argument, the console.log displays "Greeting was found." The ability to have case expressions
also allows you to do things like this:

let num = 25;
switch (true) {
 case num < 0:
 console.log("Less than 0.");
 break;
 case num >= 0 && num <= 10:
 console.log("Between 0 and 10.");
 break;
 case num > 10 && num <= 20:
 console.log("Between 10 and 20.");
 break;
 default:
 console.log("More than 20.");
}

Here, a variable num is defined outside the switch statement. The expression passed into the switch
statement is true because each case is a conditional that will return a Boolean value. Each case is
evaluated, in order, until a match is found or until the default statement is encountered (which is the
case here).

NOTE The switch statement compares values using the identically equal oper-
ator, so no type coercion occurs (for example, the string "10" is not equal to the
number 10).

FUNCTIONS

Functions are the core of any language because they allow the encapsulation of statements that can be
run anywhere and at any time. Functions in ECMAScript are declared using the function keyword,
followed by a set of arguments and then the body of the function.

NOTE In-depth function coverage can be found in the Functions chapter.

The basic function syntax is as follows:

function functionName(arg0, arg1,...,argN) {
 statements
}

Here’s an example:

function sayHi(name, message) {
 console.log("Hello " + name + ", " + message);
}

Functions ❘ 99

This function can then be called by using the function name, followed by the function arguments
enclosed in parentheses (and separated by commas, if there are multiple arguments). The code to call
the sayHi() function looks like this:

sayHi("Nicholas", "how are you today?");

The output of this function call is, "Hello Nicholas, how are you today?" The named argu-
ments name and message are used as part of a string concatenation that is ultimately displayed in an
console.log.

Functions in ECMAScript need not specify whether they return a value. Any function can return
a value at any time by using the return statement followed by the value to return. Consider
this example:

function sum(num1, num2) {
 return num1 + num2;
}

The sum() function adds two values together and returns the result. Note that aside from the return
statement, there is no special declaration indicating that the function returns a value. This function
can be called using the following:

const result = sum(5, 10);

Keep in mind that a function stops executing and exits immediately when it encounters the return
statement. Therefore, any code that comes after a return statement will never be executed.
For example:

function sum(num1, num2) {
 return num1 + num2;
 console.log("Hello world"); // never executed
}

In this example, the console.log will never be displayed because it appears after the return statement.

It’s also possible to have more than one return statement in a function, like this:

function diff(num1, num2) {
 if (num1 < num2) {
 return num2 - num1;
 } else {
 return num1 - num2;
 }
}

Here, the diff() function determines the difference between two numbers. If the first number is less
than the second, it subtracts the first from the second; otherwise it subtracts the second from the first.
Each branch of the code has its own return statement that does the correct calculation.

The return statement can also be used without specifying a return value. When used in this way,
the function stops executing immediately and returns undefined as its value. This is typically used
in functions that don’t return a value to stop function execution early, as in the following example,
where the console.log won’t be displayed:

function sayHi(name, message) {
 return;
 console.log("Hello " + name + ", " + message); // never called
}

100 ❘ CHAPTER 3 Language Basics

NOTE Best practices dictate that a function either always return a value or
never return a value. Writing a function that sometimes returns a value causes
confusion, especially during debugging.

Strict mode places several restrictions on functions:

➤➤ No function can be named eval or arguments.

➤➤ No named parameter can be named eval or arguments.

➤➤ No two named parameters can have the same name.

If any of these occur, it’s considered a syntax error and the code will not execute.

SUMMARY

The core language features of JavaScript are defined in ECMA-262 as a pseudolanguage named
ECMAScript. ECMAScript contains all of the basic syntax, operators, data types, and objects neces-
sary to complete basic computing tasks, though it provides no way to get input or to produce output.
Understanding ECMAScript and its intricacies is vital to a complete understanding of JavaScript as
implemented in web browsers. The following are some of the basic elements of ECMAScript:

➤➤ The basic data types in ECMAScript are Undefined, Null, Boolean, Number, String,
and Symbol.

➤➤ Unlike other languages, there’s no separate data type for integers versus floating-point
values; the Number type represents all numbers.

➤➤ There is also a complex data type, Object, that is the base type for all objects in
the language.

➤➤ A strict mode places restrictions on certain error-prone parts of the language.

➤➤ ECMAScript provides a lot of the basic operators available in C and other C-like languages,
including arithmetic operators, Boolean operators, relational operators, equality operators,
and assignment operators.

➤➤ The language features flow-control statements borrowed heavily from other languages, such
as the if statement, the for statement, and the switch statement.

Functions in ECMAScript behave differently than functions in other languages:

➤➤ There is no need to specify the return value of the function because any function can return
any value at any time.

➤➤ Functions that don’t specify a return value actually return the special value undefined.

Variables, Scope, and Memory
WHAT’S IN THIS CHAPTER?

➤➤ Working with primitive and reference values in variables

➤➤ Understanding execution context

➤➤ Understanding garbage collection

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/projavascript4e on the Down-
load Code tab.

The nature of variables in JavaScript, as defined in ECMA-262, is quite unique compared to
that of other languages. Being loosely typed, a variable is literally just a name for a particular
value at a particular time. Because there are no rules defining the type of data that a variable
must hold, a variable’s value and data type can change during the lifetime of a script. Though
this is an interesting, powerful, and problematic feature, there are many more complexities
related to variables.

PRIMITIVE AND REFERENCE VALUES

ECMAScript variables may contain two different types of data: primitive values and reference
values. Primitive values are simple atomic pieces of data, while reference values are objects that
may be made up of multiple values.

4

Professional JavaScript® for Web Developers, Fourth Edition. Matt Frisbie.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

102 ❘ CHAPTER 4 Variables, scope, and MeMory

When a value is assigned to a variable, the JavaScript engine must determine if it’s a primitive or
a reference value. The six primitive types were discussed in the previous chapter: Undefined, Null,
Boolean, Number, String, and Symbol. These variables are said to be accessed by value, because you
are manipulating the actual value stored in the variable.

Reference values are objects stored in memory. Unlike other languages, JavaScript does not per-
mit direct access of memory locations, so direct manipulation of the object’s memory space is not
allowed. When you manipulate an object, you’re really working on a reference to that object rather
than the actual object itself. For this reason, such values are said to be accessed by reference.

NOTE In many languages, strings are represented by objects and are therefore
considered to be reference types. ECMAScript breaks away from this tradition.

Dynamic Properties
Primitive and reference values are defined similarly: a variable is created and assigned a value. What
you can do with those values once they’re stored in a variable, however, is quite different. When you
work with reference values, you can add, change, or delete properties and methods at any time. Con-
sider this example:

let person = new Object();
person.name = "Nicholas";
console.log(person.name); // "Nicholas"

Here, an object is created and stored in the variable person. Next, a property called name is added
and assigned the string value of "Nicholas". The new property is then accessible from that point on,
until the object is destroyed or the property is explicitly removed.

Primitive values can’t have properties added to them even though attempting to do so won’t cause an
error. Here’s an example:

let name = "Nicholas";
name.age = 27;
console.log(name.age); // undefined

Here, a property called age is defined on the string name and assigned a value of 27. On the very next
line, however, the property is gone. Only reference values can have properties defined dynamically for
later use.

Note that the instantiation of a primitive type can be accomplished using only the primitive literal
form. If you were to use the new keyword, JavaScript will create an Object type, but one that behaves
like a primitive. Here’s an example to distinguish between the two:

let name1 = "Nicholas";
let name2 = new String("Matt");
name1.age = 27;
name2.age = 26;
console.log(name1.age); // undefined

Primitive and Reference Values ❘ 103

console.log(name2.age); // 26
console.log(typeof name1); // string
console.log(typeof name2); // object

Copying Values
Aside from differences in how they are stored, primitive and reference values act differently when
copied from one variable to another. When a primitive value is assigned from one variable to another,
the value stored on the variable object is created and copied into the location for the new variable.
Consider the following example:

let num1 = 5;
let num2 = num1;

Here, num1 contains the value of 5. When num2 is initialized to num1, it
also gets the value of 5. This value is completely separate from the one
that is stored in num1 because it’s a copy of that value.

Each of these variables can now be used separately with no side effects.
This process is diagrammed in Figure 4-1.

When a reference value is assigned from one variable to another, the value
stored on the variable object is also copied into the location for the new
variable. The difference is that this value is actually a pointer to an object
stored on the heap. Once the operation is complete, two variables point to
exactly the same object, so changes to one are reflected on the other, as in
the following example:

let obj1 = new Object();
let obj2 = obj1;
obj1.name = "Nicholas";
console.log(obj2.name); // "Nicholas"

In this example, the variable obj1 is filled with a new instance of an
object. This value is then copied into obj2, meaning that both variables
are now pointing to the same object. When the property name is set on obj1, it can later be accessed
from obj2 because they both point to the same object. Figure 4-2 shows the relationship between the
variables on the variable object and the object on the heap.

Argument Passing
All function arguments in ECMAScript are passed by value. This means that the value outside of the
function is copied into an argument on the inside of the function the same way a value is copied from
one variable to another. If the value is primitive, then it acts just like a primitive variable copy, and if
the value is a reference, it acts just like a reference variable copy. This is often a point of confusion for
developers because variables are accessed both by value and by reference, but arguments are passed
only by value.

(Number type)

Variable object before copy

5num1

(Number type)

Variable object after copy

5num1

(Number type)
5num2

FIGURE 4-1

104 ❘ CHAPTER 4 Variables, scope, and MeMory

When an argument is passed by value, the value is copied into a local variable (a named argument
and, in ECMAScript, a slot in the arguments object). When an argument is passed by reference, the
location of the value in memory is stored into a local variable, which means that changes to the local
variable are reflected outside of the function. (This is not possible in ECMAScript.) Consider the fol-
lowing example:

function addTen(num) {
 num += 10;
 return num;
}

let count = 20;
let result = addTen(count);
console.log(count); // 20 - no change
console.log(result); // 30

Here, the function addTen() has an argument, num, which is essentially a local variable. When called,
the variable count is passed in as an argument. This variable has a value of 20, which is copied
into the argument num for use inside of addTen(). Within the function, the argument num has its
value changed by adding 10, but this doesn’t change the original variable count that exists outside of
the function. The argument num and the variable count do not recognize each other; they only hap-
pen to have the same value. If num had been passed by reference, then the value of count would have
changed to 30 to reflect the change made inside the function. This fact is obvious when using primi-
tive values such as numbers, but things aren’t as clear when using objects. Take this, for example:

function setName(obj) {
 obj.name = "Nicholas";
}

let person = new Object();
setName(person);
console.log(person.name); // "Nicholas"

(Object type)

Variable object before copy Heap

obj1

(Object type)

Variable object after copy

obj1

(Object type)
obj2

Object

Object

Object

Object

FIGURE 4-2

Primitive and Reference Values ❘ 105

In this code, an object is created and stored in the variable person. This object is then passed into the
setName() method, where it is copied into obj. Inside the function, obj and person both point to
the same object. The result is that obj is accessing an object by reference, even though it was passed
into the function by value. When the name property is set on obj inside the function, this change is
reflected outside the function, because the object that it points to exists globally on the heap. Many
developers incorrectly assume that when a local change to an object is reflected globally, that means
an argument was passed by reference. To prove that objects are passed by value, consider the follow-
ing modified code:

function setName(obj) {
 obj.name = "Nicholas";
 obj = new Object();
 obj.name = "Greg";
}

let person = new Object();
setName(person);
console.log(person.name); // "Nicholas"

The only change between this example and the previous one is that two lines have been added to
setName() that redefine obj as a new object with a different name. When person is passed into
setName(), its name property is set to "Nicholas". Then the variable obj is set to be a new object
and its name property is set to "Greg". If person were passed by reference, then person would
automatically be changed to point to the object whose name is "Greg". However, when person
.name is accessed again, its value is "Nicholas", indicating that the original reference remained intact
even though the argument’s value changed inside the function. When obj is overwritten inside the
function, it becomes a pointer to a local object. That local object is destroyed as soon as the function
finishes executing.

NOTE Think of function arguments in ECMAScript as nothing more than local
variables.

Determining Type
The typeof operator, introduced in the previous chapter, is the best way to determine if a variable
is a primitive type. More specifically, it’s the best way to determine if a variable is a string, num-
ber, Boolean, or undefined. If the value is an object or null, then typeof returns "object", as in
this example:

let s = "Nicholas";
let b = true;
let i = 22;
let u;
let n = null;
let o = new Object();

106 ❘ CHAPTER 4 Variables, scope, and MeMory

console.log(typeof s); // string
console.log(typeof i); // number
console.log(typeof b); // boolean
console.log(typeof u); // undefined
console.log(typeof n); // object
console.log(typeof o); // object

Although typeof works well for primitive values, it’s of little use for reference values. Typically, you
don’t care that a value is an object—what you really want to know is what type of object it is. To aid
in this identification, ECMAScript provides the instanceof operator, which is used with the follow-
ing syntax:

result = variable instanceof constructor

The instanceof operator returns true if the variable is an instance of the given reference type (iden-
tified by its prototype chain, as discussed in the Objects, Classes, and Object-Oriented Programming
chapter). Consider this example:

console.log(person instanceof Object); // is the variable person an Object?
console.log(colors instanceof Array); // is the variable colors an Array?
console.log(pattern instanceof RegExp); // is the variable pattern a RegExp?

All reference values, by definition, are instances of Object, so the instanceof operator always
returns true when used with a reference value and the Object constructor. Similarly, if instanceof
is used with a primitive value, it will always return false, because primitives aren’t objects.

NOTE The typeof operator also returns "function" when used on a function.
When used on a regular expression in Safari (through version 5) and Chrome
(through version 7), typeof returns "function" because of an implementation
detail. ECMA-262 specifies that any object implementing the internal [[Call]]
method should return "function" from typeof. Since regular expressions imple-
ment this method in these browsers, typeof returns "function". In Internet
Explorer and Firefox, typeof returns "object" for regular expressions.

EXECUTION CONTEXT AND SCOPE

The concept of execution context, referred to as context for simplicity, is of the utmost importance in
JavaScript. The execution context of a variable or function defines what other data it has access to, as
well as how it should behave. Each execution context has an associated variable object upon which
all of its defined variables and functions exist. This object is not accessible by code but is used behind
the scenes to handle data.

The global execution context is the outermost one. Depending on the host environment for an
ECMAScript implementation, the object representing this context may differ. In web browsers, the
global context is said to be that of the window object (discussed in the Browser Object Model chap-
ter), so all global variables and functions defined with var are created as properties and methods on
the window object. Declarations using let and const at the top level are not defined in the global
context, but they are resolved identically on the scope chain. When an execution context has executed

Execution Context and Scope ❘ 107

all of its code, it is destroyed, taking with it all of the variables and functions defined within it (the
global context isn’t destroyed until the application exits, such as when a web page is closed or a web
browser is shut down).

Each function call has its own execution context. Whenever code execution flows into a function, the
function’s context is pushed onto a context stack. After the function has finished executing, the stack
is popped, returning control to the previously executing context. This facility controls execution flow
throughout an ECMAScript program.

When code is executed in a context, a scope chain of variable objects is created. The purpose of the
scope chain is to provide ordered access to all variables and functions that an execution context has
access to. The front of the scope chain is always the variable object of the context whose code is
executing. If the context is a function, then the activation object is used as the variable object. An acti-
vation object starts with a single defined variable called arguments. (This doesn’t exist for the global
context.) The next variable object in the chain is from the containing context, and the next after that
is from the next containing context. This pattern continues until the global context is reached; the
global context’s variable object is always the last of the scope chain.

Identifiers are resolved by navigating the scope chain in search of the identifier name. The search
always begins at the front of the chain and proceeds to the back until the identifier is found. (If the
identifier isn’t found, typically an error occurs.)

Consider the following code:

var color = "blue";

function changeColor() {
 if (color === "blue") {
 color = "red";
 } else {
 color = "blue";
 }
}

changeColor();

In this simple example, the function changeColor() has a scope chain with two objects in it: its
own variable object (upon which the arguments object is defined) and the global context’s variable
object. The variable color is therefore accessible inside the function, because it can be found in the
scope chain.

Additionally, locally defined variables can be used interchangeably with global variables in a local
context. Here’s an example:

var color = "blue";

function changeColor() {
 let anotherColor = "red";

 function swapColors() {
 let tempColor = anotherColor;
 anotherColor = color;
 color = tempColor;

108 ❘ CHAPTER 4 Variables, scope, and MeMory

 // color, anotherColor, and tempColor are all accessible here
 }

 // color and anotherColor are accessible here, but not tempColor
 swapColors();
}

// only color is accessible here
changeColor();

There are three execution contexts in this code: global context, the local context of changeColor(),
and the local context of swapColors(). The global context has one variable, color, and one func-
tion, changeColor(). The local context of changeColor() has one variable named anotherColor
and one function named swapColors(), but it can also access the variable color from the global
context. The local context of swapColors() has one variable, named tempColor, that is accessible
only within that context. Neither the global context nor the local context of swapColors() has
access to tempColor. Within swapColors(), though, the variables of the other two contexts are fully
accessible because they are parent execution contexts. Figure 4-3 represents the scope chain for the
previous example.

In this figure, the rectangles represent specific execution contexts. An
inner context can access everything from all outer contexts through
the scope chain, but the outer contexts cannot access anything within
an inner context. The connection between the contexts is linear and
ordered. Each context can search up the scope chain for variables and
functions, but no context can search down the scope chain into another
execution context. There are three objects in the scope chain for the
local context of swapColors(): the swapColors() variable object, the
variable object from changeColor(), and the global variable object.
The local context of swapColors() begins its search for variable and
function names in its own variable object before moving along the
chain. The scope chain for the changeColor() context has only two
objects: its own variable object and the global variable object. This
means that it cannot access the context of swapColors().

NOTE Function arguments are considered to be variables and follow the same
access rules as any other variable in the execution context.

Scope Chain Augmentation
Even though there are only two primary types of execution contexts, global and function (the third
exists inside of a call to eval()), there are other ways to augment the scope chain. Certain statements
cause a temporary addition to the front of the scope chain that is later removed after code execution.
There are two times when this occurs, specifically when execution enters either of the following:

➤➤ The catch block in a try-catch statement

➤➤ A with statement

window

color

changeColor()

anotherColor

swapColors()

tempColor

FIGURE 4-3

Execution Context and Scope ❘ 109

Both of these statements add a variable object to the front of the scope chain. For the with statement,
the specified object is added to the scope chain; for the catch statement, a new variable object is cre-
ated and contains a declaration for the thrown error object. Consider the following:

function buildUrl() {
 let qs = "?debug=true";

 with(location){
 let url = href + qs;
 }

 return url;
}

In this example, the with statement is acting on the location object, so location itself is added
to the front of the scope chain. There is one variable, qs, defined in the buildUrl() function. When
the variable href is referenced, it’s actually referring to location.href, which is in its own variable
object. When the variable qs is referenced, it’s referring to the variable defined in buildUrl(), which
is in the function context’s variable object. Inside the with statement is a variable declaration for url,
which becomes part of the function’s context and can, therefore, be returned as the function value.

NOTE There is a deviation in the Internet Explorer implementation of
JavaScript through Internet Explorer 8, where the error caught in a catch state-
ment is added to the execution context’s variable object rather than the catch
statement’s variable object, making it accessible even outside the catch block.
This was fixed in Internet Explorer 9.

Variable Declaration
With the introduction of ES6, JavaScript underwent a jostling transformation with regard to how
variables are declared in the language. Through ECMAScript 5.1, the one-size-fits-all keyword was
var. With ES6, not only does it introduce the two new keywords let and const, but these new key-
words will overwhelmingly be the preferred declarations over var.

Function Scope Declaration Using var
When a variable is declared using var, it is automatically added to the most immediate context avail-
able. In a function, the most immediate one is the function’s local context; in a with statement, the
most immediate is the function context. If a variable is initialized without first being declared, it gets
added to the global context automatically, as in this example:

function add(num1, num2) {
 var sum = num1 + num2;
 return sum;
}

let result = add(10, 20); // 30
console.log(sum); // causes an error: sum is not a valid variable

110 ❘ CHAPTER 4 Variables, scope, and MeMory

Here, the function add() defines a local variable named sum that contains the result of an addition
operation. This value is returned as the function value, but the variable sum isn’t accessible outside the
function. If the var keyword is omitted from this example, sum becomes accessible after add() has
been called, as shown here:

function add(num1, num2) {
 sum = num1 + num2;
 return sum;
}

let result = add(10, 20); // 30
console.log(sum); // 30

Here, the variable sum is initialized to a value without ever having been declared using var. When
add() is called, sum is created in the global context and continues to exist even after the function has
completed, allowing you to access it later.

NOTE Initializing variables without declaring them is a very common mis-
take in JavaScript programming and can lead to errors. It’s advisable to always
declare variables before initializing them to avoid such issues. In strict mode, ini-
tializing variables without declaration causes an error.

A var declaration will be brought to the top of the function or global scope and before any existing
code inside it. This is referred to as “hoisting”. This allows you to safely use a hoisted variable any-
where in the same scope without consideration for whether or not it was declared yet. However, in
practice, this can lead to legal yet bizarre code in which a variable is used before it is declared. Here is
an example of two equivalent code snippets in the global scope:

var name = "Jake";

// This is equivalent to:

name = 'Jake';
var name;

Here is an example of two equivalent functions:

function fn1() {
 var name = 'Jake';
}

// This is equivalent to:
function fn2() {
 var name;
 name = 'Jake';
}

You can prove to yourself that a variable is hoisted by inspecting it before its declaration. The hoist-
ing of the declaration means you will see undefined instead of ReferenceError:

console.log(name); // undefined
var name = 'Jake';

Execution Context and Scope ❘ 111

function() {
 console.log(name); // undefined
 var name = 'Jake';
}

Block Scope Declaration Using let
Brand new to ES6, let operates much in the same way as var, but it is scoped at the block level—a
new concept in JavaScript. Block scope is defined as the nearest set of enclosing curly braces {}. This
means if blocks, while blocks, function blocks, and even standalone blocks will be the extent of
the scope of any variable declared with let.

if (true) {
 let a;
}
console.log(a); // ReferenceError: a is not defined

while (true) {
 let b;
}
console.log(b); // ReferenceError: b is not defined

function foo() {
 let c;
}
console.log(c); // ReferenceError: c is not defined
 // This should be unsurprising, as
 // a var declaration would also throw an Error

// This is not an object literal, this is a standalone block.
// The JavaScript interpreter will identify it as such based on its contents.
{
 let d;
}
console.log(d); // ReferenceError: d is not defined

In a similar departure from the behavior of var, let cannot be declared twice inside the same
block scope. Duplicate var declarations are simply ignored; duplicate let declarations throw a
SyntaxError.

var a;
var a;
// No errors thrown

{
 let b;
 let b;
}
// SyntaxError: Identifier 'b' has already been declared

The behavior of let is especially useful when using iterators inside loops. Iterator declarations using
var will bleed outside the loop after it completes, which is frequently a very undesirable behavior.
Consider these two examples:

for (var i = 0; i < 10; ++i) {}
console.log(i); // 10

112 ❘ CHAPTER 4 Variables, scope, and MeMory

for (let j = 0; j < 10; ++j) {}
console.log(j); // ReferenceError: j is not defined

let is technically hoisted in the JavaScript runtime, but because of the “temporal dead zone,” you are
prevented from using the variable above its actual declaration. Therefore, for the purposes of writing
JavaScript, let is not hoisted in the same way as var.

Constant Declaration Using const
ES6 also introduces const as companion to let. A variable declared using const must be initialized
to some value. Once declared, it cannot be reassigned to a new value at any point in its lifetime.

const a; // SyntaxError: Missing initializer in const declaration

const b = 3;
console.log(b); // 3
b = 4; // TypeError: Assignment to a constant variable

Apart from its const rule enforcement, const variables behave identically to let variables:

if (true) {
 const a = 0;
}
console.log(a); // ReferenceError: a is not defined

while (true) {
 const b = 1;
}
console.log(b); // ReferenceError: b is not defined

function foo() {
 const c = 2;
}
console.log(c); // ReferenceError: c is not defined

{
 const d = 3;
}
console.log(d); // ReferenceError: d is not defined

The const declaration only applies to the top-level primitive or object. In other words, a const vari-
able assigned to an object cannot be reassigned to another reference value, but the keys inside that
object are not protected.

const o1 = {};
o1 = {}; // TypeError: Assignment to a constant variable;

const o2 = {};
o2.name = 'Jake';
console.log(o2.name); // 'Jake'

If you wish to make the entire object immutable, you can use Object.freeze(), although attempted
property assignment will not raise errors; it will just silently fail:

const o3 = Object.freeze({});
o3.name = 'Jake';
console.log(o3.name); // undefined

Execution Context and Scope ❘ 113

Because const declarations imply that the value is of a single type and immutable, the JavaScript
runtime compiler can replace all instances of it with its actual value instead of performing a variable
lookup through a lookup table. The Google Chrome V8 engine performs such an optimization.

NOTE If your development process isn’t too materially affected by it, best prac-
tices dictate that you use const as often as possible unless you really need a var-
iable that can undergo reassignment. This will allow you to catch an entire vein
of reassignment bugs much earlier than you normally would.

Identifier Lookup
When an identifier is referenced for either reading or writing within a particular context, a search
must take place to determine what identifier it represents. The search starts at the front of the scope
chain, looking for an identifier with the given name. If it finds that identifier name in the local
context, then the search stops and the variable is set; if the search doesn’t find the variable name, it
continues along the scope chain. (Note that objects in the scope chain also have a prototype chain, so
searching may include each object’s prototype chain.) This process continues until the search reaches
the global context’s variable object. If the identifier isn’t found there, it hasn’t been declared.

To better illustrate how identifier lookup occurs, consider the following example:

var color = 'blue';

function getColor() {
 return color;
}

console.log(getColor()); // 'blue'

When the function getColor() is called in this example, the variable color is referenced. At that point,
a two-step search begins. First getColor()’s variable object is searched for an identifier named color.
When it isn’t found, the search goes to the next variable object (from the global context) and then
searches for an identifier named color. Because color is defined in that variable object, the search ends.

Given this search process, referencing local variables automatically stops the search from going into
another variable object. This means that identifiers in a parent context cannot be referenced if an
identifier in the local context has the same name, as in this example:

var color = 'blue';

function getColor() {
 let color = 'red';
 return color;
}

console.log(getColor()); // 'red'

Using block scoped declarations does not change the search process, but it can add extra levels to the
lexical hierarchy:

var color = 'blue';

function getColor() {

114 ❘ CHAPTER 4 Variables, scope, and MeMory

 let color = 'red';
 {
 let color = 'green';
 return color;
 }
}

console.log(getColor()); // 'green'

In this modified code, a local variable named color is declared inside the getColor() function.
When the function is called, the variable is declared. When the second line of the function is executed,
it knows that a variable named color must be used. The search begins in the local context, where it
finds a variable named color with a value of 'green'. Because the variable was found, the search
stops and the local variable is used, meaning that the function returns 'green'. Any lines of code
appearing after the declaration of color as a local variable cannot access the global color variable
without qualifying it as window.color. If one of the operands is an object and the other is not, the
valueOf() method is called on the object to retrieve a primitive value to compare according to the
previous rules.

NOTE Variable lookup doesn’t come without a price. It’s faster to access local
variables than global variables because there’s no search up the scope chain.
JavaScript engines are getting better at optimizing identifier lookup, however, so
this difference may end up negligible in the future.

GARBAGE COLLECTION

JavaScript is a garbage-collected language, meaning that the execution environment is responsible
for managing the memory required during code execution. In languages such as C and C++, keeping
track of memory usage is a principle concern and the source of many issues for developers. Java Script
frees developers from worrying about memory management by automatically allocating what is
needed and reclaiming memory that is no longer being used. The basic idea is simple: figure out which
variables aren’t going to be used and free the memory associated with them. This process is periodic,
with the garbage collector running at specified intervals (or at predefined collection moments in code
execution). The process of garbage collection is an approximate and imperfect solution because the
general problem of knowing whether some piece of memory is needed is “undecidable,” meaning it
cannot be solved by an algorithm.

Consider the normal life cycle of a local variable in a function. The variable comes into existence
during the execution of the function. At that time, memory is allocated on the stack (and possibly
on the heap) to provide storage space for the value. The variable is used inside the function and then
the function ends. At that point, this variable is no longer needed, so its memory can be reclaimed
for later use. In this situation, it’s obvious that the variable isn’t needed, but not all situations are as
obvious. The garbage collector must keep track of which variables can and can’t be used so it can
identify likely candidates for memory reclamation. The strategy for identifying the unused variables
may differ on an implementation basis, though two strategies have traditionally been used in brows-
ers: mark-and-sweep, and reference counting.

Garbage Collection ❘ 115

Mark-and-Sweep
The most popular form of garbage collection for JavaScript is called mark-and-sweep. When a vari-
able comes into context, such as when a variable is declared inside a function, it is flagged as being in
context. Variables that are in context, logically, should never have their memory freed, because they
may be used as long as execution continues in that context. When a variable goes out of context, it is
also flagged as being out of context.

Variables can be flagged in any number of ways. There may be a specific bit that is flipped when a
variable is in context, or there may be an “in-context” variable list and an “out-of-context” variable
list between which variables are moved. The implementation of the flagging is unimportant; it’s really
the theory that is key.

When the garbage collector runs, it marks all variables stored in memory (once again, in any number
of ways). It then clears its mark off of variables that are in context and variables that are referenced
by in-context variables. The variables that are marked after that are considered ready for deletion,
because they can’t be reached by any in-context variables. The garbage collector then does a memory
sweep, destroying each of the marked values and reclaiming the memory associated with them.

As of 2008, Internet Explorer, Firefox, Opera, Chrome, and Safari all use mark-and-sweep garbage
collection (or variations thereof) in their JavaScript implementations, though the timing of garbage
collection differs.

Reference Counting
A second, less-popular type of garbage collection is reference counting. The idea is that every value
keeps track of how many references are made to it. When a variable is declared and a reference value
is assigned, the reference count is one. If another variable is then assigned to the same value, the refer-
ence count is incremented. Likewise, if a variable with a reference to that value is overwritten with
another value, then the reference count is decremented. When the reference count of a value reaches
zero, there is no way to reach that value and it is safe to reclaim the associated memory. The garbage
collector frees the memory for values with a reference count of zero the next time it runs.

Reference counting was initially used by Netscape Navigator 3.0 and immediately met with a serious
issue: circular references. A circular reference occurs when object A has a pointer to object B and
object B has a reference to object A, as in the following example:

function problem() {
 let objectA = new Object();
 let objectB = new Object();

 objectA.someOtherObject = objectB;
 objectB.anotherObject = objectA;
}

In this example, objectA and objectB reference each other through their properties, meaning that
each has a reference count of two. In a mark-and-sweep system, this wouldn’t be a problem because
both objects go out of scope after the function has completed. In a reference-counting system, how-
ever, objectA and objectB will continue to exist after the function has exited because their refer-
ence counts will never reach zero. If this function were called repeatedly, it would lead to a large
amount of memory never being reclaimed. For this reason, Netscape abandoned a reference-counting

116 ❘ CHAPTER 4 Variables, scope, and MeMory

garbage-collection routine in favor of a mark-and-sweep implementation in version 4.0. Unfortu-
nately, that’s not where the reference-counting problem ended.

Not all objects in Internet Explorer 8 and earlier are native JavaScript objects. Objects in the Browser
Object Model (BOM) and Document Object Model (DOM) are implemented as COM (Component
Object Model) objects in C++, and COM objects use reference counting for garbage collection. So
even though the Internet Explorer JavaScript engine uses a mark-and-sweep implementation, any
COM objects that are accessed in JavaScript still use reference counting, meaning circular references
are still a problem when COM objects are involved. The following simple example demonstrates a
circular reference with a COM object:

let element = document.getElementById("some_element");
let myObject = new Object();
myObject.element = element;
element.someObject = myObject;

This example sets up a circular reference between a DOM element (element) and a native JavaScript
object (myObject). The myObject variable has a property called element that points to element, and
the element variable has a property called someObject that points back to myObject. Because of
this circular reference, the memory for the DOM element will never be reclaimed even if it is removed
from the page.

To avoid circular reference problems such as this, you should break the connection between native
JavaScript objects and DOM elements when you’re finished using them. For example, the following
code cleans up the circular references in the previous example:

myObject.element = null;
element.someObject = null;

Setting a variable to null effectively severs the connection between the variable and the value it
previously referenced. The next time the garbage collector runs, these values will be deleted and the
memory will be reclaimed.

Internet Explorer 9 remedied some of these problems by making BOM and DOM objects into true
JavaScript objects, thus avoiding the problem of having two different garbage-collection algorithms
and eliminating common memory leak issues.

NOTE There are several other patterns that may cause circular references, and
they will be covered throughout this book.

Performance
The garbage collector runs periodically and can potentially be an expensive process if there are a
large number of variable allocations in memory, so the timing of the garbage-collection process
is important. In particular, on mobile devices with limited system memory, garbage collection can
noticeably degrade the speed and framerate of rendering. You cannot know when garbage collection
is coming, so the best strategy is to organize your code in such a way that it allows garbage collection
to do its job to the best of its ability whenever it is scheduled to run.

Garbage Collection ❘ 117

Modern garbage collectors decide when to run based on a collection of heuristics that are measured
from the JavaScript runtime environment. These heuristics will vary by engine, but they will all be
approximately based upon the size and number of objects that have been allocated. For example,
from a V8 blog post in 2016: “At the end of a full garbage collection, V8’s heap growing strategy
determines when the next garbage collection will happen based on the amount of live objects with
some additional slack.”

Internet Explorer was infamous for its performance issues related to how often the garbage collector
ran—it ran based on the number of allocations, specifically 256 variable allocations, 4,096 object/
array literals and array slots, or 64KB of strings. If any of these thresholds were reached, the garbage
collector would run. The problem with this implementation is that a script with so many variables
will probably continue to have that many variables throughout its lifetime, meaning the garbage col-
lector will run quite frequently. This issue caused serious performance problems that led to changes in
the garbage-collection routine in Internet Explorer 7.

With the release of Internet Explorer 7, the JavaScript engine’s garbage-collection routine was tuned
to dynamically change the allocation threshold of variables, literals, and/or array slots that triggered
garbage collection. The Internet Explorer 7 thresholds start out equal to those in Internet Explorer 6.
If the garbage-collection routine reclaims less than 15 percent of the allocations, the threshold for
variables, literals, and/or array slots doubles. If the routine ever reclaims 85 percent of the allocations,
then the threshold is reset to the default. This simple change greatly improved the performance of the
browser on JavaScript-heavy web pages.

WARNING It’s possible, though not recommended, to trigger the garbage-
collection process in some browsers. In Internet Explorer, the window
.Collect Garbage() method causes garbage collection to occur immediately. In
Opera 7 and higher, calling window.opera.collect() initiates the garbage-collec-
tion process.

Managing Memory
In a garbage-collected programming environment, developers typically don’t have to worry about
memory management. However, JavaScript runs in an environment where memory management and
garbage collection operate uniquely. The amount of memory available for use in web browsers is
typically much less than is available for desktop applications, and even more so for mobile browsers.
This is more of a security feature than anything else, ensuring that a web page running JavaScript
can’t crash the operating system by using up all the system memory. The memory limits affect not
only variable allocation but also the call stack and the number of statements that can be executed in a
single thread.

Keeping the amount of used memory to a minimum leads to better page performance. The best way
to optimize memory usage is to ensure that you’re keeping around only data that is necessary for the
execution of your code. When data is no longer necessary, it’s best to set the value to null, freeing
up the reference—this is called dereferencing the value. This advice applies mostly to global values

118 ❘ CHAPTER 4 Variables, scope, and MeMory

and properties of global objects. Local variables are dereferenced automatically when they go out of
context, as in this example:

function createPerson(name){
 let localPerson = new Object();
 localPerson.name = name;
 return localPerson;
}

let globalPerson = createPerson("Nicholas");

// do something with globalPerson

globalPerson = null;

In this code, the variable globalPerson is filled with a value returned from the createPerson()
function. Inside createPerson(), localPerson creates an object and adds a name property to it.
The variable localPerson is returned as the function value and assigned to globalPerson. Because
localPerson goes out of context after createPerson() has finished executing, it doesn’t need to be
dereferenced explicitly. Because globalPerson is a global variable, it should be dereferenced when
it’s no longer needed, which is what happens in the last line.

Keep in mind that dereferencing a value doesn’t automatically reclaim the memory associated with it.
The point of dereferencing is to make sure the value is out of context and will be reclaimed the next
time garbage collection occurs.

Performance Boosts with const and let Declarations
The introduction of these keywords in ES6 isn’t just a boon for your code style but also for the gar-
bage collection process. Because const and let are scoped to a block instead of a function, depend-
ing on how your code is organized this may signal to the garbage collector that an allocated variable
is eligible for cleanup far sooner than it would have been when using var. This would occur in situa-
tions when the block scope terminates far sooner than the function scope.

Hidden Classes and the delete Operation
Depending on where you expect your JavaScript to run, it is sometimes worth considering various
performance implications based on which JavaScript engine a browser uses. As of 2017, the most
popular web browser is Google Chrome, which uses the V8 JavaScript engine. This engine utilizes
“hidden classes” when compiling the interpreted JavaScript code into actual machine code, and if you
are writing performance-sensitive code, this might matter to you.

During runtime, V8 will associate hidden classes for every object created to keep track of the shape of
its properties. Objects that are able to share the same hidden class will have better performance, and
V8 will optimize for this but may not always be able to. Consider the following code snippet:

function Article() {
 this.title = 'Inauguration Ceremony Features Kazoo Band';
}

let a1 = new Article();
let a2 = new Article();

Garbage Collection ❘ 119

Behind the scenes, V8 will configure the two class instances to share the same hidden class. This
makes sense because they share a constructor and prototype. Suppose you then appended the follow-
ing line to the end of this code:

a2.author = 'Jake';

Now, the two Article instances will have two divergent hidden class implementations. Depending
on the frequency of this operation and the size of the hidden classes, this can have meaningful impacts
on performance.

The solution, of course, is to avoid JavaScript’s ready-fire-aim dynamic property assignment and
instead declare all properties inside the constructor, as shown here:

function Article(opt_author) {
 this.title = 'Inauguration Ceremony Features Kazoo Band';
 this.author = opt_author;
}

let a1 = new Article();
let a2 = new Article('Jake');

Now, the two instances will behave in essentially the same way (not counting the return values of
hasOwnProperty), and they will also share a hidden class, potentially yielding improved performance.
Bear in mind though that using the delete keyword can generate the same hidden class fragmenta-
tion. This is demonstrated here:

function Article() {
 this.title = 'Inauguration Ceremony Features Kazoo Band';
 this.author = 'Jake';
}

let a1 = new Article();
let a2 = new Article();

delete a1.author;

At the end of this snippet, the two instances will no longer share a hidden class even though they use
a unified constructor. Dynamic deletion of a property will yield the same effect as dynamic addition.
Best practices dictate that unwanted properties should be set to null. It will allow the hidden classes
to remain intact and shared, and it has the same effect on removing references for the benefit of the
garbage collector.

function Article() {
 this.title = 'Inauguration Ceremony Features Kazoo Band';
 this.author = 'Jake';
}

let a1 = new Article();
let a2 = new Article();

a1.author = null;

Memory Leaks
Poorly written JavaScript can yield some sneaky and insidious memory leaks. On devices with limited
memory, or in the context of functions that are called many times, this can cause big problems. Over-
whelmingly, memory leaks in JavaScript are caused by unwanted references.

120 ❘ CHAPTER 4 Variables, scope, and MeMory

One of the most common and easily fixed memory leaks is accidentally declaring global variables. In
the following code, the variable is not prefixed with a declaration keyword:

function setName() {
 name = 'Jake';
}

In this example, the interpreter will handle this as window.name = 'Jake', and, of course, properties
set on the window object will never be cleaned up if the window object itself is not cleaned up. This is
easily fixed by prefixing the declaration with var, let, or const, which will all go out of scope at the
end of the function’s execution.

Interval timers can also quietly cause memory leaks. In the following code, the code sets an interval,
which references a variable provided through a closure:

let name = 'Jake';
setInterval(() => {
 console.log(name);
}, 100);

As long as this interval timer is running, the handler function containing a reference to name remains
allocated. The garbage collector recognizes this and therefore is unable to clean up the outer variable.

JavaScript closures are an exceedingly common way to leak memory without realizing it. Consider
the following example:

let outer = function() {
 let name = 'Jake';
 return function() {
 return name;
 };
};

This leaks the memory allocated for name. This code creates an internal closure, so as long as the
outer function exists, the name variable cannot be cleaned up because there will be a persistent refer-
ence to it through that closure. If the contents of the name variable were extremely large instead of
just a short string, major problems could result.

Static Allocation and Object Pools
At the very end of the JavaScript performance spectrum, you may find yourself wanting to squeeze
the very last bit of performance juice out of the browser. To accomplish this, a good place to focus is
on minimizing the number of garbage collection operations the browser performs. Because you do
not directly control when garbage collection occurs, you can instead optimize around the heuristics
that browsers use when scheduling garbage collection. In theory, if you can responsibly use allocated
memory and at the same time obviate superfluous garbage collection, then you will be able to make
performance gains that would otherwise be lost freeing memory.

One important metric measured by the browser to decide when to schedule garbage collection is the
rate of object churn. If lots of objects are being instantiated and then going out of scope, the browser
will schedule garbage collections more aggressively, which of course will slow down the application.
Consider the following example, a two dimensional vector addition function:

function addVector(a, b) {
 let resultant = new Vector();

Garbage Collection ❘ 121

 resultant.x = a.x + b.x;
 resultant.y = a.y + b.y;
 return resultant;
}

When invoked, this function creates a new object on the heap, modifies it, and returns it to the caller.
If the lifetime of this vector object is short, it will soon lose all its references and be eligible for gar-
bage collection. If this vector addition function is called frequently, the garbage collection scheduler
will see this high rate of object churn, and garbage collection will be scheduled more frequently.

Instead of this dynamic vector creation, suppose you changed the method to use an existing vec-
tor object:

function addVector(a, b, resultant) {
 resultant.x = a.x + b.x;
 resultant.y = a.y + b.y;
 return resultant;
}

Of course, this requires the resultant vector argument to be fresh and instantiated somewhere else,
but the behavior of this function is the same. Where then to create a vector while avoiding the gaze of
the garbage collector heuristics?

One strategy is to use an object pool. At some point in initialization, you will create an object pool
that manages a collection of recyclable objects. Your application can request an object from this pool,
set its properties, use it, and return it to the pool when it’s done. Because no object instantiation is
occurring, garbage collection heuristics won’t measure an uptick in object churn, and garbage collec-
tion will occur less frequently. An object pool pseudo-implementation might look something like this:

// vectorPool is the existing object pool
let v1 = vectorPool.allocate();
let v2 = vectorPool.allocate();
let v3 = vectorPool.allocate();

v1.x = 10;
v1.y = 5;
v2.x = -3;
v2.y = -6;

addVector(v1, v2, v3);

console.log([v3.x, v3.y]); // [7, -1]

vectorPool.free(v1);
vectorPool.free(v2);
vectorPool.free(v3);

// If the objects had properties referencing other objects,
// those would need to be set to null here as well
v1 = null;
v2 = null;
v3 = null;

If the object pool only allocates vectors as necessary (which creates new ones when they don’t exist
and reuses ones that already exist), this implementation is essentially a greedy algorithm that will

122 ❘ CHAPTER 4 Variables, scope, and MeMory

have monotonically increasing yet static memory. This pool must maintain the collection using
some structure, and a good choice is an Array. However, the implementation using an array must be
designed carefully as to not incur additional garbage collection. Consider the following example:

let vectorList = new Array(100);
let vector = new Vector();
vectorList.push(vector);

Because JavaScript uses dynamically sized arrays, the engine will delete the array of size 100 and cre-
ate a new array of size 200. The garbage collector will see this deletion and may be encouraged to run
sooner because of it. This dynamic allocation can be avoided by creating an appropriately sized array
upon initialization, which will enable you to avoid the aforementioned resizing operation. It will
require, however, that you gain a sense of how large this array should be.

NOTE Static allocation is an extreme form of optimization. It will yield
performance gains when your application’s performance is hindered by garbage
collection overhead, but this will be the case very infrequently. In most cases,
this is a form of premature optimization and is not appropriate.

SUMMARY

Two types of values can be stored in JavaScript variables: primitive values and reference values.
Primitive values have one of the six primitive data types: Undefined, Null, Boolean, Number, String,
and Symbol. Primitive and reference values have the following characteristics:

➤➤ Primitive values are of a fixed size and so are stored in memory on the stack.

➤➤ Copying primitive values from one variable to another creates a second copy of the value.

➤➤ Reference values are objects and are stored in memory on the heap.

➤➤ A variable containing a reference value actually contains just a pointer to the object, not the
object itself.

➤➤ Copying a reference value to another variable copies just the pointer, so both variables end
up referencing the same object.

➤➤ The typeof operator determines a value’s primitive type, whereas the instanceof operator
is used to determine the reference type of a value.

All variables, primitive and reference, exist within an execution context (also called a scope) that
determines the lifetime of the variable and which parts of the code can access it. Execution context
can be summarized as follows:

➤➤ Execution contexts exist globally (called the global context), within functions, and
within blocks.

➤➤ Each time a new execution context is entered, it creates a scope chain to search for variables
and functions.

Summary ❘ 123

➤➤ Contexts that are local to a function or block have access not only to variables in that scope
but also to variables in any containing contexts and the global context.

➤➤ The global context has access only to variables and functions in the global context and
cannot directly access any data inside local contexts.

➤➤ The execution context of variables helps to determine when memory will be freed.

JavaScript is a garbage-collected programming environment where the developer need not be con-
cerned with memory allocation or reclamation. JavaScript’s garbage-collection routine can be sum-
marized as follows:

➤➤ Values that go out of scope will automatically be marked for reclamation and will be deleted
during the garbage-collection process.

➤➤ The predominant garbage-collection algorithm is called mark-and-sweep, which marks
values that aren’t currently being used and then goes back to reclaim that memory.

➤➤ Another algorithm is reference counting, which keeps track of how many references there
are to a particular value. JavaScript engines no longer use this algorithm, but it still affects
Internet Explorer because of nonnative JavaScript objects (such as DOM elements) being
accessed in JavaScript.

➤➤ Reference counting causes problems when circular references exist in code.

➤➤ Dereferencing variables helps not only with circular references but also with garbage collec-
tion in general. To aid in memory reclamation, global objects, properties on global objects,
and circular references should all be dereferenced when no longer needed.

Basic Reference Types
WHAT’S IN THIS CHAPTER?

➤➤ Working with objects

➤➤ Understanding basic JavaScript data types

➤➤ Working with primitives and primitive wrappers

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/projavascript4e on the Down-
load Code tab.

A reference value (object) is an instance of a specific reference type. In ECMAScript, reference
types are structures used to group data and functionality together and are often incorrectly
called classes. Although technically an object-oriented language, ECMAScript lacks some basic
constructs that have traditionally been associated with object-oriented programming, including
classes and interfaces. Reference types are also sometimes called object definitions because they
describe the properties and methods that objects should have.

NOTE Even though reference types are similar to classes, the two concepts are
not equivalent. To avoid any confusion, the term “class” is not used in the rest of
this chapter.

5

Professional JavaScript® for Web Developers, Fourth Edition. Matt Frisbie.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

126 ❘ CHAPTER 5 Basic RefeRence Types

Again, objects are considered to be instances of a particular reference type. New objects are created
by using the new operator followed by a constructor. A constructor is simply a function whose pur-
pose is to create a new object. Consider the following line of code:

let now = new Date();

This code creates a new instance of the Date reference type and stores it in the variable now. The
constructor being used is Date(), which creates a simple object with only the default properties and
methods. ECMAScript provides a number of native reference types, such as Date, to help developers
with common computing tasks.

NOTE Functions are a reference type, but they are too broad of a topic for
this chapter and therefore have an entire chapter devoted to them. Refer to the
Functions chapter.

THE DATE TYPE

The ECMAScript Date type is based on an early version of java.util.Date from Java. As such, the
Date type stores dates as the number of milliseconds that have passed since midnight on January 1,
1970 UTC (Universal Time Code). Using this data storage format, the Date type can accurately repre-
sent dates 285,616 years before or after January 1, 1970.

To create a date object, use the new operator along with the Date constructor, like this:

let now = new Date();

When the Date constructor is used without any arguments, the created object is assigned the cur-
rent date and time. To create a date based on another date or time, you must pass in the millisecond
representation of the date (the number of milliseconds after midnight, January 1, 1970 UTC, the Unix
epoch). To aid in this process, ECMAScript provides two methods: Date.parse() and Date.UTC().

The Date.parse() method accepts a string argument representing a date. It attempts to convert the
string into a millisecond representation of a date. ECMA-262 fifth edition defines which date formats
Date.parse() should support, filling in a void left by the third edition. All implementations must
now support the following date formats:

➤➤ month/date/year (such as 5/23/2019)

➤➤ month_name date, year (such as May 23, 2019)

➤➤ day_of_week month_name date year hours:minutes:seconds time_zone (such as Tue May 23
2019 00:00:00 GMT-0700)

➤➤ ISO 8601 extended format YYYY-MM-DDTHH:mm:ss.sssZ (such as 2019-05-
23T00:00:00). This works only in ECMAScript 5–compliant implementations.

For instance, to create a date object for May 23, 2019, you can use the following code:

let someDate = new Date(Date.parse("May 23, 2019"));

The Date Type ❘ 127

If the string passed into Date.parse() doesn’t represent a date, then it returns NaN. The Date con-
structor will call Date.parse() behind the scenes if a string is passed in directly, meaning that the
following code is identical to the previous example:

let someDate = new Date("May 23, 2019");

This code produces the same result as the previous example.

NOTE There are a lot of quirks surrounding the Date type and its implementa-
tion in various browsers. There is a tendency to replace out-of-range values with
the current value to produce an output, so when trying to parse "January 32,
2019", some browsers will interpret it as "February 1, 2019", whereas Opera
tends to insert the current day of the current month, returning "January
current _ day, 2019" . This means running the code on September 21 returns
"January 21, 2019".

The Date.UTC() method also returns the millisecond representation of a date but constructs that
value using different information than Date.parse(). The arguments for Date.UTC() are the year,
the zero-based month (January is 0, February is 1, and so on), the day of the month (1 through 31),
and the hours (0 through 23), minutes, seconds, and milliseconds of the time. Of these arguments,
only the first two (year and month) are required. If the day of the month isn’t supplied, it’s assumed
to be 1, while all other omitted arguments are assumed to be 0. Here are two examples of Date.
UTC() in action:

// January 1, 2000 at midnight GMT
let y2k = new Date(Date.UTC(2000, 0));

// May 5, 2005 at 5:55:55 PM GMT
let allFives = new Date(Date.UTC(2005, 4, 5, 17, 55, 55));

Two dates are created in this example. The first date is for midnight (GMT) on January 1, 2000,
which is represented by the year 2000 and the month 0 (which is January). Because the other argu-
ments are filled in (the day of the month as 1 and everything else as 0), the result is the first day of the
month at midnight. The second date represents May 5, 2005, at 5:55:55 PM GMT. Even though the
date and time contain only fives, creating this date requires some different numbers: the month must
be set to 4 because months are zero-based, and the hour must be set to 17 because hours are repre-
sented as 0 through 23. The rest of the arguments are as expected.

As with Date.parse(), Date.UTC() is mimicked by the Date constructor but with one major differ-
ence: the date and time created are in the local time zone, not in GMT. However, the Date construc-
tor takes the same arguments as Date.UTC(), so if the first argument is a number, the constructor
assumes that it is the year of a date, the second argument is the month, and so on. The preceding
example can then be rewritten as this:

// January 1, 2000 at midnight in local time
let y2k = new Date(2000, 0);

// May 5, 2005 at 5:55:55 PM local time
let allFives = new Date(2005, 4, 5, 17, 55, 55);

128 ❘ CHAPTER 5 Basic RefeRence Types

This code creates the same two dates as the previous example, but this time both dates are in the local
time zone as determined by the system settings.

ECMAScript also offers Date.now(), which returns the millisecond representation of the date and
time at which the method is executed. This method makes it trivial to use Date objects for code pro-
filing, such as:

// get start time
let start = Date.now();

// call a function
doSomething();

// get stop time
let stop = Date.now(),
 result = stop – start;

Inherited Methods
As with the other reference types, the Date type overrides toLocaleString(), toString(), and
valueOf(), though unlike the previous types, each method returns something different. The Date
type’s toLocaleString() method returns the date and time in a format appropriate for the locale
in which the browser is being run. This often means that the format includes AM or PM for the time
and doesn’t include any time-zone information (the exact format varies from browser to browser).
The toString() method typically returns the date and time with time-zone information, and the
time is typically indicated in 24-hour notation (hours ranging from 0 to 23). The following displays
the format for toLocaleString() and toString() when representing the date/time of February 1,
2019, at midnight PST (Pacific Standard Time) in the "en-US" locale:

toLocaleString() — 2/1/2019 12:00:00 AM

toString() — Thu Feb 1 2019 00:00:00 GMT-0800 (Pacific Standard Time)

Modern browsers have converged to output the same strings for these two methods. When using
legacy browsers, there are differences between the formats that browsers return for each method.
These differences mean toLocaleString() and toString() are useful only for debugging purposes,
not for display purposes.

The valueOf() method for the Date type doesn’t return a string at all because it is overridden to
return the milliseconds representation of the date so that operators (such as less-than and greater-
than) will work appropriately for date values. Consider this example:

let date1 = new Date(2019, 0, 1); // "January 1, 2019"
let date2 = new Date(2019, 1, 1); // "February 1, 2019"

console.log(date1 < date2); // true
console.log(date1 > date2); // false

The date January 1, 2019, comes before February 1, 2019, so it would make sense to say that the
former is less than the latter. Because the milliseconds representation of January 1, 2019, is less than
that of February 1, 2019, the less-than operator returns true when the dates are compared, providing
an easy way to determine the order of dates.

The Date Type ❘ 129

Date-Formatting Methods
There are several Date type methods used specifically to format the date as a string. They are
as follows:

➤➤ toDateString()—Displays the date’s day of the week, month, day of the month, and year in
an implementation-specific format.

➤➤ toTimeString()—Displays the date’s hours, minutes, seconds, and time zone in an imple-
mentation-specific format.

➤➤ toLocaleDateString()—Displays the date’s day of the week, month, day of the month, and
year in an implementation- and locale-specific format.

➤➤ toLocaleTimeString()—Displays the date’s hours, minutes, and seconds in an implementa-
tion-specific format.

➤➤ toUTCString()—Displays the complete UTC date in an implementation-specific format.

The output of these methods, as with toLocaleString() and toString(), varies widely from
browser to browser and therefore can’t be employed in a user interface for consistent display of a date.

NOTE There is also a method called toGMTString(), which is equivalent to
toUTCString() and is provided for backwards compatibility. However, the spec-
ification recommends that new code use toUTCString() exclusively.

Date/Time Component Methods
The remaining methods of the Date type (listed in the following table) deal directly with getting and
setting specific parts of the date value. Note that references to a UTC date mean the date value when
interpreted without a time-zone offset (the date when converted to GMT).

METHOD DESCRIPTION

getTime() Returns the milliseconds representation of the date; same as
valueOf().

setTime(milliseconds) Sets the milliseconds representation of the date, thus changing
the entire date.

getFullYear() Returns the four-digit year (2019 instead of just 19).

getUTCFullYear() Returns the four-digit year of the UTC date value.

setFullYear(year) Sets the year of the date. The year must be given with four
digits (2019 instead of just 19).

setUTCFullYear(year) Sets the year of the UTC date. The year must be given with four
digits (2019 instead of just 19).

130 ❘ CHAPTER 5 Basic RefeRence Types

METHOD DESCRIPTION

getMonth() Returns the month of the date, where 0 represents January and
11 represents December.

getUTCMonth() Returns the month of the UTC date, where 0 represents January
and 11 represents December.

setMonth(month) Sets the month of the date, which is any number 0 or greater.
Numbers greater than 11 add years.

setUTCMonth(month) Sets the month of the UTC date, which is any number 0 or
greater. Numbers greater than 11 add years.

getDate() Returns the day of the month (1 through 31) for the date.

getUTCDate() Returns the day of the month (1 through 31) for the UTC date.

setDate(date) Sets the day of the month for the date. If the date is greater
than the number of days in the month, the month value also
gets increased.

setUTCDate(date) Sets the day of the month for the UTC date. If the date is
greater than the number of days in the month, the month value
also gets increased.

getDay() Returns the date’s day of the week as a number (where 0
represents Sunday and 6 represents Saturday).

getUTCDay() Returns the UTC date’s day of the week as a number (where 0
represents Sunday and 6 represents Saturday).

getHours() Returns the date’s hours as a number between 0 and 23.

getUTCHours() Returns the UTC date’s hours as a number between 0 and 23.

setHours(hours) Sets the date’s hours. Setting the hours to a number greater
than 23 also increments the day of the month.

setUTCHours(hours) Sets the UTC date’s hours. Setting the hours to a number
greater than 23 also increments the day of the month.

getMinutes() Returns the date’s minutes as a number between 0 and 59.

getUTCMinutes() Returns the UTC date’s minutes as a number between 0 and 59.

setMinutes(minutes) Sets the date’s minutes. Setting the minutes to a number
greater than 59 also increments the hour.

setUTCMinutes(minutes) Sets the UTC date’s minutes. Setting the minutes to a number
greater than 59 also increments the hour.

getSeconds() Returns the date’s seconds as a number between 0 and 59.

The RegExp Type ❘ 131

METHOD DESCRIPTION

getUTCSeconds() Returns the UTC date’s seconds as a number between 0 and 59.

setSeconds(seconds) Sets the date’s seconds. Setting the seconds to a number
greater than 59 also increments the minutes.

setUTCSeconds(seconds) Sets the UTC date’s seconds. Setting the seconds to a number
greater than 59 also increments the minutes.

getMilliseconds() Returns the date’s milliseconds.

getUTCMilliseconds() Returns the UTC date’s milliseconds.

setMilliseconds

(milliseconds)
Sets the date’s milliseconds.

setUTCMilliseconds

(milliseconds)
Sets the UTC date’s milliseconds.

getTimezoneOffset() Returns the number of minutes that the local time zone is offset
from UTC. For example, Eastern Standard Time returns 300. This
value changes when an area goes into Daylight Saving Time.

THE REGEXP TYPE

ECMAScript supports regular expressions through the RegExp type. Regular expressions are easy to
create using syntax similar to Perl, as shown here:

let expression = /pattern/flags;

The pattern part of the expression can be any simple or complicated regular expression, including
character classes, quantifiers, grouping, lookaheads, and backreferences. Each expression can have
zero or more flags indicating how the expression should behave. Three supported flags represent
matching modes, as follows:

➤➤ g—Indicates global mode, meaning the pattern will be applied to all of the string instead of
stopping after the first match is found.

➤➤ i—Indicates case-insensitive mode, meaning the case of the pattern and the string are
ignored when determining matches.

➤➤ m—Indicates multiline mode, meaning the pattern will continue looking for matches after
reaching the end of one line of text.

➤➤ y—Indicates sticky mode, meaning the pattern will only look at the string contents
beginning at lastIndex.

➤➤ u—Indicates Unicode mode is enabled.

132 ❘ CHAPTER 5 Basic RefeRence Types

A regular expression is created using a combination of a pattern and these flags to produce different
results, as in this example:

// Match all instances of "at" in a string.
let pattern1 = /at/g;

// Match the first instance of "bat" or "cat", regardless of case.
let pattern2 = /[bc]at/i;

// Match all three-character combinations ending with "at", regardless of case.
let pattern3 = /.at/gi;

As with regular expressions in other languages, all metacharacters must be escaped when used as part
of the pattern. The metacharacters are as follows:

([{ \ ^ $ |)] } ? * + .

Each metacharacter has one or more uses in regular-expression syntax and so must be escaped by a
backslash when you want to match the character in a string. Here are some examples:

// Match the first instance of "bat" or "cat", regardless of case.
let pattern1 = /[bc]at/i;

// Match the first instance of "[bc]at", regardless of case.
let pattern2 = /\[bc\]at/i;

// Match all three-character combinations ending with "at", regardless of case.
let pattern3 = /.at/gi;

// Match all instances of ".at", regardless of case.
let pattern4 = /\.at/gi;

In this code, pattern1 matches all instances of "bat" or "cat", regardless of case. To match "[bc]
at" directly, both square brackets need to be escaped with a backslash, as in pattern2. In pattern3,
the dot indicates that any character can precede "at" to be a match. If you want to match ".at",
then the dot needs to be escaped, as in pattern4.

The preceding examples all define regular expressions using the literal form. Regular expressions can
also be created by using the RegExp constructor, which accepts two arguments: a string pattern to
match and an optional string of flags to apply. Any regular expression that can be defined using literal
syntax can also be defined using the constructor, as in this example:

// Match the first instance of "bat" or "cat", regardless of case.
let pattern1 = /[bc]at/i;

// Same as pattern1, just using the constructor.
let pattern2 = new RegExp("[bc]at", "i");

Here, pattern1 and pattern2 define equivalent regular expressions. Note that both arguments of the
RegExp constructor are strings (regular-expression literals should not be passed into the RegExp con-
structor). Because the pattern argument of the RegExp constructor is a string, there are some instances
in which you need to double-escape characters. All metacharacters must be double-escaped, as must
characters that are already escaped, such as \n (the \ character, which is normally escaped in strings as
\\ becomes \\\\ when used in a regular-expression string). The following table shows some patterns
in their literal form and the equivalent string that would be necessary to use the RegExp constructor.

The RegExp Type ❘ 133

LITERAL PATTERN STRING EQUIVALENT

/\[bc\]at/ "\\[bc\\]at"

/\.at/ "\\.at"

/name\/age/ "name\\/age"

/\d.\d{1,2}/ "\\d.\\d{1,2}"

/\w\\hello\\123/ "\\w\\\\hello\\\\123"

Keep in mind that creating a regular expression using a literal is not exactly the same as creating a
regular expression using the RegExp constructor. Regular-expression literals always share the same
RegExp instance, while creating a new RegExp via constructor always results in a new instance. Con-
sider the following:

let re = null;
for (let i = 0; i < 10; i++) {
 re = /cat/g;
 re.test("catastrophe");
}
for (let i = 0; i < 10; i++) {
 re = new RegExp("cat", "g");
 re.test("catastrophe");
}

In the first loop, there is only one instance of RegExp created for /cat/, even though it is specified
in the body of the loop. Instance properties (mentioned in the next section) are not reset, so calling
test() fails every other time through the loop. This happens because the "cat" is found in the first
call to test(), but the second call begins its search from index 3 (the end of the last match) and
can’t find it. Because the end of the string is found, the subsequent call to test() starts at the begin-
ning again.

The second loop uses the RegExp constructor to create the regular expression each time through the
loop. Each call to test() returns true because a new instance of RegExp is created for each iteration.

ECMAScript regular-expression literals create new instances of RegExp as if the RegExp constructor
were called directly.

It is also possible to copy existing regular expression instances and optionally modify their flags using
the constructor:

const re1 = /cat/g;
console.log(re1); // "/cat/g"

const re2 = new RegExp(re1);
console.log(re2); // "/cat/g"

const re3 = new RegExp(re1, "i");
console.log(re3); // "/cat/i"

134 ❘ CHAPTER 5 Basic RefeRence Types

RegExp Instance Properties
Each instance of RegExp has the following properties that allow you to get information about
the pattern:

➤➤ global—A Boolean value indicating whether the g flag has been set.

➤➤ ignoreCase—A Boolean value indicating whether the i flag has been set.

➤➤ unicode—A Boolean value indicating whether the u flag has been set.

➤➤ sticky—A Boolean value indicating whether the y flag has been set.

➤➤ lastIndex—An integer indicating the character position where the next match will be
attempted in the source string. This value always begins as 0.

➤➤ multiline—A Boolean value indicating whether the m flag has been set.

➤➤ source—The string source of the regular expression. This is always returned as if specified
in literal form (without opening and closing slashes) rather than a string pattern as passed
into the constructor.

➤➤ flags—The string flags of the regular expression. This is always returned as if specified in
literal form (without opening and closing slashes) rather than a string pattern as passed into
the constructor.

These properties are helpful in identifying aspects of a regular expression; however, they typi-
cally don’t have much use, because the information is available in the pattern declaration. Here’s
an example:

let pattern1 = /\[bc\]at/i;

console.log(pattern1.global); // false
console.log(pattern1.ignoreCase); // true
console.log(pattern1.multiline); // false
console.log(pattern1.lastIndex); // 0
console.log(pattern1.source); // "\[bc\]at"
console.log(pattern1.flags); // "i"

let pattern2 = new RegExp("\\[bc\\]at", "i");

console.log(pattern2.global); // false
console.log(pattern2.ignoreCase); // true
console.log(pattern2.multiline); // false
console.log(pattern2.lastIndex); // 0
console.log(pattern2.source); // "\[bc\]at"
console.log(pattern2.flags); // "i"

Note that the source and flags properties of each pattern are equivalent even though the first pat-
tern is in literal form and the second uses the RegExp constructor. The source and flags properties
normalize the string into the form you’d use in a literal.

The RegExp Type ❘ 135

RegExp Instance Methods
The primary method of a RegExp object is exec(), which is intended for use with capturing groups.
This method accepts a single argument, which is the string on which to apply the pattern, and returns
an array of information about the first match or null if no match was found. The returned array,
though an instance of Array, contains two additional properties: index, which is the location in the
string where the pattern was matched, and input, which is the string that the expression was run
against. In the array, the first item is the string that matches the entire pattern. Any additional items
represent captured groups inside the expression (if there are no capturing groups in the pattern, then
the array has only one item). Consider the following:

let text = "mom and dad and baby";
let pattern = /mom(and dad(and baby)?)?/gi;

let matches = pattern.exec(text);
console.log(matches.index); // 0
console.log(matches.input); // "mom and dad and baby"
console.log(matches[0]); // "mom and dad and baby"
console.log(matches[1]); // " and dad and baby"
console.log(matches[2]); // " and baby"

In this example, the pattern has two capturing groups. The innermost one matches " and baby",
and its enclosing group matches " and dad" or " and dad and baby". When exec() is called
on the string, a match is found. Because the entire string matches the pattern, the index property
on the matches array is set to 0. The first item in the array is the entire matched string, the second
contains the contents of the first capturing group, and the third contains the contents of the third
capturing group.

The exec() method returns information about one match at a time even if the pattern is global.
When the global flag is not specified, calling exec() on the same string multiple times will always
return information about the first match.

let text = "cat, bat, sat, fat";
let pattern = /.at/;

let matches = pattern.exec(text);
console.log(matches.index); // 0
console.log(matches[0]); // cat
console.log(pattern.lastIndex); // 0

matches = pattern.exec(text);
console.log(matches.index); // 0
console.log(matches[0]); // cat
console.log(pattern.lastIndex); // 0

The pattern in this example is not global, so each call to exec() returns the first match only ("cat").
lastIndex remains unchanged in nonglobal mode.

With the global g flag set on the pattern, each call to exec() moves further into the string looking for
matches, as in this example:

let text = "cat, bat, sat, fat";
let pattern = /.at/g;

136 ❘ CHAPTER 5 Basic RefeRence Types

let matches = pattern.exec(text);
console.log(matches.index); // 0
console.log(matches[0]); // cat
console.log(pattern.lastIndex); // 3

matches = pattern.exec(text);
console.log(matches.index); // 5
console.log(matches[0]); // bat
console.log(pattern.lastIndex); // 8

matches = pattern.exec(text);
console.log(matches.index); // 10
console.log(matches[0]); // sat
console.log(pattern.lastIndex); // 13

This pattern is global, so each call to exec() returns the next match in the string until the end of the
string is reached. Note also how the pattern’s lastIndex property is affected. In global matching
mode, lastIndex is incremented after each call to exec(). lastIndex tracks the index of the charac-
ter that appears immediately to the right of the last match.

With the sticky y flag set on the pattern, each call to exec() will search for a match in the string only
at lastIndex—nowhere else. The sticky flag overrides the global flag.

let text = "cat, bat, sat, fat";
let pattern = /.at/y;

let matches = pattern.exec(text);
console.log(matches.index); // 0
console.log(matches[0]); // cat
console.log(pattern.lastIndex); // 3

// There is no match starting at character index 3, so exec() will return null
// exec() finding no matches resets lastIndex to 0
matches = pattern.exec(text);
console.log(matches); // null
console.log(pattern.lastIndex); // 0

// Advancing lastIndex will allow a sticky regex exec() to find the next match:
pattern.lastIndex = 5;
matches = pattern.exec(text);
console.log(matches.index); // 5
console.log(matches[0]); // bat
console.log(pattern.lastIndex); // 8

Another method of regular expressions is test(), which accepts a string argument and returns true
if the pattern matches the argument and false if it does not. This method is useful when you want to
know if a pattern is matched, but you have no need for the actual matched text. The test() method
is often used in if statements, such as the following:

let text = "000-00-0000";
let pattern = /\d{3}-\d{2}-\d{4}/;

if (pattern.test(text)) {
 console.log("The pattern was matched.");
}

The RegExp Type ❘ 137

In this example, the regular expression tests for a specific numeric sequence. If the input text matches
the pattern, then a message is displayed. This functionality is often used for validating user input,
when you care only if the input is valid, not necessarily why it’s invalid.

The inherited methods of toLocaleString() and toString() each return the literal representation
of the regular expression, regardless of how it was created. Consider this example:

let pattern = new RegExp("\\[bc\\]at", "gi");
console.log(pattern.toString()); // /\[bc\]at/gi
console.log(pattern.toLocaleString()); // /\[bc\]at/gi

Even though the pattern in this example is created using the RegExp constructor, the
toLocaleString() and toString() methods return the pattern as if it were specified in
literal format.

NOTE The valueOf() method for a regular expression returns the regular
expression itself.

RegExp Constructor Properties
The RegExp constructor function has several properties. (These would be considered static proper-
ties in other languages.) These properties apply to all regular expressions that are in scope, and they
change based on the last regular-expression operation that was performed. Another unique element of
these properties is that they can be accessed in two different ways. Each property has a verbose prop-
erty name and a shorthand name. The RegExp constructor properties are listed in the following table.

VERBOSE NAME SHORT NAME DESCRIPTION

input $_ The last string matched against.

lastMatch $& The last matched text.

lastParen $+ The last matched capturing group.

leftContext $` The text that appears in the input string prior to lastMatch.

rightContext $' The text that appears in the input string after lastMatch.

These properties can be used to extract specific information about the operation performed by
exec() or test(). Consider this example:

let text = "this has been a short summer";
let pattern = /(.)hort/g;

if (pattern.test(text)) {
 console.log(RegExp.input); // this has been a short summer
 console.log(RegExp.leftContext); // this has been a
 console.log(RegExp.rightContext); // summer
 console.log(RegExp.lastMatch); // short
 console.log(RegExp.lastParen); // s
}

138 ❘ CHAPTER 5 Basic RefeRence Types

This code creates a pattern that searches for any character followed by "hort" and puts a capturing
group around the first letter. The various properties are used as follows:

➤➤ The input property contains the original string.

➤➤ The leftContext property contains the characters of the string before the word "short",
and the rightContext property contains the characters after the word "short".

➤➤ The lastMatch property contains the last string that matches the entire regular expression,
which is "short".

➤➤ The lastParen property contains the last matched capturing group, which is "s" in this case.

These verbose property names can be replaced with the short property names, although you must use
bracket notation to access them, as shown in the following example, because most are illegal identi-
fiers in ECMAScript:

let text = "this has been a short summer";
let pattern = /(.)hort/g;

/*
 * Note: Opera doesn't short property names.
 * Internet Explorer doesn't support multiline.
 */
if (pattern.test(text)) {
 console.log(RegExp.$_); // this has been a short summer
 console.log(RegExp["$`"]); // this has been a
 console.log(RegExp["$'"]); // summer
 console.log(RegExp["$&"]); // short
 console.log(RegExp["$+"]); // s
 console.log(RegExp["$*"]); // false
}

There are also constructor properties that store up to nine capturing-group matches. These proper-
ties are accessed via RegExp.$1, which contains the first capturing-group match through RegExp.$9,
which contains the ninth capturing-group match. These properties are filled in when calling either
exec() or test(), allowing you to do things like this:

let text = "this has been a short summer";
let pattern = /(..)or(.)/g;

if (pattern.test(text)) {
 console.log(RegExp.$1); // sh
 console.log(RegExp.$2); // t
}

In this example, a pattern with two matching groups is created and tested against a string. Even
though test() simply returns a Boolean value, the properties $1 and $2 are filled in on the RegExp
constructor.

NOTE All these RegExp constructor properties are not part of any web stan-
dard; avoid use in any production application.

Primitive Wrapper Types ❘ 139

Pattern Limitations
Although ECMAScript’s regular-expression support is fully developed, it does lack some of the
advanced regular-expression features available in languages such as Perl. The following features are
not supported in ECMAScript regular expressions (for more information, see www.regular-
expressions.info):

➤➤ The \A and \Z anchors (matching the start or end of a string, respectively)

➤➤ Lookbehinds

➤➤ Union and intersection classes

➤➤ Atomic grouping

➤➤ Unicode support (except for matching a single character at a time)

➤➤ Named capturing groups

➤➤ The s (single-line) and x (free-spacing) matching modes

➤➤ Conditionals

➤➤ Regular-expression comments

Despite these limitations, ECMAScript’s regular-expression support is powerful enough to perform
most pattern-matching tasks.

PRIMITIVE WRAPPER TYPES

Three special reference types are designed to ease interaction with primitive values: the Boolean type,
the Number type, and the String type. These types can act like the other reference types described in
this chapter, but they also have a special behavior related to their primitive-type equivalents. Every
time a primitive value is read, an object of the corresponding primitive wrapper type is created behind
the scenes, allowing access to any number of methods for manipulating the data. Consider the follow-
ing example:

let s1 = "some text";
let s2 = s1.substring(2);

In this code, s1 is a variable containing a string, which is a primitive value. On the next line, the sub-
string() method is called on s1 and stored in s2. Primitive values aren’t objects, so logically they
shouldn’t have methods, though this still works as you would expect. In truth, there is a lot going on
behind the scenes to allow this seamless operation. When s1 is accessed in the second line, it is being
accessed in read mode, which is to say that its value is being read from memory. Any time a string
value is accessed in read mode, the following three steps occur:

1. Create an instance of the String type.

2. Call the specified method on the instance.

3. Destroy the instance.

140 ❘ CHAPTER 5 Basic RefeRence Types

You can think of these three steps as they’re used in the following three lines of ECMAScript code:

let s1 = new String("some text");
let s2 = s1.substring(2);
s1 = null;

This behavior allows the primitive string value to act like an object. These same three steps are
repeated for Boolean and numeric values using the Boolean and Number types, respectively.

The major difference between reference types and primitive wrapper types is the lifetime of the object.
When you instantiate a reference type using the new operator, it stays in memory until it goes out of
scope, whereas automatically created primitive wrapper objects exist for only one line of code before
they are destroyed. This means that properties and methods cannot be added at runtime. Take this
for example:

let s1 = "some text";
s1.color = "red";
console.log(s1.color); // undefined

Here, the second line attempts to add a color property to the string s1. However, when s1 is
accessed on the third line, the color property is gone. This happens because the String object that
was created in the second line is destroyed by the time the third line is executed. The third line creates
its own String object, which doesn’t have the color property.

It is possible to create the primitive wrapper objects explicitly using the Boolean, Number, and
String constructors. This should be done only when absolutely necessary because it is often confus-
ing for developers as to whether they are dealing with a primitive or reference value. Calling typeof
on an instance of a primitive wrapper type returns "object", and all primitive wrapper objects con-
vert to the Boolean value true.

The Object constructor also acts as a factory method and is capable of returning an instance of a
primitive wrapper based on the type of value passed into the constructor. For example:

let obj = new Object("some text");
console.log(obj instanceof String); // true

When a string is passed into the Object constructor, an instance of String is created; a number argu-
ment results in an instance of Number, while a Boolean argument returns an instance of Boolean.

Keep in mind that calling a primitive wrapper constructor using new is not the same as calling the
casting function of the same name. For example:

let value = "25";
let number = Number(value); // casting function
console.log(typeof number); // "number"
let obj = new Number(value); // constructor
console.log(typeof obj); // "object"

In this example, the variable number is filled with a primitive number value of 25 while the variable
obj is filled with an instance of Number.

Even though it’s not recommended to create primitive wrapper objects explicitly, their functionality is
important in being able to manipulate primitive values. Each primitive wrapper type has methods that
make data manipulation easier.

Primitive Wrapper Types ❘ 141

The Boolean Type
The Boolean type is the reference type corresponding to the Boolean values. To create a Boolean
object, use the Boolean constructor and pass in either true or false, as in the following example:

let booleanObject = new Boolean(true);

Instances of Boolean override the valueOf() method to return a primitive value of either true or
false. The toString() method is also overridden to return a string of "true" or "false" when
called. Unfortunately, not only are Boolean objects of little use in ECMAScript, but they can actu-
ally be rather confusing. The problem typically occurs when trying to use Boolean objects in Boolean
expressions, as in this example:

let falseObject = new Boolean(false);
let result = falseObject && true;
console.log(result); // true

let falseValue = false;
result = falseValue && true;
console.log(result); // false

In this code, a Boolean object is created with a value of false. That same object is then ANDed with
the primitive value true. In Boolean math, false AND true equals false. However, in this line of
code, it is the object named falseObject being evaluated, not its value (false). As discussed earlier,
all objects are automatically converted to true in Boolean expressions, so falseObject actually is
given a value of true in the expression. Then, true ANDed with true is equal to true.

There are a couple of other differences between the primitive and the reference Boolean types.
The typeof operator returns "boolean" for the primitive but "object" for the reference. Also, a
Boolean object is an instance of the Boolean type and will return true when used with the instan-
ceof operator, whereas a primitive value returns false, as shown here:

console.log(typeof falseObject); // object
console.log(typeof falseValue); // boolean
console.log(falseObject instanceof Boolean); // true
console.log(falseValue instanceof Boolean); // false

It’s very important to understand the difference between a primitive Boolean value and a Boolean
object—prefer to never use the latter.

The Number Type
The Number type is the reference type for numeric values. To create a Number object, use the Number
constructor and pass in any number. Here’s an example:

let numberObject = new Number(10);

As with the Boolean type, the Number type overrides valueOf(), toLocaleString(), and toString().
The valueOf() method returns the primitive numeric value represented by the object, whereas the other
two methods return the number as a string. The toString() method optionally accepts a single argu-
ment indicating the radix in which to represent the number, as shown in the following examples:

let num = 10;
console.log(num.toString()); // "10"

142 ❘ CHAPTER 5 Basic RefeRence Types

console.log(num.toString(2)); // "1010"
console.log(num.toString(8)); // "12"
console.log(num.toString(10)); // "10"
console.log(num.toString(16)); // "a"

Aside from the inherited methods, the Number type has several additional methods used to format
numbers as strings.

The toFixed() method returns a string representation of a number with a specified number of deci-
mal points, as in this example:

let num = 10;
console.log(num.toFixed(2)); // "10.00"

Here, the toFixed() method is given an argument of 2, which indicates how many decimal places
should be displayed. As a result, the method returns the string "10.00", filling out the empty deci-
mal places with zeros. If the number has more than the given number of decimal places, the result is
rounded to the nearest decimal place, as shown here:

let num = 10.005;
console.log(num.toFixed(2)); // "10.01"

The rounding nature of toFixed() may be useful for applications dealing with currency, though
it’s worth noting that arithmetic operations between multiple floating point values may not produce
exact results—for example, 0.1 + 0.2 = 0.30000000000000004.

NOTE The toFixed() method can represent numbers with 0 through 20 decimal
places. Some browsers may support larger ranges, but this is the typically imple-
mented range.

Another method related to formatting numbers is the toExponential() method, which returns a
string with the number formatted in exponential notation (aka e-notation). Just as with toFixed(),
toExponential() accepts one argument, which is the number of decimal places to output. Consider
this example:

let num = 10;
console.log(num.toExponential(1)); // "1.0e+1"

This code outputs "1.0e+1" as the result. Typically, this small number wouldn’t be represented
using e-notation. If you want to have the most appropriate form of the number, the toPrecision()
method should be used instead.

The toPrecision() method returns either the fixed or the exponential representation of a number,
depending on which makes the most sense. This method takes one argument, which is the total num-
ber of digits to use to represent the number (not including exponents). Here’s an example:

let num = 99;
console.log(num.toPrecision(1)); // "1e+2"
console.log(num.toPrecision(2)); // "99"
console.log(num.toPrecision(3)); // "99.0"

Primitive Wrapper Types ❘ 143

In this example, the first task is to represent the number 99 with a single digit, which results in
"1e+2", otherwise known as 100. Because 99 cannot accurately be represented by just one digit, the
method rounded up to 100, which can be represented using just one digit. Representing 99 with two
digits yields "99" and with three digits returns "99.0". The toPrecision() method essentially deter-
mines whether to call toFixed() or toExponential() based on the numeric value you’re working
with; all three methods round up or down to accurately represent a number with the correct number
of decimal places.

NOTE The toPrecision() method can represent numbers with 1 through 21
decimal places. Some browsers may support larger ranges, but this is the typi-
cally implemented range.

Similar to the Boolean object, the Number object gives important functionality to numeric values but
really should not be instantiated directly because of the same potential problems. The typeof and
instanceof operators work differently when dealing with primitive numbers versus reference num-
bers, as shown in the following examples:

let numberObject = new Number(10);
let numberValue = 10;
console.log(typeof numberObject); // "object"
console.log(typeof numberValue); // "number"
console.log(numberObject instanceof Number); // true
console.log(numberValue instanceof Number); // false

Primitive numbers always return "number" when typeof is called on them, whereas Number objects
return "object". Similarly, a Number object is an instance of Number, but a primitive number is not.

The isInteger() Method and Safe Integers
Newly introduced in ES6, the Number.isInteger() method is capable of discerning whether or
not a number value is stored as an integer or not. This is useful when a trailing decimal 0 may mask
whether or not the number is actually stored in floating point format:

console.log(Number.isInteger(1)); // true
console.log(Number.isInteger(1.00)); // true
console.log(Number.isInteger(1.01)); // false

The IEEE 754 number format has a distinct numerical range inside which a binary value can repre-
sent exactly one integer value. This numerical range extends from Number.MIN_SAFE_INTEGER, or
-2^53 + 1, to Number.MAX_SAFE_INTEGER, or 2^53 - 1. Outside this range, you may attempt to store
an integer, but the IEEE 754 encoding format means that this binary value may also alias to a com-
pletely different number. To ascertain if an integer is inside this range, the Number.isSafeInteger()
method allows you to easily check this:

console.log(Number.isSafeInteger(-1 * (2 ** 53))); // false
console.log(Number.isSafeInteger(-1 * (2 ** 53) + 1)); // true

console.log(Number.isSafeInteger(2 ** 53)); // false
console.log(Number.isSafeInteger((2 ** 53) - 1)); // true

144 ❘ CHAPTER 5 Basic RefeRence Types

The String Type
The String type is the object representation for strings and is created using the String constructor
as follows:

let stringObject = new String("hello world");

The methods of a String object are available on all string primitives. All three of the inherited meth-
ods—valueOf(), toLocaleString(), and toString()—return the object’s primitive string value.

Each instance of String contains a single property, length, which indicates the number of characters
in the string. Consider the following example:

let stringValue = "hello world";
console.log(stringValue.length); // "11"

This example outputs "11", the number of characters in "hello world". Note that even if the string
contains a double-byte character (as opposed to an ASCII character, which uses just one byte), each
character is still counted as one.

The String type has a large number of methods to aid in the dissection and manipulation of strings
in ECMAScript.

The JavaScript Character
JavaScript strings consist of 16 bit code units. For most characters, each 16 bit code unit will cor-
respond to a single character. The length property indicates how many 16 bit code units occur inside
the string:

let message = "abcde";

console.log(message.length); // 5

Furthermore, the charAt() returns the character at a given index, specified by an integer argument to
the method. Specifically, this method finds the 16 bit code unit at the specified index and returns the
character that corresponds to that code unit:

let message = "abcde";

console.log(message.charAt(2)); // "c"

JavaScript strings use a hybridized strategy of two Unicode encodings: UCS-2 and UTF-16. For char-
acters which can be encoded with 16 bits (U+0000 to U+FFFF), these two encodings are effectively
identical.

NOTE For in-depth coverage of character encoding, check out Joel Spolsky’s
excellent blog post: https://www.joelonsoftware.com/2003/10/08/the-
absolute-minimum-every-software-developer-absolutely-positively-must-
know-about-unicode-and-character-sets-no-excuses/.

Another good resource is Mathias Bynens’ blog post: https://mathiasbynens
.be/notes/javascript-encoding.

Primitive Wrapper Types ❘ 145

You can inspect the character encoding of a given code unit with the charCodeAt() method. This
method returns the code unit value at a given index, specified by an integer argument to the method.
This method is demonstrated here:

let message = "abcde";

// Unicode "Latin small letter C" is U+0063
console.log(message.charCodeAt(2)); // 99

// Decimal 99 === Hexadecimal 63
console.log(99 === 0x63); // true

The fromCharCode() method is used for creating characters in a string from their UTF-16 code unit
representation. This method accepts any number of numbers and returns their character equivalents
concatenated into a string:

// Unicode "Latin small letter A" is U+0061
// Unicode "Latin small letter B" is U+0062
// Unicode "Latin small letter C" is U+0063
// Unicode "Latin small letter D" is U+0064
// Unicode "Latin small letter E" is U+0065

console.log(String.fromCharCode(0x61, 0x62, 0x63, 0x64, 0x65)); // "abcde"

// 0x0061 === 97
// 0x0062 === 98
// 0x0063 === 99
// 0x0064 === 100
// 0x0065 === 101

console.log(String.fromCharCode(97, 98, 99, 100, 101)); // "abcde"

For characters in the range of U+0000 to U+FFFF, length, charAt(), charCodeAt(), and
fromCharCode() all behave exactly as you would expect them to. This is because every character is
represented by exactly 16 bits, and each of these methods are all operating on 16 bit code units. As
long as there is parity between character encoding size and code unit size, these methods will behave
as expected.

This parity breaks down when expanding into the realm of Unicode supplementary character planes.
The idea for this concept is relatively straightforward: 16 bits can only uniquely represent 65,536
characters. This is enough to cover most language character sets and is referred to as the Basic Mul-
tilingual Plane (BMP). In order to introduce even more characters, Unicode defined a strategy which
used an additional 16 bits per character to select a supplementary or astral plane. Using two 16 bit
code units per character is referred to as a surrogate pair.

With the introduction of this convention, the previously discussed string methods begin to break
down. Consider the following example, which uses a smiley face emoji – a character which is encoded
using a surrogate pair:

// The "smiling face with smiling eyes" emoji is U+1F60A
// 0x1F60A === 128522
let message = "ab☺de";

console.log(message.length); // 6

146 ❘ CHAPTER 5 Basic RefeRence Types

console.log(message.charAt(1)); // b
console.log(message.charAt(2)); // <?>
console.log(message.charAt(3)); // <?>
console.log(message.charAt(4)); // d

console.log(message.charCodeAt(1)); // 98
console.log(message.charCodeAt(2)); // 55357
console.log(message.charCodeAt(3)); // 56842
console.log(message.charCodeAt(4)); // 100

console.log(String.fromCharCode(0x1F60A)); // ☺

console.log(String.fromCharCode(97, 98, 55357, 56842, 100, 101)); // ab☺de

These methods are still treating each 16 bit code unit like a separate character, when in fact the code
units at index 2 and 3 need to be considered together as a single surrogate pair to form a single
character. The fromCharCode() method is still working correctly using the two code units sepa-
rated because this method is literally assembling the string from a provided binary representation.
The browser is able to correctly parse the surrogate pair (which was assembled as two separate code
units) and correctly interpret it as a single smiley face Unicode character.

To correctly parse a string containing both single-code unit and surrogate pair characters, the
codePointAt() method can be used instead of the error-prone charAt(). As is the case with
charAt(), this method accepts a 16 bit code unit index and returns the code point at that index.
A code point refers to the full Unicode identifier for a single character. The code point for "c" is
0x0063. The code point for "☺" is 0x1F60A. Code points may either require 16 or 32 bits to fully
represent them, and the codePointAt() method will identify the full code point beginning at the
specified code unit.

let message = "ab☺de";

console.log(message.codePointAt(1)); // 98
console.log(message.codePointAt(2)); // 128522
console.log(message.codePointAt(3)); // 56842
console.log(message.codePointAt(4)); // 100

Notice in this example how a code point can be incorrectly identified if targeted at a code unit index
that is not the start of a surrogate pair. This is only problematic for one-off character inspection, and
can be averted by traversing the string from left to right and advancing the proper number of code
units per iterator. The iterator for a string is intelligent enough to identify surrogate pair code points:

console.log([..."ab☺de"]); // ["a", "b", "☺", "d", "e"]

Just as charAt() has an analogue in codePointAt(), fromCharCode() has an analogue in from-
CodePoint(). This method accepts any number of code point numbers and returns their character
equivalents concatenated into a string:

console.log(String.fromCharCode(97, 98, 55357, 56842, 100, 101)); // ab☺de
console.log(String.fromCodePoint(97, 98, 128522, 100, 101)); // ab☺de

Primitive Wrapper Types ❘ 147

The normalize() Method
Some Unicode characters can be encoded in more than one way. Sometimes, a character can be repre-
sented by either a single BMP character or a surrogate pair. For example, consider the following:

// U+00C5: Latin capital letter A with ring above
console.log(String.fromCharCode(0x00C5)); // Å

// U+212B: Angstrom sign
console.log(String.fromCharCode(0x212B)); // Å

// U+0041: Latin captal letter A
// U+030A: Combining ring above
console.log(String.fromCharCode(0x0041, 0x030A)); // Å

Comparison operators do not care about the visual appearance of characters, and so these three will
be considered distinct:

let a1 = String.fromCharCode(0x00C5),
 a2 = String.fromCharCode(0x212B),
 a3 = String.fromCharCode(0x0041, 0x030A);

console.log(a1, a2, a3); // Å, Å, Å

console.log(a1 === a2); // false
console.log(a1 === a3); // false
console.log(a2 === a3); // false

Unicode accounts for this by offering four normalization forms by which characters such as this one
can be normalized into a consistent format irrespective of their character code derivation. These four
normalization forms, Normalization Form D (NFD), Normalization Form C (NFC), Normalization
Form KD (NFKD), and Normalization Form KC (NFKC), can be applied to a string using the nor-
malize() method. This method should be provided with a string identifier to specify which normali-
zation form to apply: NFD, NFC, NFKD, or NFKC.

NOTE The specifics of each of these normal forms is out of the scope of this
text. Refer to http://unicode.org/reports/tr15/ for additional details.

It is possible to determine if a string is already normalized by checking it against the return value of
normalize():

let a1 = String.fromCharCode(0x00C5),
 a2 = String.fromCharCode(0x212B),
 a3 = String.fromCharCode(0x0041, 0x030A);

// U+00C5 is the NFC/NFKC normalized form of 0+212B
console.log(a1 === a1.normalize("NFD")); // false
console.log(a1 === a1.normalize("NFC")); // true
console.log(a1 === a1.normalize("NFKD")); // false
console.log(a1 === a1.normalize("NFKC")); // true

148 ❘ CHAPTER 5 Basic RefeRence Types

// U+212B is non-normalized
console.log(a2 === a2.normalize("NFD")); // false
console.log(a2 === a2.normalize("NFC")); // false
console.log(a2 === a2.normalize("NFKD")); // false
console.log(a2 === a2.normalize("NFKC")); // false

// U+0041/U+030A is the NFD/NFKD normalized form of 0+212B
console.log(a3 === a3.normalize("NFD")); // true
console.log(a3 === a3.normalize("NFC")); // false
console.log(a3 === a3.normalize("NFKD")); // true
console.log(a3 === a3.normalize("NFKC")); // false

Selecting a normal form will allow for the comparison operator to behave as expected between identi-
cal characters:

let a1 = String.fromCharCode(0x00C5),
 a2 = String.fromCharCode(0x212B),
 a3 = String.fromCharCode(0x0041, 0x030A);

console.log(a1.normalize("NFD") === a2.normalize("NFD")); // true
console.log(a2.normalize("NFKC") === a3.normalize("NFKC")); // true
console.log(a1.normalize("NFC") === a3.normalize("NFC")); // true

String-Manipulation Methods
Several methods manipulate the values of strings. The first of these methods is concat(), which is
used to concatenate one or more strings to another, returning the concatenated string as the result.
Consider the following example:

let stringValue = "hello ";
let result = stringValue.concat("world");

console.log(result); // "hello world"
console.log(stringValue); // "hello"

The result of calling the concat() method on stringValue in this example is "hello world"—the
value of stringValue remains unchanged. The concat() method accepts any number of arguments,
so it can create a string from any number of other strings, as shown here:

let stringValue = "hello ";
let result = stringValue.concat("world", "!");

console.log(result); // "hello world!"
console.log(stringValue); // "hello"

This modified example concatenates "world" and "!" to the end of "hello". Although the
concat() method is provided for string concatenation, the addition operator (+) is used more often
and, in most cases, actually performs better than the concat() method even when concatenating
multiple strings.

ECMAScript provides three methods for creating string values from a substring: slice(), substr(),
and substring(). All three methods return a substring of the string they act on, and all accept either
one or two arguments. The first argument is the position where capture of the substring begins; the
second argument, if used, indicates where the operation should stop. For slice() and substring(),
this second argument is the position before which capture is stopped (all characters up to this point

Primitive Wrapper Types ❘ 149

are included except the character at that point). For substr(), the second argument is the number
of characters to return. If the second argument is omitted in any case, it is assumed that the ending
position is the length of the string. Just as with the concat() method, slice(), substr(), and
substring() do not alter the value of the string itself—they simply return a primitive string value as
the result, leaving the original unchanged. Consider this example:

let stringValue = "hello world";
console.log(stringValue.slice(3)); // "lo world"
console.log(stringValue.substring(3)); // "lo world"
console.log(stringValue.substr(3)); // "lo world"
console.log(stringValue.slice(3, 7)); // "lo w"
console.log(stringValue.substring(3,7)); // "lo w"
console.log(stringValue.substr(3, 7)); // "lo worl"

In this example, slice(), substr(), and substring() are used in the same manner and, in most
cases, return the same value. When given just one argument, 3, all three methods return "lo world"
because the second "l" in "hello" is in position 3. When given two arguments, 3 and 7, slice()
and substring() return "lo w" (the "o" in "world" is in position 7, so it is not included), while
substr() returns "lo worl" because the second argument specifies the number of characters
to return.

There are different behaviors for these methods when an argument is a negative number. For
the slice() method, a negative argument is treated as the length of the string plus the nega-
tive argument.

For the substr() method, a negative first argument is treated as the length of the string plus the
number, whereas a negative second number is converted to 0. For the substring() method, all nega-
tive numbers are converted to 0. Consider this example:

let stringValue = "hello world";
console.log(stringValue.slice(-3)); // "rld"
console.log(stringValue.substring(-3)); // "hello world"
console.log(stringValue.substr(-3)); // "rld"
console.log(stringValue.slice(3, -4)); // "lo w"
console.log(stringValue.substring(3, -4)); // "hel"
console.log(stringValue.substr(3, -4)); // "" (empty string)

This example clearly indicates the differences between three methods. When slice() and substr()
are called with a single negative argument, they act the same. This occurs because –3 is translated into
7 (the length plus the argument), effectively making the calls slice(7) and substr(7). The sub-
string() method, on the other hand, returns the entire string because –3 is translated to 0.

When the second argument is negative, the three methods act differently from one another. The
slice() method translates the second argument to 7, making the call equivalent to slice(3, 7)
and so returning "lo w". For the substring() method, the second argument gets translated to 0,
making the call equivalent to substring(3, 0), which is actually equivalent to substring(0,3)
because this method expects that the smaller number is the starting position and the larger one is the
ending position. For the substr() method, the second argument is also converted to 0, which means
there should be zero characters in the returned string, leading to the return value of an empty string.

150 ❘ CHAPTER 5 Basic RefeRence Types

String Location Methods
There are two methods for locating substrings within another string: indexOf() and
lastIndexOf(). Both methods search a string for a given substring and return the position (or –1
if the substring isn’t found). The difference between the two is that the indexOf() method begins
looking for the substring at the beginning of the string, whereas the lastIndexOf() method begins
looking from the end of the string. Consider this example:

let stringValue = "hello world";
console.log(stringValue.indexOf("o")); // 4
console.log(stringValue.lastIndexOf("o")); // 7

Here, the first occurrence of the string "o" is at position 4, which is the "o" in "hello". The last
occurrence of the string "o" is in the word "world", at position 7. If there is only one occurrence of
"o" in the string, then indexOf() and lastIndexOf() return the same position.

Each method accepts an optional second argument that indicates the position to start searching
from within the string. This means that the indexOf() method will start searching from that posi-
tion and go toward the end of the string, ignoring everything before the start position, whereas
last IndexOf() starts searching from the given position and continues searching toward the begin-
ning of the string, ignoring everything between the given position and the end of the string. Here’s
an example:

let stringValue = "hello world";
console.log(stringValue.indexOf("o", 6)); // 7
console.log(stringValue.lastIndexOf("o", 6)); // 4

When the second argument of 6 is passed into each method, the results are the opposite from the pre-
vious example. This time, indexOf() returns 7 because it starts searching the string from position 6
(the letter "w") and continues to position 7, where "o" is found. The lastIndexOf() method returns
4 because the search starts from position 6 and continues back toward the beginning of the string,
where it encounters the "o" in "hello". Using this second argument allows you to locate all instances
of a substring by looping callings to indexOf() or lastIndexOf(), as in the following example:

let stringValue = "Lorem ipsum dolor sit amet, consectetur adipisicing elit";
let positions = new Array();
let pos = stringValue.indexOf("e");

while(pos > -1) {
 positions.push(pos);
 pos = stringValue.indexOf("e", pos + 1);
}

console.log(positions); // "3,24,32,35,52"

This example works through a string by constantly increasing the position at which indexOf()
should begin. It begins by getting the initial position of "e" in the string and then enters a loop that
continually passes in the last position plus one to indexOf(), ensuring that the search continues
after the last substring instance. Each position is stored in the positions array so the data can be
used later.

Primitive Wrapper Types ❘ 151

String Inclusion Methods
ECMAScript 6 added three additional methods for determining if a string is included inside another
string: startsWith(), endsWith(), and includes(). All methods search a string for a given sub-
string and return a boolean indicating whether it is not included. The difference between them is that
startsWith() checks for a match beginning at index 0, endsWith() checks for a match beginning at
index (string.length – substring.length), and includes() checks the entire string.

let message = "foobarbaz";

console.log(message.startsWith("foo")); // true
console.log(message.startsWith("bar")); // false

console.log(message.endsWith("baz")); // true
console.log(message.endsWith("bar")); // false

console.log(message.includes("bar")); // true
console.log(message.includes("qux")); // false

The startsWith() and includes() methods accept an optional second argument that indicates the
position to start searching from within the string. This means that the methods will start searching
from that position and go toward the end of the string, ignoring everything before the start position.
Here’s an example:

let message = "foobarbaz";

console.log(message.startsWith("foo")); // true
console.log(message.startsWith("foo", 1)); // false

console.log(message.includes("bar")); // true
console.log(message.includes("bar", 4)); // false

The endsWith() method accepts an optional second argument that indicates the position that should
be treated as the end of the string. If this value is not provided, the length of the string is used by
default. When a second argument is provided, the method will treat the string as if it only has that
many characters:

let message = "foobarbaz";

console.log(message.endsWith("bar")); // false
console.log(message.endsWith("bar", 6)); // true

The trim() Method
ECMAScript features a trim() method on all strings. The trim() method creates a copy of the
string, removes all leading and trailing white space, and then returns the result. For example:

let stringValue = " hello world ";
let trimmedStringValue = stringValue.trim();
console.log(stringValue); // " hello world "
console.log(trimmedStringValue); // "hello world"

Note that since trim() returns a copy of a string, the original string remains intact with leading and
trailing white space in place.

Also available are the trimLeft() and trimRight() methods that remove white space only from the
beginning or end of the string, respectively.

152 ❘ CHAPTER 5 Basic RefeRence Types

The repeat() Method
ECMAScript features a repeat() method on all strings. The repeat() method accepts a single inte-
ger argument count, copies the string count times, and concatenates all the copies.

let stringValue = "na ";
console.log(stringValue.repeat(16) + "batman");
// na na na na na na na na na na na na na na na na batman

The padStart() and padEnd() Methods
The padStart() and padEnd() methods will copy a string and, if the length of the string is less than
the specified length, add padding to either side of a string to extend it to a certain length. The first
argument is the desired length, and the second is the optional string to add as a pad. If not provided,
the U+0020 ’space’ character will be used.

let stringValue = "foo";

console.log(stringValue.padStart(6)); // " foo"
console.log(stringValue.padStart(9, ".")); // "......foo"

console.log(stringValue.padEnd(6)); // "foo "
console.log(stringValue.padEnd(9, ".")); // "foo......"

The optional argument is not limited to a single character. If provided a multiple-character string,
the method will use the concatenated padding and truncate it to the exact length. Additionally, if the
length is less than or equal to the string length, the operation is effectively a no-op.

let stringValue = "foo";

console.log(stringValue.padStart(8, "bar")); // "barbafoo"
console.log(stringValue.padStart(2)); // "foo"

console.log(stringValue.padEnd(8, "bar")); // "foobarba"
console.log(stringValue.padEnd(2)); // "foo"

String Iterators and Destructuring
The string prototype exposes an @@iterator method on each string, which allows for iteration
through individual characters. Manual use of the iterator works as follows:

let message = "abc";
let stringIterator = message[Symbol.iterator]();

console.log(stringIterator.next()); // {value: "a", done: false}
console.log(stringIterator.next()); // {value: "b", done: false}
console.log(stringIterator.next()); // {value: "c", done: false}
console.log(stringIterator.next()); // {value: undefined, done: true}

When used in a for of loop, the loop will use this iterator to visit each character in order:

for (const c of "abcde") {
 console.log(c);
}

// a
// b

Primitive Wrapper Types ❘ 153

// c
// d
// e

The string iterator becomes especially useful since it allows for interoperability with the destructuring
operator. This allows you to easily split a string by its characters:

let message = "abcde";

console.log([...message]); // ["a", "b", "c", "d", "e"]

String Case Methods
The next set of methods involves case conversion. Four methods perform case conversion: toLower-
Case(), toLocaleLowerCase(), toUpperCase(), and toLocaleUpperCase(). The toLowerCase()
and toUpperCase() methods are the original methods, modeled after the same methods in java.
lang.String. The toLocaleLowerCase() and toLocaleUpperCase() methods are intended to be
implemented based on a particular locale. In many locales, the locale-specific methods are identical
to the generic ones; however, a few languages (such as Turkish) apply special rules to Unicode case
conversion, and this necessitates using the locale-specific methods for proper conversion. Here are
some examples:

let stringValue = "hello world";
console.log(stringValue.toLocaleUpperCase()); // "HELLO WORLD"
console.log(stringValue.toUpperCase()); // "HELLO WORLD"
console.log(stringValue.toLocaleLowerCase()); // "hello world"
console.log(stringValue.toLowerCase()); // "hello world"

This code outputs "HELLO WORLD" for both toLocaleUpperCase() and toUpperCase(), just as
"hello world" is output for both toLocaleLowerCase() and toLowerCase(). Generally speak-
ing, if you do not know the language in which the code will be running, it is safer to use the locale-
specific methods.

String Pattern-Matching Methods
The String type has several methods designed to pattern-match within the string. The first of these
methods is match() and is essentially the same as calling a RegExp object’s exec() method. The
match() method accepts a single argument, which is either a regular-expression string or a RegExp
object. Consider this example:

let text = "cat, bat, sat, fat";
let pattern = /.at/;

// same as pattern.exec(text)
let matches = text.match(pattern);
console.log(matches.index); // 0
console.log(matches[0]); // "cat"
console.log(pattern.lastIndex); // 0

The array returned from match() is the same array that is returned when the RegExp object’s exec()
method is called with the string as an argument: the first item is the string that matches the entire pat-
tern, and each other item (if applicable) represents capturing groups in the expression.

154 ❘ CHAPTER 5 Basic RefeRence Types

Another method for finding patterns is search(). The only argument for this method is the same as
the argument for match(): a regular expression specified by either a string or a RegExp object. The
search() method returns the index of the first pattern occurrence in the string or –1 if it’s not found.
search() always begins looking for the pattern at the beginning of the string. Consider this example:

let text = "cat, bat, sat, fat";
let pos = text.search(/at/);
console.log(pos); // 1

Here, search(/at/) returns 1, which is the first position of "at" in the string.

To simplify replacing substrings, ECMAScript provides the replace() method. This method accepts
two arguments. The first argument can be a RegExp object or a string (the string is not converted to
a regular expression), and the second argument can be a string or a function. If the first argument
is a string, then only the first occurrence of the substring will be replaced. The only way to replace
all instances of a substring is to provide a regular expression with the global flag specified, as in
this example:

let text = "cat, bat, sat, fat";
let result = text.replace("at", "ond");
console.log(result); // "cond, bat, sat, fat"

result = text.replace(/at/g, "ond");
console.log(result); // "cond, bond, sond, fond"

In this example, the string "at" is first passed into replace() with a replacement text of "ond". The
result of the operation is that "cat" is changed to "cond", but the rest of the string remains intact. By
changing the first argument to a regular expression with the global flag set, each instance of "at" is
replaced with "ond".

When the second argument is a string, there are several special character sequences that can be used
to insert values from the regular-expression operations. ECMA-262 specifies the following table
of values.

SEQUENCE REPLACEMENT TEXT

$$ $

$& The substring matching the entire pattern. Same as RegExp.lastMatch.

$' The part of the string occurring before the matched substring. Same as RegExp
.rightContext.

$` The part of the string occurring after the matched substring. Same as RegExp
.leftContext.

$n The nth capture, where n is a value 0–9. For instance, $1 is the first capture, $2 is
the second, and so on. If there is no capture then the empty string is used.

$nn The nnth capture, where nn is a value 01–99. For instance, $01 is the first capture,
$02 is the second, and so on. If there is no capture then the empty string is used.

Primitive Wrapper Types ❘ 155

Using these special sequences allows replacement using information about the last match, such as in
this example:

let text = "cat, bat, sat, fat";
result = text.replace(/(.at)/g, "word ($1)");
console.log(result); // word (cat), word (bat), word (sat), word (fat)

Here, each word ending with "at" is replaced with "word" followed in parentheses by what it
replaces by using the $1 sequence.

The second argument of replace() may also be a function. When there is a single match, the func-
tion gets passed three arguments: the string match, the position of the match within the string, and
the whole string. When there are multiple capturing groups, each matched string is passed in as an
argument, with the last two arguments being the position of the pattern match in the string and the
original string. The function should return a string indicating what the match should be replaced
with. Using a function as the second argument allows more granular control over replacement text, as
in this example:

function htmlEscape(text) {
 return text.replace(/[<>"&]/g, function(match, pos, originalText) {
 switch(match) {
 case "<":
 return "<";
 case ">":
 return ">";
 case "&":
 return "&";
 case "\"":
 return """;
 }
 });
}

console.log(htmlEscape("<p class=\"greeting\">Hello world!</p>"));
// "<p class="greeting">Hello world!</p>"

Here, the function htmlEscape() is defined to escape four characters for insertion into HTML: the
less-than, greater-than, ampersand, and double-quote characters all must be escaped. The easiest way
to accomplish this is to have a regular expression to look for those characters and then define a func-
tion that returns the specific HTML entities for each matched character.

The last string method for dealing with patterns is split(), which separates the string into an array
of substrings based on a separator. The separator may be a string or a RegExp object. (The string is
not considered a regular expression for this method.) An optional second argument, the array limit,
ensures that the returned array will be no larger than a certain size. Consider this example:

let colorText = "red,blue,green,yellow";
let colors1 = colorText.split(","); // ["red", "blue", "green", "yellow"]
let colors2 = colorText.split(",", 2); // ["red", "blue"]
let colors3 = colorText.split(/[^\,]+/); // ["", ",", ",", ",", ""]

In this example, the string colorText is a comma-separated string of colors. The call to split(",")
retrieves an array of those colors, splitting the string on the comma character. To truncate the results
to only two items, a second argument of 2 is specified. Last, using a regular expression, it’s possible

156 ❘ CHAPTER 5 Basic RefeRence Types

to get an array of the comma characters. Note that in this last call to split(), the returned array has
an empty string before and after the commas. This happens because the separator specified by the
regular expression appears at the beginning of the string (the substring "red") and at the end (the
substring "yellow").

The localeCompare() Method
The last method is localeCompare(), which compares one string to another and returns one of three
values as follows:

➤➤ If the string should come alphabetically before the string argument, a negative number is
returned. (Most often this is –1, but it is up to each implementation as to the actual value.)

➤➤ If the string is equal to the string argument, 0 is returned.

➤➤ If the string should come alphabetically after the string argument, a positive number is
returned. (Most often this is 1, but once again, this is implementation-specific.)

Here’s an example:

let stringValue = "yellow";
console.log(stringValue.localeCompare("brick")); // 1
console.log(stringValue.localeCompare("yellow")); // 0
console.log(stringValue.localeCompare("zoo")); // -1

In this code, the string "yellow" is compared to three different values: "brick", "yellow", and
"zoo". Because "brick" comes alphabetically before "yellow", localeCompare() returns 1; "yel-
low" is equal to "yellow", so localeCompare() returns 0 for that line; and "zoo" comes after
"yellow", so localeCompare() returns –1 for that line. Once again, because the values are imple-
mentation-specific, it is best to use localeCompare() as shown in this example:

function determineOrder(value) {
 let result = stringValue.localeCompare(value);
 if (result < 0) {
 console.log(`The string 'yellow' comes before the string '${value}'.`);
 } else if (result > 0) {
 console.log(`The string 'yellow' comes after the string '${value}'.`);
 } else {
 console.log(`The string 'yellow' is equal to the string '${value}'.`);
 }
}

determineOrder("brick");
determineOrder("yellow");
determineOrder("zoo");

By using this sort of construct, you can be sure that the code works correctly in all implementations.

The unique part of localeCompare() is that an implementation’s locale (country and language) indi-
cates exactly how this method operates. In the United States, where English is the standard language
for ECMAScript implementations, localeCompare() is case-sensitive, determining that uppercase
letters come alphabetically after lowercase letters. However, this may not be the case in other locales.

Singleton Built-in Objects ❘ 157

HTML Methods
The web browser vendors recognized a need early on to format HTML dynamically using JavaScript.
As a result, they extended the specification to include several methods specifically designed to aid in
common HTML formatting tasks. The following table enumerates the HTML methods. However, be
aware that typically these methods aren’t used, because they tend to create non-semantic markup.

METHOD OUTPUT

anchor(name) string

big() <big>string</big>

bold() string

fixed() <tt>string</tt>

fontcolor(color) string

fontsize(size) string

italics() <i>string</i>

link(url) string

small() <small>string</small>

strike() <strike>string</strike>

sub() _{string}

sup() ^{string}

SINGLETON BUILT-IN OBJECTS

ECMA-262 defines a built-in object as "any object supplied by an ECMAScript implementa-
tion, independent of the host environment, which is present at the start of the execution of an
ECMAScript program." This means the developer does not need to explicitly instantiate a built-in
object; it is already instantiated. You have already learned about most of the built-in objects, such
as Object, Array, and String. There are two singleton built-in objects defined by ECMA-262:
Global and Math.

The Global Object
The Global object is the most unique in ECMAScript because it isn’t explicitly accessible. ECMA-
262 specifies the Global object as a sort of catchall for properties and methods that don’t otherwise
have an owning object. In truth, there is no such thing as a global variable or global function; all
variables and functions defined globally become properties of the Global object. Functions covered
earlier in this book, such as isNaN(), isFinite(), parseInt(), and parseFloat(), are actually
methods of the Global object. In addition to these, there are several other methods available on the
Global object.

158 ❘ CHAPTER 5 Basic RefeRence Types

URI-Encoding Methods
The encodeURI() and encodeURIComponent() methods are used to encode URIs (Uniform Resource
Identifiers) to be passed to the browser. To be valid, a URI cannot contain certain characters, such as
spaces. The URI-encoding methods encode the URIs so that a browser can still accept and understand
them, replacing all invalid characters with a special UTF-8 encoding.

The encodeURI() method is designed to work on an entire URI (for instance, www.wrox.com/ille-
gal value.js), whereas encodeURIComponent() is designed to work solely on a segment of a URI
(such as illegal value.js from the previous URI). The main difference between the two methods
is that encodeURI() does not encode special characters that are part of a URI, such as the colon,
forward slash, question mark, and pound sign, whereas encodeURIComponent() encodes every non-
standard character it finds. Consider this example:

let uri = "http:// www.wrox.com/illegal value.js#start";

// "http:// www.wrox.com/illegal%20value.js#start"
console.log(encodeURI(uri));

// "http%3A%2F%2Fwww.wrox.com%2Fillegal%20value.js%23start"
console.log(encodeURIComponent(uri));

Here, using encodeURI() left the value completely intact except for the space, which was replaced
with %20. The encodeURIComponent() method replaced all nonalphanumeric characters with their
encoded equivalents. This is why encodeURI() can be used on full URIs, whereas encodeURI-
Component() can be used only on strings that are appended to the end of an existing URI.

NOTE Generally speaking, you’ll use encodeURIComponent() much more fre-
quently than encodeURI() because it’s more common to encode query string
arguments separately from the base URI.

The two counterparts to encodeURI() and encodeURIComponent() are decodeURI() and decode-
URIComponent(). The decodeURI() method decodes only characters that would have been replaced
by using encodeURI(). For instance, %20 is replaced with a space, but %23 is not replaced because it
represents a pound sign (#), which encodeURI() does not replace. Likewise, decodeURIComponent()
decodes all characters encoded by encodeURIComponent(), essentially meaning it decodes all special
values. Consider this example:

let uri = "http%3A%2F%2Fwww.wrox.com%2Fillegal%20value.js%23start";

// http%3A%2F%2Fwww.wrox.com%2Fillegal value.js%23start
console.log(decodeURI(uri));

// http:// www.wrox.com/illegal value.js#start
console.log(decodeURIComponent(uri));

Here, the uri variable contains a string that is encoded using encodeURIComponent(). The first
value output is the result of decodeURI(), which replaced only the %20 with a space. The second
value is the output of decodeURIComponent(), which replaces all the special characters and outputs
a string that has no escaping in it. (This string is not a valid URI.)

Singleton Built-in Objects ❘ 159

NOTE The URI methods encodeURI(), encodeURIComponent(), decodeURI(),
and decodeURIComponent() replace the escape() and unescape() methods,
which are deprecated in the ECMA-262 third edition. The URI methods are
always preferable, because they encode all Unicode characters, whereas the
original methods encode only ASCII characters correctly. Avoid using escape()
and unescape() in production code.

The eval() Method
The final method is perhaps the most powerful in the entire ECMAScript language: the eval()
method. This method works like an entire ECMAScript interpreter and accepts one argument, a string
of ECMAScript (or JavaScript) to execute. Here’s an example:

eval("console.log('hi')");

This line is functionally equivalent to the following:

console.log("hi");

When the interpreter finds an eval() call, it interprets the argument into actual ECMAScript
statements and then inserts it into place. Code executed by eval() is considered to be part of the
execution context in which the call is made, and the executed code has the same scope chain as that
context. This means variables that are defined in the containing context can be referenced inside an
eval() call, such as in this example:

let msg = "hello world";
eval("console.log(msg)"); // "hello world"

Here, the variable msg is defined outside the context of the eval() call, yet the call to console.
log() still displays the text "hello world" because the second line is replaced with a real line of
code. Likewise, you can define a function or variables inside an eval() call that can be referenced by
the code outside, as follows:

eval("function sayHi() { console.log('hi'); }");
sayHi();

Here, the sayHi() function is defined inside an eval() call. Because that call is replaced with the
actual function, it is possible to call sayHi() on the following line. This works the same for variables:

eval("let msg = 'hello world';");
console.log(msg); // "hello world"

Any variables or functions created inside of eval() will not be hoisted, as they are contained within
a string when the code is being parsed. They are created only at the time of eval() execution.

In strict mode, variables and functions created inside of eval() are not accessible outside, so these
last two examples would cause errors. Also, in strict mode, assigning a value to eval causes an error:

"use strict";
eval = "hi"; // causes error

160 ❘ CHAPTER 5 Basic RefeRence Types

NOTE The capability to interpret strings of code is very powerful but also
very dangerous. Use extreme caution with eval(), especially when passing
user-entered data into it, as this method exposes a large attack surface for XSS
exploits. A mischievous user could insert values that might compromise your site
or application security.

Global Object Properties
The Global object has a number of properties, some of which have already been mentioned in this
book. The special values of undefined, NaN, and Infinity are all properties of the Global object.
Additionally, all native reference type constructors, such as Object and Function, are properties of
the Global object. The following table lists all of the properties.

PROPERTY DESCRIPTION

undefined The special value undefined

NaN The special value NaN

Infinity The special value Infinity

Object Constructor for Object

Array Constructor for Array

Function Constructor for Function

Boolean Constructor for Boolean

String Constructor for String

Number Constructor for Number

Date Constructor for Date

RegExp Constructor for RegExp

Symbol Pseudo-constructor for Symbol

Error Constructor for Error

EvalError Constructor for EvalError

RangeError Constructor for RangeError

ReferenceError Constructor for ReferenceError

SyntaxError Constructor for SyntaxError

TypeError Constructor for TypeError

URIError Constructor for URIError

Singleton Built-in Objects ❘ 161

The Window Object
Though ECMA-262 doesn’t indicate a way to access the Global object directly, web browsers imple-
ment it such that the window is the Global object’s delegate. Therefore, all variables and functions
declared in the global scope become properties on window. Consider this example:

let color = "red";

function sayColor() {
 console.log(window.color);
}

window.sayColor(); // "red"

Here, a global variable named color and a global function named sayColor() are defined. Inside
sayColor(), the color variable is accessed via window.color to show that the global variable
became a property of window. The function is then called directly off of the window object as window.
sayColor(), which pops up the console.log.

NOTE The window object does much more in JavaScript than just implement
the ECMAScript Global object. Details of the window object can be found in the
Browser Object Model chapter.

Another way to retrieve the Global object is to use the following code:

let global = function() {
 return this;
}();

This code creates an immediately-invoked function expression that returns the value of this. As
mentioned previously, the this value is equivalent to the Global object when a function is executed
with no explicit this value specified (either by being an object method or via call()/apply()).
Thus, calling a function that simply returns this is a consistent way to retrieve the Global object in
any execution environment.

The Math Object
ECMAScript provides the Math object as a common location for mathematical formulas, information,
and computation. The Math object offers a number of properties and methods to help these com-
putations.

NOTE The computations available on the Math object execute faster than if
you were to write the computations in JavaScript directly because computations
available on the Math object use more efficient implementations in the JavaScript
engine and processor instructions. A side-effect of this is that precision of these
operations may vary between browsers, operating systems, instruction sets, and
hardware.

162 ❘ CHAPTER 5 Basic RefeRence Types

Math Object Properties
The Math object has several properties, consisting mostly of special values in the world of mathemat-
ics. The following table describes these properties.

PROPERTY DESCRIPTION

Math.E The value of e, the base of the natural logarithms

Math.LN10 The natural logarithm of 10

Math.LN2 The natural logarithm of 2

Math.LOG2E The base 2 logarithm of e

Math.LOG10E The base 10 logarithm of e

Math.PI The value of π

Math.SQRT1_2 The square root of ½

Math.SQRT2 The square root of 2

Although the meanings and uses of these values are outside the scope of this book, they are defined in
the ECMAScript specification and available when you need them.

The min() and max() Methods
The Math object also contains many methods aimed at performing both simple and complex math-
ematical calculations.

The min() and max() methods determine which number is the smallest or largest in a group of num-
bers. These methods accept any number of parameters, as shown in the following example:

let max = Math.max(3, 54, 32, 16);
console.log(max); // 54

let min = Math.min(3, 54, 32, 16);
console.log(min); // 3

Out of the numbers 3, 54, 32, and 16, Math.max() returns the number 54, whereas Math.min()
returns the number 3. These methods are useful for avoiding extra loops and if statements to deter-
mine the maximum value out of a group of numbers.

To find the maximum or the minimum value in an array, you can use the spread operator as follows:

let values = [1, 2, 3, 4, 5, 6, 7, 8];
let max = Math.max(...values);

Singleton Built-in Objects ❘ 163

Rounding Methods
The next group of methods has to do with rounding decimal values into integers. Four methods—
Math.ceil(), Math.floor(), Math.round(), and Math.fround()—handle rounding in different
ways as described here:

➤➤ The Math.ceil() method represents the ceiling function, which always rounds numbers up
to the nearest integer value.

➤➤ The Math.floor() method represents the floor function, which always rounds numbers
down to the nearest integer value.

➤➤ The Math.round() method represents a standard round function, which rounds up if the
number is at least halfway to the next integer value (0.5 or higher) and rounds down if not.
This is the way you were taught to round in elementary school.

➤➤ The Math.fround() method returns the nearest single precision (32 bits) floating point rep-
resentation of the number.

The following example illustrates how these methods work:

console.log(Math.ceil(25.9)); // 26
console.log(Math.ceil(25.5)); // 26
console.log(Math.ceil(25.1)); // 26

console.log(Math.round(25.9)); // 26
console.log(Math.round(25.5)); // 26
console.log(Math.round(25.1)); // 25

console.log(Math.fround(0.4)); // 0.4000000059604645
console.log(Math.fround(0.5)); // 0.5
console.log(Math.fround(25.9)); // 25.899999618530273

console.log(Math.floor(25.9)); // 25
console.log(Math.floor(25.5)); // 25
console.log(Math.floor(25.1)); // 25

For all values between 25 and 26 (exclusive), Math.ceil() always returns 26 because it will always
round up. The Math.round() method returns 26 only if the number is 25.5 or greater; otherwise it
returns 25. Last, Math.floor() returns 25 for all numbers between 25 and 26 (exclusive).

The random() Method
The Math.random() method returns a random number between the 0 and the 1, not including either
0 or 1. This is a favorite tool of web sites that are trying to display random quotes or random facts
upon entry of a web site. You can use Math.random() to select numbers within a certain integer
range by using the following formula:

number = Math.floor(Math.random() * total_number_of_choices + first_possible_value)

164 ❘ CHAPTER 5 Basic RefeRence Types

The Math.floor() method is used here because Math.random() always returns a decimal value,
meaning that multiplying it by a number and adding another still yields a decimal value. So, if you
wanted to select a number between 1 and 10, the code would look like this:

let num = Math.floor(Math.random() * 10 + 1);

You see 10 possible values (1 through 10), with the first possible value being 1. If you want to select a
number between 2 and 10, then the code would look like this:

let num = Math.floor(Math.random() * 9 + 2);

There are only nine numbers when counting from 2 to 10, so the total number of choices is nine, with
the first possible value being 2. Many times, it’s just easier to use a function that handles the calcula-
tion of the total number of choices and the first possible value, as in this example:

function selectFrom(lowerValue, upperValue) {
 let choices = upperValue - lowerValue + 1;
 return Math.floor(Math.random() * choices + lowerValue);
}

let num = selectFrom(2,10);
console.log(num); // number between 2 and 10, inclusive

Here, the function selectFrom() accepts two arguments: the lowest value that should be returned
and the highest value that should be returned. The number of choices is calculated by subtracting the
two values and adding one and then applying the previous formula to those numbers. So it’s possible
to select a number between 2 and 10 (inclusive) by calling selectFrom(2,10). Using the function,
it’s easy to select a random item from an array, as shown here:

let colors = ["red", "green", "blue", "yellow", "black", "purple", "brown"];
let color = colors[selectFrom(0, colors.length-1)];

In this example, the second argument to selectFrom() is the length of the array minus 1, which is
the last position in an array.

NOTE The Math.random() method is fine for the purposes demonstrated here.
If you need to use random number generation for cryptographic purposes (which
requires higher entropy in the inputs to the generator) prefer instead to use
window.crypto.getRandomValues().

Other Methods
The Math object has a lot of methods related to various simple and higher-level mathematical opera-
tions. It’s beyond the scope of this book to discuss the ins and outs of each or in what situations they
may be used, but the following table enumerates the remaining methods of the Math object.

METHOD DESCRIPTION

Math.abs(x) Returns the absolute value of x

Math.exp(x) Returns Math.E raised to the power of x

Summary ❘ 165

METHOD DESCRIPTION

Math.expm1(x) Equivalent to Math.exp(x) - 1

Math.log(x) Returns the natural logarithm of x

Math.log1p(x) Equivalent to 1 + Math.log(x)

Math.

pow(x, power)
Returns x raised to the power of power

Math.pow(...nums) Returns the square root of the sum of the squares of each
number in nums

Math.clz32(x) Returns the number of leading zeroes of a 32-bit integer x

Math.sign(x) Returns 1, 0, -0, or -1 indicating the sign of x

Math.trunc(x) Returns the integer component of x, removing any decimals

Math.sqrt(x) Returns the square root of x

Math.cbrt(x) Returns the cubic root of x

Math.acos(x) Returns the arc cosine of x

Math.acosh(x) Returns the hyperbolic arc cosine of x

Math.asin(x) Returns the arc sine of x

Math.asin(x) Returns the hyperbolic arc sine of x

Math.atan(x) Returns the arc tangent of x

Math.atanh(x) Returns the hyperbolic arc tangent of x

Math.atan2(y, x) Returns the arc tangent of y/x

Math.cos(x) Returns the cosine of x

Math.sin(x) Returns the sine of x

Math.tan(x) Returns the tangent of x

Even though these methods are defined by ECMA-262, the results are implementation-dependent for
those dealing with sines, cosines, and tangents, because you can calculate each value in many different
ways. Consequently, the precision of the results may vary from one implementation to another.

SUMMARY

Objects in JavaScript are called reference values, and several built-in reference types can be used to
create specific types of objects, as follows:

➤➤ Reference types are similar to classes in traditional object-oriented programming but are
implemented differently.

166 ❘ CHAPTER 5 Basic RefeRence Types

➤➤ The Date type provides information about dates and times, including the current date and
time and calculations.

➤➤ The RegExp type is an interface for regular-expression support in ECMAScript, providing
most basic and some advanced regular-expression functionality.

One of the unique aspects of JavaScript is that functions are actually instances of the Function type,
meaning functions are objects. Because functions are objects, functions have methods that can be used
to augment how they behave.

Because of the existence of primitive wrapper types, primitive values in JavaScript can be accessed as
if they were objects. There are three primitive wrapper types: Boolean, Number, and String. They all
have the following characteristics:

➤➤ Each of the wrapper types maps to the primitive type of the same name.

➤➤ When a primitive value is accessed in read mode, a primitive wrapper object is instantiated
so that it can be used to manipulate the data.

➤➤ As soon as a statement involving a primitive value is executed, the wrapper object is
destroyed.

There are also two built-in objects that exist at the beginning of code execution: Global and Math.
The Global object isn’t accessible in most ECMAScript implementations; however, web browsers
implement it as the window object. The Global object contains all global variables and functions
as properties. The Math object contains properties and methods to aid in complex mathematical
calculations.

Collection Reference Types
WHAT’S IN THIS CHAPTER?

➤➤ Working with objects

➤➤ Working with arrays and typed arrays

➤➤ Working with Map, WeakMap, Set, and WeakSet types

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/projavascript4e on the Down-
load Code tab.

THE OBJECT TYPE

Up to this point, most of the reference-value examples have used the Object type, which is
one of the most commonly used types in ECMAScript. Although instances of Object don’t
have much functionality, they are ideally suited to storing and transmitting data around an
application.

There are two ways to explicitly create an instance of Object. The first is to use the new opera-
tor with the Object constructor like this:

let person = new Object();
person.name = "Nicholas";
person.age = 29;

6

Professional JavaScript® for Web Developers, Fourth Edition. Matt Frisbie.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

168 ❘ CHAPTER 6 ColleCtion RefeRenCe types

The other way is to use object literal notation. Object literal notation is a shorthand form of object
definition designed to simplify creating an object with numerous properties. For example, the follow-
ing defines the same person object from the previous example using object literal notation:

let person = {
 name: "Nicholas",
 age: 29
};

In this example, the left curly brace ({) signifies the beginning of an object literal because it occurs in
an expression context. An expression context in ECMAScript is a context in which a value (expres-
sion) is expected. Assignment operators indicate that a value is expected next, so the left curly brace
indicates the beginning of an expression. The same curly brace, when appearing in a statement con-
text, such as follows an if statement condition, indicates the beginning of a block statement.

Next, the name property is specified, followed by a colon, followed by the property’s value. A comma
is used to separate properties in an object literal, so there’s a comma after the string "Nicholas" but
not after the value 29 because age is the last property in the object. Including a comma after the last
property causes an error in very old browsers, but all modern ones support it.

Property names can also be specified as strings or numbers when using object literal notation, such as
in this example:

let person = {
 "name": "Nicholas",
 "age": 29,
 5: true
};

This example produces an object with a name property, an age property, and a property 5. Note that
numeric property names are automatically converted to strings.

It’s also possible to create an object with only the default properties and methods using object literal
notation by leaving the space between the curly braces empty, such as this:

let person = {}; // same as new Object()
person.name = "Nicholas";
person.age = 29;

This example is equivalent to the first one in this section, though it looks a little strange. Prefer to use
object literal notation only when you’re going to specify properties for readability.

NOTE When defining an object via object literal notation, the Object con-
structor is never actually called.

Though it’s acceptable to use either method of creating Object instances, developers tend to favor
object literal notation because it requires less code and visually encapsulates all related data. In fact,

The Object Type ❘ 169

object literals have become a preferred way of passing a large number of optional arguments to a
function, such as in this example:

function displayInfo(args) {
 let output = "";

 if (typeof args.name == "string"){
 output += "Name: " + args.name + "\n";
 }

 if (typeof args.age == "number") {
 output += "Age: " + args.age + "\n";
 }

 alert(output);
}

displayInfo({
 name: "Nicholas",
 age: 29
});

displayInfo({
 name: "Greg"
});

Here, the function displayInfo() accepts a single argument named args. The argument may come
in with a property called name or age or both or neither of those. The function is set up to test for
the existence of each property using the typeof operator and then to construct a message to display
based on availability. This function is then called twice, each time with different data specified in an
object literal. The function works correctly in both cases.

NOTE This pattern for argument passing is best used when there are a large
number of optional arguments that can be passed into the function. Generally
speaking, named arguments are easier to work with but can get unwieldy when
there are numerous optional arguments. The best approach is to use named
arguments for those that are required and an object literal to encompass multiple
optional arguments.

Although object properties are typically accessed using dot notation, which is common to many
object-oriented languages, it’s also possible to access properties via bracket notation. When you
use bracket notation, a string containing the property name is placed between the brackets, as in
this example:

alert(person["name"]); // "Nicholas"
alert(person.name); // "Nicholas"

170 ❘ CHAPTER 6 ColleCtion RefeRenCe types

Functionally, there is no difference between the two approaches. The main advantage of bracket nota-
tion is that it allows you to use variables for property access, as in this example:

let propertyName = "name";
alert(person[propertyName]); // "Nicholas"

You can also use bracket notation when the property name contains characters that would be either a
syntax error or a keyword/reserved word. For example:

person["first name"] = "Nicholas";

Because the name "first name" contains a space, you can’t use dot notation to access it. However,
property names can contain nonalphanumeric characters—you just need to use bracket notation to
access them.

Generally speaking, dot notation is preferred unless variables are necessary to access proper-
ties by name.

NOTE The “Objects, Classes, and Object-Oriented Programming” chapter has
extensive coverage on the Object type.

THE ARRAY TYPE

After the Object type, the Array type is probably the most used in ECMAScript. An ECMAScript
array is very different from arrays in most other programming languages. As in other languages,
ECMAScript arrays are ordered lists of data, but unlike in other languages, they can hold any type of
data in each slot. This means that it’s possible to create an array that has a string in the first position,
a number in the second, an object in the third, and so on. ECMAScript arrays are also dynamically
sized, automatically growing to accommodate any data that is added to them.

Creating Arrays
Arrays can be created in several basic ways. One is to use the Array constructor, as in this line:

let colors = new Array();

If you know the number of items that will be in the array, you can pass the count into the constructor,
and the length property will automatically be created with that value. For example, the following
creates an array with an initial length value of 20:

let colors = new Array(20);

The Array constructor can also be passed items that should be included in the array. The following
creates an array with three string values:

let colors = new Array("red", "blue", "green");

An array can be created with a single value by passing it into the constructor. This gets a little bit
tricky because providing a single argument that is a number always creates an array with the given

The Array Type ❘ 171

number of items, whereas an argument of any other type creates a one-item array that contains the
specified value. Here’s an example:

let colors = new Array(3); // create an array with three items
let names = new Array("Greg"); // create an array with one item, the string "Greg"

It’s possible to omit the new operator when using the Array constructor. It has the same result, as you
can see here:

let colors = Array(3); // create an array with three items
let names = Array("Greg"); // create an array with one item, the string "Greg"

A second way to create an array is by using array literal notation. An array literal is specified by using
square brackets and placing a comma-separated list of items between them, as in this example:

let colors = ["red", "blue", "green"]; // Creates an array with three strings
let names = []; // Creates an empty array
let values = [1,2,]; // Creates an array with 2 items

In this code, the first line creates an array with three string values. The second line creates an empty
array by using empty square brackets. The third line shows the effects of leaving a comma after the
last value in an array literal: values is a two-item array containing the values 1 and 2.

NOTE As with objects, the Array constructor isn’t called when an array is
created using array literal notation.

The Array constructor also has two additional static methods introduced in ES6 to create arrays:
from() and of(). from() is used for converting array-like constructs into an array instance, whereas
of() is used to convert a collection of arguments into an array instance.

The first argument to Array.from() is an “arrayLike” object, which is anything that is iterable
or has a property length and indexed elements. This type can be used in an abundance of dif-
ferent ways:

// Strings will be broken up into an array of single characters
alert(Array.from("Matt")); // ["M", "a", "t", "t"]

// Sets and Maps can be converted into an new array instance using from()
const m = new Map().set(1, 2)
 .set(3, 4);
const s = new Set().add(1)
 .add(2)
 .add(3)
 .add(4);

alert(Array.from(m)); // [[1, 2], [3, 4]]
alert(Array.from(s)); // [1, 2, 3, 4]

// Array.from() performs a shallow copy of an existing array
const a1 = [1, 2, 3, 4];
const a2 = Array.from(a1);

172 ❘ CHAPTER 6 ColleCtion RefeRenCe types

alert(a1); // [1, 2, 3, 4]
alert(a1 === a2); // false

// Any iterable object can be used
const iter = {
 *[Symbol.iterator]() {
 yield 1;
 yield 2;
 yield 3;
 yield 4;

 }
};
alert(Array.from(iter)); // [1, 2, 3, 4]

// The arguments object can now easily be casted into an array:
function getArgsArray() {
 return Array.from(arguments);
}
alert(getArgsArray(1, 2, 3, 4)); // [1, 2, 3, 4]

// from() will happily use a custom object with required properties
const arrayLikeObject = {
 0: 1,
 1: 2,
 2: 3,
 3: 4,
 length: 4
};
alert(Array.from(arrayLikeObject)); // [1, 2, 3, 4]

Array.from() also accepts a second optional map function argument. This allows you to augment
the new array’s values without creating an intermediate array first, which is the case if the same were
performed with Array.from().map(). A third optional argument specifies the value of this inside
the map function. The overridden this value is not applied inside an arrow function:

const a1 = [1, 2, 3, 4];
const a2 = Array.from(a1, x => x**2);
const a3 = Array.from(a1, function(x) {return x**this.exponent}, {exponent: 2});
alert(a2); // [1, 4, 9, 16]
alert(a3); // [1, 4, 9, 16]

Array.of() will convert the list of arguments into an array. This serves to replace the common
pre-ES6 method of converting the arguments object into an array using the exceptionally unwieldy
Array.prototype.slice.call(arguments):

alert(Array.of(1, 2, 3, 4)); // [1, 2, 3, 4]
alert(Array.of(undefined)); // [undefined]

Array Holes
Initializing an array with an array literal allows you to create “holes” using sequential commas.
ECMAScript will treat the value at the index between the commas as a hole, and the ES6 specification
refines how these holes are treated.

The Array Type ❘ 173

An array of holes might be created as follows:

const options = [,,,,,]; // Creates an array with 5 items
alert(options.length); // 5
alert(options); // [,,,,,]

Methods and iterators introduced in ES6 behave differently than methods present in earlier
ECMAScript editions. ES6 additions will universally treat the holes as an existing entry with a value
of undefined:

const options = [1,,,,5];

for (const option of options) {
 alert(option === undefined);
}
// false
// true
// true
// true
// false

const a = Array.from([,,,]); // Array of 3 holes created with ES6's Array.from()
for (const val of a) {
 alert(val === undefined);
}
// true
// true
// true

alert(Array.of(...[,,,])); // [undefined, undefined, undefined]

for (const [index, value] of options.entries()) {
 alert(value);
}
// 1
// undefined
// undefined
// undefined
// 5

Conversely, methods available before ES6 will tend to ignore the holes, although exact behavior can
vary slightly between methods:

const options = [1,,,,5];

// map() will skip the holes entirely
alert(options.map(() => 6)); // [6, undefined, undefined, undefined, 6]

// join() treats holes as empty strings
alert(options.join('-')); // "1----5"

174 ❘ CHAPTER 6 ColleCtion RefeRenCe types

NOTE Due to their bizarre behavior and performance issues, avoid using array
holes in your code. Prefer to use an explicit undefined in place of a hole.

Indexing into Arrays
To get and set array values, you use square brackets and provide the zero-based numeric index of the
value, as shown here:

let colors = ["red", "blue", "green"]; // define an array of strings
alert(colors[0]); // display the first item
colors[2] = "black"; // change the third item
colors[3] = "brown"; // add a fourth item

The index provided within the square brackets indicates the value being accessed. If the index is less
than the number of items in the array, then it will return the value stored in the corresponding item,
as colors[0] displays "red" in this example. Setting a value works in the same way, replacing the
value in the designated position. If a value is set to an index that is past the end of the array, as with
colors[3] in this example, the array length is automatically expanded to be that index plus 1 (so the
length becomes 4 in this example because the index being used is 3).

The number of items in an array is stored in the length property, which always returns 0 or more, as
shown in the following example:

let colors = ["red", "blue", "green"]; // creates an array with three strings
let names = []; // creates an empty array

alert(colors.length); // 3
alert(names.length); // 0

A unique characteristic of length is that it’s not read-only. By setting the length property, you can
easily remove items from or add items to the end of the array. Consider this example:

let colors = ["red", "blue", "green"]; // creates an array with three strings
colors.length = 2;
alert(colors[2]); // undefined

Here, the array colors starts out with three values. Setting the length to 2 removes the last item
(in position 2), making it no longer accessible using colors[2]. If the length were set to a number
greater than the number of items in the array, the new items would each get filled with the value of
undefined, as in this example:

let colors = ["red", "blue", "green"]; // creates an array with three strings
colors.length = 4;
alert(colors[3]); // undefined

This code sets the length of the colors array to 4 even though it contains only three items. Posi-
tion 3 does not exist in the array, so trying to access its value results in the special value undefined
being returned.

The Array Type ❘ 175

The length property can also be helpful in adding items to the end of an array, as in this example:

let colors = ["red", "blue", "green"]; // creates an array with three strings
colors[colors.length] = "black"; // add a color (position 3)
colors[colors.length] = "brown"; // add another color (position 4)

The last item in an array is always at position length – 1, so the next available open slot is at
position length. Each time an item is added after the last one in the array, the length property is
automatically updated to reflect the change. That means colors[colors.length] assigns a value
to position 3 in the second line of this example and to position 4 in the last line. The new length is
automatically calculated when an item is placed into a position that’s outside of the current array size,
which is done by adding 1 to the position, as in this example:

let colors = ["red", "blue", "green"]; // creates an array with three strings
colors[99] = "black"; // add a color (position 99)
alert(colors.length); // 100

In this code, the colors array has a value inserted into position 99, resulting in a new length of 100
(99 + 1). Each of the other items, positions 3 through 98, doesn’t actually exist and so returns unde-
fined when accessed.

NOTE Arrays can contain a maximum of 4,294,967,295 items, which should
be plenty for almost all programming needs. If you try to add more than that
number, an exception occurs. Trying to create an array with an initial size
approaching this maximum may cause a long-running script error.

Detecting Arrays
A classic ECMAScript problem is determining whether a given object is an array. When dealing with
a single web page, and therefore a single global scope, the instanceof operator works well:

if (value instanceof Array){
 // do something on the array
}

The one problem with instanceof is that it assumes a single global execution context. If you are
dealing with multiple frames in a web page, you’re really dealing with two distinct global execu-
tion contexts and therefore two versions of the Array constructor. If you were to pass an array from
one frame into a second frame, that array has a different constructor function than an array created
natively in the second frame.

To work around this problem, ECMAScript offers the Array.isArray() method. The purpose of
this method is to definitively determine if a given value is an array regardless of the global execution
context in which it was created. Consider the following example:

if (Array.isArray(value)){
 // do something on the array
}

176 ❘ CHAPTER 6 ColleCtion RefeRenCe types

Iterator Methods
In ES6, three new methods are exposed on the Array prototype that allow you to inspect the contents
of an array: keys(), values(), and entries(). keys() will return an iterator of the array’s indices,
values() will return an iterator of the array’s elements, and entries() will return an iterator of
index/value pairs:

const a = ["foo", "bar", "baz", "qux"];

// Because these methods return iterators, you can funnel their contents
// into array instances using Array.from()
const aKeys = Array.from(a.keys());
const aValues = Array.from(a.values());
const aEntries = Array.from(a.entries());

alert(aKeys); // [0, 1, 2, 3]
alert(aValues); // ["foo", "bar", "baz", "qux"]
alert(aEntries); // [[0, "foo"], [1, "bar"], [2, "baz"], [3, "qux"]]

ES6 destructuring means it is now very easy to split out the key/value pairs inside a loop:

const a = ["foo", "bar", "baz", "qux"];

for (const [idx, element] of a.entries()) [
 alert(idx);
 alert(element);
}
// 0
// foo
// 1
// bar
// 2
// baz
// 3
// qux

NOTE Although they are included as part of the ES6 specification, as of late
2017 some modern browsers have yet to implement some of these methods.

Copy and Fill Methods
New in ES6 are two methods, fill() and copyWithin(), that respectively allow for batch fill and
copy inside an array. Both methods have a similar function signature in that they allow you to specify
a range within an existing array instance using an inclusive start and exclusive end index. Arrays that
use this method will never be resized.

The fill() method allows you to insert the same value into all or part of an existing array. Specify-
ing the optional start index instructs the fill to begin at that index, and the fill will continue to the
end of the array unless an end index is provided. Negative indices are interpreted from the end of the

The Array Type ❘ 177

array; another way to think of this is that negative indices have the array length added to them to
calculate a positive index:

const zeroes = [0, 0, 0, 0, 0];

// Fill the entire array with 5
zeroes.fill(5);
alert(zeroes); // [5, 5, 5, 5, 5]
zeroes.fill(0); // reset

// Fill all indices >=3 with 6
zeroes.fill(6, 3);
alert(zeroes); // [0, 0, 0, 6, 6]
zeroes.fill(0); // reset

// Fill all indices >= 1 and < 3 with 7
zeroes.fill(7, 1, 3);
alert(zeroes); // [0, 7, 7, 0, 0];
zeroes.fill(0); // reset

// Fill all indices >=1 and < 4 with 8
// (-4 + zeroes.length = 1)
// (-1 + zeroes.length = 4)
zeroes.fill(8, -4, -1);
alert(zeroes); // [0, 8, 8, 8, 0];

fill() silently ignores ranges that exceed the boundaries of the array, are zero

length, or go backwards:

const zeroes = [0, 0, 0, 0, 0];

// Fill with too low indices is noop
zeroes.fill(1, -10, -6);
alert(zeroes); // [0, 0, 0, 0, 0]

// Fill with too high indices is noop
zeroes.fill(1, 10, 15);
alert(zeroes); // [0, 0, 0, 0, 0]

// Fill with reversed indices is noop
zeroes.fill(2, 4, 2);
alert(zeroes); // [0, 0, 0, 0, 0]

// Fill with partial index overlap is best effort
zeroes.fill(4, 3, 10)
alert(zeroes); // [0, 0, 0, 4, 4]

Unlike fill(), copyWithin() instead performs an iterative shallow copy of some of the array and
overwrites existing values beginning at the provided index. However, it uses the same conventions
with respect to start and end indices:

let ints,
 reset = () => ints = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
reset();

178 ❘ CHAPTER 6 ColleCtion RefeRenCe types

// Copy the contents of ints beginning at index 0 to the values beginning at index 5.
// Stops when it reaches the end of the array either in the source
// indices or the destination indices.
ints.copyWithin(5);
alert(ints); // [0, 1, 2, 3, 4, 0, 1, 2, 3, 4]
reset();

// Copy the contents of ints beginning at index 5 to the values beginning at index 0.
ints.copyWithin(0, 5);
alert(ints); // [5, 6, 7, 8, 9, 5, 6, 7, 8, 9]
reset();

// Copy the contents of ints beginning at index 0 and ending at index 3 to values
// beginning at index 4.
ints.copyWithin(4, 0, 3);
alert(ints); // [0, 1, 2, 3, 0, 1, 2, 7, 8, 9]
reset();

// The JS engine will perform a full copy of the range of values before inserting,
// so there is no danger of overwrite during the copy.
ints.copyWithin(2, 0, 6);
alert(ints); // [0, 1, 0, 1, 2, 3, 4, 5, 8, 9]
reset();

// Support for negative indexing behaves identically to fill() in that negative
// indices are calculated relative to the end of the array
ints.copyWithin(-4, -7, -3);
alert(ints); // [0, 1, 2, 3, 4, 5, 3, 4, 5, 6]

fill() silently ignores ranges that exceed the boundaries of the array, are zero length, or go
backwards:

let ints,
 reset = () => ints = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
reset();

// Copy with too low indices is noop
ints.copyWithin(1, -15, -12);
alert(ints); // [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
reset()

// Copy with too high indices is noop
ints.copyWithin(1, 12, 15);
alert(ints); // [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
reset();

// Copy with reversed indices is noop
ints.copyWithin(2, 4, 2);
alert(ints); // [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
reset();

// Copy with partial index overlap is best effort
ints.copyWithin(4, 7, 10)
alert(ints); // [0, 1, 2, 3, 7, 8, 9, 7, 8, 9];

The Array Type ❘ 179

Conversion Methods
As mentioned previously, all objects have toLocaleString(), toString(), and valueOf() methods.
The toString() and valueOf() methods return the same value when called on an array. The result
is a comma-separated string that contains the string equivalents of each value in the array, which
is to say that each item has its toString() method called to create the final string. Take a look at
this example:

let colors = ["red", "blue", "green"]; // creates an array with three strings
alert(colors.toString()); // red,blue,green
alert(colors.valueOf()); // red,blue,green
alert(colors); // red,blue,green

In this code, the toString() and valueOf() methods are first called explicitly to return the string
representation of the array, which combines the strings, separating them by commas. The last line
passes the array directly into alert(). Because alert() expects a string, it calls toString() behind
the scenes to get the same result as when toString() is called directly.

The toLocaleString() method may end up returning the same value as toString() and
valueOf(), but not always. When toLocaleString() is called on an array, it creates a comma-
delimited string of the array values. The only difference between this and the two other methods is
that toLocaleString() calls each item’s toLocaleString() instead of toString() to get its string
value. Consider the following example:

let person1 = {
 toLocaleString() {
 return "Nikolaos";
 },

 toString() {
 return "Nicholas";
 }
};

let person2 = {
 toLocaleString() {
 return "Grigorios";
 },

 toString() {
 return "Greg";
 }
};

let people = [person1, person2];
alert(people); // Nicholas,Greg
alert(people.toString()); // Nicholas,Greg
alert(people.toLocaleString()); // Nikolaos,Grigorios

Here, two objects are defined, person1 and person2. Each object defines both a toString() method
and a toLocaleString() method that return different values. An array, people, is created to contain
both objects. When passed into alert(), the output is "Nicholas,Greg" because the toString()
method is called on each item in the array (the same as when toString() is called explicitly on the

180 ❘ CHAPTER 6 ColleCtion RefeRenCe types

next line). When toLocaleString() is called on the array, the result is "Nikolaos,Grigorios"
because this calls toLocaleString() on each array item.

The inherited methods toLocaleString(), toString(), and valueOf() each return the array items
as a comma-separated string. It’s possible to construct a string with a different separator using the
join() method. The join() method accepts one argument, which is the string separator to use, and
returns a string containing all items. Consider this example:

let colors = ["red", "green", "blue"];
alert(colors.join(",")); // red,green,blue
alert(colors.join("||")); // red||green||blue

Here, the join() method is used on the colors array to duplicate the output of toString(). By
passing in a comma, the result is a comma-separated list of values. On the last line, double pipes are
passed in, resulting in the string "red||green||blue". If no value or undefined is passed into the
join() method, then a comma is used as the separator.

NOTE If an item in the array is null or undefined, it is represented by an
empty string in the result of join(), toLocaleString(), toString(), and
valueOf().

Stack Methods
One of the interesting things about ECMAScript arrays is that they provide a method to make an
array behave like other data structures. An array object can act just like a stack, which is one of a
group of data structures that restrict the insertion and removal of items. A stack is referred to as a
last-in-first-out (LIFO) structure, meaning that the most recently added item is the first one removed.
The insertion (called a push) and removal (called a pop) of items in a stack occur at only one point:
the top of the stack. ECMAScript arrays provide push() and pop() specifically to allow stack-
like behavior.

The push() method accepts any number of arguments and adds them to the end of the array, return-
ing the array’s new length. The pop() method, on the other hand, removes the last item in the array,
decrements the array’s length, and returns that item. Consider this example:

let colors = new Array(); // create an array
let count = colors.push("red", "green"); // push two items
alert(count); // 2

count = colors.push("black"); // push another item on
alert(count); // 3

let item = colors.pop(); // get the last item
alert(item); // "black"
alert(colors.length); // 2

In this code, an array is created for use as a stack (note that there’s no special code required to make
this work; push() and pop() are default methods on arrays). First, two strings are pushed onto the end
of the array using push(), and the result is stored in the variable count (which gets the value of 2).

The Array Type ❘ 181

Then, another value is pushed on, and the result is once again stored in count. Because there are now
three items in the array, push() returns 3. When pop() is called, it returns the last item in the array,
which is the string "black". The array then has only two items left.

The stack methods may be used in combination with all of the other array methods as well, as in
this example:

let colors = ["red", "blue"];
colors.push("brown"); // add another item
colors[3] = "black"; // add an item
alert(colors.length); // 4

let item = colors.pop(); // get the last item
alert(item); // "black"

Here, an array is initialized with two values. A third value is added via push(), and a fourth is added
by direct assignment into position 3. When pop() is called, it returns the string "black", which was
the last value added to the array.

Queue Methods
Just as stacks restrict access in a LIFO data structure, queues restrict access in a first-in-first-out
(FIFO) data structure. A queue adds items to the end of a list and retrieves items from the front of
the list. Because the push() method adds items to the end of an array, all that is needed to emulate a
queue is a method to retrieve the first item in the array. The array method for this is called shift(),
which removes the first item in the array and returns it, decrementing the length of the array by one.
Using shift() in combination with push() allows arrays to be used as queues:

let colors = new Array(); // create an array
let count = colors.push("red", "green"); // push two items
alert(count); // 2

count = colors.push("black"); // push another item on
alert(count); // 3

let item = colors.shift(); // get the first item
alert(item); // "red"
alert(colors.length); // 2

This example creates an array of three colors using the push() method. The highlighted line shows
the shift() method being used to retrieve the first item in the array, which is "red". With that item
removed, "green" is moved into the first position and "black" is moved into the second, leaving the
array with two items.

ECMAScript also provides an unshift() method for arrays. As the name indicates, unshift() does
the opposite of shift(): it adds any number of items to the front of an array and returns the new
array length. By using unshift() in combination with pop(), it’s possible to emulate a queue in the
opposite direction, where new values are added to the front of the array and values are retrieved off
the back, as in this example:

let colors = new Array(); // create an array
let count = colors.unshift("red", "green"); // push two items

182 ❘ CHAPTER 6 ColleCtion RefeRenCe types

alert(count); // 2

count = colors.unshift("black"); // push another item on
alert(count); // 3

let item = colors.pop(); // get the first item
alert(item); // "green"
alert(colors.length); // 2

In this code, an array is created and then populated by using unshift(). First "red" and "green"
are added to the array, and then "black" is added, resulting in an order of "black", "red", "green".
When pop() is called, it removes the last item, "green", and returns it.

Reordering Methods
Two methods deal directly with the reordering of items already in the array: reverse() and sort().
As one might expect, the reverse() method simply reverses the order of items in an array. Consider
the following example:

let values = [1, 2, 3, 4, 5];
values.reverse();
alert(values); // 5,4,3,2,1

Here, the array’s values are initially set to 1, 2, 3, 4, and 5, in that order. Calling reverse() on the
array reverses the order to 5, 4, 3, 2, 1. This method is fairly straightforward but doesn’t provide
much flexibility, which is where the sort() method comes in.

By default, the sort() method puts the items in ascending order—with the smallest value first and
the largest value last. To do this, the sort() method calls the String() casting function on every
item and then compares the strings to determine the correct order. This occurs even if all items in an
array are numbers, as in this example:

let values = [0, 1, 5, 10, 15];
values.sort();
alert(values); // 0,1,10,15,5

Even though the values in this example begin in correct numeric order, the sort() method changes
that order based on their string equivalents. So even though 5 is less than 10, the string "10" comes
before "5" when doing a string comparison, so the array is updated accordingly. Clearly, this is not an
optimal solution in many cases, so the sort() method allows you to pass in a comparison function
that indicates which value should come before which.

A comparison function accepts two arguments and returns a negative number if the first argument
should come before the second, a zero if the arguments are equal, or a positive number if the first
argument should come after the second. Here’s an example of a simple comparison function:

function compare(value1, value2) {
 if (value1 < value2) {
 return -1;
 } else if (value1 > value2) {
 return 1;

The Array Type ❘ 183

 } else {
 return 0;
 }
}

This comparison function works for most data types and can be used by passing it as an argument to
the sort() method, as in the following example:

let values = [0, 1, 5, 10, 15];
values.sort(compare);
alert(values); // 0,1,5,10,15

When the comparison function is passed to the sort() method, the numbers remain in the correct
order. Of course, the comparison function could produce results in descending order if you simply
switch the return values like this:

function compare(value1, value2) {
 if (value1 < value2) {
 return 1;
 } else if (value1 > value2) {
 return -1;
 } else {
 return 0;
 }
}

let values = [0, 1, 5, 10, 15];
values.sort(compare);
alert(values); // 15,10,5,1,0

Alternately, the compare function can be shortened and defined as an inline arrow function:

let values = [0, 1, 5, 10, 15];
values.sort((a, b) => a < b ? a > b ? -1 : 0);
alert(values); // 15,10,5,1,0

In this modified example, the comparison function returns 1 if the first value should come after the
second and –1 if the first value should come before the second. Swapping these means the larger value
will come first and the array will be sorted in descending order. Of course, if you just want to reverse
the order of the items in the array, reverse() is a much faster alternative than sorting.

NOTE Both reverse() and sort() return a reference to the array on which they
were applied.

A much simpler version of the comparison function can be used with numeric types and objects
whose valueOf() method returns numeric values (such as the Date object). In either case, you can
simply subtract the second value from the first as shown here:

function compare(value1, value2){
 return value2 - value1;
}

184 ❘ CHAPTER 6 ColleCtion RefeRenCe types

Because comparison functions work by returning a number less than zero, zero, or a number greater
than zero, the subtraction operation handles all of the cases appropriately.

Manipulation Methods
There are various ways to work with the items already contained in an array. The concat() method,
for instance, allows you to create a new array based on all of the items in the current array. This
method begins by creating a copy of the array and then appending the method arguments to the
end and returning the newly constructed array. When no arguments are passed in, concat() simply
clones the array and returns it. If one or more arrays are passed in, concat() appends each item in
these arrays to the end of the result. If the values are not arrays, they are simply appended to the end
of the resulting array. Consider this example:

let colors = ["red", "green", "blue"];
let colors2 = colors.concat("yellow", ["black", "brown"]);

alert(colors); // ["red", "green","blue"]
alert(colors2); // ["red", "green", "blue", "yellow", "black", "brown"]

This code begins with the colors array containing three values. The concat() method is called on
colors, passing in the string "yellow" and an array containing "black" and "brown". The result,
stored in colors2, contains "red", "green", "blue", "yellow", "black", and "brown". The original
array, colors, remains unchanged.

You can override this force-flattening default behavior by specifying a special symbol on the argu-
ment array instance, Symbol.isConcatSpreadable. This will prevent the concat() method from
flattening the result. Conversely, setting the value to true will force array-like objects to be flattened:

let colors = ["red", "green", "blue"];
let newColors = ["black", "brown"];
let moreNewColors = {
 [Symbol.isConcatSpreadable]: true,
 length: 2,
 0: "pink",
 1: "cyan"
};

newColors[Symbol.isConcatSpreadable] = false;

// Force the array to not be flattened
let colors2 = colors.concat("yellow", newColors);

// Force the array-like object to be flattened
let colors3 = colors.concat(moreNewColors);

alert(colors); // ["red", "green","blue"]
alert(colors2); // ["red", "green", "blue", "yellow", ["black", "brown"]]
alert(colors3); // ["red", "green", "blue", "pink, "cyan"]

The next method, slice(), creates an array that contains one or more items already contained in an
array. The slice() method may accept one or two arguments: the starting and stopping positions of

The Array Type ❘ 185

the items to return. If only one argument is present, the method returns all items between that posi-
tion and the end of the array. If there are two arguments, the method returns all items between the
start position and the end position, not including the item in the end position. Keep in mind that this
operation does not affect the original array in any way. Consider the following:

let colors = ["red", "green", "blue", "yellow", "purple"];
let colors2 = colors.slice(1);
let colors3 = colors.slice(1, 4);

alert(colors2); // green,blue,yellow,purple
alert(colors3); // green,blue,yellow

In this example, the colors array starts out with five items. Calling slice() and passing in 1 yields
an array with four items, omitting "red" because the operation began copying from position 1, which
contains "green". The resulting colors2 array contains "green", "blue", "yellow", and "pur-
ple". The colors3 array is constructed by calling slice() and passing in 1 and 4, meaning that the
method will begin copying from the item in position 1 and stop copying at the item in position 3. As
a result, colors3 contains "green", "blue", and "yellow".

NOTE If either the start or end position of slice() is a negative number, then
the number is subtracted from the length of the array to determine the appro-
priate locations. For example, calling slice(-2, -1) on an array with five items
is the same as calling slice(3, 4). If the end position is smaller than the start,
then an empty array is returned.

Perhaps the most powerful array method is splice(), which can be used in a variety of ways. The
main purpose of splice() is to insert items into the middle of an array, but there are three distinct
ways of using this method. They are as follows:

➤➤ Deletion—Any number of items can be deleted from the array by specifying just two argu-
ments: the position of the first item to delete and the number of items to delete. For example,
splice(0, 2) deletes the first two items.

➤➤ Insertion—Items can be inserted into a specific position by providing three or more argu-
ments: the starting position, 0 (the number of items to delete), and the item to insert.
Optionally, you can specify a fourth parameter, fifth parameter, or any number of other
parameters to insert. For example, splice(2, 0, "red", "green") inserts the strings "red"
and "green" into the array at position 2.

➤➤ Replacement—Items can be inserted into a specific position while simultaneously deleting
items, if you specify three arguments: the starting position, the number of items to delete,
and any number of items to insert. The number of items to insert doesn’t have to match the
number of items to delete. For example, splice(2, 1, "red", "green") deletes one item at
position 2 and then inserts the strings "red" and "green" into the array at position 2.

186 ❘ CHAPTER 6 ColleCtion RefeRenCe types

The splice() method always returns an array that contains any items that were removed from
the array (or an empty array if no items were removed). These three uses are illustrated in the fol-
lowing code:

let colors = ["red", "green", "blue"];
let removed = colors.splice(0,1); // remove the first item
alert(colors); // green,blue
alert(removed); // red - one item array

removed = colors.splice(1, 0, "yellow", "orange"); // insert two items at position 1
alert(colors); // green,yellow,orange,blue
alert(removed); // empty array

removed = colors.splice(1, 1, "red", "purple"); // insert two values, remove one
alert(colors); // green,red,purple,orange,blue
alert(removed); // yellow - one item array

This example begins with the colors array containing three items. When splice is called the first time,
it simply removes the first item, leaving colors with the items "green" and "blue". The second
time splice() is called, it inserts two items at position 1, resulting in colors containing "green",
"yellow", "orange", and "blue". No items are removed at this point, so an empty array is returned.
The last time splice() is called, it removes one item, beginning in position 1, and inserts "red" and
"purple". After all of this code has been executed, the colors array contains "green", "red", "pur-
ple", "orange", and "blue".

Search and Location Methods
ECMAScript offers two strategies for searching inside an array instance: searching by strict equiva-
lence, and searching with a predicate function.

Strict Equivalence
ECMAScript’s three strict equivalence lookup methods are indexOf() and lastIndexOf(), available
in all ECMAScript versions, and includes(), which was introduced in the ECMAScript 7 specifica-
tion. Each of these methods accepts two arguments: the item to look for and an optional index from
which to start looking. The indexOf() and includes() methods start searching from the front of
the array (item 0) and continue to the back, whereas lastIndexOf() starts from the last item in the
array and continues to the front.

indexOf() and lastIndexOf() each return the position of the item in the array or –1 if the item
isn’t in the array. includes() returns a Boolean indicating if at least one element in the searched
array matched the provided element. An identity comparison is used when comparing the first argu-
ment to each item in the array, meaning that the items must be strictly equal as if compared using
===. Here are some examples of this usage:

let numbers = [1, 2, 3, 4, 5, 4, 3, 2, 1];

alert(numbers.indexOf(4)); // 3
alert(numbers.lastIndexOf(4)); // 5
alert(numbers.includes(4)); // true

The Array Type ❘ 187

alert(numbers.indexOf(4, 4)); // 5
alert(numbers.lastIndexOf(4, 4)); // 3
alert(numbers.includes(4, 7)); // false

let person = { name: "Nicholas" };
let people = [{ name: "Nicholas" }];
let morePeople = [person];

alert(people.indexOf(person)); // -1
alert(morePeople.indexOf(person)); // 0
alert(people.includes(person)); // false
alert(morePeople.includes(person)); // true

Predicate Search
ECMAScript also allows you to define a predicate function that will be invoked at each index. The
return value of the function determines if the element at that index is considered a match.

A predicate function takes the form predicate(element, index, array), where element is the
current element in the array being examined, index is the index of element inside the array, and
array is the array instance. A truthy return value indicates a match.

The two methods that make use of this are find() and findIndex(). Both begin searching at the
lowest index in the array; find() returns the first matching element, and findIndex() returns the
index of the first matching element. Both methods also accept a second optional argument that allows
you to specify the value of this inside the predicate.

const people = [
 {
 name: "Matt",
 age: 27
 },
 {
 name: "Nicholas",
 age: 29
 }
];

alert(people.find((element, index, array) => element.age < 28));
// {name: "Matt", age: 27}

alert(people.findIndex((element, index, array) => element.age < 28));
// 0

Neither method will continue searching once a match has been found.

const evens = [2, 4, 6];

// Last element of array will never be inspected after match is found
evens.find((element, index, array) => {
 alert(element);
 alert(index);
 alert(array);
 return element === 4;
});

188 ❘ CHAPTER 6 ColleCtion RefeRenCe types

// 2
// 0
// [2, 4, 6]
// 4
// 1
// [2, 4, 6]

Iterative Methods
ECMAScript defines five iterative methods for arrays. Each of the methods accepts two arguments: a
function to run on each item and an optional scope object in which to run the function (affecting the
value of this). The function passed into one of these methods will receive three arguments: the array
item value, the position of the item in the array, and the array object itself. Depending on the method,
the results of this function’s execution may or may not affect the method’s return value. The iterative
methods are as follows:

➤➤ every()—Runs the given function on every item in the array and returns true if the
function returns true for every item.

➤➤ filter()—Runs the given function on every item in the array and returns an array of all
items for which the function returns true.

➤➤ forEach()—Runs the given function on every item in the array. This method has no
return value.

➤➤ map()—Runs the given function on every item in the array and returns the result of each
function call in an array.

➤➤ some()—Runs the given function on every item in the array and returns true if the function
returns true for any one item.

These methods do not change the values contained in the array.

Of these methods, the two most similar are every() and some(), which both query the array for
items matching some criteria. For every(), the passed-in function must return true for every item in
order for the method to return true; otherwise, it returns false. The some() method, on the other
hand, returns true if even one of the items causes the passed-in function to return true. Here is
an example:

let numbers = [1, 2, 3, 4, 5, 4, 3, 2, 1];

let everyResult = numbers.every((item, index, array) => item > 2);
alert(everyResult); // false

let someResult = numbers.some((item, index, array) => item > 2);
alert(someResult); // true

This code calls both every() and some() with a function that returns true if the given item is
greater than 2. For every(), the result is false because only some of the items fit the criteria. For
some(), the result is true because at least one of the items is greater than 2.

The Array Type ❘ 189

The next method is filter(), which uses the given function to determine if an item should be
included in the array that it returns. For example, to return an array of all numbers greater than 2,
the following code can be used:

let numbers = [1, 2, 3, 4, 5, 4, 3, 2, 1];

let filterResult = numbers.filter((item, index, array) => item > 2);
alert(filterResult); // [3,4,5,4,3]

Here, an array containing the values 3, 4, 5, 4, and 3 is created and returned by the call to filter()
because the passed-in function returns true for each of those items. This method is very helpful when
querying an array for all items matching some criteria.

The map() method also returns an array. Each item in the array is the result of running the passed-in
function on the original array item in the same location. For example, you can multiply every number
in an array by two and are returned an array of those numbers, as shown here:

let numbers = [1, 2, 3, 4, 5, 4, 3, 2, 1];

let mapResult = numbers.map((item, index, array) => item * 2);

alert(mapResult); // [2,4,6,8,10,8,6,4,2]

The code in this example returns an array containing the result of multiplying each number by two.
This method is helpful when creating arrays whose items correspond to one another.

The last method is forEach(), which simply runs the given function on every item in an array. There
is no return value and it is essentially the same as iterating over an array using a for loop. Here’s
an example:

let numbers = [1, 2, 3, 4, 5, 4, 3, 2, 1];

numbers.forEach((item, index, array) => {
 // do something here
});

All of these array methods ease the processing of arrays by performing a number of different
operations.

Reduction Methods
ECMAScript offers two reduction methods for arrays: reduce() and reduceRight(). Both meth-
ods iterate over all items in the array and build up a value that is ultimately returned. The reduce()
method does this starting at the first item and traveling toward the last, whereas reduceRight()
starts at the last and travels toward the first.

Both methods accept two arguments: a function to call on each item and an optional initial value
upon which the reduction is based. The function passed into reduce() or reduceRight() accepts
four arguments: the previous value, the current value, the item’s index, and the array object. Any
value returned from the function is automatically passed in as the first argument for the next item.
The first iteration occurs on the second item in the array, so the first argument is the first item in the
array and the second argument is the second item in the array.

190 ❘ CHAPTER 6 ColleCtion RefeRenCe types

You can use the reduce() method to perform operations such as adding all numbers in an array.
Here’s an example:

let values = [1, 2, 3, 4, 5];
let sum = values.reduce((prev, cur, index, array) => prev + cur);

alert(sum); // 15

The first time the callback function is executed, prev is 1 and cur is 2. The second time, prev is 3
(the result of adding 1 and 2), and cur is 3 (the third item in the array). This sequence continues until
all items have been visited and the result is returned.

The reduceRight() method works in the same way, just in the opposite direction. Consider the fol-
lowing example:

let values = [1, 2, 3, 4, 5];
let sum = values.reduceRight(function(prev, cur, index, array){
 return prev + cur;
});
alert(sum); // 15

In this version of the code, prev is 5 and cur is 4 the first time the callback function is executed. The
result is the same, of course, because the operation is simple addition.

The decision to use reduce() or reduceRight() depends solely on the direction in which the items
in the array should be visited. They are exactly equal in every other way.

TYPED ARRAYS

New in ECMAScript 6, the typed array is a construct designed for efficiently passing binary data to
native libraries. There is no actual “TypedArray” type in JavaScript—rather, the term refers to a col-
lection of specialized arrays that contain numeric types. To understand how to use the typed array, it
is helpful to first understand its intended purpose.

History
As web browsers gained adoption, it was not difficult to foresee that the ability to run complex 3D
applications inside of them would be in demand. As early as 2006, browser vendors including Moz-
illa and Opera began to experiment with a programming platform for rendering graphics-intensive
applications inside the browser without requiring any plugins. The goal was to develop a JavaScript
API that could make use of a 3D graphics API and GPU acceleration to enable rendering of complex
graphics on a <canvas> element.

WebGL
The eventual JavaScript API was based on the OpenGL for Embedded Systems (OpenGL ES) 2.0
specification, a subset of OpenGL that specializes in 2D and 3D computer graphics. The new API,
named the Web Graphics Library (WebGL), saw its 1.0 release in March 2011. With it, develop-
ers were able to write graphics-intensive application code that could natively be interpreted by any
WebGL-compliant web browser.

Typed Arrays ❘ 191

In initial versions of WebGL, a fundamental mismatch between JavaScript arrays and native arrays
caused performance issues. The graphics driver APIs often did not want numbers passed to them in
JavaScript’s default double floating point format. Furthermore, the graphics driver APIs expected
arrays of numbers to be passed to them in a binary format, which of course is nothing like the Java-
Script array’s format in memory. Therefore, each time an array was passed between WebGL and the
JavaScript runtime, the WebGL binding would perform the expensive operation of allocating a new
array in the destination environment, iterating over the array in its current format, and casting the
number into an appropriate format in the new array.

Emergence of Typed Arrays
This, of course, was untenable, and Mozilla solved this problem by implementing CanvasFloat-
Array, a C-style array of floating point numbers that offered a JavaScript interface. Using this type
allowed the JavaScript runtime to allocate, read, and write an array that could be passed directly to
and from the graphics driver API. The CanvasFloatArray would eventually be reshaped into the
Float32Array, which was the first “type” available for typed arrays as they currently exist.

Using ArrayBuffers
Float32Array is actually one type of “view” that allows the JavaScript runtime to access a block of
allocated memory called an ArrayBuffer. The ArrayBuffer is the fundamental unit referred to by
all typed arrays and views.

NOTE The TypedArrayBuffer is a variant of the ArrayBuffer that can be
passed between execution contexts without performing a copy. Refer to the
“Workers” chapter for coverage of this type.

ArrayBuffer is a normal JavaScript constructor that can be used to allocate a specific number of
bytes in memory.

const buf = new ArrayBuffer(16); // Allocates 16 bytes of memory
alert(buf.byteLength); // 16

An ArrayBuffer can never be resized once it is created. However, you are able to copy all or part of
an existing ArrayBuffer into a new instance using slice():

const buf1 = new ArrayBuffer(16);
const buf2 = buf1.slice(4, 12);
alert(buf2.byteLength); // 8

ArrayBuffer is in some ways similar to the C++ malloc(), with several notable exceptions:

➤➤ When malloc() fails to allocate, it returns a null pointer. If ArrayBuffer allocation fails, it
throws an error.

➤➤ A malloc() call can take advantage of virtual memory, so the maximum size of the allo-
cation is only bounded by the addressable system memory. ArrayBuffer allocation cannot
exceed Number.MAX _ SAFE _ INTEGER (2 ^ 53) bytes.

192 ❘ CHAPTER 6 ColleCtion RefeRenCe types

➤➤ A successful malloc() invocation performs no initialization of the actual addresses.
Declaring an ArrayBuffer initializes all the bits to 0s.

➤➤ Heap memory allocated by malloc() cannot be used by the system until free() is invoked
or the program exits. Heap memory allocated by declaring an ArrayBuffer is still garbage
collected—no manual memory management is required.

The contents of an ArrayBuffer cannot be read or written with only a reference to the buffer
instance. To read or write data inside, you must do so with a view. There are different types of views,
but they all refer to binary data stored in an ArrayBuffer.

DataViews
The first type of view that allows you to read and write an ArrayBuffer is the DataView. This view
is designed for file I/O and network I/O; the API allows for a high degree of control when manipu-
lating buffer data, but it offers reduced performance compared to different view types as a result. A
DataView does not assume anything about the buffer contents and is not iterable.

A DataView must be created to read from and write to an ArrayBuffer that already exists. It can use
the whole buffer or only part of it, and it maintains a reference to the buffer instance and where in
the buffer the view begins.

const buf = new ArrayBuffer(16);

// DataView default to use the entire ArrayBuffer
const fullDataView = new DataView(buf);
alert(fullDataView.byteOffset); // 0
alert(fullDataView.byteLength); // 16
alert(fullDataView.buffer === buf); // true

// Constructor takes an optional byte offset and byte length
// byteOffset=0 begins the view at the start of the buffer
// byteLength=8 restricts the view to the first 8 bytes
const firstHalfDataView = new DataView(buf, 0, 8);
alert(firstHalfDataView.byteOffset); // 0
alert(firstHalfDataView.byteLength); // 8
alert(firstHalfDataView.buffer === buf); // true

// DataView will use the remainder of the buffer unless specified
// byteOffset=8 begins the view at the 9th byte of the buffer
// byteLength default is the remainder of the buffer
const secondHalfDataView = new DataView(buf, 8);
alert(secondHalfDataView.byteOffset); // 8
alert(secondHalfDataView.byteLength); // 8
alert(secondHalfDataView.buffer === buf); // true

To read from and write to the buffer through a DataView, you will require the use of several
components:

➤➤ The byte offset at which you wish to read or write. This can be thought of as a sort of
“address” within the DataView.

Typed Arrays ❘ 193

➤➤ The ElementType the DataView should use for conversion between the Number type in the
JavaScript runtime and the binary format in the buffer.

➤➤ The endianness of the value in memory. Defaults to big-endian.

ElementType
The DataView makes no assumptions about what data type is stored inside the buffer. The API it
exposes forces you to specify an ElementType when reading or writing, and the DataView will duti-
fully perform the conversion to execute that read or write.

ECMAScript 6 supports eight different ElementTypes:

ELEMENTTYPE BYTES DESCRIPTION C EQUIVALENT RANGE OF VALUES

Int8 1 8-bit signed integer signed char –128 to 127

Uint8 1 8-bit
unsigned integer

unsigned char 0 to 255

Int16 2 16-bit signed integer short –32768 to 32767

Uint16 2 16-bit
unsigned integer

unsigned short 0 to 65535

Int32 4 32-bit signed integer int –2,147,483,648 to
2,147,483,647

Uint32 4 32-bit
unsigned integer

unsigned int 0 to 4,294,967,295

Float32 4 32-bit IEEE-754
floating point

float –3.4E+38 to +3.4E+38

Float64 8 64-bit IEEE-754
floating point

double –1.7E+308
to +1.7E+308

The DataView exposes get and set methods for each of these types, which use a byteOffset to
address into the buffer for reading and writing values. Types can be used interchangeably, as demon-
strated here:

// Allocate two bytes of memory and declare a DataView
const buf = new ArrayBuffer(2);
const view = new DataView(buf);

// Demonstrate that the entire buffer is indeed all zeroes
// Check the first and second byte
alert(view.getInt8(0)); // 0
alert(view.getInt8(1)); // 0
// Check the entire buffer
alert(view.getInt16(0)); // 0

// Set the entire buffer to ones
// 255 in binary is 11111111 (2^8 – 1)
view.setUint8(0, 255);

194 ❘ CHAPTER 6 ColleCtion RefeRenCe types

// DataView will automatically cast values to the designated ElementType
// 255 in hex is 0xFF
view.setUint8(1, 0xFF);

// The buffer is now all ones, which when read as a
// two's complement signed integer should be -1
alert(view.getInt16(0)); // -1

Big-Endian and Little-Endian
The buffer’s bytes in the previous example were intentionally identical to avoid the issue of endian-
ness. “Endianness” refers to the convention of byte ordering maintained by a computing system. For
the purposes of DataViews, there are only two conventions supported: big-endian and little-endian.
Big-endian, also referred to as “network byte order,” means that the most significant byte is held in
the first byte, and the least significant byte is held in the last byte. Little-endian means the least sig-
nificant byte is held in the first byte, and the most significant byte is held in the last byte.

The native endianness of the system executing the JavaScript runtime will determine how it reads and
writes bytes, but a DataView does not obey this convention. A DataView is an unbiased interface to
a segment of memory and will follow whatever endianness you specify. All DataView API methods
default to the big-endian convention but accept an optional final Boolean argument that allows you
to enable the little-endian convention by setting it to true.

// Allocate two bytes of memory and declare a DataView
const buf = new ArrayBuffer(2);
const view = new DataView(buf);

// Fill the buffer so that the first bit and last bit are 1
view.setUint8(0, 0x80); // Sets leftmost bit to 1
view.setUint8(1, 0x01); // Sets rightmost bit to 1

// Buffer contents (spaced for readability):
// 0x8 0x0 0x0 0x1
// 1000 0000 0000 0001

// Read a big-endian Uint16
// 0x80 is the high byte, 0x01 is the low byte
// 0x8001 = 2^15 + 2^0 = 32768 + 1 = 32769
alert(view.getUint16(0)); // 32769

// Read a little-endian Uint16
// 0x01 is the high byte, 0x80 is the low byte
// 0x0180 = 2^8 + 2^7 = 256 + 128 = 384
alert(view.getUint16(0, true)); // 384

// Write a big-endian Uint16
view.setUint16(0, 0x0004);

// Buffer contents (spaced for readability):
// 0x0 0x0 0x0 0x4
// 0000 0000 0000 0100

Typed Arrays ❘ 195

alert(view.getUint8(0)); // 0
alert(view.getUint8(1)); // 4

// Write a little-endian Uint16
view.setUint16(0, 0x0002, true);

// Buffer contents (spaced for readability):
// 0x0 0x2 0x0 0x0
// 0000 0010 0000 0000

alert(view.getUint8(0)); // 2
alert(view.getUint8(1)); // 0

Corner Cases
A DataView will only complete a read or write if there is sufficient buffer space to do so; otherwise it
throws a RangeError:

const buf = new ArrayBuffer(6);
const view = new DataView(buf);

// Attempt to get a value that partially extends past end of buffer
view.getInt32(4);
// RangeError

// Attempt to get a value past the end of the buffer
view.getInt32(8);
// RangeError

// Attempt to get a value past the end of the buffer
view.getInt32(-1);
// RangeError

// Attempt to set a value that extends past end of buffer
view.setInt32(4, 123);
// RangeError

A DataView will make a best effort to cast a value into the appropriate type when writing to a buffer,
falling back to 0. If it cannot, it will throw an error:

const buf = new ArrayBuffer(1);
const view = new DataView(buf);

view.setInt8(0, 1.5);
alert(view.getInt8(0)); // 1

view.setInt8(0, [4]);
alert(view.getInt8(0)); // 4

view.setInt8(0, 'f');
alert(view.getInt8(0)); // 0

view.setInt8(0, Symbol());
// TypeError

196 ❘ CHAPTER 6 ColleCtion RefeRenCe types

Typed Arrays
Typed arrays are another form of an ArrayBuffer view. Though it is similar in concept to a Data-
View, a typed array is distinguished in that it enforces a single ElementType and obeys the system’s
native endianness. In exchange, it offers a much broader API and better performance. Typed arrays
are designed for efficiently exchanging binary data with native libraries like WebGL. Because the
binary representation of typed arrays is in an easily digestible format for the native operating system,
JavaScript engines are able to heavily optimize arithmetic, bitwise, and other common operations on
typed arrays, and as a result they are extremely fast to use.

Typed arrays can be created to read from an existing buffer, initialized with their own buffer, filled
with an iterable, or filled from an existing typed array of any type. They can also be created using
<ElementType>.from() and <ElementType>.of():

// Creates a buffer of 12 bytes
const buf = new ArrayBuffer(12);
// Creates an Int32Array that references this buffer
const ints = new Int32Array(buf);
// The typed array recognizes it needs 4 bytes per element,
// and therefore will have a length of 3
alert(ints.length); // 3

// Creates an Int32Array of length 6
const ints2 = new Int32Array(6);
// Each number uses 4 bytes, so the ArrayBuffer is 24 bytes
alert(ints2.length); // 6
// Like DataView, typed arrays have a reference to their associated buffer
alert(ints2.buffer.byteLength); // 24

// Creates an Int32Array containing [2, 4, 6, 8]
const ints3 = new Int32Array([2, 4, 6, 8]);
alert(ints3.length); // 4
alert(ints3.buffer.byteLength); // 16
alert(ints3[2]); // 6

// Creates an Int16Array with values copies from ints3
const ints4 = new Int16Array(ints3);
// The new typed array allocates its own buffer, and each value
// is converted to its new representation at the same index
alert(ints4.length); // 4
alert(ints4.buffer.byteLength); // 8
alert(ints4[2]); // 6

// Creates an Int16Array from a normal array
const ints5 = Int16Array.from([3, 5, 7, 9]);
alert(ints5.length); // 4
alert(ints5.buffer.byteLength); // 8
alert(ints5[2]); // 7

// Creates a Float32Array from arguments
const floats = Float32Array.of(3.14, 2.718, 1.618);
alert(floats.length); // 3
alert(floats.buffer.byteLength); // 12
alert(floats[2]); // 1.6180000305175781

Typed Arrays ❘ 197

Both the constructor and instances expose a BYTES_PER_ELEMENT property that returns the size of
each element in that type of array:

alert(Int16Array.BYTES_PER_ELEMENT); // 2
alert(Int32Array.BYTES_PER_ELEMENT); // 4

const ints = new Int32Array(1),
 floats = new Float64Array(1);

alert(ints.BYTES_PER_ELEMENT); // 4
alert(floats.BYTES_PER_ELEMENT); // 8

Unless a typed array is initialized with values, its associated buffer is filled with zeroes:

const ints = new Int32Array(4);
alert(ints[0]); // 0
alert(ints[1]); // 0
alert(ints[2]); // 0
alert(ints[3]); // 0

Typed Array Behavior
In most ways, typed arrays behave like their regular array counterparts would. Typed arrays support
the following operators, methods, and properties:

➤➤ []

➤➤ copyWithin()

➤➤ entries()

➤➤ every()

➤➤ fill()

➤➤ filter()

➤➤ find()

➤➤ findIndex()

➤➤ forEach()

➤➤ indexOf()

➤➤ join()

➤➤ keys()

➤➤ lastIndexOf()

➤➤ length

➤➤ map()

➤➤ reduce()

➤➤ reduceRight()

➤➤ reverse()

198 ❘ CHAPTER 6 ColleCtion RefeRenCe types

➤➤ slice()

➤➤ some()

➤➤ sort()

➤➤ toLocaleString()

➤➤ toString()

➤➤ values()

Methods that return a new array will return a new typed array with the same element type:

const ints = new Int16Array([1, 2, 3]);
const doubleints = ints.map(x => 2*x);
alert(doubleints instanceof Int16Array); // true

Typed arrays have a Symbol.iterator defined, meaning that for..of loops and spread operators
can also be used:

const ints = new Int16Array([1, 2, 3]);
for (const int of ints) {
 alert(int);
}
// 1
// 2
// 3

alert(Math.max(...ints)); // 3

Merging, Copying, and Changing Typed Arrays
Typed arrays still use array buffers as their storage, and array buffers cannot be resized. Therefore,
the following methods are not supported by typed arrays:

➤➤ concat()

➤➤ pop()

➤➤ push()

➤➤ shift()

➤➤ splice()

➤➤ unshift()

However, typed arrays do offer two new methods that allow you to copy values in and out of arrays
quickly: set() and subarray().

set() copies the values from a provided array or typed array into the current typed array at the
specified index:

// Create an int16 array of length 8
const container = new Int16Array(8);

Typed Arrays ❘ 199

// Copy in typed array into first four values
// Offset default to an index of 0
container.set(Int8Array.of(1, 2, 3, 4));
alert(container); // [1,2,3,4,0,0,0,0]
// Copy in normal array into last four values
// Offset of 4 means begin inserting at the index 4
container.set([5,6,7,8], 4);
alert(container); // [1,2,3,4,5,6,7,8]

// An overflow will throw an error
container.set([5,6,7,8], 7);
// RangeError

subarray() performs the opposite operation of set(), returning a new typed array with values cop-
ied out of the original. Providing the start and end indices is optional:

const source = Int16Array.of(2, 4, 6, 8);

// Copies the entire array into a new array of the same type
const fullCopy = source.subarray();
alert(fullCopy); // [2, 4, 6, 8]

// Copy the array from index 2 on
const halfCopy = source.subarray(2);
alert(halfCopy); // [6, 8]

// Copy the array from index 1 up until 3
const partialCopy = source.subarray(1, 3);
alert(partialCopy); // [4, 6]

Typed arrays don’t have a native ability to concatenate, but ample tools are available in the typed
array API that one can be constructed manually:

// First argument is the type of array that should be returned
// Remaining arguments are all the typed arrays that should be concatenated
function typedArrayConcat(typedArrayConstructor, ...typedArrays) {
 // Count the total elements in all arrays
 const numElements = typedArrays.reduce((x,y) => (x.length || x) + y.length);

 // Create an array of the provided type with space for all elements
 const resultArray = new typedArrayConstructor(numElements);

 // Perform the successive array transfer
 let currentOffset = 0;
 typedArrays.map(x => {
 resultArray.set(x, currentOffset);
 currentOffset += x.length;
 });

 return resultArray;
}

const concatArray = typedArrayConcat(Int32Array,
 Int8Array.of(1, 2, 3),
 Int16Array.of(4, 5, 6),
 Float32Array.of(7, 8, 9));

200 ❘ CHAPTER 6 ColleCtion RefeRenCe types

alert(concatArray); // [1, 2, 3, 4, 5, 6, 7, 8, 9]
alert(concatArray instanceof Int32Array); // true

Underflow and Overflow
Overflow and underflow of values in typed arrays will not spill over into other indices, but you still
must take into account what element type the array considers its entries. Typed arrays will accept
only the relevant bits that each index in the array can hold, irrespective of the effect it will have on
the actual numerical value. The following demonstrates how underflow and overflow are handled:

// Signed ints array of length 2
// Each index holds a 2's complement signed integer which can
// range from -128 (-1 * 2^7) to 127 (2^7 – 1)
const ints = new Int8Array(2);

// Unsigned ints array of length 2
// Each index holds an unsigned integer which can range from
// 0 to 255 (2^7 – 1)
const unsignedInts = new Uint8Array(2);

// Overflow bits will not spill into adjacent indices.
// The index only takes the least significant 8 bits
unsignedInts[1] = 256; // 0x100
alert(unsignedInts); // [0, 0]
unsignedInts[1] = 511; // 0x1FF
alert(unsignedInts); // [0, 255]

// Underflow bits will be converted to their unsigned equivalent.
// 0xFF is -1 as a 2's complement int (truncated to 8 bits),
// but is 255 as an unsigned int
unsignedInts[1] = -1 // 0xFF (truncated to 8 bits)
alert(unsignedInts); // [0, 255]

// Overflow in 2's complement occurs transparently.
// 0x80 is 128 in unsigned int but -128 in 2's complement int
ints[1] = 128; // 0x80
alert(ints); // [0, -128]

// Underflow in 2's complement occurs transparently.
// 0xFF is 255 in unsigned int but -1 in 2's complement int
ints[1] = 255; // 0xFF
alert(ints); // [0, -1]

In addition to the eight element types, there is also an additional “clamped” array type, Uint8Clam-
pedArray, which prevents overflow in either direction. Values above its maximum value of 255 will
be rounded down to 255, and values below 0 will be rounded up to 0.

const clampedInts = new Uint8ClampedArray([-1, 0, 255, 256]);
alert(clampedInts); // [0, 0, 255, 255]

According to Brendan Eich, “Uint8ClampedArray is totally a historical artifact of the HTML5 can-
vas element. Avoid unless you really are doing canvas-y things.”

The Map Type ❘ 201

THE MAP TYPE

Prior to the ECMAScript 6 specification, implementing a key/value store in JavaScript could be
accomplished effectively and easily by using an Object, using the object properties as keys and the
property references the values. This style of implementation was not without its flaws, however, and
therefore the TC39 committee saw fit to define a specification for a true key/value store.

Newly added in the ECMAScript 6, Map is a new collection type that introduces true key/value behav-
ior into the language. Much of what it offers is an overlap with what is provided by the Object type,
but there are subtle differences between the Object and Map types that should be taken into account
when selecting one for use.

Basic API
An empty Map is instantiated with the new keyword:

const m = new Map();

If you wish to populate the Map when it is initialized, the constructor optionally accepts an iter-
able object, expecting it to contain key/value pair arrays. Each pair in the iterable argument will be
inserted into the newly created Map in the order in which they are iterated:

// Initialize map with nested arrays
const m1 = new Map([
 ["key1", "val1"],
 ["key2", "val2"],
 ["key3", "val3"]
]);
alert(m1.size); // 3

// Initialize map with custom-defined iterator
const m2 = new Map({
 [Symbol.iterator]: function*() {
 yield ["key1", "val1"];
 yield ["key2", "val2"];
 yield ["key3", "val3"];
 }
});
alert(m2.size); // 3

// Map expects values to be key/value whether they are provided or not
const m3 = new Map([[]]);
alert(m3.has(undefined)); // true
alert(m3.get(undefined)); // undefined

Key/value pairs can be added after initialization with set(), queried with get() and has(), counted
with the size property, and removed with delete()and clear():

const m = new Map();

alert(m.has("firstName")); // false
alert(m.get("firstName ")); // undefined
alert(m.size); // 0

202 ❘ CHAPTER 6 ColleCtion RefeRenCe types

m.set("firstName", "Matt")
 .set("lastName", "Frisbie");

alert(m.has("firstName")); // true
alert(m.get("firstName")); // Matt
alert(m.size); // 2

m.delete("firstName"); // deletes only this key/value pair

alert(m.has("firstName")); // false
alert(m.has("lastName")); // true
alert(m.size); // 1

m.clear(); // destroys all key/value pairs in this Map instance

alert(m.has("firstName")); // false
alert(m.has("lastName")); // false
alert(m.size); // 0

The set() method returns the Map instance, so it is possible to chain multiple set operations together,
including on the initial declaration:

const m = new Map().set("key1", "val1");

m.set("key2", "val2")
 .set("key3", "val3");

alert(m.size); // 3

Unlike an Object, which can only use numbers or strings as keys, a Map can use any JavaScript data
type as a key. It uses the “SameValueZero” comparison operation (defined inside the ECMAScript
specification and not available in the actual language) and is mostly comparable to using strict object
equivalence to check for a key match. As with Objects, there is no restriction on what is contained in
the value.

const m = new Map();

const functionKey = function() {};
const symbolKey = Symbol();
const objectKey = new Object();

m.set(functionKey, "functionValue");
m.set(symbolKey, "symbolValue");
m.set(objectKey, "objectValue");

alert(m.get(functionKey)); // functionValue
alert(m.get(symbolKey)); // symbolValue
alert(m.get(objectKey)); // objectValue

// SameValueZero checks mean separate instances will not collide
alert(m.get(function() {})); // undefined

The Map Type ❘ 203

As with strict equivalence, objects and other “collection” types used for keys and values remain
unchanged inside a Map when their contents or properties are altered:

const m = new Map();

const objKey = {},
 objVal = {},
 arrKey = [],
 arrVal = [];

m.set(objKey, objVal);
m.set(arrKey, arrVal);

objKey.foo = "foo";
objVal.bar = "bar";
arrKey.push("foo");
arrVal.push("bar");

alert(m.get(objKey)); // {bar: "bar"}
alert(m.get(arrKey)); // ["bar"]

The use of the SameValueZero operation may introduce unexpected collisions:

const m = new Map();

const a = 0/"", // NaN
 b = 0/"", // NaN
 pz = +0,
 nz = -0;

alert(a === b); // false
alert(pz === nz); // true

m.set(a, "foo");
m.set(pz, "bar");

alert(m.get(b)); // foo
alert(m.get(nz)); // bar

NOTE The SameValueZero operation is new to the ECMAScript specification.
There is an excellent writeup on it and other ECMAScript equality conventions
on the Mozilla documentation site: https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Equality_comparisons_and_sameness.

Order and Iteration
One major departure from the Object type’s conventions is that Map instances maintain the order of
key/value insertion and allow you to perform iterative operations following insertion order.

204 ❘ CHAPTER 6 ColleCtion RefeRenCe types

A Map instance can provide an Iterator that contains array pairs in the form of [key, value] in
insertion order. This iterator can be retrieved using entries(), or the Symbol.iterator property,
which references entries():

const m = new Map([
 ["key1", "val1"],
 ["key2", "val2"],
 ["key3", "val3"]
]);

alert(m.entries === m[Symbol.iterator]); // true

for (let pair of m.entries()) {
 alert(pair);
}
// [key1,val1]
// [key2,val2]
// [key3,val3]

for (let pair of m[Symbol.iterator]()) {
 alert(pair);
}
// [key1,val1]
// [key2,val2]
// [key3,val3]

Because entries() is the default iterator, the spread operator can be used to concisely convert a Map
into an array:

const m = new Map([
 ["key1", "val1"],
 ["key2", "val2"],
 ["key3", "val3"]
]);

alert([...m]); // [[key1,val1],[key2,val2],[key3,val3]]

To use a callback convention instead of an iterator, forEach(callback, opt_thisArg) invokes
the callback for each key/value pair. It optionally accepts a second argument, which will override the
value of this inside each callback invocation.

const m = new Map([
 ["key1", "val1"],
 ["key2", "val2"],
 ["key3", "val3"]
]);

m.forEach((val, key) => alert(`${key} -> ${val}`));
// key1 -> val1
// key2 -> val2
// key3 -> val3

The Map Type ❘ 205

keys() and values() return an iterator that contains all keys or all values in the Map in inser-
tion order:

const m = new Map([
 ["key1", "val1"],
 ["key2", "val2"],
 ["key3", "val3"]
]);

for (let key of m.keys()) {
 alert(key);
}
// key1
// key2
// key3

for (let key of m.values()) {
 alert(key);
}
// value1
// value2
// value3

Keys and values exposed inside an iterator are mutable, but the references inside the Map cannot be
altered. However, this does not restrict changing properties inside a key or value object. Doing so will
not alter their identity with respect to the Map instance:

const m1 = new Map([
 ["key1", "val1"]
]);

// String primitive as key is unaltered
for (let key of m.keys()) {
 key = "newKey";
 alert(key); // newKey
 alert(m.get("key1")); // val1
}

const keyObj = {id: 1};

const m = new Map([
 [keyObj, "val1"]
]);

// Key object property is altered, but the object still refers
// to the same value inside the map
for (let key of m.keys()) {
 key.id = "newKey";
 alert(key); // {id: "newKey"}
 alert(m.get(keyObj)); // val1
}
alert(keyObj); // {id: "newKey"}

206 ❘ CHAPTER 6 ColleCtion RefeRenCe types

Choosing Between Objects and Maps
For most web development purposes, selecting between a Map or a regular Object will be only a
matter of preference and have little consequence elsewhere. However, for developers that care about
memory and performance, there are notable differences between objects and maps that may be
of interest.

Memory Profile
The engine-level implementation of Object and Map will obviously differ between browsers, but the
amount of memory required to store a single key/value pair scales linearly with the number of keys.
Bulk addition or removal of key/value pairs is also governed by how the engine implements memory
allocation for that type. Results may vary by browser, but given a fixed amount of memory, a Map will
be able to store roughly 50 percent more key/value pairs than an Object.

Insertion Performance
Inserting a new key/value pair into an Object versus a Map is a roughly comparable operation, but
insertion into a Map will generally be slightly faster across all browser engines. For both types, the
speed of an insertion does not scale linearly with the number of key/value pairs in the Object or Map.
If your code is heavy on insert operations, Map instances offer superior performance.

Lookup Performance
Unlike insertion, looking up a key/value pair in an Object versus a Map is a roughly comparable
operation at scale, but a smaller number of key/value pairs favor Object instances in some situa-
tions. In situations where an Object instance is being used like an array (for example, consecutive
integer properties), the browser engine can perform optimizations such as more efficient layout in
memory—this is never possible with a Map. For both types, lookup speed does not scale linearly with
the number of key/value pairs in an Object or Map. If your code is heavy on lookup operations, in
some scenarios it may be more advantageous to use an Object.

Delete Performance
The performance of the delete operation on Object properties is notorious for being horrendous,
and this is still very much the case in many browser engines. Workarounds for pseudo-deleting object
properties include assigning undefined or null as the property value, but in many cases this is an
obnoxious or unsuitable compromise. Across most browser engines, the Map delete() operation is
faster than insert and lookup. If your code is heavy on delete operations, the Map type is the over-
whelming favorite.

THE WEAKMAP TYPE

Newly added in the ECMAScript 6, WeakMap is a new collection type that introduces augmented key/
value behavior into the language. The WeakMap type is a cousin to the Map type, and its API is a strict
subset of Map. The “weak” designation describes how JavaScript’s garbage collector treats keys in
a WeakMap.

The WeakMap Type ❘ 207

Basic API
An empty WeakMap is instantiated with the new keyword:

const wm = new WeakMap();

Keys in a WeakMap can only be of type or inherit from Object—all other attempts to set a key with a
non-object will throw a TypeError. There are no restrictions on the type of the value.

If you wish to populate the WeakMap when it is initialized, the constructor optionally accepts an iter-
able object, expecting it to contain valid key/value pair arrays. Each pair in the iterable argument will
be inserted into the newly created WeakMap in the order in which they are iterated:

const key1 = {id: 1},
 key2 = {id: 2},
 key3 = {id: 3};
// Initialize WeakMap with nested arrays
const wm1 = new WeakMap([
 [key1, "val1"],
 [key2, "val2"],
 [key3, "val3"]
]);
alert(wm.get(key1)); // val2
alert(wm.get(key2)); // val2
alert(wm.get(key3)); // val3

// Initialization is all-or-nothing, a single bad key will
// throw an error and abort the initialization
const wm2 = new WeakMap([
 [key1, "val1"],
 ["BADKEY", "val2"],
 [key3, "val3"]
]);
// TypeError: Invalid value used as WeakMap key
typeof wm2;
// ReferenceError: wm2 is not defined

// Primitives can still be used with an object wrapper
const stringKey = new String("key1");
const wm3 = new WeakMap([
 stringKey, "val1"
]);
alert(wm3.get(stringKey)); // "val1"

Key/value pairs can be added after initialization with set(), queried with get() and has(), and
removed with delete():

const wm = new WeakMap();

const key1 = {id: 1},
 key2 = {id: 2};

alert(wm.has(key1)); // false
alert(wm.get(key1)); // undefined

208 ❘ CHAPTER 6 ColleCtion RefeRenCe types

wm.set(key1, "Matt")
 .set(key2, "Frisbie");

alert(wm.has(key1)); // true
alert(wm.get(key1)); // Matt

wm.delete(key1); // deletes only this key/value pair

alert(wm.has(key1)); // false
alert(wm.has(key2)); // true

The set() method returns the WeakMap instance, so it is possible to chain multiple set operations
together, including on the initial declaration:

const key1 = {id: 1},
 key2 = {id: 2},
 key3 = {id: 3};

const wm = new WeakMap().set(key1, "val1");

wm.set(key2, "val2")
 .set(key3, "val3");

alert(wm.get(key1)); // val1
alert(wm.get(key2)); // val2
alert(wm.get(key3)); // val3

Weak Keys
The “weak” designation stems from the fact that keys in a WeakMap are “weakly held,” meaning they
are not counted as formal references that would otherwise prevent garbage collection. An important
distinction for the WeakMap is that the value reference is not weakly held. As long as the key exists,
the key/value pair will remain in the map and count as a reference to the value—thereby preventing it
from being garbage collected.

Consider the following example:

const wm = new WeakMap();

wm.set({}, "val");

Inside set(), a fresh object is initialized and used as a key to a dummy string. Because there are no
other references to this object, as soon as this line is finished executing, the object key will be free for
garbage collection. When this occurs, the key/value pair will disappear from the WeakMap, and it will
be empty. In this example, because there are no other references to the value, this key/value destruc-
tion will also mean that the value is eligible for garbage collection.

Consider a slightly different example:

const wm = new WeakMap();

const container = {
 key: {}
};

The WeakMap Type ❘ 209

wm.set(container.key, "val");

function removeReference()
 container.key = null;
}

Here, the container object maintains a reference to the key in the WeakMap, so the object is ineligible
for garbage collection. However, as soon as removeReference() is invoked, the last strong reference
to the key object will be destroyed, and garbage collection will eventually wipe out the key/value pair.

Non-Iterable Keys
Because key/value pairs in a WeakMap can be destroyed at any time, it does not make sense to offer
the ability to iterate through the key/value pairs. This also excludes the ability to destroy all key/value
pairs at once using clear(), which is not part of the WeakMap API. Because iteration is not possible,
it is also not possible to retrieve a value from a WeakMap instance unless you have a reference to the
key object. Even if code has access to the WeakMap instance, there is no way to inspect its contents.

The reason that WeakMap instances restrict keys to only objects is to preserve the convention that
values can only be retrieved from a WeakMap with a reference to the key object. If primitives were
allowed, the WeakMap instance would have no way of differentiating between the string primitive that
was initially used to set the key/value pair and an identical string primitive that was initialized later—
an undesirable behavior.

Utility
WeakMap instances are a striking departure from existing JavaScript tools, and it may not be immedi-
ately obvious how they ought to be used. There is no single answer to this, but a number of strategies
have already emerged.

Private Variables
WeakMap instances engender an entirely new way of implementing truly private variables in
 JavaScript. The premise is relatively straightforward: private variables will be stored in a WeakMap
with the object instance as the key and a dictionary of private members as the value.

One implementation is as follows:

const wm = new WeakMap();

class User {
 constructor(id) {
 this.idProperty = Symbol('id');
 this.setId(id);
 }

 setPrivate(property, value) {
 const privateMembers = wm.get(this) || {};
 privateMembers[property] = value;
 wm.set(this, privateMembers);
 }

210 ❘ CHAPTER 6 ColleCtion RefeRenCe types

 getPrivate(property) {
 return wm.get(this)[property];
 }

 setId(id) {
 this.setPrivate(this.idProperty, id);
 }

 getId() {
 return this.getPrivate(this.idProperty);
 }
}

const user = new User(123);
alert(user.getId()); // 123
user.setId(456);
alert(user.getId()); // 456

// Demonstrating it's not really private
alert(wm.get(user)[user.idProperty]); // 456

The observant developer will note that, with this implementation, foreign code needs only a reference
to the object instance and the WeakMap to retrieve the “private” variables. To prevent this, the
WeakMap can be wrapped in a closure to totally hide the WeakMap instance from outside code.

const User = (() => {
 const wm = new WeakMap();

 class User {
 constructor(id) {
 this.idProperty = Symbol('id');
 this.setId(id);
 }

 setPrivate(property, value) {
 const privateMembers = wm.get(this) || {};
 privateMembers[property] = value;
 wm.set(this, privateMembers);
 }

 getPrivate(property) {
 return wm.get(this)[property];
 }

 setId(id) {
 this.setPrivate(this.idProperty, id);
 }

 getId(id) {
 return this.getPrivate(this.idProperty);
 }
 }
 return User;
})();

The Set Type ❘ 211

const user = new User(123);
alert(user.getId()); // 123
user.setId(456);
alert(user.getId()); // 456

Therefore, a value in a WeakMap cannot be retrieved without the key that was used to insert it.
Although, this prevents the aforementioned pattern of access, in some ways it has pushed the code
full-circle to the pre-ES6 closure private variable pattern.

DOM Node Metadata
Because WeakMap instances do not interfere with garbage collection, they are a terrific tool for
cleanup-free metadata association. Consider the following example, which uses a regular Map:

const m = new Map();

const loginButton = document.querySelector('#login');

// Associates some metadata with the node
m.set(loginButton, {disabled: true});

Suppose after this code executes, the page is changed by JavaScript and the login button is removed
from the DOM tree. Because a reference exists inside the Map, the DOM node will linger in memory
in perpetuity until explicitly removed from the Map, or until the Map is destroyed.

If, instead, a WeakMap was used, as shown in the following code, the node’s removal from the DOM
would allow the garbage collector to free the allocated memory immediately (assuming no other
lingering references to the object).

const wm = new WeakMap();

const loginButton = document.querySelector('#login');

// Associates some metadata with the node
wm.set(loginButton, {disabled: true});

THE SET TYPE

Newly added in the ECMAScript 6, Set is a new collection type that introduces set behavior into the
language. A Set in many ways behaves more like an augmented Map, as much of the API and behav-
ior is shared.

Basic API
An empty Set is instantiated with the new keyword:

const m = new Set();

If you wish to populate the map when it is initialized, the constructor optionally accepts an iterable
object containing elements to be added into the newly created Set instance.

// Initialize set with array
const s1 = new Set(["val1", "val2", "val3]);

212 ❘ CHAPTER 6 ColleCtion RefeRenCe types

alert(s1.size); // 3

// Initialize set with custom-defined iterator
const s2 = new Set({
 [Symbol.iterator]: function*() {
 yield "val1";
 yield "val2";
 yield "val3";
 }
});
alert(s2.size); // 3

Values can be added after initialization with add(), queried with has(), counted with the size prop-
erty, and removed with delete()and clear():

const s = new Set();

alert(s.has("Matt")); // false
alert(s.size); // 0

s.add("Matt")
 .add("Frisbie");

alert(s.has("Matt")); // true
alert(s.size); // 2

s.delete("Matt");

alert(s.has("Matt")); // false
alert(s.has("Frisbie")); // true
alert(s.size); // 1

s.clear(); // destroys all values in this Set instance

alert(s.has("Matt")); // false
alert(s.has("Frisbie")); // false
alert(s.size); // 0

The add() method returns the Set instance, so it is possible to chain multiple operations together,
including on the initial declaration:

const s = new Set().add("val1");

s.set("val2")
 .set("val3");

alert(s.size); // 3

Like Map, a Set can contain any JavaScript data type as a value. It uses the “SameValueZero” com-
parison operation (defined inside the ECMAScript specification and not available in the actual
language) and is mostly comparable to using strict object equivalence to check for a key match. There
is no restriction on what is contained in the value.

const s = new Set();

const functionVal = function() {};

The Set Type ❘ 213

const symbolVal = Symbol();
const objectVal = new Object();

s.add(functionVal);
s.add(symbolVal);
s.add(objectVal);

alert(s.has(functionVal)); // true
alert(s.has(symbolVal)); // true
alert(s.has(objectVal)); // true

// SameValueZero checks mean separate instances will not collide
alert(s.has(function() {})); // false

As with strict equivalence, objects and other “collection” types used for values remain unchanged
inside a set when their contents or properties are altered:

const s = new Set();

const objVal = {},
 arrVal = [];

s.add(objVal);
 .add(arrVal);

objVal.bar = "bar";
arrVal.push("bar");

alert(s.has(objVal)); // true
alert(s.has(arrVal)); // true

The add() and delete() operations are idempotent. delete() returns a Boolean indicating if that
value was present in the set.

const s = new Set();

s.add('foo');
alert(s.size); // 1
s.add('foo');
alert(s.size); // 1

// Value was present in the set
alert(s.delete('foo')); // true

// Value was not present in the set
alert(s.delete('foo')); // false

Order and Iteration
Sets maintain the order of value insertion and allow you to perform iterative operations following
insertion order.

214 ❘ CHAPTER 6 ColleCtion RefeRenCe types

A Set instance can provide an Iterator that contains the set contents in insertion order. This itera-
tor can be retrieved using values(), its alias keys(), or the Symbol.iterator property, which refer-
ences values():

const s = new Set(["val1", "val2", "val3"]);

alert(s.values === s[Symbol.iterator]); // true
alert(s.keys === s[Symbol.iterator]); // true

for (let value of s.values()) {
 alert(value);
}
// val1
// val2
// val3

for (let value of s[Symbol.iterator]()) {
 alert(value);
}
// val1
// val2
// val3

Because values() is the default iterator, the spread operator can be used to concisely convert a set
into an array:

const s = new Set(["val1", "val2", "val3"]);

alert([...s]); // [val1,val2,val3]

entries()returns an iterator that contains a two-element array containing a duplicate of all values in
the Set in insertion order:

const s = new Set(["val1", "val2", "val3"]);

for (let pair of s.entries()) {
 alert(pair);
}
// [val1,val1]
// [val2,val2]
// [val3,val3]

To use a callback convention instead of an iterator, forEach(callback, opt_thisArg) invokes
the callback for each value. It optionally accepts a second argument, which will override the value of
this inside each callback invocation.

const s = new Set(["val1", "val2", "val3"]);

s.forEach((val, dupVal) => alert(`${val} -> ${dupVal}`));
// val1 -> val1
// val2 -> val2
// val3 -> val3

The Set Type ❘ 215

Changing properties of values in a Set does not alter the value’s identity with respect to the
Set instance:

const s1 = new Set(["val1"]);

// String primitive as value is unaltered
for (let value of m.values()) {
 value = "newVal";
 alert(value); // newVal
 alert(s.has("val1")); // true
}

const valObj = {id: 1};

const s2 = new Set([valObj]);

// Value object property is altered, but the object still exists
// inside the set
for (let value of s.values()) {
 value.id = "newVal";
 alert(value); // {id: "newVal"}
 alert(s.has(valObj)); // true
}
alert(valObj); // {id: "newKey"}

Defining Formal Set Operations
In many ways, Set feels like Map with its API slightly rearranged. This is only underscored by the fact
that its API only supports self-referential operations. Many developers will have an appetite for using
Set operations. This requires manual implementation, and it can either take the form of a subclassing
Set or defining a utility library. To offer flavors of both at once, you can implement static methods
on a subclass and then use those static methods in the instance methods. When implementing these
operations, there are some points to keep in mind:

➤➤ Some Set operations are associative, so it is advantageous to be able to implement the
method so it can handle an arbitrary number of Set instances.

➤➤ A Set preserves insertion order, and the sets that are returned from these methods should
reflect that fact.

➤➤ Use memory efficiently wherever possible. Spread operators offer nice syntax, but avoid
switching back and forth between sets and arrays wherever possible to save on object initial-
ization costs.

➤➤ Don’t mutate existing Set instances. union(a, b) or a.union(b) should return a new Set
instance with the result.

class XSet extends Set {
 union(...sets) {
 return XSet.union(this, ...sets)
 }

216 ❘ CHAPTER 6 ColleCtion RefeRenCe types

 intersection(...sets) {
 return XSet.intersection(this, ...sets);
 }

 difference(set) {
 return XSet.difference(this, set);
 }

 symmetricDifference(set) {
 return XSet.symmetricDifference(this, set);
 }

 cartesianProduct(set) {
 return XSet.cartesianProduct(this, set);
 }

 powerSet() {
 return XSet.powerSet(this);
 }

 // Returns union of two or more sets.
 static union(a, ...bSets) {
 const unionSet = new XSet(a);
 for (const b of bSets) {
 for (const bValue of b) {
 unionSet.add(bValue);
 }
 }
 return unionSet;
 }

 // Returns intersection of two or more sets.
 static intersection(a, ...bSets) {
 const intersectionSet = new XSet(a);
 for (const aValue of intersectionSet) {
 for (const b of bSets) {
 if (!b.has(aValue)) {
 intersectionSet.delete(aValue);
 }
 }
 }
 return intersectionSet;
 }

 // Returns difference of exactly two sets.
 static difference(a, b) {
 const differenceSet = new XSet(a);
 for (const bValue of b) {
 if (a.has(bValue)) {
 differenceSet.delete(bValue);
 }
 }
 return differenceSet;
 }

The WeakSet Type ❘ 217

 // Returns symmetric difference of exactly two sets.
 static symmetricDifference(a, b) {
 // By definition, the symmetric difference can be expressed as
 // (a union b) – (a intersection b)
 return a.union(b).difference(a.intersection(b));
 }

 // Returns cartesian product (as array pairs) of exactly two sets.
 // Must return set of arrays since cartesian product may contain
 // pairs of identical values.
 static cartesianProduct(a, b) {
 const cartesianProductSet = new XSet();
 for (const aValue of a) {
 for (const bValue of b) {
 cartesianProductSet.add([aValue, bValue]);
 }
 }
 return cartesianProductSet;
 }

 // Returns power set of exactly one set.
 static powerSet(a) {
 const powerSet = new XSet().add(new XSet());
 for (const aValue of a) {
 for (const set of new XSet(powerSet)) {
 powerSet.add(new XSet(set).add(aValue));
 }
 }
 return powerSet;
 }
}

THE WEAKSET TYPE

Newly added in the ECMAScript 6, WeakSet is a new collection type that introduces set behavior
into the language. The WeakSet type is a cousin to the Set type, and its API is a strict subset of Set.
The “weak” designation describes how JavaScript’s garbage collector treats values in a weak map.

Basic API
An empty WeakSet instance is instantiated with the new keyword:

const ws = new WeakSet();

Values in a WeakSet can only be of type or inherit from Object—all other attempts to set a value
with a non-object will throw a TypeError.

If you wish to populate the WeakSet when it is initialized, the constructor optionally accepts an iter-
able object, expecting it to contain valid values. Each value in the iterable argument will be inserted
into the newly created WeakSet in the order in which they are iterated:

const val1 = {id: 1},
 val2 = {id: 2},

218 ❘ CHAPTER 6 ColleCtion RefeRenCe types

 val3 = {id: 3};
// Initialize WeakSet with nested arrays
const ws1 = new WeakSet([val1, val2, val3]);

alert(ws1.has(val1)); // true
alert(ws1.has(val2)); // true
alert(ws1.has(val3)); // true

// Initialization is all-or-nothing, a single bad value will
// throw an error and abort the initialization
const ws2 = new WeakSet([val1, "BADVAL", val3]);
// TypeError: Invalid value used in WeakSet
typeof ws2;
// ReferenceError: ws2 is not defined

// Primitives can still be used with an object wrapper
const stringVal = new String("val1");
const ws3 = new WeakSet([stringVal]);
alert(ws3.has(stringVal)); // true

Values can be added after initialization with add(), queried with has(), and removed
with delete():

const ws = new WeakSet();

const val1 = {id: 1},
 val2 = {id: 2};

alert(ws.has(val1)); // false

ws.add(val1)
 .add(val2);

alert(ws.has(val1)); // true
alert(ws.has(val2)); // true

ws.delete(val1); // deletes only this value

alert(ws.has(val1)); // false
alert(ws.has(val2)); // true

The add() method returns the WeakSet instance, so it is possible to chain multiple add operations
together, including on the initial declaration:

const val1 = {id: 1},
 val2 = {id: 2},
 val3 = {id: 3};

const ws = new WeakSet().add(val1);

ws.add(val2)
 .add(val3);

alert(ws.has(val1)); // true
alert(ws.has(val2)); // true
alert(ws.has(val3)); // true

The WeakSet Type ❘ 219

Weak Keys
The “weak” designation stems from the fact that values in a WeakSet are “weakly held,” meaning
they are not counted as formal references, which would otherwise prevent garbage collection.

Consider the following example:

const ws = new WeakSet();

ws.add({});

Inside add(), a fresh object is initialized and used as a value. Because there are no other references to
this object, as soon as this line is finished executing, the object value will be free for garbage collec-
tion. When this occurs, the value will disappear from the WeakSet, and it will be empty.

Consider a slightly different example:

const ws = new WeakSet();

const container = {
 val: {}
};

ws.add(container.val);

function removeReference()
 container.val = null;
}

Here, the container object maintains a reference to the value in the WeakSet instance, so the object
is ineligible for garbage collection. However, as soon as removeReference() is invoked, the last
strong reference to the value object will be destroyed, and garbage collection will eventually wipe out
the value.

Non-Iterable Values
Because values in a WeakSet can be destroyed at any time, it does not make sense to offer the abil-
ity to iterate through the values. This also excludes the ability to destroy all values at once using
clear(), which is not part of the WeakSet API. Because iteration is not possible, it is also not pos-
sible to retrieve a value from a WeakSet instance unless you have a reference to the value object. Even
if code has access to the WeakSet instance, there is no way to inspect its contents.

WeakMap instances restrict keys to only objects in order to preserve the convention that values can
only be retrieved from a WeakSet with a reference to the value object. If primitives were allowed, the
WeakSet would have no way of differentiating between the string primitive that was initially used to
set the value and an identical string primitive that was initialized later—an undesirable behavior.

Utility
WeakSet instances are more limited in their usefulness when compared to WeakMap instances, but they
still are valuable to use for tagging objects.

220 ❘ CHAPTER 6 ColleCtion RefeRenCe types

Consider the following example, which uses a regular Set:

const disabledElements = new Set();

const loginButton = document.querySelector('#login');

// Tags the node as "disabled" by adding it to the corresponding set
disabledElements.add(loginButton);

Here, it is possible to check if an element is disabled by seeing if it exists inside disabledElements,
which can be done in constant time. However, if the element is removed from the DOM, its presence
inside this Set will prevent garbage collection from reallocating its memory.

To allow the garbage collection to reallocate the element’s memory a WeakSet can instead be used:

const disabledElements = new WeakSet();

const loginButton = document.querySelector('#login');

// Tags the node as "disabled" by adding it to the corresponding set
disabledElements.add(loginButton);

Now, when any element in the WeakSet is removed from the DOM, the garbage collector will ignore
its presence inside the WeakSet when considering it for garbage collection.

ITERATION AND SPREAD OPERATORS

ECMAScript 6 introduced iterators and the spread operator, which are especially useful in the context
of collection reference types. These new tools allow for easy interoperability, cloning, and modifica-
tion of collection types.

NOTE The Iterators and Generators chapter offers more coverage on exactly
how iterators work.

As shown earlier in the chapter, four native collection reference types define a default iterator:

Array

All typed arrays

Map

Set

Trivially, this means that all support ordered iteration and can be passed to a for..of loop:

let iterableThings = [
 Array.of(1, 2),
 typedArr = Int16Array.of(3, 4),
 new Map([[5, 6], [7, 8]]),
 new Set([9, 10])
];

Iteration and Spread Operators ❘ 221

for (const iterableThing of iterableThings) {
 for (const x of iterableThing) {
 console.log(x);
 }
}

// 1
// 2
// 3
// 4
// [5, 6]
// [7, 8]
// 9
// 10

This also means that all these types are compatible with the spread operator. The spread operator is
especially useful as it performs a shallow copy on the iterable object. This allows you to easily clone
entire objects with a succinct syntax:

let arr1 = [1, 2, 3];
let arr2 = [...arr1];

console.log(arr1); // [1, 2, 3]
console.log(arr2); // [1, 2, 3]
console.log(arr1 === arr2); // false

Constructors which expect an iterable object can just be passed the iterable instance to be cloned:

let map1 = new Map([[1, 2], [3, 4]]);
let map2 = new Map(map1);

console.log(map1); // Map {1 => 2, 3 => 4}
console.log(map2); // Map {1 => 2, 3 => 4}

It also allows for partial array construction:

let arr1 = [1, 2, 3];
let arr2 = [0, ...arr1, 4, 5];

console.log(arr2); // [0, 1, 2, 3, 4, 5]

The shallow copy mechanism means that only object references are copied:

let arr1 = [{}];
let arr2 = [...arr1];

arr1[0].foo = ‘bar’;
console.log(arr2[0]); // { foo: ‘bar’ }

Each of these collection types support multiple methods of construction, such as the Array.of() and
Array.from() static methods. When combined with the spread operator, this makes for extremely
easy interoperability:

let arr1 = [1, 2, 3];

// Copy array into typed array

222 ❘ CHAPTER 6 ColleCtion RefeRenCe types

let typedArr1 = Int16Array.of(...arr1);
let typedArr2 = Int16Array.from(arr1);
console.log(typedArr1); // Int16Array [1, 2, 3]
console.log(typedArr2); // Int16Array [1, 2, 3]

// Copy array into map
let map = new Map(arr1.map((x) => [x, ‘val’ + x]));
console.log(map); // Map {1 => ‘val 1’, 2 => ‘val 2’, 3 => ‘val 3’}

// Copy array in to set
let set = new Set(typedArr2);
console.log(set); // Set {1, 2, 3}

// Copy set back into array
let arr2 = [...set];
console.log(arr2); // [1, 2, 3]

SUMMARY

Objects in JavaScript are called reference values, and several built-in reference types can be used to
create specific types of objects, as follows:

➤➤ Reference types are similar to classes in traditional object-oriented programming but are
implemented differently.

➤➤ The Object type is the base from which all other reference types inherit basic behavior.

➤➤ The Array type represents an ordered list of values and provides functionality for manipu-
lating and converting the values.

➤➤ Typed arrays encompass a range of different reference types that involve type management
of numbers in memory.

➤➤ The Date type provides information about dates and times, including the current date and
time and calculations.

➤➤ The RegExp type is an interface for regular-expression support in ECMAScript, providing
most basic and some advanced regular-expression functionality.

One of the unique aspects of JavaScript is that functions are actually instances of the Function type,
meaning functions are objects. Because functions are objects, functions have methods that can be used
to augment how they behave.

Because of the existence of primitive wrapper types, primitive values in JavaScript can be accessed as
if they were objects. There are three primitive wrapper types: Boolean, Number, and String. They all
have the following characteristics:

➤➤ Each of the wrapper types maps to the primitive type of the same name.

➤➤ When a primitive value is accessed in read mode, a primitive wrapper object is instantiated
so that it can be used to manipulate the data.

➤➤ As soon as a statement involving a primitive value is executed, the wrapper object is
destroyed.

Summary ❘ 223

There are also two built-in objects that exist at the beginning of code execution: Global and Math.
The Global object isn’t accessible in most ECMAScript implementations; however, web browsers
implement it as the window object. The Global object contains all global variables and functions
as properties. The Math object contains properties and methods to aid in complex mathematical
calculations.

ECMAScript 6 introduced a handful of collection types: Map, WeakMap, Set, and WeakSet. These offer
new possibilities for organizing application data as well as easier memory management.

Iterators and Generators
WHAT’S IN THIS CHAPTER?

➤➤ Introduction to iteration

➤➤ The iterator pattern

➤➤ Generators

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book's website at www.wrox.com/go/projavascript4e on the Down-
load Code tab.

The term “iteration” is derived from the Latin itero, meaning “repeat” or “do again.” In the
context of software, “iteration” means repetitively performing a procedure multiple times, in
sequence, and usually with an expectation of termination. The ECMAScript 6 specification
introduces two high-level features—iterators and generators—to allow for cleaner, faster, and
easier iteration.

INTRODUCTION TO ITERATION

In JavaScript, one of the simplest examples of iteration is a counting loop:

for (let i = 1; i <= 10; ++i) {
 console.log(i);
}

Loops are a fundamental iterative tool because they allow you to specify how many iterations
should occur and what should occur during each iteration. Each loop iteration will finish execu-
tion before another begins, and the order in which each iteration occurs is well-defined.

7

Professional JavaScript® for Web Developers, Fourth Edition. Matt Frisbie.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

226 ❘ CHAPTER 7 Iterators and Generators

Iteration can occur over ordered collections of items. (Consider “ordered” in this context to imply
there is an accepted sequence in which all the items should be traversed, with a definitive beginning
and end item.) In JavaScript, the most common example of this ordered collection is an array.

let collection = ['foo', 'bar', 'baz'];

for (let index = 0; index < collection.length; ++index) {
 console.log(collection[index]);
}

Because an array has a known length, and because each item in that array can be retrieved via its
index, the entire array can be traversed in order by incrementing the range of possible indices.

The fundamental procedure occurring in such a loop is not ideal for several reasons:

➤➤ Iterating through the data structure requires a specific knowledge of how to use the data
structure. Each item in the array can only be retrieved by first referencing the array object
and then retrieving an item at a specific index using the [] operator. This does not gener-
alize to other data structures.

➤➤ The order of traversal is not inherent to the data structure. Incrementing an integer to
access sequential indices is specific to the array type and does not generalize to other data
structures that have an implicit ordering.

ES5 introduced the Array.prototype.forEach method, which is closer to what is needed (but still
not an ideal solution):

let collection = ['foo', 'bar', 'baz'];

collection.forEach((item) => console.log(item));
// foo
// bar
// baz

This solves the problem of separately tracking an index and retrieving items via the array object.
However, there is no way to terminate this iteration; the method is limited to arrays, and the callback
structure is unwieldy.

With earlier versions of ECMAScript, performing iteration required the use of loops or other auxil-
iary constructs, which is an increasingly messy affair as code complexity scales. Many languages have
addressed this problem with a native language construct that allows iteration to be performed with-
out specific knowledge of how the iteration was actually occurring, and the solution is the iterator
pattern. Python, Java, C++, and many other languages offer first-class support for this pattern, and
JavaScript, too, with the ES6 specification.

THE ITERATOR PATTERN

The iterator pattern (specifically in the context of ECMAScript) describes a solution in which some-
thing can be described as “iterable” and can implement a formal Iterable interface and consumed
by an Iterator.

The Iterator Pattern ❘ 227

The concept of an “iterable” is intentionally abstract. Frequently, the iterable will take the form of a
collection object like an array or set, both of which have a finite number of countable elements and
feature an unambiguous order of traversal:

// Arrays have finite countable elements
// In-order traversal visits each index in increasing index order
let arr = [3, 1, 4];

// Sets have finite countable elements
// In-order traversal visits each value in insertion order
let set = new Set().add(3).add(1).add(4);

However, an iterable does not have to be linked to a collection object. It can also be linked to some-
thing that only behaves like an array—such as the counting loop from earlier in the chapter. The
values generated in this loop are transient, and yet such a loop is performing iteration. Both this
counting loop and an array can behave as an iterable.

NOTE Transient iterables can be implemented as generators, which are covered
later in the chapter.

Anything that implements the Iterable interface can be “consumed” by an object that implements
the Iterator interface. An iterator is a separate object created on demand and intended for a single
use. Each iterator is associated with an iterable, and the iterator exposes an API to iterate through the
associated iterable a single time. The iterator doesn’t need to understand the structure of the iterable
it is associated with; it only must know how to retrieve sequential values. This separation of concerns
is what makes the Iterable/Iterator convention so useful.

The Iterable Protocol
Implementing the Iterable interface requires both the capability to self-identify as supporting
iteration and the capability to create an object that implements the Iterator interface. In ECMAS-
cript, this means it must expose a property, the “default iterator,” keyed with the special Symbol
.iterator key. This default iterator property must refer to an iterator factory function, which will
produce a new iterator when invoked.

Many built-in types implement the Iterable interface:

➤➤ Strings

➤➤ Arrays

➤➤ Maps

➤➤ Sets

➤➤ The arguments object

➤➤ Some DOM collection types like NodeList

228 ❘ CHAPTER 7 Iterators and Generators

Checking for the existence of this default iterator property will expose the factory function:

let num = 1;
let obj = {};

// These types do not have iterator factories
console.log(num[Symbol.iterator]); // undefined
console.log(obj[Symbol.iterator]); // undefined

let str = 'abc';
let arr = ['a', 'b', 'c'];
let map = new Map().set('a', 1).set('b', 2).set('c', 3);
let set = new Set().add('a').add('b').add('c');
let els = document.querySelectorAll('div');

// These types all have iterator factories
console.log(str[Symbol.iterator]); // f values() { [native code] }
console.log(arr[Symbol.iterator]); // f values() { [native code] }
console.log(map[Symbol.iterator]); // f values() { [native code] }
console.log(set[Symbol.iterator]); // f values() { [native code] }
console.log(els[Symbol.iterator]); // f values() { [native code] }

// Invoking the factory function produces an Iterator
console.log(str[Symbol.iterator]()); // StringIterator {}
console.log(arr[Symbol.iterator]()); // ArrayIterator {}
console.log(map[Symbol.iterator]()); // MapIterator {}
console.log(set[Symbol.iterator]()); // SetIterator {}
console.log(els[Symbol.iterator]()); // ArrayIterator {}

You do not necessarily need to explicitly invoke this factory function to produce an iterator. Anything
that implements this protocol is automatically compatible with any language features that accept an
iterable. These native language constructs include:

➤➤ for...of loop

➤➤ Array destructuring

➤➤ The spread operator

➤➤ Array.from()

➤➤ Set construction

➤➤ Map construction

➤➤ Promise.all(), which expects an iterable of promises

➤➤ Promise.race(), which expects an iterable of promises

➤➤ The yield* operator, used in generators

Behind the scenes, these native language constructs are invoking the factory function of the provided
iterable to create an iterator:

let arr = ['foo', 'bar', 'baz'];

// for...of loops
for (let el of arr) {
 console.log(el);

The Iterator Pattern ❘ 229

}
// foo
// bar
// baz

// Array destructuring
let [a, b, c] = arr;
console.log(a, b, c); // foo, bar, baz

// Spread operator
let arr2 = [...arr];
console.log(arr2); // ['foo', 'bar', 'baz']

// Array.from()
let arr3 = Array.from(arr);
console.log(arr3); // ['foo', 'bar', 'baz']

// Set constructor
let set = new Set(arr);
console.log(set); // Set(3) {'foo', 'bar', 'baz'}

// Map constructor
let pairs = arr.map((x, i) => [x, i]);
console.log(pairs); // [['foo', 0], ['bar', 1], ['baz', 2]]
let map = new Map(pairs);
console.log(map); // Map(3) { 'foo'=>0, 'bar'=>1, 'baz'=>2 }

An object still implements the Iterable interface if a parent class up the prototype chain implements
the interface:

class FooArray extends Array {}
let fooArr = new FooArray('foo', 'bar', 'baz');

for (let el of fooArr) {
 console.log(el);
}
// foo
// bar
// baz

The Iterator Protocol
An iterator is a single-use object that will iterate through whatever iterable it is associated with. The
Iterator API uses a next()method to advance through the iterable. Each successive time next() is
invoked, it will return an IteratorResult object containing the next value in the iterator. The cur-
rent position the iterator is at cannot be known without invoking the next() method.

The next() method returns an object with two properties: done, which is a Boolean indicating if
next() can be invoked again to retrieve more values, and value, which will contain the next value in
the iterable or undefined if done is true. The done:true state is termed “exhaustion.” This can be
demonstrated with a simple array:

// Iterable object
let arr = ['foo', 'bar'];

230 ❘ CHAPTER 7 Iterators and Generators

// Iterator factory
console.log(arr[Symbol.iterator]); // f values() { [native code] }

// Iterator
let iter = arr[Symbol.iterator]();
console.log(iter); // ArrayIterator {}

// Performing iteration
console.log(iter.next()); // { done: false, value: 'foo' }
console.log(iter.next()); // { done: false, value: 'bar' }
console.log(iter.next()); // { done: true, value: undefined }

Arrays are iterated in order by creating an iterator and invoking next() until it ceases to produce
new values. Note how the iterator does not know how to retrieve the next values inside the iterable,
nor does it know how large the iterable is. Once the iterator reaches the done:true state, invoking
next() is idempotent:

let arr = ['foo'];
let iter = arr[Symbol.iterator]();
console.log(iter.next()); // { done: false, value: 'foo' }
console.log(iter.next()); // { done: true, value: undefined }
console.log(iter.next()); // { done: true, value: undefined }
console.log(iter.next()); // { done: true, value: undefined }

Each iterator represents a one-time ordered traversal of the iterable. Different instances are not aware
of each other and will independently traverse the iterable:

let arr = ['foo', 'bar'];
let iter1 = arr[Symbol.iterator]();
let iter2 = arr[Symbol.iterator]();

console.log(iter1.next()); // { done: false, value: 'foo' }
console.log(iter2.next()); // { done: false, value: 'foo' }
console.log(iter2.next()); // { done: false, value: 'bar' }
console.log(iter1.next()); // { done: false, value: 'bar' }

An iterator is not bound to a snapshot of the iterable; it merely uses a cursor to track its pro-
gress through the iterable. If the iterable is mutated during iteration, the iterator will incorporate
the changes:

let arr = ['foo', 'baz'];
let iter = arr[Symbol.iterator]();

console.log(iter.next()); // { done: false, value: 'foo' }

// Insert value in the middle of array
arr.splice(1, 0, 'bar');

console.log(iter.next()); // { done: false, value: 'bar' }
console.log(iter.next()); // { done: false, value: 'baz' }
console.log(iter.next()); // { done: true, value: undefined }

NOTE An iterator maintains a reference to the iterable object, so be aware that
the iterator’s existence will prevent garbage collection of the iterable object.

The Iterator Pattern ❘ 231

The term “iterator” can be somewhat nebulous because it refers to a generalized iteration concept,
an interface, and formal iterator-type classes. The following example compares an explicit iterator
implementation and a native iterator implementation:

// This class implements the Iterable interface.
// Invoking the default iterator factory will return
// an iterator object that implements the Iterator interface.
class Foo {
 [Symbol.iterator]() {
 return {
 next() {
 return { done: false, value: 'foo' };
 }
 }
 }
}
let f = new Foo();

// Logs an object which implements the Iterator interface
console.log(f[Symbol.iterator]()); // { next: f() {} }

// The Array type implements the Iterable interface.
// Invoking the default iterator of an Array type
// will create an instance of ArrayIterator.
let a = new Array();

// Logs an instance of ArrayIterator
console.log(a[Symbol.iterator]()); // Array Iterator {}

Custom Iterator Definition
Like the Iterable interface, any object that implements the Iterator interface can be used as an
iterator. Consider the following example where a Counter class is defined to iterate a specific num-
ber of times:

class Counter {
 // Counter instance should iterate <limit> times
 constructor(limit) {
 this.count = 1;
 this.limit = limit;
 }

 next() {
 if (this.count <= this.limit) {
 return { done: false, value: this.count++ };
 } else {
 return { done: true, value: undefined };
 }
 }

232 ❘ CHAPTER 7 Iterators and Generators

 [Symbol.iterator]() {
 return this;
 }
}

let counter = new Counter(3);

for (let i of counter) {
 console.log(i);
}
// 1
// 2
// 3

This satisfies the Iterator interface, but this implementation isn’t optimal because each class
instance can be iterated only once:

for (let i of counter) { console.log(i); }
// 1
// 2
// 3

for (let i of counter) { console.log(i); }
// (nothing logged)

In order to allow for creating multiple iterators from a single iterable, the counter must be created on
a per-iterator basis. To address this, you can return an iterator object with the counter variables avail-
able through a closure:

class Counter {
 constructor(limit) {
 this.limit = limit;
 }

 [Symbol.iterator]() {
 let count = 1,
 limit = this.limit;
 return {
 next() {
 if (count <= limit) {
 return { done: false, value: count++ };
 } else {
 return { done: true, value: undefined };
 }
 }
 };
 }
}

let counter = new Counter(3);

for (let i of counter) { console.log(i); }
// 1
// 2
// 3

The Iterator Pattern ❘ 233

for (let i of counter) { console.log(i); }
// 1
// 2
// 3

Every iterator created in this way also implements the Iterable interface. The Symbol.iterator
property refers to a factory that will return the same iterator:

let arr = ['foo', 'bar', 'baz'];
let iter1 = arr[Symbol.iterator]();

console.log(iter1[Symbol.iterator]); // f values() { [native code] }

let iter2 = iter1[Symbol.iterator]();

console.log(iter1 === iter2); // true

Because every iterator also implements the Iterable interface, they can be used everywhere an iter-
able is expected, such as a for...of loop:

let arr = [3, 1, 4];
let iter = arr[Symbol.iterator]();

for (let item of arr) { console.log(item); }
// 3
// 1
// 4

for (let item of iter) { console.log(item); }
// 3
// 1
// 4

Early Termination of Iterators
The optional return() method allows for specifying behavior that will execute only if the iterator is
closed prematurely. “Closing” an iterator occurs when the construct performing the iteration wishes
to indicate to the iterator that it does not intend to finish traversing until exhaustion. Scenarios where
this might happen include the following:

➤➤ A for...of loop exits early via break, continue, return, or throw.

➤➤ A destructuring operation does not consume all values.

The return() method must return a valid IteratorResult object. A simple iterator implementa-
tion should just return { done: true }, as the return value is only used in the context of generators,
which I discuss later in the chapter.

As shown in the code that follows, a built-in language construct will automatically invoke the
return() method once it identifies that there are further values that need to be iterated over that will
not be consumed.

class Counter {
 constructor(limit) {

234 ❘ CHAPTER 7 Iterators and Generators

 this.limit = limit;
 }

 [Symbol.iterator]() {
 let count = 1,
 limit = this.limit;
 return {
 next() {
 if (count <= limit) {
 return { done: false, value: count++ };
 } else {
 return { done: true };
 }
 },
 return() {
 console.log('Exiting early');
 return { done: true };
 }
 };
 }
}

let counter1 = new Counter(5);

for (let i of counter1) {
 if (i > 2) {
 break;
 }
 console.log(i);
}
// 1
// 2
// Exiting early

let counter2 = new Counter(5);

try {
 for (let i of counter2 {
 if (i > 2) {
 throw 'err';
 }
 console.log(i);
 }
} catch(e) {}
// 1
// 2
// Exiting early

let counter3 = new Counter(5);

let [a, b] = counter3;
// Exiting early

The Iterator Pattern ❘ 235

If an iterator is not closed, then you are able to pick up iteration where you left off. For example,
Array Iterators are not closable:

let a = [1, 2, 3, 4, 5];
let iter = a[Symbol.iterator]();

for (let i of iter) {
 console.log(i);
 if (i > 2) {
 break
 }
}
// 1
// 2
// 3

for (let i of iter) {
 console.log(i);
}
// 4
// 5

Because the return() method is optional, not all iterators are closable. Whether or not an iterator
is closable can be ascertained by testing if the return property on the iterator instance is a function
object. However, merely adding the method to a non-closable iterator will not make it become clos-
able, as invoking return() does not force the iterator into a closed state. The return() method will,
however, still be invoked:

let a = [1, 2, 3, 4, 5];
let iter = a[Symbol.iterator]();

iter.return = function() {
 console.log('Exiting early');
 return { done: true };
};

for (let i of iter) {
 console.log(i);
 if (i > 2) {
 break
 }
}
// 1
// 2
// 3
// Exiting early

for (let i of iter) {
 console.log(i);
}
// 4
// 5

236 ❘ CHAPTER 7 Iterators and Generators

GENERATORS

Generators are a delightfully flexible construct introduced in the ECMAScript 6 specification that
offers the ability to pause and resume code execution inside a single function block. The implications
of this new ability are profound; it allows for, among many other things, the ability to define custom
iterators and implement coroutines.

Generator Basics
Generators take the form of a function, and the generator designation is performed with an asterisk.
Anywhere a function definition is valid, a generator function definition is also valid:

// Generator function declaration
function* generatorFn() {}

// Generator function expression
let generatorFn = function* () {}

// Object literal method generator function
let foo = {
 * generatorFn() {}
}

// Class instance method generator function
class Foo {
 * generatorFn() {}
}

// Class static method generator function
class Bar {
 static * generatorFn() {}
}

NOTE Arrow functions cannot be used as generator functions.

The function will be considered a generator irrespective of the whitespace surrounding the asterisk:

// Equivalent generator functions:
function* generatorFnA() {}
function *generatorFnB() {}
function * generatorFnC() {}

// Equivalent generator methods:
class Foo {
 *generatorFnD() {}
 * generatorFnE() {}
}

Generators ❘ 237

When invoked, generator functions produce a generator object. Generator objects begin in a state of
suspended execution. Like iterators, these generator objects implement the Iterator interface and
therefore feature a next() method, which, when invoked, instructs the generator to begin or resume
execution.

function* generatorFn() {}

const g = generatorFn();

console.log(g); // generatorFn {<suspended>}
console.log(g.next); // f next() { [native code] }

The return value of this next() method matches that of an iterator, with a done and value property.
A generator function with an empty function body will act as a passthrough; invoking next() a sin-
gle time will result in the generator reaching the done:true state.

function* generatorFn() {}

let generatorObject = generatorFn();

console.log(generatorObject); // generatorFn {<suspended>}
console.log(generatorObject.next()); // { done: true, value: undefined }

The value property is the return value of the generator function, which defaults to undefined and
can be specified via the generator function’s return value.

function* generatorFn() {
 return 'foo';
}

let generatorObject = generatorFn();

console.log(generatorObject); // generatorFn {<suspended>}
console.log(generatorObject.next()); // { done: true, value: 'foo' }

Generator function execution will only begin upon the initial next() invocation, as shown here:

function* generatorFn() {
 console.log('foobar');
}

// Nothing is logged yet when the generator function is initially invoked
let generatorObject = generatorFn();

generatorObject.next(); // foobar

Generator objects implement the Iterable interface, and their default iterator is self-referential:

function* generatorFn() {}

console.log(generatorFn);
// f* generatorFn() {}
console.log(generatorFn()[Symbol.iterator]);
// f [Symbol.iterator]() {native code}

238 ❘ CHAPTER 7 Iterators and Generators

console.log(generatorFn());
// generatorFn {<suspended>}
console.log(generatorFn()[Symbol.iterator]());
// generatorFn {<suspended}

const g = generatorFn();

console.log(g === g[Symbol.iterator]());
// true

Interrupting Execution with “yield”
The yield keyword allows generators to stop and start execution, and it is what makes generators
truly useful. Generator functions will proceed with normal execution until they encounter a yield
keyword. Upon encountering the keyword, execution will be halted and the scope state of the func-
tion will be preserved. Execution will only resume when the next() method is invoked on the genera-
tor object:

function* generatorFn() {
 yield;
}

let generatorObject = generatorFn();

console.log(generatorObject.next()); // { done: false, value: undefined }
console.log(generatorObject.next()); // { done: true, value: undefined }

The yield keyword behaves as an intermediate function return, and the yielded value is available
inside the object returned by the next() method. A generator function exiting via the yield keyword
will have a done value of false; a generator function exiting via the return keyword will have a
done value of true:

function* generatorFn() {
 yield 'foo';
 yield 'bar';
 return 'baz';
}

let generatorObject = generatorFn();

console.log(generatorObject.next()); // { done: false, value: 'foo' }
console.log(generatorObject.next()); // { done: false, value: 'bar' }
console.log(generatorObject.next()); // { done: true, value: 'baz' }

Execution progress within a generator function is scoped to each generator object instance. Invoking
next() on one generator object does not affect any other:

function* generatorFn() {
 yield 'foo';
 yield 'bar';
 return 'baz';
}

Generators ❘ 239

let generatorObject1 = generatorFn();
let generatorObject2 = generatorFn();

console.log(generatorObject1.next()); // { done: false, value: 'foo' }
console.log(generatorObject2.next()); // { done: false, value: 'foo' }
console.log(generatorObject2.next()); // { done: false, value: 'bar' }
console.log(generatorObject1.next()); // { done: false, value: 'bar' }

The yield keyword can only be used inside a generator function; anywhere else will throw an error.
Like the function return keyword, the yield keyword must appear immediately inside a generator
function definition. Nesting further inside a non-generator function will throw a syntax error:

// valid
function* validGeneratorFn() {
 yield;
}

// invalid
function* invalidGeneratorFnA() {
 function a() {
 yield;
 }
}

// invalid
function* invalidGeneratorFnB() {
 const b = () => {
 yield;
 }
}

// invalid
function* invalidGeneratorFnC() {
 (() => {
 yield;
 })();
}

Using a Generator Object as an Iterable
You will infrequently find the need to explicitly invoke next() on a generator object. Instead, genera-
tors are much more useful when consumed as an iterable, as shown here:

function* generatorFn() {
 yield 1;
 yield 2;
 yield 3;
}

for (const x of generatorFn()) {
 console.log(x);
}

240 ❘ CHAPTER 7 Iterators and Generators

// 1
// 2
// 3

This can be especially useful when the need to define custom iterables arises. For example, it is often
useful to define an iterable, which will produce an iterator that executes a specific number of times.
With a generator, this can be accomplished simply with a loop:

function* nTimes(n) {
 while(n--) {
 yield;
 }
}

for (let _ of nTimes(3)) {
 console.log('foo');
}
// foo
// foo
// foo

The single generator function parameter controls the number of loop iterations. When n reaches 0,
the while condition will become falsy, the loop will exit, and the generator function will return.

Using “yield” for Input and Output
The yield keyword also behaves as an intermediate function parameter. The yield keyword where
the generator last paused execution will assume the first value passed to next(). Somewhat confus-
ingly, the value provided to the first next() invocation is not used, as this next() is used to begin the
generator function execution:

function* generatorFn(initial) {
 console.log(initial);
 console.log(yield);
 console.log(yield);
}

let generatorObject = generatorFn('foo');

generatorObject.next('bar'); // foo
generatorObject.next('baz'); // baz
generatorObject.next('qux'); // qux

The yield keyword can be simultaneously used as both an input and an output, as is shown in the
following example:

function* generatorFn() {
 return yield 'foo';
}

let generatorObject = generatorFn();

console.log(generatorObject.next()); // { done: false, value: 'foo' }
console.log(generatorObject.next('bar')); // { done: true, value: 'bar' }

Generators ❘ 241

Because the function must evaluate the entire expression to determine the value to return, it will
pause execution when encountering the yield keyword and evaluate the value to yield, foo. The sub-
sequent next() invocation provides the bar value as the value for that same yield, and this in turn
is evaluated as the generator function return value.

The yield keyword is not limited to a one-time use. An infinite counting generator function can be
defined as follows:

function* generatorFn() {
 for (let i = 0;;++i) {
 yield i;
 }
}

let generatorObject = generatorFn();

console.log(generatorObject.next().value); // 0
console.log(generatorObject.next().value); // 1
console.log(generatorObject.next().value); // 2
console.log(generatorObject.next().value); // 3
console.log(generatorObject.next().value); // 4
console.log(generatorObject.next().value); // 5
...

Suppose you wanted to define a generator function that would iterate a configurable number of times
and produce the index of iteration. This can be accomplished by instantiating a new array, but the
same behavior can be accomplished without the array:

function* nTimes(n) {
 for (let i = 0; i < n; ++i) {
 yield i;
 }
}

for (let x of nTimes(3)) {
 console.log(x);
}
// 0
// 1
// 2

Alternately, the following has a slightly less verbose while loop implementation:

function* nTimes(n) {
 let i = 0;
 while(n--) {
 yield i++;
 }
}

for (let x of nTimes(3)) {
 console.log(x);
}
// 0
// 1
// 2

242 ❘ CHAPTER 7 Iterators and Generators

Using generators in this way provides a useful way of implementing ranges or populating arrays:

function* range(start, end) {
 let i = start;
 while(end > start) {
 yield start++;
 }
}

for (const x of range(4, 7)) {
 console.log(x);
}
// 4
// 5
// 6

function* zeroes(n) {
 while(n--) {
 yield 0;
 }
}

console.log(Array.from(zeroes(8))); // [0, 0, 0, 0, 0, 0, 0, 0]

Yielding an Iterable
It is possible to augment the behavior of yield to cause it to iterate through an iterable and yield its
contents one at a time. This can be done using an asterisk, as shown here:

// generatorFn is equivalent to:
// function* generatorFn() {
// for (const x of [1, 2, 3]) {
// yield x;
// }
// }
function* generatorFn() {
 yield* [1, 2, 3];
}

let generatorObject = generatorFn();

for (const x of generatorFn()) {
 console.log(x);
}
// 1
// 2
// 3

Like the generator function asterisk, whitespace around the yield asterisk will not alter its behavior:

function* generatorFn() {
 yield* [1, 2];
 yield *[3, 4];
 yield * [5, 6];
}

Generators ❘ 243

for (const x of generatorFn()) {
 console.log(x);
}
// 1
// 2
// 3
// 4
// 5
// 6

Because yield* is effectively just serializing an iterable into sequential yielded values, using it
isn’t any different than placing yield inside a loop. These two generator functions are equivalent
in behavior:

function* generatorFnA() {
 for (const x of [1, 2, 3]) {
 yield x;
 }
}

for (const x of generatorFnA()) {
 console.log(x);
}
// 1
// 2
// 3

function* generatorFnB() {
 yield* [1, 2, 3];
}

for (const x of generatorFnB()) {
 console.log(x);
}
// 1
// 2
// 3

The value of yield* is the value property accompanying done:true of the associated iterator. For
vanilla iterators, this value will be undefined:

function* generatorFn() {
 console.log('iter value:', yield* [1, 2, 3]);
}

for (const x of generatorFn()) {
 console.log('value:', x);
}
// value: 1
// value: 2
// value: 3
// iter value: undefined

For iterators produced from a generator function, this value will take the form of whatever value is
returned from the generator function:

function* innerGeneratorFn() {
 yield 'foo';

244 ❘ CHAPTER 7 Iterators and Generators

 return 'bar';
}
function* outerGeneratorFn(genObj) {
 console.log('iter value:', yield* innerGeneratorFn());
}

for (const x of outerGeneratorFn()) {
 console.log('value:', x);
}
// value: foo
// iter value: bar

Recursive Algorithms Using yield*
yield* is most useful when used in a recursive operation, where the generator can yield itself.
Consider the following example:

function* nTimes(n) {
 if (n > 0) {
 yield* nTimes(n - 1);
 yield n - 1;
 }
}

for (const x of nTimes(3)) {
 console.log(x);
}
// 0
// 1
// 2

In this example, each generator is first yielding each value from a newly created generator object, and
then yielding a single integer. The result of this is that the generator function will recursively decre-
ment the counter value and instantiate another generator object, which at the top level will have the
effect of creating a single iterable that returns incremental integers.

Using recursive generator structure and yield* allows for elegantly expressing recursive algorithms.
Consider the following graph implementation, which generates a random bidirectional graph:

class Node {
 constructor(id) {
 this.id = id;
 this.neighbors = new Set();
 }

 connect(node) {
 if (node !== this) {
 this.neighbors.add(node);
 node.neighbors.add(this);
 }
 }
}

class RandomGraph {
 constructor(size) {

Generators ❘ 245

 this.nodes = new Set();

 // Create nodes
 for (let i = 0; i < size; ++i) {
 this.nodes.add(new Node(i));
 }

 // Randomly connect nodes
 const threshold = 1 / size;
 for (const x of this.nodes) {
 for (const y of this.nodes) {
 if (Math.random() < threshold) {
 x.connect(y);
 }
 }
 }
 }

 // This is just for debug purposes
 print() {
 for (const node of this.nodes) {
 const ids = [...node.neighbors]
 .map((n) => n.id)
 .join(',');

 console.log('${node.id}: ${ids}');
 }
 }
}

const g = new RandomGraph(6);

g.print();
// Example output:
// 0: 2,3,5
// 1: 2,3,4,5
// 2: 1,3
// 3: 0,1,2,4
// 4: 2,3
// 5: 0,4

The graph data structure is well-suited for recursive traversal, and using a recursive generator allows
you to do exactly that. To do so, the generator function must accept an iterable, yield each value
in that iterable, and recurse on each value. A simple utilization of this would be to test if a graph is
connected, meaning that there are no nodes that cannot be reached. This test can be accomplished by
beginning at one node and exhaustively attempting to visit every node. The result is a very succinct
implementation of a depth first traversal:

class Node {
 constructor(id) {
 ...
 }

 connect(node) {
 ...

246 ❘ CHAPTER 7 Iterators and Generators

 }
}

class RandomGraph {
 constructor(size) {
 ...
 }

 print() {
 ...
 }

 isConnected() {
 const visitedNodes = new Set();

 function* traverse(nodes) {
 for (const node of nodes) {
 if (!visitedNodes.has(node)) {
 yield node;
 yield* traverse(node.neighbors);
 }
 }
 }

 // Grab first node in the Set
 const firstNode = this.nodes[Symbol.iterator]().next().value;

 // Use the recursive generator to iterate every node
 for (const node of traverse([firstNode])) {
 visitedNodes.add(node);
 }

 return visitedNodes.size === this.nodes.size;
 }
}

Using a Generator as the Default Iterator
Because generator objects implement the Iterable interface, and because both generator functions
and the default iterator are invoked to produce an iterator, generators are exceptionally well suited to
be used as default iterators. The following is a simple example where the default iterator can yield the
class’s contents in a single line:

class Foo {
 constructor() {
 this.values = [1, 2, 3];
 }
 * [Symbol.iterator]() {
 yield* this.values;
 }
}

const f = new Foo();

Generators ❘ 247

for (const x of f) {
 console.log(x);
}
// 1
// 2
// 3

Here, the for...of loop invokes the default iterator—which happens to be a generator function—
and produces a generator object. The generator object is an iterable and therefore compatible for use
in iteration.

Early Termination of Generators
Like iterators, generators also support the concept of being “closable.” For an object to implement
the Iterator interface, it must have a next() and, optionally, a return() method for when the
iterator is terminated early. A generator object has both of these methods and an additional third
method, throw().

function* generatorFn() {}

const g = generatorFn();

console.log(g); // generatorFn {<suspended>}
console.log(g.next); // f next() { [native code] }
console.log(g.return); // f return() { [native code] }
console.log(g.throw); // f throw() { [native code] }

The return() and throw() methods are two methods that can be used to coerce the generator into a
closed state.

The return() Method
The return() method will force the generator into a closed state, and the value provided to
return() will be the value provided in the terminal iterator object:

function* generatorFn() {
 for (const x of [1, 2, 3]) {
 yield x;
 }
}

const g = generatorFn();

console.log(g); // generatorFn {<suspended>}
console.log(g.return(4)); // { done: true, value: 4 }
console.log(g); // generatorFn {<closed>}

Unlike iterators, all generator objects have a return() method that forces it into a closed state that it
cannot exit once reached. Subsequent invoking of next() will disclose the done:true state, but any
provided return value is not stored or propagated:

function* generatorFn() {
 for (const x of [1, 2, 3]) {
 yield x;

248 ❘ CHAPTER 7 Iterators and Generators

 }
}

const g = generatorFn();

console.log(g.next()); // { done: false, value: 1 }
console.log(g.return(4)); // { done: true, value: 4 }
console.log(g.next()); // { done: true, value: undefined }
console.log(g.next()); // { done: true, value: undefined }
console.log(g.next()); // { done: true, value: undefined }

Built-in language constructs such as the for...of loop will sensibly ignore any values returned inside
the done:true IteratorObject.

function* generatorFn() {
 for (const x of [1, 2, 3]) {
 yield x;
 }
}

const g = generatorFn();

for (const x of g) {
 if (x > 1) {
 g.return(4);
 }
 console.log(x);
}
// 1
// 2

The throw() Method
The throw() method will inject a provided error into the generator object at the point it is
suspended. If the error is unhandled, the generator will close:

function* generatorFn() {
 for (const x of [1, 2, 3]) {
 yield x;
 }
}

const g = generatorFn();

console.log(g); // generatorFn {<suspended>}
try {
 g.throw('foo');
} catch (e) {
 console.log(e); // foo
}
console.log(g); // generatorFn {<closed>}

Summary ❘ 249

If, however, the error is handled inside the generator function, then it will not close and can resume
execution. The error handling will skip over that yield, so in this example you will see it skip a value.
Consider the following example:

function* generatorFn() {
 for (const x of [1, 2, 3]) {
 try {
 yield x;
 } catch(e) {}
 }
}

const g = generatorFn();

console.log(g.next()); // { done: false, value: 1}
g.throw('foo');
console.log(g.next()); // { done: false, value: 3}

In this example, the generator suspends execution at a yield keyword inside a try/catch block.
While it is suspended, throw() injects the foo error, which is thrown by the yield keyword. Because
this error is thrown inside the generator’s try/catch block, it is subsequently caught while still inside
the generator. However, because yield threw that error, that value of 2 will not be produced by the
generator. Instead, the generator function continues execution, proceeding on to the next loop itera-
tion where it encounters the yield keyword yet again—this time, yielding the value 3.

NOTE If the generator object has not yet begun execution, calling throw()
cannot be caught inside the function because the error is thrown from outside
the function block.

SUMMARY

Iteration is a pattern that is encountered in essentially every programming language. The ECMAScript
6 specification formally embraces the concept of iteration by introducing two formal concepts in the
language, iterators and generators.

An iterator is an interface that can be implemented by any object and allows for successive visita-
tion of values that it produces. Anything that implements the Iterable interface features a Symbol.
iterator property, which references the default iterator. The default iterator behaves as an iterator
factory: a function which, when invoked, produces an object that implements the Iterator interface.

Successive values are coerced from an iterator via its next() method, which returns an Iterator-
Object. This object contains a done property, a Boolean indicating if there are more values available,
and a value property, which contains the present value provided from the iterator. This interface can
be manually consumed by invoking next() repeatedly, or automatically consumed by native iterable
consumers such as the for...of loop.

250 ❘ CHAPTER 7 Iterators and Generators

Generators are a special type of function that, when invoked, produces a generator object. This
generator object implements the Iterable interface, and therefore can be used anywhere an iterable
is expected. Generators are unique in that they support the yield keyword, which is used to pause
execution of the generator function. The yield keyword can also be used to accept input and output
through the next() method. When accompanied by an asterisk, the yield keyword will serve to
serialize an iterable it is paired with.

Objects, Classes, and Object-
Oriented Programming

WHAT’S IN THIS CHAPTER?

➤➤ Understanding objects

➤➤ Understanding object creation

➤➤ Understanding inheritance

➤➤ Understanding classes

ECMA-262 defines an object as an unordered collection of properties. Strictly speaking, this
means that an object is an array of values in no particular order. Each property or method is
identified by a name that is mapped to a value. For this reason (and others yet to be discussed),
it helps to think of ECMAScript objects as hash tables: nothing more than a grouping of name-
value pairs where the value may be data or a function.

UNDERSTANDING OBJECTS

The canonical way of creating a custom object is to create a new instance of Object and add
properties and methods to it, as in this example:

let person = new Object();
person.name = "Nicholas";
person.age = 29;
person.job = "Software Engineer";

8

Professional JavaScript® for Web Developers, Fourth Edition. Matt Frisbie.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

252 ❘ CHAPTER 8 Objects, classes, and Object-Oriented PrOgramming

person.sayName = function() {
 console.log(this.name);
};

This example creates an object called person that has three properties (name, age, and job) and one
method (sayName()). The sayName() method displays the value of this.name, which resolves to
person.name. Early JavaScript developers used this pattern frequently to create new objects. A few
years later, object literals became the preferred pattern for creating such objects. The previous exam-
ple can be rewritten using object literal notation as follows:

let person = {
 name: "Nicholas",
 age: 29,
 job: "Software Engineer",
 sayName() {
 console.log(this.name);
 }
};

The person object in this example is equivalent to the person object in the prior example, with all
the same properties and methods. These properties are all created with certain characteristics that
define their behavior in JavaScript.

Types of Properties
ECMA-262 describes characteristics of properties through the use of internal-only attributes. These
attributes are defined by the specification for implementation in JavaScript engines, and as such, these
attributes are not directly accessible in JavaScript. To indicate that an attribute is internal, surround
the attribute name with two pairs of square brackets, such as [[Enumerable]].

There are two types of properties: data properties and accessor properties.

Data Properties
Data properties contain a single location for a data value. Values are read from and written to this
location. Data properties have four attributes describing their behavior:

➤➤ [[Configurable]]—Indicates if the property may be redefined by removing the property
via delete, changing the property’s attributes, or changing the property into an accessor
property. By default, this is true for all properties defined directly on an object, as in the
previous example.

➤➤ [[Enumerable]]—Indicates if the property will be returned in a for-in loop. By default,
this is true for all properties defined directly on an object, as in the previous example.

➤➤ [[Writable]]—Indicates if the property’s value can be changed. By default, this is true for
all properties defined directly on an object, as in the previous example.

➤➤ [[Value]]—Contains the actual data value for the property. This is the location from which
the property’s value is read and the location to which new values are saved. The default
value for this attribute is undefined.

Understanding Objects ❘ 253

When a property is explicitly added to an object as in the previous examples, [[Configurable]],
[[Enumerable]], and [[Writable]] are all set to true while the [[Value]] attribute is set to the
assigned value. For example:

let person = {
 name: "Nicholas"
};

Here, the property called name is created and a value of "Nicholas" is assigned. That means
[[Value]] is set to "Nicholas", and any changes to that value are stored in this location.

To change any of the default property attributes, you must use the Object.defineProperty()
method. This method accepts three arguments: the object on which the property should be added or
modified, the name of the property, and a descriptor object. The properties on the descriptor object
match the attribute names: configurable, enumerable, writable, and value. You can set one or all
of these values to change the corresponding attribute values. For example:

let person = {};
Object.defineProperty(person, "name", {
 writable: false,
 value: "Nicholas"
});
console.log(person.name); // "Nicholas"
person.name = "Greg";
console.log(person.name); // "Nicholas"

This example creates a property called name with a value of "Nicholas" that is read-only. The value of
this property can’t be changed, and any attempts to assign a new value are ignored in nonstrict mode. In
strict mode, an error is thrown when an attempt is made to change the value of a read-only property.

Similar rules apply to creating a nonconfigurable property. For example:

let person = {};
Object.defineProperty(person, "name", {
 configurable: false,
 value: "Nicholas"
});
console.log(person.name); // "Nicholas"
delete person.name;
console.log(person.name); // "Nicholas"

Here, setting configurable to false means that the property cannot be removed from the object.
Calling delete on the property has no effect in nonstrict mode and throws an error in strict mode.
Additionally, once a property has been defined as nonconfigurable, it cannot become configurable
again. Any attempt to call Object.defineProperty() and change any attribute other than writ-
able causes an error:

let person = {};
Object.defineProperty(person, "name", {
 configurable: false,
 value: "Nicholas"
});

254 ❘ CHAPTER 8 Objects, classes, and Object-Oriented PrOgramming

// Throws an error
Object.defineProperty(person, "name", {
 configurable: true,
 value: "Nicholas"
});

So although you can call Object.defineProperty() multiple times for the same property, there are
limits once configurable has been set to false.

When you are using Object.defineProperty(), the values for configurable, enumerable, and
writable default to false unless otherwise specified. In most cases, you likely won’t need the power-
ful options provided by Object.defineProperty(), but it’s important to understand the concepts to
have a good understanding of JavaScript objects.

Accessor Properties
Accessor properties do not contain a data value. Instead, they contain a combination of a getter func-
tion and a setter function (though both are not necessary). When an accessor property is read from,
the getter function is called, and it’s the function’s responsibility to return a valid value; when an
accessor property is written to, a function is called with the new value, and that function must decide
how to react to the data. Accessor properties have four attributes:

➤➤ [[Configurable]]—Indicates if the property may be redefined by removing the property via
delete, changing the property’s attributes, or changing the property into a data property.
By default, this is true for all properties defined directly on an object.

➤➤ [[Enumerable]]—Indicates if the property will be returned in a for-in loop. By default,
this is true for all properties defined directly on an object.

➤➤ [[Get]]—The function to call when the property is read from. The default value is undefined.

➤➤ [[Set]]—The function to call when the property is written to. The default value is undefined.

It is not possible to define an accessor property explicitly; you must use Object.defineProperty().
Here’s a simple example:

// Define object with pseudo-private member 'year_'
// and public member 'edition'
let book = {
 year_: 2017,
 edition: 1
};

Object.defineProperty(book, "year", {
 get() {
 return this.year_;
 },
 set(newValue) {
 if (newValue > 2017) {
 this.year_ = newValue;
 this.edition += newValue - 2017;
 }
 }
});
book.year = 2018;
console.log(book.edition); // 2

Understanding Objects ❘ 255

In this code, an object book is created with two default properties: year_ and edition. The underscore
on year_ is a common notation to indicate that a property is not intended to be accessed from outside of
the object’s methods. The year property is defined to be an accessor property where the getter function
simply returns the value of year_ and the setter does some calculation to determine the correct edition.
So changing the year property to 2018 results in both year_ and edition changing to 2. This is a typi-
cal use case for accessor properties, when setting a property value results in some other changes to occur.

It’s not necessary to assign both a getter and a setter. Assigning just a getter means that the property
cannot be written to and attempts to do so will be ignored. In strict mode, trying to write to a prop-
erty with only a getter throws an error. Likewise, a property with only a setter cannot be read and
will return the value undefined in nonstrict mode, while doing so throws an error in strict mode.

There is no way to modify [[Configurable]] or [[Enumerable]] in browsers that don’t support
Object.defineProperty().

NOTE Prior to ECMAScript 5, two nonstandard methods were used to create
accessor properties: __defineGetter__() and __defineSetter__(). These were
first developed by Firefox and later copied by Safari, Chrome, and Opera.

Defining Multiple Properties
Because there’s a high likelihood that you’ll need to define more than one property on an object,
ECMAScript provides the Object.defineProperties() method. This method allows you to define
multiple properties using descriptors at once. There are two arguments: the object on which to add
or modify the properties and an object whose property names correspond to the properties’ names to
add or modify. For example:

let book = {};
Object.defineProperties(book, {
 year_: {
 value: 2017
 },

 edition: {
 value: 1
 },

 year: {
 get() {
 return this.year_;
 },

 set(newValue) {
 if (newValue > 2017) {
 this.year_ = newValue;
 this.edition += newValue - 2017;
 }
 }
 }
});

256 ❘ CHAPTER 8 Objects, classes, and Object-Oriented PrOgramming

This code defines two data properties, year_ and edition, and an accessor property called year on
the book object. The resulting object is identical to the example in the previous section. The only dif-
ference is that all of these properties are created at the same time.

Reading Property Attributes
It’s also possible to retrieve the property descriptor for a given property by using the Object.
getOwnPropertyDescriptor() method. This method accepts two arguments: the object on which
the property resides and the name of the property whose descriptor should be retrieved. The return
value is an object with properties for configurable, enumerable, get, and set for accessor proper-
ties or configurable, enumerable, writable, and value for data properties. For example:

let book = {};
Object.defineProperties(book, {
 year_: {
 value: 2017
 },

 edition: {
 value: 1
 },

 year: {
 get: function() {
 return this.year_;
 },

 set: function(newValue){
 if (newValue > 2017) {
 this.year_ = newValue;
 this.edition += newValue - 2017;
 }
 }
 }
});

let descriptor = Object.getOwnPropertyDescriptor(book, "year_");
console.log(descriptor.value); // 2017
console.log(descriptor.configurable); // false
console.log(typeof descriptor.get); // "undefined"
let descriptor = Object.getOwnPropertyDescriptor(book, "year");
console.log(descriptor.value); // undefined
console.log(descriptor.enumerable); // false
console.log(typeof descriptor.get); // "function"

For the data property year_, value is equal to the original value, configurable is false, and get is
undefined. For the accessor property year, value is undefined, enumerable is false, and get is a
pointer to the specified getter function.

New in ECMAScript 2017 is the Object.getOwnPropertyDescriptors() static method. This
method effectively performs on Object.getOwnPropertyDescriptor() on all own properties and
returns them in a new object. For the previous example, using this static method would return the
following object:

Understanding Objects ❘ 257

let book = {};
Object.defineProperties(book, {
 year_: {
 value: 2017
 },

 edition: {
 value: 1
 },

 year: {
 get: function() {
 return this.year_;
 },

 set: function(newValue){
 if (newValue > 2017) {
 this.year_ = newValue;
 this.edition += newValue - 2017;
 }
 }
 }
});

console.log(Object.getOwnPropertyDescriptors(book));
// {
// edition: {
// configurable: false,
// enumerable: false,
// value: 1,
// writable: false
// },
// year: {
// configurable: false,
// enumerable: false,
// get: f(),
// set: f(newValue),
// },
// year_: {
// configurable: false,
// enumerable: false,
// value: 2019,
// writable: false
// }
// }

Merging Objects
JavaScript developers will often find that it is useful to be able to perform a “merge” of two objects.
More specifically, this merge will take the form of folding all the local properties of one source object
into a destination object. Often, this behavior is also referred to as using a “mixin,” in which the des-
tination object is augmented by mixing in the properties of a source object.

258 ❘ CHAPTER 8 Objects, classes, and Object-Oriented PrOgramming

ECMAScript 6 introduces this exact behavior with the Object.assign() method. This method
accepts one destination object, and one or many source objects, and for each source object copies the
enumerable (Object.propertyIsEnumerable returns true) and own (Object.hasOwnProperty
returns true) properties onto the destination object. Properties keyed with strings and symbols will
be copied. For each suitable property, the method will use [[Get]] to retrieve a value from the source
object and [[Set]] on the destination object to assign the value.

let dest, src, result;

/**
 * Simple copy
 */
dest = {};
src = { id: 'src' };

result = Object.assign(dest, src);

// Object.assign mutates the destination object
// and also returns that object after exiting.
console.log(dest === result); // true
console.log(dest !== src); // true
console.log(result); // { id: src }
console.log(dest); // { id: src }

/**
 * Multiple source objects
 */
dest = {};

result = Object.assign(dest, { a: 'foo' }, { b: 'bar' });

console.log(result); // { a: foo, b: bar }

/**
 * Getters and setters
 */
dest = {
 set a(val) {
 console.log('Invoked dest setter with param ${val}');
 }
};
src = {
 get a() {
 console.log('Invoked src getter');
 return 'foo';
 }
};

Object.assign(dest, src);
// Invoked src getter
// Invoked dest setter with param foo

Understanding Objects ❘ 259

// Since the setter does not perform an assignment,
// no value is actually transferred
console.log(dest); // { set a(val) {...} }

Object.assign() is effectively performing a shallow copy from each source object. If multiple source
objects have the same property defined, the last one to be copied will be the ultimate value. Furthermore,
any value retrieved from accessor properties, such as a getter, on a source object will be assigned as a
static value on the destination object—there is no ability to transfer getters and setters between objects.

let dest, src, result;

/**
 * Overwritten properties
 */
dest = { id: 'dest' };

result = Object.assign(dest, { id: 'src1', a: 'foo' }, { id: 'src2', b: 'bar' });

// Object.assign will overwrite duplicate properties.
console.log(result); // { id: src2, a: foo, b: bar }

// This can be observed by using a setter on the destination object:
dest = {
 set id(x) {
 console.log(x);
 }
};

Object.assign(dest, { id: 'first' }, { id: 'second' }, { id: 'third' });
// first
// second
// third

/**
 * Object references
 */

dest = {};
src = { a: {} };

Object.assign(dest, src);

// Shallow property copies means only object references copied.
console.log(dest); // { a :{} }
console.log(dest.a === src.a); // true

If an error is thrown during the assignment, it will discontinue and exit with the thrown error.
Object.assign() has no concept of “rolling back” earlier assignments so it is a best-effort method
that may only partially complete.

let dest, src, result;

/**

260 ❘ CHAPTER 8 Objects, classes, and Object-Oriented PrOgramming

 * Error handling
 */
dest = {};
src = {
 a: 'foo',
 get b() {
 // Error will be thrown when Object.assign()
 // invokes this getter.
 throw new Error();
 },
 c: 'bar'
};

try {
 Object.assign(dest, src);
} catch(e) {}

// Object.assign() has no way of rolling back already performed changes,
// so set operations already performed on the destination object before
// the error is thrown remain:
console.log(dest); // { a: foo }

Object Identity and Equality
In versions prior to ECMAScript 6, there were several tricky corner cases where the === operator was
insufficient:

// These are cases where === behaves as expected:
console.log(true === 1); // false
console.log({} === {}); // false
console.log("2" === 2); // false

// These have different representations in the JS engine and yet are treated as equal
console.log(+0 === -0); // true
console.log(+0 === 0); // true
console.log(-0 === 0); // true

// To determine NaN equivalence, the profoundly annoying isNaN() is required
console.log(NaN === NaN); // false
console.log(isNaN(NaN)); // true

To remedy this, the ECMAScript 6 specification introduced Object.is(), which behaves mostly as
=== does but also accounts for the corner cases listed previously. The method accepts exactly two
arguments:

console.log(Object.is(true, 1)); // false
console.log(Object.is({}, {})); // false
console.log(Object.is("2", 2)); // false

// Correct 0, -0, +0 equivalence/nonequivalence:
console.log(Object.is(+0, -0)); // false
console.log(Object.is(+0, 0)); // true
console.log(Object.is(-0, 0)); // false

// Correct NaN equivalence:
console.log(Object.is(NaN, NaN)); // true

Understanding Objects ❘ 261

To check more than two objects, it is trivial to recursively use transitive equality:

function recursivelyCheckEqual(x, ...rest) {
 return Object.is(x, rest[0]) &&
 (rest.length < 2 || recursivelyCheckEqual(...rest));
}

Enhanced Object Syntax
ECMAScript 6 introduced a handful of extremely useful syntactical tools for defining and interact-
ing with objects. None of them meaningfully change existing engine behavior, but they enormously
enhance the convenience of dealing with objects.

All object syntax conventions introduced in this section are also applicable to ECMAScript 6 classes,
defined later in this chapter.

NOTE The enhanced object syntax described in this section is almost universally
superior to what it replaces; therefore, you will find that it is used by default here
in this chapter as well as elsewhere in the book.

Property Value Shorthand
Developers frequently find that, when adding a variable to an object, the property name used to key
that variable often will match the variable name itself. For example:

let name = 'Matt';

let person = {
 name: name
};

console.log(person); // { name: 'Matt' }

Thus, the property value shorthand convention was introduced. This allows you to simply use the
variable itself without the colon notation, and the interpreter will automatically use the variable name
as the property key. If the variable name is not found, a ReferenceError will be thrown.

The following code is equivalent:

let name = 'Matt';

let person = {
 name
};

console.log(person); // { name: 'Matt' }

Minifiers will preserve property names between scopes to prevent breaking references. Take the fol-
lowing code snippet for example:

function makePerson(name) {
 return {

262 ❘ CHAPTER 8 Objects, classes, and Object-Oriented PrOgramming

 name
 };
}

let person = makePerson('Matt');

console.log(person.name); // Matt

Compilers are careful to preserve the initial name string identifier inside the function definition even
though the parameter identifier is restricted to the function scope. When this is compiled using the
Google Closure compiler, the function parameter name will be shortened, but the property name
will remain:

function makePerson(a) {
 return {
 name: a
 };
}

var person = makePerson("Matt");

console.log(person.name); // Matt

Computed Property Keys
Prior to the introduction of computed property keys, there was no way to dynamically assign prop-
erty keys in an object literal without declaring the object and then individually using the square
bracket notation for property assignment. For example:

const nameKey = 'name';
const ageKey = 'age';
const jobKey = 'job';

let person = {};
person[nameKey] = 'Matt';
person[ageKey] = 27;
person[jobKey] = 'Software engineer';

console.log(person); // { name: 'Matt', age: 27, job: 'Software engineer' }

With computed properties, the property assignment can occur inside the object literal’s initial defini-
tion. Square brackets around the object property key instruct the runtime to evaluate its contents as a
JavaScript expression instead of a string:

const nameKey = 'name';
const ageKey = 'age';
const jobKey = 'job';

let person = {
 [nameKey]: 'Matt',
 [ageKey]: 27,
 [jobKey]: 'Software engineer'
};

console.log(person); // { name: 'Matt', age: 27, job: 'Software engineer' }

Understanding Objects ❘ 263

Because the contents are evaluated as a JavaScript expression, it is possible to make the contents of
the computed property complex expressions to be evaluated upon instantiation:

const nameKey = 'name';
const ageKey = 'age';
const jobKey = 'job';
let uniqueToken = 0;

function getUniqueKey(key) {
 return '${key}_${uniqueToken++}';
}

let person = {
 [getUniqueKey(nameKey)]: 'Matt',
 [getUniqueKey(ageKey)]: 27,
 [getUniqueKey(jobKey)]: 'Software engineer'
};

console.log(person); // { name_0: 'Matt', age_1: 27, job_2: 'Software engineer' }

NOTE Any errors thrown in a computed property key expression will abort the
creation of the object. Be careful when the expressions computing a property key
have side effects, as an error thrown in an expression will not roll back earlier
computation.

Concise Method Syntax
When defining function properties of an object, the format almost always takes the form of a prop-
erty key referencing an anonymous function expression, as follows:

let person = {
 sayName: function(name) {
 console.log('My name is ${name}');
 }
};

person.sayName('Matt'); // My name is Matt

The new shorthand method syntax follows this pattern and allows the developer to give up the
capability to name the function expression—which, most of the time, is not useful anyway—and in
exchange dramatically shorten how a function property can be expressed.

The following is behaviorally identical to the previous code snippet:

let person = {
 sayName(name) {
 console.log('My name is ${name}');
 }
};

person.sayName('Matt'); // My name is Matt

264 ❘ CHAPTER 8 Objects, classes, and Object-Oriented PrOgramming

This is also applicable to the getter and setter object conventions:

let person = {
 name_: '',
 get name() {
 return this.name_;
 },
 set name(name) {
 this.name_ = name;
 },
 sayName() {
 console.log('My name is ${this.name_}');
 }
};

person.name = 'Matt';
person.sayName(); // My name is Matt

Shorthand method syntax and computed property keys are mutually compatible:

const methodKey = 'sayName';

let person = {
 [methodKey](name) {
 console.log('My name is ${name}');
 }
}

person.sayName('Matt'); // My name is Matt

NOTE You will find that the shorthand method syntax is more useful in the
 context of ECMAScript 6 classes, which are covered later in the chapter.

Object Destructuring
ECMAScript 6 introduced object destructuring, which allows you to perform one or many opera-
tions using nested data within a single statement. With respect to objects, this gives you the ability to
perform assignments from object properties using syntax that matches the structure of an object.

The following is an example of two equivalent code snippets, first without object destructuring:

// Without object destructuring
let person = {
 name: 'Matt',
 age: 27
};

let personName = person.name,
 personAge = person.age;

console.log(personName); // Matt
console.log(personAge); // 27

Understanding Objects ❘ 265

Second, using object destructuring:

// With object destructuring
let person = {
 name: 'Matt',
 age: 27
};

let { name: personName, age: personAge } = person;

console.log(personName); // Matt
console.log(personAge); // 27

Destructuring allows you to declare multiple variables and simultaneously perform multiple assign-
ments all inside a single object literal–like syntax. If you want to reuse the property name as a local
variable name, you can use a shorthand syntax, as follows:

let person = {
 name: 'Matt',
 age: 27
};

let { name, age } = person;

console.log(name); // Matt
console.log(age); // 27

Destructuring assignments do not have to match what is inside the object. You are able to ignore
properties when performing an assignment; conversely, if you reference a property that does not exist,
undefined will be assigned:

let person = {
 name: 'Matt',
 age: 27
};

let { name, job } = person;

console.log(name); // Matt
console.log(job); // undefined

It is also possible to define default values, which will be applied in the event that a property does not
exist in the source object:

let person = {
 name: 'Matt',
 age: 27
};

let { name, job='Software engineer' } = person;

console.log(name); // Matt
console.log(job); // Software engineer

Destructuring uses the internal function ToObject() (which is not directly accessible in the runtime)
to coerce a source into an object. This means that primitive values will be treated as objects when

266 ❘ CHAPTER 8 Objects, classes, and Object-Oriented PrOgramming

used in a destructuring operation; this also means that, by definition in the ToObject() specification,
null and undefined cannot be destructured and will throw an error.

let { length } = 'foobar';
console.log(length); // 6

let { constructor: c } = 4;
console.log(c === Number); // true

let { _ } = null; // TypeError

let { _ } = undefined; // TypeError

Destructuring does not demand that variable declarations occur inside the destructuring expression.
However, doing so requires the assignment expression to be contained inside parentheses:

let personName, personAge;

let person = {
 name: 'Matt',
 age: 27
};

({name: personName, age: personAge} = person);

console.log(personName, personAge); // Matt, 27

Nested Destructuring
There are no restrictions on referencing nested properties or assignment targets. This allows you to do
things like perform copies of object properties:

let person = {
 name: 'Matt',
 age: 27,
 job: {
 title: 'Software engineer'
 }
};
let personCopy = {};

({
 name: personCopy.name,
 age: personCopy.age,
 job: personCopy.job
} = person);

// Because an object reference was assigned into personCopy, changing a property
// inside the person.job object will be propagated to personCopy:
person.job.title = 'Hacker'

console.log(person);
// { name: 'Matt', age: 27, job: { title: 'Hacker' } }

console.log(personCopy);

Understanding Objects ❘ 267

// { name: 'Matt', age: 27, job: { title: 'Hacker' } }

Destructuring assignments can be nested to match nested property references:

let person = {
 name: 'Matt',
 age: 27,
 job: {
 title: 'Software engineer'
 }
};

// Declares 'title' variable and assigns person.job.title as its value
let { job: { title }} = person;

console.log(title); // Software engineer

You cannot use nested property references when an outer property is undefined. This is true for both
source objects and destination objects:

let person = {
 job: {
 title: 'Software engineer'
 }
};
let personCopy = {};

// 'foo' is undefined on the source object
({
 foo: {
 bar: personCopy.bar
 }
} = person);
// TypeError: Cannot destructure property 'bar' of 'undefined' or 'null'.

// 'job' is undefined on the destination object
({
 job: {
 title: personCopy.job.title
 }
} = person);
// TypeError: Cannot set property 'title' of undefined

Partial Destructuring Completion
It’s important to note that a destructured assignment involving multiple properties is a sequential
operation with independent outcomes. If, within a single destructured expression with multiple
assignments, the initial assignments succeed but a later one throws an error, the destructured assign-
ment will exit having only partially completed:

let person = {
 name: 'Matt',
 age: 27
};

let personName, personBar, personAge;

268 ❘ CHAPTER 8 Objects, classes, and Object-Oriented PrOgramming

try {
 // person.foo is undefined, so this will throw an error
 ({name: personName, foo: { bar: personBar }, age: personAge} = person);
} catch(e) {}

console.log(personName, personBar, personAge);
// Matt, undefined, undefined

Parameter Context Matching
It is also possible to perform a destructured assignment inside a function parameter list. It does not
affect the arguments object, but it allows you to declare variables inside the function signature that
are immediately available inside the function body:

let person = {
 name: 'Matt',
 age: 27
};

function printPerson(foo, {name, age}, bar) {
 console.log(arguments);
 console.log(name, age);
}

function printPerson2(foo, {name: personName, age: personAge}, bar) {
 console.log(arguments);
 console.log(personName, personAge);
}

printPerson('1st', person, '2nd');
// ['1st', { name: 'Matt', age: 27 }, '2nd']
// 'Matt', 27

printPerson2('1st', person, '2nd');
// ['1st', { name: 'Matt', age: 27 }, '2nd']
// 'Matt', 27

OBJECT CREATION

Although using the Object constructor or an object literal are convenient ways to create single
objects, there is an obvious downside: Creating multiple objects with the same interface requires a lot
of code duplication.

Overview
Through successive specifications, the available features of ECMAScript followed a highly unusual
pattern. Through the ECMAScript 5.1 specification, there was no formal support for object-oriented
constructs such as classes or inheritance. However, as you will see in the following sections, clever
application of prototypal inheritance allowed JavaScript developers to emulate this behavior—quite
successfully.

Object Creation ❘ 269

With the ECMAScript 6 specification, formal support for classes and inheritance was introduced.
These ES6 classes are intended to completely subsume the prototype-based class solutions designed in
previous specifications. However, their implementation is, in many ways, merely a syntactical abstrac-
tion for ES5.1-style constructor functions and prototypal inheritance.

NOTE Make no mistake: A JavaScript codebase built upon object-oriented pat-
terns should almost always use ECMAScript 6 classes. That said, it is instructive
to learn about the conventions that existed prior to ES6 classes, especially since
the ES6 class definition can be imagined as a thin wrapper around existing con-
structs. Therefore, before the ES6 classes section, the following sections will pro-
gressively introduce the underlying concepts that are replaced by classes.

The Factory Pattern
The factory pattern is a well-known design pattern used in software engineering to abstract away
the process of creating specific objects. (Other design patterns and their implementation in Java-
Script are discussed later in the book.) One way to create objects with specific interfaces is shown in
this example:

function createPerson(name, age, job) {
 let o = new Object();
 o.name = name;
 o.age = age;
 o.job = job;
 o.sayName = function() {
 console.log(this.name);
 };
 return o;
}

let person1 = createPerson("Nicholas", 29, "Software Engineer");
let person2 = createPerson("Greg", 27, "Doctor");

Here, the function createPerson() accepts arguments with which to build an object with all of the
necessary information to represent a Person object. The function can be called any number of times
with different arguments and will still return an object that has three properties and one method.
Though this solved the problem of creating multiple similar objects, the factory pattern didn’t address
the issue of object identification (what type of object an object is).

The Function Constructor Pattern
As mentioned in previous chapters, constructors in ECMAScript are used to create specific types of
objects. There are native constructors, such as Object and Array, which are available automatically
in the execution environment at runtime. It is also possible to define custom constructors, in the form
of a function, that define properties and methods for your own type of object.

270 ❘ CHAPTER 8 Objects, classes, and Object-Oriented PrOgramming

For instance, the previous example can be rewritten using the function constructor pattern:

function Person(name, age, job){
 this.name = name;
 this.age = age;
 this.job = job;
 this.sayName = function() {
 console.log(this.name);
 };
}

let person1 = new Person("Nicholas", 29, "Software Engineer");
let person2 = new Person("Greg", 27, "Doctor");

person1.sayName(); // Nicholas
person2.sayName(); // Greg

In this example, the Person() function takes the place of the factory createPerson() function.
Note that the code inside Person() is the same as the code inside createPerson(), with the follow-
ing exceptions:

➤➤ There is no object being created explicitly.

➤➤ The properties and method are assigned directly onto the this object.

➤➤ There is no return statement.

Also note the name of the function is Person with an uppercase P. By convention, constructor func-
tions always begin with an uppercase letter, whereas nonconstructor functions begin with a lowercase
letter. This convention is borrowed from other OO languages and helps to distinguish function use in
ECMAScript because constructors are simply functions that create objects.

To create a new instance of Person, use the new operator. Calling a constructor in this manner will do
the following:

1. A new object is created in memory.

2. The new object’s internal [[Prototype]] pointer is assigned to the constructor’s proto-
type property.

3. The this value of the constructor is assigned to the new object (so this points to the
new object).

4. The code inside the constructor is executed (adds properties to the new object).

5. If the constructor function returns a non-null value, that object is returned. Otherwise, the
new object that was just created is returned.

At the end of the preceding example, person1 and person2 are each filled with a different instance
of Person. Each of these objects has a constructor property that points back to Person, as follows:

console.log(person1.constructor == Person); // true
console.log(person2.constructor == Person); // true

Object Creation ❘ 271

The constructor property was originally intended for use in identifying the object type. However,
the instanceof operator is considered to be a safer way of determining type. Each of the objects in
this example is considered to be both an instance of Object and an instance of Person, as indicated
by using the instanceof operator like this:

console.log(person1 instanceof Object); // true
console.log(person1 instanceof Person); // true
console.log(person2 instanceof Object); // true
console.log(person2 instanceof Person); // true

Defining your own constructors ensures that instances can be identified as a particular type later
on, which is a great advantage over the factory pattern. In this example, person1 and person2 are
considered to be instances of Object because all custom objects inherit from Object (the specifics of
this are discussed later).

Constructor functions do not have to be expressed as a function declaration. A function expression
assigned to a variable behaves identically:

let Person = function(name, age, job) {
 this.name = name;
 this.age = age;
 this.job = job;
 this.sayName = function() {
 console.log(this.name);
 };
}

let person1 = new Person("Nicholas", 29, "Software Engineer");
let person2 = new Person("Greg", 27, "Doctor");

person1.sayName(); // Nicholas
person2.sayName(); // Greg

console.log(person1 instanceof Object); // true
console.log(person1 instanceof Person); // true
console.log(person2 instanceof Object); // true
console.log(person2 instanceof Person); // true

When instantiating, the parentheses after the constructor function are optional if you do not wish to
pass any arguments—the new operator will invoke the constructor function no matter what:

function Person() {
 this.name = "Jake";
 this.sayName = function() {
 console.log(this.name);
 };
}

let person1 = new Person();
let person2 = new Person;

person1.sayName(); // Jake
person2.sayName(); // Jake

console.log(person1 instanceof Object); // true

272 ❘ CHAPTER 8 Objects, classes, and Object-Oriented PrOgramming

console.log(person1 instanceof Person); // true
console.log(person2 instanceof Object); // true
console.log(person2 instanceof Person); // true

Constructors as Functions
The only difference between constructor functions and other functions is the way in which they are
called. Constructors are, after all, just functions; there’s no special syntax to define a constructor that
automatically makes it behave as such. Any function that is called with the new operator acts as a
constructor, whereas any function called without it acts just as you would expect a normal function
call to act. For instance, the Person() function from the previous example may be called in any of
the following ways:

// use as a constructor
let person = new Person("Nicholas", 29, "Software Engineer");
person.sayName(); // "Nicholas"

// call as a function
Person("Greg", 27, "Doctor"); // adds to window
window.sayName(); // "Greg"

// call in the scope of another object
let o = new Object();
Person.call(o, "Kristen", 25, "Nurse");
o.sayName(); // "Kristen"

The first part of this example shows the typical use of a constructor—to create a new object via the
new operator. The second part shows what happens when the Person() function is called without
the new operator: The properties and methods get added to the window object. Remember that the
this object always points to the Global object (window in web browsers) when a function is called
without an explicitly set this value (by being an object method or through call()/apply()). So
after the function is called, the sayName() method can be called on the window object, and it will
return "Greg". The Person() function can also be called within the scope of a particular object
using call() (or apply()). In this case, it’s called with a this value of the object o, which then gets
assigned all of the properties and the sayName() method.

Problems with Constructors
Though the constructor paradigm is useful, it is not without its faults. The major downside to con-
structors is that methods are created once for each instance. So, in the previous example, both per-
son1 and person2 have a method called sayName(), but those methods are not the same instance of
Function. Remember that functions are objects in ECMAScript, so every time a function is defined,
it’s actually an object being instantiated. Logically, the constructor actually looks like this:

function Person(name, age, job){
 this.name = name;
 this.age = age;
 this.job = job;
 this.sayName = new Function("console.log(this.name)"); // logical equivalent
}

Thinking about the constructor in this manner makes it clear that each instance of Person gets its
own instance of Function that happens to display the name property. To be clear, creating a function

Object Creation ❘ 273

in this manner is different with regard to scope chains and identifier resolution, but the mechanics of
creating a new instance of Function remain the same. So, functions of the same name on different
instances are not equivalent, as the following code proves:

console.log(person1.sayName == person2.sayName); // false

It doesn’t make sense to have two instances of Function that do the same thing, especially when the
this object makes it possible to avoid binding functions to particular objects until runtime.

It’s possible to work around this limitation by moving the function definition outside of the construc-
tor, as follows:

function Person(name, age, job){
 this.name = name;
 this.age = age;
 this.job = job;
 this.sayName = sayName;
}

function sayName() {
 console.log(this.name);
}

let person1 = new Person("Nicholas", 29, "Software Engineer");
let person2 = new Person("Greg", 27, "Doctor");

person1.sayName(); // Nicholas
person2.sayName(); // Greg

In this example, the sayName() function is defined outside the constructor. Inside the constructor,
the sayName property is set equal to the global sayName() function. Because the sayName property
now contains just a pointer to a function, both person1 and person2 end up sharing the sayName()
function that is defined in the global scope. This solves the problem of having duplicate functions that
do the same thing but also creates some clutter in the global scope by introducing a function that can
realistically be used only in relation to an object. If the object needed multiple methods, that would
mean multiple global functions, and all of a sudden the custom reference type definition is no longer
nicely grouped in the code. These problems are addressed by using the prototype pattern.

The Prototype Pattern
Each function is created with a prototype property, which is an object containing properties and
methods that should be available to instances of a particular reference type. This object is liter-
ally a prototype for the object to be created once the constructor is called. The benefit of using the
prototype is that all of its properties and methods are shared among object instances. Instead of
assigning object information in the constructor, they can be assigned directly to the prototype, as in
this example:

function Person() {}

Person.prototype.name = "Nicholas";
Person.prototype.age = 29;
Person.prototype.job = "Software Engineer";

274 ❘ CHAPTER 8 Objects, classes, and Object-Oriented PrOgramming

Person.prototype.sayName = function() {
 console.log(this.name);
};

let person1 = new Person();
person1.sayName(); // "Nicholas"

let person2 = new Person();
person2.sayName(); // "Nicholas"

console.log(person1.sayName == person2.sayName); // true

Using a function expression is also suitable:

let Person = function() {};

Person.prototype.name = "Nicholas";
Person.prototype.age = 29;
Person.prototype.job = "Software Engineer";
Person.prototype.sayName = function() {
 console.log(this.name);
};

let person1 = new Person();
person1.sayName(); // "Nicholas"

let person2 = new Person();
person2.sayName(); // "Nicholas"

console.log(person1.sayName == person2.sayName); // true

Here, the properties and the sayName() method are added directly to the prototype property of
Person, leaving the constructor empty. However, it’s still possible to call the constructor to create a
new object and have the properties and methods present. Unlike the constructor pattern, the proper-
ties and methods are all shared among instances, so person1 and person2 are both accessing the
same set of properties and the same sayName() function. To understand how this works, you must
understand the nature of prototypes in ECMAScript.

How Prototypes Work
Whenever a function is created, its prototype property is also created according to a specific set of
rules. By default, all prototypes automatically get a property called constructor that points back
to the function on which it is a property. In the previous example, for instance, Person.prototype.
constructor points to Person. Then, depending on the constructor, other properties and methods
may be added to the prototype.

When defining a custom constructor, the prototype gets the constructor property only by default; all
other methods are inherited from Object. Each time the constructor is called to create a new instance,
that instance has an internal pointer to the constructor’s prototype. In ECMA-262, this is called
[[Prototype]]. There is no standard way to access [[Prototype]] from script, but Firefox, Safari,
and Chrome all support a property on every object called __proto__; in other implementations, this
property is completely hidden from script. The important thing to understand is that a direct link exists
between the instance and the constructor’s prototype but not between the instance and the constructor.

Object Creation ❘ 275

This relationship can be difficult to visualize, so refer to the following snippet as a sort of lookup
table for overall prototype behavior:

/**
 * Constructor function can exist as function expression
 * or function declaration, so both of these are suitable:
 * function Person {}
 * let Person = function() {}
 */
function Person() {}

/**
 * Upon declaration, the constructor function already
 * has a prototype object associated with it:
 */
console.log(typeof Person.prototype);
console.log(Person.prototype);
// {
// constructor: f Person(),
// __proto__: Object
// }

/**
 * As mentioned previously, the constructor function has
 * a 'prototype' reference to the prototype object, and
 * the prototype object has a 'constructor' reference to
 * the constructor function. These references are cyclical:
 */
console.log(Person.prototype.constructor === Person); // true

/**
 * Any normal prototype chain will terminate at the Object prototype.
 * The prototype of the Object prototype is null.
 */
console.log(Person.prototype.__proto__ === Object.prototype); // true
console.log(Person.prototype.__proto__.constructor === Object); // true
console.log(Person.prototype.__proto__.__proto__ === null); // true

console.log(Person.prototype.__proto__);
// {
// constructor: f Object(),
// toString: ...
// hasOwnProperty: ...
// isPrototypeOf: ...
// ...
// }

let person1 = new Person(),
 person2 = new Person();

/**
 * The constructor, the prototype object, and an instance
 * are three completely distinct objects:
 */

276 ❘ CHAPTER 8 Objects, classes, and Object-Oriented PrOgramming

console.log(person1 !== Person); // true
console.log(person1 !== Person.prototype); // true
console.log(Person.prototype !== person); // true

/**
 * An instance is linked to the prototype through __proto__, which
 * is the literal manifestation of the [[Prototype]] hidden property.
 *
 * A constructor is linked to the prototype through the constructor property.
 *
 * An instance has no direct link to the constructor, only through the prototype.
 */
console.log(person1.__proto__ === Person.prototype); // true
conosle.log(person1.__proto__.constructor === Person); // true

/**
 * Two instances created from the same constructor function will share
 * a prototype object:
 */
console.log(person1.__proto__ === person2.__proto__); // true

/**
 * instanceof will check the instance's prototype chain against the
 * prototype property of a constructor function:
 */
console.log(person1 instanceof Person); // true
console.log(person1 instanceof Object); // true
console.log(Person.prototype instanceof Object); // true

Consider the original example using the Person constructor and Person.prototype. The relation-
ship between the objects in the example is shown in Figure 8-1.

Figure 8-1 shows the relationship between the Person constructor, the Person’s prototype, and the
two instances of Person that exist. Note that Person.prototype points to the prototype object but
Person.prototype.constructor points back to Person. The prototype contains the constructor

Person

prototype

person1
[[Prototype]]

person2
[[Prototype]]

age

job

Person Prototype

constructor

name

sayName (function)

“Nicholas”

“Software Engineer”

29

FIGURE 8-1:

Object Creation ❘ 277

property and the other properties that were added. Each instance of Person, person1, and person2
has internal properties that point back to Person.prototype only; each has no direct relationship
with the constructor. Also note that even though neither of these instances have properties or meth-
ods, person1.sayName() works. This is due to the lookup procedure for object properties.

Even though [[Prototype]] is not accessible in all implementations, the isPrototypeOf() method
can be used to determine if this relationship exists between objects. Essentially, isPrototypeOf()
returns true if [[Prototype]] points to the prototype on which the method is being called, as
shown here:

console.log(Person.prototype.isPrototypeOf(person1)); // true
console.log(Person.prototype.isPrototypeOf(person2)); // true

In this code, the prototype’s isPrototypeOf() method is called on both person1 and person2.
Because both instances have a link to Person.prototype, it returns true.

The ECMAScript Object type has a method called Object.getPrototypeOf(), which returns the
value of [[Prototype]]. For example:

console.log(Object.getPrototypeOf(person1) == Person.prototype); // true
console.log(Object.getPrototypeOf(person1).name); // "Nicholas"

The first line of this code simply confirms that the object returned from Object.getPrototypeOf()
is actually the prototype of the object. The second line retrieves the value of the name property on
the prototype, which is "Nicholas". Using Object.getPrototypeOf(), you are able to retrieve an
object’s prototype easily, which becomes important once you want to implement inheritance using the
prototype (discussed later in this chapter).

The Object type also features a setPrototypeOf()method, which writes a new value into the
[[Prototype]] of the instance. This allows you to overwrite the prototype hierarchy of an already-
instantiated object:

let biped = {
 numLegs: 2
};
let person = {
 name: 'Matt'
};

Object.setPrototypeOf(person, biped);

console.log(person.name); // Matt
console.log(person.numLegs); // 2
console.log(Object.getPrototypeOf(person) === biped); // true

WARNING: The Object.setPrototypeOf() operation will likely cause severe
performance slowdowns when used. The Mozilla documentation puts it best:
"In every browser and JavaScript engine, the effects on performance of altering
inheritance are subtle and far-flung, and are not limited to simply the time spent
in Object.setPrototypeOf() statement, but may extend to any code that has
access to any object whose [[Prototype]] has been altered."

278 ❘ CHAPTER 8 Objects, classes, and Object-Oriented PrOgramming

To avoid these slowdowns, prefer to just create a new object and specify its prototype with
Object.create():

let biped = {
 numLegs: 2
};
let person = Object.create(biped);
person.name = 'Matt';

console.log(person.name); // Matt
console.log(person.numLegs); // 2
console.log(Object.getPrototypeOf(person) === biped); // true

Understanding the Prototype Hierarchy
Whenever a property is accessed for reading on an object, a search is started to find a property with
that name. The search begins on the object instance itself. If a property with the given name is found on
the instance, then that value is returned; if the property is not found, then the search continues up the
pointer to the prototype, and the prototype is searched for a property with the same name. If the prop-
erty is found on the prototype, then that value is returned. So, when person1.sayName() is called, a
two-step process happens. First, the JavaScript engine asks, "Does the instance person1 have a property
called sayName?" The answer is no, so it continues the search and asks, "Does the person1 prototype
have a property called sayName?" The answer is yes, so the function stored on the prototype is accessed.
When person2.sayName() is called, the same search executes, ending with the same result. This is how
prototypes are used to share properties and methods among multiple object instances.

NOTE The constructor property mentioned earlier exists only on the proto-
type and so is accessible from object instances.

Although it’s possible to read values on the prototype from object instances, it is not possible to
overwrite them. If you add a property to an instance that has the same name as a property on the
prototype, you create the property on the instance, which then masks the property on the prototype.
Here’s an example:

function Person() {}

Person.prototype.name = "Nicholas";
Person.prototype.age = 29;
Person.prototype.job = "Software Engineer";
Person.prototype.sayName = function() {
 console.log(this.name);
};

let person1 = new Person();
let person2 = new Person();

person1.name = "Greg";
console.log(person1.name); // "Greg" - from instance
console.log(person2.name); // "Nicholas" - from prototype

Object Creation ❘ 279

In this example, the name property of person1 is shadowed by a new value. Both person1.name and
person2.name still function appropriately, returning "Greg" (from the object instance) and "Nicho-
las" (from the prototype), respectively. When person1.name was accessed in the console.log(), its
value was read, so the search began for a property called name on the instance. Because the property
exists, it is used without searching the prototype. When person2.name is accessed the same way, the
search doesn’t find the property on the instance, so it continues to search on the prototype where the
name property is found.

Once a property is added to the object instance, it shadows any properties of the same name on the
prototype, which means that it blocks access to the property on the prototype without altering it.
Even setting the property to null only sets the property on the instance and doesn’t restore the link
to the prototype. The delete operator, however, completely removes the instance property and
allows the prototype property to be accessed again as follows:

function Person() {}

Person.prototype.name = "Nicholas";
Person.prototype.age = 29;
Person.prototype.job = "Software Engineer";
Person.prototype.sayName = function() {
 console.log(this.name);
};

let person1 = new Person();
let person2 = new Person();

person1.name = "Greg";
console.log(person1.name); // "Greg" - from instance
console.log(person2.name); // "Nicholas" - from prototype

delete person1.name;
console.log(person1.name); // "Nicholas" - from the prototype

In this modified example, delete is called on person1.name, which previously had been shadowed
with the value "Greg". This restores the link to the prototype’s name property, so the next time per-
son1.name is accessed, it’s the prototype property’s value that is returned.

The hasOwnProperty() method determines if a property exists on the instance or on the prototype.
This method, which is inherited from Object, returns true only if a property of the given name exists
on the object instance, as in this example:

function Person() {}

Person.prototype.name = "Nicholas";
Person.prototype.age = 29;
Person.prototype.job = "Software Engineer";
Person.prototype.sayName = function() {
 console.log(this.name);
};

let person1 = new Person();
let person2 = new Person();

280 ❘ CHAPTER 8 Objects, classes, and Object-Oriented PrOgramming

console.log(person1.hasOwnProperty("name")); // false

person1.name = "Greg";
console.log(person1.name); // "Greg" - from instance
console.log(person1.hasOwnProperty("name")); // true

console.log(person2.name); // "Nicholas" - from prototype
console.log(person2.hasOwnProperty("name")); // false

delete person1.name;
console.log(person1.name); // "Nicholas" - from the prototype
console.log(person1.hasOwnProperty("name")); // false

By injecting calls to hasOwnProperty() in this example, it becomes clear when the instance’s
property is being accessed and when the prototype’s property is being accessed. Calling person1.
hasOwnProperty("name") returns true only after name has been overwritten on person1, indicat-
ing that it now has an instance property instead of a prototype property. Figure 8-2 illustrates the
various steps being taken in this example. (For simplicity, the relationship to the Person constructor
has been omitted.)

person1

Initially

age

job

[[Prototype]]

[[Prototype]]

[[Prototype]]

person2

person1

delete person1.name

Person Prototype

constructor

name

age

job

sayName (function)

“Nicholas”

“Software Engineer”

29

[[Prototype]]

[[Prototype]]

person2

person1

person1.name = “Greg”

Person Prototype

constructor

name

age

job

sayName (function)

“Nicholas”

“Software Engineer”

29

name

[[Prototype]]

person2

Person Prototype

constructor

name

sayName (function)

“Nicholas”

“Software Engineer”

29

“Greg”

FIGURE 8-2:

Object Creation ❘ 281

NOTE The ECMAScript Object.getOwnPropertyDescriptor() method works
only on instance properties; to retrieve the descriptor of a prototype property,
you must call Object.getOwnPropertyDescriptor() on the prototype object
directly.

Prototypes and the “in” Operator
There are two ways to use the in operator: on its own or as a for-in loop. When used on its own, the
in operator returns true when a property of the given name is accessible by the object, which is to say
that the property may exist on the instance or on the prototype. Consider the following example:

function Person() {}

Person.prototype.name = "Nicholas";
Person.prototype.age = 29;
Person.prototype.job = "Software Engineer";
Person.prototype.sayName = function() {
 console.log(this.name);
};

let person1 = new Person();
let person2 = new Person();

console.log(person1.hasOwnProperty("name")); // false
console.log("name" in person1); // true

person1.name = "Greg";
console.log(person1.name); // "Greg" - from instance
console.log(person1.hasOwnProperty("name")); // true
console.log("name" in person1); // true

console.log(person2.name); // "Nicholas" - from prototype
console.log(person2.hasOwnProperty("name")); // false
console.log("name" in person2); // true

delete person1.name;
console.log(person1.name); // "Nicholas" - from the prototype
console.log(person1.hasOwnProperty("name")); // false
console.log("name" in person1); // true

Throughout the execution of this code, the property name is available on each object either directly
or from the prototype. Therefore, calling "name" in person1 always returns true, regardless of
whether the property exists on the instance. It’s possible to determine if the property of an object
exists on the prototype by combining a call to hasOwnProperty() with the in operator like this:

function hasPrototypeProperty(object, name){
 return !object.hasOwnProperty(name) && (name in object);
}

282 ❘ CHAPTER 8 Objects, classes, and Object-Oriented PrOgramming

Because the in operator always returns true as long as the property is accessible by the object, and
hasOwnProperty() returns true only if the property exists on the instance, a prototype property
can be determined if the in operator returns true but hasOwnProperty() returns false. Consider
the following example:

function Person() {}

Person.prototype.name = "Nicholas";
Person.prototype.age = 29;
Person.prototype.job = "Software Engineer";
Person.prototype.sayName = function() {
 console.log(this.name);
};

let person = new Person();
console.log(hasPrototypeProperty(person, "name")); // true

person.name = "Greg";
console.log(hasPrototypeProperty(person, "name")); // false

In this code, the name property first exists on the prototype, so hasPrototypeProperty() returns
true. Once the name property is overwritten, it exists on the instance, so hasPrototypeProperty()
returns false. Even though the name property still exists on the prototype, it is no longer used
because the instance property now exists.

When using a for-in loop, all properties that are accessible by the object and can be enumerated will
be returned, which includes properties both on the instance and on the prototype. Instance proper-
ties that shadow a non-enumerable prototype property (a property that has [[Enumerable]] set to
false) will be returned in the for-in loop because all developer-defined properties are enumerable
by default.

To retrieve a list of all enumerable instance properties on an object, you can use the Object.keys()
method, which accepts an object as its argument and returns an array of strings containing the names
of all enumerable properties. For example:

function Person() {}

Person.prototype.name = "Nicholas";
Person.prototype.age = 29;
Person.prototype.job = "Software Engineer";
Person.prototype.sayName = function() {
 console.log(this.name);
};

let keys = Object.keys(Person.prototype);
console.log(keys); // "name,age,job,sayName"
let p1 = new Person();
p1.name = "Rob";
p1.age = 31;
let p1keys = Object.keys(p1);
console.log(p1keys); // "name,age"

Here, the keys variable is filled with an array containing "name", "age", "job", and "sayName". This
is the order in which they would normally appear using for-in. When called on an instance of Per-
son, Object.keys() returns an array of name and age, the only two instance properties.

Object Creation ❘ 283

If you’d like a list of all instance properties, whether enumerable or not, you can use Object.
getOwnPropertyNames() in the same way:

let keys = Object.getOwnPropertyNames(Person.prototype);
console.log(keys); // "constructor,name,age,job,sayName"

Note the inclusion of the non-enumerable constructor property in the list of results. Both Object.
keys() and Object.getOwnPropertyNames() may be suitable replacements for using for-in.

With the introduction of symbols in ECMAScript 6, the need for a sibling method to Object.
getOwnPropertyNames() became apparent because symbol-keyed properties do not have a concept
of a name. Therefore, Object.getOwnPropertySymbols() was introduced, which offers the same
behavior as Object.getOwnPropertyNames() but with respect to symbols:

let k1 = Symbol('k1'),
 k2 = Symbol('k2');

let o = {
 [k1]: 'k1',
 [k2]: 'k2'
};

console.log(Object.getOwnPropertySymbols(o));
// [Symbol(k1), Symbol(k2)]

Property Enumeration Order
for-in loops, Object.keys(), Object.getOwnPropertyNames/Symbols(), and Object.assign()
have an important distinction when it comes to property enumeration order. for-in loops and
Object.keys() do not have a deterministic order of enumeration—these are determined by the
JavaScript engine and may vary by browser.

Object.getOwnPropertyNames(), Object.getOwnPropertySymbols(), and Object.assign(),
however, do have a deterministic enumeration order. Number keys will first be enumerated in ascend-
ing order, then string and symbol keys enumerated in insertion order. Keys defined inline in an object
literal will be inserted in their comma delimited order.

let k1 = Symbol('k1'),
 k2 = Symbol('k2');

let o = {
 1: 1,
 first: 'first',
 [k1]: 'sym2',
 second: 'second',
 0: 0
};

o[k2] = 'sym2';
o[3] = 3;
o.third = 'third';
0[2] = 2;

console.log(Object.getOwnPropertyNames(o));

284 ❘ CHAPTER 8 Objects, classes, and Object-Oriented PrOgramming

// ["0", "1", "3", "first", "second", "third"]

console.log(Object.getOwnPropertySymbols(o));
// [Symbol(k1), Symbol(k2)]

Object Iteration
For most of JavaScript history, iterating the properties of an object was a messy affair. The ECMAS-
cript 2017 introduced two static methods for converting an object’s contents into a serialized—
and more importantly, iterable—format. These static methods, Object.values() and Object.
entries(), accept and object and return its contents in an array. Object.values() returns an array
of the object’s values, and Object.entries() returns an array of array pairs, each representing a
[key, value] pair in the object.

These methods are demonstrated here:

const o = {
 foo: 'bar',
 baz: 1,
 qux: {}
};

console.log(Object.values(o));
// ["bar", 1, {}]

console.log(Object.entries((o)));
// [["foo", "bar"], ["baz", 1], ["qux", {}]]

Note that non-string properties are converted to strings in the output array. Furthermore, the method
performs a shallow copy of the object:

const o = {
 qux: {}
};

console.log(Object.values(o)[0] === o.qux);
// true

console.log(Object.entries(o)[0][1] === o.qux);
// true

Symbol-keyed properties are ignored:

const sym = Symbol();
const o = {
 [sym]: 'foo'
};

console.log(Object.values(o));
// []

console.log(Object.entries((o)));
// []

Object Creation ❘ 285

Alternate Prototype Syntax
You may have noticed in the previous example that Person.prototype had to be typed out for each
property and method. To limit this redundancy and to better visually encapsulate functionality on the
prototype, it has become more common to simply overwrite the prototype with an object literal that
contains all of the properties and methods, as in this example:

function Person() {}

Person.prototype = {
 name: "Nicholas",
 age: 29,
 job: "Software Engineer",
 sayName() {
 console.log(this.name);
 }
};

In this rewritten example, the Person.prototype property is set equal to a new object created with
an object literal. The end result is the same, with one exception: the constructor property no longer
points to Person. When a function is created, its prototype object is created and the constructor
is automatically assigned. Essentially, this syntax overwrites the default prototype object completely,
meaning that the constructor property is equal to that of a completely new object (the Object
constructor) instead of the function itself. Although the instanceof operator still works reliably, you
cannot rely on the constructor to indicate the type of object, as this example shows:

let friend = new Person();

console.log(friend instanceof Object); // true
console.log(friend instanceof Person); // true
console.log(friend.constructor == Person); // false
console.log(friend.constructor == Object); // true

Here, instanceof still returns true for both Object and Person, but the constructor property
is now equal to Object instead of Person. If the constructor’s value is important, you can set it
specifically back to the appropriate value, as shown here:

function Person() {
}

Person.prototype = {
 constructor: Person,
 name: "Nicholas",
 age: 29,
 job: "Software Engineer",
 sayName() {
 console.log(this.name);
 }
};

This code specifically includes a constructor property and sets it equal to Person, ensuring that the
property contains the appropriate value.

286 ❘ CHAPTER 8 Objects, classes, and Object-Oriented PrOgramming

Keep in mind that restoring the constructor in this manner creates a property with [[Enumerable]]
set to true. Native constructor properties are not enumerable by default, so if you’re using an
ECMAScript–compliant JavaScript engine, you may wish to use Object.defineProperty() instead:

function Person() {}

Person.prototype = {
 name: "Nicholas",
 age: 29,
 job: "Software Engineer",
 sayName() {
 console.log(this.name);
 }
};

// restore the constructor
Object.defineProperty(Person.prototype, "constructor", {
 enumerable: false,
 value: Person
});

Dynamic Nature of Prototypes
Because the process of looking up values on a prototype is a search, changes made to the prototype
at any point are immediately reflected on instances, even the instances that existed before the change
was made. Here’s an example:

let friend = new Person();

Person.prototype.sayHi = function() {
 console.log("hi");
};

friend.sayHi(); // "hi" - works!

In this code, an instance of Person is created and stored in friend. The next statement adds a
method called sayHi() to Person.prototype. Even though the friend instance was created prior
to this change, it still has access to the new method. This happens because of the loose link between
the instance and the prototype. When friend.sayHi() is called, the instance is first searched for a
property named sayHi; when it’s not found, the search continues to the prototype. Because the link
between the instance and the prototype is simply a pointer, not a copy, the search finds the new sayHi
property on the prototype and returns the function stored there.

Although properties and methods may be added to the prototype at any time, and they are reflected
instantly by all object instances, you cannot overwrite the entire prototype and expect the same
behavior. The [[Prototype]] pointer is assigned when the constructor is called, so changing the
prototype to a different object severs the tie between the constructor and the original prototype.
Remember that the instance has a pointer to only the prototype, not to the constructor. Consider the
following:

function Person() {}

let friend = new Person();

Object Creation ❘ 287

Person.prototype = {
 constructor: Person,
 name: "Nicholas",
 age: 29,
 job: "Software Engineer",
 sayName() {
 console.log(this.name);
 }
};

friend.sayName(); // error

In this example, a new instance of Person is created before the prototype object is overwritten. When
friend.sayName() is called, it causes an error, because the prototype that friend points to doesn’t
contain a property of that name. Figure 8-3 illustrates why this happens.

Overwriting the prototype on the constructor means that new instances will reference the new proto-
type while any previously existing object instances still reference the old prototype.

Native Object Prototypes
The prototype pattern is important not just for defining custom types but also because it is the pat-
tern used to implement all of the native reference types. Each of these (including Object, Array,
String, and so on) has its methods defined on the constructor’s prototype. For instance, the sort()

Person

Before prototype assignment

prototype

[[Prototype]]

friend

Person Prototype

constructor

Person Prototype

constructor

age

job

New Person Prototype

constructor

name

sayName (function)

“Nicholas”

“Software Engineer”

29

Person

After prototype assignment

[[Prototype]]

[[Prototype]]

friend

FIGURE 8-3:

288 ❘ CHAPTER 8 Objects, classes, and Object-Oriented PrOgramming

method can be found on Array.prototype, and substring() can be found on String.prototype,
as shown here:

console.log(typeof Array.prototype.sort); // "function"
console.log(typeof String.prototype.substring); // "function"

Through native object prototypes, it’s possible to get references to all of the default methods and to
define new methods. Native object prototypes can be modified just like custom object prototypes, so
methods can be added at any time. For example, the following code adds a method called starts-
With() to the String primitive wrapper:

String.prototype.startsWith = function (text) {
 return this.indexOf(text) === 0;
};

let msg = "Hello world!";
console.log(msg.startsWith("Hello")); // true

The startsWith() method in this example returns true if some given text occurs at the beginning
of a string. The method is assigned to String.prototype, making it available to all strings in the
environment. Since msg is a string, the String primitive wrapper is created behind the scenes, making
startsWith() accessible.

NOTE Although possible, it is not recommended to modify native object proto-
types in a production environment. This can often cause confusion and create
possible name collisions if a method that didn’t exist natively in one browser
is implemented natively in another. It’s also possible to accidentally overwrite
native methods. The preferred method is to create a custom class that inherits
from the native type.

Problems with Prototypes
The prototype pattern isn’t without its faults. For one, it negates the ability to pass initialization
arguments into the constructor, meaning that all instances get the same property values by default.
Although this is an inconvenience, it isn’t the biggest problem with prototypes. The main problem
comes with their shared nature.

All properties on the prototype are shared among instances, which is ideal for functions. Properties
that contain primitive values also tend to work well, as shown in the previous example, where it’s
possible to hide the prototype property by assigning a property of the same name to the instance.
The real problem occurs when a property contains a reference value. Consider the following example:

function Person() {}

Person.prototype = {
 constructor: Person,
 name: "Nicholas",

Inheritance ❘ 289

 age: 29,
 job: "Software Engineer",
 friends: ["Shelby", "Court"],
 sayName() {
 console.log(this.name);
 }
};

let person1 = new Person();
let person2 = new Person();

person1.friends.push("Van");

console.log(person1.friends); // "Shelby,Court,Van"
console.log(person2.friends); // "Shelby,Court,Van"
console.log(person1.friends === person2.friends); // true

Here, the Person.prototype object has a property called friends that contains an array of strings.
Two instances of Person are then created. The person1.friends array is altered by adding another
string. Because the friends array exists on Person.prototype, not on person1, the changes made
are also reflected on person2.friends (which points to the same array). If the intention is to have
an array shared by all instances, then this outcome is okay. Typically, though, instances want to have
their own copies of all properties. This is why the prototype pattern is rarely used on its own.

INHERITANCE

The concept most often discussed in relation to OO programming is inheritance. Many OO languages
support two types of inheritance: interface inheritance, where only the method signatures are inher-
ited, and implementation inheritance, where actual methods are inherited. Interface inheritance is
not possible in ECMAScript because functions do not have signatures. Implementation inheritance is
the only type of inheritance supported by ECMAScript, and this is done primarily through the use of
prototype chaining.

Prototype Chaining
ECMA-262 describes prototype chaining as the primary method of inheritance in ECMAScript. The
basic idea is to use the concept of prototypes to inherit properties and methods between two refer-
ence types. Recall the relationship between constructors, prototypes, and instances: each constructor
has a prototype object that points back to the constructor, and instances have an internal pointer to
the prototype. What if the prototype were actually an instance of another type? That would mean the
prototype itself would have a pointer to a different prototype that, in turn, would have a pointer to
another constructor. If that prototype were also an instance of another type, then the pattern would
continue, forming a chain between instances and prototypes. This is the basic idea behind proto-
type chaining.

290 ❘ CHAPTER 8 Objects, classes, and Object-Oriented PrOgramming

Implementing prototype chaining involves the following code pattern:

function SuperType() {
 this.property = true;
}

SuperType.prototype.getSuperValue = function() {
 return this.property;
};

function SubType() {
 this.subproperty = false;
}

// inherit from SuperType
SubType.prototype = new SuperType();

SubType.prototype.getSubValue = function () {
 return this.subproperty;
};

let instance = new SubType();
console.log(instance.getSuperValue()); // true

This code defines two types: SuperType and SubType. Each type has a single property and a single
method. The main difference between the two is that SubType inherits from SuperType by creating
a new instance of SuperType and assigning it to SubType.prototype. This overwrites the original
prototype and replaces it with a new object, which means that all properties and methods that typi-
cally exist on an instance of SuperType now also exist on SubType.prototype. After the inheritance
takes place, a method is assigned to SubType.prototype, adding a new method on top of what was
inherited from SuperType. The relationship between the instance and both constructors and proto-
types is displayed in Figure 8-4.

SuperType

prototype

SubType

prototype

instance

[[Prototype]]

subproperty false

SuperType Prototype

constructor

getSuperValue (function)

getSubValue (function)

SubType Prototype

[[Prototype]]

property true

FIGURE 8-4:

Inheritance ❘ 291

Instead of using the default prototype of SubType, a new prototype is assigned. That new prototype
happens to be an instance of SuperType, so it not only gets the properties and methods of a Super-
Type instance but also points back to the SuperType’s prototype. So instance points to SubType.
prototype and SubType.prototype points to SuperType.prototype. Note that the getSuper-
Value() method remains on the SuperType.prototype object, but property ends up on SubType.
prototype. That’s because getSuperValue() is a prototype method, and property is an instance
property. SubType.prototype is now an instance of SuperType so property is stored there. Also
note that instance.constructor points to SuperType because the constructor property on the
SubType.prototype was overwritten.

Prototype chaining extends to the prototype search mechanism described earlier. As you may recall,
when a property is accessed in read mode on an instance, the property is first searched for on the
instance. If the property is not found, then the search continues to the prototype. When inheritance
has been implemented via prototype chaining, that search can continue up the prototype chain. In the
previous example, for instance, a call to instance.getSuperValue() results in a three-step search:
the instance, SubType.prototype, and SuperType.prototype, where the method is found. The
search for properties and methods always continues until the end of the prototype chain is reached.

Default Prototypes
In reality, there is another step in the prototype chain. All reference types inherit from Object by
default, which is accomplished through prototype chaining. The default prototype for any function is
an instance of Object, meaning that its internal prototype pointer points to Object.prototype. This
is how custom types inherit all of the default methods such as toString() and valueOf(). So the
previous example has an extra layer of inheritance. Figure 8-5 shows the complete prototype chain.

SubType inherits from SuperType, and SuperType inherits from Object. When instance.
toString() is called, the method being called actually exists on Object.prototype.

Prototype and Instance Relationships
The relationship between prototypes and instances is discernible in two ways. The first way is to use
the instanceof operator, which returns true whenever an instance is used with a constructor that
appears in its prototype chain, as in this example:

console.log(instance instanceof Object); // true
console.log(instance instanceof SuperType); // true
console.log(instance instanceof SubType); // true

Here, the instance object is technically an instance of Object, SuperType, and SubType because
of the prototype chain relationship. The result is that instanceof returns true for all of these
constructors.

The second way to determine this relationship is to use the isPrototypeOf() method. Each pro-
totype in the chain has access to this method, which returns true for an instance in the chain, as in
this example:

console.log(Object.prototype.isPrototypeOf(instance)); // true
console.log(SuperType.prototype.isPrototypeOf(instance)); // true
console.log(SubType.prototype.isPrototypeOf(instance)); // true

292 ❘ CHAPTER 8 Objects, classes, and Object-Oriented PrOgramming

Working with Methods
Often a subtype will need to either override a supertype method or introduce new methods that don’t
exist on the supertype. To accomplish this, the methods must be added to the prototype after the
prototype has been assigned. Consider this example:

function SuperType() {
 this.property = true;
}

SuperType.prototype.getSuperValue = function() {
 return this.property;
};

function SubType() {
 this.subproperty = false;
}

Object

prototype

SuperType

prototype

SubType

prototype

instance

[[Prototype]]

subproperty false

true

Object Prototype

constructor

hasOwnProperty

isPrototypeOf

propertyIsEnumerable

toLocaleString

toString

valueOf

(function)

(function)

(function)

(function)

(function)

(function)

SuperType Prototype

[[Prototype]]

constructor

getSuperValue (function)

SubType Prototype

[[Prototype]]

property

getSubValue (function)

FIGURE 8-5:

Inheritance ❘ 293

// inherit from SuperType
SubType.prototype = new SuperType();

// new method
SubType.prototype.getSubValue = function () {
 return this.subproperty;
};

// override existing method
SubType.prototype.getSuperValue = function () {
 return false;
};

let instance = new SubType();
console.log(instance.getSuperValue()); // false

In this code, the highlighted area shows two methods. The first is getSubValue(), which is a new
method on the SubType. The second is getSuperValue(), which already exists in the prototype
chain but is being shadowed here. When getSuperValue() is called on an instance of SubType,
it will call this one, but instances of SuperType will still call the original. The important thing to
note is that both of the methods are defined after the prototype has been assigned as an instance of
SuperType.

Another important thing to understand is that the object literal approach to creating prototype
methods cannot be used with prototype chaining because you end up overwriting the chain. Here’s
an example:

function SuperType() {
 this.property = true;
}

SuperType.prototype.getSuperValue = function() {
 return this.property;
};

function SubType() {
 this.subproperty = false;
}

// inherit from SuperType
SubType.prototype = new SuperType();

// try to add new methods - this nullifies the previous line
SubType.prototype = {
 getSubValue() {
 return this.subproperty;
 },

 someOtherMethod() {
 return false;
 }
};

let instance = new SubType();
console.log(instance.getSuperValue()); // error!

294 ❘ CHAPTER 8 Objects, classes, and Object-Oriented PrOgramming

In this code, the prototype is reassigned to be an object literal after it was already assigned to be an
instance of SuperType. The prototype now contains a new instance of Object instead of an instance
of SuperType, so the prototype chain has been broken. There is no relationship between SubType
and SuperType.

Problems with Prototype Chaining
Even though prototype chaining is a powerful tool for inheritance, it is not without its issues. The
major issue revolves around prototypes that contain reference values. Recall from earlier that prototype
properties containing reference values are shared with all instances; this is why properties are typi-
cally defined within the constructor instead of on the prototype. When implementing inheritance using
prototypes, the prototype actually becomes an instance of another type, meaning that what once were
instance properties are now prototype properties. The issue is highlighted by the following example:

function SuperType() {
 this.colors = ["red", "blue", "green"];
}

function SubType() {}

// inherit from SuperType
SubType.prototype = new SuperType();

let instance1 = new SubType();
instance1.colors.push("black");
console.log(instance1.colors); // "red,blue,green,black"

let instance2 = new SubType();
console.log(instance2.colors); // "red,blue,green,black"

In this example, the SuperType constructor defines a property, colors, that contains an array (a
reference value). Each instance of SuperType has its own colors property containing its own array.
When SubType inherits from SuperType via prototype chaining, SubType.prototype becomes an
instance of SuperType and so it gets its own colors property, which is akin to specifically creating
SubType.prototype.colors. The end result: all instances of SubType share a colors property. This
is indicated as the changes made to instance1.colors are reflected on instance2.colors.

A second issue with prototype chaining is that you cannot pass arguments into the supertype con-
structor when the subtype instance is being created. In fact, there is no way to pass arguments into
the supertype constructor without affecting all of the object instances. Because of this and the afore-
mentioned issue with reference values on the prototype, prototype chaining is rarely used alone.

Constructor Stealing
In an attempt to solve the inheritance problem with reference values on prototypes, developers began
using a technique called constructor stealing (also sometimes called object masquerading or classi-
cal inheritance). The basic idea is quite simple: call the supertype constructor from within the sub-
type constructor. Keeping in mind that functions are simply objects that execute code in a particular

Inheritance ❘ 295

context, the apply() and call() methods can be used to execute a constructor on the newly created
object, as in this example:

function SuperType() {
 this.colors = ["red", "blue", "green"];
}

function SubType() {
 // inherit from SuperType
 SuperType.call(this);
}

let instance1 = new SubType();
instance1.colors.push("black");
console.log(instance1.colors); // "red,blue,green,black"

let instance2 = new SubType();
console.log(instance2.colors); // "red,blue,green"

The highlighted lines in this example show the single call that is used in constructor stealing. By using
the call() method (or alternately, apply()), the SuperType constructor is called in the context of
the newly created instance of SubType. Doing this effectively runs all of the object-initialization code
in the SuperType() function on the new SubType object. The result is that each instance has its own
copy of the colors property.

Passing Arguments
One advantage that constructor stealing offers over prototype chaining is the ability to pass argu-
ments into the supertype constructor from within the subtype constructor. Consider the following:

function SuperType(name){
 this.name = name;
}

function SubType() {
 // inherit from SuperType passing in an argument
 SuperType.call(this, "Nicholas");

 // instance property
 this.age = 29;
}

let instance = new SubType();
console.log(instance.name); // "Nicholas";
console.log(instance.age); // 29

In this code, the SuperType constructor accepts a single argument, name, which is simply assigned to
a property. A value can be passed into the SuperType constructor when called from within the Sub-
Type constructor, effectively setting the name property for the SubType instance. To ensure that the
SuperType constructor doesn’t overwrite those properties, you can define additional properties on
the subtype after the call to the supertype constructor.

296 ❘ CHAPTER 8 Objects, classes, and Object-Oriented PrOgramming

Problems with Constructor Stealing
The downside to using constructor stealing exclusively is that it introduces the same problems as the
constructor pattern for custom types: Methods must be defined inside the constructor, so there’s no
function reuse. Furthermore, methods defined on the supertype’s prototype are not accessible on the
subtype, so all types can use only the constructor pattern. Because of these issues, constructor stealing
is rarely used on its own.

Combination Inheritance
Combination inheritance (sometimes also called pseudoclassical inheritance) combines prototype
chaining and constructor stealing to get the best of each approach. The basic idea is to use prototype
chaining to inherit properties and methods on the prototype and to use constructor stealing to inherit
instance properties. This allows function reuse by defining methods on the prototype and allows each
instance to have its own properties. Consider the following:

function SuperType(name){
 this.name = name;
 this.colors = ["red", "blue", "green"];
}

SuperType.prototype.sayName = function() {
 console.log(this.name);
};

function SubType(name, age){
 // inherit properties
 SuperType.call(this, name);

 this.age = age;
}

// inherit methods
SubType.prototype = new SuperType();

SubType.prototype.sayAge = function() {
 console.log(this.age);
};

let instance1 = new SubType("Nicholas", 29);
instance1.colors.push("black");
console.log(instance1.colors); // "red,blue,green,black"
instance1.sayName(); // "Nicholas";
instance1.sayAge(); // 29

let instance2 = new SubType("Greg", 27);
console.log(instance2.colors); // "red,blue,green"
instance2.sayName(); // "Greg";
instance2.sayAge(); // 27

In this example, the SuperType constructor defines two properties, name and colors, and the Super-
Type prototype has a single method called sayName(). The SubType constructor calls the SuperType
constructor, passing in the name argument, and defines its own property, called age. Additionally, the

Inheritance ❘ 297

SubType prototype is assigned to be an instance of SuperType, and then a new method, called say-
Age(), is defined. With this code, it’s then possible to create two separate instances of SubType that
have their own properties, including the colors property, but all use the same methods.

Addressing the downsides of both prototype chaining and constructor stealing, combination inherit-
ance is the most frequently used inheritance pattern in JavaScript. It also preserves the behavior of
instanceof and isPrototypeOf() for identifying the composition of objects.

Prototypal Inheritance
In 2006, Douglas Crockford wrote an article, “Prototypal Inheritance in JavaScript,” in which he
introduced a method of inheritance that didn’t involve the use of strictly defined constructors. His
premise was that prototypes allow you to create new objects based on existing objects without the
need for defining custom types. The function he introduced to this end is as follows:

function object(o) {
 function F() {}
 F.prototype = o;
 return new F();
}

The object() function creates a temporary constructor, assigns a given object as the construc-
tor’s prototype, and returns a new instance of the temporary type. Essentially, object() performs a
shadow copy of any object that is passed into it. Consider the following:

let person = {
 name: "Nicholas",
 friends: ["Shelby", "Court", "Van"]
};

let anotherPerson = object(person);
anotherPerson.name = "Greg";
anotherPerson.friends.push("Rob");

let yetAnotherPerson = object(person);
yetAnotherPerson.name = "Linda";
yetAnotherPerson.friends.push("Barbie");

console.log(person.friends); // "Shelby,Court,Van,Rob,Barbie"

This is the way Crockford advocates using prototypal inheritance: you have an object that you want
to use as the base of another object. That object should be passed into object(), and the resulting
object should be modified accordingly. In this example, the person object contains information that
should be available on another object, so it is passed into the object() function, which returns a new
object. The new object has person as its prototype, meaning that it has both a primitive value prop-
erty and a reference value property on its prototype. This also means that person.friends is shared
not only by person but also with anotherPerson and yetAnotherPerson. Effectively, this code has
created two clones of person.

ECMAScript 5 formalized the concept of prototypal inheritance by adding the Object.create()
method. This method accepts two arguments, an object to use as the prototype for a new object and
an optional object defining additional properties to apply to the new object. When used with one
argument, Object.create() behaves the same as the object() method:

298 ❘ CHAPTER 8 Objects, classes, and Object-Oriented PrOgramming

let person = {
 name: "Nicholas",
 friends: ["Shelby", "Court", "Van"]
};

let anotherPerson = Object.create(person);
anotherPerson.name = "Greg";
anotherPerson.friends.push("Rob");

let yetAnotherPerson = Object.create(person);
yetAnotherPerson.name = "Linda";
yetAnotherPerson.friends.push("Barbie");

console.log(person.friends); // "Shelby,Court,Van,Rob,Barbie"

The second argument for Object.create() is in the same format as the second argument for
Object.defineProperties(): each additional property to define is specified along with its descrip-
tor. Any properties specified in this manner will shadow properties of the same name on the proto-
type object. For example:

let person = {
 name: "Nicholas",
 friends: ["Shelby", "Court", "Van"]
};

let anotherPerson = Object.create(person, {
 name: {
 value: "Greg"
 }
});
console.log(anotherPerson.name); // "Greg"

Prototypal inheritance is useful when there is no need for the overhead of creating separate construc-
tors, but you still need an object to behave similarly to another. Keep in mind that properties contain-
ing reference values will always share those values, similar to using the prototype pattern.

Parasitic Inheritance
Closely related to prototypal inheritance is the concept of parasitic inheritance, another pattern
popularized by Crockford. The idea behind parasitic inheritance is similar to that of the parasitic
constructor and factory patterns: create a function that does the inheritance, augments the object in
some way, and then returns the object as if it did all the work. The basic parasitic inheritance pattern
looks like this:

function createAnother(original){
 let clone = object(original); // create a new object by calling a function
 clone.sayHi = function() { // augment the object in some way
 console.log("hi");
 };
 return clone; // return the object
}

Inheritance ❘ 299

In this code, the createAnother() function accepts a single argument, which is the object to base a
new object on. This object, original, is passed into the object() function, and the result is assigned
to clone. Next, the clone object is changed to have a new method called sayHi(). The last step is to
return the object. The createAnother() function can be used in the following way:

let person = {
 name: "Nicholas",
 friends: ["Shelby", "Court", "Van"]
};

let anotherPerson = createAnother(person);
anotherPerson.sayHi(); // "hi"

The code in this example returns a new object based on person. The anotherPerson object has all of
the properties and methods of person but adds a new method called sayHi().

Parasitic inheritance is another pattern to use when you are concerned primarily with objects and not
with custom types and constructors. The object() method is not required for parasitic inheritance;
any function that returns a new object fits the pattern.

NOTE Keep in mind that adding functions to objects using parasitic inheri-
tance leads to inefficiencies related to function reuse, similar to the constructor
pattern.

Parasitic Combination Inheritance
Combination inheritance is not without its inefficiencies. The most inefficient part of the pattern is
that the supertype constructor is always called twice: once to create the subtype’s prototype, and once
inside the subtype constructor. Essentially, the subtype prototype ends up with all of the instance
properties of a supertype object, only to have it overwritten when the subtype constructor executes.
Consider the combination inheritance example again:

function SuperType(name) {
 this.name = name;
 this.colors = ["red", "blue", "green"];
}

SuperType.prototype.sayName = function() {
 console.log(this.name);
};

function SubType(name, age){
 SuperType.call(this, name); // second call to SuperType()

 this.age = age;
}

SubType.prototype = new SuperType(); // first call to SuperType()
SubType.prototype.constructor = SubType;

300 ❘ CHAPTER 8 Objects, classes, and Object-Oriented PrOgramming

SubType.prototype.sayAge = function() {
 console.log(this.age);
};

The highlighted lines of code indicate when the SuperType constructor is executed. When this code
is executed, SubType.prototype ends up with two properties: name and colors. These are instance
properties for SuperType, but they are now on the SubType’s prototype. When the SubType construc-
tor is called, the SuperType constructor is also called, which creates instance properties name and
colors on the new object that mask the properties on the prototype. Figure 8-6 illustrates this process.

SubType

Initially

SubType.prototype = new SuperType()

prototype

SubType Prototype

constructor

SuperType

prototype

SuperType Prototype

constructor

SubType

prototype

SubType Prototype

[[Prototype]]

colors

(undefined)

(array)

name

var instance = new SubType(”Nicholas”, 29)

SuperType

prototype

SuperType Prototype

constructor

SubType

prototype

SubType Prototype

[[Prototype]]

colors

(undefined)

(array)

name

instance

[[Prototype]]

colors

age

“Nicholas”

(array)

29

name

FIGURE 8-6:

Inheritance ❘ 301

As you can see, there are two sets of name and colors properties: one on the instance and one on the
SubType prototype. This is the result of calling the SuperType constructor twice. Fortunately, there is
a way around this.

Parasitic combination inheritance uses constructor stealing to inherit properties but uses a hybrid
form of prototype chaining to inherit methods. The basic idea is this: Instead of calling the supertype
constructor to assign the subtype’s prototype, all you need is a copy of the supertype’s prototype.
Essentially, use parasitic inheritance to inherit from the supertype’s prototype and then assign the
result to the subtype’s prototype. The basic pattern for parasitic combination inheritance is as follows:

function inheritPrototype(subType, superType) {
 let prototype = object(superType.prototype); // create object
 prototype.constructor = subType; // augment object
 subType.prototype = prototype; // assign object
}

The inheritPrototype() function implements very basic parasitic combination inheritance. This
function accepts two arguments: the subtype constructor and the supertype constructor. Inside the
function, the first step is to create a clone of the supertype’s prototype. Next, the constructor
property is assigned onto prototype to account for losing the default constructor property when
the prototype is overwritten. Finally, the subtype’s prototype is assigned to the newly created object. A
call to inheritPrototype() can replace the subtype prototype assignment in the previous example,
as shown here:

function SuperType(name) {
 this.name = name;
 this.colors = ["red", "blue", "green"];
}

SuperType.prototype.sayName = function() {
 console.log(this.name);
};

function SubType(name, age) {
 SuperType.call(this, name);

 this.age = age;
}

inheritPrototype(SubType, SuperType);

SubType.prototype.sayAge = function() {
 console.log(this.age);
};

This example is more efficient in that the SuperType constructor is being called only one time, avoid-
ing having unnecessary and unused properties on SubType.prototype. Furthermore, the prototype
chain is kept intact, so both instanceof and isPrototypeOf() behave as they would normally.
Parasitic combination inheritance is considered the most optimal inheritance paradigm for refer-
ence types.

302 ❘ CHAPTER 8 Objects, classes, and Object-Oriented PrOgramming

CLASSES

The previous sections are an in-depth overview of how it was possible to emulate class-like behavior
using only features available in ECMAScript 5. It is not difficult to conclude that the strategies shown
presented various problems and tradeoffs. On top of this, the syntax was inarguably excessively ver-
bose and messy.

To address these problems, newly introduced in ECMAScript 6 is the ability to formally define classes
using the class keyword. Classes are a fundamentally new syntactical construct in ECMAScript, and
therefore they may feel unfamiliar at first. Although ECMAScript 6 classes appear to feature canoni-
cal object-oriented programming, they still uses prototype and constructor concepts under the hood.

Class Definition Basics
Similar to the function type, there are two primary ways of defining a class: class declarations and
class expressions. Both use the class keyword and curly braces:

// class declaration
class Person {}

// class expression
const Animal = class {};

Like function expressions, class expressions cannot be referenced until they are evaluated in execu-
tion. However, an important departure from the parallel behavior of function definition is that, while
function declarations are hoisted, class declarations are not:

console.log(FunctionExpression); // undefined
var FunctionExpression = function() {};
console.log(FunctionExpression); // function() {}

console.log(FunctionDeclaration); // FunctionDeclaration() {}
function FunctionDeclaration() {}
console.log(FunctionDeclaration); // FunctionDeclaration() {}

console.log(ClassExpression); // undefined
var ClassExpression = class {};
console.log(ClassExpression); // class {}

console.log(ClassDeclaration); // ReferenceError: ClassDeclaration is not defined
class ClassDeclaration {}
console.log(ClassDeclaration); // class ClassDeclaration {}

Also a departure from function declarations, which are function scoped, class declarations are
block scoped:

{
 function FunctionDeclaration() {}
 class ClassDeclaration {}
}

Classes ❘ 303

console.log(FunctionDeclaration); // FunctionDeclaration() {}
console.log(ClassDeclaration); // ReferenceError: ClassDeclaration is not defined

Class Composition
A class can be composed of the class’s constructor method, instance methods, getters, setters, and
static class methods. None of these are explicitly required; an empty class definition is valid syntax.
By default, everything inside a class definition executes in strict mode.

As with function constructors, most style guides will direct you to capitalize the class name to
distinguish it from instances that are created from it (for example, class Foo {} might create an
instance foo):

// Valid empty class definition
class Foo {}

// Valid class definition with constructor
class Bar {
 constructor() {}
}

// Valid class definition with getter
class Baz {
 get myBaz() {}
}

// Valid class definition with static method
class Qux {
 static myQux() {}
}

Class expressions may be optionally named. When the expression is assigned to a variable, the name
property may be used to retrieve the class expression name string, but the identifier itself is not acces-
sible outside the class expression scope.

let Person = class PersonName {
 identify() {
 console.log(Person.name, PersonName.name);
 }
}

let p = new Person();

p.identify(); // PersonName, PersonName

console.log(Person.name); // PersonName
console.log(PersonName); // ReferenceError: PersonName is not defined

The Class Constructor
The constructor keyword is used inside the class definition block to signal the definition of the
class’s constructor function. Using the method name constructor will signal to the interpreter that
this particular function should be invoked to create a fresh instance using the new operator. Definition

304 ❘ CHAPTER 8 Objects, classes, and Object-Oriented PrOgramming

of the constructor is optional; electing not to define the class constructor is the same as defining the
constructor as an empty function.

Instantiation
Instantiating a Person using the new operator operates identically to using new with a function con-
structor. The only perceptible difference is that the JavaScript interpreter understands that using new
with a class means the constructor function should be used for instantiation.

Calling a class constructor using new will do the following:

1. A new object is created in memory.

2. The new object’s internal [[Prototype]] pointer is assigned to be the constructor’s proto-
type property.

3. The this value of the constructor is assigned to the new object (so this points to the new
object when referenced inside the constructor).

4. The code inside the constructor is executed (adds properties to the new object).

5. If the constructor function returns an object, that object is returned. Otherwise, the new
object that was just created is returned.

class Animal {}

class Person {
 constructor() {
 console.log('person ctor');
 }
}

class Vegetable {
 constructor() {
 this.color = 'orange';
 }
}

let a = new Animal();

let p = new Person(); // person ctor

let v = new Vegetable();
console.log(v.color); // orange

Parameters provided when instantiating the class are used as parameters to the constructor function.
If you do not require the use of parameters, empty parentheses following the class name are optional:

class Person {
 constructor(name) {
 console.log(arguments.length);
 this.name = name || null;
 }
}

let p1 = new Person; // 0
console.log(p1.name); // null

Classes ❘ 305

let p2 = new Person(); // 0
console.log(p2.name); // null

let p3 = new Person('Jake'); // 1
console.log(p3.name); // Jake

By default, the constructor will return the this object after execution. If an object is returned from
the constructor function, that value will be used as the instantiated object and the newly created this
object will be discarded if a reference to it is not preserved. However, if a different object is returned,
the returned object will not be associated with the class via instanceof because its prototype pointer
was never modified.

class Person {
 constructor(override) {
 this.foo = 'foo';
 if (override) {
 return {
 bar: 'bar'
 };
 }
 }
}

let p1 = new Person(),
 p2 = new Person(true);

console.log(p1); // Person{ foo: 'foo' }
console.log(p1 instanceof Person); // true

console.log(p2); // { bar: 'bar' }
console.log(p2 instanceof Person); // false

One major departure from function constructors is that the use of the new operator with class con-
structors is mandatory. With function constructors, when electing not to use the new operator, the
constructor would use the global this value—typically the window object—inside the constructor.
With class constructors, neglecting to use the new operator will throw an error:

function Person() {}

class Animal {}

// Constructs instance using window as 'this'
let p = Person();

let a = Animal();
// TypeError: class constructor Animal cannot be invoked without 'new'

The class constructor method is not special and, after instantiation, behaves as a regular instance
method (with the same constructor restrictions). Because of this, you are able to reference and use it
post-instantiation:

class Person {}

// Create a new instance using the class
let p1 = new Person();

306 ❘ CHAPTER 8 Objects, classes, and Object-Oriented PrOgramming

p1.constructor();
// TypeError: Class constructor Person cannot be invoked without 'new'

// Create a new instance using the reference to the class constructor
let p2 = new p1.constructor();

Understanding Classes as Special Functions
There is no formal class type in the ECMAScript specification, and in many ways ECMAScript classes
behave like special functions. Once declared, the class identifier identifies as a function when checked
with the typeof operator:

class Person {}

console.log(Person); // class Person {}
console.log(typeof Person); // function

The class identifier has a prototype property, and the prototype has a constructor property that
refers back to the class itself:

class Person{}

console.log(Person.prototype); // { constructor: f() }
console.log(Person === Person.prototype.constructor); // true

As with function constructors, you can use the instanceof operator to test if the constructor proto-
type appears in the prototype chain of an instance:

class Person {}

let p = new Person();

console.log(p instanceof Person); // true

You have likely come to understand that the instanceof operator checks an instance’s prototype
chain against a constructor function, which in this example would be checking the instance p against
the constructor function Person, which appears to be a class.

As shown earlier, the class behaves in the same way as a constructor function, and in the context of
classes, the class itself is considered the constructor when new is applied to it. Importantly, the con-
structor method inside the class definition is not considered to be the constructor, and will return false
when used with instanceof. If the constructor method is invoked directly, this is the same as using a
non-class function constructor, and the instanceof convention will reverse:

class Person {}

let p1 = new Person();

console.log(p1.constructor === Person); // true
console.log(p1 instanceof Person); // true
console.log(p1 instanceof Person.constructor); // false

let p2 = new Person.constructor();

console.log(p2.constructor === Person); // false

Classes ❘ 307

console.log(p2 instanceof Person); // false
console.log(p2 instanceof Person.constructor); // true

Classes are first-class citizens in JavaScript, meaning they can be passed around as you would any
other object or function reference:

// Classes may be defined anywhere a function would, such as inside an array:
let classList = [
 class {
 constructor(id) {
 this.id_ = id;
 console.log('instance ${this.id_}');
 }
 }
];

function createInstance(classDefinition, id) {
 return new classDefinition(id);
}

let foo = createInstance(classList[0], 3141); // instance 3141

Similar to an immediately invoked function expression, a class can also be immediately instantiated:

// Because it is a class expression, the class name is optional
let p = new class Foo {
 constructor(x) {
 console.log(x);
 }
}('bar'); // bar

console.log(p); // Foo {}

Instance, Prototype, and Class Members
The class definition syntax allows you to neatly define members that should exist on an object
instance, members that should exist on the object prototype, and members that should exist on the
class itself.

Instance Members
Each time new <classname> is invoked, the constructor function will execute. Inside this function,
you are able to populate the freshly created instance (the this object) with “own” properties. There
are no restrictions to what may be added to the new instance and no restrictions on members added
after the constructor exits.

Each instance is assigned unique member objects, meaning nothing is shared on the prototype:

class Person {
 constructor() {
 // For this example, define a string with object wrapper
 // as to check object equality between instances below
 this.name = new String('Jack');

308 ❘ CHAPTER 8 Objects, classes, and Object-Oriented PrOgramming

 this.sayName = () => console.log(this.name);

 this.nicknames = ['Jake', 'J-Dog']
 }
}

let p1 = new Person(),
 p2 = new Person();

p1.sayName(); // Jack
p2.sayName(); // Jack

console.log(p1.name === p2.name); // false
console.log(p1.sayName === p2.sayName); // false
console.log(p1.nicknames === p2.nicknames); // false

p1.name = p1.nicknames[0];
p2.name = p2.nicknames[1];

p1.sayName(); // Jake
p2.sayName(); // J-Dog

Prototype Methods and Accessors
To allow for sharing of methods between instances, the class definition syntax allows for definition of
methods on the prototype object inside the class body.

class Person {
 constructor() {
 // Everything added to 'this' will exist on each individual instance
 this.locate = () => console.log('instance');
 }

 // Everything defined in the class body is defined on the class prototype object
 locate() {
 console.log('prototype');
 }
}

let p = new Person();

p.locate(); // instance
Person.prototype.locate(); // prototype

Methods can be defined in either location, but member data such as primitives and objects cannot be
added to the prototype inside the class body:

class Person {
 name: 'Jake'
}
// Uncaught SyntaxError: Unexpected token :

Class methods behave identically to object properties, meaning they can be keyed with strings, sym-
bols, or computed values:

const symbolKey = Symbol('symbolKey');

class Person {

Classes ❘ 309

 stringKey() {
 console.log('invoked stringKey');
 }
 [symbolKey]() {
 console.log('invoked symbolKey');
 }
 ['computed' + 'Key']() {
 console.log('invoked computedKey');
 }
}

let p = new Person();

p.stringKey(); // invoked stringKey
p[symbolKey](); // invoked symbolKey
p.computedKey(); // invoked computedKey

Class definitions also support getters and setter accessors. The syntax and behavior is identical to that
of regular objects:

class Person {
 set name(newName) {
 this.name_ = newName;
 }

 get name() {
 return this.name_;
 }
}

let p = new Person();
p.name = 'Jake';
console.log(p.name); // Jake

Static Class Methods and Accessors
It is also possible to define methods on the class itself. These are intended to be used in situations
where a function performs an action that is not centered on a specific instance and does not require a
class instance to actually exist. Like prototype members, these are only ever created once per class.

A static class member is designated using the static keyword as a prefix inside the class definition.
Inside static members, this refers to the class itself. All other conventions are identical to proto-
type members:

class Person {
 constructor() {
 // Everything added to 'this' will exist on each individual instance
 this.locate = () => console.log('instance', this);
 }

 // Defined on the class prototype object
 locate() {
 console.log('prototype', this);
 }

 // Defined on the class

310 ❘ CHAPTER 8 Objects, classes, and Object-Oriented PrOgramming

 static locate() {
 console.log('class', this);
 }
}

let p = new Person();

p.locate(); // instance, Person {}
Person.prototype.locate(); // prototype, {constructor: ... }
Person.locate(); // class, class Person {}

You may often find that these static class methods are useful as instance factories:

class Person {
 constructor(age) {
 this.age_ = age;
 }

 sayAge() {
 console.log(this.age_);
 }

 static create() {
 // Create and return a person instance with a random age
 return new Person(Math.floor(Math.random()*100));
 }
}

console.log(Person.create()); // Person { age_:... }

Non-Function Prototype and Class Members
Although the class definition does not explicitly support adding member data to prototypes or classes,
outside the class definition there is nothing preventing you from adding them manually:

class Person {
 sayName() {
 console.log('${Person.greeting} ${this.name}');
 }
}

// Define data member on class
Person.greeting = 'My name is';

// Define data member on prototype
Person.prototype.name = 'Jake';

let p = new Person();
p.sayName(); // My name is Jake

NOTE One main reason these are not explicitly allowed is that mutable data
members in a shared object can be an antipattern. Generally, object instances
should own the data that they reference from this.

Classes ❘ 311

Iterator and Generator Methods
The class definition syntax allows for definition of generator methods on both the prototype and the
class itself:

class Person {
 // define generator on prototype
 *createNicknameIterator() {
 yield 'Jack';
 yield 'Jake';
 yield 'J-Dog';
 }

 // define generator on class
 static *createJobIterator() {
 yield 'Butcher';
 yield 'Baker';
 yield 'Candlestick maker';
 }
}

let jobIter = Person.createJobIterator();
console.log(jobIter.next().value); // Butcher
console.log(jobIter.next().value); // Baker
console.log(jobIter.next().value); // Candlestick maker

let p = new Person();
let nicknameIter = p.createNicknameIterator();
console.log(nicknameIter.next().value); // Jack
console.log(nicknameIter.next().value); // Jake
console.log(nicknameIter.next().value); // J-Dog

Because generator methods are supported, it is possible to make a class instance iterable by adding a
default iterator:

class Person {
 constructor() {
 this.nicknames = ['Jack', 'Jake', 'J-Dog'];
 }

 *[Symbol.iterator]() {
 yield *this.nicknames.entries();
 }
}

let p = new Person();
for (let [idx, nickname] of p) {
 console.log(nickname);
}
// Jack
// Jake
// J-Dog

Alternately, to merely return the iterator instance:

class Person {
 constructor() {

312 ❘ CHAPTER 8 Objects, classes, and Object-Oriented PrOgramming

 this.nicknames = ['Jack', 'Jake', 'J-Dog'];
 }

 [Symbol.iterator]() {
 return this.nicknames.entries();
 }
}

let p = new Person();
for (let [idx, nickname] of p) {
 console.log(nickname);
}
// Jack
// Jake
// J-Dog

Inheritance
Earlier in the chapter, we covered the laborious details of implementing inheritance using ES5 mechanisms.
One of the best additions in the ECMAScript 6 specification is native support for a class inheritance mecha-
nism. Although it makes use of a new syntax, class inheritance still uses the prototype chain under the hood.

Inheritance Basics
ES6 classes support a single inheritance format. Using the extends keyword, you are able to inherit from
anything that has a [[Construct]] property and a prototype. For the most part, this means inheriting
from another class, but this also allows for backwards compatibility with function constructors:

class Vehicle {}

// Inherit from class
class Bus extends Vehicle {}

let b = new Bus();
console.log(b instanceof Bus); // true
console.log(b instanceof Vehicle); // true

function Person() {}

// Inherit from function constructor
class Engineer extends Person {}

let e = new Engineer();
console.log(e instanceof Engineer); // true
console.log(e instanceof Person); // true

Both class and prototype methods are carried down to the derived class. The value of this reflects
the class or instance that is invoking the method:

class Vehicle {
 identifyPrototype(id) {
 console.log(id, this);
 }

Classes ❘ 313

 static identifyClass(id) {
 console.log(id, this);
 }
}

class Bus extends Vehicle {}

let v = new Vehicle();
let b = new Bus();

b.identifyPrototype('bus'); // bus, Bus {}
v.identifyPrototype('vehicle'); // vehicle, Vehicle {}

Bus.identifyClass('bus'); // bus, class Bus {}
Vehicle.identifyClass('vehicle'); // vehicle, class Vehicle {}

NOTE The extends keyword is valid inside class expressions, so let Bar =
class extends Foo {} is perfectly valid syntax.

Constructors, HomeObjects, and super()
Derived class methods have a reference to their prototype via the super keyword. This is only avail-
able for derived classes, and only available inside the constructor or inside static methods. super is
used inside the constructor to control when to invoke the parent class constructor.

class Vehicle {
 constructor() {
 this.hasEngine = true;
 }
}

class Bus extends Vehicle {
 constructor() {
 // Cannot reference 'this' before super(), will throw ReferenceError

 super(); // same as super.constructor()

 console.log(this instanceof Vehicle); // true
 console.log(this); // Bus { hasEngine: true }
 }
}

new Bus();

super can also be used inside static methods to invoke static methods defined on the inherited class:

class Vehicle {
 static identify() {
 console.log('vehicle');
 }

314 ❘ CHAPTER 8 Objects, classes, and Object-Oriented PrOgramming

}

class Bus extends Vehicle {
 static identify() {
 super.identify();
 }
}

Bus.identify(); // vehicle

NOTE ES6 gives the constructor and static methods a reference to the internal
[[HomeObject]], which points to the object the method is defined upon. This
pointer is assigned automatically and is only accessible internally inside the Java-
Script engine. super will always be defined as the prototype of [[HomeObject]].

Things to note when using super:

➤➤ super can only be used in a derived class constructor or static method.

class Vehicle {
 constructor() {
 super();
 // SyntaxError: 'super' keyword unexpected
 }
}

➤➤ The super keyword cannot be referenced by itself; it must be either invoked as a constructor
or used to reference a static method.

class Vehicle {}

class Bus extends Vehicle {
 constructor() {
 console.log(super);
 // SyntaxError: 'super' keyword unexpected here
 }
}

➤➤ Calling super() will invoke the parent class constructor and assign the resulting
instance to this.

class Vehicle {}

class Bus extends Vehicle {
 constructor() {
 super();

 console.log(this instanceof Vehicle);
 }
}

new Bus(); // true

Classes ❘ 315

➤➤ super() behaves like a constructor function; you must manually pass arguments to it to
pass them to the parent constructor.

class Vehicle {
 constructor(licensePlate) {
 this.licensePlate = licensePlate;
 }
}

class Bus extends Vehicle {
 constructor(licensePlate) {
 super(licensePlate);
 }
}

console.log(new Bus('1337H4X')); // Bus { licensePlate: '1337H4X' }

➤➤ If you decline to define a constructor function, super() will be invoked and all arguments
passed to the derived class constructor.

class Vehicle {
 constructor(licensePlate) {
 this.licensePlate = licensePlate;
 }
}

class Bus extends Vehicle {}

console.log(new Bus('1337H4X')); // Bus { licensePlate: '1337H4X' }

➤➤ You cannot reference this inside the constructor before invoking super().

class Vehicle {}

class Bus extends Vehicle {
 constructor() {
 console.log(this);
 }
}

new Bus();
// ReferenceError: Must call super constructor in derived class
// before accessing 'this' or returning from derived constructor

➤➤ If a class is derived from a parent class and you explicitly define a constructor, you must
either invoke super() or return an object from the constructor.

class Vehicle {}

class Car extends Vehicle {}

class Bus extends Vehicle {
 constructor() {
 super();
 }
}

316 ❘ CHAPTER 8 Objects, classes, and Object-Oriented PrOgramming

class Van extends Vehicle {
 constructor() {
 return {};
 }
}

console.log(new Car()); // Car {}
console.log(new Bus()); // Bus {}
console.log(new Van()); // {}

Abstract Base Classes
You may find a need to define a class that should be inherited from but not directly instantiated.
Although ECMAScript does not explicitly support this, it is easy to implement using new.target,
which informs you what was used in conjunction with the new keyword. You can prevent direct
instantiation by checking that new.target is never the abstract base class:

// Abstract base class
class Vehicle {
 constructor() {
 console.log(new.target);
 if (new.target === Vehicle) {
 throw new Error('Vehicle cannot be directly instantiated');
 }
 }
}

// Derived class
class Bus extends Vehicle {}

new Bus(); // class Bus {}
new Vehicle(); // class Vehicle {}
// Error: Vehicle cannot be directly instantiated

It is also possible to require that a method be defined on a derived class by checking for it in the
abstract base class constructor. Because prototype methods exist before the constructor is invoked,
you can check for them on the this keyword:

// Abstract base class
class Vehicle {
 constructor() {
 if (new.target === Vehicle) {
 throw new Error('Vehicle cannot be directly instantiated');
 }

 if (!this.foo) {
 throw new Error('Inheriting class must define foo()');
 }

 console.log('success!');
 }
}

Classes ❘ 317

// Derived class
class Bus extends Vehicle {
 foo() {}
}

// Derived class
class Van extends Vehicle {}

new Bus(); // success!
new Van(); // Error: Inheriting class must define foo()

Inheriting from Built-in Types
ES6 classes offer seamless interoperability with existing built-in reference types, allowing you to
extend them easily:

class SuperArray extends Array {
 shuffle() {
 // Fisher-Yates shuffle
 for (let i = this.length - 1; i > 0; i--) {
 const j = Math.floor(Math.random() * (i + 1));
 [this[i], this[j]] = [this[j], this[i]];
 }
 }
}

let a = new SuperArray(1, 2, 3, 4, 5);

console.log(a instanceof Array); // true
console.log(a instanceof SuperArray); // true

console.log(a); // [1, 2, 3, 4, 5]
a.shuffle();
console.log(a); // [3, 1, 4, 5, 2]

Some built-in types have methods defined in which a new object instance is returned. By default, the
type of this object instance will match the type of the original instance:

class SuperArray extends Array {}

let a1 = new SuperArray(1, 2, 3, 4, 5);
let a2 = a1.filter(x => !!(x%2))

console.log(a1); // [1, 2, 3, 4, 5]
console.log(a2); // [1, 3, 5]
console.log(a1 instanceof SuperArray); // true
console.log(a2 instanceof SuperArray); // true

If you wish to override this, you can override the Symbol.species accessor, which is used to deter-
mine the class to be used to create the returned instance:

class SuperArray extends Array {
 static get [Symbol.species]() {
 return Array;
 }

318 ❘ CHAPTER 8 Objects, classes, and Object-Oriented PrOgramming

}

let a1 = new SuperArray(1, 2, 3, 4, 5);
let a2 = a1.filter(x => !!(x%2))

console.log(a1); // [1, 2, 3, 4, 5]
console.log(a2); // [1, 3, 5]
console.log(a1 instanceof SuperArray); // true
console.log(a2 instanceof SuperArray); // false

Class Mixins
A common pattern in JavaScript is to bundle together behavior from several different classes into a
single package. Although ES6 classes do not explicitly support inheriting from multiple classes, the
feature offers extensibility that can be cleverly wielded to emulate such behavior.

NOTE The Object.assign() method is designed to offer mixin behavior from
object mixins. Implementing your own mixin expressions is only necessary
when your mixins take the form of classes. If you only need to merge properties
between multiple objects, prefer to use Object.assign().

The reference following the extends keyword is a JavaScript expression. Any syntax is valid there as
long as it resolves to a class or function constructor. The expression is evaluated when the class defini-
tion is evaluated:

class Vehicle {}

function getParentClass() {
 console.log('evaluated expression');
 return Vehicle;
}

class Bus extends getParentClass() {}
// evaluated expression

A mixin pattern can be achieved by chaining multiple mixin elements inside the expression, which
will resolve into a single class that can be inherited from. If a class Person needs to incorporate
mixins A, B, and C, you will in some form architect a pattern that configures B to inherit from A, C
to inherit from B, and Person to inherit from C—thereby joining all three mixins into the superclass.
There are several strategies that can accomplish such a pattern.

One strategy is to define “nestable” functions that accept a superclass as a parameter, define the mixin
class as a subclass of the parameter, and return that class. These mixins can be chained inside each
other and provided as the superclass expression:

class Vehicle {}

let FooMixin = (Superclass) => class extends Superclass {

 foo() {
 console.log('foo');
 }
};
let BarMixin = (Superclass) => class extends Superclass {
 bar() {
 console.log('bar');
 }
};
let BazMixin = (Superclass) => class extends Superclass {
 baz() {
 console.log('baz');
 }
};

class Bus extends FooMixin(BarMixin(BazMixin(Vehicle))) {}

let b = new Bus();
b.foo(); // foo
b.bar(); // bar
b.baz(); // baz

It is possible to flatten this nesting using a utility function:

class Vehicle {}

let FooMixin = (Superclass) => class extends Superclass {
 foo() {
 console.log('foo');
 }
};
let BarMixin = (Superclass) => class extends Superclass {
 bar() {
 console.log('bar');
 }
};
let BazMixin = (Superclass) => class extends Superclass {
 baz() {
 console.log('baz');
 }
};

function mix(BaseClass, ...Mixins) {
 return Mixins.reduce((accumulator, current) => current(accumulator), BaseClass);
}

class Bus extends mix(Vehicle, FooMixin, BarMixin, BazMixin) {}

let b = new Bus();
b.foo(); // foo
b.bar(); // bar
b.baz(); // baz

Classes ❘ 319

320 ❘ CHAPTER 8 Objects, classes, and Object-Oriented PrOgramming

NOTE Many JavaScript frameworks, most notably React, are moving away
from mixin patterns and toward composition (in the form of extracting methods
into separate classes and utilities, and incorporating those piecemeal without the
use of inheritance). This reflects the well-known software principle of “compo-
sition over inheritance,” which is regarded by many to offer superior flexibility
and code design.

SUMMARY

Objects are created and augmented at any point during code execution, making objects into dynamic,
rather than strictly defined, entities. The following patterns are used for the creation of objects:

➤➤ The factory pattern uses a simple function that creates an object, assigns properties and
methods, and then returns the object. This pattern fell out of favor when the constructor
pattern emerged.

➤➤ With the constructor pattern, it’s possible to define custom reference types that can be cre-
ated using the new operator in the same way as built-in object instances are created. The
constructor pattern does have a downside, however, in that none of its members are reused,
including functions. Because functions can be written in a loosely typed manner, there’s no
reason they cannot be shared by multiple object instances.

➤➤ The prototype pattern takes this into account, using the constructor’s prototype property
to assign properties and methods that should be shared. The combination constructor/pro-
totype pattern uses the constructor to define instance properties and the prototype pattern
to define shared properties and methods.

Inheritance in JavaScript is implemented primarily using the concept of prototype chaining. Prototype
chaining involves assigning a constructor’s prototype to be an instance of another type. In doing so,
the subtype assumes all of the properties and methods of the supertype in a manner similar to class-
based inheritance. The problem with prototype chaining is that all of the inherited properties and
methods are shared among object instances, making it ill-suited for use on its own. The constructor
stealing pattern avoids these issues, calling the supertype’s constructor from inside of the subtype’s
constructor. This allows each instance to have its own properties but forces the types to be defined
using only the constructor pattern. The most popular pattern of inheritance is combination inheri-
tance, which uses prototype chaining to inherit shared properties and methods and uses constructor
stealing to inherit instance properties.

There are also the following alternate inheritance patterns:

➤➤ Prototypal inheritance implements inheritance without the need for predefined constructors,
essentially performing a shallow clone operation on a given object. The result of the opera-
tion then may be augmented further.

Summary ❘ 321

➤➤ Closely related is parasitic inheritance, which is a pattern for creating an object based on
another object or some information, augmenting it, and returning it. This pattern has also
been repurposed for use with combination inheritance to remove the inefficiencies related to
the number of times the supertype constructor is called.

➤➤ Parasitic combination inheritance is considered the most efficient way to implement type-
based inheritance.

New in ECMAScript 6 is the introduction of classes, which are largely a syntactical wrapper for
existing prototype-based concepts. This syntax confers to the language the ability to elegantly define
classes that are backwards compatible and can inherit from built-in or custom classes. Classes
elegantly bridge the gap between object instances, object prototypes, and object classes.

Proxies and Reflect
WHAT’S IN THIS CHAPTER?

➤➤ Proxy fundamentals

➤➤ Proxy traps and reflect methods

➤➤ Proxy patterns

Freshly introduced in ECMAScript 6, proxies and reflection are totally new constructs that
afford you the ability to intercept and shim additional behavior into fundamental operations
within the language. More specifically, you can define a proxy object associated with a target
object, and the proxy object can be used as an abstracted target object within which you can
control what happens when various operations are performed before they actually reach the
target object.

For developers approaching this subject for the first time, this is a fairly nebulous concept
paired with a healthy corpus of new terminology. Working through multiple examples will help
to cement your understanding.

NOTE There is no analogue for proxies in ECMAScript versions prior to
ES6. Because it is a fundamentally new language ability, many transpilers
are unable to convert proxy behavior into earlier ECMAScript versions
because replicating the behavior of a proxy is effectively impossible. There-
fore, proxies and reflection are useful only in situations where native
support is offered on 100 percent of platforms. It is possible to detect
support for proxies and divert to fallback code as necessary, but this would
lead to code duplication and is therefore discouraged.

9

Professional JavaScript® for Web Developers, Fourth Edition. Matt Frisbie.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

324 ❘ CHAPTER 9 Proxies and reflect

PROXY FUNDAMENTALS

As mentioned in the chapter introduction, a proxy behaves as an abstraction for a target object. In
many ways, it is analogous to a C++ pointer in that it can be wielded as a stand-in for the target
object it points to but is, in fact, totally separate from the target object. The target object can either
be manipulated directly or through the proxy, but manipulating directly will circumvent the behavior
that a proxy enables.

Creating a Passthrough Proxy
In its simplest form, a proxy can exist as nothing more than an abstracted target object. By default, all
operations performed on a proxy object will be transparently propagated through to the target object.
Therefore, you are able to use a proxy object in all the same ways and places that you would use the
target object that the proxy object is associated with.

A proxy is created using the Proxy constructor. It requires you to provide both a target object and a
handler object, without which a TypeError is thrown. For a simple passthrough proxy, using a sim-
ple object literal for the handler object will allow all operations to reach the target object unimpeded.

As shown here, all operations performed on the proxy will effectively be applied to the target object
instead. The only perceptible difference is the identity of the proxy object.

const target = {
 id: 'target'
};

const handler = {};

const proxy = new Proxy(target, handler);

// The 'id' property will access the same value
console.log(target.id); // target
console.log(proxy.id); // target

// Assignment to a target property changes both since
// both are accessing the same value.
target.id = 'foo';
console.log(target.id); // foo
console.log(proxy.id); // foo

// Assignment to a proxy property changes both since
// this assignment is conferred to the target object.
proxy.id = 'bar';
console.log(target.id); // bar
console.log(proxy.id); // bar

NOTE There are key differences between ECMAScript proxies and C++ pointers
that will be discussed later, but for introductory purposes pointers are a suitable
conceptual building block.

Proxy Fundamentals ❘ 325

// The hasOwnProperty() method is effectively applied
// to the target in both cases.
console.log(target.hasOwnProperty('id')); // false
console.log(proxy.hasOwnProperty('id')); // false

// The instanceof operator is effectively applied
// to the target in both cases.
console.log(target instanceof Proxy); // false
console.log(proxy instanceof Proxy); // false

// Strict object equality can still be used to
// differentiate proxy from target.
console.log(target === proxy); // false

Defining Traps
The primary purpose of a proxy is to allow you to define traps, which behave as “fundamental
operation interceptors” inside the handler object. Each handler object is made up of zero, one, or
many traps, and each trap corresponds to a fundamental operation that can be directly or indirectly
called on the proxy. When these fundamental operations are called on the proxy object, before being
invoked on the target object, the proxy will invoke the trap function instead, allowing you to inter-
cept and modify its behavior.

NOTE The term “trap” is borrowed from the world of operating systems, where
a trap is a synchronous interrupt in program flow that diverts processor execu-
tion to execute a subroutine before returning to the original program flow.

For example, you are able to define a get() trap that is triggered each time any ECMAScript opera-
tion performs a get() in one form or another. Such a trap can be defined as follows:

const target = {
 foo: 'bar'
};

const handler = {
 // Traps are keyed by method name inside the handler object
 get() {
 return 'handler override';
 }
};

const proxy = new Proxy(target, handler);

When a get() operation is called on this proxy object, the trap function that is defined for get()
will be invoked instead. Of course, get() is not a usable method on ECMAScript objects. The
get() operation that is being trapped is shared between multiple operations that can be found in
actual JavaScript code. Operations of the form proxy[property], proxy.property, or Object.
create(proxy)[property] will all use the fundamental operation get() to retrieve the property,

326 ❘ CHAPTER 9 Proxies and reflect

and therefore all of these will invoke the trap function instead when they are used on the proxy. Only
the proxy will use the trap handler functions; these operations will behave normally when used with
the target object.

const target = {
 foo: 'bar'
};

const handler = {
 // Traps are keyed by method name inside the handler object
 get() {
 return 'handler override';
 }
};

const proxy = new Proxy(target, handler);

console.log(target.foo); // bar
console.log(proxy.foo); // handler override

console.log(target['foo']); // bar
console.log(proxy['foo']); // handler override

console.log(Object.create(target)['foo']); // bar
console.log(Object.create(proxy)['foo']); // handler override

Trap Parameters and the Reflect API
All traps have access to parameters that will allow you to fully recreate the original behavior of the
trapped method. For example, the get() method receives a reference to the target object, the prop-
erty being looked up, and a reference to the proxy object.

const target = {
 foo: 'bar'
};

const handler = {
 get(trapTarget, property, receiver) {
 console.log(trapTarget === target);
 console.log(property);
 console.log(receiver === proxy);
 }
};

const proxy = new Proxy(target, handler);

proxy.foo;
// true
// foo
// true

Proxy Fundamentals ❘ 327

Thus, it is possible to define a trap handler that wholly recreates the behavior of the method
being trapped:

const target = {
 foo: 'bar'
};

const handler = {
 get(trapTarget, property, receiver) {
 return trapTarget[property];
 }
};

const proxy = new Proxy(target, handler);

console.log(proxy.foo); // bar
console.log(target.foo); // bar

Such a tactic can be implemented for all traps, but not all trap behavior is as simple to recreate as
get(); therefore, this is an impractical strategy. Instead of manually implementing the contents of the
trapped method, the original behavior of the trapped method is wrapped inside an identically named
method on the global Reflect object.

Every method that can be trapped inside a handler object has a corresponding Reflect API method. This
method has an identical name and function signature, and performs the exact behavior that the trapped
method is intercepting. Therefore, it is possible to define a passthrough proxy using only the Reflect API:

const target = {
 foo: 'bar'
};

const handler = {
 get() {
 return Reflect.get(...arguments);
 }
};

const proxy = new Proxy(target, handler);

console.log(proxy.foo); // bar
console.log(target.foo); // bar

Alternately, in a more succinct format:

const target = {
 foo: 'bar'
};

const handler = {
 get: Reflect.get
};

const proxy = new Proxy(target, handler);

console.log(proxy.foo); // bar
console.log(target.foo); // bar

328 ❘ CHAPTER 9 Proxies and reflect

If you wish to create a true passthrough proxy that traps every available method and forwards each
one to its corresponding Reflect API function, defining an explicit handler object is not required:

const target = {
 foo: 'bar'
};

const proxy = new Proxy(target, Reflect);

console.log(proxy.foo); // bar
console.log(target.foo); // bar

The Reflect API allows you to modify the trapped method with minimal boilerplate code. For exam-
ple, the following decorates the return value whenever a certain property is accessed:

const target = {
 foo: 'bar',
 baz: 'qux'
};

const handler = {
 get(trapTarget, property, receiver) {
 let decoration = '';
 if (property === 'foo') {
 decoration = '!!!';
 }

 return Reflect.get(...arguments) + decoration;
 }
};

const proxy = new Proxy(target, handler);

console.log(proxy.foo); // bar!!!
console.log(target.foo); // bar

console.log(proxy.baz); // qux
console.log(target.baz); // qux

Trap Invariants
Traps give you a broad ability to change how nearly any fundamental method behaves, but they are
not without restriction. Each trapped method is aware of the target object context and trap function
signature, and the behavior of the trap handler function must obey the “trap invariants” as specified
in the ECMAScript specification. Trap invariants vary by method, but in general they will prevent the
trap definition from exhibiting any grossly unexpected behavior.

For example, if a target object has a non-configurable and non-writable data property, a TypeEr-
ror will be thrown if you attempt to return a value from the trap that is different from the target
object’s property:

const target = {};
Object.defineProperty(target, 'foo', {
 configurable: false,

Proxy Fundamentals ❘ 329

 writable: false,
 value: 'bar'
});

const handler = {
 get() {
 return 'qux';
 }
};

const proxy = new Proxy(target, handler);

console.log(proxy.foo);
// TypeError

Revocable Proxies
You may find a need for disabling the association between the proxy object and the target object. For
a normal proxy created with new Proxy(), this association lasts the lifetime of the proxy object.

Proxy also exposes a revocable() method, which provides you with an additional revoke func-
tion that can be called to disassociate the proxy object from the target object. Revoking the proxy is
irreversible. Furthermore, the revoke function is idempotent and will not have further effect if called
multiple times. Any method called on a proxy after it is revoked will throw a TypeError.

The revoke function can be captured upon proxy instantiation:

const target = {
 foo: 'bar'
};

const handler = {
 get() {
 return 'intercepted';
 }
};

const { proxy, revoke } = Proxy.revocable(target, handler);

console.log(proxy.foo); // intercepted
console.log(target.foo); // bar

revoke();

console.log(proxy.foo); // TypeError

Utility of the Reflect API
There are a handful of reasons to favor the Reflect API in certain situations.

330 ❘ CHAPTER 9 Proxies and reflect

Reflect API vs. Object API
When diving into the Reflect API, remember:

1. The Reflect API is not limited to trap handler

2. Most Reflect API methods have an analogue on the Object type.

In general, the Object methods are geared for general application use, and the Reflect methods are
geared for fine-tuned object control and manipulation.

Status Flags
Many Reflect methods return a Boolean, indicating if the operation they intend to perform will
be successful or not. In certain situations, this is more useful than how other Reflect API methods
behave, which will either return the modified object or throw an error (depending on the method).
For example, you can use the Reflect API to perform the following refactor:

// Initial code

const o = {};

try {
 Object.defineProperty(o, 'foo', 'bar');
 console.log('success');
} catch(e) {
 console.log('failure');
}

In the event of a problem with defining the new property, Reflect.defineProperty will return
false instead of throwing an error, enabling you to do the following:

// Refactored code

const o = {};

if(Object.defineProperty(o, 'foo', 'bar')) {
 console.log('success');
} else {
 console.log('failure');
}

The following Reflect methods provide you with status flags:

➤➤ Reflect.defineProperty

➤➤ Reflect.preventExtensions

➤➤ Reflect.setPrototypeOf

➤➤ Reflect.set

➤➤ Reflect.deleteProperty

Proxy Fundamentals ❘ 331

Supplanting Operators with First-Class Functions
Several Reflect methods offer behavior that is available only via operators:

➤➤ Reflect.get() accesses behavior that is only available otherwise via object property access.

➤➤ Reflect.set() accesses behavior that is only available otherwise via the = assignment operator.

➤➤ Reflect.has() accesses behavior that is only available otherwise via the in operator or with().

➤➤ Reflect.deleteProperty() accesses behavior that is only available otherwise via the
delete operator.

➤➤ Reflect.construct() accesses behavior that is only available otherwise via the
new operator.

Safe Function Application
When invoking a function using the apply method, there is a small possibility that the function being
called defines its own apply property. To circumvent this, it is possible to pluck the apply method off
the Function prototype, as follows:

Function.prototype.apply.call(myFunc, thisVal, argumentList);

This nightmarish line of code can be avoided and fully replicated using Reflect.apply:

Reflect.apply(myFunc, thisVal, argumentsList);

Proxying a Proxy
Proxies are capable of intercepting Reflect API operations, and this means that it is entirely possible
to create a proxy of a proxy. This allows you to build multiple layers of indirection on top of a singu-
lar target object:

const target = {
 foo: 'bar'
};

const firstProxy = new Proxy(target, {
 get() {
 console.log('first proxy');
 return Reflect.get(...arguments);
 }
});

const secondProxy = new Proxy(firstProxy, {
 get() {
 console.log('second proxy');
 return Reflect.get(...arguments);
 }
});

console.log(secondProxy.foo);
// second proxy
// first proxy
// bar

332 ❘ CHAPTER 9 Proxies and reflect

Proxy Considerations and Shortcomings
Proxies are a new API built upon existing ECMAScript infrastructure, and therefore their implemen-
tation was best-effort. For the most part, proxies work very well as a virtualization layer for objects.
Nevertheless, proxies cannot always seamlessly integrate with existing ECMAScript constructs in
certain scenarios.

’this’ Inside a Proxy
One potential source of trouble with proxies is the value of this. As you might expect, the this
value inside a method will respect the object upon which it was called:

const target = {
 thisValEqualsProxy() {
 return this === proxy;
 }
}

const proxy = new Proxy(target, {});

console.log(target.thisValEqualsProxy()); // false
console.log(proxy.thisValEqualsProxy()); // true

Intuitively, this should make perfect sense: Any method called on a proxy, proxy.outerMethod(),
which in turn calls another method inside its function body, this.innerMethod(), should effectively
be invoking proxy.innerMethod(). In most cases, this is certainly the expected behavior; however, if
your target relies on object identity, you may encounter unexpected issues.

Recall the WeakMap private variable implementation from the Collection Reference Types chapter, an
abridged version of which is displayed here:

const wm = new WeakMap();

class User {
 constructor(userId) {
 wm.set(this, userId);
 }

 set id(userId) {
 wm.set(this, userId);
 }

 get id() {
 return wm.get(this);
 }
}

Because this implementation relies on the object identity of the User instance, it will encounter prob-
lems when the user instance is proxied:

const user = new User(123);
console.log(user.id); // 123

const userInstanceProxy = new Proxy(user, {});
console.log(userInstanceProxy.id); // undefined

Proxy Traps and Reflect Methods ❘ 333

The user instance is initially being keyed in the weak map with the target object, but the proxy is
attempting to retrieve that instance with the proxy object. The solution to such a problem is to recon-
figure the proxying such that the initial key insertion is done with a proxy instance—a feat that can
be accomplished by proxying the User class itself, and instantiating a proxy of the class:

const UserClassProxy = new Proxy(User, {});
const proxyUser = new UserClassProxy(456);
console.log(proxyUser.id);

Proxies and Internal Slots
Often, you will find that instances of built-in reference types can work alongside proxies seamlessly,
as is the case with Array. However, some ECMAScript built-in types can rely on mechanisms that
proxies cannot control. The result of this is that some methods on a wrapped instance will flat out
not work properly.

The canonical example of this is the Date type. Per the ECMAScript specification, Date types rely
on the existence of an “internal slot” named [[NumberData]] on the this value when executing
methods. Because the internal slot does not exist on the proxy, and because these internal slot values
are not accessed via the normal get and set operations that a proxy could otherwise intercept and
redirect to the target, the method will throw a TypeError:

const target = new Date();
const proxy = new Proxy(target, {});

console.log(proxy instanceof Date); // true

proxy.getDate(); // TypeError: 'this' is not a Date object

PROXY TRAPS AND REFLECT METHODS

Proxies are able to trap thirteen different fundamental operations. Each has its own entry in the
Reflect API, parameters, associated ECMAScript operations, and invariants.

As demonstrated earlier, several different JavaScript operations may invoke the same trap handler.
However, for any single operation that is performed on a proxy object, only one trap handler will
ever be called; there is no overlap of trap coverage.

All traps will also intercept their corresponding Reflect API operations if they are invoked on
the proxy.

get()
The get() trap is called inside operations that retrieve a property value. Its corresponding Reflect
API method is Reflect.get().

const myTarget = {};

const proxy = new Proxy(myTarget, {
 get(target, property, receiver) {
 console.log('get()');

334 ❘ CHAPTER 9 Proxies and reflect

 return Reflect.get(...arguments)
 }
});

proxy.foo;
// get()

Return value
The return value is unrestricted.

Intercepted operations
proxy.property

proxy[property]

Object.create(proxy)[property]

Reflect.get(proxy, property, receiver)

Trap handler parameters
target: Target object

property: String key property being referenced on target object

receiver: Proxy object or object that inherits from proxy object

Trap invariants
If target.property is non-writable and non-configurable, the handler return value must match
target.property.

If target.property is non-configurable and has undefined as its [[Get]] attribute, the handler
return value must also be undefined.

set()
The set() trap is called inside operations that assign a property value. Its corresponding Reflect API
method is Reflect.set().

const myTarget = {};

const proxy = new Proxy(myTarget, {
 set(target, property, value, receiver) {
 console.log('set()');
 return Reflect.set(...arguments)
 }
});

proxy.foo = 'bar';
// set()

Proxy Traps and Reflect Methods ❘ 335

Return value
A return value of true indicates success; a return value of false indicates failure, and in strict mode
will throw a TypeError.

Intercepted operations
proxy.property = value

proxy[property] = value

Object.create(proxy)[property] = value

Reflect.set(proxy, property, value, receiver)

Trap handler parameters
target: Target object

property: String key property being referenced on target object

value: The value being assigned to property

receiver: The original assignment recipient object

Trap invariants
If target.property is non-writable and non-configurable, the target property value cannot
be altered.

If target.property is non-configurable and has undefined as its [[Set]] attribute, the target
property value cannot be altered.

Returning false from the handler will throw a TypeError in strict mode.

has()
The has() trap is called inside the in operator. Its corresponding Reflect API method is
Reflect.has().

const myTarget = {};

const proxy = new Proxy(myTarget, {
 has(target, property) {
 console.log('has()');
 return Reflect.has(...arguments)
 }
});

'foo' in proxy;
// has()

336 ❘ CHAPTER 9 Proxies and reflect

Return value
has() must return a Boolean indicating if the property is present or not. Non-Boolean return values
will be coerced into a Boolean.

Intercepted operations
property in proxy

property in Object.create(proxy)

with(proxy) {(property);}

Reflect.has(proxy, property)

Trap handler parameters
target: Target object

property: String key property being referenced on target object

Trap invariants
If an own target.property exists and is non-configurable, the handler must return true.

If an own target.property exists and the target object is non-extensible, the handler must
return true.

defineProperty()
The defineProperty() trap is called inside Object.defineProperty(). Its corresponding Reflect
API method is Reflect.defineProperty().

const myTarget = {};

const proxy = new Proxy(myTarget, {
 defineProperty(target, property, descriptor) {
 console.log('defineProperty()');
 return Reflect.defineProperty(...arguments)
 }
});

Object.defineProperty(proxy, 'foo', { value: 'bar' });
// defineProperty()

Return value
defineProperty() must return a Boolean indicating if the property was successfully defined or not.
Non-Boolean return values will be coerced into a Boolean.

Intercepted operations
Object.defineProperty(proxy, property, descriptor)

Reflect.defineProperty(proxy, property, descriptor)

Proxy Traps and Reflect Methods ❘ 337

Trap handler parameters
target: Target object

property: String key property being referenced on target object

descriptor: Object containing optional definitions for enumerable, configurable, writable, value,
get, or set

Trap invariants
If the target object is non-extensible, properties cannot be added.

If the target object has a configurable property, a non-configurable property of the same key can-
not be added.

If the target object has a non-configurable property, a configurable property of the same key can-
not be added.

getOwnPropertyDescriptor()
The getOwnPropertyDescriptor() trap is called inside Object.getOwnPropertyDescriptor().
Its corresponding Reflect API method is Reflect.getOwnPropertyDescriptor().

const myTarget = {};

const proxy = new Proxy(myTarget, {
 getOwnPropertyDescriptor(target, property) {
 console.log('getOwnPropertyDescriptor()');
 return Reflect.getOwnPropertyDescriptor(...arguments)
 }
});

Object.getOwnPropertyDescriptor(proxy, 'foo');
// getOwnPropertyDescriptor()

Return value
getOwnPropertyDescriptor() must return an object, or undefined if the property does not exist.

Intercepted operations
property in proxy

property in Object.create(proxy)

with(proxy) {(property);}

Reflect.has(proxy, property)

Trap handler parameters
target: Target object

property: String key property being referenced on target object

338 ❘ CHAPTER 9 Proxies and reflect

Trap invariants
If an own target.property exists and is non-configurable, the handler must return an object to
indicate that the property exists.

If an own target.property exists and is configurable, the handler cannot return an object indicat-
ing that the property is configurable.

If an own target.property exists and target is non-extensible, the handler must return an object
to indicate that the property exists.

If target.property does not exist and target is non-extensible, the handler must return undefined
to indicate that the property does not exist.

If target.property does not exist, the handler cannot return an object indicating that the property
is configurable.

deleteProperty()
The deleteProperty() trap is called inside the delete operator. Its corresponding Reflect API
method is Reflect.deleteProperty().

const myTarget = {};

const proxy = new Proxy(myTarget, {
 deleteProperty(target, property) {
 console.log('deleteProperty()');
 return Reflect.deleteProperty(...arguments)
 }
});

delete proxy.foo
// deleteProperty()

Return value
deleteProperty()must return a Boolean indicating if the property was successfully deleted or not.
Non-Boolean return values will be coerced into a Boolean.

Intercepted operations
delete proxy.property

delete proxy[property]

Reflect.deleteProperty(proxy, property)

Trap handler parameters
target: Target object

property: String key property being referenced on target object

Proxy Traps and Reflect Methods ❘ 339

Trap invariants
If an own target.property exists and is non-configurable, the handler cannot delete the property.

ownKeys()
The ownKeys() trap is called inside Object.keys() and similar methods. Its corresponding Reflect
API method is Reflect.ownKeys().

const myTarget = {};

const proxy = new Proxy(myTarget, {
 ownKeys(target) {
 console.log('ownKeys()');
 return Reflect.ownKeys(...arguments)
 }
});

Object.keys(proxy);
// ownKeys()

Return value
ownKeys()must return an enumerable object that contains either strings or symbols.

Intercepted operations
Object.getOwnPropertyNames(proxy)

Object.getOwnPropertySymbols(proxy)

Object.keys(proxy)

Reflect.ownKeys(proxy)

Trap handler parameters
target: Target object

Trap invariants
The returned enumerable object must contain all non-configurable own properties of target.

If target is non-extensible, the returned enumerable object must exactly contain the own property
keys of target.

getPrototypeOf()
The getPrototypeOf() trap is called inside Object.getPrototypeOf(). Its corresponding Reflect
API method is Reflect.getPrototypeOf().

const myTarget = {};

340 ❘ CHAPTER 9 Proxies and reflect

const proxy = new Proxy(myTarget, {
 getPrototypeOf(target) {
 console.log('getPrototypeOf()');
 return Reflect.getPrototypeOf(...arguments)
 }
});

Object.getPrototypeOf(proxy);
// getPrototypeOf()

Return value
getPrototypeOf()must return an object or null.

Intercepted operations
Object.getPrototypeOf(proxy)

Reflect.getPrototypeOf(proxy)

proxy.__proto__

Object.prototype.isPrototypeOf(proxy)

proxy instanceof Object

Trap handler parameters
target: Target object

Trap invariants
If target is non-extensible, the only valid return value of Object.getPrototypeOf(proxy) is the
value returned from Object.getPrototypeOf(target).

setPrototypeOf()
The setPrototypeOf() trap is called inside Object.setPrototypeOf(). Its corresponding Reflect
API method is Reflect.setPrototypeOf().

const myTarget = {};

const proxy = new Proxy(myTarget, {
 setPrototypeOf(target, prototype) {
 console.log('setPrototypeOf()');
 return Reflect.setPrototypeOf(...arguments)
 }
});

Object.setPrototypeOf(proxy, Object);
// setPrototypeOf()

Proxy Traps and Reflect Methods ❘ 341

Return value
setPrototypeOf() must return a Boolean indicating if the prototype assignment was successful or
not. Non-Boolean return values will be coerced into a Boolean.

Intercepted operations
Object.setPrototypeOf(proxy)

Reflect.setPrototypeOf(proxy)

Trap handler parameters
target: Target object

prototype: The intended replacement prototype for target, or null if this is to be a top-
level prototype

Trap invariants
If target is non-extensible, the only valid prototype parameter is the value returned from Object.
getPrototypeOf(target).

isExtensible()
The isExtensible() trap is called inside Object.isExtensible(). Its corresponding Reflect API
method is Reflect. isExtensible ().

const myTarget = {};

const proxy = new Proxy(myTarget, {
 isExtensible(target) {
 console.log('isExtensible()');
 return Reflect.isExtensible(...arguments)
 }
});

Object.isExtensible(proxy);
// isExtensible()

Return value
isExtensible() must return a Boolean indicating if the prototype assignment was successful or not.
Non-Boolean return values will be coerced into a Boolean.

Intercepted operations
Object.isExtensible(proxy)

Reflect.isExtensible(proxy)

342 ❘ CHAPTER 9 Proxies and reflect

Trap handler parameters
target: Target object

Trap invariants
If target is extensible, the handler must return true.

If target is non-extensible, the handler must return false.

preventExtensions()
The preventExtensions() trap is called inside Object.preventExtensions(). Its corresponding
Reflect API method is Reflect.preventExtensions().

const myTarget = {};

const proxy = new Proxy(myTarget, {
 preventExtensions(target) {
 console.log('preventExtensions()');
 return Reflect.preventExtensions(...arguments)
 }
});

Object.preventExtensions(proxy);
// preventExtensions()

Return value
preventExtensions() must return a Boolean indicating if target is already non-extensible. Non-
Boolean return values will be coerced into a Boolean.

Intercepted operations
Object.preventExtensions(proxy)

Reflect.preventExtensions(proxy)

Trap handler parameters
target: Target object

Trap invariants
If Object.isExtensible(proxy) is false, the handler must return true.

apply()
The apply() trap is called on function calls. Its corresponding Reflect API method is
Reflect.apply().

const myTarget = () => {};

Proxy Traps and Reflect Methods ❘ 343

const proxy = new Proxy(myTarget, {
 apply(target, thisArg, ...argumentsList) {
 console.log('apply()');
 return Reflect.apply(...arguments)
 }
});

proxy();
// apply()

Return value
The return value is unrestricted.

Intercepted operations
proxy(...argumentsList)

Function.prototype.apply(thisArg, argumentsList)

Function.prototype.call(thisArg, ...argumentsList)

Reflect.apply(target, thisArgument, argumentsList)

Trap handler parameters
target: Target object

thisArg: this argument for the function call

argumentsList: List of arguments for the function call

Trap invariants
target must be a function object.

construct()
The construct() trap is called inside the new operator. Its corresponding Reflect API method is
Reflect.construct().

const myTarget = function() {};

const proxy = new Proxy(myTarget, {
 construct(target, argumentsList, newTarget) {
 console.log('construct()');
 return Reflect.construct(...arguments)
 }
});

new proxy;
// construct()

Return value
construct() must return an object.

344 ❘ CHAPTER 9 Proxies and reflect

Intercepted operations
new proxy(...argumentsList)

Reflect.construct(target, argumentsList, newTarget)

Trap handler parameters
target: Target constructor

argumentsList: List of arguments passed to the target constructor

newTarget: The originally called constructor

Trap invariants
target must be able to be used as a constructor.

PROXY PATTERNS

The Proxy API allows you to introduce some incredibly useful patterns into your code.

Tracking Property Access
The nature of get, set, and has affords you total insight into when object properties are being
accessed and inspected. If you provide a trapped proxy to an object throughout your application, you
will be able to see exactly when and where this object is accessed:

const user = {
 name: 'Jake'
};

const proxy = new Proxy(user, {
 get(target, property, receiver) {
 console.log('Getting ${property}');

 return Reflect.get(...arguments);
 },
 set(target, property, value, receiver) {
 console.log('Setting ${property}=${value}');

 return Reflect.set(...arguments);
 }
});

proxy.name; // Getting name
proxy.age = 27; // Setting age=27

Proxy Patterns ❘ 345

Hidden Properties
The innards of proxies are totally hidden to remote code so it is very easy to conceal the existence of
properties on the target object. For example:

const hiddenProperties = ['foo', 'bar'];
const targetObject = {
 foo: 1,
 bar: 2,
 baz: 3
};
const proxy = new Proxy(targetObject, {
 get(target, property) {
 if (hiddenProperties.includes(property)) {
 return undefined;
 } else {
 return Reflect.get(...arguments);
 }
 },
 has(target, property) {
 if (hiddenProperties.includes(property)) {
 return false;
 } else {
 return Reflect.has(...arguments);
 }
 }
});

// get()
console.log(proxy.foo); // undefined
console.log(proxy.bar); // undefined
console.log(proxy.baz); // 3

// has()
console.log('foo' in proxy); // false
console.log('bar' in proxy); // false
console.log('baz' in proxy); // true

Property Validation
Because all assignments must go through the set() trap, you can allow or reject assignments based
on the content of the intended value:

const target = {
 onlyNumbersGoHere: 0
};

const proxy = new Proxy(target, {
 set(target, property, value) {
 if (typeof value !== 'Number') {
 return false;
 } else {
 return Reflect.set(...arguments);
 }
 }
});

346 ❘ CHAPTER 9 Proxies and reflect

proxy.onlyNumbersGoHere = 1;
console.log(proxy.onlyNumbersGoHere); // 1
proxy.onlyNumbersGoHere = '2';
console.log(proxy.onlyNumbersGoHere); // 1

Function and Constructor Parameter Validation
In the same way that object properties can be validated and protected, function and constructor
parameters are also available for vetting. For example, a function can ensure that it is only provided
values of a certain type:

function median(...nums) {
 return nums.sort()[Math.floor(nums.length / 2)];
}

const proxy = new Proxy(median, {
 apply(target, thisArg, ...argumentsList) {
 for (const arg of argumentsList) {
 if (typeof arg !== 'number') {
 throw 'Non-number argument provided';
 }
 }
 return Reflect.apply(...arguments);
 }
});

console.log(proxy(4, 7, 1)); // 4
console.log(proxy(4, '7', 1));
// Error: Non-number argument provided

Similarly, a constructor can enforce the presence of constructor parameters:

class User {
 constructor(id) {
 this.id_ = id;
 }
}

const proxy = new Proxy(User, {
 construct(target, argumentsList, newTarget) {
 if (argumentsList[0] === undefined) {
 throw 'User cannot be instantiated without id';
 } else {
 return Reflect.construct(...arguments);
 }
 }
});

new proxy(1);

new proxy();
// Error: User cannot be instantiated without id

Proxy Patterns ❘ 347

Data Binding and Observables
Proxying allows you to intertwine the existence of various parts of the runtime that would otherwise
be disparate. This allows for a wide variety of patterns that enable different bits of code to interact
with one another.

For example, a proxied class can be bound to a global collection of instances so that every created
instance is added to that collection:

const userList = [];

class User {
 constructor(name) {
 this.name_ = name;
 }
}

const proxy = new Proxy(User, {
 construct() {
 const newUser = Reflect.construct(...arguments);
 userList.push(newUser);
 return newUser;
 }
});

new proxy('John');
new proxy('Jacob');
new proxy('Jingleheimerschmidt');

console.log(userList); // [User {}, User {}, User{}]

Alternately, a collection can be bound to an emitter, which will fire each time a new instance
is inserted:

const userList = [];

function emit(newValue) {
 console.log(newValue);
}

const proxy = new Proxy(userList, {
 set(target, property, value, receiver) {
 const result = Reflect.set(...arguments);
 if (result) {
 emit(Reflect.get(target, property, receiver));
 }
 return result;
 }
});

proxy.push('John');
// John
proxy.push('Jacob');
// Jacob

348 ❘ CHAPTER 9 Proxies and reflect

SUMMARY

Proxies are one of the more exciting and dynamic additions in the ECMAScript 6 specification.
Although they have no backwards compilation support, they enable an entirely new field of metapro-
gramming and abstraction that was not previously available.

At a high level, proxies are a transparent virtualization of a real JavaScript object. When a proxy is
created, you are able to define a handler object containing traps, which are points of interception that
will be encountered by nearly every fundamental JavaScript operator and method. These trap han-
dlers allow you to modify how these fundamental methods operate, although they are bound by trap
invariants.

Alongside proxies is the Reflect API, which offers a suite of methods that identically encapsulate the
behavior each trap is intercepting. The Reflect API can be thought of as a collection of fundamental
operations that are the building blocks of nearly all JavaScript object APIs.

The utility of proxies is nearly unbounded, and it allows the developer to wield elegant new patterns
such as (but certainly not limited to) tracking property access, hiding properties, preventing modifica-
tion or deletion of properties, function parameter validation, constructor parameter validation, data
binding, and observables.

Functions
WHAT’S IN THIS CHAPTER?

➤➤ Function expressions, function declarations, and arrow functions

➤➤ Default parameters and spread operators

➤➤ Recursion with functions

➤➤ Private variables using closures

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/projavascript4e on the Down-
load Code tab.

Some of the most interesting parts of ECMAScript are its functions, primarily because functions
actually are objects. Each function is an instance of the Function type that has properties and
methods just like any other reference type. Because functions are objects, function names are
simply pointers to function objects and are not necessarily tied to the function itself. Functions
are typically defined using function-declaration syntax, as in this example:

function sum (num1, num2) {
 return num1 + num2;
}

In this code, a variable sum is defined and initialized to be a function. Note that there is no
name included after the function keyword because it’s not needed—the function can be ref-
erenced by the variable sum. Also note that there is no semicolon after the end of the function
definition.

10

Professional JavaScript® for Web Developers, Fourth Edition. Matt Frisbie.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

350 ❘ CHAPTER 10 Functions

The function-declaration syntax is almost exactly equivalent to using a function expression,
such as this:

let sum = function(num1, num2) {
 return num1 + num2;
};

Note that there is a semicolon after the end of the function, just as there would be after any variable
initialization.

Another way to define a function that is quite similar to a function expression is to use the “arrow”
function syntax, such as this:

let sum = (num1, num2) => {
 return num1 + num2;
};

The final way to define functions is to use the Function constructor, which accepts any number of
arguments. The last argument is always considered to be the function body, and the previous argu-
ments enumerate the new function’s arguments. Consider this example:

let sum = new Function("num1", "num2", "return num1 + num2"); // not recommended

This syntax is not recommended because it causes a double interpretation of the code (once for the
regular ECMAScript code and once for the strings that are passed into the constructor) and thus can
affect performance. However, it’s important to think of functions as objects and function names as
pointers—this syntax is great at representing that concept.

NOTE There are subtle but important differences between these different ways
to instantiate a function object that will be discussed later in the chapter. Never-
theless, all of them are invoked in an identical way.

ARROW FUNCTIONS

New in ECMAScript 6 is the capability to define a function expression using the fat-arrow syntax.
For the most part, arrow functions instantiate function objects that behave in the same manner as
their formal function expression counterparts. Anywhere a function expression can be used, an arrow
function can also be used:

let arrowSum = (a, b) => {
 return a + b;
};

let functionExpressionSum = function(a, b) {
 return a + b;
};

console.log(arrowSum(5, 8)); // 13
console.log(functionExpressionSum(5, 8)); // 13

Function Names ❘ 351

Arrow functions are exceptionally useful in inline situations where they offer a more succinct syntax:

let ints = [1, 2, 3];

console.log(ints.map(function(i) { return i + 1; })); // [2, 3, 4]
console.log(ints.map((i) => { return i + 1 })); // [2, 3, 4]

Arrow functions do not require the parentheses if you only want to use a single parameter. If you
want to have zero parameters, or more than one parameter, parentheses are required:

// Both are valid
let double = (x) => { return 2 * x; };
let triple = x => { return 3 * x; };

// Zero parameters require an empty pair of parentheses
let getRandom = () => { return Math.random(); };

// Multiple parameters require parentheses
let sum = (a, b) => { return a + b; };

// Invalid syntax:
let multiply = a, b => { return a * b; };

Arrow functions also do not require curly braces, but choosing to not use them changes the behavior
of the function. Using the curly braces is called the "block body" syntax and behaves in the same way
as a normal function expression in that multiple lines of code can exist inside the arrow function as
they would for a normal function expression. If you omit the curly braces, you are using the “concise
body” syntax and are limited to a single line of code, such as an assignment or expression. The value
of this line will implicitly return, as demonstrated here:

// Both are valid and will return the value
let double = (x) => { return 2 * x; };
let triple = (x) => 3 * x;

// Assignment is allowed
let value = {};
let setName = (x) => x.name = "Matt";
setName(value);
console.log(value.name); // "Matt"

// Invalid syntax:
let multiply = (a, b) => return a * b;

Arrow functions, although syntactically succinct, are not suited in several situations. They do not
allow the use of arguments, super, or new.target, and cannot be used as a constructor. Addition-
ally, function objects created with the arrow syntax do not have a prototype defined.

FUNCTION NAMES

Because function names are simply pointers to functions, they act like any other variable contain-
ing a pointer to an object. This means it’s possible to have multiple names for a single function, as in
this example:

function sum(num1, num2) {
 return num1 + num2;
}

352 ❘ CHAPTER 10 Functions

console.log(sum(10, 10)); // 20

let anotherSum = sum;
console.log(anotherSum(10, 10)); // 20

sum = null;
console.log(anotherSum(10, 10)); // 20

This code defines a function named sum() that adds two numbers together. A variable, anotherSum,
is declared and set equal to sum. Note that using the function name without parentheses accesses the
function pointer instead of executing the function. At this point, both anotherSum and sum point to
the same function, meaning that anotherSum() can be called and a result returned. When sum is set
to null, it severs its relationship with the function, although anotherSum() can still be called with-
out any problems.

All function objects in ECMAScript 6 expose a read-only name property that describes the function.
In many cases, this will just be the function identifier, or the stringified variable name that references
the function. If a function is unnamed, it will be reported as such. If it is created using the function
constructor, it will be identified as “anonymous”:

function foo() {}
let bar = function() {};
let baz = () => {};

console.log(foo.name); // foo
console.log(bar.name); // bar
console.log(baz.name); // baz
console.log((() => {}).name); // (empty string)
console.log((new Function()).name); // anonymous

If a function is a getter, a setter, or instantiated using bind(), a prefix will be prepended to identify
it as such:

function foo() {}

console.log(foo.bind(null).name); // bound foo

let dog = {
 years: 1,
 get age() {
 return this.years;
 },
 set age(newAge) {
 this.years = newAge;
 }
}

let propertyDescriptor = Object.getOwnPropertyDescriptor(dog, 'age');
console.log(propertyDescriptor.get.name); // get age
console.log(propertyDescriptor.set.name); // set age

Understanding Arguments ❘ 353

UNDERSTANDING ARGUMENTS

Function arguments in ECMAScript don’t behave in the same way as function arguments in most
other languages. An ECMAScript function doesn’t care how many arguments are passed in, nor does
it care about the data types of those arguments. Just because you define a function to accept two
arguments doesn’t mean you can pass in only two arguments. You could pass in one or three or none,
and the interpreter won’t complain.

This indifference happens because arguments in ECMAScript are represented as an array internally.
The array is always passed to the function, but the function doesn’t care what (if anything) is in the
array. If the array arrives with zero items, that’s fine; if it arrives with more, that’s okay, too. In fact,
when a function is defined using the function keyword (meaning a non-arrow function), there actu-
ally is an arguments object that can be accessed while inside a function to retrieve the values of each
argument that was passed in.

The arguments object acts like an array (though it isn’t an instance of Array) in that you can
access each argument using bracket notation (the first argument is arguments[0], the second
is arguments[1], and so on) and determine how many arguments were passed in by using the
length property.

In the following example, the sayHi() function’s first argument is named name.

function sayHi(name, message) {
 console.log("Hello " + name + ", " + message);
}

The same value can be accessed by referencing arguments[0]. Therefore, the function can be rewrit-
ten without naming the arguments explicitly, like this:

function sayHi() {
 console.log("Hello " + arguments[0] + ", " + arguments[1]);
}

In this rewritten version, there are no named arguments. The name and message arguments have been
removed, yet the function will behave appropriately. This illustrates an important point about func-
tions in ECMAScript: named arguments are a convenience, not a necessity. Unlike in other languages,
naming your arguments in ECMAScript does not create a function signature that must be matched
later on; there is no validation against named arguments.

The arguments object can also be used to check the number of arguments passed into the function
via the length property. The following example outputs the number of arguments passed into the
function each time it is called:

function howManyArgs() {
 console.log(arguments.length);
}

howManyArgs("string", 45); // 2
howManyArgs(); // 0
howManyArgs(12); // 1

354 ❘ CHAPTER 10 Functions

This example shows alerts displaying 2, 0, and 1 (in that order). In this way, developers have the
freedom to let functions accept any number of arguments and behave appropriately. Consider the
following:

function doAdd() {
 if (arguments.length === 1) {
 console.log(arguments[0] + 10);
 } else if (arguments.length === 2) {
 console.log(arguments[0] + arguments[1]);
 }
}

doAdd(10); // 20
doAdd(30, 20); // 50

The function doAdd() adds 10 to a number only if there is one argument; if there are two arguments,
they are simply added together and returned. So doAdd(10) returns 20, whereas doAdd(30,20)
returns 50. It’s not quite as good as overloading, but it is a sufficient workaround for this ECMAScript
limitation.

Another important thing to understand about arguments is that the arguments object can be used in
conjunction with named arguments, such as the following:

function doAdd(num1, num2) {
 if (arguments.length === 1) {
 console.log(num1 + 10);
 } else if (arguments.length === 2) {
 console.log(arguments[0] + num2);
 }
}

In this rewrite of the doAdd() function, two-named arguments are used in conjunction with the
arguments object. The named argument num1 holds the same value as arguments[0], so they can be
used interchangeably (the same is true for num2 and arguments[1]).

Another interesting behavior of arguments is that its values always stay in sync with the values of the
corresponding named parameters. For example:

function doAdd(num1, num2) {
 arguments[1] = 10;
 console.log(arguments[0] + num2);
}

This version of doAdd() always overwrites the second argument with a value of 10. Because values in
the arguments object are automatically reflected by the corresponding named arguments, the change
to arguments[1] also changes the value of num2, so both have a value of 10. This doesn’t mean that
both access the same memory space, however; their memory spaces are separate but happen to be
kept in sync. This effect goes only one way: changing the named argument does not result in a change
to the corresponding value in arguments. Another thing to keep in mind: if only one argument is
passed in, then setting arguments[1] to a value will not be reflected by the named argument because
the length of the arguments object is set based on the number of arguments passed in, not the num-
ber of named arguments listed for the function.

No Overloading ❘ 355

Any named argument that is not passed into the function is automatically assigned the value
undefined. This is akin to defining a variable without initializing it. For example, if only one
argument is passed into the doAdd() function, then num2 has a value of undefined.

Strict mode makes several changes to how the arguments object can be used. First, assignment,
as in the previous example, no longer works. The value of num2 remains undefined even though
arguments[1] has been assigned to 10. Second, trying to overwrite the value of arguments is a
syntax error. (The code will not execute.)

Arguments in Arrow Functions
When a function is defined using the arrow notation, the arguments passed to the function cannot
be accessed using the arguments keyword; they can only be accessed using their named token in the
function definition.

function foo() {
 console.log(arguments[0]);
}
foo(5); // 5

let bar = () => {
 console.log(arguments[0]);
};
bar(5); // ReferenceError: arguments is not defined

Although the arrow function arguments may not be available, be aware that it is possible that the
arguments keyword is provided to the arrow function scope from the scope of a wrapping function
being invoked:

function foo() {
 let bar = () => {
 console.log(arguments[0]); // 5
 };
 bar();
}

foo(5);

NOTE All arguments in ECMAScript are passed by value. It is not possible to
pass arguments by reference. If an object is passed as an argument, the value is
just a reference to the object.

NO OVERLOADING

ECMAScript functions cannot be overloaded in the traditional sense. In other languages, such as Java,
it is possible to write two definitions of a function as long as their signatures (the type and number of
arguments accepted) are different. As just discussed, functions in ECMAScript don’t have signatures

356 ❘ CHAPTER 10 Functions

because the arguments are represented as an array containing zero or more values. Without function
signatures, true overloading is not possible.

If two functions are defined to have the same name in ECMAScript, it is the last function that
becomes the owner of that name. Consider the following example:

function addSomeNumber(num) {
 return num + 100;
}

function addSomeNumber(num) {
 return num + 200;
}

let result = addSomeNumber(100); // 300

Here, the function addSomeNumber() is defined twice. The first version of the function adds 100 to
the argument, and the second adds 200. When the last line is called, it returns 300 because the second
function has overwritten the first.

As mentioned previously, it’s possible to simulate overloading of methods by checking the type and
number of arguments that have been passed into a function and then reacting accordingly.

Thinking of function names as pointers also explains why there can be no function overloading in
ECMAScript. In the previous example, it’s clear that declaring two functions with the same name
always results in the last function overwriting the previous one. This code is almost exactly equivalent
to the following:

let addSomeNumber = function(num) {
 return num + 100;
};

addSomeNumber = function(num) {
 return num + 200;
};

let result = addSomeNumber(100); // 300

In this rewritten code, it’s much easier to see exactly what is going on. The variable addSomeNumber is
simply being overwritten when the second function is created.

DEFAULT PARAMETER VALUES

In ECMAScript 5.1 and before, a common strategy for implementing default parameter values was to
determine if a parameter was not provided to the function invocation by checking if it was undefined,
and assigning a value to the parameter if that was the case:

function makeKing(name) {
 name = (typeof name !== 'undefined') ? name : 'Henry';
 return `King ${name} VIII`;
}

console.log(makeKing()); // 'King Henry VIII'
console.log(makeKing('Louis')); // 'King Louis VIII'

Default Parameter Values ❘ 357

This is no longer required in ECMAScript 6, as it supports explicitly defining values for parameters if
they are not provided when the function is invoked. The equivalent of the previous function with ES6
default parameters is done using the = operator directly inside the function signature:

function makeKing(name = 'Henry') {
 return `King ${name} VIII`;
}

console.log(makeKing('Louis')); // 'King Louis VIII'
console.log(makeKing()); // 'King Henry VIII'

Passing undefined as an argument is treated the same as not passing any argument, which allows for
multiple independent default variables:

function makeKing(name = 'Henry', numerals = 'VIII') {
 return `King ${name} ${numerals}`;
}

console.log(makeKing()); // 'King Henry VIII'
console.log(makeKing('Louis')); // 'King Louis VIII'
console.log(makeKing(undefined, 'VI')); // 'King Henry VI'

When using default parameters, the arguments object’s value does not reflect the default value of a
parameter, but rather the argument passed to the function. This mirrors the ES5 strict mode behavior
and is valuable because it preserves the values as they were passed when the function was invoked:

function makeKing(name = 'Henry') {
 name = 'Louis';
 return `King ${arguments[0]}`;
}

console.log(makeKing()); // 'King undefined'
console.log(makeKing('Louis')); // 'King Louis'

Default parameter values are not limited to primitives or object types, you can also calculate a value
from an invoked function:

let romanNumerals = ['I', 'II', 'III', 'IV', 'V', 'VI'];
let ordinality = 0;

function getNumerals() {
 // Increment the ordinality after using it to index into the numerals array
 return romanNumerals[ordinality++];
}

function makeKing(name = 'Henry', numerals = getNumerals()) {
 return `King ${name} ${numerals}`;
}

console.log(makeKing()); // 'King Henry I'
console.log(makeKing('Louis', 'XVI')); // 'King Louis XVI'
console.log(makeKing()); // 'King Henry II'
console.log(makeKing()); // 'King Henry III'

The function default parameter is only invoked when the function itself is invoked, not when the
function is defined. Note that the method that calculates the default value is only invoked when the
argument is not provided.

358 ❘ CHAPTER 10 Functions

Arrow functions are also capable of utilizing default parameters in the same way, although it means
parentheses around a single argument is no longer optional if a default value is specified:

let makeKing = (name = 'Henry') => `King ${name}`;

console.log(makeKing()); // King Henry

Default Parameter Scope and Temporal Dead Zone
Because you can define objects and invoke functions on the fly when evaluating default parameter
values, that surely means that there is some sort of execution scope for function parameters—and this
is in fact the case.

Defining multiple parameters with default values operates in effectively the same way as declaring
variables sequentially using the let keyword. Consider the following function:

function makeKing(name = 'Henry', numerals = 'VIII') {
 return `King ${name} ${numerals}`;
}

console.log(makeKing()); // King Henry VIII

The default parameter values are initialized in the order in which they are listed in the list of param-
eters. You can think of it as behaving similar to the following:

function makeKing() {
 let name = 'Henry';
 let numerals = 'VIII';

 return `King ${name} ${numerals}`;
}

Because the parameters are initialized in order, parameters that have their default value defined later
can reference an earlier parameter. The following silly example does exactly this:

function makeKing(name = 'Henry', numerals = name) {
 return `King ${name} ${numerals}`;
}

console.log(makeKing()); // King Henry Henry

The order of parameter initialization follows the same Temporal Dead Zone rules specifying
that parameter values cannot reference other parameter values that are defined later. This would
throw an error:

// Error
function makeKing(name = numerals, numerals = 'VIII') {
 return `King ${name} ${numerals}`;
}

Parameters also exist inside their own scope, and therefore cannot reference the scope of the function
body. This would throw an error:

// Error
function makeKing(name = 'Henry', numerals = defaultNumeral) {
 let defaultNumeral = 'VIII';
 return `King ${name} ${numerals}`;
}

Spread Arguments and Rest Parameters ❘ 359

SPREAD ARGUMENTS AND REST PARAMETERS

ECMAScript 6 introduces the spread operator, which allows for a very elegant way of managing
and grouping collections. One of its most useful applications is in the domain of function signatures
where it shines especially brightly in the domain of weak typing and variable length arguments.
The spread operator is useful both when invoking a function, as well as when defining a function’s
parameters.

Spread Arguments
Instead of passing an array as a single function argument, it is often useful to be able to break apart
an array of values and individually pass each value as a separate argument.

Suppose you have the following function defined, which sums all the values passed as arguments:

let values = [1, 2, 3, 4];

function getSum() {
 let sum = 0;
 for (let i = 0; i < arguments.length; ++i) {
 sum += arguments[i];
 }
 return sum;
}

This function expects each of its arguments to be an individual number that will be iterated through
to find the sum. An array outside the function containing all the values you want to sum is a logi-
cal format, but the most prudent way to flatten this array into separate parameters is to inelegantly
utilize .apply():

console.log(getSum.apply(null, values)); // 10

In ECMAScript 6, you are now able to perform this action more succinctly using the spread operator.
Applying the spread operator to an iterable object and passing that as a single argument to a function
will break apart that iterable object of size N and pass it to the function as N separate arguments.

With the spread operator, you can unpack the outer array into individual arguments directly inside
the function invocation:

console.log(getSum(...values)); // 10

Because the size of the array is known, there are no restrictions on other parameters appearing before
or after the spread operator, including other spread operators:

console.log(getSum(-1, ...values)); // 9
console.log(getSum(...values, 5)); // 15
console.log(getSum(-1, ...values, 5)); // 14
console.log(getSum(...values, ...[5,6,7])); // 28

The presence of the spread operator is totally unknown to the arguments object; it will treat the
value being broken apart as separate pieces because that is how they are passed to the function:

let values = [1,2,3,4]

function countArguments() {

360 ❘ CHAPTER 10 Functions

 console.log(arguments.length);
}

countArguments(-1, ...values); // 5
countArguments(...values, 5); // 5
countArguments(-1, ...values, 5); // 6
countArguments(...values, ...[5,6,7]); // 7

The arguments object is only one way to consume spread arguments. Spread arguments can be used
as named parameters in both standard functions and arrow functions, as well as alongside default
arguments:

function getProduct(a, b, c = 1) {
 return a * b * c;
}

let getSum = (a, b, c = 0) => {
 return a + b + c;
}

console.log(getProduct(...[1,2])); // 2
console.log(getProduct(...[1,2,3])); // 6
console.log(getProduct(...[1,2,3,4])); // 6

console.log(getSum(...[0,1])); // 1
console.log(getSum(...[0,1,2])); // 3
console.log(getSum(...[0,1,2,3])); // 3

Rest Parameter
When composing a function definition, instead of handling parameters individually, it is possible to
use the spread operator to combine ranges of parameters of variable length into a single array. In
many ways, this is very similar to how the arguments object works, but in this case the rest param-
eter becomes a formal Array object.

function getSum(...values) {
 // Sequentially sum all elements in 'values'
 // Initial total = 0
 return values.reduce((x, y) => x + y, 0);
}

console.log(getSum(1,2,3)); // 6

If there are named parameters preceding the rest parameter, it will assume the size of the remaining
parameters that remain unnamed, or an empty array if there are none. Because the rest parameter is
variable in size, you are only able to use it as the last formal parameter:

// Error
function getProduct(...values, lastValue) {}

// OK
function ignoreFirst(firstValue, ...values) {
 console.log(values);
}

Function Declarations versus Function Expressions ❘ 361

ignoreFirst(); // []
ignoreFirst(1); // []
ignoreFirst(1,2); // [2]
ignoreFirst(1,2,3); // [2, 3]

Although arrow functions do not support the arguments object, they do support rest parameters,
which affords you behavior that is extremely similar to arguments:

let getSum = (...values) => {
 return values.reduce((x, y) => x + y, 0);
}

console.log(getSum(1,2,3)); // 6

As you might expect, using a rest parameter does not affect the arguments object—it will still exactly
reflect what was passed to the function:

function getSum(...values) {
 console.log(arguments.length); // 3
 console.log(arguments); // [1, 2, 3]
 console.log(values); // [1, 2, 3]
}

console.log(getSum(1,2,3));

FUNCTION DECLARATIONS VERSUS FUNCTION EXPRESSIONS

Throughout this section, the function declaration and function expression are referred to as being
almost equivalent. This hedging is due to one major difference in the way that a JavaScript engine
loads data into the execution context. Function declarations are read and available in an execution
context before any code is executed, whereas function expressions aren’t complete until the execution
reaches that line of code. Consider the following:

// OK
console.log(sum(10, 10));
function sum(num1, num2) {
 return num1 + num2;
}

This code runs perfectly because function declarations are read and added to the execution context
before the code begins running through a process called function declaration hoisting. As the code is
being evaluated, the JavaScript engine does a first pass for function declarations and pulls them to the
top of the source tree. So even though the function declaration appears after its usage in the code, the
engine changes this to hoist the function declarations to the top. Changing the function declaration to
an equivalent function expression, as in the following example, will cause an error during execution:

// Error
console.log(sum(10, 10));
let sum = function(num1, num2) {
 return num1 + num2;
};

This updated code will cause an error because the function is part of an initialization statement, not
part of a function declaration. That means the function isn’t available in the variable sum until the

362 ❘ CHAPTER 10 Functions

highlighted line has been executed, which won’t happen, because the first line causes an “unexpected
identifier” error. This is not a consequence of using let, as using the var keyword will result in the
same problem:

console.log(sum(10, 10));
var sum = function(num1, num2) {
 return num1 + num2;
};

Aside from this difference in when the function is available by the given name, the two syntaxes are
equivalent.

NOTE It is possible to have named function expressions that look like declara-
tions, such as let sum = function sum() {}. This is discussed in the Function
Expressions section of this chapter.

FUNCTIONS AS VALUES

Because function names in ECMAScript are nothing more than variables, functions can be used any-
where variables can be used. This means it’s possible not only to pass a function into another function
as an argument, but also to return a function as the result of another function. Consider the follow-
ing function:

function callSomeFunction(someFunction, someArgument) {
 return someFunction(someArgument);
}

This function accepts two arguments. The first argument should be a function, and the second argu-
ment should be a value to pass to that function. Any function can then be passed in as follows:

function add10(num) {
 return num + 10;
}

let result1 = callSomeFunction(add10, 10);
console.log(result1); // 20

function getGreeting(name) {
 return "Hello, " + name;
}

let result2 = callSomeFunction(getGreeting, "Nicholas");
console.log(result2); // "Hello, Nicholas"

The callSomeFunction() function is generic, so it doesn’t matter what function is passed in as the
first argument—the result will always be returned from the first argument being executed. Remember
that to access a function pointer instead of executing the function, you must leave off the parentheses,

Functions as Values ❘ 363

so the variables add10 and getGreeting are passed into callSomeFunction() instead of their
results being passed in.

Returning a function from a function is also possible and can be quite useful. For instance, sup-
pose that you have an array of objects and want to sort the array on an arbitrary object property. A
comparison function for the array’s sort() method accepts only two arguments, which are the values
to compare, but really you need a way to indicate which property to sort by. This problem can be
addressed by defining a function to create a comparison function based on a property name, as in the
following example:

function createComparisonFunction(propertyName) {
 return function(object1, object2) {
 let value1 = object1[propertyName];
 let value2 = object2[propertyName];

 if (value1 < value2) {
 return -1;
 } else if (value1 > value2) {
 return 1;
 } else {
 return 0;
 }
 };
}

This function’s syntax may look complicated, but it’s just a function inside of a function, preceded
by the return operator. The propertyName argument is accessible from the inner function and is
used with bracket notation to retrieve the value of the given property. Once the property values are
retrieved, a simple comparison can be done. This function can be used as in the following example:

let data = [
 {name: "Zachary", age: 28},
 {name: "Nicholas", age: 29}
];

data.sort(createComparisonFunction("name"));
console.log(data[0].name); // Nicholas

data.sort(createComparisonFunction("age"));
console.log(data[0].name); // Zachary

In this code, an array called data is created with two objects. Each object has a name property and
an age property. By default, the sort() method would call toString() on each object to determine
the sort order, which wouldn’t give logical results in this case. Calling createComparisonFunction
("name") creates a comparison function that sorts based on the name property, which means the first
item will have the name "Nicholas" and an age of 29. When createComparisonFunction("age")
is called, it creates a comparison function that sorts based on the age property, meaning the first item
will be the one with its name equal to "Zachary" and age equal to 28.

364 ❘ CHAPTER 10 Functions

FUNCTION INTERNALS

In ECMAScript 5, two special objects exist inside a function: arguments and this. In ECMAScript 6,
the new.target property was introduced.

arguments
The arguments object, as discussed previously, is an array-like object that contains all of the argu-
ments that were passed into the function. It is only available when a function is declared using the
function keyword (as opposed to arrow function declaration). Though its primary use is to repre-
sent function arguments, the arguments object also has a property named callee, which is a pointer
to the function that owns the arguments object. Consider the following classic factorial function:

function factorial(num) {
 if (num <= 1) {
 return 1;
 } else {
 return num * factorial(num - 1);
 }
}

Factorial functions are typically defined to be recursive, as in this example, which works fine when
the name of the function is set and won’t be changed. However, the proper execution of this function
is tightly coupled with the function name "factorial". It can be decoupled by using arguments.
callee as follows:

function factorial(num) {
 if (num <= 1) {
 return 1;
 } else {
 return num * arguments.callee(num - 1);
 }
}

In this rewritten version of the factorial() function, there is no longer a reference to the name
"factorial" in the function body, which ensures that the recursive call will happen on the correct
function no matter how the function is referenced. Consider the following:

let trueFactorial = factorial;

factorial = function() {
 return 0;
};

console.log(trueFactorial(5)); // 120
console.log(factorial(5)); // 0

Here, the variable trueFactorial is assigned the value of factorial, effectively storing the func-
tion pointer in a second location. The factorial variable is then reassigned to a function that simply
returns 0. Without using arguments.callee in the original factorial() function’s body, the call to
trueFactorial() would return 0. However, with the function decoupled from the function name,
trueFactorial() correctly calculates the factorial, and factorial() is the only function that
returns 0.

Function Internals ❘ 365

this
The next special object is called this, which behaves differently when used inside a standard function
and an arrow function.

Inside a standard function, it is a reference to the context object that the function is operating on—
often called the this value (when a function is called in the global scope of a web page, the this
object points to window). Consider the following:

window.color = 'red';
let o = {
 color: 'blue'
};

function sayColor() {
 console.log(this.color);
}

sayColor(); // 'red'

o.sayColor = sayColor;
o.sayColor(); // 'blue'

The function sayColor() is defined globally but references the this object. The value of this is
not determined until the function is called, so its value may not be consistent throughout the code
execution. When sayColor() is called in the global scope, it outputs "red" because this is point-
ing to window, which means this.color evaluates to window.color. By assigning the function to
the object o and then calling o.sayColor(), the this object points to o, so this.color evaluates to
o.color and "blue" is displayed.

Inside an arrow function, this references the context in which the arrow function expression is
defined. This is demonstrated in the following example, where two different invocations of sayColor
both reference the property of the window object, which is the context inside which the arrow func-
tion was initially defined:

window.color = 'red';
let o = {
 color: 'blue'
};

let sayColor = () => console.log(this.color);

sayColor(); // 'red'

o.sayColor = sayColor;
o.sayColor(); // 'red'

This is especially useful in situations where events or timeouts will invoke a function inside a callback
where the invoking object is not the intended object. When an arrow function is used in these situa-
tions, the context referenced by this is preserved:

function King() {
 this.royaltyName = 'Henry';

366 ❘ CHAPTER 10 Functions

 // 'this' will be the King instance
 setTimeout(() => console.log(this.royaltyName), 1000);
}

function Queen() {
 this.royaltyName = 'Elizabeth';

 // 'this' will be the window object
 setTimeout(function() { console.log(this.royaltyName); }, 1000);
}

new King(); // Henry
new Queen(); // undefined

NOTE Remember that function names are simply variables containing pointers,
so the global sayColor() function and o.sayColor() point to the same function
even though they execute in different contexts.

caller
ECMAScript 5 also formalizes an additional property on a function object: caller. Though not
defined in ECMAScript 3, all browsers except earlier versions of Opera supported this property,
which contains a reference to the function that called this function or null if the function was called
from the global scope. For example:

function outer() {
 inner();
}
function inner() {
 console.log(inner.caller);
}
outer();

This code displays an alert with the source text of the outer() function. Because outer() calls
inner(), inner.caller points back to outer(). For looser coupling, you can also access the same
information via arguments.callee.caller:

function outer() {
 inner();
}

function inner() {
 console.log(arguments.callee.caller);
}

outer();

When function code executes in strict mode, attempting to access arguments.callee results
in an error. ECMAScript 5 also defines arguments.caller, which also results in an error in
strict mode and is always undefined outside of strict mode. This is to clear up confusion between

Function Properties and Methods ❘ 367

arguments.caller and the caller property of functions. These changes were made as security addi-
tions to the language, so third-party code could not inspect other code running in the same context.

Strict mode places one additional restriction: you cannot assign a value to the caller property of a
function. Doing so results in an error.

new.target
Functions have always been able to behave as both a constructor to instantiate a new object, and
as a normal callable function. New in ECMAScript 6 is the ability to determine if a function was
invoked with the new keyword using new.target. If a function is called normally, new.target will
be undefined. If a function is called using the new keyword, new.target will reference the construc-
tor or function.

function King() {
 if (!new.target) {
 throw 'King must be instantiated using "new"'
 }
 console.log('King instantiated using "new"';
}

new King(); // King instantiated using "new"
King(); // Error: King must be instantiated using "new"

FUNCTION PROPERTIES AND METHODS

Functions are objects in ECMAScript and, as mentioned previously, therefore have properties and
methods. Each function has two properties: length and prototype. The length property indicates
the number of named arguments that the function expects, as in this example:

function sayName(name) {
 console.log(name);
}

function sum(num1, num2) {
 return num1 + num2;
}

function sayHi() {
 console.log("hi");
}

console.log(sayName.length); // 1
console.log(sum.length); // 2
console.log(sayHi.length); // 0

This code defines three functions, each with a different number of named arguments. The sayName()
function specifies one argument, so its length property is set to 1. Similarly, the sum() function
specifies two arguments, so its length property is 2, and sayHi() has no named arguments, so its
length is 0.

The prototype property is perhaps the most interesting part of the ECMAScript core. The
prototype is the actual location of all instance methods for reference types, meaning methods

368 ❘ CHAPTER 10 Functions

such as toString() and valueOf() actually exist on the prototype and are then accessed from the
object instances. This property is very important in terms of defining your own reference types and
inheritance. (These topics are covered in the chapter “Objects, Classes, and Object-Oriented Pro-
gramming.”) In ECMAScript 5, the prototype property is not enumerable and so will not be found
using for-in.

There are two additional methods for functions: apply() and call(). These methods both call the
function with a specific this value, effectively setting the value of the this object inside the func-
tion body. The apply() method accepts two arguments: the value of this inside the function and an
array of arguments. This second argument may be an instance of Array, but it can also be the
arguments object. Consider the following:

function sum(num1, num2) {
 return num1 + num2;
}

function callSum1(num1, num2) {
 return sum.apply(this, arguments); // passing in arguments object
}

function callSum2(num1, num2) {
 return sum.apply(this, [num1, num2]); // passing in array
}

console.log(callSum1(10, 10)); // 20
console.log(callSum2(10, 10)); // 20

In this example, callSum1() executes the sum() method, passing in this as the this value (which
is equal to window because it’s being called in the global scope) and also passing in the arguments
object. The callSum2() method also calls sum(), but it passes in an array of the arguments instead.
Both functions will execute and return the correct result.

NOTE In strict mode, the this value of a function called without a context
object is not coerced to window. Instead, this becomes undefined unless explic-
itly set by either attaching the function to an object or using apply() or call().

The call() method exhibits the same behavior as apply(), but arguments are passed to it differ-
ently. The first argument is the this value, but the remaining arguments are passed directly into the
function. Using call() arguments must be enumerated specifically, as in this example:

function sum(num1, num2) {
 return num1 + num2;
}

function callSum(num1, num2) {
 return sum.call(this, num1, num2);
}

console.log(callSum(10, 10)); // 20

Function Properties and Methods ❘ 369

The callSum() method must pass in each of its arguments explicitly into the call() method. The
result is the same as using apply(). The decision to use either apply() or call() depends solely on
the easiest way for you to pass arguments into the function. If you intend to pass in the arguments
object directly or if you already have an array of data to pass in, then apply() is the better choice;
otherwise, call() may be a more appropriate choice. (If there are no arguments to pass in, these
methods are identical.)

The true power of apply() and call() lies not in their ability to pass arguments but rather in their
ability to augment the this value inside of the function. Consider the following example:

window.color = 'red';
let o = {
 color: 'blue'
};

function sayColor() {
 console.log(this.color);
}

sayColor(); // red

sayColor.call(this); // red
sayColor.call(window); // red
sayColor.call(o); // blue

This example is a modified version of the one used to illustrate the this object. Once again,
sayColor() is defined as a global function, and when it’s called in the global scope, it displays "red"
because this.color evaluates to window.color. You can then call the function explicitly in the
global scope by using sayColor.call(this) and sayColor.call(window), which both display
"red". Running sayColor.call(o) switches the context of the function such that this points to o,
resulting in a display of "blue".

The advantage of using call() (or apply()) to augment the scope is that the object doesn’t need to
know anything about the method. In the first version of this example, the sayColor() function was
placed directly on the object o before it was called; in the updated example, that step is no longer
necessary.

ECMAScript 5 defines an additional method called bind(). The bind() method creates a new func-
tion instance whose this value is bound to the value that was passed into bind(). For example:

window.color = 'red';
var o = {
 color: 'blue'
};

function sayColor() {
 console.log(this.color);
}
let objectSayColor = sayColor.bind(o);
objectSayColor(); // blue

370 ❘ CHAPTER 10 Functions

Here, a new function called objectSayColor() is created from sayColor() by calling bind() and
passing in the object o. The objectSayColor() function has a this value equivalent to o, so calling
the function, even as a global call, results in the string "blue" being displayed.

For functions, the inherited methods toLocaleString() and toString() always return the func-
tion’s code. The exact format of this code varies from browser to browser—some return your code
exactly as it appeared in the source code, including comments, whereas others return the internal
representation of your code, which has comments removed and possibly some code changes that the
interpreter made. Because of these differences, you can’t rely on what is returned for any important
functionality, though this information may be useful for debugging purposes. The inherited method
valueOf() simply returns the function itself.

FUNCTION EXPRESSIONS

One of the more powerful, and often confusing, parts of JavaScript is function expressions. There are
two ways to define a function: by function declaration and by function expression. The first, function
declaration, has the following form:

function functionName(arg0, arg1, arg2) {
 // function body
}

One of the key characteristics of function declarations is function declaration hoisting, whereby func-
tion declarations are read before the code executes. That means a function declaration may appear
after code that calls it and still work:

sayHi();
function sayHi() {
 console.log("Hi!");
}

This example doesn’t throw an error because the function declaration is read first before the code
begins to execute.

The second way to create a function is by using a function expression. Function expressions have
several forms. The most common is as follows:

let functionName = function(arg0, arg1, arg2) {
 // function body
};

This pattern of function expression looks like a normal variable assignment. A function is created
and assigned to the variable functionName. The created function is considered to be an anonymous
function, because it has no identifier after the function keyword. (Anonymous functions are also
sometimes called lambda functions.) This means the name property is the empty string.

Function expressions act like other expressions and, therefore, must be assigned before usage. The
following causes an error:

sayHi(); // Error! function doesn't exist yet
let sayHi = function() {
 console.log("Hi!");
};

Function Expressions ❘ 371

Understanding function hoisting is key to understanding the differences between function declara-
tions and function expressions. For instance, the result of the following code may be surprising:

// Never do this!
if (condition) {
 function sayHi() {
 console.log('Hi!');
 }
} else {
 function sayHi() {
 console.log('Yo!');
 }
}

The code seems to indicate that if condition is true, use one definition for sayHi(); otherwise,
use a different definition. In fact, this is not valid syntax in ECMAScript, so JavaScript engines try to
error correct into an appropriate state. The problem is that browsers don’t consistently error correct
in this case. Most browsers return the second declaration regardless of condition; Firefox returns
the first when condition is true. This pattern is dangerous and should not be used. It is perfectly
fine, however, to use function expressions in this way:

// OK
let sayHi;
if (condition) {
 sayHi = function() {
 console.log("Hi!");
 };
} else {
 sayHi = function() {
 console.log("Yo!");
 };
}

This example behaves the way you would expect, assigning the correct function expression to the
variable sayHi based on condition.

The ability to create functions for assignment to variables also allows you to return functions as the
value of other functions.

function createComparisonFunction(propertyName) {
 return function(object1, object2) {
 let value1 = object1[propertyName];
 let value2 = object2[propertyName];

 if (value1 < value2) {
 return -1;
 } else if (value1 > value2) {
 return 1;
 } else {
 return 0;
 }
 };
}

372 ❘ CHAPTER 10 Functions

createComparisonFunction() returns an anonymous function. The returned function will, presum-
ably, be either assigned to a variable or otherwise called, but within createComparisonFunction()
it is anonymous. Any time a function is being used as a value, it is a function expression. However,
these are not the only uses for function expressions, as the rest of this chapter will show.

RECURSION

A recursive function typically is formed when a function calls itself by name, as in the follow-
ing example:

function factorial(num) {
 if (num <= 1) {
 return 1;
 } else {
 return num * factorial(num - 1);
 }
}

This is the classic recursive factorial function. Although this works initially, it’s possible to prevent it
from functioning by running the following code immediately after it:

let anotherFactorial = factorial;
factorial = null;
console.log(anotherFactorial(4)); // error!

Here, the factorial() function is stored in a variable called anotherFactorial. The factorial
variable is then set to null, so only one reference to the original function remains. When
anotherFactorial() is called, it will cause an error because it will try to execute factorial(),
which is no longer a function. Using arguments.callee can alleviate this problem.

Recall that arguments.callee is a pointer to the function being executed and, as such, can be used
to call the function recursively, as shown here:

function factorial(num) {
 if (num <= 1) {
 return 1;
 } else {
 return num * arguments.callee(num - 1);
 }
}

Changing the highlighted line to use arguments.callee instead of the function name ensures that
this function will work regardless of how it is accessed. It’s advisable to always use arguments
.callee of the function name whenever you’re writing recursive functions.

The value of arguments.callee is not accessible to a script running in strict mode and will cause an
error when attempts are made to read it. Instead, you can use named function expressions to achieve
the same result. For example:

const factorial = (function f(num) {
 if (num <= 1) {
 return 1;
 } else {

Tail Call Optimization ❘ 373

 return num * f(num - 1);
 }
});

In this code, a named function expression f() is created and assigned to the variable factorial. The
name f remains the same even if the function is assigned to another variable, so the recursive call will
always execute correctly. This pattern works in both nonstrict mode and strict mode.

TAIL CALL OPTIMIZATION

The ECMAScript 6 specification also introduced a memory management optimization that allows the
JavaScript engine to reuse stack frames when certain conditions are met. Specifically, this optimiza-
tion pertains to “tail calls”, where the return value of an outer function is the returned value of an
inner function, as follows:

function outerFunction() {
 return innerFunction(); // tail call
}

Prior to the ES6 optimization, executing this example would have the following effect in memory:

1. Execution reaches outerFunction body, first stack frame is pushed onto stack.

2. Body of outerFunction executes, return statement is reached. To evaluate the return state-
ment, innerFunction must be evaluated.

3. Execution reaches innerFunction body, second stack frame is pushed onto stack.

4. Body of innerFunction executes, and its returned value is evaluated.

5. Return value is passed back to outerFunction, which in turn can return that value.

6. Stack frames are popped off the stack.

With the ES6 optimization, executing this example would have the following effect in memory:

1. Execution reaches outerFunction body, first stack frame is pushed onto stack.

2. Body of outerFunction executes, return statement is reached. To evaluate the return state-
ment, innerFunction must be evaluated.

3. Engine recognizes that first stack frame can safely be popped off the stack since the return
value of innerFunction is also the return value of outerFunction.

4. outerFunction stack frame is popped off the stack.

5. Execution reaches innerFunction body, stack frame is pushed onto stack.

6. Body of innerFunction executes, and its returned value is evaluated.

7. innerFunction stack frame is popped off the stack.

The obvious difference here is that the first implementation will incur an additional stack frame
for every successive nested function call, whereas the second implementation will incur a single
stack frame for the entire length of execution. This is the core of the ES6 tail call optimization:

374 ❘ CHAPTER 10 Functions

if the function is structured in a way that allows it to be safely discarded upon the tail call, the engine
will do so.

NOTE There is no ability to directly measure if the tail call optimization is
occurring. However, since this is part of the ES6 specification, browsers that
are compliant are guaranteed to apply the optimization if your code satisfies the
requirements.

Tail Call Optimization Requirements
The engine is only capable of performing such an optimization when it is sure that the outer stack
frame is truly not needed any longer. This demands the following conditions:

➤➤ The code is executing in strict mode

➤➤ The return value of the outer function is the invoked tail call function

➤➤ There is no further execution required after the tail call function returns

➤➤ The tail call function is not a closure that refers to variables in the outer function’s scope

The following are a few examples that violate these conditions and therefore are not subject to the
tail call optimization:

"use strict";

// No optimization: tail call is not returned
function outerFunction() {
 innerFunction();
}

// No optimization: tail call is not directly returned
function outerFunction() {
 let innerFunctionResult = innerFunction();
 return innerFunctionResult;
}

// No optimization: tail call must be cast as a string after return
function outerFunction() {
 return innerFunction().toString();
}

// No optimization: tail call is a closure
function outerFunction() {
 let foo = 'bar';
 function innerFunction() { return foo; }

 return innerFunction();
}

Tail Call Optimization ❘ 375

The following are a few examples which do not violate these conditions, and therefore will be
optimized:

"use strict";

// Optimization used: argument computation occurrs before stack frame is discarded
function outerFunction(a, b) {
 return innerFunction(a + b);
}

// Optimization used: initial return values do not have stack frame implications
function outerFunction(a, b) {
 if (a < b) {
 return a;
 }
 return innerFunction(a + b);
}

// Optimization used: both inner functions are considered to be in a tail position
function outerFunction(condition) {
 return condition ? innerFunctionA() : innerFunctionB();
}

A common source of confusion is the nature of differentiating tail calls and recursive calls. The opti-
mization will be applied to recursive or non-recursive tail calls; the engine makes no distinction if the
function is calling itself or a different function in the tail call. However, your code will stand to see
the most benefit from this optimization in recursive situations, as this code is the form factor which
tends to swamp the stack with stack frames.

NOTE The reason for requiring strict mode is that non-strict mode function
invocation allows the use of f.arguments and f.caller, which are references to
the outer function’s stack frame. Obviously, this means the optimization would
not be possible, and therefore the strict mode requirement exists to prevent these
properties from existing.

Coding for Tail Call Optimization
It’s instructive to convert a naïve recursive function into one which will be optimized. Take the fol-
lowing simple Fibonacci example:

function fib(n) {
 if (n < 2) {
 return n;
 }

 return fib(n – 1) + fib(n – 2);
}

376 ❘ CHAPTER 10 Functions

console.log(fib(0)); // 0
console.log(fib(1)); // 1
console.log(fib(2)); // 1
console.log(fib(3)); // 2
console.log(fib(4)); // 3
console.log(fib(5)); // 5
console.log(fib(6)); // 8

It’s easy to see that this function is not subject to tail call optimization since there is a disqualifying
add operation occurring in the return statement. As a result, the number of stack frames for fib(n)
will have a memory complexity of O(2^n). Therefore, it’s very simple to swamp your browser with
something as simple as:

fib(1000);

Of course, there are techniques which solve this problem differently such as memoization or flat-
tening into an iterative loop, but you can keep this implementation recursive and refactor it into a
optimization-compatible form. An excellent strategy is to nest two functions: the outer one acting as
the base case, and the inner one acting as the recursive case:

"use strict";

// base case
function fib(n) {
 return fibImpl(0, 1, n);
}

// recursive case
function fibImpl(a, b, n) {
 if (n === 0) {
 return a;
 }
 return fibImpl(b, a + b, n - 1);
}

With this implementation, all tail call optimization requirements are satisfied, and your browser will
have no problems with fib(1000);

CLOSURES

The terms anonymous functions and closures are often incorrectly used interchangeably. Closures
are functions that have access to variables from another function’s scope. This is often accomplished
by creating a function inside a function, as in the following highlighted lines from the previous
createComparisonFunction() example:

function createComparisonFunction(propertyName) {
 return function(object1, object2) {
 let value1 = object1[propertyName];
 let value2 = object2[propertyName];

 if (value1 < value2) {
 return -1;

Closures ❘ 377

 } else if (value1 > value2) {
 return 1;
 } else {
 return 0;
 }
 };
}

The highlighted lines in this example are part of the inner function (an anonymous function) that is
accessing a variable (propertyName) from the outer function. Even after the inner function has been
returned and is being used elsewhere, it has access to that variable. This occurs because the inner
function’s scope chain includes the scope of createComparisonFunction(). To understand why this
is possible, consider what happens when a function is first called.

The chapter “Variables, Scope, and Memory” introduced the concept of a scope chain. The details of
how scope chains are created and used are important for a good understanding of closures. When a
function is called, an execution context is created, and its scope chain is created. The activation object
for the function is initialized with values for arguments and any named arguments. The outer func-
tion’s activation object is the second object in the scope chain. This process continues for all contain-
ing functions until the scope chain terminates with the global execution context.

As the function executes, variables are looked up in the scope chain for the reading and writing of
values. Consider the following:

function compare(value1, value2) {
 if (value1 < value2) {
 return -1;
 } else if (value1 > value2) {
 return 1;
 } else {
 return 0;
 }
}

let result = compare(5, 10);

This code defines a function named compare() that is called in the global execution context. When
compare() is called for the first time, a new activation object is created that contains arguments,
value1, and value2. The global execution context’s variable object is next in the compare() execu-
tion context’s scope chain, which contains this, result, and compare. Figure 10-1 illustrates this
relationship.

Behind the scenes, an object represents the variables in each execution context. The global context’s
variable object always exists, whereas local context variable objects, such as the one for compare(),
exist only while the function is being executed. When compare() is defined, its scope chain is cre-
ated, preloaded with the global variable object, and saved to the internal [[Scope]] property. When
the function is called, an execution context is created and its scope chain is built up by copying the
objects in the function’s [[Scope]] property. After that, an activation object (which also acts as a
variable object) is created and pushed to the front of the context’s scope chain. In this example, that
means the compare() function’s execution context has two variable objects in its scope chain: the
local activation object and the global variable object. Note that the scope chain is essentially a list of
pointers to variable objects and does not physically contain the objects.

378 ❘ CHAPTER 10 Functions

Whenever a variable is accessed inside a function, the scope chain is searched for a variable with the
given name. Once the function has completed, the local activation object is destroyed, leaving only
the global scope in memory. Closures, however, behave differently.

A function that is defined inside another function adds the containing function’s activation object
into its scope chain. So, in createComparisonFunction(), the anonymous function’s scope chain
actually contains a reference to the activation object for createComparisonFunction(). Figure 10-2
illustrates this relationship when the following code is executed:

let compare = createComparisonFunction('name');
let result = compare({ name: 'Nicholas' }, { name: 'Matt' });

When the anonymous function is returned from createComparisonFunction(), its scope chain
has been initialized to contain the activation object from createComparisonFunction() and
the global variable object. This gives the anonymous function access to all of the variables from
createComparisonFunction(). Another interesting side effect is that the activation object
from createComparisonFunction() cannot be destroyed once the function finishes execut-
ing, because a reference still exists in the anonymous function’s scope chain. After createCom-
parisonFunction() completes, the scope chain for its execution context is destroyed, but its
activation object will remain in memory until the anonymous function is destroyed, as in the
following:

// create function
let compareNames = createComparisonFunction('name');

// call function
let result = compareNames({ name: 'Nicholas' }, { name: 'Matt' });

// dereference function - memory can now be reclaimed
compareNames = null;

Here, the comparison function is created and stored in the variable compareNames. Setting
compareNames equal to null dereferences the function and allows the garbage collection routine to
clean it up. The scope chain will then be destroyed, and all of the scopes (except the global scope)
can be destroyed safely. Figure 10-2 shows the scope-chain relationships that occur when compare-
Names() is called in this example.

Scope Chain

compare

result undefined

Global variable object

1

0

compare execution context

(scope chain)

arguments [5, 10]

value1

value2

5

10

compare() activation object

FIGURE 10-1

Closures ❘ 379

NOTE Because closures carry with them the containing function’s scope, they
take up more memory than other functions. Overuse of closures can lead to
excess memory consumption, so it’s recommended you use them only when
absolutely necessary. Optimizing JavaScript engines, such as V8, make attempts
to reclaim memory that is trapped because of closures, but it’s still recommended
to be careful when using closures.

The this Object
Using the this object inside closures introduces some complex behaviors. When a function is not
defined using the arrow syntax, the this object is bound at runtime based on the context in which
a function is executed: when used inside global functions, this is equal to window in nonstrict mode
and undefined in strict mode, whereas this is equal to the object when called as an object method.
Anonymous functions are not bound to an object in this context, meaning the this object points to
window unless executing in strict mode (where this is undefined). Because of the way closures are
written, however, this fact is not always obvious. Consider the following:

window.identity = 'The Window';

let object = {

Scope Chain

createComparisonFunction

result undefined

Global variable object

1

0

createComparisonFunction
 execution context

(scope chain)

Scope Chain

arguments

propertyName ”name”

[”name”]

createComparisonFunction()
activation object

2

1

0

arguments [{name: "Nicholas"},
 {name: "Greg"}]

object1

object2

{name: "Nicholas"}

{name: "Greg"}

Closure activation object

anonymous execution context

(scope chain)

FIGURE 10-2

380 ❘ CHAPTER 10 Functions

 identity: 'My Object',
 getIdentityFunc() {
 return function() {
 return this.identity;
 };
 }
};

console.log(object.getIdentityFunc()()); // 'The Window'

Here, a global variable called name is created along with an object that also contains a property
called name. The object contains a method, getNameFunc(), that returns an anonymous function,
which returns this.identity. Because getIdentityFunc() returns a function, calling object
.getIdentityFunc()() immediately calls the function that is returned, which returns a string. In
this case, however, it returns 'The Window', which is the value of the global identity variable. Why
didn’t the anonymous function pick up the containing scope’s this object?

Remember that each function automatically gets two special variables as soon as the function is
called: this and arguments. An inner function can never access these variables directly from an outer
function. It is possible to allow a closure access to a different this object by storing it in another
variable that the closure can access, as in this example:

window.identity = 'The Window';

let object = {
 identity: 'My Object',
 getIdentityFunc() {
 let that = this;
 return function() {
 return that.identity;
 };
 }
};

console.log(object.getIdentityFunc()()); // 'My Object'

The two highlighted lines show the difference between this example and the previous one. Before
defining the anonymous function, a variable named that is assigned equal to the this object. When
the closure is defined, it has access to that because it is a uniquely named variable in the containing
function. Even after the function is returned, that is still bound to object, so calling object.getI-
dentityFunc()() returns 'My Object'.

NOTE Both this and arguments behave in this way. If you want access to a
containing scope’s arguments object, you’ll need to save a reference into another
variable that the closure can access.

There are a few special cases where the value of this may not end up as the value you expect. Con-
sider the following modification to the previous example:

window.identity = 'The Window';
let object = {

Closures ❘ 381

 identity: 'My Object',
 getIdentity () {
 return this.identity;
 }
};

The getIdentity() method simply returns the value of this.identity. Here are various ways to
call object.getName() and the results:

object.getIdentity(); // 'My Object'
(object.getIdentity)(); // 'My Object'
(object.getIdentity = object.getIdentity)(); // 'The Window'

The first line calls object.getIdentity() in the way you normally would and so returns 'My
Object', as this.identity is the same as object.identity. The second line places parentheses
around object.getIdentity before calling it. While this might seem to be a reference just to the
function, the this value is maintained because object.getIdentity and (object.getIdentiy)
are defined to be equivalent. The third line performs an assignment and then calls the result. Because
the value of this assignment expression is the function itself, the this value is not maintained, and so
'The Window' is returned.

It’s unlikely that you’ll intentionally use the patterns in lines two or three, but it is helpful to know
that the value of this can change in unexpected ways when syntax is changed slightly.

Memory Leaks
The way closures work causes particular problems in Internet Explorer prior to version 9 because of
the different garbage-collection routines used for JScript objects versus COM objects (discussed in
Chapter 4). Storing a scope in which an HTML element is stored effectively ensures that the element
cannot be destroyed. Consider the following:

function assignHandler() {
 let element = document.getElementById('someElement');
 element.onclick = () => console.log(element.id);
}

This code creates a closure as an event handler on element, which in turn creates a circular
reference (events are discussed in Chapter 13). The anonymous function keeps a reference to the
assignHandler() function’s activation object, which prevents the reference count for element from
being decremented. As long as the anonymous function exists, the reference count for element will be
at least 1, which means the memory will never be reclaimed. This situation can be remedied by chang-
ing the code slightly, as shown here:

function assignHandler() {
 let element = document.getElementById('someElement');
 let id = element.id;

 element.onclick = () => console.log(id);

 element = null;
}

In this version of the code, a copy of element’s ID is stored in a variable that is used in the closure,
eliminating the circular reference. That step alone is not enough, however, to prevent the memory
problem. Remember that the closure has a reference to the containing function’s entire activation

382 ❘ CHAPTER 10 Functions

object, which contains element. Even if the closure doesn’t reference element directly, a reference is
still stored in the containing function’s activation object. It is necessary, therefore, to set the element
variable equal to null. This dereferences the COM object and decrements its reference count, ensur-
ing that the memory can be reclaimed when appropriate.

IMMEDIATELY INVOKED FUNCTION EXPRESSIONS

An anonymous function that is called immediately is most often called an immediately invoked func-
tion expression (IIFE). It resembles a function declaration, but because it is enclosed in parentheses it
is interpreted as a function expression. This function is then called via the second set of parentheses at
the end. The basic syntax is as follows:

(function() {
 // block code here
})();

The use of an IIFE to simulate block scope uses values defined inside a function expression that is
executed immediately, thereby offering a block scope–like behavior using function scoped variables.
(The utility of the IIFE was much greater in previous versions of ECMAScript 6 where block scoped
variables were not supported.) Consider the following example:

// IIFE
(function () {
 for (var i = 0; i < count; i++) {
 console.log(i);
 }
})();

console.log(i); // Throws an error

The preceding code will error when the console.log() outside the IIFE attempts to execute because
the variable defined inside the IIFE is not scoped to be accessible from outside the function expres-
sion. When trying to prevent variable bleed in ECMAScript 5.1 or before, this is a very useful pattern.
It also limits the closure memory problem because there is no reference to the anonymous function.
Therefore, the scope chain can be destroyed immediately after the function has completed.

With ECMAScript 6, the IIFE is no longer required for emulating block scope, as block scoped
variables will offer the exact same behavior without the need for an IIFE (shown here in two dif-
ferent ways):

// Inline block scope
{
 let i;
 for (i = 0; i < count; i++) {
 console.log(i);
 }
}
console.log(i); // Throws an error

Immediately Invoked Function Expressions ❘ 383

// Function block scope
for (let i = 0; i < count; i++) {
 console.log(i);
}

console.log(i); // Throws an error

A canonical example demonstrating the utility of the IIFE involved its ability to freeze parameter
values. Consider the following example:

let divs = document.querySelectorAll('div');

// Does not work!
for (var i = 0; i < divs.length; ++i) {
 divs[i].addEventListener('click', function() {
 console.log(i);
 });
}

This uses the var keyword to declare the loop iterator, which is not restricted to the loop’s block
scope. With this presentation, clicking each <div> will alert the total number of elements because the
counter variable still exists when the click handler executes.

Formerly, the solution to this was to use an IIFE to execute a function expression immediately that
is passed the current value of the counter, thereby "freezing" the value of the counter when the click
handler is defined:

let divs = document.querySelectorAll('div');

for (var i = 0; i < divs.length; ++i) {
 divs[i].addEventListener('click', (function(frozenCounter) {
 return function() {
 console.log(frozenCounter);
 };
 })(i));
}

This, however, is unnecessary with the introduction of ECMAScript block scoped variables:

let divs = document.querySelectorAll('div');

for (let i = 0; i < divs.length; ++i) {
 divs[i].addEventListener('click', function() {
 console.log(i);
 });
}

This will properly alert the corresponding index with each click. Here, the event handler execut-
ing will reference the value of the counter inside the for loop. In ECMAScript 6, a for loop using a
block scoped variable keyword—here, let—for the iterator will create a separate counter instance
per iteration, thereby allowing each click handler to reference that specific counter when executing.

384 ❘ CHAPTER 10 Functions

Importantly, note that this will not happen when that variable is pulled outside the for loop. The fol-
lowing will experience the same problem as using var i = 0 inside the loop:

let divs = document.querySelectorAll('div');

// Does not work
let i;
for (i = 0; i < divs.length; ++i) {
 divs[i].addEventListener('click', function() {
 console.log(i);
 });
}

PRIVATE VARIABLES

Strictly speaking, JavaScript has no concept of private members; all object properties are public.
There is, however, a concept of private variables. Any variable defined inside a function or block is
considered private because it is inaccessible outside that function. This includes function arguments,
local variables, and functions defined inside other functions. Consider the following:

function add(num1, num2) {
 let sum = num1 + num2;
 return sum;
}

In this function, there are three private variables: num1, num2, and sum. These variables are accessible
inside the function but can’t be accessed outside it. If a closure were to be created inside this function,
it would have access to these variables through its scope chain. Using this knowledge, you can create
public methods that have access to private variables.

A privileged method is a public method that has access to private variables and/or private functions.
There are two ways to create privileged methods on objects. The first is to do so inside a constructor,
as in this example:

function MyObject() {
 // private variables and functions
 let privateVariable = 10;

 function privateFunction() {
 return false;
 }

 // privileged methods
 this.publicMethod = function() {
 privateVariable++;
 return privateFunction();
 };
}

This pattern defines all private variables and functions inside the constructor. Then privileged meth-
ods can be created to access those private members. This works because the privileged methods, when
defined in the constructor, become closures with full access to all variables and functions defined
inside the constructor’s scope. In this example, the variable privateVariable and the function

Private Variables ❘ 385

privateFunction() are accessed only by publicMethod(). Once an instance of MyObject is cre-
ated, there is no way to access privateVariable and privateFunction() directly; you can do so
only by way of publicMethod().

You can define private and privileged members to hide data that should not be changed directly, as in
this example:

function Person(name) {
 this.getName = function() {
 return name;
 };

 this.setName = function (value) {
 name = value;
 };
}

let person = new Person('Nicholas');
console.log(person.getName()); // 'Nicholas'
person.setName('Greg');
console.log(person.getName()); // 'Greg'

The constructor in this code defines two privileged methods: getName() and setName(). Each
method is accessible outside the constructor and accesses the private name variable. Outside the
Person constructor, there is no way to access name. Because both methods are defined inside the con-
structor, they are closures and have access to name through the scope chain. The private variable name
is unique to each instance of Person because the methods are being re-created each time the construc-
tor is called. One downside, however, is that you must use the constructor pattern to accomplish this
result. As discussed in the Objects, Classes, and Object-Oriented Programming chapter, the construc-
tor pattern is flawed in that new methods are created for each instance. Using static private variables
to achieve privileged methods enables the user to avoid this problem.

Static Private Variables
Privileged methods can also be created by using a private scope to define the private variables or
functions. The pattern is as follows:

(function() {
 // private variables and functions
 let privateVariable = 10;

 function privateFunction() {
 return false;
 }

 // constructor
 MyObject = function() {};

 // public and privileged methods
 MyObject.prototype.publicMethod = function() {
 privateVariable++;
 return privateFunction();
 };
})();

386 ❘ CHAPTER 10 Functions

In this pattern, a private scope is created to enclose the constructor and its methods. The private
variables and functions are defined first, followed by the constructor and the public methods. Pub-
lic methods are defined on the prototype, as in the typical prototype pattern. Note that this pattern
defines the constructor not by using a function declaration but instead by using a function expres-
sion. Function declarations always create local functions, which is undesirable in this case. For this
same reason, a variable declaration keyword is not used with MyObject. Remember that initializing
an undeclared variable always creates a global variable, so MyObject becomes global and available
outside the private scope. Also keep in mind that assigning to an undeclared variable in strict mode
causes an error.

The main difference between this pattern and the previous one is that private variables and functions
are shared among instances. Because the privileged method is defined on the prototype, all instances
use that same function. The privileged method, being a closure, always holds a reference to the con-
taining scope. Consider the following:

(function() {
 let name = '';

 Person = function(value) {
 name = value;
 };

 Person.prototype.getName = function() {
 return name;
 };

 Person.prototype.setName = function(value) {
 name = value;
 };
})();

let person1 = new Person('Nicholas');
console.log(person1.getName()); // 'Nicholas'
person1.setName('Matt');
console.log(person1.getName()); // 'Matt'

let person2 = new Person('Michael');
console.log(person1.getName()); // 'Michael'
console.log(person2.getName()); // 'Michael'

The Person constructor in this example has access to the private variable name, as do the getName()
and setName() methods. Using this pattern, the name variable becomes static and will be used
among all instances. This means calling setName() on one instance affects all other instances. Calling
setName() or creating a new Person instance sets the name variable to a new value. This causes all
instances to return the same value.

Creating static private variables in this way allows for better code reuse through prototypes, although
each instance doesn’t have its own private variable. Ultimately, the decision to use instance or static
private variables needs to be based on your individual requirements.

NOTE The farther up the scope chain a variable lookup is, the slower the lookup
becomes because of the use of closures and private variables.

Private Variables ❘ 387

The Module Pattern
The previous patterns create private variables and privileged methods for custom types. The module
pattern, as described by Douglas Crockford, does the same for singletons. Singletons are objects of
which there will only ever be one instance. Traditionally, singletons are created in JavaScript using
object literal notation, as shown in the following example:

let singleton = {
 name: value,
 method() {
 // method code here
 }
};

The module pattern augments the basic singleton to allow for private variables and privileged meth-
ods, taking the following format:

let singleton = function() {
 // private variables and functions
 let privateVariable = 10;

 function privateFunction() {
 return false;
 }

 // privileged/public methods and properties
 return {
 publicProperty: true,

 publicMethod() {
 privateVariable++;
 return privateFunction();
 }
 };
}();

The module pattern uses an anonymous function that returns an object. Inside of the anonymous
function, the private variables and functions are defined first. After that, an object literal is returned
as the function value. That object literal contains only properties and methods that should be public.
Because the object is defined inside the anonymous function, all of the public methods have access
to the private variables and functions. Essentially, the object literal defines the public interface for
the singleton. This can be useful when the singleton requires some sort of initialization and access to
private variables, as in this example:

let application = function() {
 // private variables and functions
 let components = new Array();

 // initialization
 components.push(new BaseComponent());

 // public interface
 return {
 getComponentCount() {
 return components.length;
 },

388 ❘ CHAPTER 10 Functions

 registerComponent(component) {
 if (typeof component == 'object') {
 components.push(component);
 }
 }
 };
}();

In web applications, it’s quite common to have a singleton that manages application-level informa-
tion. This simple example creates an application object that manages components. When the object
is first created, the private components array is created and a new instance of BaseComponent is
added to its list. (The code for BaseComponent is not important; it is used only to show initialization
in the example.) The getComponentCount() and registerComponent() methods are privileged
methods with access to the components array. The former simply returns the number of registered
components, and the latter registers a new component.

The module pattern is useful for cases such as when a single object is created, initialized with some
data, and then needs to expose public methods that have access to private data. Every singleton cre-
ated in this manner is an instance of Object because ultimately an object literal represents it. This is
inconsequential because singletons are typically accessed globally instead of passed as arguments into
a function, which negates the need to use the instanceof operator to determine the object type.

The Module-Augmentation Pattern
Another take on the module pattern calls for the augmentation of the object before returning it. This
pattern is useful when the singleton object needs to be an instance of a particular type but must be
augmented with additional properties and/or methods. Consider the following example:

let singleton = function() {
 // private variables and functions
 let privateVariable = 10;

 function privateFunction() {
 return false;
 }

 // create object
 let object = new CustomType();

 // add privileged/public properties and methods
 object.publicProperty = true;

 object.publicMethod = function() {
 privateVariable++;
 return privateFunction();
 };

 // return the object
 return object;
}();

Summary ❘ 389

If the application object in the module pattern example had to be an instance of BaseComponent,
the following code could be used:

let application = function() {
 // private variables and functions
 let components = new Array();

 // initialization
 components.push(new BaseComponent());

 // create a local copy of application
 let app = new BaseComponent();

 // public interface
 app.getComponentCount = function() {
 return components.length;
 };

 app.registerComponent = function(component) {
 if (typeof component == "object") {
 components.push(component);
 }
 };

 // return it
 return app;
}();

In this rewritten version of the application singleton, the private variables are defined first, as in the
previous example. The main difference is the creation of a variable named app that is a new instance
of BaseComponent. This is the local version of what will become the application object. Public
methods are then added onto the app object to access the private variables. The last step is to return
the app object, which assigns it to application.

SUMMARY

Functions are useful and versatile tools in JavaScript programming. ECMAScript 6 introduces power-
ful syntax allowing you to wield them even more effectively.

➤➤ Function expressions are different from function declarations. Function declarations require
names, while function expressions do not. A function expression without a name is also
called an anonymous function.

➤➤ New in ES6, arrow functions are similar to function expressions, but with some important
differences.

➤➤ Arguments and parameters in JavaScript functions are highly flexible. The arguments
object, along with the new spread operator in ES6, allow for totally dynamic definition and
invocation.

➤➤ Internally, functions expose a handful of objects and references that provide you
information on how the function was invoked, where it was invoked, and what was origi-
nally passed to it.

390 ❘ CHAPTER 10 Functions

➤➤ Engines will optimize functions with tail calls to preserve stack space.

➤➤ Behind the scenes, the closure’s scope chain contains a variable object for itself, the contain-
ing function, and the global context.

➤➤ Typically, a function’s scope and all of its variables are destroyed when the function has fin-
ished executing.

➤➤ When a closure is returned from that function, its scope remains in memory until the clo-
sure no longer exists.

➤➤ A function can be created and called immediately, executing the code within it but never
leaving a reference to the function.

➤➤ This results in all of the variables inside the function being destroyed unless they are specifi-
cally set to a variable in the containing scope.

➤➤ Even though JavaScript doesn’t have a formal concept of private object properties, closures
can be used to implement public methods that have access to variables defined within the
containing scope.

➤➤ Public methods that have access to private variables are called privileged methods.

➤➤ Privileged methods can be implemented on custom types using the constructor or prototype
patterns and on singletons by using the module or module-augmentation patterns.

Promises and Async Functions
WHAT’S IN THIS CHAPTER?

➤➤ Introduction to Asynchronous Programming

➤➤ Promises

➤➤ Async Functions

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/projavascript4e on the Down-
load Code tab.

In ECMAScript editions beginning with ES6, support and tooling for asynchronous behav-
ior has undergone a renaissance. ECMAScript 6 introduces a formal Promise reference type,
allowing for elegant definition and organization of asynchronous behavior. Later editions also
extended the language to support asynchronous functions with the async and await keywords.

NOTE Throughout this chapter, examples make extensive use of asynchronous
logging setTimeout(console.log, 0, ...params) to demonstrate order of oper-
ation and other asynchronous behavior characteristics. The log output will be
shown as though it is printed synchronously when, in fact, it is printed asynchro-
nously. This is done to allow for values such as promises to assume their final
state.

Additionally, a browser’s console output will often print information about
objects that is not otherwise available to the JavaScript runtime (such as the
state of a promise). This feature is used extensively in examples throughout the
chapter to aid in broadening the reader’s understanding.

11

Professional JavaScript® for Web Developers, Fourth Edition. Matt Frisbie.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

392 ❘ CHAPTER 11 Promises and async Functions

INTRODUCTION TO ASYNCHRONOUS PROGRAMMING

The duality between synchronous and asynchronous behavior is a fundamental concept in computer
science—especially in a single-threaded event loop model such as JavaScript. Asynchronous behavior
is borne out of the need to optimize for higher computational throughput in the face of high-latency
operations. If it is feasible to run other instructions while a computation is completing and still main-
tain a stable system, then it is pragmatic to do so.

Importantly, an asynchronous operation is not necessarily a computationally intensive or high-latency
operation. It can be used anywhere it doesn’t make sense to block a thread of execution to wait for
the asynchronous behavior to occur.

Synchronous vs. Asynchronous JavaScript
Synchronous behavior is analogous to sequential processor instructions in memory. Each instruction
is executed strictly in the order in which it appears, and each is also capable of immediately retrieving
information that is stored locally within the system (for example: in a processor register or in system
memory). As a result, it is easy to reason about the program state (for example, the value of a vari-
able) at any given point in code.

A trivial example of this would be performing a simple arithmetic operation:

let x = 3;
x = x + 4;

At each step in this program, it is possible to reason about the state of the program because execution
will not proceed until the previous instruction is completed. When the last instruction completes, the
computed value of x is immediately available for use.

This JavaScript snippet is easy to reason about because it is not difficult to anticipate what low-level
instructions this will be compiled to (from JavaScript to x86, for example). Presumably, the operating
system will allocate some memory for a floating point number on the stack, perform an arithmetic
operation on that value, and write the result to that allocated memory. All of these instructions exist
serially inside a single thread of execution. At each point in the compiled low-level program, you are
well-equipped to assert what can and cannot be known about the state of the system.

Conversely, asynchronous behavior is analogous to interrupts, where an entity external to the current
process is able to trigger code execution. An asynchronous operation is often required because it is
infeasible to force the process to wait a long time for an operation to complete (which is the case with
a synchronous operation). This long wait might occur because the code is accessing a high-latency
resource, such as sending a request to a remote server and awaiting a response.

A trivial JavaScript example of this would be performing an arithmetic operation inside a timeout:

let x = 3;
setTimeout(() => x = x + 4, 1000);

This program eventually performs the same work as the synchronous one—adding two numbers
together—but this thread of execution cannot know exactly when the value of x will change because
that depends on when the callback is dequeued from the message queue and executed.

This code is not as easy to reason about. Although the low-level instructions used in this example
ultimately do the same work as the previous example, the second chunk of instructions (the addition

Introduction to Asynchronous Programming ❘ 393

operation and assignment) are triggered by a system timer, which will generate an interrupt to
enqueue execution. Precisely when this interrupt will be triggered is a black box to the JavaScript
runtime, so it effectively cannot be known exactly when the interrupt will occur (although it is guar-
anteed to be after the current thread of synchronous execution completes, since the callback will not
yet have had an opportunity to be dequeued and executed). Nevertheless, you are generally unable to
assert when the system state will change after the callback is scheduled.

For the value of x to become useful, this asynchronously executed function would need to signal to
the rest of the program that it has updated the value of x. However, if the program does not need this
value, then it is free to proceed and do other work instead of waiting for the result.

Designing a system to know when the value of x can be read is surprisingly tricky. Implementations of
such a system within the JavaScript have undergone several iterations.

Legacy Asynchronous Programming Patterns
Asynchronous behavior has long been an important but ugly cornerstone of JavaScript. In early
versions of the language, an asynchronous operation only supported definition of a callback func-
tion to indicate that the asynchronous operation had completed. Serializing asynchronous behavior
was a common problem, usually solved by a codebase full of nested callback functions—colloquially
referred to as “callback hell.”

Suppose you were working with the following asynchronous function, which uses setTimeout to
perform some behavior after one second:

function double(value) {
 setTimeout(() => setTimeout(console.log, 0, value * 2), 1000);
}

double(3);
// 6 (printed after roughly 1000ms)

There's nothing mysterious occurring here, but it is important to understand exactly why
this is an asynchronous function. setTimeout allows for the definition of a callback that is
scheduled to execute after a specified amount of time. After 1000ms, the JavaScript runtime will
schedule the callback for execution by pushing it onto JavaScript’s message queue. This call-
back is dequeued and executed in a manner that is totally invisible to JavaScript code. What’s
more, the double() function exits immediately after the setTimeout scheduling operation is
successful.

Returning Asynchronous Values
Suppose the setTimeout operation returned a useful value. What’s the best way to transport the
value back to where it is needed? The widely accepted strategy is to provide a callback to the asyn-
chronous operation, where the callback contained the code that needs access to the calculated value
(provided as a parameter). This looks like the following:

function double(value, callback) {
 setTimeout(() => callback(value * 2), 1000);
}

double(3, (x) => console.log(`I was given: ${x}`));
// I was given: 6 (printed after roughly 1000ms)

394 ❘ CHAPTER 11 Promises and async Functions

Here, the setTimeout invocation is instructed to push a function onto the message queue after
1000ms have elapsed. This function will be dequeued and asynchronously evaluated by the runtime.
The callback function and its parameters are still available in the asynchronous execution through a
function closure.

Handling Failure
The possibility of failure needs to be incorporated into this callback model as well, so this typically
took the form of a success and failure callback:

function double(value, success, failure) {
 setTimeout(() => {
 try {
 if (typeof value !== 'number') {
 throw 'Must provide number as first argument';
 }
 success(2 * value);
 } catch (e) {
 failure(e);
 }
 }, 1000);
}

const successCallback = (x) => console.log(`Success: ${x}`);
const failureCallback = (e) => console.log(`Failure: ${e}`);

double(3, successCallback, failureCallback);
double('b', successCallback, failureCallback);

// Success: 6 (printed after roughly 1000ms)
// Failure: Must provide number as first argument (printed after roughly 1000ms)

This format is already undesirable, as the callbacks must be defined when the asynchronous operation
is initialized. The value returned from the asynchronous function is transient, and so only callbacks
that are prepared to accept this transient value as a parameter are capable of accessing it.

Nesting Asynchronous Callbacks
The callback situation is further complicated when access to the asynchronous values have dependen-
cies on other asynchronous values. In the world of callbacks, this necessitates nesting the callbacks:

function double(value, success, failure) {
 setTimeout(() => {
 try {
 if (typeof value !== 'number') {
 throw 'Must provide number as first argument';
 }
 success(2 * value);
 } catch (e) {
 failure(e);
 }
 }, 1000);
}

Promises ❘ 395

const successCallback = (x) => {
 double(x, (y) => console.log(`Success: ${y}`));
};
const failureCallback = (e) => console.log(`Failure: ${e}`);

double(3, successCallback, failureCallback);

// Success: 12 (printed after roughly 1000ms)

It should come as no surprise that this callback strategy does not scale well as code complexity grows.
The “callback hell” colloquialism is well-deserved, as JavaScript codebases that were afflicted with
such a structure became nearly unmaintainable.

PROMISES

A “promise” is a surrogate entity that acts as a stand-in for a result that does not yet exist. The term
“promise” was first proposed by Daniel Friedman and David Wise in their 1976 paper, The Impact
of Applicative Programming on Multiprocessing, but the conceptual behavior of a promise would not
be formalized until a decade later by Barbara Liskov and Liuba Shrira in their 1988 paper, Promises:
Linguistic Support for Efficient Asynchronous Procedure Calls in Distributed Systems. Contemporary
computer scientists described similar concepts such as an “eventual,” “future,” “delay,” or “deferred”;
all of these described in one form or another a programming tool for synchronizing program
execution.

The Promises/A+ Specification
Early forms of promises appeared in jQuery and Dojo’s Deferred API, and in 2010, growing popular-
ity led to the Promises/A specification inside the CommonJS project. Third-party JavaScript promise
libraries such as Q and Bluebird continued to gain adoption, yet each implementation was slightly
different. To address the rifts in the promise space, in 2012 the Promises/A+ organization forked the
CommonJS "Promises/A" proposal and created the eponymous Promises/A+ Promise Specification
(https://promisesaplus.com/). This specification would eventually govern how promises were
implemented in the ECMAScript 6 specification.

ECMAScript 6 introduced a first-class implementation of a Promises/A+–compliant Promise type. In
the time since its introduction, Promises have enjoyed an overwhelmingly robust rate of adoption.
All modern browsers fully support the ES6 promise type, and multiple browser APIs such as fetch()
and the battery API use it exclusively.

Promise Basics
As of ECMAScript 6, Promise is a supported reference type and can be instantiated with the new
operator. Doing so requires passing an executor function parameter (covered in an upcoming section),
which here is an empty function object to please the interpreter:

let p = new Promise(() => {});
setTimeout(console.log, 0, p); // Promise <pending>

If an executor function is not provided, a SyntaxError will be thrown.

396 ❘ CHAPTER 11 Promises and async Functions

The Promise State Machine
When passing a promise instance to console.log, the console output (which may vary between
browsers) indicates that this promise instance is pending. As mentioned previously, a promise is a
stateful object that can exist in one of three states:

➤➤ Pending

➤➤ Fulfilled (sometimes also referred to as resolved)

➤➤ Rejected

A pending state is the initial state a promise begins in. From a pending state, a promise can become
settled by transitioning to a fulfilled state to indicate success, or a rejected state to indicate failure.
This transition to a settled state is irreversible; once a transition to either fulfilled or rejected occurs,
the state of the promise can never change. Furthermore, it is not guaranteed that a promise will ever
leave the pending state. Therefore, well-structured code should behave properly if the promise suc-
cessfully resolves, if the promise rejects, or if it never exits the pending state.

Importantly, the state of a promise is private and cannot be directly inspected in JavaScript. The
reason for this is primarily to prevent synchronous programmatic handling of a promise object
based on its state when it is read. Furthermore, the state of a promise cannot be mutated by external
JavaScript. This is for the same reason the state cannot be read: The promise intentionally encapsu-
lates a block of asynchronous behavior, and external code performing synchronous definition of its
state would be antithetical to its purpose.

Resolved Values, Rejection Reasons, and Utility of Promises
There are two primary reasons the Promise construct is useful. The first is to abstractly represent a
block of asynchronous execution. The state of the promise is indicative of whether or not the promise
has yet to complete execution. The pending state indicates that execution has not yet begun or is still
in progress. The fulfilled state is a nonspecific indicator that the execution has completed successfully.
The rejected state is a nonspecific indicator that the execution did not complete successfully.

In some cases, the internal state machine is all the utility a promise needs to provide: the mere
knowledge that a piece of asynchronous code has completed is sufficient for informing program
flow. For example, suppose a promise is dispatching an HTTP request to a server. The request
returning with a status of 200–299 might be sufficient to transition the promise state to fulfilled.
Similarly, the request returning with a status that is not 200-299 would transition the promise state
to rejected.

In other cases, the asynchronous execution that the promise is wrapping is actually generating a
value, and the program flow will expect this value to be available when the promise changes state.
Alternately, if the promise rejects, the program flow will expect the reason for rejection when the
promise changes state. For example, suppose a promise is dispatching an HTTP request to a server
and expecting it to return JSON. The request returning with a status of 200–299 might be sufficient
to transition the promise to fulfilled, and the JSON string will be available inside the promise. Simi-
larly, the request returning with a status that is not 200–299 would transition the promise state to
rejected, and the reason for rejection might be an Error object containing the text accompanying the
HTTP status code.

Promises ❘ 397

To support these two use cases, every promise that transitions to a fulfilled state has a private internal
value. Similarly, every promise that transitions to a rejected state has a private internal reason. Both
value and reason are an immutable reference to a primitive or object. Both are optional and will
default to undefined. Asynchronous code that is scheduled to execute after a promise reaches a cer-
tain settled state is always provided with the value or reason.

Controlling Promise State with the Executor
Because the state of a promise is private, it can only be manipulated internally. This internal manipulation
is performed inside the promise’s executor function. The executor function has two primary duties: initial-
izing the asynchronous behavior of the promise, and controlling any eventual state transition. Control
of the state transition is accomplished by invoking one of its two function parameters, typically named
resolve and reject. Invoking resolve will change the state to fulfilled; invoking reject will change the
state to rejected. Invoking rejected()will also throw an error (this error behavior is covered more later).

let p1 = new Promise((resolve, reject) => resolve());
setTimeout(console.log, 0, p1); // Promise <resolved>

let p2 = new Promise((resolve, reject) => reject());
setTimeout(console.log, 0, p2); // Promise <rejected>
// Uncaught error (in promise)

In the preceding example, there isn’t really any asynchronous behavior occurring because the state
of each promise is already changed by the time the executor function exits. Importantly, the executor
function will execute synchronously, as it acts as the initializer for the promise. This order of execu-
tion is demonstrated here:

new Promise(() => setTimeout(console.log, 0, 'executor'));
setTimeout(console.log, 0, 'promise initialized');

// executor
// promise initialized

You can delay the state transition by adding a setTimeout:

let p = new Promise((resolve, reject) => setTimeout(resolve, 1000));

// When this console.log executes, the timeout callback has not yet executed:
setTimeout(console.log, 0, p); // Promise <pending>

Once either resolve or reject is invoked, the state transition cannot be undone. Attempts to further
mutate the state will silently be ignored. This is demonstrated here:

let p = new Promise((resolve, reject) => {
 resolve();
 reject(); // No effect
});

setTimeout(console.log, 0, p); // Promise <resolved>

You can avoid promises getting stuck in a pending state by adding timed exit behavior. For example,
you can set a timeout to reject the promise after 10 seconds:

let p = new Promise((resolve, reject) => {
 setTimeout(reject, 10000); // After 10 seconds, invoke reject()

398 ❘ CHAPTER 11 Promises and async Functions

 // Do executor things
});

setTimeout(console.log, 0, p); // Promise <pending>
setTimeout(console.log, 11000, p); // Check state after 11 seconds

// (After 10 seconds) Uncaught error
// (After 11 seconds) Promise <rejected>

Because a promise can only change state a single time, this timeout behavior allows you to safely set
a maximum on the amount of time a promise can remain in the pending state. If the code inside the
executor were to resolve or reject prior to the timeout, the timeout handler’s attempt to reject the
promise will be silently ignored.

Promise Casting with Promise.resolve()
A promise does not necessarily need to begin in a pending state and utilize an executor function to reach
a settled state. It is possible to instantiate a promise in the "resolved" state by invoking the Promise
.resolve() static method. The following two promise instantiations are effectively equivalent:

let p1 = new Promise((resolve, reject) => resolve());
let p2 = Promise.resolve();

The value of this resolved promise will become the first argument passed to Promise.resolve().
This effectively allows you to "cast" any value into a promise:

setTimeout(console.log, 0, Promise.resolve());
// Promise <resolved>: undefined

setTimeout(console.log, 0, Promise.resolve(3));
// Promise <resolved>: 3

// Additional arguments are ignored
setTimeout(console.log, 0, Promise.resolve(4, 5, 6));
// Promise <resolved>: 4

Perhaps the most important aspect of this static method is its ability to act as a passthrough when the
argument is already a promise. As a result, Promise.resolve() is an idempotent method, as demon-
strated here:

let p = Promise.resolve(7);

setTimeout(console.log, 0, p === Promise.resolve(p));
// true

setTimeout(console.log, 0, p === Promise.resolve(Promise.resolve(p)));
// true

This idempotence will respect the state of the promise passed to it:

let p = new Promise(() => {});

setTimeout(console.log, 0, p); // Promise <pending>
setTimeout(console.log, 0, Promise.resolve(p)); // Promise <pending>

setTimeout(console.log, 0, p === Promise.resolve(p)); // true

Promises ❘ 399

Beware that this static method will happily wrap any non-promise, including an error object, as a
resolved promise, which might lead to unintended behavior:

let p = Promise.resolve(new Error('foo'));

setTimeout(console.log, 0, p);
// Promise <resolved>: Error: foo

Promise Rejection with Promise.reject()
Similar in concept to Promise.resolve(), Promise.reject() instantiates a rejected promise and
throws an asynchronous error (which will not be caught by try/catch and can only be caught by a
rejection handler). The following two promise instantiations are effectively equivalent:

let p1 = new Promise((resolve, reject) => reject());
let p2 = Promise.reject();

The ‘reason’ field of this resolved promise will be the first argument passed to Promise.reject().
This will also be the error passed to the reject handler:

let p = Promise.reject(3);
setTimeout(console.log, 0, p); // Promise <rejected>: 3

p.then(null, (e) => setTimeout(console.log, 0, e)); // 3

Importantly, Promise.reject() does not mirror the behavior of Promise.resolve() with respect
to idempotence. If passed a promise object, it will happily use that promise as the ‘reason’ field of the
rejected promise:

setTimeout(console.log, 0, Promise.reject(Promise.resolve()));
// Promise <rejected>: Promise <resolved>

Synchronous/Asynchronous Execution Duality
Much of the design of the Promise construct is to engender a totally separate mode of computation
in JavaScript. This is neatly encapsulated in the following example, which throws errors in two dif-
ferent ways:

try {
 throw new Error('foo');
} catch(e) {
 console.log(e); // Error: foo
}

try {
 Promise.reject(new Error('bar'));
} catch(e) {
 console.log(e);
}
// Uncaught (in promise) Error: bar

The first try/catch block throws an error and then proceeds to catch it, but the second try/catch block
throws an error that is not caught. This might seem counterintuitive because the code appears to be
synchronously creating a rejected promise instance, which then throws an error upon rejection. How-
ever, the reason the second promise is not caught is that the code is not attempting to catch the error

400 ❘ CHAPTER 11 Promises and async Functions

in the appropriate "asynchronous mode." Such behavior underscores how promises actually behave:
They are synchronous objects—used inside a synchronous mode of execution—acting as a bridge to
an asynchronous mode of execution.

In the preceding example, the error from the rejected promise is not being thrown inside the synchro-
nous execution thread, but instead from the browser’s asynchronous message queue execution. There-
fore, the encapsulating try/catch block will not suffice to catch this error. Once code starts to execute
in this asynchronous mode, the only way to interact with it is to use asynchronous mode constructs—
more specifically, promise methods.

Promise Instance Methods
The methods exposed on a promise instance serve to bridge the gap between the synchronous
external code path and the asynchronous internal code path. These methods can be used to
access data returned from an asynchronous operation, handle success and failure outcomes of the
promise, serially evaluate promises, or add functions that only execute once the promise enters a
terminal state.

Implementing the Thenable Interface
For the purposes of ECMAScript asynchronous constructs, any object that exposes a then() method
is considered to implement the Thenable interface. The following is an example of the simplest pos-
sible class that implements this interface:

class MyThenable {
 then() {}
}

The ECMAScript Promise type implements the Thenable interface. This simplistic interface is not
to be confused with other interfaces or type definitions in packages like TypeScript, which lay out a
much more specific form of a Thenable interface.

NOTE The utility and purpose of the Thenable interface is revisited later in the
chapter in the async function section.

Promise.prototype.then()
The method Promise.prototype.then() is the primary method that is used to attach handlers to a
promise instance. The then() method accepts up to two arguments: an optional onResolved handler
function, and an optional onRejected handler function. Each will execute only when the promise
upon which they are defined reaches its respective "fulfilled" or "rejected" state.

function onResolved(id) {
 setTimeout(console.log, 0, id, 'resolved');
}
function onRejected(id) {
 setTimeout(console.log, 0, id, 'rejected');
}

Promises ❘ 401

let p1 = new Promise((resolve, reject) => setTimeout(resolve, 3000));
let p2 = new Promise((resolve, reject) => setTimeout(reject, 3000));

p1.then(() => onResolved('p1'),
 () => onRejected('p1'));
p2.then(() => onResolved('p2'),
 () => onRejected('p2'));

// (after 3s)
// p1 resolved
// p2 rejected

Because a promise can only transition to a final state a single time, you are guaranteed that execution
of these handlers is mutually exclusive.

As described earlier, both handler arguments are completely optional. Any non-function type pro-
vided as an argument to then() will be silently ignored. If you wish to explicitly provide only an
onRejected handler, providing undefined as the onResolved argument is the canonical choice. This
allows you to avoid creating a temporary object in memory just to be ignored by the interpreter, and
it will also please type systems that expect an optional function object as an argument.

function onResolved(id) {
 setTimeout(console.log, 0, id, 'resolved');
}
function onRejected(id) {
 setTimeout(console.log, 0, id, 'rejected');
}

let p1 = new Promise((resolve, reject) => setTimeout(resolve, 3000));
let p2 = new Promise((resolve, reject) => setTimeout(reject, 3000));

// Non-function handlers are silently ignored, not recommended
p1.then('gobbeltygook');

// Canonical form of explicit onResolved handler skipping
p2.then(null, () => onRejected('p2'));

// p2 rejected (after 3s)

The Promise.prototype.then() method returns a new promise instance:

let p1 = new Promise(() => {});
let p2 = p1.then();
setTimeout(console.log, 0, p1); // Promise <pending>
setTimeout(console.log, 0, p2); // Promise <pending>
setTimeout(console.log, 0, p1 === p2); // false

This new promise instance is derived from the return value of the onResolved handler. The return value
of the handler is wrapped in Promise.resolve() to generate a new promise. If no handler function is
provided, the method acts as a passthrough for the initial promise’s resolved value. If there is no explicit
return statement, the default return value is undefined and wrapped in a Promise.resolve().

let p1 = Promise.resolve('foo');

// Calling then() with no handler function acts as a passthrough
let p2 = p1.then();

402 ❘ CHAPTER 11 Promises and async Functions

setTimeout(console.log, 0, p2); // Promise <resolved>: foo

// These are equivalent
let p3 = p1.then(() => undefined);
let p4 = p1.then(() => {});
let p5 = p1.then(() => Promise.resolve());

setTimeout(console.log, 0, p3); // Promise <resolved>: undefined
setTimeout(console.log, 0, p4); // Promise <resolved>: undefined
setTimeout(console.log, 0, p5); // Promise <resolved>: undefined

Explicit return values are wrapped in Promise.resolve():

...

// These are equivalent:
let p6 = p1.then(() => 'bar');
let p7 = p1.then(() => Promise.resolve('bar'));

setTimeout(console.log, 0, p6); // Promise <resolved>: bar
setTimeout(console.log, 0, p7); // Promise <resolved>: bar

// Promise.resolve() preserves the returned promise
let p8 = p1.then(() => new Promise(() => {}));
let p9 = p1.then(() => Promise.reject());
// Uncaught (in promise): undefined

setTimeout(console.log, 0, p8); // Promise <pending>
setTimeout(console.log, 0, p9); // Promise <rejected>: undefined

Throwing an exception will return a rejected promise:

...

let p10 = p1.then(() => { throw 'baz'; });
// Uncaught (in promise) baz

setTimeout(console.log, 0, p10); // Promise <rejected> baz

Importantly, returning an error will not trigger the same rejection behavior, and will instead wrap the
error object in a resolved promise:

...

let p11 = p1.then(() => Error('qux'));

setTimeout(console.log, 0, p11); // Promise <resolved>: Error: qux

The onRejected handler behaves in the same way: values returned from the onRejected handler
are wrapped in Promise.resolve(). This might seem counterintuitive at first, but the onRejected
handler is doing its job to catch an asynchronous error. Therefore, this rejection handler completing
execution without throwing an additional error should be considered expected promise behavior and
therefore return a resolved promise.

Promises ❘ 403

The following code snippet is the Promise.reject() analog of the previous examples using Prom-
ise.resolve():

let p1 = Promise.reject('foo');

// Calling then() with no handler function acts as a passthrough
let p2 = p1.then();
// Uncaught (in promise) foo

setTimeout(console.log, 0, p2); // Promise <rejected>: foo

// These are equivalent
let p3 = p1.then(null, () => undefined);
let p4 = p1.then(null, () => {});
let p5 = p1.then(null, () => Promise.resolve());

setTimeout(console.log, 0, p3); // Promise <resolved>: undefined
setTimeout(console.log, 0, p4); // Promise <resolved>: undefined
setTimeout(console.log, 0, p5); // Promise <resolved>: undefined

// These are equivalent
let p6 = p1.then(null, () => 'bar');
let p7 = p1.then(null, () => Promise.resolve('bar'));

setTimeout(console.log, 0, p6); // Promise <resolved>: bar
setTimeout(console.log, 0, p7); // Promise <resolved>: bar

// Promise.resolve() preserves the returned promise
let p8 = p1.then(null, () => new Promise(() => {}));
let p9 = p1.then(null, () => Promise.reject());
// Uncaught (in promise): undefined

setTimeout(console.log, 0, p8); // Promise <pending>
setTimeout(console.log, 0, p9); // Promise <rejected>: undefined

let p10 = p1.then(null, () => { throw 'baz'; });
// Uncaught (in promise) baz

setTimeout(console.log, 0, p10); // Promise <rejected>: baz

let p11 = p1.then(null, () => Error('qux'));

setTimeout(console.log, 0, p11); // Promise <resolved>: Error: qux

Promise.prototype.catch()
The Promise.prototype.catch() method can be used to attach only a reject handler to a promise.
It only takes a single argument, the onRejected handler function. The method is no more than syn-
tactical sugar, and is no different than using Promise.prototype.then(null, onRejected).

404 ❘ CHAPTER 11 Promises and async Functions

The following code demonstrates this equivalence:

let p = Promise.reject();
let onRejected = function(e) {
 setTimeout(console.log, 0, 'rejected');
};

// These two reject handlers behave identically:
p.then(null, onRejected); // rejected
p.catch(onRejected); // rejected

The Promise.prototype.catch() method returns a new promise instance:

let p1 = new Promise(() => {});
let p2 = p1.catch();
setTimeout(console.log, 0, p1); // Promise <pending>
setTimeout(console.log, 0, p2); // Promise <pending>
setTimeout(console.log, 0, p1 === p2); // false

With respect to creation of the new promise instance, Promise.prototype.catch() behaves identi-
cally to the onRejected handler of Promise.prototype.then().

Promise.prototype.finally()
The Promise.protoype.finally() method can be used to attach an onFinally handler, which
executes when the promise reaches either a resolved or a rejected state. This is useful for avoiding
code duplication between onResolved and onRejected handlers. Importantly, the handler does not
have any way of determining if the promise was resolved or rejected, so this method is designed to be
used for things like cleanup.

let p1 = Promise.resolve();
let p2 = Promise.reject();
let onFinally = function() {
 setTimeout(console.log, 0, 'Finally!')
}

p1.finally(onFinally); // Finally
p2.finally(onFinally); // Finally

The Promise.prototype.finally() method returns a new promise instance:

let p1 = new Promise(() => {});
let p2 = p1.finally();
setTimeout(console.log, 0, p1); // Promise <pending>
setTimeout(console.log, 0, p2); // Promise <pending>
setTimeout(console.log, 0, p1 === p2); // false

This new promise instance is derived in a different manner than then() or catch(). Because
onFinally is intended to be a state-agnostic method, in most cases it will behave as a passthrough
for the parent promise. This is true for both the resolved and rejected states.

let p1 = Promise.resolve('foo');

// These all act as a passthrough
let p2 = p1.finally();
let p3 = p1.finally(() => undefined);

Promises ❘ 405

let p4 = p1.finally(() => {});
let p5 = p1.finally(() => Promise.resolve());
let p6 = p1.finally(() => 'bar');
let p7 = p1.finally(() => Promise.resolve('bar'));
let p8 = p1.finally(() => Error('qux'));

setTimeout(console.log, 0, p2); // Promise <resolved>: foo
setTimeout(console.log, 0, p3); // Promise <resolved>: foo
setTimeout(console.log, 0, p4); // Promise <resolved>: foo
setTimeout(console.log, 0, p5); // Promise <resolved>: foo
setTimeout(console.log, 0, p6); // Promise <resolved>: foo
setTimeout(console.log, 0, p7); // Promise <resolved>: foo
setTimeout(console.log, 0, p8); // Promise <resolved>: foo

The only exceptions to this are when it returns a pending promise, or an error is thrown (via an
explicit throw or returning a rejected promise). In these cases, the corresponding promise is returned
(pending or rejected), as shown here:

...

// Promise.resolve() preserves the returned promise
let p9 = p1.finally(() => new Promise(() => {}));
let p10 = p1.finally(() => Promise.reject());
// Uncaught (in promise): undefined

setTimeout(console.log, 0, p9); // Promise <pending>
setTimeout(console.log, 0, p10); // Promise <rejected>: undefined

let p11 = p1.finally(() => { throw 'baz';});
// Uncaught (in promise) baz

setTimeout(console.log, 0, p11); // Promise <rejected>: baz

Returning a pending promise is an unusual case, as once the promise resolves, the new promise will
still behave as a passthrough for the initial promise:

let p1 = Promise.resolve('foo');

// The resolved value is ignored
let p2 = p1.finally(
 () => new Promise((resolve, reject) => setTimeout(() => resolve('bar'), 100)));

setTimeout(console.log, 0, p2); // Promise <pending>

setTimeout(() => setTimeout(console.log, 0, p2), 200);

// After 200ms:
// Promise <resolved>: foo

Non-Reentrant Promise Methods
When a promise reaches a settled state, execution of handlers associated with that state are merely
scheduled rather than immediately executed. Synchronous code following the attachment of the
handler is guaranteed to execute before the handler is invoked. This remains true even if the prom-
ise already exists in the state the newly attached handler is associated with. This property, called

406 ❘ CHAPTER 11 Promises and async Functions

non-reentrancy, is guaranteed by the JavaScript runtime. The following simple example demonstrates
this property:

// Create a resolved promise
let p = Promise.resolve();

// Attach a handler to the resolved state.
// Intuitively, this would execute as soon as possible since p is already resolved.
p.then(() => console.log('onResolved handler'));

// Synchronously log to indicate that then() has returned
console.log('then() returns');

// Actual output:
// then() returns
// onResolved handler

In this example, calling then() on a resolved promise will push the onResolved handler onto the
message queue. This handler will not be executed until it is dequeued after the current thread of
execution completes. Therefore, synchronous code immediately following then() is guaranteed to
execute prior to the handler.

The inverse of this scenario yields the same result. If handlers are already attached to a promise that
later synchronously changes state, the handler execution is non-reentrant upon that state change. The
following example demonstrates how, even with an onResolved handler already attached, synchro-
nously invoking resolve() will still exhibit non-reentrant behavior:

let synchronousResolve;

// Create a promise and capture the resolve function in a local variable
let p = new Promise((resolve) => {
 synchronousResolve = function() {
 console.log('1: invoking resolve()');
 resolve();
 console.log('2: resolve() returns');
 };
});

p.then(() => console.log('4: then() handler executes'));

synchronousResolve();
console.log('3: synchronousResolve() returns');

// Actual output:
// 1: invoking resolve()
// 2: resolve() returns
// 3: synchronousResolve() returns
// 4: then() handler executes

In this example, even though the promise state changes synchronously with handlers attached to that
state, the handler execution will still not occur until dequeued from the runtime’s message queue.

Promises ❘ 407

Non-reentrancy is guaranteed for both onResolved and onRejected handlers, catch() handlers,
and finally() handlers. Each of these is demonstrated in this example:

let p1 = Promise.resolve();
p1.then(() => console.log('p1.then() onResolved'));
console.log('p1.then() returns');

let p2 = Promise.reject();
p2.then(null, () => console.log('p2.then() onRejected'));
console.log('p2.then() returns');

let p3 = Promise.reject();
p3.catch(() => console.log('p3.catch() onRejected'));
console.log('p3.catch() returns');

let p4 = Promise.resolve();
p4.finally(() => console.log('p4.finally() onFinally'));

console.log('p4.finally() returns');

// p1.then() returns
// p2.then() returns
// p3.catch() returns
// p4.finally() returns
// p1.then() onResolved
// p2.then() onRejected
// p3.catch() onRejected
// p4.finally() onFinally

Sibling Handler Order of Execution
If multiple handlers are attached to a promise, when the promise transitions to a settled state, the
associated handlers will execute in the order in which they were attached. This is true for then(),
catch(), and finally():

let p1 = Promise.resolve();
let p2 = Promise.reject();

p1.then(() => setTimeout(console.log, 0, 1));
p1.then(() => setTimeout(console.log, 0, 2));
// 1
// 2

p2.then(null, () => setTimeout(console.log, 0, 3));
p2.then(null, () => setTimeout(console.log, 0, 4));
// 3
// 4

p2.catch(() => setTimeout(console.log, 0, 5));
p2.catch(() => setTimeout(console.log, 0, 6));
// 5
// 6

p1.finally(() => setTimeout(console.log, 0, 7));
p1.finally(() => setTimeout(console.log, 0, 8));
// 7
// 8

408 ❘ CHAPTER 11 Promises and async Functions

Resolved Value and Rejected Reason Passing
When reaching a settled state, a promise will provide its resolved value (if it is fulfilled) or its rejection
reason (if it is rejected) to any handlers that are attached to that state. This is especially useful in cases
where successive blocks of serial computation are required. For example, if the JSON response of one
network request is required to perform a second network request, the response from the first request
can be passed as the resolved value to the onResolved handler. Alternately, a failed network request
can pass the HTTP status code to the onRejected handler.

Resolved values and rejected reasons are assigned from inside the executor as the first argument to
the resolve() or reject() functions. These values are provided to their respective onResolved or
onRejected handler as the sole parameter. This handoff is demonstrated here:

let p1 = new Promise((resolve, reject) => resolve('foo'));
p1.then((value) => console.log(value)); // foo

let p2 = new Promise((resolve, reject) => reject('bar'));
p2.catch((reason) => console.log(reason)); // bar

Promise.resolve() and Promise.reject() accept the value/reason argument when calling the
static method. The onResolved and onRejected handlers are provided the value or reason in the
same way as if it were passed from the executor:

let p1 = Promise.resolve('foo');
p1.then((value) => console.log(value)); // foo

let p2 = Promise.reject('bar');
p2.catch((reason) => console.log(reason)); // bar

Rejecting Promises and Rejection Error Handling
Rejecting a promise is analogous to a throw expression in that they both represent a program state
that should force a discontinuation of any subsequent operations. Throwing an error inside a promise
executor or handler will cause it to reject; the corresponding error object will be the rejection reason.
Therefore, these promises all will reject with an error object:

let p1 = new Promise((resolve, reject) => reject(Error('foo')));
let p2 = new Promise((resolve, reject) => { throw Error('foo'); });
let p3 = Promise.resolve().then(() => { throw Error('foo'); });
let p4 = Promise.reject(Error('foo'));

setTimeout(console.log, 0, p1); // Promise <rejected>: Error: foo
setTimeout(console.log, 0, p2); // Promise <rejected>: Error: foo
setTimeout(console.log, 0, p3); // Promise <rejected>: Error: foo
setTimeout(console.log, 0, p4); // Promise <rejected>: Error: foo

// Also throws four uncaught errors

Promises can be rejected with any value including undefined, but it is strongly recommended that
you consistently use error object. The primary reason for this is that constructing an error object
allows the browser to capture the stack trace inside the error object, which is immensely useful in

Promises ❘ 409

debugging. For example, the stack trace for the three errors in the preceding code should appear
something like the following:

Uncaught (in promise) Error: foo
 at Promise (test.html:5)
 at new Promise (<anonymous>)
 at test.html:5
Uncaught (in promise) Error: foo
 at Promise (test.html:6)
 at new Promise (<anonymous>)
 at test.html:6
Uncaught (in promise) Error: foo
 at test.html:8
Uncaught (in promise) Error: foo
 at Promise.resolve.then (test.html:7)

All errors are asynchronously thrown and unhandled, and the stack trace captured by the error objects
show the path that the error object took. Also note here the order of errors: The Promise.resolve().
then() error executes last because it requires an additional entry on the runtime’s message queue
because it is creating one additional promise prior to ultimately throwing the uncaught error.

This example also uncovers an interesting side effect of asynchronous errors. Normally, when throw-
ing an error using the throw keyword, the JavaScript runtime’s error handling behavior will decline
to execute any instructions following the thrown error.

throw Error('foo');
console.log('bar'); // This will never print

// Uncaught Error: foo

However, when an error is thrown inside a promise, because the error is actually being thrown
asynchronously from the message queue, it will not prevent the runtime from continuing to execute
synchronous instructions:

Promise.reject(Error('foo'));
console.log('bar');
// bar

// Uncaught (in promise) Error: foo

As demonstrated earlier in this chapter with Promise.reject(), an asynchronous error can be
caught only with an asynchronous onRejection handler.

// Correct
Promise.reject(Error('foo')).catch((e) => {});

// Incorrect
try {
 Promise.reject(Error('foo'));
} catch(e) {}

This does not apply to catching the error while still inside the executor, where try/catch will still suf-
fice to catch the error before it rejects the promise:

let p = new Promise((resolve, reject) => {
 try {

410 ❘ CHAPTER 11 Promises and async Functions

 throw Error('foo');
 } catch(e) {}

 resolve('bar');
});

setTimeout(console.log, 0, p); // Promise <resolved>: bar

The onRejected handler for then() and catch() is analogous to the semantics of try/catch in
that catching an error should effectively neutralize it and allow for normal computation to continue.
Therefore, it should make sense that an onRejected handler tasked with catching asynchronous
error will in fact return a resolved promise. The synchronous/synchronous comparison are demon-
strated in the following example:

console.log('begin synchronous execution');
try {
 throw Error('foo');
} catch(e) {
 console.log('caught error', e);
}
console.log('continue synchronous execution');

// begin synchronous execution
// caught error Error: foo
// continue synchronous execution

new Promise((resolve, reject) => {
 console.log('begin asynchronous execution');
 reject(Error('bar'));
}).catch((e) => {
 console.log('caught error', e);
}).then(() => {
 console.log('continue asynchronous execution');
});

// begin asynchronous execution
// caught error Error: bar
// continue asynchronous execution

Promise Chaining and Composition
Combining multiple promises together enables some powerful code patterns. Such behavior is possi-
ble in two primary ways: promise chaining, which involves strictly sequencing multiple promises, and
promise composition, which involves combining multiple promises into a single promise.

Promise Chaining
One of the more useful aspects of ECMAScript promises is their ability to be strictly sequenced. This
is enabled through the Promise API’s structure: Each of the promise instance’s methods—then(),
catch(), and finally()—returns a separate promise instance, which in turn can have another

Promises ❘ 411

instance method called upon it. Successively invoking methods in such a manner is referred to as
“promise chaining.” The following is a trivial example of this:

let p = new Promise((resolve, reject) => {
 console.log('first');
 resolve();
});
p.then(() => console.log('second'))
 .then(() => console.log('third'))
 .then(() => console.log('fourth'));

// first
// second
// third
// fourth

This implementation is ultimately executing chained synchronous tasks. Because of this, the work
performed isn’t very useful or interesting because it is approximately the same as successively invok-
ing four functions in sequence:

(() => console.log('first'))();
(() => console.log('second'))();
(() => console.log('third'))();
(() => console.log('fourth'))();

To chain asynchronous tasks, this example can be retooled so that each executor returns a promise
instance. Because each successive promise will await the resolution of its predecessor, such a strategy
can be used to serialize asynchronous tasks. For example, this can be used to execute multiple prom-
ises in series that resolve after a timeout:

let p1 = new Promise((resolve, reject) => {
 console.log('p1 executor');
 setTimeout(resolve, 1000);
});

p1.then(() => new Promise((resolve, reject) => {
 console.log('p2 executor');
 setTimeout(resolve, 1000);
 }))
 .then(() => new Promise((resolve, reject) => {
 console.log('p3 executor');
 setTimeout(resolve, 1000);
 }))
 .then(() => new Promise((resolve, reject) => {
 console.log('p4 executor');
 setTimeout(resolve, 1000);
 }));

// p1 executor (after 1s)
// p2 executor (after 2s)
// p3 executor (after 3s)
// p4 executor (after 4s)

412 ❘ CHAPTER 11 Promises and async Functions

Combining the promise generation into a single factory function yields the following:

function delayedResolve(str) {
 return new Promise((resolve, reject) => {
 console.log(str);
 setTimeout(resolve, 1000);
 });
}

delayedResolve('p1 executor')
 .then(() => delayedResolve('p2 executor'))
 .then(() => delayedResolve('p3 executor'))
 .then(() => delayedResolve('p4 executor'))

// p1 executor (after 1s)
// p2 executor (after 2s)
// p3 executor (after 3s)
// p4 executor (after 4s)

Each successive handler waits for its predecessor to resolve, instantiates a new promise instance, and
returns it. Such a structure is able to neatly serialize asynchronous code without forcing the use of
callbacks. Without the use of promises, the preceding code would look something like this:

function delayedExecute(str, callback = null) {
 setTimeout(() => {
 console.log(str);
 callback && callback();
 }, 1000)
}

delayedExecute('p1 callback', () => {
 delayedExecute('p2 callback', () => {
 delayedExecute('p3 callback', () => {
 delayedExecute('p4 callback');
 });
 });
});

// p1 callback (after 1s)
// p2 callback (after 2s)
// p3 callback (after 3s)
// p4 callback (after 4s)

The observant developer will note that this effectively reintroduces the callback hell that promises are
designed to circumvent.

Because then(), catch(), and finally() all return a promise, chaining them together is straightfor-
ward. The following example incorporates all three:

let p = new Promise((resolve, reject) => {
 console.log('initial promise rejects');
 reject();
});

p.catch(() => console.log('reject handler'))
 .then(() => console.log('resolve handler'))
 .finally(() => console.log('finally handler'));

Promises ❘ 413

// initial promise rejects
// reject handler
// resolve handler
// finally handler

Promise Graphs
Because a single promise can have an arbitrary number of handlers attached, forming directed acyclic
graphs of chained promises is also possible. Each promise is a node in the graph, and attaching a
handler using an instance method adds a directed vertex. Because each node in the graph will wait for
its predecessor to settle, you are guaranteed that the direction of graph vertices will indicate the order
of promise execution.

The following is an example of one possible type of promise directed graph, a binary tree:

// A
// / \
// B C
// /\ /\
// D E F G

let A = new Promise((resolve, reject) => {
 console.log('A');
 resolve();
});

let B = A.then(() => console.log('B'));
let C = A.then(() => console.log('C'));

B.then(() => console.log('D'));
B.then(() => console.log('E'));
C.then(() => console.log('F'));
C.then(() => console.log('G'));

// A
// B
// C
// D
// E
// F
// G

Note here that the order of log statements is a level-order traversal of this binary tree. As discussed
in an earlier section, a promise’s handlers are expected to execute in the order they were attached.
Because the handlers of a promise are eagerly added to the message queue but lazily executed, the
result of this behavior is a level-order traversal.

Trees are only one manifestation of a promise graph. Because there is not necessarily a single root
promise node, and because multiple promises can be combined into a single promise (using Promise.
all() or Promise.race() as discussed in an upcoming section), a directed acyclic graph is the most
accurate characterization of the universe of promise chaining possibilities.

414 ❘ CHAPTER 11 Promises and async Functions

Parallel Promise Composition with Promise.all() and Promise.race()
The Promise class provides two static methods that allow you to compose a new promise instance
out of several promise instances. The behavior of this composed promise is based on how the prom-
ises inside it behave.

Promise.all()
The Promise.all() static method creates an all-or-nothing promise that resolves only once every
promise in a collection of promises resolves. The static method accepts an iterable and returns a
new promise:

let p1 = Promise.all([
 Promise.resolve(),
 Promise.resolve()
]);

// Elements in the iterable are coerced into a promise using Promise.resolve()
let p2 = Promise.all([3, 4]);

// Empty iterable is equivalent to Promise.resolve()
let p3 = Promise.all([]);

// Invalid syntax
let p4 = Promise.all();
// TypeError: cannot read Symbol.iterator of undefined

The composed promise will only resolve once every contained promise is resolved:

let p = Promise.all([
 Promise.resolve(),
 new Promise((resolve, reject) => setTimeout(resolve, 1000))
]);
setTimeout(console.log, 0, p); // Promise <pending>

p.then(() => setTimeout(console.log, 0, 'all() resolved!'));

// all() resolved! (After ~1000ms)

If at least one contained promise remains pending, the composed promise also will remain pending. If
one contained promise rejects, the composed promise will reject:

// Will forever remain pending
let p1 = Promise.all([new Promise(() => {})]);
setTimeout(console.log, 0, p1); // Promise <pending>

// Single rejection causes rejection of composed promise
let p2 = Promise.all([
 Promise.resolve(),
 Promise.reject(),
 Promise.resolve()
]);
setTimeout(console.log, 0, p2); // Promise <rejected>

// Uncaught (in promise) undefined

Promises ❘ 415

If all promises successfully resolve, the resolved value of the composed promise will be an array of all
of the resolved values of the contained promises, in iterator order:

let p = Promise.all([
 Promise.resolve(3),
 Promise.resolve(),
 Promise.resolve(4)
]);

p.then((values) => setTimeout(console.log, 0, values)); // [3, undefined, 4]

If one of the promises rejects, whichever is the first to reject will set the rejection reason for the
composed promise. Subsequent rejections will not affect the rejection reason; however, the normal
rejection behavior of those contained promise instances is not affected. Importantly, the composed
promise will silently handle the rejection of all contained promises, as demonstrated here:

// Although only the first rejection reason will be provided in
// the rejection handler, the second rejection will be silently
// handled and no error will escape
let p = Promise.all([
 Promise.reject(3),
 new Promise((resolve, reject) => setTimeout(reject, 1000))
]);

p.catch((reason) => setTimeout(console.log, 0, reason)); // 3

// No unhandled errors

Promise.race()
The Promise.race() static method creates a promise that will mirror whichever promise inside a
collection of promises reaches a resolved or rejected state first. The static method accepts an iterable
and returns a new promise:

let p1 = Promise.race([
 Promise.resolve(),
 Promise.resolve()
]);

// Elements in the iterable are coerced into a promise using Promise.resolve()
let p2 = Promise.race([3, 4]);

// Empty iterable is equivalent to new Promise(() => {})
let p3 = Promise.race([]);

// Invalid syntax
let p4 = Promise.race();
// TypeError: cannot read Symbol.iterator of undefined

The Promise.race() method does not give preferential treatment to a resolved or a rejected prom-
ise. The composed promise will pass through the status and value/reason of the first settled promise,
as shown here:

// Resolve occurs first, reject in timeout ignored
let p1 = Promise.race([

416 ❘ CHAPTER 11 Promises and async Functions

 Promise.resolve(3),
 new Promise((resolve, reject) => setTimeout(reject, 1000))
]);
setTimeout(console.log, 0, p1); // Promise <resolved>: 3

// Reject occurs first, resolve in timeout ignored
let p2 = Promise.race([
 Promise.reject(4),
 new Promise((resolve, reject) => setTimeout(resolve, 1000))
]);
setTimeout(console.log, 0, p2); // Promise <rejected>: 4

// Iterator order is the tiebreaker for settling order
let p3 = Promise.race([
 Promise.resolve(5),
 Promise.resolve(6),
 Promise.resolve(7)
]);
setTimeout(console.log, 0, p3); // Promise <resolved>: 5

If one of the promises rejects, whichever is the first to reject will set the rejection reason for the
composed promise. Subsequent rejections will not affect the rejection reason; however, the normal
rejection behavior of those contained promise instances is not affected. As is the case with Promise.
all(), the composed promise will silently handle the rejection of all contained promises, as demon-
strated here:

// Although only the first rejection reason will be provided in
// the rejection handler, the second rejection will be silently
// handled and no error will escape
let p = Promise.race([
 Promise.reject(3),
 new Promise((resolve, reject) => setTimeout(reject, 1000))
]);

p.catch((reason) => setTimeout(console.log, 0, reason)); // 3

// No unhandled errors

Serial Promise Composition
The discussion of promise chaining thus far has focused on serialization of execution and largely
ignored a core feature of promises: their ability to asynchronously produce a value and provide it to
handlers. Chaining promises together with the intention of each successive promise using the value of
its predecessor is a fundamental feature of promises. This is in many ways analogous to function com-
position, where multiple functions are composed together into a new function, demonstrated here:

function addTwo(x) {return x + 2;}
function addThree(x) {return x + 3;}
function addFive(x) {return x + 5;}

function addTen(x) {
 return addFive(addTwo(addThree(x)));
}

console.log(addTen(7)); // 17

Promises ❘ 417

In this example, function composition is used to combine these three functions together to oper-
ate on a single value. Similarly, promises can be composed together to progressively consume
a value and produce a single promise containing the result. Doing so explicitly would appear
as follows:

function addTwo(x) {return x + 2;}
function addThree(x) {return x + 3;}
function addFive(x) {return x + 5;}

function addTen(x) {
 return Promise.resolve(x)
 .then(addTwo)
 .then(addThree)
 .then(addFive);
}

addTen(8).then(console.log); // 18

This can be fashioned into a more succinct form using Array.prototype.reduce():

function addTwo(x) {return x + 2;}
function addThree(x) {return x + 3;}
function addFive(x) {return x + 5;}

function addTen(x) {
 return [addTwo, addThree, addFive]
 .reduce((promise, fn) => promise.then(fn), Promise.resolve(x));
}

addTen(8).then(console.log); // 18

Such a strategy for composing promises can be generalized into a function that can compose any
number of functions into a value-passing promise chain. This generalized composition function can
be implemented as follows:

function addTwo(x) {return x + 2;}
function addThree(x) {return x + 3;}
function addFive(x) {return x + 5;}

function compose(...fns) {
 return (x) => fns.reduce((promise, fn) => promise.then(fn), Promise.resolve(x))
}

let addTen = compose(addTwo, addThree, addFive);

addTen(8).then(console.log); // 18

NOTE This concept is revisited in the “Async Functions” section later in the
chapter.

418 ❘ CHAPTER 11 Promises and async Functions

Promise Extensions
The ES6 promise implementation is robust, but as is the case with any piece of software, there will be
shortcomings. Two offerings available in some third-party promise implementations but lacking in the
formal ECMAScript specification are promise canceling and progress tracking.

Promise Canceling
Often, a promise will be in progress but the program will no longer care about the result. The ability
to “cancel” a promise would be useful in such a situation. Some third-party promise libraries such as
Bluebird offer such a feature, and even ECMAScript was slated to offer such a feature before it was
ultimately withdrawn (https://github.com/tc39/proposal-cancelable-promises). As a result,
ES6 promises are considered “eager”: Once the promise’s encapsulated function is underway, there is
no way to prevent this process from completing.

It is still possible to implement an ad-hoc implementation that is a facsimile of the original design.
Such an implementation makes use of a “cancel token,” a concept fleshed out in Kevin Smith’s design
sketch (https://github.com/zenparsing/es-cancel-token). A generated cancel token provides
an interface through which to cancel a promise, as well as a promise hook with which to trigger can-
cellation behavior and evaluate cancellation state.

A basic implementation of a CancelToken class might appear as follows:

class CancelToken {
 constructor(cancelFn) {
 this.promise = new Promise((resolve, reject) => {
 cancelFn(resolve);
 });
 }
}

This class wraps a promise that exposes the resolve method to a cancelFn parameter. An external
entity will then be able to provide a function to the constructor, allowing that entity to control exactly
when the token should be canceled. This promise is a public member of the token class, and therefore
it is possible to add listeners to the cancellation promise.

A rough example of how this class could be used is shown here:

<button id="start">Start</button>
<button id="cancel">Cancel</button>

<script>
class CancelToken {
 constructor(cancelFn) {
 this.promise = new Promise((resolve, reject) => {
 cancelFn(() => {
 setTimeout(console.log, 0, "delay cancelled");
 resolve();
 });
 });
 }
}

Promises ❘ 419

const startButton = document.querySelector('#start');
const cancelButton = document.querySelector('#cancel');

function cancellableDelayedResolve(delay) {
 setTimeout(console.log, 0, "set delay");

 return new Promise((resolve, reject) => {
 const id = setTimeout((() => {
 setTimeout(console.log, 0, "delayed resolve");
 resolve();
 }), delay);

 const cancelToken = new CancelToken((cancelCallback) =>
 cancelButton.addEventListener("click", cancelCallback));

 cancelToken.promise.then(() => clearTimeout(id));
 });
}

startButton.addEventListener("click", () => cancellableDelayedResolve(1000));
</script>

Each click on the Start button begins a timeout and instantiates a new CancelToken instance. The
Cancel button is configured so that a click will trigger the token’s promise to resolve. Upon resolving,
the timeout initially set by the Start button click will be canceled.

Promise Progress Notifications
An in-progress promise might have several discrete “stages” that it will progress through before
actually resolving. In some situations, it can be useful to allow a program to watch for a promise to
reach these checkpoints. ECMAScript 6 promises do not support this concept, but it is still possible to
emulate this behavior by extending a promise.

One potential implementation is to extend the Promise class with a notify() method, as
shown here:

class TrackablePromise extends Promise {
 constructor(executor) {
 const notifyHandlers = [];

 super((resolve, reject) => {
 return executor(resolve, reject, (status) => {
 notifyHandlers.map((handler) => handler(status));
 }) ;
 });

 this.notifyHandlers = notifyHandlers;
 }

 notify(notifyHandler) {
 this.notifyHandlers.push(notifyHandler);
 return this;
 }
}

420 ❘ CHAPTER 11 Promises and async Functions

A TrackablePromise would then be able to use the notify() function inside the executor. A prom-
ise instantiation could use this function as follows:

let p = new TrackablePromise((resolve, reject, notify) => {
 function countdown(x) {
 if (x > 0) {
 notify(`${20 * x}% remaining`);
 setTimeout(() => countdown(x - 1), 1000);
 } else {
 resolve();
 }
 }

 countdown(5);
});

This promise will recursively set a 1000ms timeout five consecutive times before resolving. Each timeout
handler will invoke notify() and pass a status. Providing a notification handler could be done as follows:

...

let p = new TrackablePromise((resolve, reject, notify) => {
 function countdown(x) {
 if (x > 0) {
 notify(`${20 * x}% remaining`);
 setTimeout(() => countdown(x - 1), 1000);
 } else {
 resolve();
 }
 }

 countdown(5);
});

p.notify((x) => setTimeout(console.log, 0, 'progress:', x));

p.then(() => setTimeout(console.log, 0, 'completed'));

// (after 1s) 80% remaining
// (after 2s) 60% remaining
// (after 3s) 40% remaining
// (after 4s) 20% remaining
// (after 5s) completed

This notify() method is designed to be chainable by returning itself, and handler execution will be
preserved on a per-notification basis, as shown here:

...

p.notify((x) => setTimeout(console.log, 0, 'a:', x))
 .notify((x) => setTimeout(console.log, 0, 'b:', x));

p.then(() => setTimeout(console.log, 0, 'completed'));

// (after 1s) a: 80% remaining
// (after 1s) b: 80% remaining

Async Functions ❘ 421

// (after 2s) a: 60% remaining
// (after 2s) b: 60% remaining
// (after 3s) a: 40% remaining
// (after 3s) b: 40% remaining
// (after 4s) a: 20% remaining
// (after 4s) b: 20% remaining
// (after 5s) completed

Overall, this is a relatively crude implementation, but it should demonstrate how such a notification
feature could be useful.

NOTE One of the primary reasons that ES6 promises do not feature cancella-
tion or notification features is that it greatly complicates promise chaining and
composition. It isn’t entirely clear what is expected to happen in scenarios where
cancelations or notifications occur in promises with other promise dependencies,
such as in a promise chain. Rhetorically speaking, what is sensible behavior
when a promise inside Promise.all() cancels, or when a notification is sent
from a preceding promise inside a promise chain?

ASYNC FUNCTIONS

Async functions, also referred to by the operative keyword pair “async/await,” are the application of
the ES6 Promise paradigm to ECMAScript functions. Support for async/await was introduced in the
ES7 specification. It is both a behavioral and syntactical enhancement to the specification that allows
for JavaScript code which is written in a synchronous fashion, but actually is able to behave asyn-
chronously. The simplest example of this begins with a simple promise, which resolves with a value
after a timeout:

let p = new Promise((resolve, reject) => setTimeout(resolve, 1000, 3));

This promise will resolve with a value of 3 after 1000ms. For other parts of the program to access
this value once it is ready, it will need to exist inside a resolved handler:

let p = new Promise((resolve, reject) => setTimeout(resolve, 1000, 3));

p.then((x) => console.log(x)); // 3

This is fairly inconvenient, as the rest of the program now needs to be shoehorned into the promise
handler. It is possible to move the handler into a function definition:

function handler(x) { console.log(x); }

let p = new Promise((resolve, reject) => setTimeout(resolve, 1000, 3));

p.then(handler); // 3

This isn’t much of an improvement. The fact remains that any subsequent code that wishes to access
the value produced by the promise needs to be fed that value through a handler, which means being
shoved into a handler function. The ES7 offers async/await as an elegant solution to this problem.

422 ❘ CHAPTER 11 Promises and async Functions

Async Function Basics
ES7’s async/await is intended to directly address the issue of organizing code which makes use of
asynchronous constructs. It introduces a logical extension of asynchronous behavior into the domain
of JavaScript functions by introducing two new keywords, async and await.

The async keyword
An async function can be declared by prepending the async keyword. This keyword can be used on
function declarations, function expressions, arrow functions, and methods:

async function foo() {}

let bar = async function() {};

let baz = async () => {};

class Qux {
 async qux() {}
}

Using the async keyword will create a function that exhibits some asynchronous characteristics but
overall is still synchronously evaluated. In all other respects such as arguments and closures, it still
exhibits all the normal behavior of a JavaScript function. Consider this simple demonstration here,
which shows the foo() function is still evaluated before proceeding to subsequent instructions:

async function foo() {
 console.log(1);
}

foo();
console.log(2);

// 1
// 2

In an async function, whatever value is returned with the return keyword (or undefined if there is
no return) will be effectively converted into a promise object with Promise.resolve(). An async
function will always return a promise object. Outside the function, the evaluated function will be this
promise object:

async function foo() {
 console.log(1);
 return 3;
}

// Attach a resolved handler to the returned promise
foo().then(console.log);

console.log(2);

// 1
// 2
// 3

Async Functions ❘ 423

Of course, this means returning a promise object affords identical behavior:

async function foo() {
 console.log(1);
 return Promise.resolve(3);
}

// Attach a resolved handler to the returned promise
foo().then(console.log);

console.log(2);

// 1
// 2
// 3

The return value of an async function anticipates, but does not actually require, a thenable object: It
will also work with regular values. A thenable object will be “unwrapped” via the first argument pro-
vided to the then() callback. A non-thenable object will be passed through as if it were an already
resolved promise. These various scenarios are demonstrated here:

// Return a primitive
async function foo() {
 return 'foo';
}
foo().then(console.log);
// foo

// Return a non-thenable object
async function bar() {
 return ['bar'];
}
bar().then(console.log);
// ['bar']

// Return a thenable non-promise object
async function baz() {
 const thenable = {
 then(callback) { callback('baz'); }
 };
 return thenable;
}
baz().then(console.log);
// baz

// Return a promise
async function qux() {
 return Promise.resolve('qux');
}
qux().then(console.log);
// qux

As with promise handler functions, throwing an error value will instead return a rejected promise:

async function foo() {
 console.log(1);

424 ❘ CHAPTER 11 Promises and async Functions

 throw 3;
}

// Attach a rejected handler to the returned promise
foo().catch(console.log);
console.log(2);

// 1
// 2
// 3

However, promise rejection errors will not be captured by the async function:

async function foo() {
 console.log(1);
 Promise.reject(3);
}

// Attach a rejected handler to the returned promise
foo().catch(console.log);
console.log(2);

// 1
// 2
// Uncaught (in promise): 3

The await keyword
Because an async function indicates to code invoking it that there is no expectation of timely comple-
tion, the logical extension of this behavior is the ability to pause and resume execution. This exact
feature is possible using the await keyword, which is used to pause execution while waiting for a
promise to resolve. Consider the example from the beginning of the chapter, shown here:

let p = new Promise((resolve, reject) => setTimeout(resolve, 1000, 3));

p.then((x) => console.log(x)); // 3

This can be rewritten using async/await as follows:

async function foo() {
 let p = new Promise((resolve, reject) => setTimeout(resolve, 1000, 3));
 console.log(await p);
}

foo();
// 3

The await keyword will pause execution of the async function, releasing the JavaScript runtime’s
thread of execution. This behavior is not unlike that of the yield keyword in a generator func-
tion. The await keyword will attempt to “unwrap” the object’s value, pass the value through to the
expression, and asynchronously resume execution of the async function.

The await keyword is used in the same way as a JavaScript unary operator. It can be used standalone
or inside an expression, as shown in the following examples:

// Asynchronously print "foo"
async function foo() {

Async Functions ❘ 425

 console.log(await Promise.resolve('foo'));
}
foo();
// foo

// Asynchronously print "bar"
async function bar() {
 return await Promise.resolve('bar');
}
bar().then(console.log);
// bar

// Asynchronously print "baz" after 1000ms
async function baz() {
 await new Promise((resolve, reject) => setTimeout(resolve, 1000));
 console.log('baz');
}
baz();
// baz <after 1000ms>

The await keyword anticipates, but does not actually require, a thenable object: It will also work
with regular values. A thenable object will be “unwrapped” via the first argument provided to the
then() callback. A non-thenable object will be passed through as if it were an already resolved prom-
ise. These various scenarios are demonstrated here:

// Await a primitive
async function foo() {
 console.log(await 'foo');
}
foo();
// foo

// Await a non-thenable object
async function bar() {
 console.log(await ['bar']);
}
bar();
// ['bar']

// Await a thenable non-promise object
async function baz() {
 const thenable = {
 then(callback) { callback('baz'); }
 };
 console.log(await thenable);
}
baz();
// baz

// Await a promise
async function qux() {
 console.log(await Promise.resolve('qux'));
}
qux();
// qux

426 ❘ CHAPTER 11 Promises and async Functions

Awaiting a synchronous operation that throws an error will instead return a rejected promise:

async function foo() {
 console.log(1);
 await (() => { throw 3; })();
}

// Attach a rejected handler to the returned promise
foo().catch(console.log);
console.log(2);

// 1
// 2
// 3

As shown earlier, a standalone Promise.reject() will not be captured by an async function and
will throw as an unhandled error. However, using await on a promise that rejects will unwrap the
error value:

async function foo() {
 console.log(1);
 await Promise.reject(3);
 console.log(4); // never prints
}

// Attach a rejected handler to the returned promise
foo().catch(console.log);
console.log(2);

// 1
// 2
// 3

Restrictions on await
The await keyword must be used inside an async function; it cannot be used in a top-level context
such as a script tag or module. However, there is nothing preventing you from immediately invoking
an async function. The following two code snippets are effectively identical:

async function foo() {
 console.log(await Promise.resolve(3));
}
foo();
// 3

// Immediately invoked async function expression
(async function() {
 console.log(await Promise.resolve(3));
})();
// 3

Furthermore, the async nature of a function does not extend to nested functions. Therefore, the await
keyword can also only appear directly inside an async function definition; attempting to use await
inside a synchronous function will throw a SyntaxError.

Async Functions ❘ 427

Shown below are a few disallowed examples:

// Not allowed: 'await' inside arrow function
function foo() {
 const syncFn = () => {
 return await Promise.resolve('foo');
 };
 console.log(syncFn());
}

// Not allowed: 'await' inside function declaration
function bar() {
 function syncFn() {
 return await Promise.resolve('bar');
 }
 console.log(syncFn());

// Not allowed: 'await' inside function expression
function baz() {
 const syncFn = function() {
 return await Promise.resolve('baz');
 };
 console.log(syncFn());
}

// Not allowed: IIFE using function expression or arrow function
function qux() {
 (function () { console.log(await Promise.resolve('qux')); })();
 (() => console.log(await Promise.resolve('qux')))();
}

Halting and Resuming Execution
The true nature of using the await keyword is more nuanced than it might initially appear. For exam-
ple, consider the following example where three functions are invoked in order but their outputs print
in reverse:

async function foo() {
 console.log(await Promise.resolve('foo'));
}

async function bar() {
 console.log(await 'bar');
}

async function baz() {
 console.log('baz');
}

foo();
bar();
baz();

// baz
// bar
// foo

428 ❘ CHAPTER 11 Promises and async Functions

In the paradigm of async/await, the await keyword is doing all the heavy lifting; the async keyword
is, in many ways, just a special indicator to the JavaScript interpreter. After all, an async function that
doesn’t contain the await keyword executes much like a regular function:

async function foo() {
 console.log(2);
}

console.log(1);
foo();
console.log(3);

// 1
// 2
// 3

The key to fully understanding the await keyword is that it doesn’t just wait for a value to become
available. When the await keyword is encountered, the JavaScript runtime can track exactly where
the execution was paused. When the value to the right of await is ready, the JavaScript runtime will
push a task on the message queue that will asynchronously resume execution of that function.

Therefore, even when await is paired with an immediately available value, the rest of the function
will still be asynchronously evaluated. This is demonstrated in the following example:

async function foo() {
 console.log(2);
 await null;
 console.log(4);
}

console.log(1);
foo();
console.log(3);

// 1
// 2
// 3
// 4

The order of the console readout is best explained in terms of how the runtime handles this example:

1. Print 1.

2. Invoke async function foo.

3. (inside foo) Print 2.

4. (inside foo) await keyword pauses execution and adds task on message queue for immedi-
ately available value of null.

5. foo exits.

6. Print 3.

7. Synchronous thread of execution finishes.

8. JavaScript runtime dequeues task off message queue to resume execution.

Async Functions ❘ 429

9. (inside foo) Execution resumes; await is provided with the value null (which, here,
goes unused).

10. (inside foo) Print 4.

11. foo returns.

Using await with a promise makes this scenario more complicated. In this case, there will, in fact,
be two separate message queue tasks that are evaluated asynchronously to complete execution of the
async function. The following example, which might seem completely counterintuitive, demonstrates
the order of execution:

async function foo() {
 console.log(2);
 console.log(await Promise.resolve(8));
 console.log(9);
}

async function bar() {
 console.log(4);
 console.log(await 6);
 console.log(7);
}

console.log(1);
foo();
console.log(3);
bar();
console.log(5);

// 1
// 2
// 3
// 4
// 5
// 6
// 7
// 8
// 9

The runtime will execute this example as follows:

1. Print 1.

2. Invoke async function foo.

3. (inside foo) Print 2.

4. (inside foo) await keyword pauses execution and schedules task to be added to message
queue when the promise settles.

5. Promise is immediately resolved; task to provide resolved value to await is added to mes-
sage queue.

6. foo exits.

430 ❘ CHAPTER 11 Promises and async Functions

7. Print 3.

8. Invoke async function bar.

9. (inside bar) Print 4.

10. (inside bar) await keyword pauses execution and adds task on message queue for immedi-
ately available value of 6.

11. bar exits.

12. Print 5.

13. Top-level thread of execution finishes.

14. JavaScript runtime dequeues resolved await promise handler and provides it with the
resolved value of 8.

15. JavaScript runtime enqueues task to resume execution of foo onto message queue.

16. JavaScript runtime dequeues task to resume execution of bar with value 6 off message queue.

17. (inside bar) Execution resumes, await is provided with the value 6.

18. (inside bar) Print 6.

19. (inside bar) Print 7.

20. bar returns.

21. Asynchronous task completes, JavaScript dequeues task to resume execution of foo
with value 8.

22. (inside foo) Print 8.

23. (inside foo) Print 9.

24. foo returns.

Strategies for Async Functions
Because of their convenience and utility, async functions are increasingly a ubiquitous pillar of
JavaScript codebases. Even so, when wielding async functions, keep certain considerations in mind.

Implementing Sleep()
When learning JavaScript for the first time, many developers will reach for a construct similar to
Java’s Thread.sleep() in an attempt to introduce a non-blocking delay into their program. For-
merly, this was a cornerstone pedagogical moment for introducing how setTimeout fit into the
JavaScript runtime’s behavior.

With async functions, this is no longer the case! It is trivial to build a utility that allows a function to
sleep() for a variable number of milliseconds:

async function sleep(delay) {
 return new Promise((resolve) => setTimeout(resolve, delay));
}

Async Functions ❘ 431

async function foo() {
 const t0 = Date.now();
 await sleep(1500); // sleep for ~1500ms
 console.log(Date.now() - t0);
}
foo();
// 1502

Maximizing Parallelization
If the await keyword is not used carefully, your program may be missing out on possible paralleliza-
tion speedups. Consider the following example, which awaits five random timeouts sequentially:

async function randomDelay(id) {
 // Delay between 0 and 1000 ms
 const delay = Math.random() * 1000;
 return new Promise((resolve) => setTimeout(() => {
 console.log(`${id} finished`);
 resolve();
 }, delay));
}

async function foo() {
 const t0 = Date.now();
 await randomDelay(0);
 await randomDelay(1);
 await randomDelay(2);
 await randomDelay(3);
 await randomDelay(4);
 console.log(`${Date.now() - t0}ms elapsed`);
}
foo();

// 0 finished
// 1 finished
// 2 finished
// 3 finished
// 4 finished
// 2219ms elapsed

Rolling up into a for loop yields the following:

async function randomDelay(id) {
 // Delay between 0 and 1000 ms
 const delay = Math.random() * 1000;
 return new Promise((resolve) => setTimeout(() => {
 console.log(`${id} finished`);
 resolve();
 }, delay));
}

async function foo() {
 const t0 = Date.now();
 for (let i = 0; i < 5; ++i) {
 await randomDelay(i);
 }

432 ❘ CHAPTER 11 Promises and async Functions

 console.log(`${Date.now() - t0}ms elapsed`);
}
foo();

// 0 finished
// 1 finished
// 2 finished
// 3 finished
// 4 finished
// 2219ms elapsed

Even though there is no interdependence between the promises, this async function will pause and
wait for each to complete before beginning the next. Doing so guarantees in-order execution, but at
the expense of total execution time.

If in-order execution is not required, it is better to initialize the promises all at once and await the
results as they become available. This can be done as follows:

async function randomDelay(id) {
 // Delay between 0 and 1000 ms
 const delay = Math.random() * 1000;
 return new Promise((resolve) => setTimeout(() => {
 setTimeout(console.log, 0, `${id} finished`);
 resolve();
 }, delay));
}

async function foo() {
 const t0 = Date.now();

 const p0 = randomDelay(0);
 const p1 = randomDelay(1);
 const p2 = randomDelay(2);
 const p3 = randomDelay(3);
 const p4 = randomDelay(4);

 await p0;
 await p1;
 await p2;
 await p3;
 await p4;

 setTimeout(console.log, 0, `${Date.now() - t0}ms elapsed`);
}
foo();

// 1 finished
// 4 finished
// 3 finished
// 0 finished
// 2 finished
// 2219ms elapsed

Async Functions ❘ 433

Rolling up into an array and for loop yields the following:

async function randomDelay(id) {
 // Delay between 0 and 1000 ms
 const delay = Math.random() * 1000;
 return new Promise((resolve) => setTimeout(() => {
 console.log(`${id} finished`);
 resolve();
 }, delay));
}

async function foo() {
 const t0 = Date.now();

 const promises = Array(5).fill(null).map((_, i) => randomDelay(i));

 for (const p of promises) {
 await p;
 }

 console.log(`${Date.now() - t0}ms elapsed`);
}
foo();

// 4 finished
// 2 finished
// 1 finished
// 0 finished
// 3 finished
// 877ms elapsed

Note that, although the execution of the promises is out of order, the await statements are provided
to the resolved values in order:

async function randomDelay(id) {
 // Delay between 0 and 1000 ms
 const delay = Math.random() * 1000;
 return new Promise((resolve) => setTimeout(() => {
 console.log(`${id} finished`);
 resolve(id);
 }, delay));
}

async function foo() {
 const t0 = Date.now();

 const promises = Array(5).fill(null).map((_, i) => randomDelay(i));

 for (const p of promises) {
 console.log(`awaited ${await p}`);
 }

 console.log(`${Date.now() - t0}ms elapsed`);
}
foo();

434 ❘ CHAPTER 11 Promises and async Functions

// 1 finished
// 2 finished
// 4 finished
// 3 finished
// 0 finished
// awaited 0
// awaited 1
// awaited 2
// awaited 3
// awaited 4
// 645ms elapsed

Serial Promise Execution
In the “Promises” section of this chapter, there is a discussion on how to compose promises that serially
execute and pass values to the subsequent promise. With async/await, chaining promises becomes trivial:

function addTwo(x) {return x + 2;}
function addThree(x) {return x + 3;}
function addFive(x) {return x + 5;}

async function addTen(x) {
 for (const fn of [addTwo, addThree, addFive]) {
 x = await fn(x);
 }
 return x;
}

addTen(9).then(console.log); // 19

Here, await is directly passed the return value of each function and the result is iteratively derived.
The preceding example does not actually deal in promises, but it can be reconfigured to use async
functions—and therefore promises—instead:

async function addTwo(x) {return x + 2;}
async function addThree(x) {return x + 3;}
async function addFive(x) {return x + 5;}

async function addTen(x) {
 for (const fn of [addTwo, addThree, addFive]) {
 x = await fn(x);
 }
 return x;
}

addTen(9).then(console.log); // 19

Stack Traces and Memory Management
Promises and async functions have a considerable degree of overlap in terms of functionality they pro-
vide, but they diverge considerably when it comes to how they are represented in memory. Consider
the following example, which shows the stack trace readout for a rejected promise:

function fooPromiseExecutor(resolve, reject) {
 setTimeout(reject, 1000, 'bar');
}

Summary ❘ 435

function foo() {
 new Promise(fooPromiseExecutor);
}

foo();
// Uncaught (in promise) bar
// setTimeout
// setTimeout (async)
// fooPromiseExecutor
// foo

Based on your understanding of promises, this stack trace readout should puzzle you a bit. The stack
trace should, quite literally, represent the nested nature of function calls that exists currently in the
JavaScript engine’s memory stack. When the timeout handler executes and rejects the promise, the
error readout shown identifies the nested functions that were invoked to create the promise instance
originally. However, it is known that these functions have already returned and therefore wouldn’t be
found in a stack trace.

The answer is simply that the JavaScript engine does extra work to preserve the call stack while it
can when creating the promise structure. When an error is thrown, this call stack is retrievable by the
runtime’s error handling logic and therefore is available in the stack trace. This, of course, means it
must preserve the stack trace in memory, which comes at a computational and storage cost.

Consider the previous example if it were reworked with async functions, as demonstrated here:

function fooPromiseExecutor(resolve, reject) {
 setTimeout(reject, 1000, 'bar');
}

async function foo() {
 await new Promise(fooPromiseExecutor);
}
foo();

// Uncaught (in promise) bar
// foo
// async function (async)
// foo

With this structure, the stack trace is accurately representing the current call stack because
fooPromiseExecutor has returned and is no longer on the stack, but foo is suspended and has not
yet exited. The JavaScript runtime can merely store a pointer from a nested function to its container
function, as it would with a synchronous function call stack. This pointer is efficiently stored in
memory and can be used to generate the stack trace in the event of an error. Such a strategy does not
incur extra overhead as is the case with the previous example, and therefore should be preferred if
performance is critical to your application.

SUMMARY

Mastering asynchronous behavior inside the single-threaded JavaScript runtime has long been an
imposing task. With the introduction of promises in ES6 and async/await ES7, asynchronous con-
structs in ECMAScript have been greatly enhanced. Not only do promises and async/await enable

436 ❘ CHAPTER 11 Promises and async Functions

patterns that were previously difficult or impossible to implement, but they engender an entirely new
way of writing JavaScript that is cleaner, shorter, and easier to understand and debug.

Promises are built to offer a clean abstraction around asynchronous code. They can represent an
asynchronously executed block of code, but they can also represent an asynchronously calculated
value. They are especially useful in a situation where the need to serialize asynchronous code blocks
arises. Promises are a delightfully malleable construct: They can be serialized, chained, composed,
extended, and recombined.

Async functions are the result of applying the promise paradigm to JavaScript functions. They intro-
duce the ability to suspend execution of a function without blocking the main thread of execution.
They are tremendously useful both in writing readable promise-centric code as well as in managing
serialization and parallelization of asynchronous code. They are one of the most important tools in
the modern JavaScript toolkit.

The Browser Object Model
WHAT’S IN THIS CHAPTER?

➤➤ Understanding the window object, the core of the BOM

➤➤ Controlling windows and pop-ups

➤➤ Page information from the location object

➤➤ Using the navigator object to learn about the browser

➤➤ Manipulating the browser history stack with the history object

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/projavascript4e on the Down-
load Code tab.

Though ECMAScript describes it as the core of JavaScript, the Browser Object Model (BOM) is
really the core of using JavaScript on the web. The BOM provides objects that expose browser
functionality independent of any web page content. For years, a lack of any real specification
made the BOM both interesting and problematic because browser vendors were free to aug-
ment it as they saw fit. The commonalities between browsers became de facto standards that
have survived browser development mostly for the purpose of interoperability. Part of the
HTML5 specification now covers the major aspects of the BOM, as the W3C seeks to standard-
ize one of the most fundamental parts of JavaScript in the browser.

12

Professional JavaScript® for Web Developers, Fourth Edition. Matt Frisbie.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

438 ❘ CHAPTER 12 The Browser oBjecT Model

THE WINDOW OBJECT

At the core of the BOM is the window object, which represents an instance of the browser. The win-
dow object serves a dual purpose in browsers, acting as the JavaScript interface to the browser win-
dow and the ECMAScript Global object. This means that every object, variable, and function defined
in a web page uses window as its Global object and has access to methods like parseInt().

NOTE Because window object properties are available in the global scope, many
browser APIs and associated constructors use a window object property as an
access point. These APIs are covered elsewhere in the book, predominantly in the
JavaScript APIs chapter.

Furthermore, some of the window object’s properties will drastically diverge be
tween browsers due to differing vendor implementations. This chapter will not
cover deprecated, nonstandardized, or vendorspecific window properties.

The Global Scope
Because the window object doubles as the ECMAScript Global object, all variables and func-
tions declared globally with var become properties and methods of the window object. Consider
this example:

var age = 29;
var sayAge = () => alert(this.age);

alert(window.age); // 29
sayAge(); // 29
window.sayAge(); // 29

Here, a variable named age and a function named sayAge() are defined in the global scope, which
automatically places them on the window object. Thus, the variable age is also accessible as window.
age, and the function sayAge() is also accessible via window.sayAge(). Because sayAge() exists in
the global scope, this.age maps to window.age, and the correct result is displayed.

If, instead, let or const is substituted for var, the default attachment to the global object does
not occur:

let age = 29;
const sayAge = () => alert(this.age);

alert(window.age); // undefined
sayAge(); // undefined
window.sayAge(); // TypeError: window.sayAge is not a function

Another thing to keep in mind: attempting to access an undeclared variable throws an error, but it
is possible to check for the existence of a potentially undeclared variable by looking on the window
object. For example:

// this throws an error because oldValue is undeclared
var newValue = oldValue;

The window Object ❘ 439

// this doesn't throw an error, because it's a property lookup
// newValue is set to undefined
var newValue = window.oldValue;

Keeping this in mind, there are many objects in JavaScript that are considered to be global, such as
location and navigator (both discussed later in the chapter), but are actually properties of the
window object.

Window Relationships
The top object always points to the very top (outermost) window, which is the browser window
itself. Another window object is called parent. The parent object always points to the current win-
dow’s immediate parent window. For the topmost browser window, parent is equal to top (and both
are equal to window). The topmost window will never have a value set for name unless the window
was opened using window.open(), as discussed later in this chapter.

There is one final window property, called self, which always points to window. The two can, in fact,
be used interchangeably. Even though it has no separate value, self is included for consistency with
the top and parent objects.

Each of these objects is a property of the window object, accessible via window.parent, window.top, and
so on. This means it’s possible to chain window objects together, such as window. parent.parent.

Window Position and Pixel Ratio
The position of a window object may be determined and changed using various properties and meth-
ods. Modern browsers all provide screenLeft and screenTop properties that indicate the window’s
location in relation to the left and top of the screen, respectively, in CSS pixels.

It is also possible to move the window to a new position using the moveTo() and moveBy() methods.
Each method accepts two arguments. moveTo() expects the x and y coordinates to move to an abso-
lute coordinate, and moveBy() expects the number of pixels to move relative to the current coordi-
nate. These methods are demonstrated here:

// move the window to the upper-left coordinate
window.moveTo(0,0);

// move the window down by 100 pixels
window.moveBy(0, 100);

// move the window to position (200, 300)
window.moveTo(200, 300);

// move the window left by 50 pixels
window.moveBy(-50, 0);

Depending on the browser, these methods may be conditionally or completely disabled.

Pixel Ratios
A "CSS pixel" is the denomination of the pixel used universally in web development. It is defined as
an angular measurement: 0.0213°, approximately 1/96 of an inch on a device held at arm’s length.
The purpose of this definition is to give the pixel size a uniform meaning across devices: for example,

440 ❘ CHAPTER 12 The Browser oBjecT Model

12px font (measured in CSS pixels) on a low-resolution tablet should appear to be the same size as a
12px (measured in CSS pixels) font on a high-resolution 4k monitor. Therein lies a problem: such a
system requires an inherent scaling factor required to convert from physical pixels (the actual resolu-
tion of the display) to CSS pixels (the virtual resolution reported to the web browser).

For example, a phone screen might have a physical resolution of 1920x1080, but because these pixels
are incredibly small the web browser will scale this resolution down to a smaller logical resolution,
such as 640x360. This scaling factor is provided to the browser as window.devicePixelRatio. For
a device converting from 1920x1080 to 640x360, the devicePixelRatio would be reported as 3. In
this way, a 12px font in physical pixels would really be a 36px font in logical pixels (or CSS pixels).

This devicePixelRatio is effectively an analogue of DPI (dots per inch). DPI is effectively recording
the same information, but devicePixelRatio offers it as a unitless ratio.

Window Size
Determining the size of a window cross-browser is not straightforward. All modern browsers pro-
vide four properties: innerWidth, innerHeight, outerWidth, and outerHeight. outerWidth and
outerHeight return the dimensions of the browser window itself (regardless of whether it’s used on
the topmost window object or on a frame). The innerWidth and innerHeight properties indicate the
size of the page viewport inside the browser window (minus borders and toolbars).

The document.documentElement.clientWidth and document.documentElement.clientHeight
properties provide the width and height of the page viewport.

The end result is that there’s no accurate way to determine the size of the browser window itself, but
it is possible to get the dimensions of the page viewport, as shown in the following example:

let pageWidth = window.innerWidth,
 pageHeight = window.innerHeight;

if (typeof pageWidth != "number") {
 if (document.compatMode == "CSS1Compat"){
 pageWidth = document.documentElement.clientWidth;
 pageHeight = document.documentElement.clientHeight;
 } else {
 pageWidth = document.body.clientWidth;
 pageHeight = document.body.clientHeight;
 }
}

In this code, pageWidth and pageHeight are assigned initial values of window.innerWidth and win-
dow.innerHeight, respectively. A check is then done to see if the value of pageWidth is a number; if
not, then the code determines if the page is in standards mode by using document.compatMode. If it is,
then document.documentElement.clientWidth and document.documentElement.clientHeight
are used; otherwise, document.body.clientWidth and document.body.clientHeight are used.

For mobile devices, window.innerWidth and window.innerHeight are the dimensions of the visual
viewport, which is the visible area of the page on the screen. Mobile Internet Explorer doesn’t support
these properties but provides the same information on document.documentElement.clientWidth and
document.documentElement.clientHeight. These values change as you zoom in or out of a page.

The window Object ❘ 441

In other mobile browsers, the measurements of document.documentElement provide measurements
for the layout viewport, which are the actual dimensions of the rendered page (as opposed to the
visual viewport, which is only a small portion of the entire page). Mobile Internet Explorer stores this
information in document.body.clientWidth and document.body.clientHeight. These values do
not change as you zoom in and out.

Because of these differences from desktop browsers, you may need to first determine if the user is on
a mobile device before deciding which measurements to use and honor.

NOTE The topic of mobile viewports is a complex one with various exceptions
and caveats. PeterPaul Koch, a mobile development consultant, outlined all of
his research at http://quirksmode.org/mobile/viewports2.html. This is rec
ommended reading if you’re developing for mobile devices.

The browser window can be resized using the resizeTo() and resizeBy() methods. Each method
accepts two arguments: resizeTo() expects a new width and height, and resizeBy() expects the
differences in each dimension. Here’s an example:

// resize to 100 x 100
window.resizeTo(100, 100);

// resize to 200 x 150
window.resizeBy(100, 50);

// resize to 300 x 300
window.resizeTo(300, 300);

As with the window-movement methods, the resize methods may be disabled by the browser and are
disabled by default in some browsers. Also like the movement methods, these methods apply only to
the topmost window object.

Window Viewport Position
Because the browser window is usually not large enough to display the entire rendered document at
once, the user is given the ability to scroll around the document with a limited viewport. The CSS
pixel offset of the current viewport is available as an X and Y pair, representing the number of pixels
the viewport is currently scrolled in that direction. The X and Y offsets are each accessible via two
properties, which return identical values: window.pageXoffset / window.scrollX, and window
.pageYoffset / window.scrollY.

It is also possible to explicitly scroll the page by a certain amount using several different window
methods. These methods are passed two coordinates indicating how far in the X and Y direction the
viewport should scroll. window.scroll(x, y) will scroll the viewport by a relative amount. (win-
dow.scrollBy(x, y) behaves identically). window.scrollTo(x, y) scrolls the viewport to an
absolute offset.

// Scroll down 100px relative to the current viewport
window.scroll(0, 100);

442 ❘ CHAPTER 12 The Browser oBjecT Model

// Scroll right 40px relative to the current viewport
Window.scroll(40, 0);

// Scroll to the top left corner of the page
// window.scrollTo(0, 0);

// Scroll to 100px from the top and left of the page
// window.scrollTo(100, 100);

These methods also accept a ScrollToOptions dictionary, which in addition to holding the offset
values can instruct the browser to smooth the scroll via the behavior property.

// normal scroll
window.scrollTo({
 left: 100,
 top: 100,
 behavior: 'auto'
});

// smooth scroll
window.scrollTo({
 left: 100,
 top: 100,
 behavior: 'smooth'
});

Navigating and Opening Windows
The window.open() method can be used both to navigate to a particular URL and to open a new
browser window. This method accepts four arguments: the URL to load, the window target, a string
of features, and a Boolean value indicating that the new page should take the place of the currently
loaded page in the browser history. Typically only the first three arguments are used; the last argu-
ment applies only when not opening a new window.

If the second argument passed to window.open() is the name of a window or frame that already
exists, then the URL is loaded into the window or frame with that name. Here’s an example:

// same as
window.open("http://www.wrox.com/", "topFrame");

This line of code acts as if the user clicked a link with the href attribute set to "http://www.wrox.
com" and the target attribute set to "topFrame". If there is a window named "topFrame", then the
URL will be loaded there; otherwise, a new window is created and given the name "topFrame". The
second argument may also be any of the special window names: _self, _parent, _top, or _blank.

Popping Up Windows
When the second argument doesn’t identify an existing window, a new window or tab is created
based on a string passed in as the third argument. If the third argument is missing, a new browser
window (or tab, based on browser settings) is opened with all of the default browser window settings.
(Toolbars, the location bar, and the status bar are all set based on the browser’s default settings.) The
third argument is ignored when not opening a new window.

The window Object ❘ 443

The third argument is a comma-delimited string of settings indicating display information for the new
window. The following table describes the various options.

SETTING VALUE(S) DESCRIPTION

fullscreen "yes" or "no" Indicates that the browser window should be maximized when
created. Internet Explorer only.

height Number The initial height of the new window. This cannot be
less than 100.

left Number The initial left coordinate of the new window. This cannot be a
negative number.

location "yes" or "no" Indicates if the location bar should be displayed. The default
varies based on the browser. When set to "no", the location
bar may be either hidden or disabled (browser-dependent).

menubar "yes" or "no" Indicates if the menu bar should be displayed. The
default is "no".

resizable "yes" or "no" Indicates if the new window can be resized by dragging its
border. The default is "no".

scrollbars "yes" or "no" Indicates if the new window allows scrolling if the content
cannot fit in the viewport. The default is "no".

status "yes" or "no" Indicates if the status bar should be displayed. The default
varies based on the browser.

toolbar "yes" or "no" Indicates if the toolbar should be displayed. The
default is "no".

top Number The initial top coordinate of the new window. This cannot be a
negative number.

width Number The initial width of the new window. This cannot be less than 100.

Any or all of these settings may be specified as a comma-delimited set of name-value pairs. The name-
value pairs are indicated by an equal sign. (No white space is allowed in the feature string.) Consider
the following example:

window.open("http://www.wrox.com/",
 "wroxWindow",
 "height=400,width=400,top=10,left=10,resizable=yes");

This code opens a new resizable window that’s 400x400 and positioned 10 pixels from the top and
left of the screen.

The window.open() method returns a reference to the newly created window. This object is the same as
any other window object except that you typically have more control over it. For instance, some brows-
ers that don’t allow you to resize or move the main browser window by default may allow you to resize

444 ❘ CHAPTER 12 The Browser oBjecT Model

or move windows that you’ve created using window.open(). This object can be used to manipulate the
newly opened window in the same way as any other window, as shown in this example:

let wroxWin = window.open("http://www.wrox.com/",
 "wroxWindow",
 "height=400,width=400,top=10,left=10,resizable=yes");

// resize it
wroxWin.resizeTo(500, 500);

// move it
wroxWin.moveTo(100, 100);

It’s possible to close the newly opened window by calling the close() method as follows:

wroxWin.close();

This method works only for pop-up windows created by window.open(). It’s not possible to close the
main browser window without confirmation from the user. It is possible, however, for the pop-up window
to close itself without user confirmation by calling top.close(). Once the window has been closed, the
window reference still exists but cannot be used other than to check the closed property, as shown here:

wroxWin.close();
alert(wroxWin.closed); // true

The newly created window object has a reference back to the window that opened it via the opener
property. This property is defined only on the topmost window object (top) of the pop-up window
and is a pointer to the window or frame that called window.open(). For example:

let wroxWin = window.open("http://www.wrox.com/",
 "wroxWindow",
 "height=400,width=400,top=10,left=10,resizable=yes");

alert(wroxWin.opener === window); // true

Even though there is a pointer from the pop-up window back to the window that opened it, there is
no reverse relationship. Windows do not keep track of the pop-ups that they spawn, so it’s up to you
to keep track if necessary.

Some browsers, try to run each tab in the browser as a separate process. When one tab opens another,
the window objects need to be able to communicate with one another, so the tabs cannot run in sepa-
rate processes. These browsers allow you to indicate that the newly created tab should be run in a
separate process by setting the opener property to null, as in the following example:

let wroxWin = window.open("http://www.wrox.com/",
 "wroxWindow",
 "height=400,width=400,top=10,left=10,resizable=yes");

wroxWin.opener = null;

Setting opener to null indicates to the browser that the newly created tab doesn’t need to communi-
cate with the tab that opened it, so it may be run in a separate process. Once this connection has been
severed, there is no way to recover it.

The window Object ❘ 445

Security Restrictions
Pop-up windows went through a period of overuse by advertisers online. Pop-ups were often dis-
guised as system dialogs to get the user to click on an advertisement. Because these pop-up web pages
were styled to look like system dialogs, it was unclear to the user whether the dialog was legitimate.
To aid in this determination, browsers began putting limits on the configuration of pop-up windows.

Early versions of Internet Explorer implemented multiple security features on pop-up windows,
including not allowing pop-up windows to be created or moved offscreen and ensuring that the status
bar cannot be turned off. Beginning with Internet Explorer 7, the location bar cannot be turned off
and pop-up windows can’t be moved or resized by default. Firefox 1 turned off the ability to suppress
the status bar, so all pop-up windows have to display the status bar regardless of the feature string
passed into window.open(). Firefox 3 forces the location bar to always be displayed on pop-up win-
dows. Opera opens pop-up windows only within its main browser window but doesn’t allow them to
exist where they might be confused with system dialogs.

Additionally, browsers will allow the creation of pop-up windows only after a user action. A call to
window.open() while a page is still being loaded, for instance, will not be executed and may cause an
error to be displayed to the user. Pop-up windows may be opened based only on a click or a key press.

NOTE Internet Explorer lifts some restrictions on popup windows when dis
playing a web page stored on the computer’s hard drive. The same code, when
run on a server, will invoke the popup restrictions.

Pop-up Blockers
All modern browsers have pop-up–blocking software built in. The result is that most unexpected
pop-ups are blocked. When a pop-up is blocked, one of two things happens. If the browser’s built-in
pop-up blocker stopped the pop-up, then window.open() will most likely return null. In that case,
you can tell if a pop-up was blocked by checking the return value, as shown in the following example:

let wroxWin = window.open("http://www.wrox.com", "_blank");
if (wroxWin == null){
 alert("The popup was blocked!");
}

When a browser add-on or other program blocks a pop-up, window.open() typically throws an
error. So to accurately detect when a pop-up has been blocked, you must check the return value and
wrap the call to window.open() in a try-catch block, as in this example:

let blocked = false;

try {
 let wroxWin = window.open("http://www.wrox.com", "_blank");
 if (wroxWin == null){
 blocked = true;
 }
} catch (ex){
 blocked = true;
}

446 ❘ CHAPTER 12 The Browser oBjecT Model

if (blocked){
 alert("The popup was blocked!");
}

This code accurately detects if a pop-up blocker has blocked the call to window.open(), regardless of
the method being used.

NOTE Detecting if a popup was blocked does not stop the browser from dis
playing its own message about a popup being blocked.

Intervals and Timeouts
JavaScript execution in a browser is single-threaded but does allow for the scheduling of code to run
at specific points in time through the use of timeouts and intervals. Timeouts execute some code after
a specified amount of time, whereas intervals execute code repeatedly, waiting a specific amount of
time in between each execution.

You set a timeout using the window’s setTimeout() method, which accepts two arguments: the
code to execute and the time (in milliseconds) to wait before scheduling the callback function to be
executed. The first argument can be either a string containing JavaScript code (as would be used with
eval()) or a function. For example:

// schedules an alert to show after 1 second
setTimeout(() => alert("Hello world!"), 1000);

The second argument, the number of milliseconds to wait, is not necessarily when the specified
code will execute. JavaScript is single-threaded and, as such, can execute only one piece of code at
a time. To manage execution, there is a queue of JavaScript tasks to execute. The tasks are executed
in the order in which they were added to the queue. The second argument of setTimeout() tells
the JavaScript engine to add this task onto the queue after a set number of milliseconds. If the
queue is empty, then that code is executed immediately; if the queue is not empty, the code must
wait its turn.

When setTimeout() is called, it returns a numeric ID for the timeout. The timeout ID is a unique
identifier for the scheduled code that can be used to cancel the timeout. To cancel a pending timeout,
use the clearTimeout() method and pass in the timeout ID, as in the following example:

// set the timeout
let timeoutId = setTimeout(() => alert("Hello world!"), 1000);

// cancel it
clearTimeout(timeoutId);

As long as clearTimeout() is called before the specified amount of time has passed, a time-
out can be canceled completely. Calling clearTimeout() after the code has been executed has
no effect.

The window Object ❘ 447

NOTE All code executed by a timeout using a conventional anonymous function
runs in the global scope, so the value of this inside the function will always
point to window when running in nonstrict mode and undefined when running
in strict mode. When setTimeout is instead provided an arrow function, this
preserves the lexical scope in which it was defined.

Intervals work in the same way as timeouts except that they schedule the code for execution repeat-
edly at specific time intervals until the interval is canceled or the page is unloaded. The setInter-
val() method lets you set up intervals, and it accepts the same arguments as setTimeout(): the code
to execute (string or function) and the milliseconds to wait between addition of the callback function
to the execution queue. Here’s an example:

setInterval(() => alert("Hello world!"), 10000);

NOTE Importantly, the time interval specified with the second argument repre
sents the amount of time the browser will wait in between adding a new callback
execution onto the queue. For example, suppose you invoked setInterval()
at exactly 01:00:00 with a 3000ms interval. This means that at 01:00:03 the
browser would schedule the callback. The browser doesn’t care when the callback
executes or how long it takes; it will schedule another one at 01:00:06. It follows
that short and nonblocking callback functions are ideal for setInterval.

The setInterval() method also returns an interval ID that can be used to cancel the interval at
some point in the future. The clearInterval() method can be used with this ID to cancel all pend-
ing intervals. This ability is more important for intervals than timeouts since, if left unchecked, they
continue to execute until the page is unloaded. Here is a common example of interval usage:

let num = 0, intervalId = null;
let max = 10;

let incrementNumber = function() {
 num++;

 // if the max has been reached, cancel all pending executions
 if (num == max) {
 clearInterval(intervalId);
 alert("Done");
 }
}

intervalId = setInterval(incrementNumber, 500);

In this example, the variable num is incremented every half second until it finally reaches the maxi-
mum number, at which point the interval is canceled. This pattern can also be implemented using
timeouts, as shown here:

let num = 0;
let max = 10;

448 ❘ CHAPTER 12 The Browser oBjecT Model

let incrementNumber = function() {
 num++;

 //if the max has not been reached, set another timeout
 if (num < max) {
 setTimeout(incrementNumber, 500);
 } else {
 alert("Done");
 }
}

setTimeout(incrementNumber, 500);

Note that when you’re using timeouts, it is unnecessary to track the timeout ID because the execu-
tion will stop on its own and continue only if another timeout is set. This pattern is considered a best
practice for setting intervals without actually using intervals. True intervals are rarely used in produc-
tion environments because the time between the end of one interval and the beginning of the next is
not necessarily guaranteed, and some intervals may be skipped. Using timeouts, as in the preceding
example, ensures that can’t happen. Generally speaking, it’s best to avoid intervals.

System Dialogs
The browser is capable of invoking system dialogs to display to the user through the alert(),
confirm(), and prompt() methods. These dialogs are not related to the web page being displayed
in the browser and do not contain HTML. Their appearance is determined by operating system and/
or browser settings rather than CSS. Additionally, each of these dialogs is synchronous and modal,
meaning code execution stops when a dialog is displayed, and resumes after it has been dismissed.

The alert() method has been used throughout this book. It simply accepts a string to display to the
user. Unlike console.log, which can accept a variable number of arguments and display them all at
once, alert expects only one argument. When alert() is called, a system message box displays the
specified text to the user, followed by a single OK button. If alert() is passed an argument that is
not a string primitive, it will coerce the argument into a string with its .toString() method.

Alert dialogs are typically used when users must be made aware of something that they have no
control over, such as an error. A user’s only choice is to dismiss the dialog after reading the message.
As shown in Figure 12-1.

The second type of dialog is invoked by
calling confirm(). A confirm dialog looks
similar to an alert dialog in that it displays
a message to the user. The main differ-
ence between the two is the presence of a
Cancel button along with the OK button,
which allows the user to indicate if a given
action should be taken. For example,
confirm("Are you sure?") displays the
confirm dialog box shown in Figure 12-2.

To determine if the user clicked OK or Cancel, the confirm() method returns a Boolean value: true
if OK was clicked, or false if Cancel was clicked or the dialog box was closed by clicking the X in
the corner. Typical usage of a confirm dialog looks like this:

FIGURE 12-1:

The window Object ❘ 449

if (confirm("Are you sure?")) {
 alert("I'm so glad you're sure!");
} else {
 alert("I'm sorry to hear you're not sure.");
}

In this example, the confirm dialog is displayed to the user in the first line, which is a condition of the
if statement. If the user clicks OK, an alert is displayed saying, “I'm so glad you're sure!” If,
however, the Cancel button is clicked,
an alert is displayed saying, “I'm sorry
to hear you're not sure.” This type
of pattern can be employed when the
user tries to delete something, such as an
e-mail message. Because the dialog will
totally disrupt the user’s experience on
the page, this should be reserved for only
actions that have dire consequences.

The final type of dialog is displayed by
calling prompt(), which prompts the user
for input. Along with OK and Cancel but-
tons, this dialog has a text box where the
user may enter some data. The prompt()
method accepts two arguments: the text
to display to the user, and the default
value for the text box (which can be an
empty string). Calling prompt("What is
your name?", "Jake") results in the
dialog box shown in Figure 12-3.

If the OK button is clicked, prompt() returns the value in the text box; if Cancel is clicked or the
dialog is otherwise closed without clicking OK, the function returns null. Here’s an example:

let result = prompt("What is your name? ", "");
if (result !== null) {
 alert("Welcome, " + result);
}

These system dialogs can be helpful for displaying information to the user and asking for confirma-
tion of decisions. Because they require no HTML or CSS, they are fast and easy ways to enhance a
web application.

Many browsers have introduced a special feature regarding these system dialogs. If the actively run-
ning script produces two or more system dialogs during its execution, each subsequent dialog after
the first displays a check box that allows the user to disable any further dialogs until the page reloads.

When the check box is checked and the dialog box is dismissed, all further system dialogs (alerts,
confirms, and prompts) are blocked until the page is reloaded. The developer is given no indication as
to whether the dialog was displayed. The dialog counter resets whenever the browser is idle, so if two
separate user actions produce an alert, the check box will not be displayed in either; if a single user
action produces two alerts in a row, the second will contain the check box.

FIGURE 12-2:

FIGURE 12-3:

450 ❘ CHAPTER 12 The Browser oBjecT Model

Two other types of dialogs can be displayed from JavaScript: find and print. Both of these dialogs
are displayed asynchronously, returning control to the script immediately. The dialogs are the same
as the ones the browser employs when the user selects either Find or Print from the browser’s menu.
These are displayed using the find() and print() methods on the window object as follows:

// display print dialog
window.print();

// display find dialog
window.find();

These two methods give no indication as to whether the user has done anything with the dialog,
so it is difficult to make good use of them. Furthermore, because they are asynchronous, they don’t
contribute to the browser’s dialog counter and won’t be affected by the user opting to disallow fur-
ther dialogs.

THE LOCATION OBJECT

One of the most useful BOM objects is location, which provides information about the document
that is currently loaded in the window, as well as general navigation functionality. The location
object is unique in that it is a property of both window and document; both window.location and
document.location point to the same object. Not only does location know about the currently
loaded document, but it also parses the URL into discrete segments that can be accessed via a series of
properties. These properties are enumerated in the following table (the location prefix is assumed).

If the browser was currently located at http://foouser:barpassword@www.wrox.com:80/WileyCD
A/?q=javascript#contents, then the location object would behave as follows:

PROPERTY NAME RETURN VALUE DESCRIPTION

location.hash "#contents" The URL hash (the pound sign followed
by zero or more characters), or an empty
string if the URL doesn’t have a hash.

location.host “www.wrox.com:80“ The name of the server and port number
if present.

location.hostname “www.wrox.com“ The name of the server without the
port number.

location.href “http://www.wrox.
com:80/WileyCDA/?q=jav

ascript#contents“

The full URL of the currently loaded
page. The toString() method of
location returns this value.

location.pathname "/WileyCDA/" The directory and/or filename of the URL.

location.port "80" The port of the request if specified
in the URL. If a URL does not contain
a port, then this property returns an
empty string.

The location Object ❘ 451

PROPERTY NAME RETURN VALUE DESCRIPTION

location.protocol "http:" The protocol used by the page. Typically
"http:" or "https:".

location.search "?q=javascript" The query string of the URL. It
returns a string beginning with a
question mark.

location.username "foouser" The username specified before the
domain name.

location.password "barpassword" The password specified before the
domain name.

location.origin “http:// www.wrox.com“ The origin of the URL. Read only.

Query String Arguments
Most of the information in location is easily accessible from these properties. The one part of the
URL that isn’t provided is an easy-to-use query string. Though location.search returns everything
from the question mark until the end of the URL, there is no immediate access to query-string argu-
ments on a one-by-one basis. The following function parses the query string and returns an object
with entries for each argument:

let getQueryStringArgs = function() {
 // get query string without the initial '?'
 let qs = (location.search.length > 0 ? location.search.substring(1) : ""),
 // object to hold data
 args = {};

 // assign each item onto the args object
 for (let item of qs.split("&").map(kv => kv.split("="))) {
 let name = decodeURIComponent(item[0]),
 value = decodeURIComponent(item[1]);
 if (name.length) {
 args[name] = value;
 }
 }

 return args;
}

The first step in this function is to strip off the question mark from the beginning of the query string.
This happens only if location.search has one or more characters. The arguments will be stored
on the args object, which is created using object-literal format. Next, the query string is split on the
ampersand character, returning an array of strings in the format name=value. The for loop iterates
over this array and then splits each item on the equal sign, returning an array where the first item is
the name of the argument and the second item is the value. The name and value are each decoded

452 ❘ CHAPTER 12 The Browser oBjecT Model

using decodeURIComponent() (because query-string arguments are supposed to be encoded). Last,
the name is assigned as a property on the args object, and its value is set to value. This function is
used as follows:

// assume query string of ?q=javascript&num=10

let args = getQueryStringArgs();

alert(args["q"]); // "javascript"
alert(args["num"]); // "10"

Each of the query-string arguments is now a property on the returned object, which provides fast
access to each argument.

URLSearchParams
URLSearchParams offers a collection of utility methods which allow you to inspect and modify query
parameters using a standardized API. A URLSearchParams instance is created by passing a query
string to the constructor. The instance exposes various methods like get(), set(), and delete() to
perform query string operations. These are demonstrated here:

let qs = "?q=javascript&num=10";

let searchParams = new URLSearchParams(qs);

alert(searchParams.toString()); // " q=javascript&num=10"
searchParams.has("num"); // true
searchParams.get("num"); // 10

searchParams.set("page", "3");
alert(searchParams.toString()); // " q=javascript&num=10&page=3"

searchParams.delete("q");
alert(searchParams.toString()); // " num=10&page=3"

Most browsers that support URLSearchParams also support using the URLSearchParams as an iter-
able object:

let qs = "?q=javascript&num=10";

let searchParams = new URLSearchParams(qs);

for (let param of searchParams) {
 console.log(param);
}
// ["q", "javascript"]
// ["num", "10"]

Manipulating the Location
The browser location can be changed in a number of ways using the location object. The first, and
most common, way is to use the assign() method and pass in a URL, as in the following example:

location.assign("http://www.wrox.com");

The location Object ❘ 453

This immediately starts the process of navigating to the new URL and makes an entry in the brows-
er’s history stack. If location.href or window.location is set to a URL, the assign() method
is called with the value. For example, both of the following perform the same behavior as calling
assign() explicitly:

window.location = "http://www.wrox.com";
location.href = "http://www.wrox.com";

Of these three approaches to changing the browser location, setting location.href is most often
seen in code.

Changing various properties on the location object can also modify the currently loaded page. The
hash, search, hostname, pathname, and port properties can be set with new values that alter the
current URL, as in this example:

// assume starting at http://www.wrox.com/WileyCDA/

// changes URL to "http://www.wrox.com/WileyCDA/#section1"
location.hash = "#section1";

// changes URL to "http://www.wrox.com/WileyCDA/?q=javascript"
location.search = "?q=javascript";

// changes URL to "http://www.yahoo.com/WileyCDA/"
location.hostname = "www.yahoo.com";

// changes URL to "http://www.yahoo.com/mydir/"
location.pathname = "mydir";

// changes URL to "http://www.yahoo.com:8080/WileyCDA/
Location.port = 8080;

Each time a property on location is changed, with the exception of hash, the page reloads with
the new URL.

NOTE Changing the value of hash causes a new entry in the browser’s history
to be recorded. In earlier Internet Explorer versions, the hash property was
updated not when Back or Forward was clicked but only when a link containing
a hashed URL was clicked.

When the URL is changed using one of the previously mentioned approaches, an entry is made in
the browser’s history stack so the user may click the Back button to navigate to the previous page. It
is possible to disallow this behavior by using the replace() method. This method accepts a single
argument, the URL to navigate to, but does not make an entry in the history stack. After calling
replace(), the user cannot go back to the previous page. Consider this example:

<!DOCTYPE html>
<html>
<head>
 <title>You won't be able to get back here</title>
</head>

454 ❘ CHAPTER 12 The Browser oBjecT Model

<body>
 <p>Enjoy this page for a second, because you won't be coming back here.</p>
 <script>
 setTimeout(() => location.replace("http://www.wrox.com/"), 1000);
 </script>
</body>
</html>

If this page is loaded into a web browser, it will redirect to www.wrox.com after a second. At that
point, the Back button will be disabled, and you won’t be able to navigate back to this example page
without typing in the complete URL again.

The last method of location is reload(), which reloads the currently displayed page. When reload()
is called with no argument, the page is reloaded in the most efficient way possible, which is to say
that the page may be reloaded from the browser cache if it hasn’t changed since the last request. To
force a reload from the server, pass in true as an argument like this:

location.reload(); // reload - possibly from cache
location.reload(true); // reload - go back to the server

Any code located after a reload() call may or may not be executed, depending on factors such
as network latency and system resources. For this reason, it is best to have reload() as the last
line of code.

THE NAVIGATOR OBJECT

Originally introduced in Netscape Navigator 2, the navigator object is the standard for browser
identification on the client. The navigator object is common among all JavaScript-enabled web
browsers. As with other BOM objects, each browser supports its own set of properties.

NOTE The navigator object properties which offer insight into system capabil
ities are detailed further in the Client Detection chapter.

The navigator object implements methods and properties defined in the NavigatorID, Navigator-
Language, NavigatorOnLine, NavigatorContentUtils, NavigatorStorage, NavigatorStorageU-
tils, NavigatorConcurrentHardware, NavigatorPlugins, and NavigatorUserMedia interfaces.

The following table lists each available property and method:

PROPERTY/METHOD DESCRIPTION

activeVrDisplays Returns an array of every VRDisplay instance with its ispresenting
property set to true.

appCodeName Returns "Mozilla" even in non-Mozilla browsers.

appName Full browser name.

The navigator Object ❘ 455

PROPERTY/METHOD DESCRIPTION

appVersion Browser version. Typically does not correspond to the actual
browser version.

battery Returns a BatteryManager object to interact with the Battery
Status API.

buildId Build number for the browser.

connection Returns a NetworkInformation object to interact with the Network
Information API.

cookieEnabled Indicates if cookies are enabled.

credentials A CredentialsContainer to interact with the Credentials
Management API.

deviceMemory The amount of device memory in gigabytes.

doNotTrack The user’s do-not-track preference.

geolocation A Geolocation object to interact with the Geolocation API.

getVRDisplays() Returns an array of every VRDisplay instance available.

getUserMedia() Returns the stream associated with the available media device hardware.

hardware

Concurrency
The device’s number of processor cores.

javaEnabled Indicates if Java is enabled in the browser.

language The browser’s primary language.

languages An array of all the browser’s preferred languages.

locks A LockManager object to interact with the Web Locks API.

mediaCapabilities A MediaCapabilities object to interact with the Media
Capabilities API.

mediaDevices The available media devices.

maxTouchPoints The maximum number of supported touch points for the device’s
touchscreen.

mimeTypes Array of MIME types registered with the browser.

onLine Indicates if the browser is connected to the Internet.

oscpu The operating system and/or CPU on which the browser is running.

permissions A Permissions object to interact with the Permissions API.

continues

456 ❘ CHAPTER 12 The Browser oBjecT Model

PROPERTY/METHOD DESCRIPTION

platform The system platform on which the browser is running.

plugins Array of plug-ins installed on the browser. In Internet Explorer only, this
is an array of all <embed> elements on the page.

product The name of the product (typically "Gecko").

productSub Extra information about the product (typically Gecko version
information).

registerProtocol

Handler()
Registers a website as a handler for a particular protocol.

requestMediaKey

SystemAccess()
Returns a Promise which resolves to a MediaKeySystemAccess object.

sendBeacon() Asynchronously transmits a small payload.

serviceWorker The ServiceWorkerContainer used to interact with
ServiceWorker objects.

share() If available, invokes the current platform’s native sharing mechanism.

storage Returns the StorageManager object to interact with the Storage API.

userAgent The user-agent string for the browser.

vendor The brand name of the browser.

vendorSub Extra information about the vendor.

vibrate() Triggers the device to vibrate if vibration is supported.

webdriver Indicates if the browser is controlled by automation.

The navigator object’s properties are typically used to determine the type of browser that is running
a web page.

Detecting Plug-ins
One of the most common detection procedures is to determine whether the browser has a particular
plug-in installed. For browsers other than Internet Explorer 10 and below, this can be determined
using the plugins array. Each item in the array contains the following properties:

➤➤ name—The name of the plug-in

➤➤ description—The description of the plug-in

➤➤ filename—The filename for the plug-in

➤➤ length—The number of MIME types handled by this plug-in

(continued)

The navigator Object ❘ 457

Typically, the name contains all of the information that’s necessary to identify a plug-in, though this is
not an exact science. Plug-in detection is done by looping over the available plug-ins and comparing a
plug-in’s name to a given name, as in this example:

// plugin detection - doesn't work in Internet Explorer 10 or below
let hasPlugin = function(name) {
 name = name.toLowerCase();
 for (let plugin of window.navigator.plugins){
 if (plugin.name.toLowerCase().indexOf(name) > -1){
 return true;
 }
 }

 return false;
}

// detect flash
alert(hasPlugin("Flash"));

// detect quicktime
alert(hasPlugin("QuickTime"));

The hasPlugin() example accepts a single argument: the name of a plug-in to detect. The first step
is to convert that name to lowercase for easier comparison. Next, the plugins array is iterated over,
and each name property is checked via indexOf() to see if the passed-in name appears somewhere
in that string. This comparison is done in all lowercase to avoid casing errors. The argument should
be as specific as possible to avoid confusion. Strings such as "Flash" and "QuickTime" are unique
enough that there should be little confusion. This method works for detecting plug-ins in Firefox,
Safari, Opera, and Chrome.

NOTE Each plugin object is also an array of MimeType objects that can be
accessed using bracket notation. Each MimeType object has four properties:
description, which is a description of the MIME type; enabledPlugin, which
is a pointer back to the plugin object; suffixes, which is a commadelimited
string of file extensions for the MIME type; and type, which is the full MIME
type string.

With the release of Internet Explorer 11, window.navigator supports plugins and mimeTypes. This
means that the function defined previously is capable of detecting plug-ins properly for all up-to-date
versions of browsers from major vendors. Furthermore, the ActiveXObject becomes hidden from the
DOM in IE11, meaning it cannot be used for detection purposes.

Legacy Internet Explorer Plugin Detection
Detecting plug-ins in Internet Explorer 10 or below is more problematic because it doesn’t support
Netscape-style plug-ins. The only way to detect plug-ins in Internet Explorer is to use the propri-
etary ActiveXObject type and attempt to instantiate a particular plug-in. Plug-ins are implemented
in Internet Explorer using COM objects, which are identified by unique strings. So to check for a

458 ❘ CHAPTER 12 The Browser oBjecT Model

particular plug-in, you must know its COM identifier. For instance, the identifier for Flash is "Shock-
waveFlash.ShockwaveFlash". With this information, you can write a function to determine if the
plug-in is installed in Internet Explorer as follows:

// plugin detection for legacy Internet Explorer
function hasIEPlugin(name) {
 try {
 new ActiveXObject(name);
 return true;
 } catch (ex) {
 return false;
 }
}

// detect flash
alert(hasIEPlugin("ShockwaveFlash.ShockwaveFlash"));

// detect quicktime
alert(hasIEPlugin("QuickTime.QuickTime"));

In this example, the hasIEPlugin() function accepts a COM identifier as its sole argument. In the
function, an attempt is made to create a new ActiveXObject instance. This is encapsulated in a try-
catch statement because an attempt to create an unknown COM object will throw an error. There-
fore, if the attempt is successful, the function returns true. If there is an error, the catch block gets
executed, which returns false. This code then checks to see if the Flash and QuickTime plug-ins are
available in Internet Explorer.

Because these two plug-in–detection methods are so different, it’s typical to create functions that test
for specific plug-ins rather than use the generic methods described previously. Consider this example:

// detect flash for all browsers
function hasFlash() {
 var result = hasPlugin("Flash");
 if (!result){
 result = hasIEPlugin("ShockwaveFlash.ShockwaveFlash");
 }
 return result;
}

// detect quicktime for all browsers
function hasQuickTime() {
 var result = hasPlugin("QuickTime");
 if (!result){
 result = hasIEPlugin("QuickTime.QuickTime");
 }
 return result;
}

// detect flash
alert(hasFlash());

// detect quicktime
alert(hasQuickTime());

The screen Object ❘ 459

This code defines two functions: hasFlash() and hasQuickTime(). Each function attempts to use the
non–Internet Explorer plug-in–detection code first. If that method returns false (which it will for Inter-
net Explorer), the Internet Explorer plug-in–detection method is called. If the Internet Explorer plug-
in– detection method also returns false, then the result of the overall method is false. If either
plug-in–detection function returns true, then the overall method returns true.

NOTE The plugins collection has a method called refresh(), which refreshes
plugins to reflect any newly installed plugins. This method accepts a single
argument: a Boolean value indicating if the page should be reloaded. When set to
true, all pages containing plugins are reloaded; otherwise the plugins collec
tion is updated, but the page is not reloaded.

Registering Handlers
Modern browsers formally support the registerProtocolHandler() method to the navigator
object. (This is formally defined in HTML 5.) These methods allow a website to indicate that it can
handle specific types of information. With the rise of online RSS readers and online e-mail applica-
tions, this is a way for those applications to be used by default just as desktop applications are used.

A call can be made for protocols by using registerProtocolHandler(), which accepts three argu-
ments: the protocol to handle (i.e., "mailto" or "ftp"), the URL of the page that handles the pro-
tocol, and the name of the application. For example, to register a web application as the default mail
client, you can use the following:

navigator.registerProtocolHandler("mailto",
 "http://www.somemailclient.com?cmd=%s",
 "Some Mail Client");

In this example, a handler is registered for the mailto protocol, which will now point to a web-based
e-mail client. Once again, the second argument is the URL that should handle the request, and %s
represents the original request.

THE SCREEN OBJECT

The screen object (also a property of window) is one of the few JavaScript objects that have little
to no programmatic use; it is used purely as an indication of client capabilities. This object provides
information about the client’s display outside the browser window, including information such as
pixel width and height. Each browser provides different properties on the screen object. The follow-
ing table describes each of the properties.

PROPERTY DESCRIPTION

availHeight The pixel height of the screen minus system elements such as Windows
(read only).

availLeft The first pixel from the left that is not taken up by system elements (read only).

continues

460 ❘ CHAPTER 12 The Browser oBjecT Model

PROPERTY DESCRIPTION

availTop The first pixel from the top that is not taken up by system elements (read only).

availWidth The pixel width of the screen minus system elements (read only).

colorDepth The number of bits used to represent colors; for most systems, 32 (read only).

height The pixel height of the screen.

left The pixel distance of the current screen’s left side.

pixelDepth The bit depth of the screen (read only).

top The pixel distance of the current screen’s top.

width The pixel width of the screen.

orientation Returns the screen orientation as specified in the Screen Orientation API.

THE HISTORY OBJECT

The history object represents the user’s navigation history since the given window was first used.
Because history is a property of window, each browser window object has its own history object
relating specifically to that instance. For security reasons, it’s not possible to determine the URLs that
the user has visited. It is possible, however, to navigate backwards and forwards through the list of
places the user has been without knowing the exact URL.

Navigation
The go() method navigates through the user’s history in either direction, backward or forward. This
method accepts a single argument, which is an integer representing the number of pages to go back-
ward or forward. A negative number moves backward in history (similar to clicking the browser’s
Back button), and a positive number moves forward (similar to clicking the browser’s Forward but-
ton). Here’s an example:

// go back one page
history.go(-1);

// go forward one page
history.go(1);

// go forward two pages
history.go(2);

The go() method argument can also be a string, in which case the browser navigates to the first loca-
tion in history that contains the given string. The closest location may be either backward or forward.
If there’s no entry in history matching the string, then the method does nothing, as in this example:

// go to nearest wrox.com page
history.go("wrox.com");

(continued)

The history Object ❘ 461

// go to nearest nczonline.net page
history.go("nczonline.net");

Two shortcut methods, back() and forward(), may be used in place of go(). As you might expect,
these mimic the browser Back and Forward buttons as follows:

// go back one page
history.back();

// go forward one page
history.forward();

The history object also has a property, length, which indicates how many items are in the history
stack. This property reflects all items in the history stack, both those going backward and those going
forward. For the first page loaded into a window or tab, history.length is equal to 0. By testing for
this value as shown here, it’s possible to determine if the user’s start point was your page:

if (history.length == 0){
 //this is the first page in the user's window
}

The history object typically is used to create custom Back and Forward buttons and to determine if
the page is the first in the user’s history.

NOTE Entries are made in the history stack whenever the page’s URL changes.
For major browsers released since 2009, this includes changes to the URL hash
(thus, setting location.hash causes a new entry to be inserted into the history
stack for these browsers). This behavior is commonly used by singlepage appli
cation frameworks, which wish to simulate Back and Forward button function
ality without causing full page reloads upon each navigation event.

History State Management
One of the most difficult aspects of modern web application programming is history management.
Gone are the days where every action takes a user to a completely new page, which also means that
the Back and Forward buttons have been taken away from users as a familiar way to say “get me to
a different state.” The first step to solving that problem was the hashchange event (discussed in the
Events chapter). HTML5 updates the history object to provide easy state management.

Where the hashchange event simply let you know when the URL hash changed and expected you to
act accordingly, the state management API actually lets you change the browser URL without loading
a new page. To do so, use the history.pushState() method. This method accepts three arguments:
a data object, the title of the new state, and an optional relative URL. For example:

let stateObject = {foo:"bar"};

history.pushState(stateObject, "My title", "baz.html");

As soon as pushState() executes, the state information is pushed onto the history stack and the
browser’s address bar changes to reflect the new relative URL. Despite this change, the browser does
not make a request to the server, even though querying location.href will return exactly what’s in

462 ❘ CHAPTER 12 The Browser oBjecT Model

the address bar. The second argument isn’t currently used by any implementations and so it is safe to
either leave it as an empty string or provide a short title. The first argument should contain all of the
information necessary to correctly initialize this page state when necessary. To prevent abuse, the size
of the state object is limited, typically to less than 500MB–1MB.

Since pushState() creates a new history entry, you’ll notice that the Back button is enabled. When
the Back button is pressed, the popstate event fires on the window object. The event object for pop-
state has a property called state, which contains the object that was passed into pushState() as
the first argument:

window.addEventListener("popstate", (event) => {
 let state = event.state;
 if (state) { // state is null when at first page load
 processState(state);
 }
});

Using this state, you must then reset the page into the state represented by the data in the state object
(as the browser doesn’t do this automatically for you). Keep in mind that when a page is first loaded,
there is no state, so hitting the Back button until you get to the original page state will result in
event.state being null.

You can access the current state object by using history.state. You can also update the current
state information by using replaceState() and passing in the same first two arguments as push-
State(). Doing so does not create a new entry in history, it just overwrites the current state:

history.replaceState({newFoo: "newBar"}, "New title");

The state object passed into pushState() or replaceState() should only contain informa-
tion that can be serialized. Therefore, things like DOM elements are inappropriate for use in the
state object.

NOTE When using HTML5 history state management, make sure that any
"fake" URL you create using pushState() is backed up by a real, physical URL
on the web server. Otherwise, hitting the Refresh button will result in a 404. All
singlepage application (SPA) frameworks must address this problem in some
way via configuration on the server or client.

SUMMARY

The Browser Object Model (BOM) is based on the window object, which represents the browser win-
dow and the viewable page area. The window object doubles as the ECMAScript Global object, so all
global variables and functions become properties on it, and all native constructors and functions exist
on it initially. This chapter discussed the following elements of the BOM:

➤➤ To reference other window objects, there are several window pointers.

➤➤ The location object allows programmatic access to the browser’s navigation system. By
setting properties, it’s possible to change the browser’s URL piece by piece or altogether.

Summary ❘ 463

➤➤ The replace() method allows for navigating to a new URL and replacing the currently dis-
played page in the browser’s history.

➤➤ The navigator object provides information about the browser. The type of information
provided depends largely on the browser being used, though some common properties, such
as userAgent, are available in all browsers.

Two other objects available in the BOM perform very limited functions. The screen object provides
information about the client display. This information is typically used in metrics gathering for web-
sites. The history object offers a limited peek into the browser’s history stack, allowing developers to
determine how many sites are in the history stack and giving them the ability to go back or forward
to any page in the history, as well as modify the history stack.

Client Detection
WHAT’S IN THIS CHAPTER?

➤➤ Using capability detection

➤➤ The history of user-agent detection

➤➤ Software and hardware detection

➤➤ When to use each type of detection

Although browser vendors have made a concerted effort to implement common interfaces, the
fact remains that each browser presents its own capabilities and flaws. Browsers that are avail
able crossplatform often have different issues, even though they are technically the same version.
These differences force web developers to either design for the lowest common denominator or,
more commonly, use various methods of client detection to work with or around limitations.

Client detection remains one of the most controversial topics in web development. The idea that
browsers should support a common set of functionality pervades most conversations on the
topic. In an ideal world, this would be the case. In reality, however, there are enough browser
differences and quirks that client detection becomes not just an afterthought but also a vital
part of the development strategy. The browser differences of today are much less pronounced
than the Internet Explorer fiasco of yesteryear, but browser inconsistencies remain a common
theme in web development.

There are several approaches you can use to determine the web client being used, and each
has advantages and disadvantages. It’s important to understand that client detection should be
the very last step in solving a problem; whenever a more common solution is available, that
solution should be used. Design for the most common solution first and then augment it with
browserspecific solutions later.

13

Professional JavaScript® for Web Developers, Fourth Edition. Matt Frisbie.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

466 ❘ CHAPTER 13 Client DeteCtion

CAPABILITY DETECTION

Capability detection (also called feature detection) uses a suite of simple checks in the browser’s
JavaScript runtime to test for support of various features. This approach presumes that specific
browser knowledge is unnecessary and that the solution may be found by determining if the capabil
ity in question actually exists. The basic pattern for capability detection is as follows:

if (object.propertyInQuestion) {
 // use object.propertyInQuestion
}

For example, the DOM method document.getElementById() didn’t exist in Internet Explorer prior
to version 5, although the same functionality could be achieved using the nonstandard document.all
property. This led to a capability detection fork such as the following:

function getElement(id) {
 if (document.getElementById) {
 return document.getElementById(id);
 } else if (document.all) {
 return document.all[id];
 } else {
 throw new Error("No way to retrieve element!");
 }
}

The purpose of the getElement() function is to return an element with the given ID. Because
document.getElementById() is the standard way of achieving this, it is tested for first. If the func
tion exists (it isn’t undefined), then it is used. Otherwise, a check is done to determine if document.
all is available, and if so, that is used. If neither method is available (which is highly unlikely), an
error is thrown to indicate that the function won’t work.

There are two important concepts to understand in capability detection. As just mentioned, the most
common way to achieve the result should be tested for first. In the previous example, this meant test
ing for document.getElementById() before document.all. Testing for the most common solution
ensures optimal code execution by avoiding multiplecondition testing in the common case.

The second important concept is that you must test for exactly what you want to use. Just because
one capability exists doesn’t necessarily mean another exists. Consider the following example:

function getWindowWidth() {
 if (document.all) { // assumes IE
 return document.documentElement.clientWidth; // INCORRECT USAGE!!!
 } else {
 return window.innerWidth;
 }
}

This example shows an incorrect usage of capability detection. The getWindowWidth() function
first checks to see if document.all exists. It does, so the function then returns document.document
Element.clientWidth. Internet Explorer 8 and earlier versions do not support the window.inner
Width property. The problem in this code is that a test for document.all does not necessarily

Capability Detection ❘ 467

indicate that the browser is Internet Explorer. It could, in fact, be an early version of Opera, which
supported document.all and window.innerWidth.

Safer Capability Detection
Capability detection is most effective when you verify not just that the feature is present but also that
the feature is likely to behave in an appropriate manner. The examples in the previous section rely on
type coercion of the tested object member to make a determination as to its presence. While this tells
you about the presence of the object member, there is no indication if the member is the one you’re
expecting. Consider the following function, which tries to determine if an object is sortable:

// AVOID! Incorrect capability detection – only checks for existence
function isSortable(object) {
 return !!object.sort;
}

This function attempts to determine that an object can be sorted by checking for the presence of the
sort() method. The problem is that any object with a sort property will also return true:

let result = isSortable({ sort: true });

Simply testing for the existence of a property doesn’t definitively indicate that the object in question is
sortable. The better approach is to check that sort is actually a function:

// Better – checks if sort is a function
function isSortable(object) {
 return typeof object.sort == "function";
}

The typeof operator is used in this code to determine that sort is actually a function and therefore
can be called to sort the data contained within.

Capability detection using typeof is preferred whenever possible, but it is not infallible. In particu
lar, host objects are under no obligation to return rational values for typeof. The most egregious
example of this occurs with Internet Explorer. In most browsers, the following code returns true if
document.createElement() is present:

 // doesn't work properly in Internet Explorer <= 8
function hasCreateElement() {
 return typeof document.createElement == "function";
}

In Internet Explorer 8 and earlier, the function returns false because typeof document
.createElement returns "object" instead of "function". As mentioned previously, DOM objects
are host objects, and host objects are implemented via COM instead of JScript in Internet Explorer
8 and earlier. As such, the actual function document.createElement() is implemented as a COM
object and typeof then returns "object". Internet Explorer 9 correctly returns "function" for
DOM methods.

NOTE For an exhaustive discussion of the ins and outs of capability detection in
JavaScript, please see Peter Michaux’s article “Feature Detection: State of the Art
Browser Scripting” at http://peter.michaux.ca/articles/feature detection
stateoftheartbrowserscripting.

468 ❘ CHAPTER 13 Client DeteCtion

Using Capability Detection for Browser Analysis
Although some might consider reliance on capability detection to be somewhat of a hack, proper
application of capability detection can yield a surprisingly accurate analysis of the browser executing
the code. The advantage of using capability detection over useragents to identify a browser is that,
while it is exceptionally easy to spoof a useragent, it is much harder to conceal all the capabilities of
a browser in a way that can reliably fool capability detection tests.

Detecting Feature Support
It is possible to group capabilities together into classes of browsers. If you know that your application
needs to use specific browser functionality, it may be useful to do detection for all of the capabilities
once rather than doing it repeatedly. Consider this example:

// determine if the browser has Netscapestyle plugins
let hasNSPlugins = !!(navigator.plugins && navigator.plugins.length);

// determine if the browser has basic DOM Level 1 capabilities
let hasDOM1 = !!(document.getElementById && document.createElement &&
 document.getElementsByTagName);

In this example, two detections are done: one to see if the browser supports Netscapestyle plugins,
and one to determine if the browser supports basic DOM Level 1 capabilities. These Boolean values
can later be queried, and it will take less time than it would to retest the capabilities.

Detecting Browser Identity
It is also possible to test a browser for support of various features and compare the results against a
known collection to ascertain which browser is in use. This allows for a detection scheme that is safe
from useragent spoofing (discussed later in the chapter), but future versions of browsers may break
your capability detection scheme.

Consider the following example, which tests for known unique behavior of various browsers to infer
the browser the code is running inside. This code intentionally does not make use of navigator
.userAgent, which is discussed later in the chapter:

class BrowserDetector {
 constructor() {
 // Test for conditional compilation
 // Supported IE6 to IE10
 this.isIE_Gte6Lte10 = /*@cc_on!@*/false;

 // Test for presence of documentMode
 // Supported IE7 to IE11
 this.isIE_Gte7Lte11 = !!document.documentMode;

 // Test for presence of StyleMedia constructor
 // Supported Edge >= 20
 this.isEdge_Gte20 = !!window.StyleMedia;

 // Test for proprietary Firefox addon install API
 // Supported for all Firefox versions
 this.isFirefox_Gte1 = typeof InstallTrigger !== 'undefined';

Capability Detection ❘ 469

 // Test for presence of Chrome object and its webstore property. Versions
 // of Opera will have window.chrome, but not window.chrome.webstore
 // Supported for all Chrome versions
 this.isChrome_Gte1 = !!window.chrome && !!window.chrome.webstore;

 // Early versions of Safari would append "Constructor" to the constructor
 // function identifier.
 // window.Element.toString(); // [object ElementConstructor]
 // Supported Safari 3 to 9.1
 this.isSafari_Gte3Lte9_1 = /constructor/i.test(window.Element);

 // Push notification API exposed on window object. Uses default parameters
 // to prevent stringification of undefined values.
 // Supported Safari 7.1+
 this.isSafari_Gte7_1 =
 (({pushNotification = {}} = {}) =>
 pushNotification.toString() == '[object SafariRemoteNotification]'
)(window.safari);

 // Tests for the 'addons' property.
 // Supported Opera 20+
 this.isOpera_Gte20 = !!window.opr && !!window.opr.addons;
 }

 isIE() { return this.isIE_Gte6Lte10 || this.isIE_Gte7Lte11; }
 isEdge() { return this.isEdge_Gte20 && !this.isIE(); }
 isFirefox() { return this.isFirefox_Gte1; }
 isChrome() { return this.isChrome_Gte1 };
 isSafari() { return this.isSafari_Gte3Lte9_1 || this.isSafari_Gte7_1; }
 isOpera() { return this.isOpera_Gte20; }
}

Using such a class allows you to expose generalized browser detection methods that combine
 capability detection for different browser ranges. As browsers shift and evolve, you can adjust the
underlying capability detection while leaving the primary API intact.

Capability Detection Limitations
Detecting a particular capability or set of capabilities does not necessarily indicate the browser in use.
The following "browser detection" code, or something similar, can be found on numerous websites
and is an example of improper capability detection:

// AVOID! Not specific enough
let isFirefox = !!(navigator.vendor && navigator.vendorSub);

// AVOID! Makes too many assumptions
let isIE = !!(document.all && document.uniqueID);

This code represents a classic misuse of capability detection. In the past, Firefox could be determined
by checking for navigator.vendor and navigator.vendorSub, but then Safari came along and
implemented the same properties, meaning this code would give a false positive. To detect Internet
Explorer, the code checks for the presence of document.all and document.uniqueID. This assumes

470 ❘ CHAPTER 13 Client DeteCtion

that both of these properties will continue to exist in future versions of IE and won’t ever be imple
mented by any other browser. Both checks use a double NOT operator to produce a Boolean result
(which is more optimal to store and access).

NOTE Capability detection is best used to determine the next step in a solution,
not necessarily as a flag indicating a particular browser is being used.

USER-AGENT DETECTION

Useragent detection uses the browser’s useragent string to determine information about the
browser being used. The useragent string is sent as a response header for every HTTP request and
is made accessible in JavaScript through navigator.userAgent. On the server side, it is a common
and accepted practice to look at the useragent string to determine the browser being used and to act
accordingly. On the client side, however, useragent detection should be assumed to be unreliable and
used in scenarios when other options are infeasible.

Among the controversial aspects of the useragent string is its long history of spoofing, when brows
ers try to fool servers by including erroneous or misleading information in their useragent string. To
understand this problem, it’s necessary to take a look back at how the useragent string has evolved
since the Web first appeared.

History of User-Agent Composition
The HTTP specification, both versions 1.0 and 1.1, indicates that browsers should send short user
agent strings specifying the browser name and version. RFC 2616 (the HTTP 1.1 protocol specifica
tion) describes the useragent string in this way:

Product tokens are used to allow communicating applications to identify them-
selves by software name and version. Most fields using product tokens also allow
sub-products which form a significant part of the application to be listed, separated
by white space. By convention, the products are listed in order of their significance
for identifying the application.

The specification further stipulates that the useragent string should be specified as a list of products
in the form token/product version. In reality, however, useragent strings have never been that simple.

Early Browsers
The first web browser, Mosaic, was released in 1993 by the National Center for Supercomputing
Applications (NCSA). Its useragent string was fairly simple, taking a form similar to this:

Mosaic/0.9

Though this would vary depending on the operating system and platform, the basic format was
simple and straightforward. The text before the forward slash indicates the product name (sometimes
appearing as NCSA Mosaic or other derivatives), and the text after the slash is the product version.

User-Agent Detection ❘ 471

When Netscape Communications began developing its web browser, its code name was Mozilla
(short for "Mosaic Killer"). Netscape Navigator 2, the first publicly available version, had a user
agent string with the following format:

Mozilla/Version [Language] (Platform; Encryption)

Netscape kept the tradition of using the product name and version as the first part of the useragent
string but added the following information afterward:

➤➤ Language—The language code indicating where the application was intended to be used.

➤➤ Platform—The operating system and/or platform on which the application is running.

➤➤ Encryption—The type of security encryption included. Possible values are U (128bit
encryption), I (40bit encryption), and N (no encryption).

A typical useragent string from Netscape Navigator 2 looked like this:

Mozilla/2.02 [fr] (WinNT; I)

This string indicates Netscape Navigator 2.02 is being used, is compiled for use in Frenchspeaking
countries, and is being run on Windows NT with 40bit encryption. Overall, it was fairly easy to
determine what browser was being used just by looking at the product name in the useragent string.

Netscape Navigator 3 and Internet Explorer 3
In 1996, Netscape Navigator 3 was released and became the most popular web browser, surpassing
Mosaic. The useragent string went through only a small change, removing the language token and
allowing optional information about the operating system or CPU used on the system. The format
became the following:

Mozilla/Version (Platform; Encryption [; OS-or-CPU description])

A typical useragent string for Netscape Navigator 3 running on a Windows system looked like this:

Mozilla/3.0 (Win95; U)

This string indicates Netscape Navigator 3 running on Windows 95 with 128bit encryption. Note
that the OS or CPU description was left off when the browser ran on Windows systems.

Shortly after the release of Netscape Navigator 3, Microsoft released its first publicly available web
browser, Internet Explorer 3. Because Netscape was the dominant browser at the time, many servers
specifically checked for it before serving up pages. The inability to access pages in Internet Explorer
would have crippled adoption of the fledgling browser, so the decision was made to create a user
agent string that would be compatible with the Netscape useragent string. The result was the follow
ing format:

Mozilla/2.0 (compatible; MSIE Version; Operating System)

For example, Internet Explorer 3.02 running on Windows 95 had this useragent string:

Mozilla/2.0 (compatible; MSIE 3.02; Windows 95)

Because most browser sniffers at the time looked only at the productname part of the useragent
string, Internet Explorer successfully identified itself as Mozilla, the same as Netscape Navigator. This
move caused some controversy because it broke the convention of browser identification. Further
more, the true browser version is buried in the middle of the string.

472 ❘ CHAPTER 13 Client DeteCtion

Another interesting part of this string is the identification of Mozilla 2.0 instead of 3.0. Because 3.0
was the dominant browser at the time, it would have made more sense to use that. The actual reason
remains a mystery—it was more likely an oversight than anything else.

Netscape Communicator 4 and Internet Explorer 4 Through 8
In August 1997, Netscape Communicator 4 was released (the name was changed from Navigator to
Communicator for this release). Netscape opted to keep the following useragent string format from
version 3:

Mozilla/Version (Platform; Encryption [; OS-or-CPU description])

With version 4 on a Windows 98 machine, the useragent string looked like this:

Mozilla/4.0 (Win98; I)

As Netscape released patches and fixes for its browser, the version was incremented accordingly, as
the following useragent string from version 4.79 indicates:

Mozilla/4.79 (Win98; I)

When Microsoft released Internet Explorer 4, the useragent string featured an updated version, tak
ing the following format:

Mozilla/4.0 (compatible; MSIE Version; Operating System)

For example, Internet Explorer 4 running on Windows 98 returned the following useragent string:

Mozilla/4.0 (compatible; MSIE 4.0; Windows 98)

With this change, the reported Mozilla version and the actual version of Internet Explorer were
synchronized, allowing for easy identification of these fourthgeneration browsers. Unfortunately,
the synchronization ended there. When Internet Explorer 4.5 (released only for Macs) debuted, the
Mozilla version remained 4 while the Internet Explorer version changed as follows:

Mozilla/4.0 (compatible; MSIE 4.5; Mac_PowerPC)

In Internet Explorer versions through version 7, the following pattern has remained:

Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)

Internet Explorer 8 introduced an additional token called Trident, which is the name of the rendering
engine. The format became:

Mozilla/4.0 (compatible; MSIE Version; Operating System; Trident/TridentVersion)

For example:

Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0)

The extra Trident token is designed to help developers determine when Internet Explorer 8 is running
in compatibility mode. In that case, the MSIE version becomes 7, but the Trident version remains in
the useragent string:

Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Trident/4.0)

Adding this extra token makes it possible to determine if a browser is Internet Explorer 7 (in which
case there is no Trident token) or Internet Explorer 8 running in compatibility mode.

User-Agent Detection ❘ 473

Internet Explorer 9 slightly changed this format. The Mozilla version was incremented to 5.0, and
the Trident version was also incremented to 5.0. The default useragent string for Internet Explorer 9
looks like this:

Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0)

When Internet Explorer 9 runs in compatibility mode, the old Mozilla version and MSIE version
are restored while the Trident version remains at 5.0. For example, the following useragent string is
Internet Explorer 9 running in Internet Explorer 7 compatibility mode:

Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; Trident/5.0)

All of these changes were made to ensure that past useragent detection scripts continue to work cor
rectly while enabling new scripts to have additional information.

Gecko
The Gecko rendering engine is at the heart of Firefox. When Gecko was first developed, it was as
part of the generic Mozilla browser that was to become Netscape 6. A specification was written for
Netscape 6, indicating how the useragent string should be constructed in all future versions. The new
format represented a fairly drastic departure from its relatively simple useragent string used through
version 4.x. The format is as follows:

Mozilla/MozillaVersion (Platform; Encryption; OS-or-CPU; Language;
 PrereleaseVersion)Gecko/GeckoVersion
 ApplicationProduct/ApplicationProductVersion

A lot of thought went into this remarkably complex useragent string. The following table lists the
meaning of each section.

STRING REQUIRED? DESCRIPTION

MozillaVersion Yes The version of Mozilla.

Platform Yes The platform on which the browser is running.
Possible values include Windows, Mac, and X11 (for
Unix X-windows systems).

Encryption Yes Encryption capabilities: U for 128-bit, I for 40-bit, or
N for no encryption.

OS-or-CPU Yes The operating system the browser is being run
on or the processor type of the computer running
the browser. If the platform is Windows, this is the
version of Windows (such as WinNT, Win95, and
so on). If the platform is Macintosh, then this is the
CPU (either 68k, PPC for PowerPC, or MacIntel).
If the Platform is X11, this is the Unix operating-
system name as obtained by the Unix command
uname sm.

continues

474 ❘ CHAPTER 13 Client DeteCtion

STRING REQUIRED? DESCRIPTION

Language Yes The language that the browser was created
for use in.

Prerelease Version No Originally intended as the prerelease version
number for Mozilla, it now indicates the version
number of the Gecko rendering engine.

GeckoVersion Yes The version of the Gecko rendering engine
represented by a date in the format yyyymmdd.

ApplicationProduct No The name of the product using Gecko. This may be
Netscape, Firefox, and so on.

ApplicationProductVersion No The version of the ApplicationProduct; this
is separate from the MozillaVersion and the
GeckoVersion.

To better understand the Gecko useragent string format, consider the following useragent strings
taken from various Geckobased browsers:

Netscape 6.21 on Windows XP:

Mozilla/5.0 (Windows; U; Windows NT 5.1; enUS; rv:0.9.4) Gecko/20011128
 Netscape6/6.2.1

SeaMonkey 1.1a on Linux:

Mozilla/5.0 (X11; U; Linux i686; enUS; rv:1.8.1b2) Gecko/20060823 SeaMonkey/1.1a

Firefox 2.0.0.11 on Windows XP:

Mozilla/5.0 (Windows; U; Windows NT 5.1; enUS; rv:1.8.1.11) Gecko/20071127
 Firefox/2.0.0.11

Camino 1.5.1 on Mac OS X:

Mozilla/5.0 (Macintosh; U; Intel Mac OS X; en; rv:1.8.1.6) Gecko/20070809
 Camino/1.5.1

All of these useragent strings indicate Geckobased browsers (albeit using different versions). Often
times, looking for a particular browser is not as important as understanding whether it’s Gecko
based. The Mozilla version hasn’t changed from 5.0 since the first Geckobased browser was released,
and it likely won’t change again.

With the release of Firefox 4, Mozilla simplified the useragent string. The major changes include:

➤➤ Removal of the Language token (i.e., "enUS" in the previous examples).

➤➤ The Encryption token is not present when the browser uses strong encryption (which is the
default). That means there will no longer be a "U" in Mozilla useragent strings, but "I" and
"N" might still be present.

(continued)

User-Agent Detection ❘ 475

➤➤ The Platform token has been removed for Windows useragent strings as "Windows" was
redundant with the OSorCPU token, which always contained the string "Windows".

➤➤ The GeckoVersion token is now frozen to "Gecko/20100101".

An example of the final Firefox 4 useragent string is:

Mozilla/5.0 (Windows NT 6.1; rv:2.0.1) Gecko/20100101 Firefox 4.0.1

WebKit
In 2003, Apple announced that it would release its own web browser, called Safari. The Safari render
ing engine, called WebKit, began as a fork of the KHTML rendering engine used in the Linuxbased
Konqueror web browser. A couple of years later, WebKit was split off into its own opensource pro
ject, focusing on development of the rendering engine.

Developers of this new browser and rendering engine faced a problem similar to that faced by Inter
net Explorer 3: How do you ensure that the browser isn’t locked out of popular sites? The answer is,
put enough information into the useragent string to convince websites that the browser is compatible
with another popular browser. This led to a useragent string with the following format:

Mozilla/5.0 (Platform; Encryption; OS-or-CPU; Language)
 AppleWebKit/AppleWebKitVersion (KHTML, like Gecko) Safari/SafariVersion

Here’s an example:

Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWebKit/124 (KHTML, like Gecko)
 Safari/125.1

As you can see, this is another long useragent string. It takes into account not only the version of the
Apple WebKit but also the Safari version. A point of contention over whether to identify the browser
as Mozilla was resolved rather quickly for compatibility reasons. Now, all WebKitbased browsers
identify themselves as Mozilla 5.0, the same as all Geckobased browsers. The Safari version has
typically been the build number of the browser, not necessarily a representation of the release version
number. Although Safari 1.25 has the number 125.1 in the useragent string, there may not always be
a onetoone match.

The most interesting and controversial part of this useragent string is the addition of the string
"(KHTML, like Gecko)" in a pre1.0 version of Safari. Apple got a lot of pushback from developers
who saw this as a blatant attempt to trick clients and servers into thinking Safari was actually Gecko
(as if adding Mozilla/5.0 wasn’t enough). Apple’s response was similar to Microsoft’s when the
Internet Explorer useragent string came under fire: Safari is compatible with Mozilla, and websites
shouldn’t block out Safari users because they appear to be using an unsupported browser.

Safari’s useragent string was augmented slightly when version 3 was released. The following version
token is now used to identify the actual version of Safari being used:

Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWebKit/522.15.5
 (KHTML, like Gecko) Version/3.0.3 Safari/522.15.5

476 ❘ CHAPTER 13 Client DeteCtion

Note that this change was made only to Safari, not to WebKit, so other WebKitbased browsers may
not have this change. Generally speaking, as with Gecko, it’s typical to determine that a browser is
WebKitbased rather than trying to identify Safari specifically.

Konqueror
Konqueror, the browser bundled with the KDE Linux desktop environment, is based on the KHTML
opensource rendering engine. Though available only on Linux, Konqueror has an active user base.
For optimal compatibility, Konqueror opted to format its useragent string after Internet Explorer
as follows:

Mozilla/5.0 (compatible; Konqueror/Version; OS-or-CPU)

However, Konqueror 3.2 introduced a change to coincide with changes to the WebKit useragent
string, identifying itself as KHTML, as follows:

Mozilla/5.0 (compatible; Konqueror/Version; OS-or-CPU) KHTML/KHTMLVersion
 (like Gecko)

Here’s an example:

Mozilla/5.0 (compatible; Konqueror/3.5; SunOS) KHTML/3.5.0 (like Gecko)

The version numbers for Konqueror and KHTML tend to coincide or be within a subpoint difference,
such as Konquerer 3.5 using KHTML 3.5.1.

Chrome
Google’s Chrome web browser uses Blink as its rendering engine but uses V8 as its JavaScript engine.
Chrome’s useragent string carries along all of the information from WebKit and an extra section for
the Chrome version. The format is as follows:

Mozilla/5.0 (Platform; Encryption; OS-or-CPU; Language)
 AppleWebKit/AppleWebKitVersion (KHTML, like Gecko)
 Chrome/ChromeVersion Safari/SafariVersion

Following is the full useragent string for Chrome 7:

Mozilla/5.0 (Windows; U; Windows NT 5.1; enUS) AppleWebKit/534.7
 (KHTML, like Gecko) Chrome/7.0.517.44 Safari/534.7

It’s likely that the WebKit version and Safari version will always be synchronized going forward,
though this is not guaranteed.

Opera
One of the most controversial web browsers, as far as useragent strings are concerned, is Opera. The
default useragent string for Opera is the most logical of all modern browsers, correctly identifying
itself and its version. Prior to version 8, the Opera useragent string was in the following format:

Opera/Version (OS-or-CPU; Encryption) [Language]

Following is the useragent string for Opera 7.54 on a Windows XP computer:

Opera/7.54 (Windows NT 5.1; U) [en]

User-Agent Detection ❘ 477

With the release of Opera 8, the language part of the useragent string was moved inside of the paren
theses to better match other browsers, as follows:

Opera/Version (OS-or-CPU; Encryption; Language)

Opera 8 on Windows XP yields the following useragent string:

Opera/8.0 (Windows NT 5.1; U; en)

By default, Opera returns a useragent string in this simple format. It was the only one of the major
browsers to use the product name and version to fully and completely identify itself. As with other
browsers, however, Opera found problems with using its own useragent string. Even though it’s tech
nically correct, there is a lot of browsersniffing code on the Internet that is geared toward useragent
strings reporting the Mozilla product name. There is also a fair amount of code looking specifically
for Internet Explorer or Gecko. Instead of confusing sniffers by changing its own useragent string,
Opera identifies itself as a different browser completely by changing its own useragent string.

Beginning with the release of Opera 9, there are two ways to change the useragent string. One way is
to identify it as another browser, either Firefox or Internet Explorer. When using this option, the user
agent string changes to look just like the corresponding useragent for Firefox or Internet Explorer,
with the addition of the string "Opera" and Opera’s version number at the end. Here’s an example:

Mozilla/5.0 (Windows NT 5.1; U; en; rv:1.8.1) Gecko/20061208 Firefox/2.0.0
 Opera 9.50

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; en) Opera 9.50

The first string identifies Opera 9.5 as Firefox 2 while maintaining the Opera version information.
The second string identifies Opera 9.5 as Internet Explorer 6 and includes the Opera version informa
tion. Although these useragent strings pass most tests for Firefox and Internet Explorer, the possibil
ity of identifying Opera is open.

Another option for identifying the browser is to mask it as either Firefox or Internet Explorer. When
masking the browser’s identity, the useragent strings are exactly the same as would be returned from
the other browsers—the string "Opera" does not appear, nor does any Opera version information.
There is literally no way to distinguish Opera from the other browsers when identity masking is
used. Further complicating the issue is Opera’s tendency to set sitespecific useragent strings without
notifying the user. For instance, navigating to the My Yahoo! site (http://my.yahoo.com) automati
cally causes Opera to mask itself as Firefox. This makes identifying Opera by useragent string very
difficult.

NOTE Before version 7, Opera could interpret the meaning of Windows operating-
system strings. For example, Windows NT 5.1 actually means Windows XP,
so in Opera 6, the user-agent string included Windows XP instead of Windows
NT 5.1. In an effort to be more compatible with other browsers, version 7 and
above began to include the officially reported operating-system version instead of
an interpreted one.

478 ❘ CHAPTER 13 Client DeteCtion

Opera 10 introduced changes to its useragent string. The format became:

Opera/9.80 (OS-or-CPU; Encryption; Language) Presto/PrestoVersion Version/Version

Note that the initial version, Opera/9.80, remains fixed. There was no Opera 9.8, but Opera engi
neers were afraid that poor browser sniffing might cause a token of Opera/10.0 to be incorrectly
interpreted as Opera 1 instead of Opera 10. Thus, Opera 10 introduced the additional Presto token
(Presto is the rendering engine for Opera) and the Version token to hold the actual browser version.
This is the useragent string for Opera 10.63 on Windows 7:

Opera/9.80 (Windows NT 6.1; U; en) Presto/2.6.30 Version/10.63

Modern versions of Opera have transitioned to using an OPR identifier inside the useragent
appended to a more standardized useragent string. Lexically, the useragent now resembles that
of WebKit browsers with the exception of the trailing OPR clause. This is the useragent string for
Opera 52 on Windows 10:

Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/65.0.3325.181 Safari/537.36 OPR/52.0.2871.64

iOS and Android
The default web browsers for both iOS and Android mobile operating systems are based on WebKit
and so share the same basic useragent string format as their desktop counterparts. iOS devices follow
this basic format:

Mozilla/5.0 (Platform; Encryption; OS-or-CPU like Mac OS X; Language)
 AppleWebKit/AppleWebKitVersion (KHTML, like Gecko) Version/BrowserVersion
 Mobile/MobileVersion Safari/SafariVersion

Note the addition of "like Mac OS X" to aid in detecting Mac operating systems and the addition
of a Mobile token. The Mobile token version number is typically not useful and is used primarily to
determine a mobile WebKit versus a desktop one. The platform will be "iPhone", "iPod", or "iPad",
depending on the device. For example:

Mozilla/5.0 (iPhone; U; CPU iPhone OS 3_0 like Mac OS X; enus)
 AppleWebKit/528.18 (KHTML, like Gecko) Version/4.0 Mobile/7A341 Safari/528.16

Note that prior to iOS 3, the version number of the operating system did not appear in the user
agent string.

The default Android browser generally follows the format set forth on iOS but without a Mobile ver
sion (the Mobile token is still present). For example:

Mozilla/5.0 (Linux; U; Android 2.2; enus; Nexus One Build/FRF91)
 AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1

This useragent string is from a Google Nexus One phone, but other Android devices follow the
same pattern.

Using User-Agent for Browser Analysis
Most developers looking to identify which browser their code is running inside would consider
analyzing the string returned from window.navigator.userAgent as the canonical strategy for
doing so. All browsers offer such a string, and if you trust the value returned, checking the useragent

User-Agent Detection ❘ 479

against a known catalogue can yield an exceptionally accurate picture of the browser and operat
ing system.

The advantage of using useragent over capability detection over useragents to identify a browser
is that, while capability detection offers more robust protection against scripts that might work to
conceal the browser, useragents of modern browsers are organized in a predictable fashion for past,
current, and future versions of a vendor’s browser.

Spoofing a User-Agent
Useragent identification is an imperfect browser identification solution, especially because
of how easy it is to spoof a useragent string. Browsers that properly implement the window
.navigator object (effectively all of them) will offer it as a readonly property. Therefore, using the
setter does nothing:

console.log(window.navigator.userAgent);
// Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/65.0.3325.181 Safari/537.36

window.navigator.userAgent = 'foobar';

console.log(window.navigator.userAgent);
// Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/65.0.3325.181 Safari/537.36

However, there are a number of trivial workarounds for this. For example, browsers that offer the
pseudoprivate __defineGetter__ make spoofing the useragent very easy:

console.log(window.navigator.userAgent);
// Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/65.0.3325.181 Safari/537.36

window.navigator.__defineGetter__('userAgent', () => 'foobar');

console.log(window.navigator.userAgent);
// foobar

Mitigating workarounds like these is an uphill battle. Detecting if the useragent has been spoofed in
such a manner is possible but doing so in a robust manner is essentially a game of whackamole.

Instead of resorting to spoof detection, prefer to select a philosophy surrounding browser identifica
tion. If you trust the useragent returned to you, use that to derive identity. If you suspect a script or
browser may be manipulating this value, you may prefer to use capability detection.

Using User-Agents for Browser Analysis
By parsing the useragent of the browser, you can reliably infer many of the following details about
the environment with excellent accuracy:

➤➤ Browser

➤➤ Browser version

➤➤ Browser rendering engine

480 ❘ CHAPTER 13 Client DeteCtion

➤➤ Device class (desktop/mobile)

➤➤ Device manufacturer

➤➤ Device model

➤➤ Operating system

➤➤ Operating system version

There are new browsers, operating systems, and devices coming out all the time, many with similar
yet unique useragent strings; as a result, useragent parser implementations require constant updates
to avoid becoming outdated. Any handrolled useragent parser implementation will become quickly
obsolete without constant updating and revision. Although the previous edition of this book built out
its own version of a useragent parser, constructing a parser from scratch is no longer recommended.
Instead, the following are a few useragent parsers that are actively maintained:

➤➤ Bowser—https://github.com/lancedikson/bowser

➤➤ ua-parser-js—https://github.com/faisalman/uaparserjs

➤➤ Platform.js—https://github.com/bestiejs/platform.js

➤➤ current-device—https://github.com/matthewhudson/currentdevice

➤➤ Google Closure—https://github.com/google/closurelibrary/tree/master/closure/

goog/useragent

➤➤ Mootools—https://github.com/mootools/mootoolscore/blob/master/Source/

Browser/Browser.js

NOTE The Mozilla wiki offers a page of user-agent parsers that are able to iden-
tify Mozilla browsers (and, presumably, all major browsers). They are grouped
by language and can be found at https://wiki.mozilla.org/Compatibility/
UADetectionLibraries#JavaScript_2. The page is not actively maintained, but
the list still offers all the major user-agent parsing libraries. (Note that the
JavaScript section includes both client-side libraries and NodeJS libraries.)
A table to visualize these can be found at http://miketaylr.github.io/
arewedetectableyet/.

SOFTWARE AND HARDWARE DETECTION

Modern browsers offer a suite of information about the page’s execution environment, which
includes browser information, operating system, hardware, and system peripherals. This informa
tion can be accessed through a collection of APIs that are found on the window.navigator object.
However, the support across browsers for these APIs is far from standardized, and so support should
be considered spotty at best.

Software and Hardware Detection ❘ 481

NOTE It is strongly recommended that you investigate browser support for
any of these features before using them, as the majority are non-normative and
unsupported on many browsers. Furthermore, the features covered here can be
unreliable in some cases.

Browser and Operating System Identification
Although feature detection and useragent parsing are two ways of identifying the browser that is cur
rently in use, the navigator and screen objects also offer information about the software environ
ment in which the page is currently executing.

The navigator.oscpu Property
The oscpu property can provide a string, which is usually the operating system/architecture compo
nent of the useragent. Per the HTML Living Standard:

The oscpu attribute’s getter must return either the empty string or a string repre-
senting the platform on which the browser is executing—for example, "Windows
NT 10.0; Win64; x64," "Linux x86_64."

For example, in Firefox on Windows 10, the oscpu property is reported as follows:

console.log(navigator.userAgent);
"Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:58.0) Gecko/20100101 Firefox/58.0"
console.log(navigator.oscpu);
"Windows NT 10.0; Win64; x64"

The navigator.vendor Property
The vendor property can provide a string, which is usually the browser vendor. The string returned is
a function of the browser’s navigator compatibility mode. Per the HTML Living Standard:

navigator.vendor returns either the empty string, the string "Apple Computer,
Inc.," or the string "Google Inc."

For example, in Chrome, the vendor property is reported as follows:

console.log(navigator.vendor); // "Google Inc."

The navigator.platform Property
The platform property can provide a string, which is usually indicative of the operating system
inside which the browser is executing. Per the HTML Living Standard:

navigator.platform must return either the empty string or a string represent-
ing the platform on which the browser is executing, e.g., "MacIntel," "Win32,"
"FreeBSD i386," "WebTV OS."

482 ❘ CHAPTER 13 Client DeteCtion

For example, in Chrome, the platform property is reported as follows:

console.log(navigator.platform); // "Win32"

The screen.colorDepth and screen.pixelDepth Properties
The colorDepth and pixelDepth properties return the same value: the number of color bits that can
be represented in the display. Per the CSSOM Specification:

The colorDepth and pixelDepth attributes should return the number of bits allo-
cated to colors for a pixel in the output device, excluding the alpha channel.

For example, in Chrome, these properties are reported as follows:

console.log(screen.colorDepth); // 24
console.log(screen.pixelDepth); // 24

The screen.orientation Property
The orientation property returns a ScreenOrientation object, which contains information about
the browser’s screen according to the Screen Orientation API. The most interesting properties inside
this object are angle, which returns the angle of the screen relative to the default, and type, which
returns a string from an enum of possible orientation types:

portraitprimary

portraitsecondary

landscapeprimary

landscapesecondary

For example, in Chrome on a mobile phone, screen.orientation is reported as follows:

// Viewed vertically
console.log(screen.orientation.type); // portraitprimary
console.log(screen.orientation.angle); // 0

// Rotate phone left
console.log(screen.orientation.type); // landscapeprimary
console.log(screen.orientation.angle); // 90

// Rotate phone right
console.log(screen.orientation.type); // landscapesecondary
console.log(screen.orientation.angle); // 270

Per the specification, the initialization of these values is subject to the browser and device so it cannot
be assumed that portraitprimary and 0 will always be the initial values. These are best used to
assess relative transformations of the browser orientation as the device is rotated.

Browser Metadata
The navigator object exposes a handful of APIs that can provide stateful information about the
browser and operating system.

Software and Hardware Detection ❘ 483

The Geolocation API
The navigator.geolocation property provides access to the GeoLocation API, which allows
browser scripts to learn about the current device’s location. This API is only available in a secure
execution context (scripts which are served via HTTPS).

The API can send out requests to the host system to return the device’s location to the best of its abil
ity. Depending on the hardware and configuration of the host system, the accuracy of the results may
vary. A cell phone’s GPS coordinates will have extremely high accuracy, whereas an IP address will
have a much lower accuracy. Per the Geolocation API specification:

Common sources of location information include Global Positioning System (GPS)
and location inferred from network signals such as IP address, RFID, WiFi and
Bluetooth MAC addresses, and GSM/CDMA cell IDs, as well as user input.

NOTE Browsers may also make use of tools such as Google Location Services
(used by Chrome and Firefox) to determine your location. You will notice that,
although your device does not have a GPS radio, the coordinates your browser
returns will often be extremely accurate. The browser accomplishes this by col-
lecting the identities of all visible wireless networks in range, both WiFi and cel-
lular towers if possible. These are then checked against a database of networks
whose locations are already known. In this manner, these services are able to
pinpoint your device’s location with exceptionally high accuracy.

To perform a onetime capture of the browser’s current location, use the getCurrentPosition()
method. It returns a Coordinates object, the contents of which may or may not be complete depend
ing on the abilities of the host system:

// getCurrentPosition() callback is invoked with Position object as only argument
let p;
navigator.geolocation.getCurrentPosition((position) => p = position);

The Position object contains a timestamp representing when the object’s contents were obtained
and a Coordinates object:

console.log(p.timestamp); // 1525364883361
console.log(p.coords); // Coordinates {...}

The Coordinates object contains latitude/longitude in standard degrees format, as well as the
accuracy of that pair in meters. The accuracy measurement is provided by the same mechanism that
assessed the device location.

console.log(p.coords.latitude, p.coords.longitude); // 37.4854409, 122.2325506
console.log(p.coords.accuracy); // 58

The Coordinates object contains an altitude property, which is defined by the measured distance
in meters above the WGS84 (World Geodetic System, 1984) ellipsoid model of Earth. The object also
contains an altitudeAccuracy property, the accuracy of the measurement in meters. To be filled

484 ❘ CHAPTER 13 Client DeteCtion

inside a Coordinates object, these values will be directly provided by the device (which means it will
need to have access to appropriate measurement hardware, likely a GPS radio or altimeter). Many
devices are incapable of measuring altitude, and so one or both of these values are frequently null.

console.log(p.coords.altitude); // 8.800000190734863
console.log(p.coords.altitudeAccuracy); // 200

NOTE More information about the WGS84 model can be found at http://
earthinfo.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf.

The Coordinates object contains a speed property, which is defined by the measured speed
of the device in meters per second. The object also contains a heading property, which is defined
by the direction of travel relative to true north in degrees (0 ≤ heading < 360). To be filled inside a
Coordinates object, these values will be directly provided by the device (which means it will need
to have access to appropriate measurement hardware, likely an accelerometer and compass). Many
devices are incapable of measuring speed and heading, so these values are frequently null.

NOTE Devices will not attempt to measure speed and heading using a derived
vector of two location measurements. It is possible, however, to manually cal-
culate these values by performing two consecutive measurements and deriving a
direction of travel vector. Of course, depending on the accuracy of the two loca-
tion measurements, the speed and heading you derive may be highly inaccurate!

Capturing a browser’s location is a besteffort operation, and there are a number of reasons the
capture could fail. The getCurrentPosition() method accepts the failure callback as a second
argument, and this method is passed a PositionError object. In the event of a failure, this object
will contain a code property, and a message property with a short description of the error. The code
property will be an integer indicating one of three possible errors:

➤➤ PERMISSION_DENIED—The browser was blocked from accessing the device’s location.
The first time a page attempts to use the Geolocation API, the browser will prompt the user
to allow access (this occurs on a perdomain basis). If this error code is encountered, either
the user has denied access to the device’s location, or the Geolocation API is being accessed
from a nonsecure context. The message property can offer additional information.

➤➤ POSITION_UNAVAILABLE—The system was unable to return any location information.
This can represent any number of possible points of failure but will be a relatively
uncommon error since a networked device can usually resolve an IP address to a low
accuracy coordinate.

Software and Hardware Detection ❘ 485

➤➤ TIMEOUT—The system was unable to return location information within the timeout
period. Configuring the timeout period is discussed in the material that follows.

// Browsers will prompt the user to allow access to the Geolocation API.
// This example shows what occurs when the user denies access.
navigator.geolocation.getCurrentPosition(
 () => {},
 (e) => {
 console.log(e.code); // 1
 console.log(e.message); // User denied Geolocation
 }
);

// This example shows what occurs when executing in an insecure context.
navigator.geolocation.getCurrentPosition(
 () => {},
 (e) => {
 console.log(e.code); // 1
 console.log(e.message); // Only secure origins are allowed
 }
);

Geolocation API location requests can be configured using a PositionOptions object, which is pro
vided as the third argument. This object supports three properties:

➤➤ enableHighAccuracy—A Boolean indicating to the system that, when true, the value
returned should be as accurate as possible; the default value of the flag is false. By default,
devices will usually choose to return coordinates in the quickest and most energyefficient
manner possible. This will often mean coordinates are less accurate. For example, on mobile
devices, the default location lookup normally takes the form of deriving the device location
from only WiFi and cell networks. When enableHighAccuracy is true, it will also request
that the device use the GPS radio to determine the device location, and the returned coor
dinates will be a hybrid result of these values. Using the GPS radio is a slower and more
batteryintensive operation, so weigh the tradeoffs of using the enableHighAccuracy flag.

➤➤ timeout—A number indicating the maximum number of milliseconds the API call should
wait before invoking the error callback with the TIMEOUT status; the default value is
0xFFFFFFFF (2^32 – 1). A value of 0 will skip the system call entirely and immediately
invoke the TIMEOUT error callback.

➤➤ maximumAge—A number indicating the maximum age of the returned coordinates in mil
liseconds; the default value is 0. Because determining a device’s location is an expensive
operation, systems will often cache coordinates and return the cached value (subject to its
location cache expiration policy). The system tracks how old the cached value is, and if the
Geolocation API requests coordinates that must be newer than the cached value, the system
will perform a fresh location lookup and return that value. A value of 0 will force the
system to ignore any cached value and perform a fresh location lookup. A value of Infinity
will prevent the system from performing a fresh lookup and only use cached values. Java
Script can determine if a cached value is returned by checking for duplicate timestamp
properties inside the Position object.

486 ❘ CHAPTER 13 Client DeteCtion

Connection State and the NetworkInformation API
The browser tracks the network connection state and exposes this information in two ways: con
nection events, and the navigator.onLine property. When the device connects to a network, the
browser will become aware of this fact and fire an online event on the window object. In turn, when
the device loses a network connection, the browser will fire an offline event on the window object.
At any time, the current browser state can be determined by inspecting the navigator.onLine prop
erty, which contains a Boolean indicating if the browser is connected.

const connectionStateChange = () => console.log(navigator.onLine);

window.addEventListener('online', connectionStateChange);
window.addEventListener('offline', connectionStateChange);

// On device connect:
// true

// On device disconnect:
// false

Of course, what determines a network connection is subject to the browser and system implementa
tion. Some browsers will consider a connection to any local area network as "online," even though
that network might not have proper Internet access.

Also exposed on the navigator object is the NetworkInformation API, which can be found under
the navigator.connection property. This API offers a handful of readonly properties as well as an
event source for attaching callbacks when connection properties change.

The following properties are available:

➤➤ downlink—An integer indicating the current bandwidth of the device in Mbps, rounded to
the nearest 25 Kbps. This calculation may be derived from historical network throughput
measurements or the capabilities of the connection technology.

➤➤ downlinkMax—An integer indicating the current maximum downlink bandwidth in Mbps
as determined by the first network hop. Because the first network hop is not necessarily
indicative of endtoend network performance, this value should only be used as a rough
upper bound.

➤➤ effectiveType—A string enum indicating the general connection speed and quality. The
values are designated as cellular data network connections, but these are used to classify
wired connections as well. The property will have one of four values:

➤➤ "slow2g"

➤➤ Roundtrip time >2000 ms

➤➤ Downlink bandwidth < 50 Kbps.

➤➤ "2g"

➤➤ 2000 ms > roundtrip time ≥ 1400 ms

➤➤ 70 Kbps > downlink bandwidth ≥ 50 Kbps.

Software and Hardware Detection ❘ 487

➤➤ "3g"

➤➤ 1400 ms > roundtrip time ≥ 270 ms

➤➤ 700 Kbps > downlink bandwidth ≥ 70 Kbps.

➤➤ "4g"

➤➤ 270 ms > roundtrip time ≥ 0 ms

➤➤ Downlink bandwidth ≥ 700 Kbps.

➤➤ rtt—An integer indicating the current effective network request roundtrip time in millisec
onds, rounded to the nearest 25 ms. This calculation may be derived from historical net
work throughput measurements or the capabilities of the connection technology.

➤➤ type—A string enum indicating the network connection technology. The property will have
one of the following values:

➤➤ bluetooth—Indicates a Bluetooth connection.

➤➤ cellular—Indicates a cellular network.

➤➤ ethernet—Indicates a wired Ethernet connection.

➤➤ none—Indicates no network connection. Equivalent to navigator.onLine
=== false.

➤➤ mixed—Indicates multiple simultaneous connection types.

➤➤ other—Indicates a connection type that is not listed as a valid value in this enum.

➤➤ unknown—Indicates a connection type that cannot be determined.

➤➤ wifi—Indicates a WiFi connection.

➤➤ wimax—Indicates a WiMAX connection.

➤➤ saveData—A Boolean indicating if the user has enabled the "reduced data mode" on his or
her device.

➤➤ onchange—The property that will emit a change event when any connection status
changes. This can be used either via navigator.connection.addEventListener('change',
changeHandler) or navigator.connection.onchange = changeHandler.

Battery Status API
The browser is capable of accessing information about the device’s battery and charging state. The
navigator.getBattery() method returns a promise that resolves to a BatteryManager object.

navigator.getBattery().then((b) => console.log(b));
// BatteryManager { ... }

The BatteryManager offers four readonly properties that provide information about the
device’s battery:

➤➤ charging—A Boolean indicating if the device is currently plugged in and charging. If the
device has no battery, returns true.

488 ❘ CHAPTER 13 Client DeteCtion

➤➤ chargingTime—An integer indicating the estimated number of seconds until the battery is
fully charged. Returns 0 if the battery is fully charged or if the device has no battery.

➤➤ dischargingTime—An integer indicating the estimated number of seconds until the battery
is fully depleted. Returns Infinity if the device has no battery.

➤➤ level—A floating point number indicating the fractional charge of the battery. Returns 0.0
to indicate a fully discharged battery, 1.0 to indicate a fully charged battery. Returns 1.0 if
the device has no battery.

The API also offers four event properties that can be used to set callbacks when any of the
battery properties change. This can be accomplished either by adding an event listener on the
BatteryManager object or assigning the handler to the respective property:

➤➤ onchargingchange

➤➤ onchargingtimechange

➤➤ ondischarcingtimechange

➤➤ onlevelchange

navigator.getBattery().then((battery) => {
 // Assign callback for when the charging state changes:
 const chargingChangeHandler = () => console.log('chargingchange');
 battery.onchargingchange = chargingChangeHandler;
 // OR
 battery.addEventListener('chargingchange', chargingChangeHandler);

 // Assign callback for when the charging time changes:
 const chargingTimeChangeHandler = () => console.log('chargingtimechange');
 battery.onchargingtimechange = chargingTimeChangeHandler;
 // OR
 battery.addEventListener('chargingtimechange', chargingTimeChangeHandler);

 // Assign callback for when the discharging time changes:
 const dischargingChangeHandler = () => console.log('dischargingtimechange');
 battery.ondischargingtimechange = dischargingTimeChangeHandler;
 // OR
 battery.addEventListener('dischargingtimechange', dischargingTimeChangeHandler);

 // Assign callback for when the battery level changes:
 const levelChangeHandler = () => console.log('levelchange');
 battery.onlevelchange = levelChangeHandler;
 // OR
 battery.addEventListener('levelchange', levelChangeHandler);
});

Summary ❘ 489

Hardware
The ability of the browser to detect the system hardware is quite limited; however, a number of prop
erties on the navigator object can provide basic information.

Processor Cores
It is possible to determine the number of logical processor cores that the browser supports via the
navigator.hardwareConcurrency property, which contains an integer representing the number
of supported cores (or 1 if a determination cannot be made). Importantly, this value indicates the
maximum number of concurrent workers that the browser is capable of executing in parallel, and not
necessarily the number of actual cores the CPU features.

Device Memory
It is possible to determine the approximate amount of system memory on the device via the
navigator.deviceMemory property, which contains a float representing the number of giga
bytes of memory on the device rounded to the nearest power of 2: 512MB would return 0.5; 4GB
would return 4.

Maximum Touch Points
It is possible to determine the maximum number of touch contacts supported on a touchscreen via
the navigator.maxTouchPoints property, which is defined as an integer.

SUMMARY

Client detection is one of the most controversial topics in JavaScript. Because of differences in brows
ers, it is often necessary to fork code based on the browser’s capabilities. There are several approaches
to client detection, but the following two are used most frequently:

➤➤ Capability detection—Tests for specific browser capabilities before using them. For
instance, a script may check to see if a function exists before calling it. This approach frees
developers from worrying about specific browser types and versions, enabling them to focus
on whether the capability exists or not. Capabilities detection cannot accurately detect a
specific browser or version.

➤➤ User-agent detection—Identifies the browser by looking at its useragent string. The user
agent string contains a great deal of information about the browser, often including the
browser, platform, operating system, and browser version. There is a long history to the
development of the useragent string, with browser vendors attempting to fool websites
into believing they are another browser. Useragent detection can be tricky, especially when
dealing with Opera’s ability to mask its useragent string. Even so, the useragent string can
determine the rendering engine being used and the platform on which it runs, including mo
bile devices and gaming systems.

490 ❘ CHAPTER 13 Client DeteCtion

When you are deciding which clientdetection method to use, it’s preferable to use capability detec
tion first. Quirks detection is the second choice for determining how your code should proceed.
Useragent detection is considered the last choice for client detection because it is so dependent on the
useragent string.

Browsers also offer an increasingly broad picture of the software and hardware surrounding it.
Through the screen and navigator objects, it is possible to derive an extremely accurate idea
of the operating system, browser, hardware, device location, battery status, and a wide variety of
other topics.

The Document Object Model
WHAT’S IN THIS CHAPTER?

➤➤ Understanding the DOM as a hierarchy of nodes

➤➤ Working with the various node types

➤➤ Coding the DOM around browser incompatibilities and gotchas

➤➤ Mutation Observers

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/projavascript4e on the Down-
load Code tab.

The Document Object Model (DOM) is an application programming interface (API) for HTML
and XML documents. The DOM represents a document as a hierarchical tree of nodes, allow-
ing developers to add, remove, and modify individual parts of the page. Evolving out of early
Dynamic HTML (DHTML) innovations from Netscape and Microsoft, the DOM is now a truly
cross-platform, language-independent way of representing and manipulating pages for markup.

DOM Level 1 became a W3C recommendation in October 1998, providing interfaces for basic
document structure and querying. This chapter focuses on the features and uses of the DOM as
it relates to HTML pages in the browser and the DOM JavaScript API.

NOTE Note that all DOM objects are represented by COM objects in Internet
Explorer 8 and earlier. This means that the objects don’t behave or function the
same way as native JavaScript objects.

14

Professional JavaScript® for Web Developers, Fourth Edition. Matt Frisbie.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

492 ❘ CHAPTER 14 The DocumenT objecT moDel

HIERARCHY OF NODES

Any HTML or XML document can be represented as a hierarchy of nodes using the DOM. There
are several node types, each representing different information and/or markup in the document. Each
node type has different characteristics, data, and methods, and each may have relationships with
other nodes. These relationships create a hierarchy that allows markup to be represented as a tree,
rooted at a particular node. For instance, consider the following HTML:

<html>
 <head>
 <title>Sample Page</title>
 </head>
 <body>
 <p>Hello World!</p>
 </body>
</html>

This simple HTML document can be represented
in a hierarchy, as illustrated in Figure 14-1.

A document node represents every document as
the root. In this example, the only child of the
document node is the <html> element, which is
called the document element. The document ele-
ment is the outermost element in the document
within which all other elements exist. There can
be only one document element per document. In
HTML pages, the document element is always
the <html> element. In XML, where there are
no predefined elements, any element may be the
document element.

Every piece of markup can be represented by a
node in the tree: HTML elements are represented
by element nodes, attributes are represented by
attribute nodes, the document type is represented
by a document type node, and comments are rep-
resented by comment nodes. In total, there are 12
node types, all of which inherit from a base type.

The Node Type
DOM Level 1 describes an interface called Node that is to be implemented by all node types in the
DOM. The Node interface is implemented in JavaScript as the Node type, which is accessible in all
browsers except Internet Explorer. All node types inherit from Node in JavaScript, so all node types
share the same basic properties and methods.

Document

Element html

Element head

Element title

Text Sample Page

Element body

Element p

Text Hello world!

FIGURE 14-1:

Hierarchy of Nodes ❘ 493

Every node has a nodeType property that indicates the type of node that it is. Node types are repre-
sented by one of the following 12 numeric constants on the Node type:

➤➤ Node.ELEMENT_NODE (1)

➤➤ Node.ATTRIBUTE_NODE (2)

➤➤ Node.TEXT_NODE (3)

➤➤ Node.CDATA_SECTION_NODE (4)

➤➤ Node.ENTITY_REFERENCE_NODE (5)

➤➤ Node.ENTITY_NODE (6)

➤➤ Node.PROCESSING_INSTRUCTION_NODE (7)

➤➤ Node.COMMENT_NODE (8)

➤➤ Node.DOCUMENT_NODE (9)

➤➤ Node.DOCUMENT_TYPE_NODE (10)

➤➤ Node.DOCUMENT_FRAGMENT_NODE (11)

➤➤ Node.NOTATION_NODE (12)

A node’s type is easy to determine by comparing against one of these constants, as shown here:

if (someNode.nodeType == Node.ELEMENT_NODE){
 alert("Node is an element.");
}

This example compares the someNode.nodeType to the Node.ELEMENT_NODE constant. If they're
equal, it means someNode is actually an element.

Not all node types are supported in web browsers. Developers most often work with element and text
nodes. The support level and usage of each node type is discussed later in the chapter.

The nodeName and nodeValue Properties
Two properties, nodeName and nodeValue, give specific information about the node. The values of
these properties are completely dependent on the node type. It’s always best to test the node type
before using one of these values, as the following code shows:

if (someNode.nodeType == 1){
 value = someNode.nodeName; // will be the element's tag name
}

In this example, the node type is checked to see if the node is an element. If so, the nodeName value is
assigned to a variable. For elements, nodeName is always equal to the element’s tag name, and node-
Value is always null.

494 ❘ CHAPTER 14 The DocumenT objecT moDel

Node Relationships
All nodes in a document have relationships to other nodes. These relationships are described in terms
of traditional family relationships as if the document tree were a family tree. In HTML, the <body>
element is considered a child of the <html> element; likewise the <html> element is considered the
parent of the <body> element. The <head> element is considered a sibling of the <body> element,
because they both share the same immediate parent, the <html> element.

Each node has a childNodes property containing a NodeList. A NodeList is an array-like object used
to store an ordered list of nodes that are accessible by position. Keep in mind that a NodeList is not an
instance of Array even though its values can be accessed using bracket notation and the length prop-
erty is present. NodeList objects are unique in that they are actually queries being run against the DOM
structure, so changes will be reflected in NodeList objects automatically. It is often said that a NodeList
is a living, breathing object rather than a snapshot of what happened at the time it was first accessed.

The following example shows how nodes stored in a NodeList may be accessed via bracket notation
or by using the item() method:

let firstChild = someNode.childNodes[0];
let secondChild = someNode.childNodes.item(1);
let count = someNode.childNodes.length;

Note that using bracket notation and using the item() method are both acceptable practices,
although most developers use bracket notation because of its similarity to arrays. Also note that the
length property indicates the number of nodes in the NodeList at that time. It’s possible to convert
NodeList objects into arrays using Array.prototype.slice() as was discussed earlier for the
arguments object. Consider the following example:

let arrayOfNodes = Array.prototype.slice.call(someNode.childNodes,0);

Each node has a parentNode property pointing to its parent in the document tree. All nodes con-
tained within a childNodes list have the same parent, so each of their parentNode properties points
to the same node. Additionally, each node within a childNodes list is considered to be a sibling of the
other nodes in the same list. It’s possible to navigate from one node in the list to another by using the
previousSibling and nextSibling properties. The first node in the list has null for the value of its
previousSibling property, and the last node in the list has null for the value of its nextSibling
property, as shown in the following example:

if (someNode.nextSibling === null){
 alert("Last node in the parent's childNodes list.");
} else if (someNode.previousSibling === null){
 alert("First node in the parent's childNodes list.");
}

Note that if there’s only one child node, both nextSibling and previousSibling will be null.

Another relationship exists between a parent node and its first and last child nodes. The firstChild
and lastChild properties point to the first and last node in the childNodes list, respectively.
The value of someNode.firstChild is always equal to someNode.childNodes[0], and the value
of someNode.lastChild is always equal to someNode.childNodes[someNode.childNodes.
length-1]. If there is only one child node, firstChild and lastChild point to the same node; if
there are no children, then firstChild and lastChild are both null. All of these relationships help
to navigate easily between nodes in a document structure. Figure 14-2 illustrates these relationships.

Hierarchy of Nodes ❘ 495

With all of these relationships, the childNodes property is really more of a convenience than a
necessity because it’s possible to reach any node in a document tree by simply using the relationship
pointers. Another convenience method is hasChildNodes(), which returns true if the node has one
or more child nodes and is more efficient than querying the length of the childNodes list.

One final relationship is shared by every node. The ownerDocument property is a pointer to the docu-
ment node that represents the entire document. Nodes are considered to be owned by the document
in which they were created (typically the same in which they reside), because nodes cannot exist
simultaneously in two or more documents. This property provides a quick way to access the docu-
ment node without needing to traverse the node hierarchy back up to the top.

NOTE Not all node types can have child nodes even though all node types
inherit from Node. The differences among node types are discussed later in this
chapter.

Manipulating Nodes
Because all relationship pointers are read-only, several methods are available to manipulate nodes.
The most-often-used method is appendChild(), which adds a node to the end of the childNodes
list. Doing so updates all of the relationship pointers in the newly added node, the parent node, and
the previous last child in the childNodes list. When complete, appendChild() returns the newly
added node. Here is an example:

let returnedNode = someNode.appendChild(newNode);
alert(returnedNode == newNode); // true
alert(someNode.lastChild == newNode); // true

If the node passed into appendChild() is already part of the document, it is removed from its
previous location and placed at the new location. Even though the DOM tree is connected by a
series of pointers, no DOM node may exist in more than one location in a document. So if you call

Node

Node Node Node

firstChild
lastChild

childNodes

nextSibling

previousSibling

nextSibling

previousSibling

parentNode parentNode

parentNode

FIGURE 14-2:

496 ❘ CHAPTER 14 The DocumenT objecT moDel

appendChild()and pass in the first child of a parent, as the following example shows, it will end up
as the last child:

// assume multiple children for someNode
let returnedNode = someNode.appendChild(someNode.firstChild);
alert(returnedNode == someNode.firstChild); // false
alert(returnedNode == someNode.lastChild); // true

When a node needs to be placed in a specific location within the childNodes list, instead of just at
the end, the insertBefore() method may be used. The insertBefore() method accepts two argu-
ments: the node to insert and a reference node. The node to insert becomes the previous sibling of the
reference node and is ultimately returned by the method. If the reference node is null, then insert-
Before() acts the same as appendChild(), as this example shows:

// insert as last child
returnedNode = someNode.insertBefore(newNode, null);
alert(newNode == someNode.lastChild); // true

// insert as the new first child
returnedNode = someNode.insertBefore(newNode, someNode.firstChild);
alert(returnedNode == newNode); // true
alert(newNode == someNode.firstChild); // true

// insert before last child
returnedNode = someNode.insertBefore(newNode, someNode.lastChild);
alert(newNode == someNode.childNodes[someNode.childNodes.length - 2]); // true

Both appendChild() and insertBefore() insert nodes without removing any. The replace-
Child() method accepts two arguments: the node to insert and the node to replace. The node to
replace is returned by the function and is removed from the document tree completely while the
inserted node takes its place. Here is an example:

// replace first child
let returnedNode = someNode.replaceChild(newNode, someNode.firstChild);

// replace last child
returnedNode = someNode.replaceChild(newNode, someNode.lastChild);

When a node is inserted using replaceChild(), all of its relationship pointers are duplicated from
the node it is replacing. Even though the replaced node is technically still owned by the same docu-
ment, it no longer has a specific location in the document.

To remove a node without replacing it, you can use the removeChild() method. This method accepts
a single argument, which is the node to remove. The removed node is then returned as the function
value, as this example shows:

// remove first child
let formerFirstChild = someNode.removeChild(someNode.firstChild);

// remove last child
let formerLastChild = someNode.removeChild(someNode.lastChild);

As with replaceChild(), a node removed via removeChild() is still owned by the document but
doesn’t have a specific location in the document.

Hierarchy of Nodes ❘ 497

All four of these methods work on the immediate children of a specific node, meaning that to use
them you must know the immediate parent node (which is accessible via the previously mentioned
parentNode property). Not all node types can have child nodes, and these methods will throw errors
if you attempt to use them on nodes that don’t support children.

Other Methods
Two other methods are shared by all node types. The first is cloneNode(), which creates an exact
clone of the node on which it’s called. The cloneNode() method accepts a single Boolean argu-
ment indicating whether to do a deep copy. When the argument is true, a deep copy is used, cloning
the node and its entire subtree; when false, only the initial node is cloned. The cloned node that
is returned is owned by the document but has no parent node assigned. As such, the cloned node is
an orphan and doesn’t exist in the document until added via appendChild(), insertBefore(), or
replaceChild(). For example, consider the following HTML:

 item 1
 item 2
 item 3

If a reference to this element is stored in a variable named myList, the following code shows the
two modes of the cloneNode() method:

let deepList = myList.cloneNode(true);
alert(deepList.childNodes.length); // 3 (IE < 9) or 7 (others)

let shallowList = myList.cloneNode(false);
alert(shallowList.childNodes.length); // 0

In this example, deepList is filled with a deep copy of myList. This means deepList has three list
items, each of which contains text. The variable shallowList contains a shallow copy of myList, so
it has no child nodes. The difference in deepList.childNodes.length is due to the different ways
that white space is handled in Internet Explorer 8 and earlier as compared to other browsers. Internet
Explorer prior to version 9 did not create nodes for white space.

NOTE The cloneNode() method doesn’t copy JavaScript properties that you
add to DOM nodes, such as event handlers. This method copies only attributes
and, optionally, child nodes. Everything else is lost. Internet Explorer has a bug
where event handlers are also cloned, so removing event handlers before cloning
is recommended.

The last remaining method is normalize(). Its sole job is to deal with text nodes in a document
subtree. Because of parser implementations or DOM manipulations, it’s possible to end up with
text nodes that contain no text or text nodes that are siblings. When normalize() is called on a
node, that node’s descendants are searched for both of these circumstances. If an empty text node is
found, it is removed; if text nodes are immediate siblings, they are joined into a single text node. This
method is discussed further later on in this chapter.

498 ❘ CHAPTER 14 The DocumenT objecT moDel

The Document Type
JavaScript represents document nodes via the Document type. In browsers, the document object is an
instance of HTMLDocument (which inherits from Document) and represents the entire HTML page.
The document object is a property of window and so is accessible globally. A Document node has the
following characteristics:

➤➤ nodeType is 9.

➤➤ nodeName is "#document".

➤➤ nodeValue is null.

➤➤ parentNode is null.

➤➤ ownerDocument is null.

➤➤ Child nodes may be a DocumentType (maximum of one), Element (maximum of one), Pro-
cessingInstruction, or Comment.

The Document type can represent HTML pages or other XML-based documents, though the most
common use is through an instance of HTMLDocument through the document object. The document
object can be used to get information about the page and to manipulate both its appearance and the
underlying structure.

Document Children
Though the DOM specification states that the children of a Document node can be a DocumentType,
Element, ProcessingInstruction, or Comment, there are two built-in shortcuts to child nodes. The
first is the documentElement property, which always points to the <html> element in an HTML page.
The document element is always represented in the childNodes list as well, but the documentElement
property gives faster and more direct access to that element. Consider the following simple page:

<html>
 <body>

 </body>
</html>

When this page is parsed by a browser, the document has only one child node, which is the <html>
element. This element is accessible from both documentElement and the childNodes list, as
shown here:

let html = document.documentElement; // get reference to <html>
alert(html === document.childNodes[0]); // true
alert(html === document.firstChild); // true

This example shows that the values of documentElement, firstChild, and childNodes[0] are all
the same—all three point to the <html> element.

As an instance of HTMLDocument, the document object also has a body property that points to the
<body> element directly. Because this is the element most often used by developers, document.body
tends to be used quite frequently in JavaScript, as this example shows:

let body = document.body; // get reference to <body>

Hierarchy of Nodes ❘ 499

Both document.documentElement and document.body are supported in all major browsers.

Another possible child node of a Document is a DocumentType. The <!DOCTYPE> tag is considered to
be a separate entity from other parts of the document, and its information is accessible through the
doctype property (document.doctype in browsers), as shown here:

let doctype = document.doctype; // get reference to <!DOCTYPE>

Comments that appear outside of the <html> element are, technically, child nodes of the document.
Once again, browser support varies greatly as to whether these comments will be recognized and
represented appropriately. Consider the following HTML page:

<!-- first comment -->
<html>
 <body>

 </body>
</html>
<!-- second comment -->

This page seems to have three child nodes: a comment, the <html> element, and another comment.
Logically, you would expect document.childNodes to have three items corresponding to what
appears in the code. In practice, however, browsers handle comments outside of the <html> element
in different ways with respect to ignoring one or both of the comment nodes.

For the most part, the appendChild(), removeChild(), and replaceChild() methods aren’t used
on document because the document type (if present) is read-only and there can be only one element
child node (which is already present).

Document Information
The document object, as an instance of HTMLDocument, has several additional properties that standard
Document objects do not have. These properties provide information about the web page that is loaded.
The first such property is title, which contains the text in the <title> element and is displayed in the
title bar or tab of the browser window. This property can be used to retrieve the current page title and
to change the page title such that the changes are reflected in the browser title bar. Changing the value
of the title property does not change the <title> element at all. Here is an example:

// get the document title
let originalTitle = document.title;

// set the document title
document.title = "New page title";

The next three properties are all related to the request for the web page: URL, domain, and referrer.
The URL property contains the complete URL of the page (the URL in the address bar), the domain
property contains just the domain name of the page, and the referrer property gives the URL of the
page that linked to this page. The referrer property may be an empty string if there is no referrer
to the page. All of this information is available in the HTTP header of the request and is simply made
available in JavaScript via these properties, as shown in the following example:

// get the complete URL
let url = document.URL;

500 ❘ CHAPTER 14 The DocumenT objecT moDel

// get the domain
let domain = document.domain;

// get the referrer
let referrer = document.referrer;

The URL and domain properties are related. For example, if document.URL is http://www.wrox.
com/WileyCDA/, then document.domain will be www.wrox.com.

Of these three properties, the domain property is the only one that can be set. There are some restric-
tions as to what the value of domain can be set to because of security issues. If the URL contains a
subdomain, such as p2p.wrox.com, the domain may be set only to "wrox.com" (the same is true
when the URL contains "www," such as www.wrox.com). The property can never be set to a domain
that the URL doesn’t contain, as this example demonstrates:

// page from p2p.wrox.com

document.domain = "wrox.com"; // succeeds

document.domain = "nczonline.net"; // error!

The ability to set document.domain is useful when there is a frame or iframe on the page from a
different subdomain. Pages from different subdomains can’t communicate with one another via
JavaScript because of cross-domain security restrictions. By setting document.domain in each page
to the same value, the pages can access JavaScript objects from each other. For example, if a page is
loaded from www.wrox.com and it has an iframe with a page loaded from p2p.wrox.com, each page’s
document.domain string will be different, and the outer page and the inner page are restricted from
accessing each other’s JavaScript objects. If the document.domain value in each page is set to "wrox.
com", the pages can then communicate.

A further restriction in the browser disallows tightening of the domain property once it has been
loosened. This means you cannot set document.domain to "wrox.com" and then try to set it back to
"p2p.wrox.com" because the latter would cause an error, as shown here:

// page from p2p.wrox.com

document.domain = "wrox.com"; // loosen - succeeds

document.domain = "p2p.wrox.com"; // tighten - error!

Locating Elements
Perhaps the most common DOM activity is to retrieve references to a specific element or sets of
elements to perform certain operations. This capability is provided via a number of methods on the
document object. The Document type provides two methods to this end: getElementById() and
getElementsByTagName().

The getElementById() method accepts a single argument—the ID of an element to retrieve—and
returns the element if found, or null if an element with that ID doesn’t exist. The ID must be an
exact match, including character case, to the id attribute of an element on the page. Consider the fol-
lowing element:

<div id="myDiv">Some text</div>

Hierarchy of Nodes ❘ 501

This element can be retrieved using the following code:

let div = document.getElementById("myDiv"); // retrieve reference to the <div>

The following code, however, would return null:

let div = document.getElementById("mydiv"); // null

If more than one element with the same ID are in a page, getElementById() returns the element that
appears first in the document.

The getElementsByTagName() method is another commonly used method for retrieving element
references. It accepts a single argument—the tag name of the elements to retrieve—and returns a
NodeList containing zero or more elements. In HTML documents, this method returns an HTMLCol-
lection object, which is very similar to a NodeList in that it is considered a “live” collection. For
example, the following code retrieves all elements in the page and returns an HTMLCollection:

let images = document.getElementsByTagName("img");

This code stores an HTMLCollection object in the images variable. As with NodeList objects, items
in HTMLCollection objects can be accessed using bracket notation or the item() method. The num-
ber of elements in the object can be retrieved via the length property, as this example demonstrates:

alert(images.length); // output the number of images
alert(images[0].src); // output the src attribute of the first image
alert(images.item(0).src); // output the src attribute of the first image

The HTMLCollection object has an additional method, namedItem(), that lets you reference an item
in the collection via its name attribute. For example, suppose you had the following element
in a page:

A reference to this element can be retrieved from the images variable like this:

let myImage = images.namedItem("myImage");

In this way, an HTMLCollection gives you access to named items in addition to indexed items, mak-
ing it easier to get exactly the elements you want. You can also access named items by using bracket
notation, as shown in the following example:

let myImage = images["myImage"];

For HTMLCollection objects, bracket notation can be used with either numeric or string indices.
Behind the scenes, a numeric index calls item() and a string index calls namedItem().

To retrieve all elements in the document, pass in * to getElementsByTagName(). The asterisk is gen-
erally understood to mean "all" in JavaScript and Cascading Style Sheets (CSS). Here’s an example:

let allElements = document.getElementsByTagName("*");

This single line of code returns an HTMLCollection containing all of the elements in the order
in which they appear. So the first item is the <html> element, the second is the <head> element,
and so on.

502 ❘ CHAPTER 14 The DocumenT objecT moDel

NOTE Even though the specification states that tag names are case-sensitive, the
getElementsByTagName() method is case-insensitive for maximum compatibility
with existing HTML pages. When used in XML pages, including XHTML,
getElementsByTagName() switches to case-sensitive mode.

A third method, which is defined on the HTMLDocument type only, is getElementsByName(). As its
name suggests, this method returns all elements that have a given name attribute. The getElements-
ByName() method is most often used with radio buttons, all of which must have the same name to
ensure the correct value gets sent to the server, as the following example shows:

<fieldset>
 <legend>Which color do you prefer?</legend>

 <input type="radio" value="red" name="color" id="colorRed">
 <label for="colorRed">Red</label>

 <input type="radio" value="green" name="color" id="colorGreen">
 <label for="colorGreen">Green</label>

 <input type="radio" value="blue" name="color" id="colorBlue">
 <label for="colorBlue">Blue</label>

</fieldset>

In this code, the radio buttons all have a name attribute of "color" even though their IDs are differ-
ent. The IDs allow the <label> elements to be applied to the radio buttons, and the name attribute
ensures that only one of the three values will be sent to the server. These radio buttons can all then be
retrieved using the following line of code:

let radios = document.getElementsByName("color");

As with getElementsByTagName(), the getElementsByName() method returns an HTMLCollec-
tion. In this context, however, the namedItem() method always retrieves the first item (since all
items have the same name).

Special Collections
The document object has several special collections. Each of these collections is an HTMLCollection
object and provides faster access to common parts of the document, as described here:

➤➤ document.anchors—Contains all <a> elements with a name attribute in the document.

➤➤ document.applets—Contains all <applet> elements in the document. This collection is
deprecated because the <applet> element is no longer recommended for use.

➤➤ document.forms—Contains all <form> elements in the document. The same as document.
getElementsByTagName("form").

Hierarchy of Nodes ❘ 503

➤➤ document.images—Contains all elements in the document. The same as document.
getElementsByTagName("img").

➤➤ document.links—Contains all <a> elements with an href attribute in the document.

These special collections are always available on HTMLDocument objects and, like all HTMLCollection
objects, are constantly updated to match the contents of the current document.

DOM Conformance Detection
Because there are multiple levels and multiple parts of the DOM, it became necessary to determine exactly
what parts of the DOM a browser has implemented. The document.implementation property is an
object containing information and functionality tied directly to the browser’s implementation of the DOM.
DOM Level 1 specifies only one method on document.implementation, which is hasFeature(). The
hasFeature() method accepts two arguments: the name and version of the DOM feature to check for. If
the browser supports the named feature and version, this method returns true, as with this example:

let hasXmlDom = document.implementation.hasFeature("XML", "1.0");

The various values that can be tested are listed in the following table.

FEATURE SUPPORTED VERSIONS DESCRIPTION

Core 1.0, 2.0, 3.0 Basic DOM that spells out the use of a
hierarchical tree to represent documents

XML 1.0, 2.0, 3.0 XML extension of the Core that adds support
for CDATA sections, processing instructions,
and entities

HTML 1.0, 2.0 HTML extension of XML that adds support for
HTML-specific elements and entities

Views 2.0 Accomplishes formatting of a document based
on certain styles

StyleSheets 2.0 Relates style sheets to documents

CSS 2.0 Support for Cascading Style Sheets Level 1

CSS2 2.0 Support for Cascading Style Sheets Level 2

Events 2.0, 3.0 Generic DOM events

UIEvents 2.0, 3.0 User interface events

TextEvents 3.0 Events fired from text input devices

MouseEvents 2.0, 3.0 Events caused by the mouse (click, mouseover,
and so on)

MutationEvents 2.0, 3.0 Events fired when the DOM tree is changed

continues

504 ❘ CHAPTER 14 The DocumenT objecT moDel

FEATURE SUPPORTED VERSIONS DESCRIPTION

MutationNameEvents 3.0 Events fired when DOM elements or element
attributes are renamed

HTMLEvents 2.0 HTML 4.01 events

Range 2.0 Objects and methods for manipulating a range
in a DOM tree

Traversal 2.0 Methods for traversing a DOM tree

LS 3.0 Loading and saving between files and DOM
trees synchronously

LS-Async 3.0 Loading and saving between files and DOM
trees asynchronously

Validation 3.0 Methods to modify a DOM tree and still
make it valid

XPath 3.0 Language for addressing parts of an
XML document

Although it is a nice convenience, the drawback of using hasFeature() is that the implementer gets
to decide if the implementation is indeed conformant with the various parts of the DOM specifica-
tion. It’s very easy to make this method return true for any and all values, but that doesn’t necessar-
ily mean that the implementation conforms to all the specifications it claims to. Safari 2.x and earlier,
for example, return true for some features that aren’t fully implemented. In most cases, it’s a good
idea to use capability detection in addition to hasFeature() before using specific parts of the DOM.

Document Writing
One of the older capabilities of the document object is the ability to write to the output stream of
a web page. This capability comes in the form of four methods: write(), writeln(), open(), and
close(). The write() and writeln() methods each accept a string argument to write to the output
stream. write() simply adds the text as is, whereas writeln() appends a new-line character (\n) to
the end of the string. These two methods can be used as a page is being loaded to dynamically add
content to the page, as shown in the following example:

<html>
<head>
 <title>document.write() Example</title>
</head>
<body>
 <p>The current date and time is:
 <script type="text/javascript">
 document.write("" + (new Date()).toString() + "");
 </script>
</p>
</body>
</html>

(continued)

Hierarchy of Nodes ❘ 505

This example outputs the current date and time as the page is being loaded. The date is enclosed by a
 element, which is treated the same as if it were included in the HTML portion of the page,
meaning that a DOM element is created and can later be accessed. Any HTML that is output via
write() or writeln() is treated this way.

The write() and writeln() methods are often used to dynamically include external resources such as
JavaScript files. When including JavaScript files, you must be sure not to include the string "</script>"
directly, as the following example demonstrates, because it will be interpreted as the end of a script
block and the rest of the code won’t execute.

<html>
<head>
 <title>document.write() Example</title>
</head>
<body>
 <script type="text/javascript">
 document.write("<script type=\"text/javascript\" src=\"file.js\">" +
 "</script>");
 </script>
</body>
</html>

Even though this file looks correct, the closing "</script>" string is interpreted as matching the
outermost <script> tag, meaning that the text "); will appear on the page. To avoid this, you simply
need to change the string, as shown here:

<html>
<head>
 <title>document.write() Example</title>
</head>
<body>
 <script type="text/javascript">
 document.write("<script type=\"text/javascript\" src=\"file.js\">" +
 "<\/script>");
 </script>
</body>
</html>

The string "<\/script>" no longer registers as a closing tag for the outermost <script> tag, so
there is no extra content output to the page.

The previous examples use document.write() to output content directly into the page as it’s being
rendered. If document.write() is called after the page has been completely loaded, the content over-
writes the entire page, as shown in the following example:

<html>
<head>
 <title>document.write() Example</title>
</head>
<body>
 <p>This is some content that you won't get to see because it will be
 overwritten.</p>
 <script type="text/javascript">
 window.onload = function(){
 document.write("Hello world!");

506 ❘ CHAPTER 14 The DocumenT objecT moDel

 };
 </script>
</body>
</html>

In this example, the window.onload event handler is used to delay the execution of the function until
the page is completely loaded. When that happens, the string "Hello world!" overwrites the entire
page content.

The open() and close() methods are used to open and close the web page output stream, respec-
tively. Neither method is required to be used when write() or writeln() is used during the course
of page loading.

NOTE Document writing is not supported in strict XHTML documents. For
pages that are served with the application/xml+xhtml content type, these
methods will not work.

The Element Type
Next to the Document type, the Element type is most often used in web programming. The Element
type represents an XML or HTML element, providing access to information such as its tag name,
children, and attributes. An Element node has the following characteristics:

➤➤ nodeType is 1.

➤➤ nodeName is the element’s tag name.

➤➤ nodeValue is null.

➤➤ parentNode may be a Document or Element.

➤➤ Child nodes may be Element, Text, Comment, ProcessingInstruction, CDATASection, or
EntityReference.

An element’s tag name is accessed via the nodeName property or by using the tagName property;
both properties return the same value (the latter is typically used for clarity). Consider the follow-
ing element:

<div id="myDiv"></div>

This element can be retrieved and its tag name accessed in the following way:

let div = document.getElementById("myDiv");
alert(div.tagName); // "DIV"
alert(div.tagName == div.nodeName); // true

The element in question has a tag name of div and an ID of "myDiv". Note, however, that div.tag-
Name actually outputs "DIV" instead of "div". When used with HTML, the tag name is always repre-
sented in all uppercase; when used with XML (including XHTML), the tag name always matches the

Hierarchy of Nodes ❘ 507

case of the source code. If you aren’t sure whether your script will be on an HTML or XML docu-
ment, it’s best to convert tag names to a common case before comparison, as this example shows:

if (element.tagName == "div"){ // AVOID! Error prone!
 // do something here
}

if (element.tagName.toLowerCase() == "div"){ // Preferred - works in all documents
 // do something here
}

This example shows two comparisons against a tagName property. The first is quite error prone
because it won’t work in HTML documents. The second approach, converting the tag name to all
lowercase, is preferred because it will work for both HTML and XML documents.

HTML Elements
All HTML elements are represented by the HTMLElement type, either directly or through subtyping.
The HTMLElement inherits directly from Element and adds several properties. Each property repre-
sents one of the following standard attributes that are available on every HTML element:

➤➤ id—A unique identifier for the element in the document.

➤➤ title—Additional information about the element, typically represented as a tooltip.

➤➤ lang—The language code for the contents of the element (rarely used).

➤➤ dir—The direction of the language, "ltr" (left-to-right) or "rtl" (right-to-left); also
rarely used.

➤➤ className—The equivalent of the class attribute, which is used to specify CSS classes
on an element. The property could not be named class because class is an ECMAScript
reserved word.

Each of these properties can be used both to retrieve the corresponding attribute value and to change
the value. Consider the following HTML element:

<div id="myDiv" class="bd" title="Body text" lang="en" dir="ltr"></div>

All of the information specified by this element may be retrieved using the following JavaScript code:

let div = document.getElementById("myDiv");
alert(div.id); // "myDiv"
alert(div.className); // "bd"
alert(div.title); // "Body text"
alert(div.lang); // "en"
alert(div.dir); // "ltr"

It’s also possible to use the following code to change each of the attributes by assigning new values to
the properties:

div.id = "someOtherId";
div.className = "ft";
div.title = "Some other text";
div.lang = "fr";
div.dir ="rtl";

508 ❘ CHAPTER 14 The DocumenT objecT moDel

Not all of the properties affect the page when overwritten. Changes to id or lang will be transpar-
ent to the user (assuming no CSS styles are based on these values), whereas changes to title will be
apparent only when the mouse is moved over the element. Changes to dir will cause the text on the
page to be aligned to either the left or the right as soon as the property is written. Changes to class-
Name may appear immediately if the class has different CSS style information than the previous one.

As mentioned previously, all HTML elements are represented by an instance of HTMLElement or a
more specific subtype. The following table lists each HTML element and its associated type (italicized
elements are deprecated).

ELEMENT TYPE ELEMENT TYPE

A HTMLAnchorElement INPUT HTMLInputElement

ABBR HTMLElement INS HTMLModElement

ACRONYM HTMLElement ISINDEX HTMLIsIndexElement

ADDRESS HTMLElement KBD HTMLElement

APPLET HTMLAppletElement LABEL HTMLLabelElement

AREA HTMLAreaElement LEGEND HTMLLegendElement

B HTMLElement LI HTMLLIElement

BASE HTMLBaseElement LINK HTMLLinkElement

BASEFONT HTMLBaseFontElement MAP HTMLMapElement

BDO HTMLElement MENU HTMLMenuElement

BIG HTMLElement META HTMLMetaElement

BLOCKQUOTE HTMLQuoteElement NOFRAMES HTMLElement

BODY HTMLBodyElement NOSCRIPT HTMLElement

BR HTMLBRElement OBJECT HTMLObjectElement

BUTTON HTMLButtonElement OL HTMLOListElement

CAPTION HTMLTableCaption

Element
OPTGROUP HTMLOptGroupElement

CENTER HTMLElement OPTION HTMLOptionElement

CITE HTMLElement P HTMLParagraphElement

CODE HTMLElement PARAM HTMLParamElement

COL HTMLTableColElement PRE HTMLPreElement

COLGROUP HTMLTableColElement Q HTMLQuoteElement

Hierarchy of Nodes ❘ 509

ELEMENT TYPE ELEMENT TYPE

DD HTMLElement S HTMLElement

DEL HTMLModElement SAMP HTMLElement

DFN HTMLElement SCRIPT HTMLScriptElement

DIR HTMLDirectoryElement SELECT HTMLSelectElement

DIV HTMLDivElement SMALL HTMLElement

DL HTMLDListElement SPAN HTMLElement

DT HTMLElement STRIKE HTMLElement

EM HTMLElement STRONG HTMLElement

FIELDSET HTMLFieldSetElement STYLE HTMLStyleElement

FONT HTMLFontElement SUB HTMLElement

FORM HTMLFormElement SUP HTMLElement

FRAME HTMLFrameElement TABLE HTMLTableElement

FRAMESET HTMLFrameSetElement TBODY HTMLTableSectionElement

H1 HTMLHeadingElement TD HTMLTableCellElement

H2 HTMLHeadingElement TEXTAREA HTMLTextAreaElement

H3 HTMLHeadingElement TFOOT HTMLTableSectionElement

H4 HTMLHeadingElement TH HTMLTableCellElement

H5 HTMLHeadingElement THEAD HTMLTableSectionElement

H6 HTMLHeadingElement TITLE HTMLTitleElement

HEAD HTMLHeadElement TR HTMLTableRowElement

HR HTMLHRElement TT HTMLElement

HTML HTMLHtmlElement U HTMLElement

I HTMLElement UL HTMLUListElement

IFRAME HTMLIFrameElement VAR HTMLElement

IMG HTMLImageElement

Each of these types has attributes and methods associated with it. Many of these types are discussed
throughout this book.

510 ❘ CHAPTER 14 The DocumenT objecT moDel

Getting Attributes
Each element may have zero or more attributes, which are typically used to give extra information
about the particular element or its contents. The three primary DOM methods for working with
attributes are getAttribute(), setAttribute(), and removeAttribute(). These methods are
intended to work on any attribute, including those defined as properties on the HTMLElement type.
Here’s an example:

let div = document.getElementById("myDiv");
alert(div.getAttribute("id")); // "myDiv"
alert(div.getAttribute("class")); // "bd"
alert(div.getAttribute("title")); // "Body text"
alert(div.getAttribute("lang")); // "en"
alert(div.getAttribute("dir")); // "ltr"

Note that the attribute name passed into getAttribute() is exactly the same as the actual attribute
name, so you pass in "class" to get the value of the class attribute (not className, which is neces-
sary when the attribute is accessed as an object property). If the attribute with the given name doesn’t
exist, getAttribute() always returns null.

The getAttribute() method can also retrieve the value of custom attributes that aren’t part of the
formal HTML language. Consider the following element:

<div id="myDiv" my_special_attribute="hello!"></div>

In this element, a custom attribute named my_special_attribute is defined to have a value of
"hello!". This value can be retrieved using getAttribute() just like any other attribute, as
shown here:

let value = div.getAttribute("my_special_attribute");

Note that attribute names are case-insensitive, so "ID" and "id" are considered the same attribute.
Also note that, according to HTML5, custom attributes should be prepended with data- in order
to validate.

All attributes on an element are also accessible as properties of the DOM element object itself. There
are, of course, the five properties defined on HTMLElement that map directly to corresponding attrib-
utes, but all recognized (noncustom) attributes get added to the object as properties. Consider the
following element:

<div id="myDiv" align="left" my_special_attribute="hello"></div>

Because id and align are recognized attributes for the <div> element in HTML, they will be repre-
sented by properties on the element object. The my_special_attribute attribute is custom and so
won’t show up as a property on the element.

Two types of attributes have property names that don’t map directly to the same value returned by
getAttribute(). The first attribute is style, which is used to specify stylistic information about the
element using CSS. When accessed via getAttribute(), the style attribute contains CSS text while
accessing it via a property that returns an object. The style property is used to programmatically
access the styling of the element and so does not map directly to the style attribute.

The second category of attribute that behaves differently is event-handler attributes such as onclick.
When used on an element, the onclick attribute contains JavaScript code, and that code string is

Hierarchy of Nodes ❘ 511

returned when using getAttribute(). When the onclick property is accessed, however, it returns a
JavaScript function (or null if the attribute isn’t specified). This is because onclick and other event-
handling properties are provided such that functions can be assigned to them.

Because of these differences, developers tend to forego getAttribute() when programming the
DOM in JavaScript and instead use the object properties exclusively. The getAttribute() method is
used primarily to retrieve the value of a custom attribute.

Setting Attributes
The sibling method to getAttribute() is setAttribute(), which accepts two arguments: the
name of the attribute to set and the value to set it to. If the attribute already exists, setAttribute()
replaces its value with the one specified; if the attribute doesn’t exist, setAttribute() creates it and
sets its value. Here is an example:

div.setAttribute("id", "someOtherId");
div.setAttribute("class", "ft");
div.setAttribute("title", "Some other text");
div.setAttribute("lang","fr");
div.setAttribute("dir", "rtl");

The setAttribute() method works with both HTML attributes and custom attributes in the same
way. Attribute names get normalized to lowercase when set using this method, so "ID" ends up as "id".

Because all attributes are properties, assigning directly to the property can set the attribute values, as
shown here:

div.id = "someOtherId";
div.align = "left";

Note that adding a custom property to a DOM element, as the following example shows, does not
automatically make it an attribute of the element:

div.mycolor = "red";
alert(div.getAttribute("mycolor")); // null (except in Internet Explorer)

This example adds a custom property named mycolor and sets its value to "red". In most browsers,
this property does not automatically become an attribute on the element, so calling getAttribute()
to retrieve an attribute with the same name returns null.

The last method is removeAttribute(), which removes the attribute from the element altogether.
This does more than just clear the attribute’s value; it completely removes the attribute from the ele-
ment, as shown here:

div.removeAttribute("class");

This method isn’t used very frequently, but it can be useful for specifying exactly which attributes to
include when serializing a DOM element.

The attributes Property
The Element type is the only DOM node type that uses the attributes property. The attributes
property contains a NamedNodeMap, which is a “live” collection similar to a NodeList. Every attribute
on an element is represented by an Attr node, each of which is stored in the NamedNodeMap object. A
NamedNodeMap object has the following methods:

512 ❘ CHAPTER 14 The DocumenT objecT moDel

➤➤ getNamedItem(name)—Returns the node whose nodeName property is equal to name.

➤➤ removeNamedItem(name)—Removes the node whose nodeName property is equal to name
from the list.

➤➤ setNamedItem(node)—Adds the node to the list, indexing it by its nodeName property.

➤➤ item(pos)—Returns the node in the numerical position pos.

Each node in the attributes property is a node whose nodeName is the attribute name and whose
nodeValue is the attribute’s value. To retrieve the id attribute of an element, you can use the fol-
lowing code:

let id = element.attributes.getNamedItem("id").nodeValue;

Following is a shorthand notation for accessing attributes by name using bracket notation:

let id = element.attributes["id"].nodeValue;

It’s possible to use this notation to set attribute values as well, retrieving the attribute node and then
setting the nodeValue to a new value, as this example shows:

element.attributes["id"].nodeValue = "someOtherId";

The removeNamedItem() method functions the same as the removeAttribute() method on the
element—it simply removes the attribute with the given name. The following example shows how the
sole difference is that removeNamedItem() returns the Attr node that represented the attribute:

let oldAttr = element.attributes.removeNamedItem("id");

The setNamedItem() is a rarely used method that allows you to add a new attribute to the element
by passing in an attribute node, as shown in this example:

element.attributes.setNamedItem(newAttr);

Generally speaking, because of their simplicity, the getAttribute(), removeAttribute(), and
setAttribute() methods are preferred to using any of the preceding attribute methods.

The one area where the attributes property is useful is to iterate over the attributes on an ele-
ment. This is done most often when serializing a DOM structure into an XML or HTML string.
The following code iterates over each attribute on an element and constructs a string in the format
attribute1=“value1” attribute2=“value2”:

function outputAttributes(element) {
 let pairs = [];

 for (let i = 0, len = element.attributes.length; i < len; ++i) {
 const attribute = element.attributes[i];
 pairs.push(`${attribute.nodeName}="${attribute.nodeValue}"`);
 }

 return pairs.join(" ");
}

This function uses an array to store the name-value pairs until the end, concatenating them with a
space in between. (This technique is frequently used when serializing into long strings.) Using the
attributes.length property, the for loop iterates over each attribute, outputting the name and

Hierarchy of Nodes ❘ 513

value into a string. Browsers differ on the order in which they return attributes in the attributes
object. The order in which the attributes appear in the HTML or XML code may not necessarily be
the order in which they appear in the attributes object.

Creating Elements
New elements can be created by using the document.createElement() method. This method
accepts a single argument, which is the tag name of the element to create. In HTML documents, the
tag name is case-insensitive, whereas it is case-sensitive in XML documents (including XHTML). To
create a <div> element, the following code can be used:

let div = document.createElement("div");

Using the createElement() method creates a new element and sets its ownerDocument property. At
this point, you can manipulate the element’s attributes, add more children to it, and so on. Consider
the following example:

div.id = "myNewDiv";
div.className = "box";

Setting these attributes on the new element assigns information only. Because the element is not part
of the document tree, it doesn’t affect the browser’s display. The element can be added to the docu-
ment tree using appendChild(), insertBefore(), or replaceChild(). The following code adds the
newly created element to the document’s <body> element:

document.body.appendChild(div);

Once the element has been added to the document tree, the browser renders it immediately. Any
changes to the element after this point are immediately reflected by the browser.

Element Children
Elements may have any number of children and descendants because elements may be children of
elements. The childNodes property contains all of the immediate children of the element, which may
be other elements, text nodes, comments, or processing instructions. There is a significant differ-
ence between browsers regarding the identification of these nodes. For example, consider the fol-
lowing code:

<ul id="myList">
 Item 1
 Item 2
 Item 3

When this code is parsed, the element will have seven elements: three elements and four
text nodes representing the white space between elements. If the white space between ele-
ments is removed, as the following example demonstrates, all browsers return the same number of
child nodes:

<ul id="myList">Item 1Item 2Item 3

Using this code, browsers return three child nodes for the element. Oftentimes, it’s necessary to
check the nodeType before performing an action, as the following example shows:

514 ❘ CHAPTER 14 The DocumenT objecT moDel

for (let i = 0, len = element.childNodes.length; i < len; ++i) {
 if (element.childNodes[i].nodeType == 1) {
 // do processing
 }
}

This code loops through each child node of a particular element and performs an operation only if
nodeType is equal to 1 (the element node type identified).

To get child nodes and other descendants with a particular tag name, elements also support the
getElementsByTagName() method. When used on an element, this method works exactly the same
as the document version except that the search is rooted on the element, so only descendants of that
element are returned. In the code earlier in this section, all elements can be retrieved using
the following code:

let ul = document.getElementById("myList");
let items = ul.getElementsByTagName("li");

Keep in mind that this works because the element has only one level of descendants. If there
were more levels, all elements contained in all levels would be returned.

The Text Type
Text nodes are represented by the Text type and contain plain text that is interpreted literally and
may contain escaped HTML characters but no HTML code. A Text node has the following char-
acteristics:

➤➤ nodeType is 3.

➤➤ nodeName is "#text".

➤➤ nodeValue is text contained in the node.

➤➤ parentNode is an Element.

➤➤ Child nodes are not supported.

The text contained in a Text node may be accessed via either the nodeValue property or the data
property, both of which contain the same value. Changes to either nodeValue or data are reflected in
the other as well. The following methods allow for manipulation of the text in the node:

➤➤ appendData(text)—Appends text to the end of the node.

➤➤ deleteData(offset, count)—Deletes count number of characters starting at position offset.

➤➤ insertData(offset, text)—Inserts text at position offset.

➤➤ replaceData(offset, count, text)—Replaces the text starting at offset through offset +
count with text.

➤➤ splitText(offset)—Splits the text node into two text nodes separated at position offset.

➤➤ substringData(offset, count)—Extracts a string from the text beginning at position offset
and continuing until offset + count.

Hierarchy of Nodes ❘ 515

In addition to these methods, the length property returns the number of characters in the node. This
value is the same as using nodeValue.length or data.length.

By default, every element that may contain content will have at most one text node when content is
present. Here is an example:

<!-- no content, so no text node -->
<div></div>

<!-- white space content, so one text node -->
<div> </div>

<!-- content, so one text node -->
<div>Hello World!</div>

The first <div> element in this code has no content, so there is no text node. Any content between the
opening and closing tags means that a text node must be created, so the second <div> element has
a single text node as a child even though its content is white space. The text node’s nodeValue is a
single space. The third <div> also has a single text node whose nodeValue is "Hello World!". The
following code lets you access this node:

let textNode = div.firstChild; // or div.childNodes[0]

Once a reference to the text node is retrieved, it can be changed like this:

div.firstChild.nodeValue = "Some other message";

As long as the node is currently in the document tree, the changes to the text node will be reflected
immediately. Another note about changing the value of a text node is that the string is HTML- or
XML-encoded (depending on the type of document), meaning that any less-than symbols, greater-
than symbols, or quotation marks are escaped, as shown in this example:

// outputs as "Some other message"
div.firstChild.nodeValue = "Some other message";

This is an effective way of HTML-encoding a string before inserting it into the DOM document.

Creating Text Nodes
New text nodes can be created using the document.createTextNode() method, which accepts a sin-
gle argument—the text to be inserted into the node. As with setting the value of an existing text node,
the text will be HTML- or XML-encoded, as shown in this example:

let textNode = document.createTextNode("Hello world!");

When a new text node is created, its ownerDocument property is set, but it does not appear in the
browser window until it is added to a node in the document tree. The following code creates a new
<div> element and adds a message to it:

let element = document.createElement("div");
element.className = "message";

let textNode = document.createTextNode("Hello world!");
element.appendChild(textNode);

document.body.appendChild(element);

516 ❘ CHAPTER 14 The DocumenT objecT moDel

This example creates a new <div> element and assigns it a class of "message". Then a text node is
created and added to that element. The last step is to add the element to the document’s body, which
makes both the element and the text node appear in the browser.

Typically, elements have only one text node as a child. However, it is possible to have multiple text
nodes as children, as this example demonstrates:

let element = document.createElement("div");
element.className = "message";

let textNode = document.createTextNode("Hello world!");
element.appendChild(textNode);

let anotherTextNode = document.createTextNode("Yippee!");
element.appendChild(anotherTextNode);

document.body.appendChild(element);

When a text node is added as a sibling of another text node, the text in those nodes is displayed with-
out any space between them.

Normalizing Text Nodes
Sibling text nodes can be confusing in DOM documents because there is no simple text string that
can’t be represented in a single text node. Still, it is not uncommon to come across sibling text nodes
in DOM documents, so there is a method to join sibling text nodes together. This method is called
normalize(), and it exists on the Node type (and thus is available on all node types). When
normalize() is called on a parent of two or more text nodes, those nodes are merged into one text
node whose nodeValue is equal to the concatenation of the nodeValue properties of each text node.
Here’s an example:

let element = document.createElement("div");
element.className = "message";

let textNode = document.createTextNode("Hello world!");
element.appendChild(textNode);

let anotherTextNode = document.createTextNode("Yippee!");
element.appendChild(anotherTextNode);

document.body.appendChild(element);

alert(element.childNodes.length); // 2

element.normalize();
alert(element.childNodes.length); // 1
alert(element.firstChild.nodeValue); // "Hello world!Yippee!"

When the browser parses a document, it will never create sibling text nodes. Sibling text nodes can
appear only by programmatic DOM manipulation.

Hierarchy of Nodes ❘ 517

Splitting Text Nodes
The Text type has a method that does the opposite of normalize(): the splitText() method splits
a text node into two text nodes, separating the nodeValue at a given offset. The original text node
contains the text up to the specified offset, and the new text node contains the rest of the text. The
method returns the new text node, which has the same parentNode as the original. Consider the fol-
lowing example:

let element = document.createElement("div");
element.className = "message";

let textNode = document.createTextNode("Hello world!");
element.appendChild(textNode);

document.body.appendChild(element);

let newNode = element.firstChild.splitText(5);
alert(element.firstChild.nodeValue); // "Hello"
alert(newNode.nodeValue); // " world!"
alert(element.childNodes.length); // 2

In this example, the text node containing the text "Hello world!" is split into two text nodes at
position 5. Position 5 contains the space between "Hello" and "world!", so the original text node
has the string "Hello" and the new one has the text " world!" (including the space).

Splitting text nodes is used most often with DOM parsing techniques for extracting data from
text nodes.

The Comment Type
Comments are represented in the DOM by the Comment type. A Comment node has the following
characteristics:

➤➤ nodeType is 8.

➤➤ nodeName is "#comment".

➤➤ nodeValue is the content of the comment.

➤➤ parentNode is a Document or Element.

➤➤ Child nodes are not supported.

The Comment type inherits from the same base as the Text type, so it has all of the same string-
manipulation methods except splitText(). Also similar to the Text type, the actual content of the
comment may be retrieved using either nodeValue or the data property.

A comment node can be accessed as a child node from its parent. Consider the following
HTML code:

<div id="myDiv"><!-- A comment --></div>

518 ❘ CHAPTER 14 The DocumenT objecT moDel

In this case, the comment is a child node of the <div> element, which means it can be accessed
like this:

let div = document.getElementById("myDiv");
let comment = div.firstChild;
alert(comment.data); // "A comment"

Comment nodes can also be created using the document.createComment() method and passing in
the comment text, as shown in the following code:

let comment = document.createComment("A comment");

Not surprisingly, comment nodes are rarely accessed or created, because they serve very little pur-
pose algorithmically. Additionally, browsers don’t recognize comments that exist after the closing
</html> tag. If you need to access comment nodes, make sure they appear as descendants of the
<html> element.

The CDATASection Type
CDATA sections are specific to XML-based documents and are represented by the CDATASection
type. Similar to Comment, the CDATASection type inherits from the base Text type, so it has all of the
same string manipulation methods except for splitText(). A CDATASection node has the following
characteristics:

➤➤ nodeType is 4.

➤➤ nodeName is "#cdata-section".

➤➤ nodeValue is the contents of the CDATA section.

➤➤ parentNode is a Document or Element.

➤➤ Child nodes are not supported.

CDATA sections are valid only in XML documents, so most browsers will incorrectly parse a CDATA
section into either a Comment or an Element. Consider the following:

<div id="myDiv"><![CDATA[This is some content.]]></div>

In this example, a CDATASection node should exist as the first child of the <div>; however, none of
the four major browsers interpret it as such. Even in valid XHTML pages, the browsers don’t prop-
erly support embedded CDATA sections.

True XML documents allow the creation of CDATA sections using document.createCData-
Section() and pass in the node’s content.

The DocumentType Type
A DocumentType object contains all of the information about the document’s doctype and has the
following characteristics:

➤➤ nodeType is 10.

➤➤ nodeName is the name of the doctype.

Hierarchy of Nodes ❘ 519

➤➤ nodeValue is null.

➤➤ parentNode is a Document.

➤➤ Child nodes are not supported.

DocumentType objects cannot be created dynamically in DOM Level 1; they are created only as the
document’s code is being parsed. For browsers that support it, the DocumentType object is stored in
document.doctype. DOM Level 1 describes three properties for DocumentType objects: name, which
is the name of the doctype; entities, which is a NamedNodeMap of entities described by the doctype;
and notations, which is a NamedNodeMap of notations described by the doctype. Because documents
in browsers typically use an HTML or XHTML doctype, the entities and notations lists are typi-
cally empty. (They are filled only with inline doctypes.) For all intents and purposes, the name prop-
erty is the only useful one available. This property is filled with the name of the doctype, which is the
text that appears immediately after <!DOCTYPE. Consider the following HTML 4.01 strict doctype:

<!DOCTYPE HTML PUBLIC "-// W3C// DTD HTML 4.01// EN"
 "http:// www.w3.org/TR/html4/strict.dtd">

For this doctype, the name property is "HTML":

alert(document.doctype.name); // "HTML"

The DocumentFragment Type
Of all the node types, the DocumentFragment type is the only one that has no representation in
markup. The DOM defines a document fragment as a “lightweight” document, capable of containing
and manipulating nodes without all of the additional overhead of a complete document. Document-
Fragment nodes have the following characteristics:

➤➤ nodeType is 11.

➤➤ nodeName is "#document-fragment".

➤➤ nodeValue is null.

➤➤ parentNode is null.

➤➤ Child nodes may be Element, ProcessingInstruction, Comment, Text, CDATASection, or
EntityReference.

A document fragment cannot be added to a document directly. Instead, it acts as a repository for
other nodes that may need to be added to the document. Document fragments are created using the
document.createDocumentFragment() method, shown here:

let fragment = document.createDocumentFragment();

Document fragments inherit all methods from Node and are typically used to perform DOM manipu-
lations that are to be applied to a document. If a node from the document is added to a document
fragment, that node is removed from the document tree and won’t be rendered by the browser. New
nodes that are added to a document fragment are also not part of the document tree. The contents of
a document fragment can be added to a document via appendChild() or insertBefore(). When

520 ❘ CHAPTER 14 The DocumenT objecT moDel

a document fragment is passed in as an argument to either of these methods, all of the document frag-
ment’s child nodes are added in that spot; the document fragment itself is never added to the docu-
ment tree. For example, consider the following HTML:

<ul id="myList">

Suppose you would like to add three list items to this element. Adding each item directly to the
element causes the browser to rerender the page with the new information. To avoid this, the fol-
lowing code example uses a document fragment to create the list items and then add them all at the
same time:

let fragment = document.createDocumentFragment();
let ul = document.getElementById("myList");

for (let i = 0; i < 3; ++i) {
 let li = document.createElement("li");
 li.appendChild(document.createTextNode(`Item ${i + 1}`));
 fragment.appendChild(li);
}

ul.appendChild(fragment);

This example begins by creating a document fragment and retrieving a reference to the element.
The for loop creates three list items, each with text indicating which item they are. To do this, an
 element is created and then a text node is created and added to that element. The ele-
ment is then added to the document fragment using appendChild(). When the loop is complete, all
of the items are added to the element by calling appendChild() and passing in the document
fragment. At that point, the document fragment’s child nodes are all removed and placed onto the
 element.

The Attr Type
Element attributes are represented by the Attr type in the DOM. The Attr type constructor and
prototype are accessible in all browsers. Technically, attributes are nodes that exist in an element’s
attributes property. Attribute nodes have the following characteristics:

➤➤ nodeType is 11.

➤➤ nodeName is the attribute name.

➤➤ nodeValue is the attribute value.

➤➤ parentNode is null.

➤➤ Child nodes are not supported in HTML.

➤➤ Child nodes may be Text or EntityReference in XML.

Even though they are nodes, attributes are not considered part of the DOM document tree.
Attribute nodes are rarely referenced directly, with most developers favoring the use of
getAttribute(), setAttribute(), and removeAttribute().

There are three properties on an Attr object: name, which is the attribute name (same as nodeName);
value, which is the attribute value (same as nodeValue); and specified, which is a Boolean value
indicating if the attribute was specified in code or if it is a default value.

Working with the DOM ❘ 521

New attribute nodes can be created by using document.createAttribute() and passing in the
name of the attribute. For example, to add an align attribute to an element, the following code
can be used:

let attr = document.createAttribute("align");
attr.value = "left";
element.setAttributeNode(attr);

alert(element.attributes["align"].value); // "left"
alert(element.getAttributeNode("align").value); // "left"
alert(element.getAttribute("align")); // "left"

In this example, a new attribute node is created. The name property is assigned by the call to
createAttribute(), so there is no need to assign it directly afterward. The value property is then
assigned to "left". To add the newly created attribute to an element, you can use the element’s
setAttributeNode() method. Once the attribute is added, it can be accessed in any number of
ways: via the attributes property, using getAttributeNode(), or using getAttribute(). Both
attributes and getAttributeNode() return the actual Attr node for the attribute, whereas
getAttribute() returns only the attribute value.

NOTE There is really not a good reason to access attribute nodes directly. The
get Attribute(), setAttribute(), and removeAttribute() methods are prefer-
able over manipulating attribute nodes.

WORKING WITH THE DOM

In many cases, working with the DOM is fairly straightforward, making it easy to re-create with
JavaScript what normally would be created using HTML code. There are, however, times when using
the DOM is not as simple as it may appear. Browsers are filled with hidden gotchas and incompat-
ibilities that make coding certain parts of the DOM more complicated than coding its other parts.

Dynamic Scripts
The <script> element is used to insert JavaScript code into the page, either by using the src attrib-
ute to include an external file or by including text inside the element itself. Dynamic scripts are those
that don’t exist when the page is loaded but are included later by using the DOM. As with the HTML
element, there are two ways to do this: pulling in an external file or inserting text directly.

Dynamically loading an external JavaScript file works as you would expect. Consider the following
<script> element:

<script src="foo.js"></script>

The DOM code to create this node is as follows:

let script = document.createElement("script");
script.src = "foo.js";
document.body.appendChild(script);

522 ❘ CHAPTER 14 The DocumenT objecT moDel

As you can see, the DOM code exactly mirrors the HTML code that it represents. Note that the
external file is not downloaded until the <script> element is added to the page on the last line. The
element could be added to the <head> element as well, though this has the same effect. This process
can be generalized into the following function:

function loadScript(url) {
 let script = document.createElement("script");
 script.src = url;
 document.body.appendChild(script);
}

This function can now be used to load external JavaScript files via the following call:

loadScript("client.js");

Once loaded, the script is fully available to the rest of the page. This leaves only one problem: how
do you know when the script has been fully loaded? Unfortunately, there is no standard way to
handle this. Some events are available depending on the browser being used, as discussed in the
Events chapter.

The other way to specify JavaScript code is inline, as in this example:

<script>
 function sayHi() {
 alert("hi");
 }
</script>

Using the DOM, it would be logical for the following to work:

let script = document.createElement("script");
script.appendChild(document.createTextNode("function sayHi(){alert('hi');}"));
document.body.appendChild(script);

This works in Firefox, Safari, Chrome, and Opera. In older versions of Internet Explorer, however,
this causes an error. Internet Explorer treats <script> elements as special and won’t allow regular
DOM access to child nodes. A property called text exists on all <script> elements that can be used
specifically to assign JavaScript code to, as in the following example:

var script = document.createElement("script");
script.text = "function sayHi(){alert('hi');}";
document.body.appendChild(script);

This updated code works in Internet Explorer, Firefox, Opera, and Safari 3 and later. Safari versions
prior to 3 don’t support the text property correctly; however, these older versions will allow the
assignment of code using the text-node technique. If you need to do this in an earlier Safari version,
the following code can be used:

var script = document.createElement("script");
var code = "function sayHi(){alert('hi');}";
try {
 script.appendChild(document.createTextNode("code"));
} catch (ex){
 script.text = "code";
}
document.body.appendChild(script);

Working with the DOM ❘ 523

Here, the standard DOM text-node method is attempted first because it works in everything but
Internet Explorer, which will throw an error. If that line causes an error, that means it is Internet
Explorer, and the text property must be used. This can be generalized into the following function:

function loadScriptString(code){
 var script = document.createElement("script");
 script.type = "text/javascript";
 try {
 script.appendChild(document.createTextNode(code));
 } catch (ex){
 script.text = code;
 }
 document.body.appendChild(script);
}

The function is called as follows:

loadScriptString("function sayHi(){alert('hi');}");

Code loaded in this manner is executed in the global scope and is available immediately after
the script finishes executing. This is essentially the same as passing the string into eval() in the
global scope.

Importantly, all <script> elements created with innerHTML will never execute. The browser will
dutifully create the <script> element and the script text inside it, but the parser will flag the
<script> element as one that should never execute. Once created using innerHTML, there is no way
to force the script to run later.

Dynamic Styles
CSS styles are included in HTML pages using one of two elements. The <link> element is used to
include CSS from an external file, whereas the <style> element is used to specify inline styles. Similar
to dynamic scripts, dynamic styles don’t exist on the page when it is loaded initially; rather, they are
added after the page has been loaded.

Consider this typical <link> element:

<link rel="stylesheet" type="text/css" href="styles.css">

This element can just as easily be created using the following DOM code:

let link = document.createElement("link");
link.rel = "stylesheet";
link.type = "text/css";
link.href = "styles.css";
let head = document.getElementsByTagName("head")[0];
head.appendChild(link);

This code works in all major browsers without any issue. Note that <link> elements should be added
to the <head> instead of the body for this to work properly in all browsers. The technique can be
generalized into the following function:

function loadStyles(url){
 let link = document.createElement("link");
 link.rel = "stylesheet";

524 ❘ CHAPTER 14 The DocumenT objecT moDel

 link.type = "text/css";
 link.href = url;
 let head = document.getElementsByTagName("head")[0];
 head.appendChild(link);
}

The loadStyles() function can then be called like this:

loadStyles("styles.css");

Loading styles via an external file is asynchronous, so the styles will load out of order with the JavaScript
code being executed. Typically, it’s not necessary to know when the styles have been fully loaded.

The other way to define styles is using the <style> element and including inline CSS, such as this:

<style type="text/css">
body {
 background-color: red;
}
</style>

Logically, the following DOM code should work:

let style = document.createElement("style");
style.type = "text/css";
style.appendChild(document.createTextNode("body{background-color:red}"));
let head = document.getElementsByTagName("head")[0];
head.appendChild(style);

This code works in Firefox, Safari, Chrome, and Opera but not in Internet Explorer. Internet Explorer
treats <style> nodes as special, similar to <script> nodes, and so won’t allow access to its child
nodes. In fact, Internet Explorer throws the same error as when you try to add a child node to a
<script> element. The workaround for Internet Explorer is to access the element’s styleSheet
property, which in turn has a property called cssText that may be set to CSS code as this code
sample shows:

let style = document.createElement("style");
style.type = "text/css";
try{
 style.appendChild(document.createTextNode("body{background-color:red}"));
} catch (ex){
 style.styleSheet.cssText = "body{background-color:red}";
}
let head = document.getElementsByTagName("head")[0];
head.appendChild(style);

Similar to the code for adding inline scripts dynamically, this new code uses a try-catch statement
to catch the error that Internet Explorer throws and then responds by using the Internet Explorer–
specific way of setting styles. The generic solution is as follows:

function loadStyleString(css){
 let style = document.createElement("style");
 style.type = "text/css";
 try{
 style.appendChild(document.createTextNode(css));
 } catch (ex){
 style.styleSheet.cssText = css;
 }
 let head = document.getElementsByTagName("head")[0];

Working with the DOM ❘ 525

 head.appendChild(style);
}

The function can be called as follows:

loadStyleString("body{background-color:red}");

Styles specified in this way are added to the page instantly, so changes should be seen immediately.

NOTE If you're coding for Internet Explorer specifically, be careful using
styleSheet.cssText. If you reuse the same <style> element and try to set this
property more than once, it has a tendency to crash the browser. Also, setting
cssText to the empty string has the potential to crash the browser as well.

Manipulating Tables
One of the most complex structures in HTML is the <table> element. Creating new tables typically
means numerous tags for table rows, table cells, table headers, and so forth. Because of this complex-
ity, using the core DOM methods to create and change tables can require a large amount of code.
Suppose you want to create the following HTML table using the DOM:

<table border="1" width="100%">
 <tbody>
 <tr>
 <td>Cell 1,1</td>
 <td>Cell 2,1</td>
 </tr>
 <tr>
 <td>Cell 1,2</td>
 <td>Cell 2,2</td>
 </tr>
 </tbody>
</table>

To accomplish this with the core DOM methods, the code would look something like this:

// create the table
let table = document.createElement("table");
table.border = 1;
table.width = "100%";

// create the tbody
let tbody = document.createElement("tbody");
table.appendChild(tbody);

// create the first row
let row1 = document.createElement("tr");
tbody.appendChild(row1);
let cell1_1 = document.createElement("td");
cell1_1.appendChild(document.createTextNode("Cell 1,1"));
row1.appendChild(cell1_1);

526 ❘ CHAPTER 14 The DocumenT objecT moDel

let cell2_1 = document.createElement("td");
cell2_1.appendChild(document.createTextNode("Cell 2,1"));
row1.appendChild(cell2_1);

// create the second row
let row2 = document.createElement("tr");
tbody.appendChild(row2);
let cell1_2 = document.createElement("td");
cell1_2.appendChild(document.createTextNode("Cell 1,2"));
row2.appendChild(cell1_2);
let cell2_2= document.createElement("td");
cell2_2.appendChild(document.createTextNode("Cell 2,2"));
row2.appendChild(cell2_2);

// add the table to the document body
document.body.appendChild(table);

This code is quite verbose and a little hard to follow. To facilitate building tables, the HTML DOM
adds several properties and methods to the <table>, <tbody>, and <tr> elements.

The <table> element adds the following:

➤➤ caption—Pointer to the <caption> element (if it exists).

➤➤ tBodies—An HTMLCollection of <tbody> elements.

➤➤ tFoot—Pointer to the <tfoot> element (if it exists).

➤➤ tHead—Pointer to the <thead> element (if it exists).

➤➤ rows—An HTMLCollection of all rows in the table.

➤➤ createTHead()—Creates a <thead> element, places it into the table, and returns a
reference.

➤➤ createTFoot()—Creates a <tfoot> element, places it into the table, and returns a reference.

➤➤ createCaption()—Creates a <caption> element, places it into the table, and returns a
reference.

➤➤ deleteTHead()—Deletes the <thead> element.

➤➤ deleteTFoot()—Deletes the <tfoot> element.

➤➤ deleteCaption()—Deletes the <caption> element.

➤➤ deleteRow(pos)—Deletes the row in the given position.

➤➤ insertRow(pos)—Inserts a row in the given position in the rows collection.

The <tbody> element adds the following:

➤➤ rows—An HTMLCollection of rows in the <tbody> element.

➤➤ deleteRow(pos)—Deletes the row in the given position.

➤➤ insertRow(pos)—Inserts a row in the given position in the rows collection and returns a
reference to the new row.

Working with the DOM ❘ 527

The <tr> element adds the following:

➤➤ cells—An HTMLCollection of cells in the <tr> element.

➤➤ deleteCell(pos)—Deletes the cell in the given position.

➤➤ insertCell(pos)—Inserts a cell in the given position in the cells collection and returns a
reference to the new cell.

These properties and methods can greatly reduce the amount of code necessary to create a table. For
example, the previous code can be rewritten using these methods as follows (the highlighted code
is updated):

// create the table
let table = document.createElement("table");
table.border = 1;
table.width = "100%";

// create the tbody
let tbody = document.createElement("tbody");
table.appendChild(tbody);

// create the first row
tbody.insertRow(0);
tbody.rows[0].insertCell(0);
tbody.rows[0].cells[0].appendChild(document.createTextNode("Cell 1,1"));
tbody.rows[0].insertCell(1);
tbody.rows[0].cells[1].appendChild(document.createTextNode("Cell 2,1"));

// create the second row
tbody.insertRow(1);
tbody.rows[1].insertCell(0);
tbody.rows[1].cells[0].appendChild(document.createTextNode("Cell 1,2"));
tbody.rows[1].insertCell(1);
tbody.rows[1].cells[1].appendChild(document.createTextNode("Cell 2,2"));

// add the table to the document body
document.body.appendChild(table);

In this code, the creation of the <table> and <tbody> elements remains the same. What has changed
is the section creating the two rows, which now makes use of the HTML DOM table properties and
methods. To create the first row, the insertRow() method is called on the <tbody> element with
an argument of 0, which indicates the position in which the row should be placed. After that point,
the row can be referenced by tbody.rows[0] because it is automatically created and added into the
<tbody> element in position 0.

Creating a cell is done in a similar way—by calling insertCell() on the <tr> element and pass-
ing in the position in which the cell should be placed. The cell can then be referenced by tbody.
rows[0].cells[0] because the cell has been created and inserted into the row in position 0.

Using these properties and methods to create a table makes the code much more logical and readable,
although technically both sets of code are correct.

528 ❘ CHAPTER 14 The DocumenT objecT moDel

Using NodeLists
Understanding a NodeList object and its relatives, NamedNodeMap and HTMLCollection, is criti-
cal to a good understanding of the DOM as a whole. Each of these collections is considered “live,”
which is to say that they are updated when the document structure changes such that they are always
current with the most accurate information. In reality, all NodeList objects are queries that are run
against the DOM document whenever they are accessed. For instance, the following results in an
infinite loop:

let divs = document.getElementsByTagName("div");

for (let i = 0; i < divs.length; ++i){
 let div = document.createElement("div");
 document.body.appendChild(div);
}

The first part of this code gets an HTMLCollection of all <div> elements in the document. Because
that collection is “live,” any time a new <div> element is added to the page, it gets added into the
collection. Because the browser doesn’t want to keep a list of all the collections that were created, the
collection is updated only when it is accessed again. This creates an interesting problem in terms of a
loop such as the one in this example. Each time through the loop, the condition i < divs.length
is being evaluated. That means the query to get all <div> elements is being run. Because the body
of the loop creates a new <div> element and adds it to the document, the value of divs.length
increments each time through the loop; thus i will never equal divs.length because both are being
incremented.

Using an ES6 iterator doesn’t fix the situation because an ever-growing live collection remains the
subject of iteration. This will still result in an infinite loop:

for (let div of document.getElementsByTagName("div")){
 let newDiv = document.createElement("div");
 document.body.appendChild(newDiv);
}

Any time you want to iterate over a NodeList, it’s best to initialize a second variable with the length
and then compare the iterator to that variable, as shown in the following example:

let divs = document.getElementsByTagName("div");

for (let i = 0, len = divs.length; i < len; ++i) {
 let div = document.createElement("div");
 document.body.appendChild(div);
}

In this example, a second variable, len, is initialized. Because len contains a snapshot of divs.
length at the time the loop began, it prevents the infinite loop that was experienced in the previ-
ous example. This technique has been used through this chapter to demonstrate the preferred way of
iterating over NodeList objects.

Alternately, if you want to avoid having the second variable, you can also iterate the list in reverse:

let divs = document.getElementsByTagName("div");

for (let i = divs.length - 1; i >= 0; --i) {

Mutation Observers ❘ 529

 let div = document.createElement("div");
 document.body.appendChild(div);
}

Generally speaking, it is best to limit the number of times you interact with a NodeList. Because a query
is run against the document each time, try to cache frequently used values retrieved from a NodeList.

MUTATION OBSERVERS

The MutationObserver API, a relatively recent addition to the DOM specification, allows you to
asynchronously execute a callback when the DOM is modified. With a MutationObserver, you are
able to observe an entire document, a DOM subtree, or just a single element. Furthermore, you are
also able to observe changes to element attributes, child nodes, text, or any combination of the three.

NOTE MutationObservers were introduced to replace the abandoned Mutation
Events feature.

Basic usage
A MutationObserver instance is created by calling the MutationObserver constructor and passing a
callback function:

let observer = new MutationObserver(() => console.log('DOM was mutated!'));

The observe() method
This instance begins unassociated with any part of the DOM. To link this observer with the DOM,
the observe() method is used. This method accepts two required arguments: the target DOM node
which is observed for changes, and the MutationObserverInit object.

The MutationObserverInit object is used to control what changes the observer should watch for.
It takes the form of a dictionary of key/value configuration options. For example, the following code
creates an observer and configures it to watch for attribute changes on the body element:

let observer = new MutationObserver(() => console.log('<body> attributes changed'));

observer.observe(document.body, { attributes: true });

At this point, any attribute changes to the <body> element will be detected by the MutationObserver
instance, and the callback will asynchronously execute. Modifications to children or other non-attrib-
ute DOM mutations will not schedule a callback. This behavior is demonstrated here:

let observer = new MutationObserver(() => console.log('<body> attributes changed'));

observer.observe(document.body, { attributes: true });

document.body.className = 'foo';
console.log('Changed body class');

// Changed body class
// <body> attributes changed

530 ❘ CHAPTER 14 The DocumenT objecT moDel

Note that the callback console.log executes second, indicating that the callback does not synchro-
nously execute with the actual DOM mutation.

Working with Callbacks and MutationRecords
Each callback is provided with an array of MutationRecord instances. Each instance contains infor-
mation about what kind of mutation occurred and what part of the DOM was affected. Because it
is possible that multiple qualifying mutations occurred before a callback is executed, each callback
invocation is passed the queued backup of MutationRecord instances.

The MutationRecord array for a single attribute mutation is shown here:

let observer = new MutationObserver(
 (mutationRecords) => console.log(mutationRecords));

observer.observe(document.body, { attributes: true });

document.body.setAttribute('foo', 'bar');

// [
// {
// addedNodes: NodeList [],
// attributeName: "foo",
// attributeNamespace: null,
// nextSibling: null,
// oldValue: null,
// previousSibling: null
// removedNodes: NodeList [],
// target: body
// type: "attributes"
// }
//]

A similar mutation involving a namespace is shown here:

let observer = new MutationObserver(
 (mutationRecords) => console.log(mutationRecords));

observer.observe(document.body, { attributes: true });

document.body.setAttributeNS('baz', 'foo', 'bar');

// [
// {
// addedNodes: NodeList [],
// attributeName: "foo",
// attributeNamespace: "baz",
// nextSibling: null,
// oldValue: null,
// previousSibling: null
// removedNodes: NodeList [],
// target: body
// type: "attributes"
// }
//]

Mutation Observers ❘ 531

Sequential modifications will generate multiple MutationRecord instances, and the next callback
invocation will be passed all the pending instances in the order they were enqueued:

let observer = new MutationObserver(
 (mutationRecords) => console.log(mutationRecords));

observer.observe(document.body, { attributes: true });

document.body.className = 'foo';
document.body.className = 'bar';
document.body.className = 'baz';

// [MutationRecord, MutationRecord, MutationRecord]

A MutationRecord instance will have the following properties:

KEY VALUE

target The node that was affected by the mutation.

type A string indicating what type of mutation occurred. Can be
"attributes", "characterData", or "childList".

oldValue When enabled in the MutationObserverInit object, attributes
or characterData mutations will set this field to the value that was
replaced. This value is only provided when attributeOldValue or
characterDataOldValue is true, otherwise this value is null.

A childList mutation will always set this field to null.

attributeName For attributes mutations, the string name of the attribute which
was modified.

For all other mutations, this field is set to null.

attributeNamespace For attributes mutations which make use of namespaces, the string
namespace of the attribute which was modified.

For all other mutations, this field is set to null.

addedNodes For childList mutations, returns a NodeList of nodes added in
the mutation.

Defaults to an empty NodeList.

removedNodes For childList mutations, returns a NodeList of nodes removed in
the mutation.

Defaults to an empty NodeList.

previousSibling For childList mutations, returns the previous sibling Node of the
mutated node.

Defaults to null.

nextSibling For childList mutations, returns the next sibling Node of the
mutated node.

Defaults to null.

532 ❘ CHAPTER 14 The DocumenT objecT moDel

The second argument to the callback is the MutationObserver instance that detected the mutation,
demonstrated here:

let observer = new MutationObserver(
 (mutationRecords, mutationObserver) => console.log(mutationRecords,
mutationObserver));

observer.observe(document.body, { attributes: true });

document.body.className = 'foo';

// [MutationRecord], MutationObserver

The disconnect() method
By default, a MutationObserver callback will execute for every DOM mutation in its designated
purview until the element is garbage collected. To terminate callback execution early, the discon-
nect() method can be invoked. This example demonstrates how invoking disconnect() synchro-
nously will halt callbacks, but will also discard any pending asynchronous callbacks, even if they were
from a DOM mutation during the observation window:

let observer = new MutationObserver(() => console.log('<body> attributes changed'));

observer.observe(document.body, { attributes: true });

document.body.className = 'foo';

observer.disconnect();

document.body.className = 'bar';

// (nothing logged)

To allow for these queued callbacks to execute before invoking disconnect(), a setTimeout could
be employed to allow for pending callbacks to execute:

let observer = new MutationObserver(() => console.log('<body> attributes changed'));

observer.observe(document.body, { attributes: true });

document.body.className = 'foo';

setTimeout(() => {
 observer.disconnect();
 document.body.className = 'bar';
}, 0);

// <body> attributes changed

Multiplexing a MutationObserver
A MutationObserver can be associated with many different target elements by calling observe()
multiple times. The target property on the MutationRecord can identify which element was subject
to that particular mutation. This behavior is demonstrated here:

Mutation Observers ❘ 533

let observer = new MutationObserver(
 (mutationRecords) => console.log(mutationRecords.map((x) =>
x.target)));

// Append two children to body
let childA = document.createElement('div'),
 childB = document.createElement('span');
document.body.appendChild(childA);
document.body.appendChild(childB);

// Observe both children
observer.observe(childA, { attributes: true });
observer.observe(childB, { attributes: true });

// Perform mutation on each child
childA.setAttribute('foo', 'bar');
childB.setAttribute('foo', 'bar');

// [<div>,]

The disconnect() method is a blunt tool in that it will disconnect all observed nodes:

let observer = new MutationObserver(
 (mutationRecords) => console.log(mutationRecords.map((x) =>
x.target)));

// Append two children to body
let childA = document.createElement('div'),
 childB = document.createElement('span');
document.body.appendChild(childA);
document.body.appendChild(childB);

// Observe both children
observer.observe(childA, { attributes: true });
observer.observe(childB, { attributes: true });

observer.disconnect();

// Perform mutation on each child
childA.setAttribute('foo', 'bar');
childB.setAttribute('foo', 'bar');

// (nothing logged)

Reusing a MutationObserver
Invoking disconnect() is not an end-of-life event for a MutationObserver. The same instance can be
reattached to a node. The following example demonstrates this behavior by disconnecting and then
reconnecting in two consecutive async blocks:

let observer = new MutationObserver(() => console.log('<body> attributes
changed'));

observer.observe(document.body, { attributes: true });

534 ❘ CHAPTER 14 The DocumenT objecT moDel

// This will register as a mutation
document.body.setAttribute('foo', 'bar');

setTimeout(() => {
 observer.disconnect();

 // This will not register as a mutation
 document.body.setAttribute('bar', 'baz');
}, 0);

setTimeout(() => {
 // Reattach
 observer.observe(document.body, { attributes: true });

 // This will register as a mutation
 document.body.setAttribute('baz', 'qux');
}, 0);

// <body> attributes changed
// <body> attributes changed

Controlling the Observer scope with MutationObserverInit
The MutationObserverInit object is used to control which elements the observer should care about,
and what kinds of changes to those elements it should care about. Broadly speaking, the observer can
watch for attribute changes, text changes, or child node changes.

The following are the expected properties in the MutationObserverInit object:

KEY VALUE

subtree Boolean indicating if the target element’s node subtree should be
watched in addition to the target element.

When false, only the target element will be observed for
designated mutations. When true, the target element and its
entire node subtree will be watched for designated mutations.

Defaults to false.

attributes Boolean indicating if modifications to node attributes should
register as a mutation.

Defaults to false.

attributeFilter Array of string values indicating which specific attributes should be
observed for mutations.

Setting this value to true will also coerce the value of
attributes to true.

Defaults to observing all attributes.

Mutation Observers ❘ 535

KEY VALUE

attributeOldValue Boolean indicating if the character data prior to mutation should be
recorded in the MutationRecord.

Setting this value to an array will also coerce the value of
attributes to true.

Defaults to false.

characterData Boolean indicating if modifications to character data should register
as a mutation.

Defaults to false.

characterDataOldValue Boolean indicating if the character data prior to mutation should be
recorded in the MutationRecord.

Setting this value to true will also coerce the value of
characterData to true.

Defaults to false.

childList Boolean indicating if modifications to the target node’s child nodes
should register as a mutation.

Defaults to false.

NOTE When calling observe(), the MutationObserverInit object must specify
at least one of attributes, characterData, or childList to be true (either
explicitly or implicitly via an associated property such as attributeOldValue).
Otherwise, an error will be thrown since there is no mutation that will trigger a
callback to be invoked.

Observing attribute mutations
A MutationObserver is capable of registering when a node attribute is added, removed, or changed.
Registering a callback is accomplished by setting the attributes property inside the MutationOb-
serverInit object to true, as demonstrated here:

let observer = new MutationObserver(
 (mutationRecords) => console.log(mutationRecords));

observer.observe(document.body, { attributes: true });

// Add attribute
document.body.setAttribute('foo', 'bar');

// Modify existing attribute
document.body.setAttribute('foo', 'baz');

536 ❘ CHAPTER 14 The DocumenT objecT moDel

// Remove attribute
document.body.removeAttribute('foo');

// All three are recorded as mutations
// [MutationRecord, MutationRecord, MutationRecord]

The default behavior is to observe all attribute changes and to not record the old value inside the
MutationRecord. If you desired to observe a subset of attributes, the attributeFilter property can
be used as a whitelist of attribute names:

let observer = new MutationObserver(
 (mutationRecords) => console.log(mutationRecords));

observer.observe(document.body, { attributeFilter: ['foo'] });

// Add whitelisted attribute
document.body.setAttribute('foo', 'bar');

// Add excluded attribute
document.body.setAttribute('baz', 'qux');

// Only a single mutation record is created for the 'foo' attribute mutation
// [MutationRecord]

If you desired to preserve the old value inside the mutation record, the attributeOldValue can be
set to true:

let observer = new MutationObserver(
 (mutationRecords) => console.log(mutationRecords.map((x) => x.oldValue)));

observer.observe(document.body, { attributeOldValue: true });

document.body.setAttribute('foo', 'bar');
document.body.setAttribute('foo', 'baz');
document.body.setAttribute('foo', 'qux');

// Each mutation records the previous value
// [null, 'bar', 'baz']

Observing character data mutations
A MutationObserver is capable of registering when a textual node (such as Text, Comment, or
ProcessingInstruction nodes) has its character data added, removed, or changed. This is accom-
plished by setting the characterData property inside the MutationObserverInit object to true, as
demonstrated here:

let observer = new MutationObserver(
 (mutationRecords) => console.log(mutationRecords));

// Create an initial text node to observe
document.body.innerText = 'foo';

observer.observe(document.body.firstChild, { characterData: true });

// Identical string assignment
document.body.innerText = 'foo';

Mutation Observers ❘ 537

// New string assignment
document.body.innerText = 'bar';

// Node setter assignment
document.body.firstChild.textContent = 'baz';

// All three are recorded as mutations
// [MutationRecord, MutationRecord, MutationRecord]

The default behavior is to not record the old value inside the MutationRecord. If you desired to pre-
serve the old value inside the mutation record, the attributeOldValue can be set to true:

let observer = new MutationObserver(
 (mutationRecords) => console.log(mutationRecords.map((x) => x.oldValue)));
document.body.innerText = 'foo';

observer.observe(document.body.firstChild, { characterDataOldValue: true });

document.body.innerText = 'foo';
document.body.innerText = 'bar';
document.body.firstChild.textContent = 'baz';

// Each mutation records the previous value
// ["foo", "foo", "bar"]

Observing child mutations
A MutationObserver is capable of registering when an element has a child node added or removed.
This is accomplished by setting the childList property inside the MutationObserverInit
object to true.

A child node addition is demonstrated here:

// clear body
document.body.innerHTML = '';

let observer = new MutationObserver(
 (mutationRecords) => console.log(mutationRecords));

observer.observe(document.body, { childList: true });

document.body.appendChild(document.createElement('div'));

// [
// {
// addedNodes: NodeList[div],
// attributeName: null,
// attributeNamespace: null,
// oldValue: null,
// nextSibling: null,
// previousSibling: null,
// removedNodes: NodeList[],
// target: body,
// type: "childList",
// }
//]

538 ❘ CHAPTER 14 The DocumenT objecT moDel

A child node removal is demonstrated here:

// clear body
document.body.innerHTML = '';

let observer = new MutationObserver(
 (mutationRecords) => console.log(mutationRecords));

observer.observe(document.body, { childList: true });

document.body.appendChild(document.createElement('div'));

// [
// {
// addedNodes: NodeList[],
// attributeName: null,
// attributeNamespace: null,
// oldValue: null,
// nextSibling: null,
// previousSibling: null,
// removedNodes: NodeList[div],
// target: body,
// type: "childList",
// }
//]

A child reordering, although it can be performed with a single method, will register as two separate
mutations since it is technically a node removal and subsequent re-addition:

// clear body
document.body.innerHTML = '';

let observer = new MutationObserver(
 (mutationRecords) => console.log(mutationRecords));

// Create two initial children
document.body.appendChild(document.createElement('div'));
document.body.appendChild(document.createElement('span'));

observer.observe(document.body, { childList: true });

// Reorder children
document.body.insertBefore(document.body.lastChild, document.body.firstChild);

// Two mutations are registered: 0-index record is removal, 1-index record
is addition
// [
// {
// addedNodes: NodeList[],
// attributeName: null,
// attributeNamespace: null,
// oldValue: null,
// nextSibling: null,
// previousSibling: div,
// removedNodes: NodeList[span],
// target: body,

Mutation Observers ❘ 539

// type: childList,
// },
// {
// addedNodes: NodeList[span],
// attributeName: null,
// attributeNamespace: null,
// oldValue: null,
// nextSibling: div,
// previousSibling: null,
// removedNodes: NodeList[],
// target: body,
// type: "childList",
// }
//]

Observing subtree mutations
By default, the MutationObserver is scoped to only observe modifications to a single element and its
child node list. This scope can be expanded to the entirety of its DOM subtree by setting the subtree
property inside the MutationObserverInit object to true.

Watching a subtree for attribute mutations can be accomplished in the following fashion:

// clear body
document.body.innerHTML = '';

let observer = new MutationObserver(
 (mutationRecords) => console.log(mutationRecords));

// Create initial element
document.body.appendChild(document.createElement('div'));

// Observe the <body> subtree
observer.observe(document.body, { attributes: true, subtree: true });

// Modify <body> subtree
document.body.firstChild.setAttribute('foo', 'bar');

// Subtree modification registers as mutation
// [
// {
// addedNodes: NodeList[],
// attributeName: "foo",
// attributeNamespace: null,
// oldValue: null,
// nextSibling: null,
// previousSibling: null,
// removedNodes: NodeList[],
// target: div,
// type: "attributes",
// }
//]

540 ❘ CHAPTER 14 The DocumenT objecT moDel

Interestingly, the subtree designation of a node will persist even when that node is moved out of the
observed tree. This means that after a subtree node leaves that specific subtree, mutations which are
now technically outside the observed subtree will still register as qualified mutations.

This behavior is demonstrated here:

// clear body
document.body.innerHTML = '';

let observer = new MutationObserver(
 (mutationRecords) => console.log(mutationRecords));

let subtreeRoot = document.createElement('div'),
 subtreeLeaf = document.createElement('span');

// Create initial subtree of height 2
document.body.appendChild(subtreeRoot);
subtreeRoot.appendChild(subtreeLeaf);

// Observe the subtree
observer.observe(subtreeRoot, { attributes: true, subtree: true });

// Move node in subtree outside of observed subtree
document.body.insertBefore(subtreeLeaf, subtreeRoot);

subtreeLeaf.setAttribute('foo', 'bar');

// subtree modification still registers as mutation
// [MutationRecord]

Async Callbacks and the Record Queue
The MutationObserver specification is designed for performance, and at the core of its design is
the asynchronous callback and record queue model. To allow for a large number of mutations to be
registered without degrading performance, information about each qualifying mutation (determined
by the observer instance) is captured in a MutationRecord and then enqueued on a record queue.
This queue is unique to each MutationObserver instance and represents an in-order record of each
DOM mutation.

Behavior of the Record Queue
Each time a MutationRecord is added to a MutationObserver’s record queue, the observer callback
(initially provided to the MutationObserver constructor) is scheduled as a microtask only if there is
no callback microtask already scheduled, for example the queue length is > 0. This ensures there is no
dual-callback processing of the record queue’s contents.

It is possible that, by the time the callback’s microtask asynchronously executes, more mutations
have occurred than the one which initially scheduled the callback microtask. The invoked callback
is passed an array of MutationRecord instances as they appear in the record queue. The callback
is responsible for fully handling each instance in the array, as they will not persist after the function
exits. Following the callback execution, it is expected that each MutationRecord is no longer needed,
so the record queue is emptied and its contents discarded.

Mutation Observers ❘ 541

The takeRecords() method
It is possible to drain a MutationObserver instance’s record queue with the takeRecords() method.
This will return the array of MutationRecord instances which exist in the queue, and empty the
queue itself. This is demonstrated here:

let observer = new MutationObserver(
 (mutationRecords) => console.log(mutationRecords));

observer.observe(document.body, { attributes: true });

document.body.className = 'foo';
document.body.className = 'bar';
document.body.className = 'baz';

console.log(observer.takeRecords());
console.log(observer.takeRecords());

// [MutationRecord, MutationRecord, MutationRecord]
// []

This is useful when you would like to call disconnect() but wish to handle all pending Mutation-
Record instances in the queue which are discarded by calling disconnect().

Performance, Memory, and Garbage Collection
The MutationEvent, introduced in the DOM Level 2 specification, defined a handful of events which
were fired upon various DOM mutations. In implementation, because of the nature of events in the
browser, this specification led to substantial performance problems, and in the DOM Level 3 specifi-
cation these events were deprecated. The MutationObserver was introduced to replace these with a
more pragmatic and performant design.

Delegating execution of mutation callbacks to a microtask ensures that the synchronous nature of
events and the messiness that accompanies them was avoided. The record queue implementation for
the MutationObserver specification ensures that even a preponderance of mutation events will not
unduly bog down the browser.

Nevertheless, using a MutationObserver will still incur some overhead, and it is important to under-
stand where this overhead will manifest.

MutationObserver References
The reference relationship between a MutationObserver and the node (or nodes) it observes is asym-
metric. A MutationObserver has a weak reference to the target node it is observing. Because this
reference is weak, it will not prevent the target node from being garbage collected.

However, a node has a strong reference to its MutationObserver. If the target node is removed from
the DOM and subsequently garbage collected, the associated MutationObserver is also garbage
collected.

542 ❘ CHAPTER 14 The DocumenT objecT moDel

MutationRecord References
Each MutationRecord instance in the record queue will contain at least one reference to an existing
DOM node; in the case of a childList mutation, it will contain many references. The default behav-
ior of the record queue and callback processing is to drain the queue, process each MutationRecord,
and allow them to go out of scope and be garbage collected.

There may be a situation where it is useful to preserve a full record of mutations from a given
observer. Preserving each MutationRecord instance will also preserve the node references it contains,
thereby preventing the nodes from being garbage collected. If prompt node garbage collection is
needed, prefer to extract the minimum required information from each MutationRecord into a new
object, and discard the MutationRecord.

SUMMARY

The Document Object Model (DOM) is a language-independent API for accessing and manipulating
HTML and XML documents. DOM Level 1 deals with representing HTML and XML documents as
a hierarchy of nodes that can be manipulated to change the appearance and structure of the underly-
ing documents using JavaScript.

The DOM is made up of a series of node types, as described here:

➤➤ The base node type is Node, which is an abstract representation of an individual part of a
document; all other types inherit from Node.

➤➤ The Document type represents an entire document and is the root node of a hierarchy. In
JavaScript, the document object is an instance of Document, which allows for querying and
retrieval of nodes in a number of different ways.

➤➤ An Element node represents all HTML or XML elements in a document and can be used to
manipulate their contents and attributes.

➤➤ Other node types exist for text contents, comments, document types, the CDATA section,
and document fragments.

DOM access works as expected in most cases, although there are often complications when working
with <script> and <style> elements. Because these elements contain scripting and stylistic informa-
tion, respectively, they are often treated differently in browsers than other elements.

Perhaps the most important thing to understand about the DOM is how it affects overall performance.
DOM manipulations are some of the most expensive operations that can be done in JavaScript, with
NodeList objects being particularly troublesome. NodeList objects are “live,” meaning that a query
is run every time the object is accessed. Because of these issues, it is best to minimize the number of
DOM manipulations.

The MutationObserver was introduced to replace the less-performant MutationEvent. It allows for
efficient and precise DOM mutation monitoring with a relatively simple API.

DOM Extensions
WHAT’S IN THIS CHAPTER?

➤➤ Understanding the Selectors API

➤➤ Using HTML5 DOM extensions

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/projavascript4e on the Down-
load Code tab.

Even though the DOM is a fairly well-defined API, it is also frequently augmented with both
standards-based and proprietary extensions to provide additional functionality. Prior to 2008,
almost all of the DOM extensions found in browsers were proprietary. After that point, the
W3C went to work to codify some of the proprietary extensions that had become de facto
standards into formal specifications.

The two primary standards specifying DOM extensions are the Selectors API and HTML5.
These both arose out of needs in the development community and a desire to standardize cer-
tain approaches and APIs. There is also a smaller Element Traversal specification with addi-
tional DOM properties. Proprietary extensions still exist, even though these two specifications,
especially HTML5, cover a large number of DOM extensions. The proprietary extensions are
also covered in this chapter.

All content in this chapter is supported by all major browsers meaning all vendor releases that
have meaningful web traffic—unless otherwise stated.

15

Professional JavaScript® for Web Developers, Fourth Edition. Matt Frisbie.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

544 ❘ CHAPTER 15 DOM ExtEnsiOns

SELECTORS API

One of the most popular capabilities of JavaScript libraries is the ability to retrieve a number of DOM
elements matching a pattern specified using CSS selectors. Indeed, the library jQuery (www.jquery.
com) is built completely around the CSS selector queries of a DOM document in order to retrieve
references to elements instead of using getElementById() and getElementsByTagName().

The Selectors API (www.w3.org/TR/selectors-api) was started by the W3C to specify native sup-
port for CSS queries in browsers. All JavaScript libraries implementing this feature had to do so by
writing a rudimentary CSS parser and then using existing DOM methods to navigate the document
and identify matching nodes. Although library developers worked tirelessly to speed up the perfor-
mance of such processing, there was only so much that could be done while the code ran in Java-
Script. By making this a native API, the parsing and tree navigating can be done at the browser level
in a compiled language and thus tremendously increase the performance of such functionality.

At the core of Selectors API Level 1 are two methods: querySelector() and querySelector-
All(). On a conforming browser, these methods are available on the Document type and on the
Element type.

The Selectors API Level 2 specification (https://www.w3.org/TR/selectors-api2/) introduces
more methods: matches(), find(), and findAll() on the Element type, although no browsers cur-
rently have or have stated an intention to support find(), or findAll().

The querySelector() Method
The querySelector() method accepts a CSS query and returns the first descendant element that
matches the pattern or null if there is no matching element. Here is an example:

// Get the body element
let body = document.querySelector("body");

// Get the element with the ID "myDiv"
let myDiv = document.querySelector("#myDiv");

// Get first element with a class of "selected"
let selected = document.querySelector(".selected");

// Get first image with class of "button"
let img = document.body.querySelector("img.button");

When the querySelector() method is used on the Document type, it starts trying to match the pat-
tern from the document element; when used on an Element type, the query attempts to make a match
from the descendants of the element only.

The CSS query may be as complex or as simple as necessary. If there’s a syntax error or an unsup-
ported selector in the query, then querySelector() throws an error.

The querySelectorAll() Method
The querySelectorAll() method accepts the same single argument as querySelector()—the
CSS query—but returns all matching nodes instead of just one. This method returns a static instance
of NodeList.

Selectors API ❘ 545

To clarify, the return value is actually a NodeList with all of the expected properties and methods,
but its underlying implementation acts as a snapshot of elements rather than a dynamic query that is
constantly reexecuted against a document. This implementation eliminates most of the performance
overhead associated with the use of NodeList objects.

Any call to querySelectorAll() with a valid CSS query will return a NodeList object regardless of
the number of matching elements; if there are no matches, the NodeList is empty.

As with querySelector(), the querySelectorAll() method is available on the Document, Docu-
mentFragment, and Element types. Here are some examples:

// Get all elements in a <div> (similar to getElementsByTagName("em"))
let ems = document.getElementById("myDiv").querySelectorAll("em");

// Get all elements wthat have "selected" as a class
let selecteds = document.querySelectorAll(".selected");

// Get all elements inside of <p> elements
let strongs = document.querySelectorAll("p strong");

The resulting NodeList object may be iterated over using iteration hooks, item(), or bracket nota-
tion to retrieve individual elements. Here’s an example:

let strongElements = document.querySelectorAll("p strong");

// All three of the following loops will have the same effect:

for (let strong of strongElements) {
 strong.className = "important";
}

for (let i = 0; i < strongElements.length; ++i) {
 strongElements.item(i).className = "important";
}

for (let i = 0; i < strongElements.length; ++i) {
 strongElements [i].className = "important";
}

As with querySelector(), querySelectorAll() throws an error when the CSS selector is not sup-
ported by the browser or if there’s a syntax error in the selector.

The matches() Method
matches() was formerly referred to as matchesSelector() in the specification draft. This method
accepts a single argument, a CSS selector, and returns true if the given element matches the selector
or false if not. For example:

if (document.body.matches ("body.page1")){
 // true
}

This method allows you to easily check if an element would be returned by querySelector() or
querySelectorAll() when you already have the element reference.

All major browsers support some form of matches(). Edge, Chrome, Firefox, Safari, and Opera fully
support it; IE 9–11 and minor mobile browsers support it with vendor prefixes.

546 ❘ CHAPTER 15 DOM ExtEnsiOns

ELEMENT TRAVERSAL

Prior to version 9, Internet Explorer did not return text nodes for white space in between elements
while all of the other browsers did. This led to differences in behavior when using properties such as
childNodes and firstChild. In an effort to equalize the differences while still remaining true to the
DOM specification, a new group of properties was defined in the Element Traversal (www.w3.org/
TR/ElementTraversal/).

The Element Traversal API adds five new properties to DOM elements:

➤➤ childElementCount—Returns the number of child elements (excludes text nodes and
comments).

➤➤ firstElementChild—Points to the first child that is an element. Element-only version of
firstChild.

➤➤ lastElementChild—Points to the last child that is an element. Element-only version of
lastChild.

➤➤ previousElementSibling—Points to the previous sibling that is an element. Element-only
version of previousSibling.

➤➤ nextElementSibling—Points to the next sibling that is an element. Element-only version of
nextSibling.

Supporting browsers add these properties to all DOM elements to allow for easier traversal of DOM
elements without the need to worry about white space text nodes.

For example, iterating over all child elements of a particular element in a traditional cross-browser
way looks like this:

let parentElement = document.getElementById('parent');
let currentChildNode = parentElement.firstChild;

// For zero children, firstChild returns null and the loop is skipped
while (currentChildNode) {
 if (currentChildNode.nodeType === 1) {
 // If this is an ELEMENT_NODE, do whatever work is needed in here
 processChild(currentChildNode);
 }
 if (currentChildNode === parentElement.lastChild) {
 break;
 }
 currentChildNode = currentChildNode.nextSibling;
}

Using the Element Traversal properties allows a simplification of the code:

let parentElement = document.getElementById('parent');
let currentChildElement = parentElement.firstElementChild;

// For zero children, firstElementChild returns null and the loop is skipped
while (currentChildElement) {
 // You already know this is an ELEMENT_NODE, do whatever work is needed here
 processChild(currentChildElement);

HTML5 ❘ 547

 if (currentChildElement === parentElement.lastElementChild) {
 break;
 }
 currentChildElement = currentChildElement.nextElementSibling;
}

Element Traversal is implemented in Internet Explorer 9+ and all modern browsers.

HTML5

HTML5 represents a radical departure from the tradition of HTML. In all previous HTML specifica-
tions, the descriptions stopped short of describing any JavaScript interfaces, instead focusing purely
on the markup of the language and deferring JavaScript bindings to the DOM specification.

The HTML5 specification, on the other hand, contains a large amount of JavaScript APIs designed
for use with the markup additions. Part of these APIs overlap with the DOM and define DOM exten-
sions that browsers should provide.

NOTE Because the scope of HTML5 is vast, this section focuses only on the
parts that affect all DOM nodes. Other parts of HTML5 are discussed in their
related topics throughout the book.

Class-Related Additions
One of the major changes in web development since the time HTML4 was adopted is the increased
usage of the class attribute to indicate both stylistic and semantic information about elements. This
caused a lot of JavaScript interaction with CSS classes, including the dynamic changing of classes and
querying the document to find elements with a given class or set of classes. To adapt to developers
and their newfound appreciation of the class attribute, HTML5 introduces a number of changes to
make CSS class usage easier.

The getElementsByClassName() Method
One of HTML5’s most popular additions is getElementsByClassName(), which is available on the
document object and on all HTML elements. This method evolved out of JavaScript libraries that
implemented it using existing DOM features and is provided as a native implementation for perfor-
mance reasons.

The getElementsByClassName() method accepts a single argument, which is a string containing one
or more class names, and returns a NodeList containing all elements that have all of the specified
classes applied. If multiple class names are specified, then the order is considered unimportant. Here
are some examples:

// Get all elements with a class containing "username" and "current"
// It does not matter if one is declared before the other
let allCurrentUsernames = document.getElementsByClassName("username current");

548 ❘ CHAPTER 15 DOM ExtEnsiOns

// Get all elements with a class of "selected" that exist in myDiv's subtree
let selected = document.getElementById("myDiv").getElementsByClassName("selected");

When this method is called, it will return only elements in the subtree of the root from which it was
called. Calling getElementsByClassName() on document always returns all elements with matching
class names, whereas calling it on an element will return only descendant elements.

This method is useful for attaching events to classes of elements rather than using IDs or tag names.
Keep in mind that since the returned value is a NodeList, there are the same performance issues
as when you’re using getElementsByTagName() and other DOM methods that return Node-
List objects.

The getElementsByClassName() method is implemented in Internet Explorer 9+ and all mod-
ern browsers.

The classList Property
In class name manipulation, the className property is used to add, remove, and replace class names.
Because className contains a single string, it’s necessary to set its value every time a change needs to
take place, even if there are parts of the string that should be unaffected. For example, consider the
following HTML code:

<div class="bd user disabled">...</div>

This <div> element has three classes assigned. To remove one of these classes, you need to split the
class attribute into individual classes, remove the unwanted class, and then create a string contain-
ing the remaining classes. Here is an example:

// Remove the "user" class
let targetClass = "user";

// First, get list of class names
let classNames = div.className.split(/\s+/);

// Find the class name to remove
let idx = classNames.indexOf(targetClass);

// Remove the class name if found
if (idx > -1) {
 classNames.splice(i,1);
}

// Set back the class name
div.className = classNames.join(" ");

All of this code is necessary to remove the "user" class from the <div> element’s class attribute. A
similar algorithm must be used for replacing class names and detecting if a class name is applied to an
element. Adding class names can be done by using string concatenation, but checks must be done to
ensure that you’re not applying the same class more than one time. Many JavaScript libraries imple-
ment methods to aid in these behaviors.

HTML5 introduces a way to manipulate class names in a much simpler and safer manner through
the addition of the classList property for all elements. The classList property is an instance of a

HTML5 ❘ 549

new type of collection named DOMTokenList. As with other DOM collections, DOMTokenList has a
length property to indicate how many items it contains, and individual items may be retrieved via
the item() method or using bracket notation. It also has the following additional methods:

➤➤ add(value)—Adds the given string value to the list. If the value already exists, it will
not be added.

➤➤ contains(value)—Indicates if the given value exists in the list (true if so; false if not).

➤➤ remove(value)—Removes the given string value from the list.

➤➤ toggle(value)—If the value already exists in the list, it is removed. If the value doesn’t
exist, then it’s added.

The entire block of code in the previous example can quite simply be replaced with the following:

div.classList.remove("user");

Using this code ensures that the rest of the class names will be unaffected by the change. The other
methods also greatly reduce the complexity of the basic operations, as shown in these examples:

// Remove the "disabled" class
div.classList.remove("disabled");

// Add the "current" class
div.classList.add("current");

// Toggle the "user" class
div.classList.toggle("user");

// Figure out what's on the element now
if (div.classList.contains("bd") && !div.classList.contains("disabled")){
 // Do stuff
)

// Iterate over the class names
for (let class of div.classList){
 doStuff(class);
}

The addition of the classList property makes it unnecessary to access the className property
unless you intend to completely remove or completely overwrite the element’s class attribute.
The classList property is implemented partially in Internet Explorer 10+ and fully in all other
major browsers.

Focus Management
HTML5 adds functionality to aid with focus management in the DOM. The first is document.
activeElement, which always contains a pointer to the DOM element that currently has focus. An
element can receive focus automatically as the page is loading, via user input (typically using the Tab
key), or programmatically using the focus() method. For example:

let button = document.getElementById("myButton");
button.focus();
console.log(document.activeElement === button); // true

550 ❘ CHAPTER 15 DOM ExtEnsiOns

By default, document.activeElement is set to document.body when the document is first loaded.
Before the document is fully loaded, document.activeElement is null.

The second addition is document.hasFocus(), which returns a Boolean value indicating if the docu-
ment has focus:

let button = document.getElementById("myButton");
button.focus();
console.log(document.hasFocus()); // true

Determining if the document has focus allows you to determine if the user is interacting
with the page.

This combination of being able to query the document to determine which element has focus and
being able to ask the document if it has focus is of the utmost importance for web application acces-
sibility. One of the key components of accessible web applications is proper focus management, and
being able to determine which elements currently have focus is a major improvement over the guess-
work of the past.

Changes to HTMLDocument
HTML5 extends the HTMLDocument type to include more functionality. As with other DOM exten-
sions specified in HTML5, the changes are based on proprietary extensions that are well-supported
across browsers. As such, even though the standardization of the extensions is relatively new, some
browsers have supported the functionality for a while.

The readyState Property
Internet Explorer 4 was the first to introduce a readyState property on the document object, and it
is supported by all modern browsers. Other browsers then followed suit and this property was even-
tually formalized in HTML5. The readyState property for document has two possible values:

➤➤ loading—The document is loading.

➤➤ complete—The document is completely loaded.

The best way to use the document.readyState property is as an indicator that the document has
loaded. Before this property was widely available, you would need to add an onload event handler to
set a flag indicating that the document was loaded. Basic usage:

if (document.readyState == "complete"){
 // Do stuff
}

Compatibility Mode
With the introduction of Internet Explorer 6 and the ability to render a document in either standards
or quirks mode, it became necessary to determine in which mode the browser was rendering the page.
Internet Explorer added a property on the document named compatMode whose sole job is to indicate

HTML5 ❘ 551

what rendering mode the browser is in. As shown in the following example, when in standards mode,
document.compatMode is equal to "CSS1Compat"; when in quirks mode, document.compatMode is
"BackCompat":

if (document.compatMode == "CSS1Compat"){
 console.log("Standards mode");
} else {
 console.log("Quirks mode");
}

The compatMode property was added to HTML5 to formalize its implementation.

The head Property
HTML5 introduces document.head to point to the <head> element of a document to complement
document.body, which points to the <body> element of the document. You can retrieve a reference to
the <head> element using this property:

let head = document.head;

Character Set Properties
HTML5 describes several new properties dealing with the character set of the document. The char-
acterSet property indicates the actual character set being used by the document and can also be
used to specify a new character set. By default, this value is "UTF-16", although it may be changed by
using <meta> elements or response headers or through setting the characterSet property directly.
Here’s an example:

console.log(document.characterSet); // "UTF-16"
document.characterSet = "UTF-8";

Custom Data Attributes
HTML5 allows elements to be specified with nonstandard attributes prefixed with data- in order
to provide information that isn’t necessary to the rendering or semantic value of the element. These
attributes can be added as desired and named anything, provided that the name begins with data-.
Here is an example:

<div id="myDiv" data-appId="12345" data-myname="Nicholas"></div>

When a custom data attribute is defined, it can be accessed via the dataset property of the element.
The dataset property contains an instance of DOMStringMap that is a mapping of name-value pairs.
Each attribute of the format data-name is represented by a property with a name equivalent to the
attribute but without the data- prefix (for example, attribute data-myname is represented by a prop-
erty called myname). The following is an example of how to use custom data attributes:

// Methods used in this example are for illustrative purposes only

let div = document.getElementById("myDiv");

552 ❘ CHAPTER 15 DOM ExtEnsiOns

// Get the values
let appId = div.dataset.appId;
let myName = div.dataset.myname;

// Set the value
div.dataset.appId = 23456;
div.dataset.myname = "Michael";

// Is there a "myname" value?
if (div.dataset.myname){
 console.log('Hello, ${div.dataset.myname}');
}

Custom data attributes are useful when nonvisual data needs to be tied to an element for some other
form of processing. This is a common technique to use for link tracking and mashups in order to
better identify parts of a page. It is also extensively utilized in numerous single-page application
frameworks.

Markup Insertion
Although the DOM provides fine-grained control over nodes in a document, it can be cumbersome
when attempting to inject a large amount of new HTML into the document. Instead of creating a
series of DOM nodes and connecting them in the correct order, it’s much easier (and faster) to use one
of the markup insertion capabilities to inject a string of HTML. The following DOM extensions have
been standardized in HTML5 for this purpose.

The innerHTML Property
When used in read mode, innerHTML returns the HTML representing all of the child nodes, including
elements, comments, and text nodes. When used in write mode, innerHTML completely replaces all of
the child nodes in the element with a new DOM subtree based on the specified value. Consider the
following HTML code:

<div id="content">
 <p>This is a paragraph with a list following it.</p>

 Item 1
 Item 2
 Item 3

</div>

For the <div> element in this example, the innerHTML property returns the following string:

<p>This is a paragraph with a list following it.</p>

 Item 1
 Item 2
 Item 3

The exact text returned from innerHTML differs from browser to browser. Internet Explorer and
Opera tend to convert all tags to uppercase, whereas Safari, Chrome, and Firefox return HTML in

HTML5 ❘ 553

the way it is specified in the document, including white space and indentation. You cannot depend on
the returned value of innerHTML being exactly the same from browser to browser.

When used in write mode, innerHTML parses the given string into a DOM subtree and replaces all of
the existing child nodes with it. Because the string is considered to be HTML, all tags are converted
into elements in the standard way that the browser handles HTML (again, this differs from browser
to browser). Setting simple text without any HTML tags, as shown here, sets the plain text:

div.innerHTML = "Hello world!";

Setting innerHTML to a string containing HTML behaves quite differently as innerHTML parses them.
Consider the following example:

div.innerHTML = "Hello & welcome, \"reader\"!";

The result of this operation is as follows:

<div id="content">Hello & welcome, "reader"!</div>

After setting innerHTML, you can access the newly created nodes as you would any other nodes in
the document.

NOTE Setting innerHTML causes the HTML string to be parsed by the browser
into an appropriate DOM tree. This means that setting innerHTML and then
reading it back typically results in a different string being returned. This is
because the returned string is the result of serializing the DOM subtree that was
created for the original HTML string.

Using innerHTML in Legacy Internet Explorer
<script> elements cannot be executed when inserted via innerHTML in all modern browsers. Internet
Explorer 8 and earlier, is the only browser that allows this but only as long as the defer attribute
is specified and the <script> element is preceded by what Microsoft calls a scoped element. The
<script> element is considered a NoScope element, which effectively means that it has no visual
representation on the page, like a <style> element or a comment. Internet Explorer strips out all
NoScope elements from the beginning of strings inserted via innerHTML, which means the following
won’t work:

// Won't work
div.innerHTML = "<script defer>console.log('hi');<\/script>";

In this case, the innerHTML string begins with a NoScope element, so the entire string becomes empty.
To allow this script to work appropriately, you must precede it with a scoped element, such as a text
node or an element without a closing tag such as <input>. The following lines will all work:

// All these will work
div.innerHTML = "_<script defer>console.log('hi');<\/script>";
div.innerHTML = "<div> </div><script defer>console.log('hi');<\/script>";
div.innerHTML = "<input type=\"hidden\"><script defer>console.
log('hi');<\/script>";

554 ❘ CHAPTER 15 DOM ExtEnsiOns

The first line results in a text node being inserted immediately before the <script> element. You
may need to remove this after the fact so as not to disrupt the flow of the page. The second line has
a similar approach, using a <div> element with a nonbreaking space. An empty <div> alone won’t
do the trick; it must contain some content that will force a text node to be created. Once again, the
first node may need to be removed to avoid layout issues. The third line uses a hidden <input> field
to accomplish the same thing. Because it doesn’t affect the layout of the page, this may be the optimal
case for most situations.

In most browsers, the <style> element causes similar problems with innerHTML. Most brows-
ers support the insertion of <style> elements using innerHTML in the exact way you’d expect, as
shown here:

div.innerHTML = "<style type=\"text/css\">body {background-color: red; }</style>";

In Internet Explorer 8 and earlier, <style> is yet another NoScope element, so it must be preceded by
a scoped element such as this:

div.innerHTML = "_<style type=\"text/css\">body {background-color: red; }</style>";
div.removeChild(div.firstChild);

NOTE Firefox’s support of innerHTML is stricter in XHTML documents served
with the application/xhtml+xml content type. When using innerHTML in
XHTML documents, you must specify well-formed XHTML code. If the code is
not well formed, setting innerHTML fails silently.

The outerHTML Property
When outerHTML is called in read mode, it returns the HTML of the element on which it is called,
as well as its child nodes. When called in write mode, outerHTML replaces the node on which it is
called with the DOM subtree created from parsing the given HTML string. Consider the following
HTML code:

<div id="content">
 <p>This is a paragraph with a list following it.</p>

 Item 1
 Item 2
 Item 3

</div>

When outerHTML is called on the <div> in this example, the same code is returned, including the
code for the <div>. Note that there may be differences based on how the browser parses and inter-
prets the HTML code. (These are the same types of differences you’ll notice when using innerHTML.)

Use outerHTML to set a value in the following manner:

div.outerHTML = "<p>This is a paragraph.</p>";

HTML5 ❘ 555

This code performs the same operation as the following DOM code:

let p = document.createElement("p");
p.appendChild(document.createTextNode("This is a paragraph."));
div.parentNode.replaceChild(p, div);

The new <p> element replaces the original <div> element in the DOM tree.

The insertAdjacentHTML() and insertAdjacentText() Methods
The last addition for markup insertion is the insertAdjacentHTML() and insertAdjacentText()
methods. These methods also originated in Internet Explorer and accept two arguments: the position
in which to insert and the HTML or text to insert. The first argument must be one of the follow-
ing values:

➤➤ "beforebegin"—Insert just before the element as a previous sibling.

➤➤ "afterbegin"—Insert just inside of the element as a new child or series of children before
the first child.

➤➤ "beforeend"—Insert just inside of the element as a new child or series of children after the
last child.

➤➤ "afterend"—Insert just after the element as a next sibling.

Note that each of these values is case insensitive. The second argument is parsed as an
HTML string (the same as with innerHTML/outerHTML) or as a raw string (the same as with
innerText/outerText) and in the case of HTML, will throw an error if the value cannot be properly
parsed. Basic usage is as follows:

// Insert as previous sibling
element.insertAdjacentHTML("beforebegin", "<p>Hello world!</p>");
element.insertAdjacentText("beforebegin", "Hello world!");

// Insert as first child
element.insertAdjacentHTML("afterbegin", "<p>Hello world!</p>");
element.insertAdjacentText("afterbegin", "Hello world!");

// Insert as last child
element.insertAdjacentHTML("beforeend", "<p>Hello world!</p>");
element.insertAdjacentText("beforeend", "Hello world!");

// Insert as next sibling
element.insertAdjacentHTML("afterend", "<p>Hello world!</p>"); element.
insertAdjacentText("afterend", "Hello world!");

Memory and Performance Issues
Replacing child nodes using the methods in this section may cause memory problems in browsers,
especially Internet Explorer. The problem occurs when event handlers or other JavaScript objects are
assigned to subtree elements that are removed. If an element has an event handler (or a JavaScript
object as a property), and one of these properties is used in such a way that the element is removed
from the document tree, the binding between the element and the event handler remains in memory. If
this is repeated frequently, memory usage increases for the page. When using innerHTML, outerHTML,
and insertAdjacentHTML(), it’s best to manually remove all event handlers and JavaScript object
properties on elements that are going to be removed.

556 ❘ CHAPTER 15 DOM ExtEnsiOns

Using these properties does have an upside, especially when using innerHTML. Generally speaking,
inserting a large amount of new HTML is more efficient through innerHTML than through multiple
DOM operations to create nodes and assign relationships between them. This is because an HTML
parser is created whenever a value is set to innerHTML (or outerHTML). This parser runs in browser-
level code (often written in C++), which is must faster than JavaScript. That being said, the creation
and destruction of the HTML parser does have some overhead, so it’s best to limit the number of
times you set innerHTML or outerHTML. For example, the following creates a number of list items
using innerHTML:

for (let value of values){
 ul.innerHTML += '${value}'; // avoid!!
}

This code is inefficient because it sets innerHTML once each time through the loop. Furthermore, this
code is reading innerHTML each time through the loop, meaning that innerHTML is being accessed
twice each time through the loop. It’s best to build up the string separately and assign it using inner-
HTML just once at the end, like this:

let itemsHtml = "";
for (let value of values){
 itemsHtml += '${value}';
}
ul.innerHTML = itemsHtml;

This example is more efficient, limiting the use of innerHTML to one assignment. Of course, if you
wanted to condense it to a single line:

ul.innerHTML = values.map(value => '${value}').join('');

Cross-Site Scripting Considerations
Although innerHTML does not execute script tags that it creates, it still provides an extremely broad
attack surface for malicious actors looking to compromise a web page because it so readily creates
elements and executable attributes such as onclick.

Anywhere you are interpolating user-provided information into the page, it is nearly always inadvis-
able to do so using innerHTML. The headaches of preventing XSS vulnerabilities far outweigh any
convenience benefits gained from using innerHTML. Compartmentalize interpolated data, and don’t
hesitate to use libraries that escape interpolated data before inserting them into the page.

The scrollIntoView() Method
One of the issues not addressed by the DOM specification is how to scroll areas of a page. To fill this
gap, browsers implemented several methods that control scrolling in different ways. Of the various
proprietary methods, only scrollIntoView() was selected for inclusion in HTML5.

The scrollIntoView() method exists on all HTML elements and scrolls the browser window or
container element so the element is visible in the viewport.

➤➤ If an argument of true is supplied, it specifies alignToTop: The window scrolls so that the
top of the element is at the top of the viewport.

➤➤ If an argument of false is supplied, it specifies alignToTop: The window scrolls so that the
bottom of the element is at the top of the viewport.

Proprietary Extensions ❘ 557

➤➤ If an object argument is supplied, the user can provide values for the behavior property,
which specifies how the scroll should occur: auto, instant, or smooth (limited support
outside of Firefox), and the block property is the same as alignToTop.

➤➤ If no argument is supplied, the element is scrolled so that it is fully visible in the viewport
but may not be aligned at the top. For example:

// Ensures this element is visible
document.forms[0].scrollIntoView();

// These behave identically
document.forms[0].scrollIntoView(true);
document.forms[0].scrollIntoView({block: true});

// This attempts to scroll the element smoothly into view:
document.forms[0].scrollIntoView({behavior: 'smooth', block: true});

This method is most useful for getting the user’s attention when something has happened on the page.
Note that setting focus to an element also causes the browser to scroll the element into view so that
the focus can properly be displayed.

PROPRIETARY EXTENSIONS

Although all browser vendors understand the importance of adherence to standards, they all have
a history of adding proprietary extensions to the DOM in order to fill perceived gaps in functional-
ity. Though this may seem like a bad thing on the surface, proprietary extensions have given the
web development community many important features that were later codified into standards
such as HTML5.

There are still a large amount of DOM extensions that are proprietary in nature and haven’t been
incorporated into standards. This doesn’t mean that they won’t later be adopted as standards—just
that at the time of this writing, they remain proprietary and adopted by only a subset of browsers.

The children Property
The differences in how Internet Explorer prior to version 9 and other browsers interpret white space
in text nodes led to the creation of the children property. The children property is an HTMLCol-
lection that contains only an element’s child nodes that are also elements. Otherwise, the children
property is the same as childNodes and may contain the same items when an element has only ele-
ments as children. The children property is accessed as follows:

let childCount = element.children.length;
let firstChild = element.children[0];

The contains() Method
It’s often necessary to determine if a given node is a descendant of another. Internet Explorer first
introduced the contains() method as a way of providing this information without necessitating
a walk up the DOM document tree. The contains() method is called on the ancestor node from
which the search should begin and accepts a single argument, which is the suspected descendant node.

558 ❘ CHAPTER 15 DOM ExtEnsiOns

If the node exists as a descendant of the root node, the method returns true; otherwise it returns
false. Here is an example:

console.log(document.documentElement.contains(document.body)); // true

This example tests to see if the <body> element is a descendant of the <html> element, which returns
true in all well-formed HTML pages.

There is another way of determining node relationships by using the DOM Level 3 compareDocu-
mentPosition() method. This method determines the relationship between two nodes and returns a
bitmask indicating the relationship. The values for the bitmask are as shown in the following table.

MASK RELATIONSHIP BETWEEN NODES

0x1 Disconnected (The passed-in node is not in the document.)

0x2 Precedes (The passed-in node appears in the DOM tree prior to the reference node.)

0x4 Follows (The passed-in node appears in the DOM tree after the reference node.)

0x8 Contains (The passed-in node is an ancestor of the reference node.)

0x10 Is contained by (The passed-in node is a descendant of the reference node.)

To mimic the contains() method, you will be interested in the 16 mask. The result of compareDoc-
umentPosition() can be bitwise ANDed to determine if the reference node contains the given node.
Here is an example:

let result = document.documentElement.compareDocumentPosition(document.body);
console.log(!!(result & 0x10));

When this code is executed, result becomes 20, or 0x14 (0x4 for “follows” plus 0x10 for “is con-
tained by”). Applying a bitwise mask of 0x10 to the result returns a nonzero number, and the two
NOT bang operators convert that value into a Boolean.

IE9+ and all modern browsers support both contains and compareDocumentPosition.

Markup Insertion
While the innerHTML and outerHTML markup insertion properties were adopted by HTML5 from
Internet Explorer, there are two others that were not. The two remaining properties that are left out
of HTML5 are innerText and outerText.

The innerText Property
The innerText property works with all text content contained within an element, regardless of how
deep in the subtree the text exists. When used to read the value, innerText concatenates the values
of all text nodes in the subtree in depth-first order. When used to write the value, innerText removes
all children of the element and inserts a text node containing the given value. Consider the following
HTML code:

<div id="content">
 <p>This is a paragraph with a list following it.</p>

Proprietary Extensions ❘ 559

 Item 1
 Item 2
 Item 3

</div>

For the <div> element in this example, the innerText property returns the following string:

This is a paragraph with a list following it.
Item 1
Item 2
Item 3

Note that different browsers treat white space in different ways, so the formatting may or may not
include the indentation in the original HTML code.

Using the innerText property to set the contents of the <div> element is as simple as this single
line of code:

div.innerText = "Hello world!";

After executing this line of code, the HTML of the page is effectively changed to the following:

<div id="content">Hello world!</div>

Setting innerText removes all of the child nodes that existed before, completely changing the DOM
subtree. Additionally, setting innerText encodes all HTML syntax characters (less-than, greater-than,
quotation marks, and ampersands) that may appear in the text. Here is an example:

div.innerText = "Hello & welcome, \"reader\"!";

The result of this operation is as follows:

<div id="content">Hello & welcome, "reader"!</div>

Setting innerText can never result in anything other than a single text node as the child of the con-
tainer, so the HTML-encoding of the text must take place in order to keep to that single text node.
The innerText property is also useful for stripping out HTML tags. By setting the innerText equal
to the innerText, as shown here, all HTML tags are removed:

div.innerText = div.innerText;

Executing this code replaces the contents of the container with just the text that exists already.

NOTE For Firefox versions prior to 45 (released March 2016), the only method
supported was textContent. This was similar to innerText, the only difference
being that while innerText skips over inline style and script blocks, textCon-
tent returns any inline style or script code along with other text. innerText is
now supported across all browsers and should be the primary tool for getting
and setting text content.

560 ❘ CHAPTER 15 DOM ExtEnsiOns

The outerText Property
The outerText property works in the same way as innerText except that it includes the node on
which it’s called. For reading text values, outerText and innerText essentially behave in the exact
same way. In writing mode, however, outerText behaves very differently. Instead of replacing just the
child nodes of the element on which it’s used, outerText actually replaces the entire element, includ-
ing its child nodes. Consider the following:

div.outerText = "Hello world!";

This single line of code is equivalent to the following two lines:

let text = document.createTextNode("Hello world!");
div.parentNode.replaceChild(text, div);

Essentially, the new text node completely replaces the element on which outerText was set. After
that point in time, the element is no longer in the document and cannot be accessed.

The outerText property is nonstandard, and not on a standards track. It is not recommended that
you rely on it for important behavior. It is supported in all modern browsers except for Firefox.

Scrolling
As mentioned previously, scrolling is one area where specifications didn’t exist prior to HTML5.
While scrollIntoView() was standardized in HTML5, there are still several additional proprietary
methods available in various browsers. scrollIntoViewIfNeeded exists as an extension to the
HTMLElement type and therefore each is available on all elements. scrollIntoViewIfNeeded(align
Center) scrolls the browser window or container element so that the element is visible in the view-
port only if it’s not already visible; if the element is already visible in the viewport, this method does
nothing. The optional alignCenter argument will attempt to place the element in the center of the
viewport if set to true. This is implemented in Safari, Chrome, and Opera.

Following is an example of how this may be used:

// Make sure this element is visible only if it's not already
document.images[0].scrollIntoViewIfNeeded();

Because scrollIntoView() is the only method supported in all browsers, this is typically the
only one used.

SUMMARY

While the DOM specifies the core API for interacting with XML and HTML documents, there are
several specifications that provide extensions to the standard DOM. Many of the extensions are
based on proprietary extensions that later became de facto standards as other browsers began to
mimic their functionality. The three specifications covered in this chapter are:

➤➤ Selectors API, which defines two methods for retrieving DOM elements based on CSS selec-
tors: querySelector(), querySelectorAll(), and matches().

Summary ❘ 561

➤➤ Element Traversal, which defines additional properties on DOM elements to allow easy tra-
versal to the next related DOM element. The need for this arose because of the handling of
white space in the DOM that creates text nodes between elements.

➤➤ HTML5, which provides a large number of extensions to the standard DOM. These include
standardization of de facto standards such as innerHTML, as well as additional functionality
for dealing with focus management, character sets, scrolling, and more.

The number of DOM extensions is currently small, but it’s almost a certainty that the number will
continue to grow as web technology continues to evolve. Browsers still experiment with proprietary
extensions that, if successful, may end up as pseudo-standards or be incorporated into future ver-
sions’ specifications.

DOM Levels 2 and 3
WHAT’S IN THIS CHAPTER?

➤➤ Changes to the DOM introduced in Levels 2 and 3

➤➤ The DOM API for manipulating styles

➤➤ Working with DOM traversal and ranges

The first level of the DOM focuses on defining the underlying structure of HTML and XML
documents. DOM Levels 2 and 3 build on this structure to introduce more interactivity and
support for more advanced XML features. As a result, DOM Levels 2 and 3 actually consist of
several modules that, although related, describe very specific subsets of the DOM. These mod-
ules are as follows:

➤➤ DOM Core—Builds on the Level 1 core, adding methods and properties to nodes.

➤➤ DOM Views—Defines different views for a document based on stylistic information.

➤➤ DOM Events—Explains how to tie interactivity to DOM documents using events.

➤➤ DOM Style—Defines how to programmatically access and change CSS styling
information.

➤➤ DOM Traversal and Range—Introduces new interfaces for traversing a DOM docu-
ment and selecting specific parts of it.

➤➤ DOM HTML—Builds on the Level 1 HTML, adding properties, methods, and new
interfaces.

➤➤ DOM Mutation Observers—Allows for definition of callbacks upon changes to the
DOM. Mutation Observers were defined in the DOM4 specification to replace Muta-
tion Events.

16

Professional JavaScript® for Web Developers, Fourth Edition. Matt Frisbie.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

564 ❘ CHAPTER 16 DOM LeveLs 2 anD 3

This chapter explores each of these modules except for DOM events and DOM mutation observers,
which are covered fully in fully in the Document Object Model chapter. DOM Level 3 also con-
tains the XPath module and the Load and Save module. These are discussed in the XML in JavaS-
cript chapter.

NOTE Very old browser versions such as Internet Explorer 8 have limited
support for some of the content in this chapter. If you’re looking to support these
browsers, it is recommended that you thoroughly investigate browser support
before making use of these APIs. https://caniuse.com is an excellent tool for this
type of research.

DOM CHANGES

The purpose of the DOM Levels 2 and 3 Core is to expand the DOM API to encompass all of the
requirements of XML and to provide for better error handling and feature detection. For the most
part, this means supporting the concept of XML namespaces. DOM Level 2 Core doesn’t introduce
any new types; it simply augments the types defined in DOM Level 1 to include new methods and
properties. DOM Level 3 Core further augments the existing types and introduces several new ones.

Similarly, DOM Views and HTML augment DOM interfaces, providing new properties and methods.
These two modules are fairly small and so are grouped in with the Core to discuss changes to funda-
mental JavaScript objects.

NOTE This chapter covers only the parts of the DOM that have been imple-
mented by browsers; parts that have yet to be implemented by any browser are
not mentioned.

XML Namespaces
XML namespaces allow elements from different XML-based languages to be mixed together in a
single, well-formed document without fear of element name clashes. Technically, XML namespaces
are not supported by HTML but supported in XHTML; therefore, the examples in this section
are in XHTML.

Namespaces are specified using the xmlns attribute. The namespace for XHTML is http://www.
w3.org/1999/xhtml and should be included on the <html> element of any well-formed XHTML
page, as shown in the following example:

<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Example XHTML page</title>
 </head>
 <body>
 Hello world!
 </body>
</html>

DOM Changes ❘ 565

For this example, all elements are considered to be part of the XHTML namespace by default. You
can explicitly create a prefix for an XML namespace using xmlns, followed by a colon, followed by
the prefix, as in this example:

<xhtml:html xmlns:xhtml="http://www.w3.org/1999/xhtml">
 <xhtml:head>
 <xhtml:title>Example XHTML page</xhtml:title>
 </xhtml:head>
 <xhtml:body>
 Hello world!
 </xhtml:body>
</xhtml:html>

Here, the namespace for XHTML is defined with a prefix of xhtml, requiring all XHTML elements
to begin with that prefix. Attributes may also be namespaced to avoid confusion between languages,
as shown in the following example:

<xhtml:html xmlns:xhtml="http://www.w3.org/1999/xhtml">
 <xhtml:head>
 <xhtml:title>Example XHTML page</xhtml:title>
 </xhtml:head>
 <xhtml:body xhtml:class="home">
 Hello world!
 </xhtml:body>
</xhtml:html>

The class attribute in this example is prefixed with xhtml. Namespacing isn’t really necessary when
only one XML-based language is being used in a document; it is, however, very useful when mixing
two languages together. Consider the following document containing both XHTML and SVG:

<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Example XHTML page</title>
 </head>
 <body>
 <svg xmlns="http://www.w3.org/2000/svg" version="1.1"
 viewBox="0 0 100 100" style="width:100%; height:100%">
 <rect x="0" y="0" width="100" height="100" style="fill:red" />
 </svg>
 </body>
</html>

In this example, the <svg> element is indicated as foreign to the containing document by setting its
own namespace. All children of the <svg> element, as well as all attributes of the elements, are con-
sidered to be in the http://www.w3.org/2000/svg namespace. Even though the document is techni-
cally an XHTML document, the SVG code is considered valid because of the use of namespaces.

The interesting problem with a document such as this is what happens when a method is called on
the document to interact with nodes in the document. When a new element is created, which names-
pace does it belong to? When querying for a specific tag name, what namespaces should be included
in the results? DOM Level 2 Core answers these questions by providing namespace-specific versions
of most DOM Level 1 methods.

566 ❘ CHAPTER 16 DOM LeveLs 2 anD 3

Changes to Node
The Node type evolves in DOM Level 2 to include the following namespace-specific properties:

➤➤ localName—The node name without the namespace prefix.

➤➤ namespaceURI—The namespace URI of the node or null if not specified.

➤➤ prefix—The namespace prefix or null if not specified.

When a node uses a namespace prefix, the nodeName is equivalent to prefix + ":" + localName.
Consider the following example:

<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Example XHTML page</title>
 </head>
 <body>
 <s:svg xmlns:s="http://www.w3.org/2000/svg" version="1.1"
 viewBox="0 0 100 100" style="width:100%; height:100%">
 <s:rect x="0" y="0" width="100" height="100" style="fill:red" />
 </s:svg>
 </body>
</html>

For the <html> element, the localName and tagName is "html", the namespaceURI is "http://www.
w3.org/1999/xhtml", and the prefix is null. For the <s:svg> element, the localName is "svg",
the tagName is "s:svg", the namespaceURI is "http://www.w3.org/2000/svg", and the pre-
fix is "s".

DOM Level 3 goes one step further and introduces the following methods to work with namespaces:

➤➤ isDefaultNamespace(namespaceURI)—Returns true when the specified namespaceURI
is the default namespace for the node.

➤➤ lookupNamespaceURI(prefix)—Returns the namespace URI for the given prefix.

➤➤ lookupPrefix(namespaceURI)—Returns the prefix for the given namespaceURI.

In the previous example, the following code can be executed:

console.log(document.body.isDefaultNamespace("http://www.w3.org/1999/
xhtml")); // true

// assume svg contains a reference to <s:svg>
console.log(svg.lookupPrefix("http://www.w3.org/2000/svg")); // "s"
console.log(svg.lookupNamespaceURI("s")); // "http://www.w3.org/2000/svg"

These methods are primarily useful when you have a reference to a node without knowing its rela-
tionship to the rest of the document.

DOM Changes ❘ 567

Changes to Document
The Document type is changed in DOM Level 2 to include the following namespace-specific methods:

➤➤ createElementNS(namespaceURI, tagName)—Creates a new element with the given tag-
Name as part of the namespace indicated by namespaceURI.

➤➤ createAttributeNS(namespaceURI, attributeName)—Creates a new attribute node as
part of the namespace indicated by namespaceURI.

➤➤ getElementsByTagNameNS(namespaceURI, tagName)—Returns a NodeList of elements
with the given tagName that are also a part of the namespace indicated by namespaceURI.

These methods are used by passing in the namespace URI of the namespace to use (not the namespace
prefix), as shown in the following example.

// create a new SVG element
let svg = document.createElementNS("http://www.w3.org/2000/svg", "svg");

// create new attribute for a random namespace
let att = document.createAttributeNS("http://www.somewhere.com", "random");

// get all XHTML elements
let elems = document.getElementsByTagNameNS("http://www.w3.org/1999/xhtml", "*");

The namespace-specific methods are necessary only when there are two or more namespaces in a
given document.

Changes to Element
The changes to Element in DOM Level 2 Core are mostly related to attributes. The following new
methods are introduced:

➤➤ getAttributeNS(namespaceURI, localName)—Gets the attribute from the namespace rep-
resented by namespaceURI and with a name of localName.

➤➤ getAttributeNodeNS(namespaceURI, localName)—Gets the attribute node from the
namespace represented by namespaceURI and with a name of localName.

➤➤ getElementsByTagNameNS(namespaceURI, tagName)—Returns a NodeList of descen-
dant elements with the given tagName that are also a part of the namespace indicated by
namespaceURI.

➤➤ hasAttributeNS(namespaceURI, localName)—Determines if the element has an attribute
from the namespace represented by namespaceURI and with a name of localName. Note:
DOM Level 2 Core also adds a hasAttribute() method for use without namespaces.

➤➤ removeAttributeNS(namespaceURI, localName)—Removes the attribute from the
namespace represented by namespaceURI and with a name of localName.

568 ❘ CHAPTER 16 DOM LeveLs 2 anD 3

➤➤ setAttributeNS(namespaceURI, qualifiedName, value)—Sets the attribute from
the namespace represented by namespaceURI and with a name of qualifiedName
equal to value.

➤➤ setAttributeNodeNS(attNode)—Sets the attribute node from the namespace represented
by namespaceURI.

These methods behave the same as their DOM Level 1 counterparts with the exception of the first
argument, which is always the namespace URI except for setAttributeNodeNS().

Changes to NamedNodeMap
The NamedNodeMap type also introduces the following methods for dealing with namespaces. Because
attributes are represented by a NamedNodeMap, these methods mostly apply to attributes.

➤➤ getNamedItemNS(namespaceURI, localName)—Gets the item from the namespace repre-
sented by namespaceURI and with a name of localName.

➤➤ removeNamedItemNS(namespaceURI, localName)—Removes the item from the namespace
represented by namespaceURI and with a name of localName.

➤➤ setNamedItemNS(node)—Adds node, which should have namespace information
already applied.

These methods are rarely used because attributes are typically accessed directly from an element.

Other Changes
There are some other minor changes made to various parts of the DOM in DOM Level 2 Core. These
changes don’t have to do with XML namespaces and are targeted more toward ensuring the robust-
ness and completeness of the API.

Changes to DocumentType
The DocumentType type adds three new properties: publicId, systemId, and internalSubset.
The publicId and systemId properties represent data that is readily available in a doctype but were
inaccessible using DOM Level 1. Consider the following HTML doctype:

<!DOCTYPE HTML PUBLIC "-// W3C// DTD HTML 4.01// EN"
 "http://www.w3.org/TR/html4/strict.dtd">

In this doctype, the publicId is "-// W3C// DTD HTML 4.01// EN" and the systemId is "http://
www.w3.org/TR/html4/strict.dtd". Browsers that support DOM Level 2 should be able to run
the following JavaScript code:

console.log(document.doctype.publicId);
console.log(document.doctype.systemId);

Accessing this information is rarely, if ever, needed in web pages.

DOM Changes ❘ 569

The internalSubset property accesses any additional definitions that are included in the doctype, as
shown in the following example:

<!DOCTYPE html PUBLIC "-// W3C// DTD XHTML 1.0 Strict// EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"
[<!ELEMENT name (#PCDATA)>] >

For this code, document.doctype.internalSubset returns "<!ELEMENT name (#PCDATA)>". Inter-
nal subsets are rarely used in HTML and are slightly more common in XML.

Changes to Document
The only new method on Document that is not related to namespaces is importNode(). The purpose
of this method is to take a node from a different document and import it into a new document so
that it can be added into the document structure. Remember that every node has an ownerDocument
property that indicates the document it belongs to. If a method such as appendChild() is called and
a node with a different ownerDocument is passed in, an error will occur. Calling importNode() on
a node from a different document returns a new version of the node that is owned by the appropri-
ate document.

The importNode() method is similar to the cloneNode() method on an element. It accepts two
arguments: the node to clone and a Boolean value indicating if the child nodes should also be copied.
The result is a duplicate of the node that is suitable for use in the document. Here is an example:

let newNode = document.importNode(oldNode, true); // import node and all children
document.body.appendChild(newNode);

This method isn’t used very often with HTML documents; it is used more frequently with XML
documents (discussed further in the XML in JavaScript chapter).

DOM Level 2 Views adds a property called defaultView, which is a pointer to the window (or
frame) that owns the given document. The Views specification doesn’t provide details about when
other views may be available, so this is the only property added. The defaultView property is sup-
ported in all browsers (except Internet Explorer 8 and earlier). There is an equivalent property called
parentWindow that is supported in Internet Explorer 8 and earlier, as well as Opera. Thus, to deter-
mine the owning window of a document, you can use the following code:

let parentWindow = document.defaultView || document.parentWindow;

Aside from this one method and property, there are a couple of changes to the document.implemen-
tation object specified in the DOM Level 2 Core in the form of two new methods: createDocu-
mentType() and createDocument(). The createDocumentType() method is used to create new
DocumentType nodes and accepts three arguments: the name of the doctype, the publicId, and the
systemId. For example, the following code creates a new HTML 4.01 Strict doctype:

let doctype = document.implementation.createDocumentType("html",
 "-// W3C// DTD HTML 4.01// EN",
 "http://www.w3.org/TR/html4/strict.dtd");

An existing document’s doctype cannot be changed, so createDocumentType() is useful only when
creating new documents, which can be done with createDocument(). This method accepts three

570 ❘ CHAPTER 16 DOM LeveLs 2 anD 3

arguments: the namespaceURI for the document element, the tag name of the document element, and
the doctype for the new document. A new blank XML document can be created, as shown in the fol-
lowing example:

let doc = document.implementation.createDocument("", "root", null);

This code creates a new document with no namespace and a document element of <root> with no
doctype specified. To create an XHTML document, you can use the following code:

let doctype = document.implementation.createDocumentType("html",
 "-// W3C// DTD XHTML 1.0 Strict// EN",
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd");

let doc = document.implementation.createDocument("http://www.w3.org/1999/xhtml",
 "html", doctype);

Here, a new XHTML document is created with the appropriate namespace and doctype. The docu-
ment has only the document element <html>; everything else must be added.

The DOM Level 2 HTML module also adds a method called createHTMLDocument() to document.
implementation. The purpose of this method is to create a complete HTML document, including
the <html>, <head>, <title>, and <body> elements. This method accepts a single argument, which is
the title of the newly created document (the string to go in the <title> element), and returns the new
HTML document as follows:

let htmldoc = document.implementation.createHTMLDocument("New Doc");
console.log(htmldoc.title); // "New Doc"
console.log(typeof htmldoc.body); // "object"

The object created from a call to createHTMLDocument() is an instance of the HTMLDocument type
and so contains all of the properties and methods associated with it, including the title and body
properties.

Changes to Node
DOM Level 3 introduces two methods to help compare nodes: isSameNode() and isEqualNode().
Both methods accept a single node as an argument and return true if that node is the same as or
equal to the reference node. Two nodes are the same when they reference the same object. Two nodes
are equal when they are of the same type and have properties that are equal (nodeName, nodeValue,
and so on), and their attributes and childNodes properties are equivalent (containing equivalent
values in the same positions). Here is an example:

let div1 = document.createElement("div");
div1.setAttribute("class", "box");

let div2 = document.createElement("div");
div2.setAttribute("class", "box");

console.log(div1.isSameNode(div1)); // true
console.log(div1.isEqualNode(div2)); // true
console.log(div1.isSameNode(div2)); // false

Here, two <div> elements are created with the same attributes. The two elements are equivalent to
one another but are not the same.

DOM Changes ❘ 571

DOM Level 3 also introduces methods for attaching additional data to DOM nodes. The setUser-
Data() method assigns data to a node and accepts three arguments: the key to set, the actual data
(which may be of any data type), and a handler function. You can assign data to a node using the
following code:

document.body.setUserData("name", "Nicholas", function() {});

You can then retrieve the information using getUserData() and passing in the same key, as
shown here:

let value = document.body.getUserData("name");

The handler function for setUserData() is called whenever the node with the data is cloned,
removed, renamed, or imported into another document and gives you the opportunity to determine
what should happen to the user data in each of those cases. The handler function accepts five argu-
ments: a number indicating the type of operation (1 for clone, 2 for import, 3 for delete, or 4 for
rename), the data key, the data value, the source node, and the destination node. The source node
is null when the node is being deleted, and the destination node is null unless the node is being
cloned. You can then determine how to store the data. Here is an example:

let div = document.createElement("div");
div.setUserData("name", "Nicholas", function(operation, key, value, src, dest) {
 if (operation == 1) {
 dest.setUserData(key, value, function() {}); }
});

let newDiv = div.cloneNode(true);
console.log(newDiv.getUserData("name")); // "Nicholas"

Here, a <div> element is created and has some data assigned to it, including some user data. When
the element is cloned via cloneNode(), the handler function is called and the data is automatically
assigned to the clone. When getUserData() is called on the clone, it returns the same value that
was assigned to the original.

Changes to iframes
Iframes, represented by HTMLIFrameElement have a new property in DOM Level 2 HTML called
contentDocument. This property contains a pointer to the document object representing the contents
of the iframe. This property can be used, as shown in the following example:

let iframe = document.getElementById("myIframe");
let iframeDoc = iframe.contentDocument;

The contentDocument property is an instance of Document and can be used just like any other
HTML document, including all properties and methods. There is also a property called contentWin-
dow that returns the window object for the frame, which has a document property. The contentDocu-
ment and contentWindow properties are available in all modern browsers.

NOTE Access to the document object of an iframe is limited based on cross-
domain security restrictions. If you are attempting to access the document object
of an iframe containing a page that is loaded from a different domain or subdo-
main, or with a different protocol, doing so will throw an error.

572 ❘ CHAPTER 16 DOM LeveLs 2 anD 3

STYLES

Styles are defined in HTML in three ways: including an external style sheet via the <link> element,
defining inline styles using the <style> element, and defining element-specific styles using the style
attribute. DOM Level 2 Styles provides an API around all three of these styling mechanisms.

Accessing Element Styles
Any HTML element that supports the style attribute also has a style property exposed in Java-
Script. The style object is an instance of CSSStyleDeclaration and contains all stylistic informa-
tion specified by the HTML style attribute but no information about styles that have cascaded from
either included or inline style sheets. Any CSS property specified in the style attribute are repre-
sented as properties on the style object. Because CSS property names use dash case (using dashes to
separate words, such as background-image), the names must be converted into camel case in order
to be used in JavaScript. The following table lists some common CSS properties and the equivalent
property names on the style object.

CSS PROPERTY JAVASCRIPT PROPERTY

background-image style.backgroundImage

color style.color

display style.display

font-family style.fontFamily

For the most part, property names convert directly simply by changing the format of the property
name. The one CSS property that doesn’t translate directly is float. Because float is a reserved
word in JavaScript, it can’t be used as a property name. The DOM Level 2 Style specification states
that the corresponding property on the style object should be cssFloat.

Styles can be set using JavaScript at any time as long as a valid DOM element reference is available.
Here are some examples:

let myDiv = document.getElementById("myDiv");

// set the background color
myDiv.style.backgroundColor = "red";

// change the dimensions
myDiv.style.width = "100px";
myDiv.style.height = "200px";

// assign a border
myDiv.style.border = "1px solid black";

When styles are changed in this manner, the display of the element is automatically updated.

Styles ❘ 573

NOTE When in standards mode, all measurements have to include a unit of
measure. In quirks mode, you can set style.width to be "20" and it will assume
that you mean "20px"; in standards mode, setting style.width to "20" will be
ignored because it has no unit of measure. In practice, it’s best to always include
the unit of measurement.

Styles specified in the style attribute can also be retrieved using the style object. Consider the fol-
lowing HTML:

<div id="myDiv" style="background-color: blue; width: 10px; height: 25px"></div>

The information from this element’s style attribute can be retrieved via the following code:

console.log(myDiv.style.backgroundColor); // "blue"
console.log(myDiv.style.width); // "10px"
console.log(myDiv.style.height); // "25px"

If no style attribute is specified on an element, the style object will contain empty values for all
possible CSS properties.

DOM Style Properties and Methods
The DOM Level 2 Style specification also defines several properties and methods on the style
object. These properties and methods provide information about the contents of the element’s style
attribute and enabling changes. They are as follows:

➤➤ cssText—As described previously, cssText provides access to the CSS code of the style
attribute.

➤➤ length—The number of CSS properties applied to the element.

➤➤ parentRule—The CSSRule object representing the CSS information. The CSSRule type is
discussed in a later section.

➤➤ getPropertyCSSValue(propertyName)—Returns a CSSValue object containing the value of
the given property.

➤➤ getPropertyPriority(propertyName)—Returns "important" if the given property is set
using !important; otherwise, it returns an empty string.

➤➤ getPropertyValue(propertyName)—Returns the string value of the given property.

➤➤ item(index)—Returns the name of the CSS property at the given position.

➤➤ removeProperty(propertyName)—Removes the given property from the style.

➤➤ setProperty(propertyName, value, priority)—Sets the given property to the given
value with a priority (either "important" or an empty string).

The cssText property allows access to the CSS code of the style. When used in read mode, cssText
returns the browser’s internal representation of the CSS code in the style attribute. When used in

574 ❘ CHAPTER 16 DOM LeveLs 2 anD 3

write mode, the value assigned to cssText overwrites the entire value of the style attribute, meaning
that all previous style information specified using the attribute is lost. For instance, if the element has
a border specified via the style attribute and you overwrite cssText with rules that don’t include
the border, it is removed from the element. The cssText property is used as follows:

myDiv.style.cssText = "width: 25px; height: 100px; background-color: green";
console.log(myDiv.style.cssText);

Setting the cssText property is the fastest way to make multiple changes to an element’s style
because all of the changes are applied at once.

The length property is designed for use in conjunction with the item() method for iterating over the
CSS properties defined on an element. With these, the style object effectively becomes a collection,
and bracket notation can be used in place of item() to retrieve the CSS property name in the given
position, as shown in the following example:

for (let i = 0, len = myDiv.style.length; i < len; i++) {
 console.log(myDiv.style[i]); // alternately, myDiv.style.item(i)
}

Using either bracket notation or item(), you can retrieve the CSS property name ("background-
color", not "backgroundColor"). This property name can then be used in getPropertyValue() to
retrieve the actual value of the property, as shown in the following example:

let prop, value, i, len;
for (i = 0, len = myDiv.style.length; i < len; i++) {
 prop = myDiv.style[i]; // alternately, myDiv.style.item(i)
 value = myDiv.style.getPropertyValue(prop);
 console.log('prop: ${value}');
}

The getPropertyValue() method always retrieves the string representation of the CSS property
value. If you need more information, getPropertyCSSValue() returns a CSSValue object that has
two properties: cssText and cssValueType. The cssText property is the same as the value returned
from getPropertyValue(). The cssValueType property is a numeric constant indicating the type
of value being represented: 0 for an inherited value, 1 for a primitive value, 2 for a list, or 3 for a cus-
tom value. The following code outputs the CSS property value and the value type:

let prop, value, i, len;
for (i = 0, len = myDiv.style.length; i < len; i++) {
 prop = myDiv.style[i]; // alternately, myDiv.style.item(i)
 value = myDiv.style.getPropertyCSSValue(prop);
 console.log('prop: ${value.cssText} (${value.cssValueType})');
}

The removeProperty() method is used to remove a specific CSS property from the element’s styling.
Removing a property using this method means that any default styling for that property (cascading
from other style sheets) will be applied. For instance, to remove a border property that was set in the
style attribute, you can use the following code:

myDiv.style.removeProperty("border");

This method is helpful when you’re not sure what the default value for a given CSS property is. Sim-
ply removing the property allows the default value to be used.

Styles ❘ 575

Computed Styles
The style object offers information about the style attribute on any element that supports it but
contains no information about the styles that have cascaded from style sheets and affect the ele-
ment. DOM Level 2 Style augments document.defaultView to provide a method called getCom-
putedStyle(). This method accepts two arguments: the element to get the computed style for and a
pseudo-element string (such as ":after"). The second argument can be null if no pseudo-element
information is necessary. The getComputedStyle() method returns a CSSStyleDeclaration object
(the same type as the style property) containing all computed styles for the element. Consider the
following HTML page:

<!DOCTYPE html>
<html>
<head>
 <title>Computed Styles Example</title>
 <style type="text/css">
 #myDiv {
 background-color: blue;
 width: 100px;
 height: 200px;
 }
 </style>
</head>
<body>
 <div id="myDiv" style="background-color: red; border: 1px solid black"></div>
</body>
</html>

In this example, the <div> element has styles applied to it both from an inline style sheet (the
<style> element) and from the style attribute. The style object has values for backgroundColor
and border, but nothing for width and height, which are applied through a style sheet rule. The fol-
lowing code retrieves the computed style for the element:

let myDiv = document.getElementById("myDiv");
let computedStyle = document.defaultView.getComputedStyle(myDiv, null);

console.log(computedStyle.backgroundColor); // "red"
console.log(computedStyle.width); // "100px"
console.log(computedStyle.height); // "200px"
console.log(computedStyle.border); // "1px solid black" in some browsers

When retrieving the computed style of this element, the background color is reported as "red", the
width as "100px", and the height as "200px". Note that the background color is not "blue" because
that style is overridden on the element itself. The border property may or may not return the exact
border rule from the style sheet. (Opera returns it, but other browsers do not.) This inconsistency is
due to the way that browsers interpret rollup properties, such as border, that actually set a number
of other properties. When you set border, you’re actually setting rules for the border width, color,
and style on all four borders (border-left-width, border-top-color, border-bottom-style, and
so on). So even though computedStyle.border may not return a value in all browsers, computed-
Style.borderLeftWidth does.

576 ❘ CHAPTER 16 DOM LeveLs 2 anD 3

NOTE Although some browsers support this functionality, the manner in which
values are represented can differ. For example, Firefox and Safari translate all
colors into RGB form (such as rgb(255,0,0) for red), whereas Opera trans-
lates all colors into their hexadecimal representations (#ff0000 for red). It’s
always best to test your functionality on a number of browsers when using get-
ComputedStyle().

The important thing to remember about computed styles in all browsers is that they are read-only;
you cannot change CSS properties on a computed style object. Also, the computed style contains
styling information that is part of the browser’s internal style sheet, so any CSS property that has a
default value will be represented in the computed style. For instance, the visibility property always
has a default value in all browsers, but this value differs per implementation. Some browsers set the
visibility property to "visible" by default, whereas others have it as "inherit". You cannot
depend on the default value of a CSS property to be the same across browsers. If you need elements to
have a specific default value, you should manually specify it in a style sheet.

Working with Style Sheets
The CSSStyleSheet type represents a CSS style sheet as included using a <link> element or defined
in a <style> element. Note that the elements themselves are represented by the HTMLLinkElement
and HTMLStyleElement types, respectively. The CSSStyleSheet type is generic enough to represent
a style sheet no matter how it is defined in HTML. Furthermore, the element-specific types allow for
modification of HTML attributes, whereas a CSSStyleSheet object is, with the exception of one
property, a read-only interface.

The CSSStyleSheet type inherits from StyleSheet, which can be used as a base to define non-CSS
style sheets. The following properties are inherited from StyleSheet:

➤➤ disabled—A Boolean value indicating if the style sheet is disabled. This property is read/
write, so setting its value to true will disable a style sheet.

➤➤ href—The URL of the style sheet if it is included using <link>; otherwise, this is null.

➤➤ media—A collection of media types supported by this style sheet. The collection has a
length property and item() method, as with all DOM collections. Like other DOM collec-
tions, you can use bracket notation to access specific items in the collection. An empty list
indicates that the style sheet should be used for all media.

➤➤ ownerNode—Pointer to the node that owns the style sheet, which is either a <link> or a
<style> element in HTML (it can be a processing instruction in XML). This property is
null if a style sheet is included in another style sheet using @import.

➤➤ parentStyleSheet—When a style sheet is included via @import, this is a pointer to the style
sheet that imported it.

➤➤ title—The value of the title attribute on the ownerNode.

➤➤ type—A string indicating the type of style sheet. For CSS style sheets, this is "text/css".

Styles ❘ 577

With the exception of disabled, the rest of these properties are read-only. The CSSStyleSheet type
supports all of these properties and the following properties and methods:

➤➤ cssRules—A collection of rules contained in the style sheet.

➤➤ ownerRule—If the style sheet was included using @import, this is a pointer to the rule rep-
resenting the import; otherwise, this is null.

➤➤ deleteRule(index)—Deletes the rule at the given location in the cssRules collection.

➤➤ insertRule(rule, index)—Inserts the given string rule at the position specified in the
cssRules collection.

The list of style sheets available on the document is represented by the document.styleSheets col-
lection. The number of style sheets on the document can be retrieved using the length property, and
each individual style sheet can be accessed using either the item() method or bracket notation. Here
is an example:

let sheet = null;
for (let i = 0, len = document.styleSheets.length; i < len; i++) {
 sheet = document.styleSheets[i];
 console.log(sheet.href);
}

This code outputs the href property of each style sheet used in the document (<style> elements
have no href).

The style sheets returned in document.styleSheets vary from browser to browser. All browsers
include <style> elements and <link> elements with rel set to "stylesheet". Internet Explorer and
Opera also include <link> elements where rel is set to "alternate stylesheet".

It’s also possible to retrieve the CSSStyleSheet object directly from the <link> or <style> element.
The DOM specifies a property called sheet that contains the CSSStyleSheet object.

CSS Rules
A CSSRule object represents each rule in a style sheet. The CSSRule type is actually a base type from
which several other types inherit, but the most often used is CSSStyleRule, which represents styl-
ing information (other rules include @import, @font-face, @page, and @charset, although these
rules rarely need to be accessed from script). The following properties are available on a CSSStyle-
Rule object:

➤➤ cssText—Returns the text for the entire rule. This text may be different from the actual
text in the style sheet because of the way that browsers handle style sheets internally; Safari
always converts everything to all lowercase.

➤➤ parentRule—If this rule is imported, this is the import rule; otherwise, this is null.

➤➤ parentStyleSheet—The style sheet that this rule is a part of.

➤➤ selectorText—Returns the selector text for the rule. This text may be different from the
actual text in the style sheet because of the way that browsers handle style sheets inter-
nally. This property is read-only in Firefox, Safari, Chrome, and Internet Explorer (where it
throws an error). Opera allows selectorText to be changed.

578 ❘ CHAPTER 16 DOM LeveLs 2 anD 3

➤➤ style—A CSSStyleDeclaration object that allows the setting and getting of specific style
values for the rule.

➤➤ type—A constant indicating the type of rule. For style rules, this is always 1.

The three most frequently used properties are cssText, selectorText, and style. The cssText
property is similar to the style.cssText property but not exactly the same. The former includes the
selector text and the braces around the style information; the latter contains only the style informa-
tion (similar to style.cssText on an element). Also, cssText is read-only, whereas style.cssText
may be overwritten.

Most of the time, the style property is all that is required to manipulate style rules. This object can
be used just like the one on each element to read or change the style information for a rule. Consider
the following CSS rule:

div.box {
 background-color: blue;
 width: 100px;
 height: 200px;
}

Assuming that this rule is in the first style sheet on the page and is the only style in that style sheet,
the following code can be used to retrieve all of its information:

let sheet = document.styleSheets[0];
let rules = sheet.cssRules || sheet.rules; // get rules list
let rule = rules[0]; // get first rule
console.log(rule.selectorText); // "div.box"
console.log(rule.style.cssText); // complete CSS code
console.log(rule.style.backgroundColor); // "blue"
console.log(rule.style.width); // "100px"
console.log(rule.style.height); // "200px"

Using this technique, it’s possible to determine the style information related to a rule in the same way
you can determine the inline style information for an element. As with elements, it’s also possible to
change the style information, as shown in the following example:

let sheet = document.styleSheets[0];
let rules = sheet.cssRules || sheet.rules; // get rules list
let rule = rules[0]; // get first rule
rule.style.backgroundColor = "red"

Note that changing a rule in this way affects all elements on the page for which the rule applies. If
there are two <div> elements that have the box class, they will both be affected by this change.

Creating Rules
The DOM states that new rules are added to existing style sheets using the insertRule() method.
This method expects two arguments: the text of the rule and the index at which to insert the rule.
Here is an example:

sheet.insertRule("body { background-color: silver }", 0); // DOM method

Styles ❘ 579

This example inserts a rule that changes the document’s background color. The rule is inserted as the
first rule in the style sheet (position 0)—the order is important in determining how the rule cascades
into the document.

Although adding rules in this way is possible, it quickly becomes burdensome when the number of
rules to add is large. In that case, it’s better to use the dynamic style loading technique discussed in the
Document Object Model chapter.

Deleting Rules
The DOM method for deleting rules from a style sheet is deleteRule(), which accepts a single
argument: the index of the rule to remove. To remove the first rule in a style sheet, you can use the
following code:

sheet.deleteRule(0); // DOM method

As with adding rules, deleting rules is not a common practice in web development and should be used
carefully because the cascading effect of CSS can be affected.

Element Dimensions
The following properties and methods are not part of the DOM Level 2 Style specification but none-
theless related to styles on HTML elements. The DOM stops short of describing ways to determine
the actual dimensions of elements on a page. Internet Explorer first introduced several properties to
expose dimension information to developers. These properties have now been incorporated into all of
the major browsers.

Offset Dimensions
The first set of properties deals with offset dimensions, which incorporate all of the visual space that
an element takes up on the screen. An element’s visual space on the page is made up of its height and
width, including all padding, scrollbars, and borders (but not including margins). The following four
properties are used to retrieve offset dimensions:

➤➤ offsetHeight—The amount of vertical space, in pixels, taken up by the element, including
its height, the height of a horizontal scrollbar (if visible), the top border height, and the bot-
tom border height.

➤➤ offsetLeft—The number of pixels between the element’s outside left border and the con-
taining element’s inside left border.

➤➤ offsetTop—The number of pixels between the element’s outside top border and the con-
taining element’s inside top border.

➤➤ offsetWidth—The amount of horizontal space taken up by the element, including its width,
the width of a vertical scrollbar (if visible), the left border width, and the right border width.

The offsetLeft and offsetTop properties are in relation to the containing element, which is
stored in the offsetParent property. The offsetParent may not necessarily be the same as the

580 ❘ CHAPTER 16 DOM LeveLs 2 anD 3

parentNode. For example, the offsetParent of a <td> element is the <table> element that it’s an
ancestor of, because the <table> is the first element in the hierarchy that provides dimensions.
Figure 16-1 illustrates the various dimensions these properties represent.

The offset of an element on the page can roughly be determined by taking the offsetLeft and off-
setTop properties and adding them to the same properties of the offsetParent, continuing up the
hierarchy until you reach the root element. Here is an example:

function getElementLeft(element) {
 let actualLeft = element.offsetLeft;
 let current = element.offsetParent;

 while (current !== null) {
 actualLeft += current.offsetLeft;
 current = current.offsetParent;
 }

 return actualLeft;
}

function getElementTop(element) {
 let actualTop = element.offsetTop;
 let current = element.offsetParent;

 while (current !== null) {
 actualTop += current.offsetTop;
 current = current.offsetParent;
 }

 return actualTop;
}

offsetTop

offsetLeft
offsetHeight

offsetWidth

offsetParent

border

padding

content

FIGURE 16-1:

Styles ❘ 581

These two functions climb through the DOM hierarchy using the offsetParent property, adding up
the offset properties at each level. For simple page layouts using CSS-based layouts, these functions
are very accurate. For page layouts using tables and iframes, the values returned are less accurate
on a cross-browser basis because of the different ways that these elements are implemented. Gener-
ally, all elements that are contained solely within <div> elements have <body> as their offsetPar-
ent, so getElementLeft() and getElementTop() will return the same values as offsetLeft and
offsetTop.

NOTE All of the offset dimension properties are read-only and are calculated
each time they are accessed. Therefore, you should try to avoid making multiple
calls to any of these properties; instead, store the values you need in local vari-
ables to avoid incurring a performance penalty.

Client Dimensions
The client dimensions of an element comprise the space occupied by the element’s content and its
padding. There are only two properties related to client dimensions: clientWidth and client-
Height. The clientWidth property is the width of the content area plus the width of both the left
and the right padding. The clientHeight property is the height of the content area plus the height of
both the top and the bottom padding. Figure 16-2 illustrates these properties.

The client dimensions are literally the amount of space inside of the element, so the space
taken up by scrollbars is not counted. The most common use of these properties is to
determine the browser viewport size. This is done by using the clientWidth and

clientHeight

clientWidth

offsetParent

border

padding

content

FIGURE 16-2:

582 ❘ CHAPTER 16 DOM LeveLs 2 anD 3

clientHeight of document.documentElement. These properties represent the dimensions of the
viewport (the <html> or <body> elements).

NOTE As with offset dimensions, client dimensions are read-only and are calcu-
lated each time they are accessed.

Scroll Dimensions
The last set of dimensions is scroll dimensions, which provide information about an element whose
content is scrolling. Some elements, such as the <html> element, scroll automatically without need-
ing any additional code, whereas other elements can be made to scroll by using the CSS overflow
property. The four scroll dimension properties are as follows:

➤➤ scrollHeight—The total height of the content if there were no scrollbars present.

➤➤ scrollLeft—The number of pixels that are hidden to the left of the content area. This
property can be set to change the scroll position of the element.

➤➤ scrollTop—The number of pixels that are hidden in the top of the content area. This prop-
erty can be set to change the scroll position of the element.

➤➤ scrollWidth—The total width of the content if there were no scrollbars present.

Figure 16-3 illustrates these properties.

scrollWidth

border

scrollLeft

hidden content

scrollHeight

scrollTop

content + padding

FIGURE 16-3:

Styles ❘ 583

The scrollWidth and scrollHeight properties are useful for determining the actual dimensions
of the content in a given element. For example, the <html> element is considered the element that
scrolls the viewport in a web browser. Therefore, the height of an entire page that has a vertical scroll-
bar is document.documentElement.scrollHeight.

The relationship between scrollWidth and scrollHeight to clientWidth and clientHeight is
not clear when it comes to documents that do not scroll. Inspecting these properties on document.
documentElement leads to inconsistent results across browsers, as described here:

➤➤ Firefox keeps the properties equal, but the size is related to the actual size of the document
content, not the size of the viewport.

➤➤ Opera, Safari, and Chrome keep the properties different, with scrollWidth and scroll-
Height equal to the size of the viewport and clientWidth and clientHeight equal to the
document content.

➤➤ Internet Explorer (in standards mode) keeps the properties different, with scrollWidth
and scrollHeight equal to the size of the document content, and clientWidth and clien-
tHeight equal to the viewport size.

When trying to determine the total height of a document, including the minimum height
based on the viewport, you must take the maximum value of scrollWidth/clientWidth and
scrollHeight/clientHeight to guarantee accurate results across browsers. Here is an example:

let docHeight = Math.max(document.documentElement.scrollHeight,
 document.documentElement.clientHeight);

let docWidth = Math.max(document.documentElement.scrollWidth,
 document.documentElement.clientWidth);

The scrollLeft and scrollTop properties can be used either to determine the current scroll settings
on an element or to set them. When an element hasn’t been scrolled, both properties are equal to 0. If
the element has been scrolled vertically, scrollTop is greater than 0, indicating the amount of con-
tent that is not visible at the top of the element. If the element has been scrolled horizontally, scroll-
Left is greater than 0, indicating the number of pixels that are not visible on the left. Because each
property can also be set, you can reset the element’s scroll position by setting both scrollLeft and
scrollTop to 0. The following function checks to see if the element is at the top, and if not, it scrolls
it back to the top:

function scrollToTop(element) {
 if (element.scrollTop != 0) {
 element.scrollTop = 0;
 }
}

This function uses scrollTop both for retrieving the value and for setting it.

584 ❘ CHAPTER 16 DOM LeveLs 2 anD 3

Determining Element Dimensions
Browsers offer a method called getBoundingClientRect() on each element, which returns a DOM-
Rect object that has six properties: left, top, right, bottom, height, and width. These properties
give the location of the element on the page relative to the viewport.

TRAVERSALS

The DOM Level 2 Traversal and Range module defines two types that aid in sequential traversal of
a DOM structure. These types, NodeIterator and TreeWalker, perform depth-first traversals of a
DOM structure given a certain starting point.

As stated previously, DOM traversals are a depth-first traversal of the DOM structure that allows
movement in at least two directions (depending on the type being used). A traversal is rooted at a
given node, and it cannot go any further up the DOM tree than that root. Consider the following
HTML page:

<!DOCTYPE html>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <p>Hello world!</p>
 </body>
</html>

This page evaluates to the DOM tree represented in Figure 16-4.

Document

Element html

Element head Element body

Element p

Element b

Text Hello

Text world!

Element title

Text Example

FIGURE 16-4:

Traversals ❘ 585

Any node can be the root of the traversals. Suppose, for example, that the <body> element is the tra-
versal root. The traversal can then visit the <p> element, the element, and the two text nodes that
are descendants of <body>; however, the traversal can never reach the <html> element, the <head>
element, or any other node that isn’t in the <body> element’s subtree. A traversal that has its root at
document, on the other hand, can access all of the nodes in document. Figure 16-5 depicts a depth-
first traversal of a DOM tree rooted at document.

Starting at document and moving sequentially, the first node visited is document and the last node
visited is the text node containing " world!" From the very last text node at the end of the docu-
ment, the traversal can be reversed to go back up the tree. In that case, the first node visited is the text
node containing " world!" and the last one visited is the document node itself. Both NodeIterator
and TreeWalker perform traversals in this manner.

NodeIterator
The NodeIterator type is the simpler of the two, and a new instance can be created using the docu-
ment.createNodeIterator() method. This method accepts the following four arguments:

➤➤ root—The node in the tree that you want to start searching from.

➤➤ whatToShow—A numerical code indicating which nodes should be visited.

➤➤ filter—A NodeFilter object or a function indicating whether a particular node should be
accepted or rejected.

➤➤ entityReferenceExpansion—A Boolean value indicating whether entity references
should be expanded. This has no effect in HTML pages because entity references are
never expanded.

Document

Element html

Element head Element body

Element p

Element b

Text Hello

Text world!

Element title

Text Example

1

2

3

4

8 10

9

6

7

5

FIGURE 16-5:

586 ❘ CHAPTER 16 DOM LeveLs 2 anD 3

The whatToShow argument is a bitmask that determines which nodes to visit by applying one or more
filters. Possible values for this argument are included as constants on the NodeFilter type as follows:

➤➤ NodeFilter.SHOW_ALL—Show all node types.

➤➤ NodeFilter.SHOW_ELEMENT—Show element nodes.

➤➤ NodeFilter.SHOW_ATTRIBUTE—Show attribute nodes. This can’t actually be used because
of the DOM structure.

➤➤ NodeFilter.SHOW_TEXT—Show text nodes.

➤➤ NodeFilter.SHOW_CDATA_SECTION—Show CData section nodes. This is not used in
HTML pages.

➤➤ NodeFilter.SHOW_ENTITY_REFERENCE—Show entity reference nodes. This is not used in
HTML pages.

➤➤ NodeFilter.SHOW_ENTITY—Show entity nodes. This is not used in HTML pages.

➤➤ NodeFilter.SHOW_PROCESSING_INSTRUCTION—Show PI nodes. This is not used in
HTML pages.

➤➤ NodeFilter.SHOW_COMMENT—Show comment nodes.

➤➤ NodeFilter.SHOW_DOCUMENT—Show document nodes.

➤➤ NodeFilter.SHOW_DOCUMENT_TYPE—Show document type nodes.

➤➤ NodeFilter.SHOW_DOCUMENT_FRAGMENT—Show document fragment nodes. This is not used
in HTML pages.

➤➤ NodeFilter.SHOW_NOTATION—Show notation nodes. This is not used in HTML pages.

With the exception of NodeFilter.SHOW_ALL, you can combine multiple options using the bitwise
OR operator, as shown in the following example:

let whatToShow = NodeFilter.SHOW_ELEMENT | NodeFilter.SHOW_TEXT;

The filter argument of createNodeIterator() can be used to specify a custom NodeFilter
object or a function that acts as a node filter. A NodeFilter object has only one method, accept-
Node(), which returns NodeFilter.FILTER_ACCEPT if the given node should be visited or Node-
Filter.FILTER_SKIP if the given node should not be visited. Because NodeFilter is an abstract
type, it’s not possible to create an instance of it. Instead, just create an object with an accept-
Node() method and pass the object into createNodeIterator(). The following code accepts only
<p> elements:

let filter = {
 acceptNode(node) {
 return node.tagName.toLowerCase() == "p" ?
 NodeFilter.FILTER_ACCEPT :
 NodeFilter.FILTER_SKIP;
 }
};

let iterator = document.createNodeIterator(root, NodeFilter.SHOW_ELEMENT,
 filter, false);

Traversals ❘ 587

The third argument can also be a function that takes the form of the acceptNode() method, as
shown in this example:

let filter = function(node) {
 return node.tagName.toLowerCase() == "p" ?
 NodeFilter.FILTER_ACCEPT :
 NodeFilter.FILTER_SKIP;
};

let iterator = document.createNodeIterator(root, NodeFilter.SHOW_ELEMENT,
 filter, false);

Typically, this is the form that is used in JavaScript because it is simpler and works more like the rest
of JavaScript. If no filter is required, the third argument should be set to null.

To create a simple NodeIterator that visits all node types, use the following code:

let iterator = document.createNodeIterator(document, NodeFilter.SHOW_ALL,
 null, false);

The two primary methods of NodeIterator are nextNode() and previousNode(). The nextNode()
method moves one step forward in the depth-first traversal of the DOM subtree, and previous-
Node() moves one step backward in the traversal. When the NodeIterator is first created, an inter-
nal pointer points to the root, so the first call to nextNode() returns the root. When the traversal has
reached the last node in the DOM subtree, nextNode() returns null. The previousNode() method
works in a similar way. When the traversal has reached the last node in the DOM subtree, after pre-
viousNode() has returned the root of the traversal, it will return null.

Consider the following HTML fragment:

<div id="div1">
 <p>Hello world!</p>

 List item 1
 List item 2
 List item 3

</div>

Suppose that you would like to traverse all elements inside of the <div> element. This can be accom-
plished using the following code:

let div = document.getElementById("div1");
let iterator = document.createNodeIterator(div, NodeFilter.SHOW_ELEMENT,
 null, false);

let node = iterator.nextNode();
while (node !== null) {
 console.log(node.tagName); // output the tag name
 node = iterator.nextNode();
}

The first call to nextNode() in this example returns the <p> element. Because nextNode() returns
null when it has reached the end of the DOM subtree, a while loop checks to see when null has

588 ❘ CHAPTER 16 DOM LeveLs 2 anD 3

been returned as it calls nextNode() each time through. When this code is executed, logs are dis-
played with the following tag names:

DIV
P
B
UL
LI
LI
LI

Perhaps this is too much information and you really only want to return the elements that occur
in the traversal. This can be accomplished by using a filter, as shown in the following example:

let div = document.getElementById("div1");
let filter = function(node) {
 return node.tagName.toLowerCase() == "li" ?
 NodeFilter.FILTER_ACCEPT :
 NodeFilter.FILTER_SKIP;
};

let iterator = document.createNodeIterator(div, NodeFilter.SHOW_ELEMENT,
 filter, false);

let node = iterator.nextNode();
while (node !== null) {
 console.log(node.tagName); // output the tag name
 node = iterator.nextNode();
}

In this example, only elements will be returned from the iterator.

The nextNode() and previousNode() methods work with NodeIterator’s internal pointer in the
DOM structure, so changes to the structure are represented appropriately in the traversal.

TreeWalker
TreeWalker is a more advanced version of NodeIterator. It has the same functionality, including
nextNode() and previousNode(), and adds the following methods to traverse a DOM structure in
different directions:

➤➤ parentNode()—Travels to the current node’s parent.

➤➤ firstChild()—Travels to the first child of the current node.

➤➤ lastChild()—Travels to the last child of the current node.

➤➤ nextSibling()—Travels to the next sibling of the current node.

➤➤ previousSibling()—Travels to the previous sibling of the current node.

A TreeWalker object is created using the document.createTreeWalker() method, which accepts
the same arguments as document.createNodeIterator(): the root to traverse from, which node

Traversals ❘ 589

types to show, a filter, and a Boolean value indicating if entity references should be expanded. Because
of these similarities, TreeWalker can always be used in place of NodeIterator, as in this example:

let div = document.getElementById("div1");
let filter = function(node) {
 return node.tagName.toLowerCase() == "li" ?
 NodeFilter.FILTER_ACCEPT :
 NodeFilter.FILTER_SKIP;
};

let walker = document.createTreeWalker(div, NodeFilter.SHOW_ELEMENT,
 filter, false);

let node = iterator.nextNode();
while (node !== null) {
 console.log(node.tagName); // output the tag name
 node = iterator.nextNode();
}

One difference is in the values that the filter can return. In addition to NodeFilter.FILTER_
ACCEPT and NodeFilter.FILTER_SKIP, there is NodeFilter.FILTER_REJECT. When used with a
NodeIterator object, NodeFilter.FILTER_SKIP and NodeFilter.FILTER_REJECT do the same
thing: they skip over the node. When used with a TreeWalker object, NodeFilter.FILTER_SKIP
skips over the node and goes on to the next node in the subtree, whereas NodeFilter.FILTER_
REJECT skips over that node and that node’s entire subtree. For instance, changing the filter in the
previous example to return NodeFilter.FILTER_REJECT instead of NodeFilter.FILTER_SKIP
will result in no nodes being visited. This is because the first element returned is <div>, which does
not have a tag name of "li", so NodeFilter.FILTER_REJECT is returned, indicating that the entire
subtree should be skipped. Because the <div> element is the traversal root, this means that the tra-
versal stops.

Of course, the true power of TreeWalker is its ability to move around the DOM structure. Instead of
specifying filter, it’s possible to get at the elements by navigating through the DOM tree using
TreeWalker, as shown here:

let div = document.getElementById("div1");
let walker = document.createTreeWalker(div, NodeFilter.SHOW_ELEMENT, null, false);

walker.firstChild(); // go to <p>
walker.nextSibling(); // go to

let node = walker.firstChild(); // go to first
while (node !== null) {
 console.log(node.tagName);
 node = walker.nextSibling();
}

Because you know where the elements are located in the document structure, it’s possible to
navigate there, using firstChild() to get to the <p> element, nextSibling() to get to the
element, and then firstChild() to get to the first element. Keep in mind that TreeWalker is
returning only elements (because of the second argument passed in to createTreeWalker()). Then,
nextSibling() can be used to visit each until there are no more, at which point the method
returns null.

590 ❘ CHAPTER 16 DOM LeveLs 2 anD 3

The TreeWalker type also has a property called currentNode that indicates the node that was last
returned from the traversal via any of the traversal methods. This property can also be set to change
where the traversal continues from when it resumes, as shown in this example:

let node = walker.nextNode();
console.log(node === walker.currentNode); // true
walker.currentNode = document.body; // change where to start from

Compared to NodeIterator, the TreeWalker type allows greater flexibility when travers-
ing the DOM.

RANGES

To allow an even greater measure of control over a page, the DOM Level 2 Traversal and Range
module defines an interface called a range. A range can be used to select a section of a docu-
ment regardless of node boundaries. (This selection occurs behind the scenes and cannot be seen
by the user.) Ranges are helpful when regular DOM manipulation isn’t specific enough to change
a document.

Ranges in the DOM
DOM Level 2 defines a method on the Document type called createRange(), which belongs to the
document object. A DOM range can be created using createRange(), as shown here:

let range = document.createRange();

Similar to nodes, the newly created range is tied directly to the document on which it was created
and cannot be used on other documents. This range can then be used to select specific parts of the
document behind the scenes. Once a range has been created and its position set, a number of different
operations can be performed on the contents of the range, allowing more fine-grained manipulation
of the underlying DOM tree.

Each range is represented by an instance of the Range type, which has a number of properties
and methods. The following properties provide information about where the range is located in
the document:

➤➤ startContainer—The node within which the range starts (the parent of the first node in
the selection).

➤➤ startOffset—The offset within the startContainer where the range starts. If startCon-
tainer is a text node, comment node, or CData node, the startOffset is the number of
characters skipped before the range starts; otherwise, the offset is the index of the first child
node in the range.

➤➤ endContainer—The node within which the range ends (the parent of the last node in
the selection).

Ranges ❘ 591

➤➤ endOffset—The offset within the endContainer where the range ends (follows the same
rules as startOffset).

➤➤ commonAncestorContainer—The deepest node in the document that has both startCon-
tainer and endContainer as descendants.

These properties are filled when the range is placed into a specific position in the document.

Simple Selection in DOM Ranges
The simplest way to select a part of the document using a range is to use either selectNode() or
selectNodeContents(). These methods each accept one argument, a DOM node, and fill a range
with information from that node. The selectNode() method selects the entire node, including its
children, whereas selectNodeContents() selects only the node’s children. For example, consider the
following HTML:

<!DOCTYPE html>
<html>
 <body>
 <p id="p1">Hello world!</p>
 </body>
</html>

This code can be accessed using the following JavaScript:

let range1 = document.createRange(),
 range2 = document.createRange(),
 p1 = document.getElementById("p1");
range1.selectNode(p1);
range2.selectNodeContents(p1);

The two ranges in this example contain different
sections of the document: range1 contains the <p>
element and all its children, whereas range2 contains
the element, the text node "Hello", and the text
node "world!", as seen in Figure 16-6.

When selectNode() is called, startContainer,
endContainer, and commonAncestorContainer are all equal to the parent node of the node that
was passed in; in this example, these would all be equal to document.body. The startOffset
property is equal to the index of the given node within the parent’s childNodes collection (which is
1 in this example—remember DOM-compliant browsers count white space as text nodes), whereas
endOffset is equal to the startOffset plus one (because only one node is selected).

When selectNodeContents() is called, startContainer, endContainer, and commonAncestor
Container are equal to the node that was passed in, which is the <p> element in this example.

range1

range2

<p id="p1">Hello world!</p>

FIGURE 16-6:

592 ❘ CHAPTER 16 DOM LeveLs 2 anD 3

The startOffset property is always equal to 0, because the range begins with the first child of the
given node, whereas endOffset is equal to the number of child nodes (node.childNodes.length),
which is 2 in this example.

It’s possible to get more fine-grained control over which nodes are included in the selection by using
the following range methods:

➤➤ setStartBefore(refNode)—Sets the starting point of the range to begin before refNode,
so refNode is the first node in the selection. The startContainer property is set to ref-
Node.parentNode, and the startOffset property is set to the index of refNode within its
parent’s childNodes collection.

➤➤ setStartAfter(refNode)—Sets the starting point of the range to begin after refNode, so
refNode is not part of the selection; rather, its next sibling is the first node in the selection.
The startContainer property is set to refNode.parentNode, and the startOffset prop-
erty is set to the index of refNode within its parent’s childNodes collection plus one.

➤➤ setEndBefore(refNode)—Sets the ending point of the range to begin before refNode, so
refNode is not part of the selection; its previous sibling is the last node in the selection. The
endContainer property is set to refNode.parentNode, and the endOffset property is set to
the index of refNode within its parent’s childNodes collection.

➤➤ setEndAfter(refNode)—Sets the ending point of the range to begin before refNode, so
refNode is the last node in the selection. The endContainer property is set to refNode.
parentNode, and the endOffset property is set to the index of refNode within its parent’s
childNodes collection plus one.

When you use any of these methods, all properties are assigned for you. However, it is possible to
assign these values directly in order to make complex range selections.

Complex Selection in DOM Ranges
Creating complex ranges requires the use of the setStart() and setEnd() methods. Both methods
accept two arguments: a reference node and an offset. For setStart(), the reference node becomes
the startContainer, and the offset becomes the startOffset. For setEnd(), the reference node
becomes the endContainer, and the offset becomes the endOffset.

With these methods, it is possible to mimic selectNode() and selectNodeContents(). Here is
an example:

let range1 = document.createRange(),
 range2 = document.createRange(),
 p1 = document.getElementById("p1"),
 p1Index = -1,
 i,
 len;
for (i = 0, len = p1.parentNode.childNodes.length; i < len; i++) {
 if (p1.parentNode.childNodes[i] === p1) {
 p1Index = i;
 break;
 }
}

Ranges ❘ 593

range1.setStart(p1.parentNode, p1Index);
range1.setEnd(p1.parentNode, p1Index + 1);
range2.setStart(p1, 0);
range2.setEnd(p1, p1.childNodes.length);

Note that to select the node (using range1), you must first determine the index of the given node
(p1) in its parent node’s childNodes collection. To select the node contents (using range2), you do
not need calculations; setStart() and setEnd() can be set with default values. Although mimick-
ing selectNode() and selectNodeContents() is possible, the real power of setStart() and
setEnd() is in the partial selection of nodes.

Suppose that you want to select only from the "llo" in "Hello" to the "o" in "world!" in the previ-
ous HTML code. This is quite easy to accomplish. The first step is to get references to all of the rel-
evant nodes, as shown in the following example:

let p1 = document.getElementById("p1"),
 helloNode = p1.firstChild.firstChild,
 worldNode = p1.lastChild

The "Hello" text node is actually a grandchild of <p> because it’s a child of , so you can use p1.
firstChild to get and p1.firstChild.firstChild to get the text node. The "world!" text
node is the second (and the last) child of <p>, so you can use p1.lastChild to retrieve it. Next, the
range must be created and its boundaries defined, as shown in the following example:

let range = document.createRange();
range.setStart(helloNode, 2);
range.setEnd(worldNode, 3);

Because the selection should start after the "e" in
"Hello", helloNode is passed into setStart() with
an offset of 2 (the position after the "e" where "H"
is in position 0). To set the end of the selection, pass
worldNode into setEnd() with an offset of 3, indicat-
ing the first character that should not be selected,
which is "r" in position 3 (there is actually a space in
position 0). You’ll see this illustrated in Figure 16-7.

Because both helloNode and worldNode are text nodes, they become the startContainer and
endContainer for the range so that the startOffset and endOffset accurately look at the text
contained within each node rather than look for child nodes (which is what happens when an element
is passed in). The commonAncestorContainer is the <p> element, which is the first ancestor that
contains both nodes.

Of course, just selecting sections of the document isn’t very useful unless you can interact with the
selection.

Interacting with DOM Range Content
When a range is created, internally it creates a document fragment node onto which all of the nodes
in the selection are attached. The range contents must be well formed in order for this process to take
place. In the previous example, the range does not represent a well-formed DOM structure because

range

0 1 2 3 4
<p id="p1">Hello world!</p>

0 1 2 3 4 5 6

FIGURE 16-7:

594 ❘ CHAPTER 16 DOM LeveLs 2 anD 3

the selection begins inside one text node and ends in another, which cannot be represented in the
DOM. Ranges, however, recognize missing opening and closing tags and are, therefore, able to recon-
struct a valid DOM structure to operate on.

In the previous example, the range calculates that a start tag is missing inside the selection, so
the range dynamically adds it behind the scenes, along with a new end tag to enclose "He", thus
altering the DOM to the following:

<p>Hello world!</p>

Additionally, the "world!" text node is split into two text nodes, one containing " wo" and the other
containing "rld!". The resulting DOM tree is shown in Figure 16-8, along with the contents of the
document fragment for the range.

With the range created, the contents of the range can be manipulated using a variety of methods.
(Note that all nodes in the range’s internal document fragment are simply pointers to nodes in the
document.)

The first method is the simplest to understand and use: deleteContents(). This method simply
deletes the contents of the range from the document. Here is an example:

let p1 = document.getElementById("p1"),
 helloNode = p1.firstChild.firstChild,
 worldNode = p1.lastChild,
 range = document.createRange();

range.setStart(helloNode, 2);
range.setEnd(worldNode, 3);

range.deleteContents();

Element p

Element b

Element b

Text He

Text llo

Text wo

Text rld!

Document

DocumentFragment

Element b

Text llo

Text wo

Range

FIGURE 16-8:

Ranges ❘ 595

Executing this code results in the following HTML being shown on the page:

<p>Herld!</p>

Because the range selection process altered the underlying DOM structure to remain well formed, the
resulting DOM structure is well formed even after removing the contents.

extractContents() is similar to deleteContents() in that it also removes the range selection from
the document. The difference is that extractContents() returns the range’s document fragment
as the function value. This allows you to insert the contents of the range somewhere else. Here is
an example:

let p1 = document.getElementById("p1"),
 helloNode = p1.firstChild.firstChild,
 worldNode = p1.lastChild,
 range = document.createRange();

range.setStart(helloNode, 2);
range.setEnd(worldNode, 3);

let fragment = range.extractContents();
p1.parentNode.appendChild(fragment);

In this example, the fragment is extracted and added to the end of the document’s <body> element.
(Remember, when a document fragment is passed into appendChild(), only the fragment’s children
are added, not the fragment itself.) The resulting HTML is as follows:

<p>Herld!</p>
llo wo

Another option is to leave the range in place but create a clone of it that can be inserted elsewhere in
the document by using cloneContents(), as shown in this example:

let p1 = document.getElementById("p1"),
 helloNode = p1.firstChild.firstChild,
 worldNode = p1.lastChild,
 range = document.createRange();

range.setStart(helloNode, 2);
range.setEnd(worldNode, 3);

let fragment = range.cloneContents();
p1.parentNode.appendChild(fragment);

This method is very similar to extractContents() because both return a document fragment. The
main difference is that the document fragment returned by cloneContents() contains clones of
the nodes contained in the range instead of the actual nodes. With this operation, the HTML in the
page is as follows:

<p>Hello world!</p>
llo wo

It’s important to note that the splitting of nodes ensures that a well-formed document isn’t produced
until one of these methods is called. The original HTML remains intact right up until the point that
the DOM is modified.

596 ❘ CHAPTER 16 DOM LeveLs 2 anD 3

Inserting DOM Range Content
Ranges can be used to remove or clone content, as you saw in the previous section, and to manipulate
the contents inside of the range. The insertNode() method enables you to insert a node at the begin-
ning of the range selection. For example, suppose that you want to insert the following HTML prior
to the HTML used in the previous example:

Inserted text

The following code accomplishes this:

let p1 = document.getElementById("p1"),
 helloNode = p1.firstChild.firstChild,
 worldNode = p1.lastChild,
 range = document.createRange();

range.setStart(helloNode, 2);
range.setEnd(worldNode, 3);

let span = document.createElement("span");
span.style.color = "red";
span.appendChild(document.createTextNode("Inserted text"));
range.insertNode(span);

Running this JavaScript effectively creates the following HTML code:

<p id="p1">HeInserted textllo world</p>

Note that is inserted just before the "llo" in "Hello", which is the first part of the range
selection. Also note that the original HTML didn’t add or remove elements because none of the
methods introduced in the previous section were used. You can use this technique to insert helpful
information, such as an image next to links that open in a new window.

Along with inserting content into the range, it is possible to insert content surrounding the range by
using the surroundContents() method. This method accepts one argument, which is the node that
surrounds the range contents. Behind the scenes, the following steps are taken:

1. The contents of the range are extracted.

2. The given node is inserted into the position in the original document where the range was.

3. The contents of the document fragment are added to the given node.

This sort of functionality is useful online to highlight certain words in a web page, as shown here:

let p1 = document.getElementById("p1"),
 helloNode = p1.firstChild.firstChild,
 worldNode = p1.lastChild,
 range = document.createRange();

range.selectNode(helloNode);
let span = document.createElement("span");
span.style.backgroundColor = "yellow";
range.surroundContents(span);

Ranges ❘ 597

This code highlights the range selection with a yellow background. The resulting HTML is as follows:

<p>Hello world!</p>

In order to insert the , the range has to contain a whole DOM selection. (It can’t have only
partially selected DOM nodes.)

Collapsing a DOM Range
When a range isn’t selecting any part of a document, it is said to be collapsed. Collapsing a range
resembles the behavior of a text box. When you have text in a text box, you can highlight an entire
word using the mouse. However, if you left-click the mouse again, the selection is removed and the
cursor is located between two letters. When you collapse a range, its location is set between parts of
a document, either at the beginning of the range selection or at the end. Figure 16-9 illustrates what
happens when a range is collapsed.

You can collapse a range by using the collapse() method, which accepts a single argument: a
Boolean value indicating which end of the range to collapse to. If the argument is true, then the
range is collapsed to its starting point; if it is false, the range is collapsed to its ending point. To
determine if a range is already collapsed, you can use the collapsed property as follows:

range.collapse(true); // collapse to the starting point
console.log(range.collapsed); // outputs "true"

Testing whether a range is collapsed is helpful if you
aren’t sure if two nodes in the range are next to each
other. For example, consider this HTML code:

<p id="p1">Paragraph 1</p><p
id="p2">Paragraph 2</p>

If you don’t know the exact makeup of this code (for
example, if it is automatically generated), you might try
creating a range like this:

let p1 = document.getElementById("p1"),
 p2 = document.getElementById("p2"),
 range = document.createRange();
range.setStartAfter(p1);
range.setStartBefore(p2);
console.log(range.collapsed); // true

In this case, the created range is collapsed because there is nothing between the end of p1 and the
beginning of p2.

Comparing DOM Ranges
If you have more than one range, you can use the compareBoundaryPoints() method to determine
if the ranges have any boundaries (start or end) in common. The method accepts two arguments: the
range to compare to and how to compare. It is one of the following constant values:

➤➤ Range.START _ TO _ START (0)—Compares the starting point of the first range to the
starting point of the second.

<p id="p1">Hello world!</p>

Original Range

<p id="p1">Hello world!</p>

Collapsed to end

<p id="p1">Hello world!</p>

Collapsed to beginning

FIGURE 16-9:

598 ❘ CHAPTER 16 DOM LeveLs 2 anD 3

➤➤ Range.START _ TO _ END (1)—Compares the starting point of the first range to the end
point of the second.

➤➤ Range.END _ TO _ END (2)—Compares the end point of the first range to the end point of
the second.

➤➤ Range.END _ TO _ START (3)—Compares the end point of the first range to the starting
point of the second.

The compareBoundaryPoints() method returns –1 if the point from the first range comes before
the point from the second range, 0 if the points are equal, or 1 if the point from the first range comes
after the point from the second range. Consider the following example:

let range1 = document.createRange();
let range2 = document.createRange();
let p1 = document.getElementById("p1");

range1.selectNodeContents(p1);
range2.selectNodeContents(p1);
range2.setEndBefore(p1.lastChild);

console.log(range1.compareBoundaryPoints(Range.START_TO_START, range2)); // 0
console.log(range1.compareBoundaryPoints(Range.END_TO_END, range2)); // 1

In this code, the starting points of the two ranges are
exactly the same because both use the default value from
selectNodeContents(); therefore, the method returns
0. For range2, however, the end point is changed using
setEndBefore(), making the end point of range1 come
after the end point of range2 (see Figure 16-10), so the
method returns 1.

Cloning DOM Ranges
Ranges can be cloned by calling the cloneRange() method. This method creates an exact duplicate
of the range on which it is called:

let newRange = range.cloneRange();

The new range contains all of the same properties as the original, and its end points can be modified
without affecting the original in any way.

Cleanup
When you are done using a range, it is best to call the detach() method, which detaches the range
from the document on which it was created. After calling detach(), the range can be safely derefer-
enced, so the memory can be reclaimed through garbage collection. Here is an example:

range.detach(); // detach from document
range = null; // dereferenced

range1

range2

<p id="p1">Hello world!</p>

FIGURE 16-10:

Summary ❘ 599

Following these two steps is the most appropriate way to finish using a range. Once it is detached, a
range can no longer be used.

SUMMARY

The DOM Level 2 specifications define several modules that augment the functionality of DOM
Level 1. DOM Level 2 Core introduces several new methods related to XML namespaces on various
DOM types. These changes are relevant only when used in XML or XHTML documents; they have
no use in HTML documents. Methods not related to XML namespaces include the ability to pro-
grammatically create new instances of Document and to enable the creation of DocumentType objects.

The DOM Level 2 Style module specifies how to interact with stylistic information about elements
as follows:

➤➤ Every element has a style object associated with it that can be used to determine and
change inline styles.

➤➤ To determine the computed style of an element, including all CSS rules that apply to it, you
can use a method called getComputedStyle().

➤➤ It’s also possible to access style sheets via the document.styleSheets collection.

The DOM Level 2 Traversals and Range module specifies different ways to interact with a DOM
structure as follows:

➤➤ Traversals are handled using either NodeIterator or TreeWalker to perform depth-first
traversals of a DOM tree.

➤➤ The NodeIterator interface is simple, allowing only forward and backward movement
in one-step increments. The TreeWalker interface supports the same behavior and moves
across the DOM structure in all other directions, including parents, siblings, and children.

➤➤ Ranges are a way to select specific portions of a DOM structure to augment it in
some fashion.

➤➤ Selections of ranges can be used to remove portions of a document while retaining a well-
formed document structure or for cloning portions of a document.

Events
WHAT’S IN THIS CHAPTER?

➤➤ Understanding event flow

➤➤ Working with event handlers

➤➤ Examining the different types of events

JavaScript’s interaction with HTML is handled through events, which indicate when particular
moments of interest occur in the document or browser window. Events can be subscribed to
using listeners (also called handlers) that execute only when an event occurs. This model, called
the “observer pattern” in traditional software engineering, allows a loose coupling between
the behavior of a page (defined in JavaScript) and the appearance of the page (defined in
HTML and CSS).

Events first appeared in Internet Explorer 3 and Netscape Navigator 2 as a way to offload some
form processing from the server onto the browser. By the time Internet Explorer 4 and Netscape
4 were released, each browser delivered similar but different APIs that continued for several
generations. DOM Level 2 was the first attempt to standardize the DOM events API in a logical
way. All modern browsers have implemented the core parts of DOM Level 2 Events. Internet
Explorer 8 was the last major browser to use a purely proprietary event system.

The browser event system is a complex one. Even though all major browsers have implemented
DOM Level 2 Events, the specification doesn’t cover all event types. The BOM also supports
events, and the relationship between these and the DOM events is often confusing because of a
longtime lack of documentation (something that HTML5 has tried to clarify). Further com-
plicating matters is the augmentation of the DOM events API by DOM Level 3. Working with
events can be relatively simple or very complex, depending on your requirements. Still, there are
some core concepts that are important to understand.

17

Professional JavaScript® for Web Developers, Fourth Edition. Matt Frisbie.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

602 ❘ CHAPTER 17 EvEnts

EVENT FLOW

When development for the fourth generation of web browsers began (Internet Explorer 4 and
Netscape Communicator 4), the browser development teams were met with an interesting question:
What part of a page owns a specific event? To understand the issue, consider a series of concentric
circles on a piece of paper. When you place your finger at the center, it is inside of not just one circle
but all of the circles on the paper. Both development teams looked at browser events in the same way.
When you click on a button, they concluded, you’re clicking not just on the button but also on its
container and on the page as a whole.

Event flow describes the order in which events are received on the page, and interestingly, the Internet
Explorer and Netscape development teams came up with an almost exactly opposite concept of event
flow. Internet Explorer would support an event bubbling flow, whereas Netscape Communicator
would support an event capturing flow.

Event Bubbling
The Internet Explorer event flow is called event bubbling because an event is said to start at the most
specific element (the deepest possible point in the document tree) and then flow upward toward the
least specific node (the document). Consider the following HTML page:

<!DOCTYPE html>
<html>
<head>
 <title>Event Bubbling Example</title>
</head>
<body>
 <div id="myDiv">Click Me</div>
</body>
</html>

When you click the <div> element in the page, the click event occurs in the following order:

1. <div>

2. <body>

3. <html>

4. document

The click event is first fired on the <div>, which is the element
that was clicked. Then the click event goes up the DOM tree,
firing on each node along its way until it reaches the document
object. Figure 17-1 illustrates this effect.

All modern browsers support event bubbling, although there
are some variations on how it is implemented. Internet Explorer
5.5 and earlier skip bubbling to the <html> element (going from
<body> directly to document). Modern browsers continue event
bubbling up to the window object.

Document

Element html

Element body

4

3

2

Element div 1

FIGURE 17-1:

Event Flow ❘ 603

Event Capturing
The Netscape Communicator team came up with an alternate event flow called event capturing. The
theory of event capturing is that the least specific node should receive the event first and the most
specific node should receive the event last. Event capturing was really designed to intercept the event
before it reached the intended target. If the previous example is used with event capturing, clicking
the <div> element fires the click event in the following order:

1. document

2. <html>

3. <body>

4. <div>

With event capturing, the click event is first received by the docu-
ment and then continues down the DOM tree to the actual target of
the event, the <div> element. This flow is illustrated in Figure 17-2.

Although this was Netscape Communicator’s only event flow
model, event capturing is supported in all modern browsers. All
of them actually begin event capturing at the window-level event
despite the fact that the DOM Level 2 Events specification indi-
cates that the events should begin at document.

Event capturing is generally not used because of a lack of support
in older browsers. The general advice is to use event bubbling
freely while retaining event capturing for special circumstances.

DOM Event Flow
The event flow specified by DOM Level 2 Events has three phases: the event capturing phase, at the
target, and the event bubbling phase. Event capturing occurs first, providing the opportunity to inter-
cept events if necessary. Next, the actual target receives the event. The final phase is bubbling, which
allows a final response to the event. Considering the simple HTML example used previously, clicking
the <div> fires the event in the order indicated in Figure 17-3.

Document

Element html

Element body

1

2

3

Element div 4

FIGURE 17-2:

bubbling phase

capturing phase

1

2

3

Document

Element html

Element body

7

6

5

Element div 4

FIGURE 17-3:

604 ❘ CHAPTER 17 EvEnts

In the DOM event flow, the actual target (the <div> element) does not receive the event during the
capturing phase. This means that the capturing phase moves from document to <html> to <body>
and stops. The next phase is “at target,” which fires on the <div> and is considered to be part of the
bubbling phase in terms of event handling (discussed later). Then, the bubbling phase occurs and the
event travels back up to the document.

Most of the browsers that support DOM event flow have implemented a quirk. Even though the
DOM Level 2 Events specification indicates that the capturing phase doesn’t hit the event target,
modern browsers all fire an event during the capturing phase on the event target. The end result is
that there are two opportunities to work with the event on the target.

NOTE All modern browsers support the DOM event flow; only Internet
Explorer 8 and earlier do not.

EVENT HANDLERS

Events are certain actions performed either by the user or by the browser itself. These events have
names like click, load, and mouseover. A function that is called in response to an event is called an
event handler (or an event listener). Event handlers have names beginning with "on", so an event han-
dler for the click event is called onclick and an event handler for the load event is called onload.
Assigning event handlers can be accomplished in a number of different ways.

HTML Event Handlers
Each event supported by a particular element can be assigned using an HTML attribute with the
name of the event handler. The value of the attribute should be some JavaScript code to execute. For
example, to execute some JavaScript when a button is clicked, you can use the following:

<input type="button" value="Click Me" onclick="console.log('Clicked')"/>

When this button is clicked, a message is logged. This interaction is defined by specifying the
onclick attribute and assigning some JavaScript code as the value. Note that because the JavaScript code
is an attribute value, you cannot use HTML syntax characters such as the ampersand, double quotes, less-
than, or greater-than without escaping them. In this case, single quotes were used instead of double quotes
to avoid the need to use HTML entities. To use double quotes, you will change the code to the following:

<input type="button" value="Click Me"
 onclick="console.log("Clicked")"/>

An event handler defined in HTML may contain the precise action to take or it can call a script
defined elsewhere on the page, as in this example:

<script>
 function showMessage() {
 console.log("Hello world!");
 }
</script>
<input type="button" value="Click Me" onclick="showMessage()"/>

Event Handlers ❘ 605

In this code, the button calls showMessage() when it is clicked. The showMessage() function is
defined in a separate <script> element and could also be included in an external file. Code executing
as an event handler has access to everything in the global scope.

Event handlers assigned in this way have some unique aspects. First, a function is created that wraps
the attribute value. That function has a special local variable called event, which is the event
object (discussed later in this chapter):

<!-- outputs "click" -->
<input type="button" value="Click Me" onclick="console.log(event.type)">

This gives you access to the event object without needing to define it yourself and without needing to
pull it from the enclosing function’s argument list.

The this value inside of the function is equivalent to the event’s target element, as shown in
this example:

<!-- outputs "Click Me" -->
<input type="button" value="Click Me" onclick="console.log(this.value)">

Another interesting aspect of this dynamically created function is how it augments the scope chain.
Within the function, members of both document and the element itself can be accessed as if they were
local variables. The function accomplishes this via scope chain augmentation using with:

function() {
 with(document) {
 with(this) {
 // attribute value
 }
 }
}

This means that an event handler can access its own properties easily. The following is functionally
the same as the previous example:

<!-- outputs "Click Me" -->
<input type="button" value="Click Me" onclick="console.log(value)">

If the element is a form input element, then the scope chain also contains an entry for the parent form
element, making the function the equivalent to the following:

function() {
 with(document) {
 with(this.form) {
 with(this) {
 // attribute value
 }
 }
 }
}

Basically, this augmentation allows the event handler code to access other members of the same form
without referencing the form element itself. This pattern of member access is demonstrated in the fol-
lowing example:

<form method="post">
 <input type="text" name="username" value="">

606 ❘ CHAPTER 17 EvEnts

 <input type="button" value="Echo Username"
 onclick="console.log(username.value)">
</form>

Clicking the button in this example results in the text from the text box being displayed. Note that it
just references username directly.

There are a few downsides to assigning event handlers in HTML. The first is a timing issue: It’s
possible that the HTML element appears on the page and is interacted with by the user before the
event handler code is ready. In the previous example, imagine a scenario where the showMessage()
function isn’t defined until later on the page, after the code for the button. If the user were to click the
button before showMessage() was defined, an error would occur. For this reason, most HTML event
handlers are enclosed in try-catch blocks so that they quietly fail, as in the following example:

<input type="button" value="Click Me" onclick="try{showMessage();}catch(ex) {}">

If this button is clicked before the showMessage() function is defined, no JavaScript error occurs
because the error is caught before the browser can handle it.

Another downside is that the scope chain augmentation in the event handler function can lead to
different results in different browsers. The rules being followed for identifier resolution are slightly
different amongst JavaScript engines, and so the result of accessing unqualified object members may
cause errors.

The last downside to assigning event handlers using HTML is that it tightly couples the HTML to the
JavaScript. If the event handler needs to be changed, you may need to change code in two places: in
the HTML and in the JavaScript. This is the primary reason that many developers avoid HTML event
handlers in favor of using JavaScript to assign event handlers.

DOM Level 0 Event Handlers
The traditional way of assigning event handlers in JavaScript is to assign a function to an event han-
dler property. This was the event handler assignment method introduced in the fourth generation of
web browsers, and it still remains in all modern browsers because of its simplicity and cross-browser
support. To assign an event handler using JavaScript, you must first retrieve a reference to the object
to act on.

Each element (as well as window and document) has event handler properties that are typically all
lowercase, such as onclick. An event handler is assigned by setting the property equal to a function,
as in this example:

let btn = document.getElementById("myBtn");
btn.onclick = function() {
 console.log("Clicked");
};

Here, a button is retrieved from the document and an onclick event handler is assigned. Note
that the event handler isn’t assigned until this code is run, so if the code appears after the code for
the button in the page, there may be an amount of time during which the button will do nothing
when clicked.

Event Handlers ❘ 607

When assigning event handlers using the DOM Level 0 method, the event handler is considered to be
a method of the element. The event handler, therefore, is run within the scope of element, meaning
that this is equivalent to the element. The value of this is demonstrated in the following example:

let btn = document.getElementById("myBtn");
btn.onclick = function() {
 console.log(this.id); // "myBtn"
};

This code displays the element’s ID when the button is clicked. The ID is retrieved using this.id.
It’s possible to use this to access any of the element’s properties or methods from within the event
handlers. Event handlers added in this way are intended for the bubbling phase of the event flow.

You can remove an event handler assigned via the DOM Level 0 approach by setting the value of the
event handler property to null, as in the following example:

btn.onclick = null; // remove event handler

Once the event handler is set to null, the button no longer has any action to take when it is clicked.

NOTE If you've assigned an event handler using HTML, the value on the
onclick property is a function containing the code specified in the HTML attri-
bute. These event handlers can also be removed by setting the property to null.

DOM Level 2 Event Handlers
DOM Level 2 Events define two methods to deal with the assignment and removal of event handlers:
addEventListener() and removeEventListener(). These methods exist on all DOM nodes and
accept three arguments: the event name to handle, the event handler function, and a Boolean value
indicating whether to call the event handler during the capture phase (true) or during the bubble
phase (false).

To add an event handler for the click event on a button, you can use the following code:

let btn = document.getElementById("myBtn");
btn.addEventListener("click", () => {
 console.log(this.id);
}, false);

This code adds an onclick event handler to a button that will be fired in the bubbling phase (since
the last argument is false). As with the DOM Level 0 approach, the event handler runs in the scope
of the element on which it is attached. The major advantage to using the DOM Level 2 method for
adding event handlers is that multiple event handlers can be added. Consider the following example:

let btn = document.getElementById("myBtn");
btn.addEventListener("click", () => {
 console.log(this.id);
}, false);
btn.addEventListener("click", () => {
 console.log("Hello world!");
}, false);

608 ❘ CHAPTER 17 EvEnts

Here, two event handlers are added to the button. The event handlers fire in the order in which
they were added, so the first log displays the element’s ID and the second displays the message
“Hello world!”

Event handlers added via addEventListener() can be removed only by using removeEventLis-
tener() and passing in the same arguments as were used when the handler was added. This means
that anonymous functions added using addEventListener() cannot be removed, as shown in
this example:

let btn = document.getElementById("myBtn");
btn.addEventListener("click", () => {
 console.log(this.id);
}, false);

// other code here

btn.removeEventListener("click", function() { // won't work!
 console.log(this.id);
}, false);

In this example, an anonymous function is added as an event handler using addEventListener().
The call to removeEventListener() looks like it’s using the same arguments, but in reality, the
second argument is a completely different function than the one used in addEventListener(). The
event handler function passed into removeEventListener() must be the same one that was used in
addEventListener(), as in this example:

let btn = document.getElementById("myBtn");
let handler = function() {
 console.log(this.id);
};
btn.addEventListener("click", handler, false);

// other code here

btn.removeEventListener("click", handler, false); // works!

This rewritten example works as expected because the same function is used for both addEventLis-
tener() and removeEventListener().

In most cases, event handlers are added to the bubbling phase of the event flow because this offers
the broadest possible cross-browser support. Attaching an event handler in the capture phase is best
done if you need to intercept events before they reach their intended target. If this is not necessary, it’s
advisable to avoid event capturing.

Internet Explorer Event Handlers
Internet Explorer implements methods similar to the DOM called attachEvent() and detach-
Event(). These methods accept the same two arguments: the event handler name and the event
handler function. Because Internet Explorer 8 and earlier support only event bubbling, event handlers
added using attachEvent() are attached on the bubbling phase.

Event Handlers ❘ 609

To add an event handler for the click event on a button using attachEvent(), you can use the fol-
lowing code:

var btn = document.getElementById("myBtn");
btn.attachEvent("onclick", function() {
 console.log("Clicked");
});

Note that the first argument of attachEvent() is "onclick" as opposed to "click" in the DOM’s
addEventListener() method.

A major difference between using attachEvent() and using the DOM Level 0 approach in Internet
Explorer is the scope of the event handler. When using DOM Level 0, the event handler runs with
a this value equal to the element on which it is attached; when using attachEvent(), the event
handler runs in the global context, so this is equivalent to window. Consider this example which uses
attachEvent():

var btn = document.getElementById("myBtn");
btn.attachEvent("onclick", function() {
 console.log(this === window); // true
});

This difference is important to understand when writing cross-browser code.

The attachEvent() method, similar to addEventListener(), can be used to add multiple
event handlers to a single element. Consider the following example, which uses multiple attach-
Event() calls:

var btn = document.getElementById("myBtn");
btn.attachEvent("onclick", function() {
 console.log("Clicked");
});
btn.attachEvent("onclick", function() {
 console.log("Hello world!");
});

Here, attachEvent() is called twice, adding two different event handlers to the same button. Unlike
the DOM method, though, the event handlers fire in reverse of the order they were added. When the
button in this example is clicked, the first log says "Hello world!" and the second says "Clicked".

Events added using attachEvent() are removed using detachEvent() as long as the same argu-
ments are provided. As with the DOM methods, this means that anonymous functions cannot be
removed once they have been added. Event handlers can always be removed as long as a reference
to the same function can be passed into detachEvent(). Consider this example, which attaches and
detaches an event:

var btn = document.getElementById("myBtn");
var handler = function() {
 console.log("Clicked");
};
btn.attachEvent("onclick", handler);

// other code here

btn.detachEvent("onclick", handler);

610 ❘ CHAPTER 17 EvEnts

This example adds an event handler stored in the variable handler. That same function is later
removed using detachEvent().

Cross-Browser Event Handlers
To accommodate event handling in a cross-browser way, many developers end up either using a
JavaScript library that abstracts away the browser differences or writing custom code to use the most
appropriate event-handling approach. Writing your own code is fairly straightforward, because it
relies on capability detection. To make sure that the event-handling code works in the most compat-
ible way possible, you will need it to work only on the bubbling phase.

The first method to create is called addHandler(), and its job is to use the DOM Level 0 approach,
the DOM Level 2 approach, or the Internet Explorer approach to adding events, depending on which
is available. This method is attached to an object called EventUtil that is used throughout this chap-
ter to aid in handling cross-browser differences. The addHandler() method accepts three arguments:
the element to act on, the name of the event, and the event handler function.

The counterpart to addHandler() is removeHandler(), which accepts the same three arguments.
This method’s job is to remove a previously added event handler using whichever means is available,
defaulting to DOM Level 0 if no other method is available.

The full code for EventUtil is as follows:

var EventUtil = {
 addHandler: function(element, type, handler) {
 if (element.addEventListener) {
 element.addEventListener(type, handler, false);
 } else if (element.attachEvent) {
 element.attachEvent("on" + type, handler);
 } else {
 element["on" + type] = handler;
 }
 },

 removeHandler: function(element, type, handler) {
 if (element.removeEventListener) {
 element.removeEventListener(type, handler, false);
 } else if (element.detachEvent) {
 element.detachEvent("on" + type, handler);
 } else {
 element["on" + type] = null;
 }
 }
};

Both methods first check for the existence of the DOM Level 2 method on the element that was
passed in. If the DOM Level 2 method exists, it is used, passing in the event type and the event han-
dler function, along with a third argument of false (to indicate the bubbling phase). If the Internet
Explorer method is available, it is used as a second option. Note that the event type must be prefixed
with "on" in order for it to work in Internet Explorer 8 and earlier. The last resort is to use the DOM
Level 0 method (code should never reach here in modern browsers). Note the use of bracket notation
to assign the property name to either the event handler or null.

The Event Object ❘ 611

This utility object can be used in the following way:

let btn = document.getElementById("myBtn");
let handler = function() {
 console.log("Clicked");
};
EventUtil.addHandler(btn, "click", handler);

// other code here

EventUtil.removeHandler(btn, "click", handler);

The addHandler() and removeHandler() methods don’t equalize all functionality across all brows-
ers, such as the Internet Explorer scope issue, but they do allow the seamless addition and removal of
event handlers. Keep in mind, also, that DOM Level 0 support is limited to just one event handler per
event. Fortunately, DOM Level 0 browsers are no longer in popular use, so this shouldn’t affect you.

THE EVENT OBJECT

When an event related to the DOM is fired, all of the relevant information is gathered and stored
on an object called event. This object contains basic information such as the element that caused
the event, the type of event that occurred, and any other data that may be relevant to the particular
event. For example, an event caused by a mouse action generates information about the mouse’s posi-
tion, whereas an event caused by a keyboard action generates information about the keys that were
pressed. All browsers support the event object, though not in the same way.

The DOM Event Object
In DOM-compliant browsers, the event object is passed in as the sole argument to an event handler.
Regardless of the method used to assign the event handler, DOM Level 0 or DOM Level 2, the event
object is passed in. Here is an example which references the event object inside the handler both ways:

let btn = document.getElementById("myBtn");
btn.onclick = function(event) {
 console.log(event.type); // "click"
};

btn.addEventListener("click", (event) => {
 console.log(event.type); // "click"
}, false);

Both event handlers in this example log a message indicating the type of event being fired by
using the event.type property. This property always contains the type of event that was fired,
such as "click" (it is the same value that you pass into addEventListener() and removeEven-
tListener()).

When an event handler is assigned using HTML attributes, the event object is available as a variable
called event. This example demonstrates how to use this variable:

<input type="button" value="Click Me" onclick="console.log(event.type)">

Providing the event object in this way allows HTML attribute event handlers to perform the same as
JavaScript functions.

612 ❘ CHAPTER 17 EvEnts

The event object contains properties and methods related to the specific event that caused its crea-
tion. The available properties and methods differ based on the type of event that was fired, but all
events have the members listed in the following table.

PROPERTY/METHOD TYPE READ/WRITE DESCRIPTION

bubbles Boolean Read only Indicates if the event bubbles.

cancelable Boolean Read only Indicates if the default behavior of the
event can be canceled.

currentTarget Element Read only The element whose event handler is
currently handling the event.

defaultPrevented Boolean Read only When true, indicates that
preventDefault() has been called
(added in DOM Level 3 Events).

detail Integer Read only Extra information related to the event.

eventPhase Integer Read only The phase during which the event
handler is being called: 1 for the
capturing phase, 2 for “at target,” and
3 for bubbling.

preventDefault() Function Read only Cancels the default behavior for the
event. If cancelable is true, this
method can be used.

stopImmediate

Propagation()
Function Read only Cancels any further event capturing or

event bubbling and prevents any other
event handlers from being called.
(Added in DOM Level 3 Events.)

stopPropagation() Function Read only Cancels any further event capturing
or event bubbling. If bubbles is true,
this method can be used.

target Element Read only The target of the event.

trusted Boolean Read only When true, indicates if the event
was generated by the browser. When
false, indicates the event was created
using JavaScript by the developer.
(Added in DOM Level 3 Events.)

type String Read only The type of event that was fired.

View AbstractView Read only The abstract view associated with the
event. This is equal to the window
object in which the event occurred.

The Event Object ❘ 613

Inside an event handler, the this object is always equal to the value of currentTarget, whereas
target contains only the actual target of the event. If the event handler is assigned directly onto the
intended target, then this, currentTarget, and target all have the same value. Here is an example
demonstrating where the two properties are equivalent to this:

let btn = document.getElementById("myBtn");
btn.onclick = function(event) {
 console.log(event.currentTarget === this); // true
 console.log(event.target === this); // true
};

This code examines the values of currentTarget and target relative to this. Because the target
of the click event is the button, all three are equal. If the event handler existed on a parent node of
the button, such as document.body, the values would be different. Consider the following example,
where a click handler is set on document.body:

document.body.onclick = function(event) {
 console.log(event.currentTarget === document.body); // true
 console.log(this === document.body); // true
 console.log(event.target === document.getElementById("myBtn")); // true
};

When the button is clicked in this example, both this and currentTarget are equal to document.body
because that’s where the event handler was registered. The target property, however, is equal to the but-
ton element itself, because that’s the true target of the click event. Because the button itself doesn’t have
an event handler assigned, the click event bubbles up to document.body, where the event is handled.

The type property is useful when you want to assign a single function to handle multiple events.
Here is an example which uses event.type:

let btn = document.getElementById("myBtn");
let handler = function(event) {
 switch(event.type) {
 case "click":
 console.log("Clicked");
 break;
 case "mouseover":
 event.target.style.backgroundColor = "red";
 break;
 case "mouseout":
 event.target.style.backgroundColor = "";
 break;
 }
};

btn.onclick = handler;
btn.onmouseover = handler;
btn.onmouseout = handler;

In this example, a single function called handler is defined to handle three different events: click,
mouseover, and mouseout. When the button is clicked, it should log a message, as in the previous
examples. When the mouse is moved over the button, the background color should change to red, and
when the mouse is moved away from the button, the background color should revert to its default.
Using the event.type property, the function is able to determine which event occurred and then
react appropriately.

614 ❘ CHAPTER 17 EvEnts

The preventDefault() method is used to prevent the default action of a particular event. The
default behavior of a link, for example, is to navigate to the URL specified in its href attribute when
clicked. If you want to prevent that navigation from occurring, an onclick event handler can cancel
that behavior, as in the following example:

let link = document.getElementById("myLink");
link.onclick = function(event) {
 event.preventDefault();
};

Any event that can be canceled using preventDefault() will have its cancelable property
set to true.

The stopPropagation() method stops the flow of an event through the DOM structure imme-
diately, canceling any further event capturing or bubbling before it occurs. For example, an event
handler added directly to a button can call stopPropagation() to prevent an event handler on
document.body from being fired, as shown in the following example:

let btn = document.getElementById("myBtn");
btn.onclick = function(event) {
 console.log("Clicked");
 event.stopPropagation();
};

document.body.onclick = function(event) {
 console.log("Body clicked");
};

Without the call to stopPropagation() in this example, two messages would be logged when the
button is clicked. However, the click event never reaches document.body, so the onclick event
handler is never executed.

The eventPhase property aids in determining what phase of event flow is currently active. If the
event handler is called during the capture phase, eventPhase is 1; if the event handler is at the target,
eventPhase is 2; if the event handler is during the bubble phase, eventPhase is 3. Note that even
though “at target” occurs during the bubbling phase, eventPhase is always 2. Here is an example
showing the various eventPhase values:

let btn = document.getElementById("myBtn");
btn.onclick = function(event) {
 console.log(event.eventPhase); // 2
};

document.body.addEventListener("click", (event) => {
 console.log(event.eventPhase); // 1
}, true);

document.body.onclick = (event) => {
 console.log(event.eventPhase); // 3
};

When the button in this example is clicked, the first event handler to fire is the one on document.
body in the capturing phase, which logs a message that displays 1 as the eventPhase. Next, the event
handler on the button itself is fired, at which point the eventPhase is 2. The last event handler to fire

The Event Object ❘ 615

is during the bubbling phase on document.body when eventPhase is 3. Whenever eventPhase is 2,
this, target, and currentTarget are always equal.

NOTE The event object exists only while event handlers are still being executed;
once all event handlers have been executed, the event object is destroyed.

The Internet Explorer Event Object
Unlike the DOM event object, the legacy Internet Explorer event object is accessible in different
ways, based on the way in which the event handler was assigned. When an event handler is assigned
using the DOM Level 0 approach, the event object exists only as a property of the window object, as
shown in this example:

var btn = document.getElementById("myBtn");
btn.onclick = function() {
 let event = window.event;
 console.log(event.type); // "click"
};

Here, the event object is retrieved from window.event and then used to determine the type of event
that was fired (the type property for Internet Explorer is identical to that of the DOM version).
However, if the event handler is assigned using attachEvent(), the event object is passed in as the
sole argument to the function, as shown here:

var btn = document.getElementById("myBtn");
btn.attachEvent("onclick", function(event) {
 console.log(event.type); // "click"
});

When using attachEvent(), the event object is also available on the window object, as with the
DOM Level 0 approach. It is also passed in as an argument for convenience.

If the event handler is assigned by an HTML attribute, the event object is available as a vari-
able called event (the same as the DOM model). Here’s an example using event.type inside the
attribute:

<input type="button" value="Click Me" onclick="console.log(event.type)">

The Internet Explorer event object also contains properties and methods related to the specific event
that caused its creation. Many of these either map directly to or are related to DOM properties or
methods. Like the DOM event object, the available properties and methods differ based on the type
of event that was fired, but all events use the properties and methods defined in the following table.

PROPERTY/METHOD TYPE READ/WRITE DESCRIPTION

cancelBubble Boolean Read/Write False by default, but can be set to true to
cancel event bubbling (same as the DOM
stopPropagation() method).

616 ❘ CHAPTER 17 EvEnts

PROPERTY/METHOD TYPE READ/WRITE DESCRIPTION

returnValue Boolean Read/Write True by default, but can be set to false to
cancel the default behavior of the event (same
as the DOM preventDefault() method).

srcElement Element Read only The target of the event (same as the DOM
target property).

type String Read only The type of event that was fired.

Because the scope of an event handler is determined by the manner in which it was assigned, the value
of this cannot always be assumed to be equal to the event target, so it’s a good idea to always use
event.srcElement instead. Here is an example demonstrating this with two different event objects:

var btn = document.getElementById("myBtn");
btn.onclick = function() {
 console.log(window.event.srcElement === this); // true
};

btn.attachEvent("onclick", function(event) {
 console.log(event.srcElement === this); // false
});

In the first event handler, which is assigned using the DOM Level 0 approach, the srcElement prop-
erty is equal to this, but in the second event handler, the two values are different.

The returnValue property is the equivalent of the DOM preventDefault() method in that it
cancels the default behavior of a given event. You need only set returnValue to false to prevent the
default action. Consider the following example which sets this property:

var link = document.getElementById("myLink");
link.onclick = function() {
 window.event.returnValue = false;
};

In this example, using returnValue in an onclick event handler stops a link’s default action. Unlike
the DOM, there is no way to determine whether an event can be canceled or not using JavaScript.

The cancelBubble property performs the same action as the DOM stopPropagation() method:
it stops the event from bubbling. Because Internet Explorer 8 and earlier don’t support the capturing
phase, only bubbling is canceled, whereas stopPropagation() stops both capturing and bubbling.
Here is an example demonstrating bubble canceling:

var btn = document.getElementById("myBtn");
btn.onclick = function() {
 console.log("Clicked");
 window.event.cancelBubble = true;
};

document.body.onclick = function() {
 console.log("Body clicked");
};

The Event Object ❘ 617

By setting cancelBubble to true in the button’s onclick event handler, you prevent the event from
bubbling up to the document.body event handler. The result is that only one message is displayed
when the button is clicked.

The Cross-Browser Event Object
Although the event objects for the DOM and Internet Explorer are different, there are enough
similarities to allow cross-browser solutions. All of the information and capabilities of the Internet
Explorer event object are present in the DOM object, just in a different form. These parallels enable
easy mapping from one event model to the other. The EventUtil object described earlier can be aug-
mented with methods that equalize the differences:

var EventUtil = {
 addHandler: function(element, type, handler) {
 // code removed for printing
 },

 getEvent: function(event) {
 return event ? event : window.event;
 },

 getTarget: function(event) {
 return event.target || event.srcElement;

 },

 preventDefault: function(event) {
 if (event.preventDefault) {
 event.preventDefault();
 } else {
 event.returnValue = false;
 }
 },

 removeHandler: function(element, type, handler) {
 // code removed for printing
 },

 stopPropagation: function(event) {
 if (event.stopPropagation) {
 event.stopPropagation();
 } else {
 event.cancelBubble = true;
 }
 }

};

There are four new methods added to EventUtil in this code. The first is getEvent(), which returns
a reference to the event object. Because the location of the event object differs in Internet Explorer,
this method can be used to retrieve the event object regardless of the event handler assignment
approach used. To use this method, you must assume that the event object is passed into the event

618 ❘ CHAPTER 17 EvEnts

handler and pass in that variable to the method. Here is an example which uses the EventUtil to
normalize the event object:

btn.onclick = function(event) {
 event = EventUtil.getEvent(event);
};

When used in a DOM-compliant browser, the event variable is just passed through and returned. In
Internet Explorer the event argument will be undefined, so window.event is returned. Adding this
line to the beginning of event handlers ensures that the event object is always available, regardless of
the browser being used.

The second method is getTarget(), which returns the target of the event. Inside the method, it
checks the event object to see if the target property is available and returns its value if it is; other-
wise, the srcElement property is used. This method can be used as follows:

btn.onclick = function(event) {
 event = EventUtil.getEvent(event);
 let target = EventUtil.getTarget(event);
};

The third method is preventDefault(), which stops the default behavior of an event. When the
event object is passed in, it is checked to see if the preventDefault() method is available and, if so,
calls it. If preventDefault() is not available, the method sets returnValue to false, as shown in
this example:

let link = document.getElementById("myLink");
link.onclick = function(event) {
 event = EventUtil.getEvent(event);
 EventUtil.preventDefault(event);
};

This code prevents a link click from navigating to another page in all major browsers. The
event object is first retrieved using EventUtil.getEvent() and then passed into EventUtil.
preventDefault()to stop the default behavior.

The fourth method, stopPropagation(), works in a similar way. It first tries to use the DOM
method for stopping the event flow and uses cancelBubble if necessary. Here is an example of how
stopPropagation() is used:

let btn = document.getElementById("myBtn");
btn.onclick = function(event) {
 console.log("Clicked");
 event = EventUtil.getEvent(event);
 EventUtil.stopPropagation(event);
};

document.body.onclick = function(event) {
 console.log("Body clicked");
};

Here, the event object is retrieved using EventUtil.getEvent() and then passed into EventUtil.
stopPropagation(). Remember that this method may stop event bubbling or both event bubbling
and capturing depending on the browser.

Event Types ❘ 619

EVENT TYPES

There are numerous categories of events that can occur in a web browser. As mentioned previously,
the type of event being fired determines the information that is available about the event. DOM
Level 3 Events specifies the following event groups:

➤➤ User interface (UI) events are general browser events that may have some interaction
with the BOM.

➤➤ Focus events are fired when an element gains or loses focus.

➤➤ Mouse events are fired when the mouse is used to perform an action on the page.

➤➤ Wheel events are fired when a mouse wheel (or similar device) is used.

➤➤ Text events are fired when text is input into the document.

➤➤ Keyboard events are fired when the keyboard is used to perform an action on the page.

➤➤ Composition events are fired when inputting characters for an Input Method Editor (IME).

In addition to these categories, HTML5 defines another set of events, and browsers often imple-
ment proprietary events both on the DOM and on the BOM. These proprietary events are typi-
cally driven by developer demand rather than specifications and so may be implemented differently
across browsers.

DOM Level 3 Events redefines the event groupings from DOM Level 2 Events and adds additional
event definitions. All major browsers support DOM Level 2 and 3 Events.

UI Events
UI events are those events that aren’t necessarily related to user actions. These events existed in some
form or another prior to the DOM specification and were retained for backwards compatibility. The
UI events are as follows:

➤➤ DOMActivate—Fires when an element has been activated by some user action, by either
mouse or keyboard (more generic than click or keydown). This event is deprecated in DOM
Level 3 Events. Because of cross-browser implementation differences, avoid using this event.

➤➤ load—Fires on a window when the page has been completely loaded, on a frameset when
all frames have been completely loaded, on an element when it has been completely
loaded, or on an <object> element when it has been completely loaded.

➤➤ unload—Fires on a window when the page has been completely unloaded, on a frameset
when all frames have been completely unloaded, or on an <object> element when it has
been completely unloaded.

➤➤ abort—Fires on an <object> element if it is not fully loaded before the user stops the
download process.

➤➤ error—Fires on a window when a JavaScript error occurs, on an element if the image
specified cannot be loaded, on an <object> element if it cannot be loaded, or on a frameset
if one or more frames cannot be loaded..

620 ❘ CHAPTER 17 EvEnts

➤➤ select—Fires when the user selects one or more characters in a text box (either <input> or
<textarea>).

➤➤ resize—Fires on a window or frame when it is resized.

➤➤ scroll—Fires on any element with a scrollbar when the user scrolls it. The <body> element
contains the scrollbar for a loaded page.

Most of the HTML events are related either to the window object or to form controls.

With the exception of DOMActivate, these events were part of the HTML Events group in DOM
Level 2 Events (DOMActivate was still part of UI Events in DOM Level 2). Note that browsers should
return true for this only if they implement these events according to the DOM Level 2 Events.
Browsers may support these events in nonstandard ways and thus return false.

The load Event
The load event is perhaps the most often used event in JavaScript. For the window object, the load
event fires when the entire page has been loaded, including all external resources such as images,
JavaScript files, and CSS files. You can define an onload event handler in two ways. The first is by
using JavaScript, as shown here:

window.addEventListener("load", (event) => {
 console.log("Loaded!");
});

This is the JavaScript-based way of assigning an event handler, using the cross-browser EventUtil
object discussed earlier in this chapter. As with other events, the event object is passed into the event
handler. The event object doesn’t provide any extra information for this type of event, although it’s
interesting to note that DOM-compliant browsers have event.target set to document, whereas
Internet Explorer prior to version 8 doesn’t set the srcElement property for this event.

The second way to assign the onload event handler is to add an onload attribute to the <body> ele-
ment, as in the following example:

<!DOCTYPE html>
<html>
<head>
 <title>Load Event Example</title>
</head>
<body onload="console.log('Loaded!')">

</body>
</html>

Generally speaking, any events that occur on the window can be assigned via attributes on the <body>
element because there is no access to the window element in HTML. This really is a hack for backwards
compatibility but is still well-supported in all browsers. Use the JavaScript approach whenever possible.

NOTE According to DOM Level 2 Events, the load event is supposed to fire
on document, not on window. However, load is implemented on window in all
browsers for backwards compatibility.

Event Types ❘ 621

The load event also fires on images, both those that are in the DOM and those that are not. You can
assign an onload event handler directly using HTML on any images in the document, using code
such as this:

This example logs a message when the given image has been loaded. This can also be done using
JavaScript, as follows:

let image = document.getElementById("myImage");
image.addEventListener("load", (event) => {
 console.log(event.target.src);
});

Here, the onload event handler is assigned using JavaScript. The event object is passed in, though it
doesn’t have much useful information. The target of the event is the element, so its src prop-
erty can be accessed and displayed.

When creating a new element, an event handler can be assigned to indicate when the image has
been loaded. In this case, it’s important to assign the event before assigning the src property, as in the
following example:

window.addEventListener("load", () => {
 let image = document.createElement("img");
 image.addEventListener("load", (event) => {
 console.log(event.target.src);
 });
 document.body.appendChild(image);
 image.src = "smile.gif";
});

The first part of this example is to assign an onload event handler for the window. Because the exam-
ple involves adding a new element to the DOM, you must be certain that the page is loaded, because
trying to manipulate document.body prior to its being fully loaded can cause errors. A new image
element is created and its onload event handler is set. Then, the image is added to the page and its
src is assigned. Note that the element need not be added to the document for the image download to
begin; it begins as soon as the src property is set.

This same technique can be used with the DOM Level 0 Image object. Prior to the DOM, the Image
object was used to preload images on the client. It can be used the same way as an element
with the exception that it cannot be added into the DOM tree. Consider the following example which
instantiates a new Image object:

window.addEventListener("load", () => {
 let image = new Image();
 image.addEventListener("load", (event) => {
 console.log("Image loaded!");
 });
 image.src = "smile.gif";
});

Here, the Image constructor is used to create a new image and the event handler is assigned. Some
browsers implement the Image object as an element, but not all, so it’s best to treat them
as separate.

622 ❘ CHAPTER 17 EvEnts

NOTE Internet Explorer 8 and earlier versions don’t generate an event object
when the load event fires for an image that isn’t part of the DOM document.
This pertains both to elements that are never added to the document and
to the Image object. This was fixed in Internet Explorer 9.

There are other elements that also support the load event in nonstandard ways. The <script> ele-
ment fires a load event, allowing you to determine when dynamically loaded JavaScript files have
been completely loaded. Unlike images, JavaScript files start downloading only after the src property
has been assigned and the element has been added into the document, so the order in which the event
handler and the src property are assigned is insignificant. The following illustrates how to assign an
event handler for a <script> element:

window.addEventListener("load", () => {
 let script = document.createElement("script");
 script.addEventListener("load", (event) => {
 console.log("Loaded");
 });
 script.src = "example.js";
 document.body.appendChild(script);
});

The event object’s target is the <script> node in most browsers. Internet Explorer 8 and earlier
versions do not support the load event for <script> elements.

Internet Explorer and Opera support the load event for <link> elements, allowing you to determine
when a style sheet has been loaded. The following example shows how a listener for this event can be set:

window.addEventListener("load", () => {
 let link = document.createElement("link");
 link.type = "text/css";
 link.rel= "stylesheet";
 link.addEventListener("load", (event) => {
 console.log("css loaded");
 });
 link.href = "example.css";
 document.getElementsByTagName("head")[0].appendChild(link);
});

As with the <script> node, a style sheet does not begin downloading until the href property has
been assigned and the <link> element has been added to the document.

The unload Event
A companion to the load event, the unload event fires when a document has completely unloaded.
The unload event typically fires when navigating from one page to another and is most often used to
clean up references to avoid memory leaks. Similar to the load event, an onunload event handler can
be assigned in two ways. The first is by using JavaScript, as shown here:

window.addEventListener("unload", (event) => {
 console.log("Unloaded!");
});

Event Types ❘ 623

The event object is generated for this event but contains nothing more than the target (set to docu-
ment) in DOM-compliant browsers. Internet Explorer 8 and earlier versions don’t provide the srcEl-
ement property for this event.

The second way to assign the event handler, similar to the load event, is to add an attribute to the
<body> element, as in this example:

<!DOCTYPE html>
<html>
<head>
 <title>Unload Event Example</title>
</head>
<body onunload="console.log('Unloaded!')">

</body>
</html>

Regardless of the approach you use, be careful with the code that executes inside of an onunload
event handler. Because the unload event fires after everything is unloaded, not all objects that were
available when the page was loaded are still available. Trying to manipulate the location of a DOM
node or its appearance can result in errors.

NOTE According to DOM Level 2 Events, the unload event is supposed to fire
on <body>, not on window. However, unload is implemented on window in all
browsers for backwards compatibility.

The resize Event
When the browser window is resized to a new height or width, the resize event fires. This event fires
on window, so an event handler can be assigned either via JavaScript or by using the onresize attrib-
ute on the <body> element. Prefer to use the JavaScript approach, as shown here:

window.addEventListener("resize", (event) => {
 console.log("Resized");
});

Similar to other events that occur on the window, the event object is created and its target is document
in DOM-compliant browsers, whereas Internet Explorer 8 and earlier provide no properties of use.

There are some important differences as to when the resize events fire across browsers. Internet
Explorer, Safari, Chrome, and Opera fire the resize event as soon as the browser is resized by one
pixel and then repeatedly as the user resizes the browser window. Firefox fires the resize event
only after the user has stopped resizing the browser. Because of these differences, you should avoid
computation-heavy code in the event handler for this event because it will be executed frequently and
cause a noticeable slowdown in the browser.

NOTE The resize event also fires when the browser window is minimized or
maximized.

624 ❘ CHAPTER 17 EvEnts

The scroll Event
Even though the scroll event occurs on the window, it actually refers to changes in the appropriate page-
level element. In quirks mode, the changes are observable using the scrollLeft and scrollTop of the
<body> element; in standards mode, the changes occur on the <html> element in all browsers except Safari
(which still tracks scroll position on <body>). The following example shows how to properly handle this:

window.addEventListener("scroll", (event) => {
 if (document.compatMode == "CSS1Compat") {
 console.log(document.documentElement.scrollTop);
 } else {
 console.log(document.body.scrollTop);
 }
});

This code assigns an event handler that outputs the vertical scroll position of the page, depending on
the rendering mode. Because Safari prior to 3.1 doesn’t support document.compatMode, older ver-
sions fall through to the second case.

Similar to resize, the scroll event occurs repeatedly as the document is being scrolled, so it’s best
to keep the event handlers as simple as possible.

Focus Events
Focus events are fired when elements of a page receive or lose focus. These events work in concert
with the document.hasFocus() and document.activeElement properties to give insight as to how
the user is navigating the page. There are six focus events:

➤➤ blur—Fires when an element has lost focus. This event does not bubble and is supported in
all browsers.

➤➤ DOMFocusIn—Fires when an element has received focus. This is a bubbling version of the
focus HTML event. Opera is the only major browser to support this event. DOM Level 3
Events deprecates DOMFocusIn in favor of focusin.

➤➤ DOMFocusOut—Fires when an element has lost focus. This is a generic version of the blur
HTML event. Opera is the only major browser to support this event. DOM Level 3 Events
deprecates DOMFocusOut in favor of focusout.

➤➤ focus—Fires when an element has received focus. This event does not bubble and is sup-
ported in all browsers.

➤➤ focusin—Fires when an element has received focus. This is a bubbling version of the focus
HTML event.

➤➤ focusout—Fires when an element has lost focus. This is a generic version of the blur
HTML event.

The two primary events of this group are focus and blur, both of which have been supported in
browsers since the early days of JavaScript. One of the biggest issues with these events is that they don’t
bubble. This led to the inclusion of focusin and focusout by Internet Explorer and DOMFocusIn and
DOMFocusOut by Opera. Internet Explorer’s approach has been standardized in DOM Level 3 Events.

Event Types ❘ 625

When focus is moved from one element to another on the page, the order of events is as follows:

1. focusout fires on the element losing focus.

2. focusin fires on the element receiving focus.

3. blur fires on the element losing focus.

4. DOMFocusOut fires on the element losing focus.

5. focus fires on the element receiving focus.

6. DOMFocusIn fires on the element receiving focus.

The event target for blur, DOMFocusOut, and focusout is the element losing focus while the event
target for focus, DOMFocusIn, and focusin is the element receiving focus.

Mouse and Wheel Events
Mouse events are the most commonly used group of events on the Web, because the mouse is the
primary navigation device used. There are nine mouse events defined in DOM Level 3 Events. They
are as follows:

➤➤ click—Fires when the user clicks the primary mouse button (typically the left button) or
when the user presses the Enter key. This is an important fact for accessibility purposes,
because onclick event handlers can be executed using the keyboard and the mouse.

➤➤ dblclick—Fires when the user double-clicks the primary mouse button (typically the left
button). This event was not defined in DOM Level 2 Events but is well-supported and so
was standardized in DOM Level 3 Events.

➤➤ mousedown—Fires when the user pushes any mouse button down. This event cannot be fired
via the keyboard.

➤➤ mouseenter—Fires when the mouse cursor is outside of an element and then the user
first moves it inside of the boundaries of the element. This event does not bubble and does
not fire when the cursor moves over descendant elements. The mouseenter event was not
defined in DOM Level 2 Events but was added in DOM Level 3 Events.

➤➤ mouseleave—Fires when the mouse cursor is over an element and then the user moves it
outside of that element’s boundaries. This event does not bubble and does not fire when the
cursor moves over descendant elements. The mouseleave event was not defined in DOM
Level 2 Events but was added in DOM Level 3 Events.

➤➤ mousemove—Fires repeatedly as the cursor is being moved around an element. This event
cannot be fired via the keyboard.

➤➤ mouseout—Fires when the mouse cursor is over an element and then the user moves it over
another element. The element moved to may be outside of the bounds of the original element
or a child of the original element. This event cannot be fired via the keyboard.

626 ❘ CHAPTER 17 EvEnts

➤➤ mouseover—Fires when the mouse cursor is outside of an element and then the user
first moves it inside of the boundaries of the element. This event cannot be fired via
the keyboard.

➤➤ mouseup—Fires when the user releases a mouse button. This event cannot be fired via
the keyboard.

All elements on a page support mouse events. All mouse events bubble except mouseenter and
mouseleave, and they can all be canceled, which affects the default behavior of the browser.

Canceling the default behavior of mouse events can affect other events as well because of the relation-
ship that exists amongst the events.

A click event can be fired only if a mousedown event is fired and followed by a mouseup event on
the same element; if either mousedown or mouseup is canceled, then the click event will not fire.
Similarly, it takes two click events to cause the dblclick event to fire. If anything prevents these
two click events from firing (either canceling one of the click events or canceling either mouse-
down or mouseup), the dblclick event will not fire. These four mouse events always fire in the fol-
lowing order:

1. mousedown

2. mouseup

3. click

4. mousedown

5. mouseup

6. click

7. dblclick

Both click and dblclick rely on other events to fire before they can fire, whereas mousedown and
mouseup are not affected by other events.

Internet Explorer through version 8 has a slight implementation bug that causes the second mouse-
down and click events to be skipped during a double click. The order is:

1. mousedown

2. mouseup

3. click

4. mouseup

5. dblclick

Note that the DOM Level 3 feature name is just "MouseEvent" instead of "MouseEvents".

There is also a subgroup of mouse events called wheel events. Wheel events are really just a single
event, mousewheel, which monitors interactions of a mouse wheel or a similar device such as the
Mac trackpad.

Event Types ❘ 627

Client Coordinates
Mouse events all occur at a particular location within the browser viewport. This information is
stored in the clientX and clientY properties of the event object. These properties indicate the loca-
tion of the mouse cursor within the viewport at the time of the event and are supported in all brows-
ers. Figure 17-4 illustrates the client coordinates in a viewport.

You can retrieve the client coordinates of a mouse event in the following way:

let div = document.getElementById("myDiv");
div.addEventListener("click", (event) => {
 console.log(`Client coordinates: ${event.clientX}, ${event.clientY}`);
});

This example assigns an onclick event handler to a <div> element. When the element is clicked, the
client coordinates of the event are displayed. Keep in mind that these coordinates do not take into
account the scroll position of the page, so these numbers do not indicate the location of the cursor
on the page.

Client Area

(clientX,clientY)

FIGURE 17-4:

628 ❘ CHAPTER 17 EvEnts

Page Coordinates
Where client coordinates give you information about where an event occurred in the viewport, page
coordinates tell you where on the page the event occurred via the pageX and pageY properties of the
event object. These properties indicate the location of the mouse cursor on the page, so the coordi-
nates are from the left and top of the page itself rather than the viewport.

You can retrieve the page coordinates of a mouse event in the following way:

let div = document.getElementById("myDiv");
div.addEventListener("click", (event) => {
 console.log(`Page coordinates: ${event.pageX}, ${event.pageY}`);
});

The values for pageX and pageY are the same as clientX and clientY when the page is not scrolled.

Internet Explorer 8 and earlier don’t support page coordinates on the event object, but you can cal-
culate them using client coordinates and scrolling information. You need to use the scrollLeft and
scrollTop properties on either document.body (when in quirks mode) or document.documentEle-
ment (in standards mode). The calculation is done as follows:

let div = document.getElementById("myDiv");
div.addEventListener("click", (event) => {
 let pageX = event.pageX,
 pageY = event.pageY;
 if (pageX === undefined) {
 pageX = event.clientX + (document.body.scrollLeft ||
 document.documentElement.scrollLeft);
 }
 if (pageY === undefined) {
 pageY = event.clientY + (document.body.scrollTop ||
 document.documentElement.scrollTop);
 }
 console.log(`Page coordinates: ${pageX}, ${pageY}`);
});

Screen Coordinates
Mouse events occur not only in relation to the browser window but also in relation to the entire
screen. It’s possible to determine the location of the mouse in relation to the entire screen by
using the screenX and screenY properties. Figure 17-5 illustrates the screen coordinates in
a browser.

You can retrieve the screen coordinates of a mouse event in the following way:

let div = document.getElementById("myDiv");
div.addEventListener("click", (event) => {
 console.log(`Screen coordinates: ${event.screenX}, ${event.screenY}`);
});

Similar to the previous examples, this code assigns an onclick event handler to a <div> element.
When the element is clicked, the screen coordinates of the event are displayed.

Event Types ❘ 629

Modifier Keys
Even though a mouse event is primarily triggered by using the mouse, the state of certain keyboard
keys may be important in determining the action to take. The modifier keys Shift, Ctrl, Alt, and
Meta are often used to alter the behavior of a mouse event. The DOM specifies four properties to
indicate the state of these modifier keys: shiftKey, ctrlKey, altKey, and metaKey. Each of these
properties contains a Boolean value that is set to true if the key is being held down or false if the
key is not pressed. When a mouse event occurs, you can determine the state of the various keys by
inspecting these properties. Consider the following example, which checks for modifier key state
when a click event is fired:

let div = document.getElementById("myDiv");
div.addEventListener("click", (event) => {
 let keys = new Array();

 if (event.shiftKey) {
 keys.push("shift");
 }

(screenX,screenY)

FIGURE 17-5:

630 ❘ CHAPTER 17 EvEnts

 if (event.ctrlKey) {
 keys.push("ctrl");
 }

 if (event.altKey) {
 keys.push("alt");
 }

 if (event.metaKey) {
 keys.push("meta");
 }

 console.log("Keys: " + keys.join(","));

});

In this example, an onclick event handler checks the state of the various modifier keys. The keys
array contains the names of the modifier keys that are being held down. For each property that is
true, the name of the key is added to keys. At the end of the event handler, the keys are displayed in
a log message.

NOTE Modern browsers support all four keys. Internet Explorer 8 and earlier
versions do not support the metaKey property.

Related Elements
For the mouseover and mouseout events, there are other elements related to the event. Both of these
events involve moving the mouse cursor from within the boundaries of one element to within the
boundaries of another element. For the mouseover event, the primary target of the event is the ele-
ment that is gaining the cursor, and the related element is the one that is losing the cursor. Likewise,
for mouseout, the primary target is the element that is losing the cursor, and the related element is the
one that is gaining the cursor. Consider the following example:

<!DOCTYPE html>
<html>
<head>
 <title>Related Elements Example</title>
</head>
<body>
 <div id="myDiv"
 style="background-color:red;height:100px;width:100px;"></div>
</body>
</html>

This page renders a single <div> on the page. If the mouse cursor starts over the <div> and then
moves outside of it, a mouseout event fires on <div> and the related element is the <body> element.
Simultaneously, the mouseover event fires on <body> and the related element is the <div>.

The DOM provides information about related elements via the relatedTarget property on the
event object. This property contains a value only for the mouseover and mouseout events; it is null

Event Types ❘ 631

for all other events. Internet Explorer 8 and earlier don’t support the relatedTarget property but
offer comparable access to the related element using other properties. When the mouseover event
fires, Internet Explorer provides a fromElement property containing the related element; when the
mouseout event fires, Internet Explorer provides a toElement property containing the related element
(Internet Explorer 9 supports all properties). A cross-browser method to get the related element can
be added to EventUtil like this:

var EventUtil = {

 // more code here

 getRelatedTarget: function(event) {
 if (event.relatedTarget) {
 return event.relatedTarget;
 } else if (event.toElement) {
 return event.toElement;
 } else if (event.fromElement) {
 return event.fromElement;
 } else {
 return null;
 }
 },

 // more code here

};

As with the previous cross-browser methods, this one uses feature detection to determine which value
to return. The EventUtil.getRelatedTarget() method can then be used as follows:

let div = document.getElementById("myDiv");
div.addEventListener("mouseout", (event) => {
 let target = event.target;
 let relatedTarget = EventUtil.getRelatedTarget(event);
 console.log(
 `Moused out of ${target.tagName} to ${relatedTarget.tagName}`);
});

This example registers an event handler for the mouseout event on the <div> element. When
the event fires, a message is logged indicating the place the mouse moved from and the place the
mouse moved to.

Buttons
The click event is fired only when the primary mouse button is clicked on an element (or when the
Enter key is pressed on the keyboard), so button information isn’t necessary. For the mousedown and
mouseup events, there is a button property on the event object that indicates the button that was
pressed or released. The DOM button property has the following three possible values: 0 for the
primary mouse button, 1 for the middle mouse button (usually the scroll wheel button), and 2 for the
secondary mouse button. In traditional setups, the primary mouse button is the left button and the
secondary button is the right one.

632 ❘ CHAPTER 17 EvEnts

Internet Explorer through version 8 also provides a button property, but it has completely different
values, as described here:

➤➤ 0 indicates that no button has been pressed.

➤➤ 1 indicates that the primary mouse button has been pressed.

➤➤ 2 indicates that the secondary mouse button has been pressed.

➤➤ 3 indicates that the primary and secondary buttons have been pressed.

➤➤ 4 indicates that the middle button has been pressed.

➤➤ 5 indicates that the primary and middle buttons have been pressed.

➤➤ 6 indicates that the secondary and middle buttons have been pressed.

➤➤ 7 indicates that all three buttons have been pressed.

As you can tell, the DOM model for the button property is much simpler and arguably more useful
than the Internet Explorer model because multi-button mouse usage is rare. It’s typical to normalize
the models to the DOM way because all browsers except Internet Explorer 8 and earlier implement it
natively. The mapping of primary, middle, and secondary buttons is fairly straightforward; all of the
other Internet Explorer options will translate into the pressing of one of the buttons, giving prece-
dence to the primary button in all instances. So if Internet Explorer returns either 5 or 7, this converts
to 0 in the DOM model.

Additional Event Information
The DOM Level 2 Events specification provides the detail property on the event object to give
additional information about an event. For mouse events, detail contains a number indicating
how many times a click has occurred at the given location. Clicks are considered to be a mousedown
event followed by a mouseup event at the same pixel location. The value of detail starts at 1 and is
incremented every time a click occurs. If the mouse is moved between mousedown and mouseup, then
detail is set back to 0.

Internet Explorer provides the following additional information for each mouse event as well:

➤➤ altLeft is a Boolean value indicating if the left Alt key is pressed. If altLeft is true, then
altKey is also true.

➤➤ ctrlLeft is a Boolean value indicating if the left Ctrl key is pressed. If ctrlLeft is true,
then ctrlKey is also true.

➤➤ offsetX is the x-coordinate of the cursor relative to the boundaries of the target element.

➤➤ offsetY is the y-coordinate of the cursor relative to the boundaries of the target element.

➤➤ shiftLeft is a Boolean value indicating if the left Shift key is pressed. If shiftLeft is true,
then shiftKey is also true.

These properties are of limited value because they are available only in Internet Explorer and provide
information that either is not necessary or can be calculated in other ways.

Event Types ❘ 633

The mousewheel Event
Internet Explorer 6 first implemented the mousewheel event.
Since that time, it has been picked up by Opera, Chrome, and
Safari. The mousewheel event fires when the user interacts
with the mouse wheel, rolling it vertically in either direction.
This event fires on each element and bubbles up to document
(in Internet Explorer 8) and window on modern browsers. The
event object for the mousewheel event contains all standard
information about mouse events and an additional property
called wheelDelta. When the mouse wheel is rolled toward
the front of the mouse, wheelDelta is a positive multiple of
120; when the mouse wheel is rolled toward the rear of the
mouse, wheelDelta is a negative multiple of 120. See Figure 17-6.

An onmousewheel event handler can be assigned to any element on the page or to the document to
handle all mouse wheel interactions. Here’s an example:

document.addEventListener("mousewheel", (event) => {
 console.log(event.wheelDelta);
});

This example simply displays the wheelDelta value when the event is fired. In most cases, you need
only know which direction the mouse wheel was turned, which can easily be determined by the sign
of the wheelDelta value.

NOTE The mousewheel event was added to HTML5 as a reflection of its popu-
larity and availability in most browsers.

Touch Device Support
Touch devices running iOS or Android have interesting implementations because, of course, there is
no mouse to interact with. When developing for touch devices, keep the following in mind:

➤➤ The dblclick event is not supported at all. Double-clicking on the browser window zooms
in, and there is no way to override that behavior.

➤➤ Tapping on a clickable element causes the mousemove event to fire. If content changes as a
result of this action, no further events are fired; if there are no changes to the screen, then
the mousedown, mouseup, and click events fire in order. No events are fired when tapping
on a nonclickable element. Clickable elements are defined as those that have a default action
when clicked (such as links) or elements that have an onclick event handler assigned.

➤➤ The mousemove event also fires mouseover and mouseout events.

➤➤ The mousewheel and scroll events fire when two fingers are on the screen and the page is
scrolled as the result of finger movement.

120120

FIGURE 17-6:

634 ❘ CHAPTER 17 EvEnts

Accessibility Issues
If your web application or website must be accessible to users with disabilities, specifically those who
are using screen readers, you should be careful when using mouse events. As mentioned previously,
the click event can be fired using the Enter key on the keyboard, but other mouse events have no
keyboard support. It’s advisable not to use mouse events other than click to show functionality or
cause code execution, as this will severely limit the usability for blind or sight-impaired users. Here
are some tips for accessibility using mouse events:

➤➤ Use click to execute code. Some suggest that an application feels faster when code is exe-
cuted using onmousedown, which is true for sighted users. For screen readers, however, this
code is not accessible, because the mousedown event cannot be triggered.

➤➤ Avoid using onmouseover to display new options to the user. Once again, screen readers
have no way to trigger this event. If you really must display new options in this manner,
consider adding keyboard shortcuts to display the same information.

➤➤ Avoid using dblclick to execute important actions. The keyboard cannot fire this event.

Following these simple hints can greatly increase the accessibility of your web application or website
to those with disabilities.

NOTE To learn more about accessibility on web pages, please visit
www.webaim.org.

Keyboard and Text Events
Keyboard events are fired when the user interacts with the keyboard. DOM Level 2 Events originally
specified keyboard events, but that section was removed before the specification became final. As a
result, keyboard events are largely supported based on the original DOM Level 0 implementations.

DOM Level 3 Events provides a specification for keyboard events that was first completely imple-
mented in Internet Explorer 9. Other browsers have also started work on implementing the standard,
but there are still many legacy implementations.

There are three keyboard events, as described here:

➤➤ keydown—Fires when the user presses a key on the keyboard and fires repeatedly while the
key is being held down.

➤➤ keypress—Fires when the user presses a key on the keyboard that results in a character and
fires repeatedly while the key is being held down. This event also fires for the Esc key. DOM
Level 3 Events deprecates the keypress event in favor of the textInput event.

➤➤ keyup—Fires when the user releases a key on the keyboard.

These events are most easily seen as the user types in a text box, though all elements support them.

Event Types ❘ 635

There is only one text event and it is called textInput. This event is an augmentation of keypress
intended to make it easier to intercept text input before being displayed to the user. The textInput
event fires just before text is inserted into a text box.

When the user presses a character key once on the keyboard, the keydown event is fired first, followed
by the keypress event, followed by the keyup event. Note that both keydown and keypress are fired
before any change has been made to the text box, whereas the keyup event fires after changes have
been made to the text box. If a character key is pressed and held down, keydown and keypress are
fired repeatedly and don’t stop until the key is released.

For noncharacter keys, a single key press on the keyboard results in the keydown event being fired
followed by the keyup event. If a noncharacter key is held down, the keydown event fires repeatedly
until the key is released, at which point the keyup event fires.

NOTE Keyboard events support the same set of modifier keys as mouse events.
The shiftKey, ctrlKey, altKey, and metaKey properties are all available for
keyboard events. Internet Explorer 8 and earlier do not support metaKey.

Key Codes
For keydown and keyup events, the event object’s keyCode property is filled in with a code that
maps to a specific key on the keyboard. For alphanumeric keys, the keyCode is the same as the ASCII
value for the lowercase letter or number on that key, so the 7 key has a keyCode of 55 and the A key
has a keyCode of 65, regardless of the state of the Shift key. Both the DOM and the Internet Explorer
event objects support the keyCode property. Here’s an example demonstrationg inspection of the
keyCode property:

let textbox = document.getElementById("myText");
textbox.addEventListener("keyup", (event) => {
 console.log(event.keyCode);
});

In this example, the keyCode is displayed every time a keyup event is fired. The complete list of key
codes to noncharacter keys is listed in the following table.

KEY KEY CODE KEY KEY CODE

Backspace 8 Numpad 8 104

Tab 9 Numpad 9 105

Enter 13 Numpad + 107

Shift 16 Minus (both Numpad and not) 109

Ctrl 17 Numpad . 110

Alt 18 Numpad / 111

Pause/Break 19 F1 112

636 ❘ CHAPTER 17 EvEnts

KEY KEY CODE KEY KEY CODE

Caps Lock 20 F2 113

Esc 27 F3 114

Page Up 33 F4 115

Page Down 34 F5 116

End 35 F6 117

Home 36 F7 118

Left Arrow 37 F8 119

Up Arrow 38 F9 120

Right Arrow 39 F10 121

Down Arrow 40 F11 122

Ins 45 F12 123

Del 46 Num Lock 144

Left Windows Key 91 Scroll Lock 145

Right Windows Key 92 Semicolon (IE/Safari/Chrome) 186

Context Menu Key 93 Semicolon (Opera/FF) 59

Numpad 0 96 Less than 188

Numpad 1 97 Greater than 190

Numpad 2 98 Forward slash 191

Numpad 3 99 Grave accent (') 192

Numpad 4 100 Equals 61

Numpad 5 101 Left Bracket 219

Numpad 6 102 Back slash (\) 220

Numpad 7 103 Right Bracket 221

Single Quote 222

Character Codes
When a keypress event occurs, this means that the key affects the display of text on the screen. All
browsers fire the keypress event for keys that insert or remove a character; other keys are browser-
dependent. Because the DOM Level 3 Events specification has only started being implemented, there
are significant implementation differences across browsers.

Event Types ❘ 637

Browsers support a property on the event object called charCode, which is filled in only for the
keypress event and contains the ASCII code for the character related to the key that was pressed. In
this case, the keyCode is typically equal to 0 or may also be equal to the key code for the key that was
pressed. Internet Explorer 8 and earlier and Opera use keyCode to communicate the ASCII code for the
character. To retrieve the character code in a cross-browser way, you must therefore first check to see if
the charCode property is used and, if not, use keyCode instead, as shown in the following example:

var EventUtil = {

 // more code here

 getCharCode: function(event) {
 if (typeof event.charCode == "number") {
 return event.charCode;
 } else {
 return event.keyCode;
 }
 },

 // more code here
};

This method checks to see if the charCode property is a number (it will be undefined for browsers
that don’t support it) and, if it is, returns the value. Otherwise, the keyCode value is returned. This
method can be used as follows:

let textbox = document.getElementById("myText");
textbox.addEventListener("keypress", (event) => {
 console.log(EventUtil.getCharCode(event));
});

Once you have the character code, it’s possible to convert it to the actual character using the String.
fromCharCode() method.

DOM Level 3 Changes
Although all browsers implement some form of keyboard events, DOM Level 3 Events makes several
changes. The charCode property, for instance, isn’t part of the DOM Level 3 Events specification for
keyboard events. Instead, the specification defines two additional properties: key and char.

The key property is intended as a replacement for keyCode and contains a string. When a character
key is pressed, the value of key is equal to the text character (for example, “k” or “M”); when a non-
character key is pressed, the value of key is the name of the key (for example, “Shift” or “Down”).
The char property behaves the same as key when a character key is pressed and is set to null when
a noncharacter key is pressed.

Internet Explorer supports the key property but not the char property. Safari and Chrome support a
property called keyIdentifier that returns the same value that key would in the case of noncharac-
ter keys (such as Shift). For character keys, keyIdentifier returns the character code as a string in
the format “U+0000” to indicate the Unicode value.

638 ❘ CHAPTER 17 EvEnts

let textbox = document.getElementById("myText");
textbox.addEventListener("keypress", (event) => {
 let identifier = event.key || event.keyIdentifier;
 if (identifier) {
 console.log(identifier);
 }
});

Because of the lack of cross-browser support, it’s not recommended to use key, keyIdenti-
fier, or char.

DOM Level 3 Events also adds a property called location, which is a numeric value indicating
where the key was pressed. Possible values are 0 for default keyboard, 1 for left location (such as
the left Alt key), 2 for the right location (such as the right Shift key), 3 for the numeric keypad, 4 for
mobile (indicating a virtual keypad), or 5 for joystick (such as the Nintendo Wii controller). Internet
Explorer 9 supports this property. Safari and Chrome support an identical property called keyLoca-
tion, but because of a bug, the value is always 0 unless the key is on the numeric keypad (in which
case it’s 3); the value is never 1, 2, 4, or 5.

let textbox = document.getElementById("myText");
textbox.addEventListener("keypress", (event) => {
 let loc = event.location || event.keyLocation;
 if (loc) {
 console.log(loc);
 }
});

As with the key property, the location property isn’t widely supported and so isn’t recommended
for cross-browser development.

The last addition to the event object is the getModifierState() method. This method accepts a sin-
gle argument, a string equal to Shift, Control, Alt, AltGraph, or Meta, which indicates the modifier
key to check. The method returns true if the given modifier is active (the key is being held down) or
false if not:

let textbox = document.getElementById("myText");
textbox.addEventListener("keypress", (event) => {
 if (event.getModifierState) {
 console.log(event.getModifierState("Shift"));
 }
});

You can retrieve some of this information already using the shiftKey, altKey, ctrlKey, and
metaKey properties on the event object.

The textInput Event
The DOM Level 3 Events specification introduced an event called textInput that fires when a
character is input to an editable area. Designed as a replacement for keypress, a textInput event
behaves somewhat differently. One difference is that keypress fires on any element that can have
focus but textInput fires only on editable areas. Another difference is that textInput fires only for
keys that result in a new character being inserted, whereas keypress fires for keys that affect text in
any way (including Backspace).

Event Types ❘ 639

Because the textInput event is interested primarily in characters, it provides a data property on the
event object that contains the character that was inserted (not the character code). The value of data
is always the exact character that was inserted, so if the S key is pressed without Shift, data is "s",
but if the same key is pressed holding Shift down, then data is "S".

The textInput event can be used as follows:

let textbox = document.getElementById("myText");
textbox.addEventListener("textInput", (event) => {
 console.log(event.data);
});

In this example, the character that was inserted into the text box is displayed in a log message.

There is another property, on the event object, called inputMethod that indicates how the text was
input into the control. The possible values are:

➤➤ 0 indicates the browser couldn’t determine how the input was entered.

➤➤ 1 indicates a keyboard was used.

➤➤ 2 indicates the text was pasted in.

➤➤ 3 indicates the text was dropped in as part of a drag operation.

➤➤ 4 indicates the text was input using an IME.

➤➤ 5 indicates the text was input by selecting an option in a form.

➤➤ 6 indicates the text was input by handwriting (such as with a stylus).

➤➤ 7 indicates the text was input by voice command.

➤➤ 8 indicates the text was input by a combination of methods.

➤➤ 9 indicates the text was input by script.

Using this property, you can determine how text was input into a control in order to verify its
validity.

Keyboard Events on Devices
The Nintendo Wii fires keyboard events when buttons are pressed on a Wii remote. Although
you can’t access all of the buttons on the Wii remote, there are several that fire keyboard events.
 Figure 17-7 illustrates the key codes that indicate particular buttons being pressed.

Keyboard events are fired when the crosspad (keycodes 175–178), minus (170), plus (174), 1 (172),
or 2 (173) buttons are pressed. There is no way to tell if the power button, A, B, or Home button has
been pressed.

Mobile touch devices fire keyboard events when using the onscreen keyboard.

640 ❘ CHAPTER 17 EvEnts

Composition Events
Composition events were first introduced in DOM Level 3 Events to handle complex input sequences
typically found on IMEs. IMEs allow users to input characters not found on the physical keyboard. For
example, those using a Latin keyboard can still enter Japanese characters into the computer. IMEs often
require multiple keys to be pressed at once while resulting in only a single character being entered. Com-
position events help to detect and work with such input. There are three composition events:

➤➤ compositionstart—Fires when the text composition system of the IME is opened, indi-
cating that input is about to commence.

➤➤ compositionupdate—Fires when a new character has been inserted into the input field.

➤➤ compositionend—Fires when the text composition system is closed, indicating a return to
normal keyboard input.

Composition events are similar to text events in many ways. When a composition event fires, the
target is the input field receiving the text. The only additional event property is data, which contains
one of the following:

➤➤ When accessed during compositionstart, contains the text being edited (for instance, if
text has been selected and will now be replaced).

175

178

170 174

172

173

176

177

(unavailable)

(unavailable)

(unavailable)

FIGURE 17-7:

Event Types ❘ 641

➤➤ When accessed during compositionupdate, contains the new character being inserted.

➤➤ When accessed during compositionend, contains all of the input entered during this com-
position session.

As with text events, composition events can be used to filter input where necessary. These events can
be used as follows:

let textbox = document.getElementById("myText");
textbox.addEventListener("compositionstart", (event) => {
 console.log(event.data);
});
textbox.addEventListener("compositionupdate", (event) => {
 console.log(event.data);
});
textbox.addEventListener("compositionend", (event) => {
 console.log(event.data);
});

Mutation Events
The DOM Level 2 mutation events were designed to provide notification when a part of the DOM
has been changed.

NOTE These events are deprecated, and support is gradually being phased out.
This feature is replaced by Mutation Observers, which is covered in The Docu-
ment Object Model chapter.

HTML5 Events
The DOM specification doesn’t cover all events that are supported by all browsers. Many browsers
have implemented custom events for various purposes based on either user need or a specific use case.
HTML5 has an exhaustive list of all events that should be supported by browsers. This section dis-
cusses several events in HTML5 that are well supported by browsers. Note that this is not an exhaus-
tive list of all events the browser supports. (Other events will be discussed throughout this book.)

The contextmenu Event
Windows 95 introduced the concept of context menus to PC users via a right mouse click. Soon, that
paradigm was being mimicked on the Web. The problem developers were facing was how to detect
that a context menu should be displayed (in Windows, it’s a right click; on a Mac, it’s a Ctrl+click)
and then how to avoid the default context menu for the action. This resulted in the introduction of
the contextmenu event to specifically indicate when a context menu is about to be displayed, allow-
ing developers to cancel the default context menu and provide their own.

The contextmenu event bubbles, so a single event handler can be assigned to a document that han-
dles all such events for the page. The target of the event is the element that was acted on. This event
can be canceled in all browsers, using event.preventDefault() in DOM-compliant browsers and

642 ❘ CHAPTER 17 EvEnts

setting event.returnValue to false in Internet Explorer 8 and earlier. The contextmenu event is
considered a mouse event and so has all of the properties related to the cursor position. Typically, a
custom context menu is displayed using an oncontextmenu event handler and hidden again using the
onclick event handler. Consider the following HTML page:

<!DOCTYPE html>
<html>
<head>
 <title>ContextMenu Event Example</title>
</head>
<body>
 <div id="myDiv">Right click or Ctrl+click me to get a custom context menu.
 Click anywhere else to get the default context menu.</div>
 <ul id="myMenu" style="position:absolute;visibility:hidden;background-color:
 silver">
 Nicholas' site
 Wrox site
 Yahoo!

</body>
</html>

In this code, a <div> is created that has a custom context menu. The element serves as the cus-
tom context menu and is initially hidden. The JavaScript to make this example work is as follows:

window.addEventListener("load", (event) => {
 let div = document.getElementById("myDiv");

 div.addEventListener("contextmenu", (event) => {
 event.preventDefault();

 let menu = document.getElementById("myMenu");
 menu.style.left = event.clientX + "px";
 menu.style.top = event.clientY + "px";
 menu.style.visibility = "visible";
 });

 document.addEventListener("click", (event) => {
 document.getElementById("myMenu").style.visibility = "hidden";
 });
});

Here, an oncontextmenu event handler is defined for the <div>. The event handler begins by
canceling the default behavior, ensuring that the browser’s context menu won’t be displayed. Next,
the element is placed into position based on the clientX and clientY properties of the event
object. The last step is to show the menu by setting its visibility to "visible". An onclick event
handler is then added to the document to hide the menu whenever a click occurs (which is the behav-
ior of system context menus).

Though this example is very basic, it is the basis for all custom context menus on the Web. Applying
some additional CSS to the context menu in this example can yield great results.

Event Types ❘ 643

The beforeunload Event
The beforeunload event fires on the window and is intended to give developers a way to prevent the
page from being unloaded. This event fires before the page starts to unload from the browser, allow-
ing continued use of the page should it ultimately not be unloaded. You cannot cancel this event out-
right because that would be the equivalent of holding the user hostage on a page. Instead, the event
gives you the ability to display a message to the user. The message indicates that the page is about to
be unloaded, displays the message, and asks if the user would like to continue to close the page or
remain on the page (see Figure 17-8).

In order to cause this dialog box to pop up, you must set event.returnValue equal to the string
you want displayed in the dialog (for Internet Explorer and Firefox) and also return it as the function
value (for Safari and Chrome), as in this example:

window.addEventListener("beforeunload", (event) => {
 let message = "I'm really going to miss you if you go.";
 event.returnValue = message;
 return message;
});

The DOMContentLoaded Event
The window’s load event fires when everything on the page has been completely loaded, which may
take some time for pages with lots of external resources. The DOMContentLoaded event fires as soon
as the DOM tree is completely formed and without regard to images, JavaScript files, CSS files, or
other such resources. As compared to the load event, DOMContentLoaded allows event handlers to be
attached earlier in the page download process, which means a faster time to interactivity for users.

To handle the DOMContentLoaded event, you can attach an event handler either on the document
or on the window (the target for the event actually is document, although it bubbles up to window).
Here’s an example which listens for the event on document:

document.addEventListener("DOMContentLoaded", (event) => {
 console.log("Content loaded");
});

The event object for DOMContentLoaded doesn’t provide any additional information (target is
document).

The DOMContentLoaded event is typically used
to attach event handlers or perform other DOM
manipulations. This event always fires before the
load event.

For browsers that don’t support DOMContent-
Loaded, it has been suggested that a timeout should
be set during page loading with a millisecond delay
of 0, as in this example:

setTimeout(() => {
 // attach event handlers here
}, 0);

FIGURE 17-8:

644 ❘ CHAPTER 17 EvEnts

This code essentially says, “Run this function as soon as the current JavaScript process is complete.”
There is a single JavaScript process running as the page is being downloaded and constructed, so the
timeout will fire after that. Whether or not this coincides directly with the timing of DOMContent-
Loaded relates to both the browser being used and other code on the page. To work properly, this
must be the first timeout set on the page, and even then, it is not guaranteed that the timeout will run
prior to the load event in all circumstances.

The readystatechange Event
Internet Explorer first defined an event called readystatechange on several parts of a DOM docu-
ment. This somewhat mysterious event is intended to provide information about the loading state
of the document or of an element, though its behavior is often erratic. Each object that supports the
readystatechange event has a readyState property that can have one of the following five possible
string values:

➤➤ uninitialized—The object exists but has not been initialized.

➤➤ loading—The object is loading data.

➤➤ loaded—The object has finished loading its data.

➤➤ interactive—The object can be interacted with but it’s not fully loaded.

➤➤ complete—The object is completely loaded.

Even though this seems straightforward, not all objects go through all readystate phases. The docu-
mentation indicates that objects may completely skip a phase if it doesn’t apply but doesn’t indicate
which phases apply to which objects. This means that the readystatechange event often fires fewer
than four times and the readyState value doesn’t always follow the same progression.

When used on document, a readyState of "interactive" fires the readystatechange event at a
time similar to DOMContentLoaded. The interactive phase occurs when the entire DOM tree has been
loaded and thus is safe to interact with. Images and other external resources may or may not be avail-
able at that point in time. The readystatechange event can be handled like this:

document.addEventListener("readystatechange", (event) => {
 if (document.readyState == "interactive") {
 console.log("Content loaded");
 }
});

The event object for this event doesn’t provide any additional information and has no target set.

When used in conjunction with the load event, the order in which these events fire is not guaranteed.
In pages with numerous or large external resources, the interactive phase is reached well before the
load event fires; in smaller pages with few or small external resources, the readystatechange event
may not fire until after the load event.

To make matters even more confusing, the interactive phase may come either before or after the
complete phase; the order is not constant. In pages with more external resources, it is more likely that
the interactive phase will occur before the complete phase, whereas in pages with fewer resources, it is
more likely that the complete phase will occur before the interactive phase. So, to ensure that you are

Event Types ❘ 645

getting the earliest possible moment, it’s necessary to check for both the interactive and the complete
phases, as in this example:

document.addEventListener("readystatechange", (event) => {
 if (document.readyState == "interactive" ||
 document.readyState == "complete") {
 document.removeEventListener("readystatechange", arguments.callee);
 console.log("Content loaded");
 }
});

When the readystatechange event fires in this code, the document.readyState property is checked
to see if it’s either the interactive or the complete phase. If so, the event handler is removed to ensure
that it won’t be executed for another phase. Note that because the event handler is an anonymous
function, arguments.callee is used as the pointer to the function. After that, the message is logged
indicating that the content is loaded. This construct allows you to get as close as possible to the DOM-
ContentLoaded event.

NOTE Even though you can get close to mimicking DOMContentLoaded using
readystatechange, they are not exactly the same. The order in which the load
event and readystatechange events are fired is not consistent from page to page.

The pageshow and pagehide Events
Firefox and Opera introduced a feature called the back-forward cache (bfcache), designed to speed up
page transitions when using the browser’s Back and Forward buttons. The cache stores not only page
data but also the DOM and JavaScript state, effectively keeping the entire page in memory. If a page
is in the bfcache, the load event will not fire when the page is navigated to. This usually doesn’t cause
an issue because the entire page state is stored. However, Firefox decided to provide some events to
give visibility to the bfcache behavior.

The first event is pageshow, which fires whenever a page is displayed, whether from the bfcache or
not. On a newly loaded page, pageshow fires after the load event; on a page in the bfcache, page-
show fires as soon as the page’s state has been completely restored. Note that even though the target
of this event is document, the event handler must be attached to window. Consider the following
example which tracks these events:

(function() {
 let showCount = 0;

 window.addEventListener("load", () => {
 console.log("Load fired");
 });

 window.addEventListener("pageshow", () => {
 showCount++;
 console.log(`Show has been fired ${showCount} times.`);
 });
})();

646 ❘ CHAPTER 17 EvEnts

This example uses a private scope to protect the showCount variable from being introduced into the
global scope. When the page is first loaded, showCount has a value of 0. Every time the pageshow
event fires, showCount is incremented and a message is logged. If you navigate away from the page
containing this code and then click the Back button to restore it, you will see that the value of show-
Count is incremented each time. That’s because the variable state, along with the entire page state,
is stored in memory and then retrieved when you navigate back to the page. If you were to click the
Reload button on the browser, the value of showCount would be reset to 0 because the page would be
completely reloaded.

Besides the usual properties, the event object for pageshow includes a property called persisted.
This is a Boolean value that is set to true if the page is stored in the bfcache or false if the page is
not. The property can be checked in the event handler as follows:

 (function() {
 let showCount = 0;

 window.addEventListener("load", () => {
 console.log("Load fired");
 });

 window.addEventListener("pageshow", () => {
 showCount++;
 console.log(`Show has been fired ${showCount} times.`,
 `Persisted? ${event.persisted}`);
 });
})();

The persisted property lets you determine if a different action must be taken depending on the state
of the page in the bfcache.

The pagehide event is a companion to pageshow and fires whenever a page is unloaded from the
browser, firing immediately before the unload event. As with the pageshow event, pagehide fires
on the document even though the event handler must be attached to the window. The event object
also includes the persisted property, though there is a slight difference in its usage. Consider the fol-
lowing example which checks the event.persisted property:

window.addEventListener("pagehide", (event) => {
 console.log("Hiding. Persisted? " + event.persisted);
});

You may decide to take a different action based on the value of persisted when pagehide fires. For
the pageshow event, persisted is set to true if the page has been loaded from the bfcache; for the
pagehide event, persisted is set to true if the page will be stored in the bfcache once unloaded. So
the first time pageshow is fired, persisted is always false, whereas the first time pagehide is fired,
persisted will be true (unless the page won’t be stored in the bfcache).

NOTE Pages that have an onunload event handler assigned are automatically
excluded from the bfcache, even if the event handler is empty. The reasoning is
that onunload is typically used to undo what was done using onload, and so
skipping onload the next time the page is displayed could cause it to break.

Event Types ❘ 647

The hashchange Event
HTML5 introduced the hashchange event as a way to notify developers when the URL hash (every-
thing following a pound sign (#) in a URL) changed. This came about as developers frequently used
the URL hash to store state information or navigational information in Ajax applications.

The onhashchange event handler must be attached to the window, and it is called whenever the URL
hash changes. The event object should have two additional properties: oldURL and newURL. These
properties hold the complete URL including the hash before the change and after the change. The
contrasting URLs are tracked in the following example:

window.addEventListener("hashchange", (event) => {
 console.log(`Old URL: ${event.oldURL}, New URL: ${event.newURL}`);
});

It’s best to use the location object to determine the current hash:

window.addEventListener("hashchange", (event) => {
 console.log(`Current hash: ${location.hash}`);
});

Device Events
With the introduction of smartphones and tablet devices came a new set of ways for users to interact
with a browser. As such, a new class of events was invented. Device events allow you to determine
how a device is being used. A new draft for device events was started in 2011 at the W3C to cover the
growing number of devices looking to implement device-related events.

The orientationchange Event
Apple created the orientationchange event on mobile Safari so that developers could determine
when the user switched the device from landscape to portrait mode. There is a window.orientation
property on mobile Safari that contains one of three values: 0 for portrait mode, 90 for landscape
mode when rotated to the left (the Home button on the right), and –90 for landscape mode when
rotated to the right (the Home button on the left). The documentation also mentions a value of 180 if
the device is upside down, but that configuration is not supported to date. Figure 17-9 illustrates the
various values for window.orientation.

Whenever the user changes from one mode to another, the orientationchange event fires. The
event object doesn’t contain any useful information because the only relevant information is acces-
sible via window.orientation. Typical usage of this event is as follows:

window.addEventListener("load", (event) => {
 let div = document.getElementById("myDiv");
 div.innerHTML = "Current orientation is " + window.orientation;

 window.addEventListener("orientationchange", (event) => {) {
 div.innerHTML = "Current orientation is " + window.orientation;
 });
});

648 ❘ CHAPTER 17 EvEnts

In this example, the initial orientation is displayed when the load event fires. Then, the event handler
for orientationchange is assigned. Whenever the event fires, the message on the page is updated to
indicate the new orientation.

All iOS devices support both the orientationchange event and the window.orientation property.

NOTE Because orientationchange is considered a window event, you can also
assign an event handler by adding the onorientationchange attribute to the
<body> element.

The deviceorientation Event
The deviceorientation event is defined in the Devi-
ceOrientationEvent specification. The event is fired on
window when accelerometer information is available
and changes. Keep in mind that the purpose of devi-
ceorientation is to inform you of how the device is
oriented in space and not of movement.

A device is said to exist in three-dimensional space
along an x-axis, a y-axis, and a z-axis. These all start at
zero when the device is at rest on a horizontal surface.
The x-axis goes from the left of the device to the right,
the y-axis goes from the bottom of the device to the
top, and the z-axis goes from the back of the device to
the front (see Figure 17-10).

When deviceorientation fires, it returns information
about how the values of each axis have changed relative
to the device at rest. The event object has five properties:

0

90 90

FIGURE 17-9:

x

y

z

FIGURE 17-10:

Event Types ❘ 649

➤➤ alpha—The difference in y-axis degrees as you rotate around the z-axis (side-to-side tilt); a
floating point number between 0 and 360.

➤➤ beta—The difference in z-axis degrees as you rotate around the x-axis (front-to-back tilt); a
floating point number between –180 and 180.

➤➤ gamma—The difference in the z-axis degrees as you rotate around the y-axis (twisting tilt); a
floating point number between –90 and 90.

➤➤ absolute—A Boolean value indicating if the device is returning absolute values or not.

➤➤ compassCalibrated—A Boolean value indicating if the device’s compass is properly cali-
brated or not.

Figure 17-11 shows how the values of alpha, beta, and gamma are calculated.

beta

gamma

alpha

start z

new z

new ynew y
start y

start y

start z
new z

new x

new x

start x

start x

FIGURE 17-11:

650 ❘ CHAPTER 17 EvEnts

Here’s a simple example that outputs the values for alpha, beta, and gamma:

window.addEventListener("deviceorientation", (event) => {
 let output = document.getElementById("output");
 output.innerHTML =
 `Alpha=${event.alpha}, Beta=${event.beta], Gamma=${event.gamma$}
`;
});

You can use this information to rearrange or otherwise alter elements on the screen in reaction to the
device changing its orientation. For example, this code rotates an element in reaction to the device
orientation:

window.addEventListener("deviceorientation", (event) => {
 let arrow = document.getElementById("arrow");
 arrow.style.webkitTransform = `rotate(${Math.round(event.alpha)}deg)`;
});

This example works only on mobile WebKit browsers because of the use of the proprietary webkit
Transform property (the temporary version of the CSS standard transform property). The element
“arrow” is rotated along with the value of event.alpha, giving it a compass-like feel. The CSS3 rota-
tion transformation is used with a rounded version of the value to ensure smoothness.

The devicemotion Event
The DeviceOrientationEvent specification also includes a devicemotion event. This event is designed
to inform you when the device is actually moving, not just when it has changed orientation. For
instance, devicemotion is useful to determine that the device is falling or is being held by someone
who is walking.

When the devicemotion event fires, the event object contains the following additional properties:

➤➤ acceleration—An object containing x, y, and z properties that tells you the acceleration in
each dimension without considering gravity.

➤➤ accelerationIncludingGravity—An object containing x, y, and z properties that tells you
the acceleration in each dimension, including the natural acceleration of gravity in the z-axis.

➤➤ interval—The amount of time, in milliseconds, that will pass before another devicemo-
tion event is fired. This value should be constant from event to event.

➤➤ rotationRate—An object containing the alpha, beta, and gamma properties that indicate
device orientation.

If acceleration, accelerationIncludingGravity, or rotationRate cannot be provided, then the
property value is null. Because of that, you should always check that the value is not null before
using any of these properties. For example:

window.addEventListener("devicemotion", (event) => {
 let output = document.getElementById("output");
 if (event.rotationRate !== null) {
 output.innerHTML += `Alpha=${event.rotationRate.alpha}` +
 `Beta=${event.rotationRate.beta}` +
 `Gamma=${event.rotationRate.gamma}`;
 }
});

Event Types ❘ 651

Touch and Gesture Events
Safari for iOS introduced several proprietary events designed to inform developers when specific
events occur. Because iOS devices are mouseless and keyboardless, the regular mouse and keyboard
events simply aren’t enough to create a completely interactive web page designed with mobile Safari
in mind. With the introduction of WebKit for Android, many of the proprietary events became de
facto standards and led to the beginning of a Touch Events specification from the W3C. The follow-
ing events work only on touch-based devices.

Touch Events
When the iPhone 3G was released with iOS 2.0 software, a new version of Safari was included. This
new mobile Safari exposed several new events relating to touch interactions. The Android browser
later implemented these same events. Touch events are fired when a finger is placed on the screen,
dragged across the screen, or removed from the screen. The touch events are as follows:

➤➤ touchstart—Fires when a finger touches the screen even if another finger is already touch-
ing the screen.

➤➤ touchmove—Fires continuously as a finger is moved across the screen. Calling prevent-
Default() during this event prevents scrolling.

➤➤ touchend—Fires when a finger is removed from the screen.

➤➤ touchcancel—Fires when the system has stopped tracking the touch. It’s unclear in the
documentation as to when this can occur.

Each of these events bubbles and can be canceled. Even though touch events aren’t part of the DOM
specification, they are implemented in a DOM-compatible way. So the event object for each touch
event provides properties that are common to mouse events: bubbles, cancelable, view, clientX,
clientY, screenX, screenY, detail, altKey, shiftKey, ctrlKey, and metaKey.

In addition to these common DOM properties, touch events have the following three properties to
track touches:

➤➤ touches—An array of Touch objects that indicate the currently tracked touches.

➤➤ targetTouches—An array of Touch objects specific to the event’s target.

➤➤ changedTouches—An array of Touch objects that have been changed in the last user action.

Each Touch object, in turn, has the following properties:

➤➤ clientX—The x-coordinate of the touch target in the viewport.

➤➤ clientY—The y-coordinate of the touch target in the viewport.

➤➤ identifier—A unique ID for the touch.

➤➤ pageX—The x-coordinate of the touch target on the page.

➤➤ pageY—The y-coordinate of the touch target on the page.

➤➤ screenX—The x-coordinate of the touch target on the screen.

652 ❘ CHAPTER 17 EvEnts

➤➤ screenY—The y-coordinate of the touch target on the screen.

➤➤ target—The DOM node target for the touch.

These properties can be used to track the touch around the screen. For example:

function handleTouchEvent(event) {
 // only for one touch
 if (event.touches.length == 1)
 let output = document.getElementById("output");
 switch(event.type) {
 case "touchstart":
 output.innerHTML += `
Touch started:` +
 `(${event.touches[0].clientX}` +
 ` ${event.touches[0].clientY})`;
 break;
 case "touchend":
 output.innerHTML += `
Touch ended:` +
 `(${event.changedTouches[0].clientX}` +
 ` ${event.changedTouches[0].clientY})`;
 break;
 case "touchmove":
 event.preventDefault(); // prevent scrolling
 output.innerHTML += `
Touch moved:` +
 `(${event.changedTouches[0].clientX}` +
 ` ${event.changedTouches[0].clientY})`;
 break;
 }
 }
}

document.addEventListener("touchstart", handleTouchEvent);
document.addEventListener("touchend", handleTouchEvent);
document.addEventListener("touchmove", handleTouchEvent);

This code tracks a single touch around the screen. To keep things simple, it outputs information only
when there’s a single active touch. When the touchstart event occurs, it outputs the location of the
touch into a <div>. When a touchmove event fires, its default behavior is canceled to prevent scroll-
ing (moving touches typically scroll the page) and then it outputs information about the changed
touch. The touchend event outputs the last information about the touch. Note that there is nothing
in the touches collection during the touchend event, because there is no longer an active touch; the
changedTouches collection must be used instead.

These events fire on all elements of the document, so you can manipulate different parts of the page
individually. The order of events (including mouse events) when you tap on an element are:

1. touchstart

2. mouseover

3. mousemove (once)

4. mousedown

5. mouseup

Event Types ❘ 653

6. click

7. touchend

Gesture Events
The iOS 2.0 version of Safari also introduced a class of events for gestures. A gesture occurs when
two fingers are touching the screen and typically causes a change in the scale of the displayed item or
the rotation. There are three gesture events, as described here:

➤➤ gesturestart—Fires when a finger is already on the screen and another finger is placed on
the screen.

➤➤ gesturechange—Fires when the position of either finger on the screen has changed.

➤➤ gestureend—Fires when one of the fingers has been removed from the screen.

These events fire only if the two fingers are touching the recipient of the event. Setting event handlers
on a single element means that both fingers must be within the bounds of the element in order for
gesture events to fire (this will be the target). Because these events bubble, you can also place event
handlers at the document level to handle all gesture events. When you are using this approach, the
target of the event will be the element that has both fingers within its boundaries.

There is a relationship between the touch and the gesture events. When a finger is placed on the
screen, the touchstart event fires. When another finger is placed on the screen, the gesturestart
event fires first and is followed by the touchstart event for that finger. If one or both of the fingers
are moved, a gesturechange event is fired. As soon as one of the fingers is removed, the gestureend
event fires, followed by touchend for that finger.

As with touch events, each gesture event object contains all of the standard mouse event properties:
bubbles, cancelable, view, clientX, clientY, screenX, screenY, detail, altKey, shiftKey,
ctrlKey, and metaKey. The two additions to the event object are rotation and scale. The rota-
tion property indicates the degrees of rotation that the fingers have changed, where negative num-
bers indicate a counterclockwise rotation and positive numbers indicate clockwise rotation (the value
begins as 0). The scale property indicates how much of a change in distance occurred between the
fingers (making a pinch motion). This starts out as 1 and will either increase as the distance increases
or decrease as the distance decreases.

These events can be used as follows:

function handleGestureEvent(event) {
 let output = document.getElementById("output");
 switch(event.type) {
 case "gesturestart":
 output.innerHTML += `Gesture started: ` +
 `rotation=${event.rotation},` +
 `scale=${event.scale}`;
 break;
 case "gestureend":
 output.innerHTML += `Gesture ended: ` +
 `rotation=${event.rotation},` +
 `scale=${event.scale}`;
 break;

654 ❘ CHAPTER 17 EvEnts

 case "gesturechange":
 output.innerHTML += `Gesture changed: ` +
 `rotation=${event.rotation},` +
 `scale=${event.scale}`;
 break;
 }
}

document.addEventListener("gesturestart", handleGestureEvent, false);
document.addEventListener("gestureend", handleGestureEvent, false);
document.addEventListener("gesturechange", handleGestureEvent, false);

As with the touch events example, this code simply wires up each event to a single function and then
outputs information about each event.

NOTE Touch events also return rotation and scale properties, but they change
only when two fingers are in contact with the screen. Generally, it is easier to use
gesture events with two fingers than to manage all interactions with touch events.

Event Reference
The following is a list of all available browser events defined in a DOM specification, the HTML5
specification, and any other currently published specifications which outline event behavior. They are
categorized by API and/or the specification in which they appear.

NOTE This list excludes some categories that contain only vendor-specific events.

Ambient Light events
devicelight

App Cache events
cached
checking
downloading
noupdate
obsolete
updateready

Audio Channels API
events
headphoneschange
mozinterruptbegin
mozinterruptend

Battery API events
chargingchange
chargingtimechange

dischargingtimechange
levelchange

Broadcast Channel API
events
message

Channel Messaging API events
message

Clipboard API events
beforecopy
beforecut
beforepaste
copy
cut
paste

Contacts API events
contactchange

Event Types ❘ 655

error
success

CSS Font Loading
API events
loading
loadingdone
loadingerror

CSSOM events
animationend
animationiteration
animationstart
transitionend

CSSOM View events
resize
scroll

Device Orientation events
compassneedscalibration
devicemotion
deviceorientation

Device Storage API events
change

DOM events
abort
beforeinput
blur
click
compositionend
compositionstart
compositionupdate
dblclick
error
focus
focusin
focusout
input
keydown
keypress
keyup
load
mousedown
mouseenter
mouseleave
mousemove
mouseout
mouseover
mouseup
resize
scroll
select

unload
wheel

Download API events
statechange

Encrypted Media Extensions
events
encrypted
keystatuschange
message
waitingforkey

Engineering Mode API events
message

File API events
abort
error
load
loadend
loadstart
progress

File System API events
error
writeend

FMRadio API events
antennaavailablechange
disabled
enabled
frequencychange

Fullscreen API events
fullscreenchange
fullscreenerror

Gamepad API events
gamepadconnected
gamepaddisconnected

HTML DOM events
DOMContentLoaded
abort
afterprint
afterscriptexecute
beforeprint
beforescriptexecute
beforeunload
blur
cancel
canplay
canplaythrough
change

656 ❘ CHAPTER 17 EvEnts

click
close
connect
contextmenu
durationchange
emptied
error
focus
hashchange
input
invalid
languagechange
load
loadeddata
loadedmetadata
loadend
loadstart
message
offline
online
open
pagehide
pageshow
play
playing
popstate
progress
readystatechange
rejectionhandled
reset
seeked
seeking
select
show
sort
stalled
storage
submit
suspend
timeupdate
toggle
unhandledrejection
unload
volumechange
waiting

HTML Drag and Drop API
events
drag
dragend
dragenter
dragexit
dragleave
dragover
dragstart
drop

IndexedDB events
abort
blocked
close
complete
error
success
upgradeneeded
versionchange

Inter-App Connection API events
message

Media Capture and Streams
events
active
addtrack
devicechange
ended
inactive
mute
overconstrained
ratechange
removetrack
started
unmute

Media Source Extensions events
abort
addsourcebuffer
error
removesourcebuffer
sourceclose
sourceended
sourceopen
update
updateend
updatestart

MediaStream Recording events
dataavailable
error
pause
resume
start
stop

Mobile Connection API events
cardstatechange
icccardlockerror

Mobile Messaging API events
close
deliveryerror
deliverysuccess
error

Event Types ❘ 657

failed
message
open
received
retrieving
sending
sent

Network Information API events
change

Page Visibility API events
visibilitychange

Payment Request API events
shippingaddresschange
shippingoptionchange

Performance API events
resourcetimingbufferfull

Pointer events
gotpointercapture
lostpointercapture
pointercancel
pointerdown
pointerenter
pointerleave
pointermove
pointerout
pointerover
pointerup

Pointer Lock API events
pointerlockchange
pointerlockerror

Presentation API events
change
sessionavailable
sessionconnect

Proximity events
deviceproximity
userproximity

Push API events
push
pushsubscriptionchange

Screen Orientation API events
change

Selection API events
selectionchange
selectstart

Server Sent events
error
message
open

Service Workers API events
activate
controllerchange
error
fetch
install
message
statechange
updatefound

Settings API events
settingchange

Simple Push API events
error
success

Speaker Manager API events
speakerforcedchange

SVG events
DOMAttrModified
DOMCharacterDataModified
DOMNodeInserted
DOMNodeInsertedIntoDocument
DOMNodeRemoved
DOMNodeRemovedFromDocument
DOMSubtreeModified
SVGAbort
SVGError
SVGLoad
SVGResize
SVGScroll
SVGUnload
SVGZoom
activate
beginEvent
click
endEvent
focusin
focusout
mousedown
mousemove
mouseout
mouseover
mouseup
repeatEvent

TCP Socket API events
connect
data

658 ❘ CHAPTER 17 EvEnts

drain
error

Time and Clock API
events
moztimechange

Touch events
touchcancel
touchend
touchmove
touchstart

TV API events
currentchannelchanged
currentsourcechanged
eitbroadcasted
scanningstatechanged

UDP Socket API events
message

Web Audio API events
audioprocess
complete
ended
loaded
message
nodecreate
statechange

Web Components events
slotchange

WebGL events
webglcontextcreationerror
webglcontextlost
webglcontextrestored

Web Manifest events
install

Web MIDI API events
midimessage
statechange

Web Notifications events
click
close
error
show

WebRTC events
addstream
close

datachannel
error
icecandidate
iceconnectionstatechange
icegatheringstatechange
identityresult
idpassertionerror
idpvalidationerror
isolationchange
message
negotiationneeded
open
peeridentity
removestream
signalingstatechange
tonechange

Websockets API events
close
error
message
open

Web Speech API events
audioend
audiostart
boundary
end_(SpeechRecognition)
end_(SpeechSynthesis)
error_(SpeechRecognitionError)
error_(SpeechSynthesis)
mark
nomatch
pause_(SpeechSynthesis)
result
resume
soundend
soundstart
speechend
speechstart
start_(SpeechRecognition)
start_(SpeechSynthesis)

Web Storage API events
storage

Web Telephony API events
incoming

WebVR API events
vrdisplayactivate
vrdisplayblur
vrdisplayconnected
vrdisplaydeactivate
vrdisplaydisconnected

Memory and Performance ❘ 659

vrdisplayfocus
vrdisplaypresentchange

WebVTT events
addtrack
change
cuechange
enter
exit
removetrack

WiFi Information API events
connectioninfoupdate
statuschange

WiFi P2P API events
disabled
enabled
peerinfoupdate
statuschange

XMLHttpRequest events
abort
error
load
loadend
loadstart
progress
readystatechange
timeout

MEMORY AND PERFORMANCE

Because event handlers provide the interaction on modern web applications, many developers
mistakenly add a large number of them to the page. In languages that create GUIs, such as C#, it’s
customary to add an onclick event handler to each button in the GUI, and there is no real penalty
for doing so. In JavaScript, the number of event handlers on the page directly relates to the overall
performance of the page. This happens for a number of reasons. The first is that each function is an
object and takes up memory; the more objects in memory, the slower the performance. Second, the
amount of DOM access needed to assign all of the event handlers up front delays the interactivity of
the entire page. There are a number of ways that you can improve performance by minding your use
of event handlers.

Event Delegation
The solution to the “too many event handlers” issue is called event delegation. Event delegation takes
advantage of event bubbling to assign a single event handler to manage all events of a particular type.
The click event, for example, bubbles all the way up to the document level. This means that it’s pos-
sible to assign one onclick event handler for an entire page instead of one for each clickable element.
Consider the following HTML:

<ul id="myLinks">
 <li id="goSomewhere">Go somewhere
 <li id="doSomething">Do something
 <li id="sayHi">Say hi

The HTML in this example contains three items that should perform actions when clicked. Tradi-
tional thinking simply attaches three event handlers like this:

let item1 = document.getElementById("goSomewhere");
let item2 = document.getElementById("doSomething");
let item3 = document.getElementById("sayHi");

660 ❘ CHAPTER 17 EvEnts

item1.addEventListener("click", (event) => {
 location.href = "http:// www.wrox.com";
});

item2.addEventListener("click", (event) => {
 document.title = "I changed the document's title";
});

item3.addEventListener("click", (event) => {
 console.log("hi");
});

If this scenario is repeated for all of the clickable elements in a complex web application, the result is
an incredibly long section of code that simply attaches event handlers. Event delegation approaches
this problem by attaching a single event handler to the highest possible point in the DOM tree, as in
this example:

let list = document.getElementById("myLinks");

list.addEventListener("click", (event) => {
 let target = event.target;

 switch(target.id) {
 case "doSomething":
 document.title = "I changed the document's title";
 break;

 case "goSomewhere":
 location.href = "http:// www.wrox.com";
 break;

 case "sayHi":
 console.log("hi");
 break;
 }
});

In this code, event delegation is used to attach a single onclick event handler to the element.
Because all of the list items are children of this element, their events bubble up and are handled by
this function. The event target is the list item that was clicked so you can check the id property to
determine the appropriate action. In comparison with the previous code that didn’t use event delega-
tion, this code has less of an up-front cost because it just retrieves one DOM element and attaches
one event handler. The end result is the same for the user, but this approach requires much less
memory. All events that use buttons (most mouse events and keyboard events) are candidates for this
technique.

If it’s practical, you may want to consider attaching a single event handler on document that can
handle all of the page events of a particular type. This has the following advantages compared to
traditional techniques:

➤➤ The document object is immediately available and can have event handlers assigned at any
point during the page’s life cycle (no need to wait for DOMContentLoaded or load events).
This means that as soon as a clickable element is rendered, it can function appropriately
without delay.

Memory and Performance ❘ 661

➤➤ Less time is spent setting up event handlers on the page. Assigning one event handler takes
fewer DOM references and less time.

➤➤ Lower memory usage is required for the entire page, improving overall performance.

The best candidates for event delegation are click, mousedown, mouseup, keydown, keyup, and
keypress. The mouseover and mouseout events bubble but are complicated to handle properly and
often require calculating element position to appropriately handle (because mouseout fires when
moving from an element to one of its child nodes and when moving outside of the element).

Removing Event Handlers
When event handlers are assigned to elements, a connection is formed between code that is running
the browser and JavaScript code interacting with the page. The more of these connections that exist,
the slower a page performs. One way to handle this issue is through event delegation to limit the
number of connections that are set up. Another way to manage the issue is to remove event handlers
when they are no longer needed. Dangling event handlers, those that remain in memory after they are
necessary, are a major source of memory and performance issues in web applications.

This problem occurs at two specific points during a page’s life cycle. The first is when an element is
removed from the document while it has event handlers attached. This can be due to a true DOM
manipulation involving removeChild() or replaceChild(), but it happens most often when using
innerHTML to replace a section of the page. Any event handlers assigned to an element that was
eliminated by the call to innerHTML may not be properly garbage collected. Consider the follow-
ing example:

<div id="myDiv">
 <input type="button" value="Click Me" id="myBtn">
</div>
<script type="text/javascript">
 let btn = document.getElementById("myBtn");
 btn.onclick = function() {

 // do something

 document.getElementById("myDiv").innerHTML = "Processing...";
 // Bad!!!
 };
</script>

Here, a button exists inside of a <div> element. When the button is clicked, it is removed and
replaced with a message to prevent double-clicking, which is a very common paradigm on websites.
The issue is that the button still had an event handler attached when it was removed from the page.
Setting innerHTML on the <div> removed the button completely, but the event handler remains
attached. Some browsers, especially Internet Explorer 8 and earlier, will have trouble in this situation,
and most likely, references to both the element and the event handler will remain in memory. If you
know that a given element is going to be removed, it’s best to manually remove the event handlers
yourself, as in this example:

<div id="myDiv">
 <input type="button" value="Click Me" id="myBtn">
</div>

662 ❘ CHAPTER 17 EvEnts

<script type="text/javascript">
 let btn = document.getElementById("myBtn");
 btn.onclick = function() {

 // do something

 btn.onclick = null; // remove event handler

 document.getElementById("myDiv").innerHTML = "Processing...";
 };
</script>

In this rewritten code, the button’s event handler is removed before setting the <div> element’s
innerHTML. This ensures that the memory will be reclaimed and the button can safely be removed
from the DOM.

Note also that removing the button in the event handler prevents bubbling of the event. An event will
bubble only if its target is still present in the document.

NOTE Event delegation also helps solve this problem. If you know that a
particular part of the page is going to be replaced using innerHTML, do not
attach event handlers directly to elements within that part. Instead, attach event
handlers at a higher level that can handle events in that area.

The other time that dangling event handlers are a problem is when the page is unloaded. Once again,
Internet Explorer 8 and earlier have a lot of problems with this situation, though it seems to affect all
browsers in some way. If event handlers aren’t cleaned up before the page is unloaded, they remain in
memory. Each time the browser loads and unloads the page after that (as a result of navigating away
and back or clicking the Reload button), the number of objects in memory increases because the event
handler memory is not being reclaimed.

Generally speaking, it’s a good idea to remove all event handlers before the page is unloaded by using
an onunload event handler. This is another area where event delegation helps because it is easier to
keep track of the event handlers to remove when there are fewer of them. A good way to think about
this technique is that anything done using an onload event handler must be reversed using onunload.

NOTE Keep in mind that assigning an onunload event handler means that your
page will not be stored in the bfcache. If this is of concern, you may want to use
onunload to remove event handlers only in Internet Explorer.

SIMULATING EVENTS

Events are designed to indicate particular moments of interest in a web page. These events are often
fired based on user interaction or other browser functionality. It’s a little-known fact that JavaScript
can be used to fire specific events at any time, and those events are treated the same as events that

Simulating Events ❘ 663

are created by the browser. This means that the events bubble appropriately and cause the browser
to execute event handlers assigned to deal with the event. This capability can be extremely useful in
testing web applications. The DOM Level 3 specification indicates ways to simulate specific types of
events. Internet Explorer 8 and earlier versions have their own way to simulate events.

DOM Event Simulation
An event object can be created at any time by using the createEvent() method on document. This
method accepts a single argument, which is a string indicating the type of event to create. In DOM
Level 2, all of these strings were plural, while DOM Level 3 changed them to singular. The string may
be one of the following:

➤➤ UIEvents—Generic UI event. Mouse events and keyboard events inherit from UI events. For
DOM Level 3, use UIEvent.

➤➤ MouseEvents—Generic mouse event. For DOM Level 3, use MouseEvent.

➤➤ HTMLEvents—Generic HTML event. There is no equivalent DOM Level 3 Event. (HTML
events were dispersed into other groupings.)

Note that keyboard events are not specifically described in DOM Level 2 Events and were only later
introduced in DOM Level 3 Events.

Once an event object is created, it needs to be initialized with information about the event. Each type
of event object has a specific method that is used to initialize it with the appropriate data. The name
of the method is different, depending on the argument that was used with createEvent().

The final step in event simulation is to fire the event. This is done by using the dispatchEvent()
method that is present on all DOM nodes that support events. The dispatchEvent() method accepts
a single argument, which is the event object representing the event to fire. After that point, the event
becomes “official,” bubbling and causing event handlers to execute.

Simulating Mouse Events
Mouse events can be simulated by creating a new mouse event object and assigning the necessary
information. A mouse event object is created by passing "MouseEvents" into the createEvent()
method. The returned object has a method called initMouseEvent() that is used to assign mouse-
related information. This method accepts 15 arguments, one for each property typically available on a
mouse event. The arguments are as follows:

➤➤ type (string)—The type of event to fire, such as "click".

➤➤ bubbles (Boolean)—Indicates if the event should bubble. This should be set to true for
accurate mouse event simulation.

➤➤ cancelable (Boolean)—Indicates if the event can be canceled. This should be set to true
for accurate mouse event simulation.

➤➤ view (AbstractView)—The view associated with the event. This is almost always document.
defaultView.

664 ❘ CHAPTER 17 EvEnts

➤➤ detail (integer)—Additional information for the event. This is used only by event handlers,
though it’s typically set to 0.

➤➤ screenX (integer)—The x-coordinate of the event relative to the screen.

➤➤ screenY (integer)—The y-coordinate of the event relative to the screen.

➤➤ clientX (integer)—The x-coordinate of the event relative to the viewport.

➤➤ clientY (integer)—The y-coordinate of the event relative to the viewport.

➤➤ ctrlKey (Boolean)—Indicates if the Ctrl key is pressed. The default is false.

➤➤ altKey (Boolean)—Indicates if the Alt key is pressed. The default is false.

➤➤ shiftKey (Boolean)—Indicates if the Shift key is pressed. The default is false.

➤➤ metaKey (Boolean)—Indicates if the Meta key is pressed. The default is false.

➤➤ button (integer)—Indicates the button that was pressed. The default is 0.

➤➤ relatedTarget (object)—An object related to the event. This is used only when simulating
mouseover or mouseout.

As should be obvious, the arguments for initMouseEvent() map directly to the event object
properties for a mouse event. The first four arguments are the only ones that are critical for the
proper execution of the event because they are used by the browser; only event handlers use the
other arguments. The target property of the event object is set automatically when it is passed into
the dispatchEvent() method. As an example, the following simulates a click on a button using
default values:

let btn = document.getElementById("myBtn");

// create event object
let event = document.createEvent("MouseEvents");

// initialize the event object
event.initMouseEvent("click", true, true, document.defaultView,
 0, 0, 0, 0, 0, false, false, false, false, 0, null);

// fire the event
btn.dispatchEvent(event);

All other mouse events, including dblclick, can be simulated using this same technique in DOM-
compliant browsers.

Simulating Keyboard Events
As mentioned previously, keyboard events were left out of DOM Level 2 Events, so simulating key-
board events is not straightforward. Keyboard events were included in draft versions of DOM Level 2
Events and were removed before finalization. It’s worth noting that keyboard events in DOM Level 3
are drastically different from the draft version originally included in DOM Level 2.

Simulating Events ❘ 665

The DOM Level 3 way to create a keyboard event is to pass "KeyboardEvent" into the create
Event() method. Doing so creates an event object with a method called initKeyboardEvent().
This method has the following parameters:

➤➤ type (string)—The type of event to fire, such as "keydown".

➤➤ bubbles (Boolean)—Indicates if the event should bubble. This should be set to true for
accurate mouse event simulation.

➤➤ cancelable (Boolean)—Indicates if the event can be canceled. This should be set to true
for accurate mouse event simulation.

➤➤ view (AbstractView)—The view associated with the event. This is almost always document.
defaultView.

➤➤ key (string)—String code for the key that was pressed.

➤➤ location (integer)—The location of the key that was pressed. 0 for default keyboard, 1 for
the left location, 2 for the right location, 3 for the numeric keypad, 4 for mobile (indicating
a virtual keypad), or 5 for joystick.

➤➤ modifiers (string)—A space-separated list of modifiers such as "Shift".

➤➤ repeat (integer)—The number of times this key has been pressed in a row.

Keep in mind that DOM Level 3 Events deprecate the keypress event, so you can simulate only the
keydown and keyup events using this technique:

let textbox = document.getElementById("myTextbox"),
 event;

// create event object the DOM Level 3 way
if (document.implementation.hasFeature("KeyboardEvents", "3.0")) {
 event = document.createEvent("KeyboardEvent");

 // initialize the event object
 event.initKeyboardEvent("keydown", true, true, document.defaultView, "a",
 0, "Shift", 0);
}
// fire the event
textbox.dispatchEvent(event);

This example simulates keydown of the A key while Shift is being held. You should always
check for DOM Level 3 keyboard events support before attempting to use document.
createEvent("KeyboardEvent"); other browsers return a nonstandard KeyboardEvent object.

Firefox allows you to create a keyboard event by passing "KeyEvents" into the createEvent()
method. This returns an event object with a method called initKeyEvent(), which accepts the fol-
lowing 10 arguments:

➤➤ type (string)—The type of event to fire, such as "keydown".

➤➤ bubbles (Boolean)—Indicates if the event should bubble. This should be set to true for
accurate mouse event simulation.

666 ❘ CHAPTER 17 EvEnts

➤➤ cancelable (Boolean)—Indicates if the event can be canceled. This should be set to true
for accurate mouse event simulation.

➤➤ view (AbstractView)—The view associated with the event. This is almost always document.
defaultView.

➤➤ ctrlKey (Boolean)—Indicates if the Ctrl key is pressed. The default is false.

➤➤ altKey (Boolean)—Indicates if the Alt key is pressed. The default is false.

➤➤ shiftKey (Boolean)—Indicates if the Shift key is pressed. The default is false.

➤➤ metaKey (Boolean)—Indicates if the Meta key is pressed. The default is false.

➤➤ keyCode (integer)—The key code of the key that was pressed or released. This is used for
keydown and keyup. The default is 0.

➤➤ charCode (integer)—The ASCII code of the character generated from the key press. This is
used for keypress. The default is 0.

A keyboard event can then be fired by passing this event object to dispatchEvent(), as in
this example:

// for Firefox only
let textbox = document.getElementById("myTextbox");

// create event object
let event = document.createEvent("KeyEvents");

// initialize the event object
event.initKeyEvent("keydown", true, true, document.defaultView, false,
 false, true, false, 65, 65);

// fire the event
textbox.dispatchEvent(event);

This example simulates keydown for the A key with the Shift key held down. You can also simulate
keyup and keypress events using this technique.

For other browsers, you’ll need to create a generic event and assign keyboard-specific information to
it, as shown in this example:

let textbox = document.getElementById("myTextbox");

// create event object
let event = document.createEvent("Events");

// initialize the event object
event.initEvent(type, bubbles, cancelable);
event.view = document.defaultView;
event.altKey = false;
event.ctrlKey = false;
event.shiftKey = false;
event.metaKey = false;
event.keyCode = 65;
event.charCode = 65;

Simulating Events ❘ 667

// fire the event
textbox.dispatchEvent(event);

This code creates a generic event, initializes it by using initEvent(), and then assigns keyboard
event information. It’s necessary to use a generic event instead of a UI event because the UI event
prevents new properties from being added to the event object (except in Safari). Simulating an event
in this way causes the keyboard event to fire, but no text will be placed into the text box because this
doesn’t accurately simulate a keyboard event.

Simulating Other Events
Mouse events and keyboard events are the ones most often simulated in the browser, though it is
possible to simulate HTML events as well. HTML events are simulated by creating an event object,
using createEvent("HTMLEvents"), and then initializing the event object using initEvent() as
shown in this example:

let event = document.createEvent("HTMLEvents");
event.initEvent("focus", true, false);
target.dispatchEvent(event);

This example fires the focus event on a given target. Other HTML events may be simulated
the same way.

NOTE HTML events are rarely used in browsers because they are of limited
utility.

Custom DOM Events
DOM Level 3 specifies a class of events called custom events. Custom events don’t get fired natively
by the DOM but are provided so that developers can create their own events. You create a new
custom event by calling createEvent("CustomEvent"). The returned object has a method called
initCustomEvent(), which takes four arguments:

➤➤ type (string)—The type of event to fire, such as "keydown".

➤➤ bubbles (Boolean)—Indicates if the event should bubble.

➤➤ cancelable (Boolean)—Indicates if the event can be canceled.

➤➤ detail (object)—Any value. This fills in the detail property of the event object.

The created event can then be dispatched in the DOM just like any other event, shown here:

let div = document.getElementById("myDiv"),
 event;

div.addEventListener("myevent", (event) => {
 console.log("DIV: " + event.detail);
});

668 ❘ CHAPTER 17 EvEnts

document.addEventListener("myevent", (event) => {
 console.log("DOCUMENT: " + event.detail);
});

if (document.implementation.hasFeature("CustomEvents", "3.0")) {
 event = document.createEvent("CustomEvent");
 event.initCustomEvent("myevent", true, false, "Hello world!");
 div.dispatchEvent(event);
}

This example creates a bubbling event called "myevent". The value of event.detail is set to a
simple string and is then listened for both on a <div> element and at the document level. Because
the event is specified as bubbling using initCustomEvent(), the browser takes care of bubbling the
event up to the document.

Internet Explorer Event Simulation
Event simulation in Internet Explorer 8 and earlier follows a similar pattern as event simulation in the
DOM: You create an event object, assign the appropriate information, and then fire the event using
the object. Of course, Internet Explorer has different ways of doing each step.

The createEventObject() method of document creates an event object. Unlike the DOM, this
method accepts no arguments and returns a generic event object. After that, you must manually
assign all of the properties that you want to have on the object. (There is no method to do this.) The
last step is to call fireEvent() on the target, which accepts two arguments: the name of the event
handler and the event object. When fireEvent() is called, the srcElement and type properties
are automatically assigned to the event object; all other properties must be manually assigned. This
means that all events that Internet Explorer supports are simulated using the same algorithm. For
example, the following fires a click event on a button:

var btn = document.getElementById("myBtn");

// create event object
var event = document.createEventObject();

// initialize the event object
event.screenX = 100;
event.screenY = 0;
event.clientX = 0;
event.clientY = 0;
event.ctrlKey = false;
event.altKey = false;
event.shiftKey = false;
event.button = 0;

// fire the event
btn.fireEvent("onclick", event);

This example creates an event object and then initializes it with some information. Note that prop-
erty assignment is free-form, so you can assign any properties you’d like, including those not nor-
mally supported by Internet Explorer 8 and earlier. The property values are of no consequence to the
event, because only event handlers use them.

Summary ❘ 669

The same algorithm can be used to fire a keypress event as well, as shown in this example:

var textbox = document.getElementById("myTextbox");

// create event object
var event = document.createEventObject();

// initialize the event object
event.altKey = false;
event.ctrlKey = false;
event.shiftKey = false;
event.keyCode = 65;

// fire the event
textbox.fireEvent("onkeypress", event);

Because there is no difference between event objects for mouse, keyboard, or other events, a generic
event object can be used to fire any type of event. Note that, as with DOM keyboard event simula-
tion, no characters will appear in a text box as the result of a simulated keypress event even though
the event handler will fire.

SUMMARY

Events are the primary way that JavaScript is tied to web pages. Most common events are defined in
the DOM Level 3 Events specification or in HTML5. Even though there is a specification for basic
events, many browsers have gone beyond the specification and implemented proprietary events to
give developers greater insight into user interactions. Some proprietary events are directly related to
specific devices.

There are some memory and performance considerations surrounding events. For example:

➤➤ It’s best to limit the number of event handlers on a page because they can take up more
memory and make the page feel less responsive to the user.

➤➤ Event delegation can be used to limit the number of event handlers by taking advantage of
event bubbling.

➤➤ It’s a good idea to remove all event handlers that were added before the page is unloaded.

It’s possible to simulate events in the browser using JavaScript. The DOM Level 2 and 3 Events speci-
fications provide for the simulation of all events, making it easy to simulate all defined events. It’s also
possible to simulate keyboard events to a point by using a combination of other techniques. Internet
Explorer 8 and earlier also support event simulation, albeit through a different interface.

Events are one of the most important topics in JavaScript, and a good understanding of how they
work and their performance implications is critical.

Animation and Graphics
with Canvas

WHAT’S IN THIS CHAPTER?

➤➤ Using requestAnimationFrame

➤➤ Understanding the <canvas> element

➤➤ Drawing simple 2D graphics

➤➤ 3D drawing with WebGL

Graphics and animation in the browser are an increasingly essential component of the mod-
ern web, but they are also extremely difficult to do well. Visually complicated features require
performance tuning and hardware acceleration so that they don’t slow down the browser. An
increasingly robust suite of APIs and tools allows for development of such features.

Arguably, HTML5’s most popular addition is the <canvas> element. This element designates an
area of the page where graphics can be created, on the fly, using JavaScript. Originally pro-
posed by Apple for use with its Dashboard widgets, <canvas> quickly was added into HTML5
and found a very fast adoption rate by browsers. All major browsers support <canvas> to
some degree.

Similar to the other parts of the browser environment, <canvas> is made up of a few API sets,
and not all browsers support all API sets. There is a 2D context with basic drawing capabilities
and a proposed 3D context called WebGL. The latest versions of the supporting browsers now
support both the 2D context and WebGL.

18

Professional JavaScript® for Web Developers, Fourth Edition. Matt Frisbie.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

672 ❘ CHAPTER 18 AnimAtion And GrAphics with cAnvAs

USING requestAnimationFrame

For a long time, timers and intervals have been the state of the art for JavaScript-based animations.
While CSS transitions and animations make some animations easy for web developers, little has
changed in the world of JavaScript-based animation over the years. Firefox 4 was the first browser
to include a new API for JavaScript animations called mozRequestAnimationFrame(). This method
indicates to the browser that an animation is taking place so that the browser can, in turn, determine
the best way to schedule a redraw. Since its introduction, the API gained widespread adoption and is
now available across all major browsers as requestAnimationFrame().

Early Animation Loops
The typical way to create animations in JavaScript is to use setInterval() to manage all anima-
tions. A basic animation loop using setInterval() looks like this:

(function() {
 function updateAnimations() {
 doAnimation1();
 doAnimation2();
 //etc.
 }
 setInterval(updateAnimations, 100);
})();

To build out a small animation library, the updateAnimations() method would cycle through the
running animations and make the appropriate changes to each one (for example, both a news ticker
and a progress bar running together). If there are no animations to update, the method can exit
without doing anything and perhaps even stop the animation loop until more animations are ready
for updating.

The tricky part about this animation loop is knowing what the delay should be. The interval has to
be short enough to handle a variety of different animation types smoothly but long enough so as to
produce changes the browser can actually render. Most computer monitors refresh at a rate of 60 Hz,
which basically means there’s a repaint 60 times per second. Most browsers cap their repaints so they
do not attempt to repaint any more frequently than that, knowing that the end user gets no improve-
ment in experience.

Therefore, the best interval for the smoothest animation is 1000ms/60, or about 17ms. You’ll see the
smoothest animation at this rate because you’re more closely mirroring what the browser is capable
of doing. Multiple animations may need to be throttled so they don’t complete too quickly when
using an animation loop with a 17ms interval.

Even though setInterval()-based animation loops are more efficient than having multiple sets of
setTimeout()-based loops, there are still problems. Neither setInterval() nor setTimeout() are
intended to be precise. The delay you specify as the second argument is only an indication of when
the code is added in the browser’s UI thread queue for possible execution. If there are other jobs in
the queue ahead of it, then that code waits to be executed. In short, the millisecond delay is not an
indication of when the code will be executed, only an indication of when the job will be queued. If
the UI thread is busy, perhaps dealing with user actions, then that code will not execute immediately.

Using RequestAnimationFrame ❘ 673

Problems with Intervals
Understanding when the next frame will be drawn is key to smooth animations, and until recently,
there was no way to guarantee when the next frame would be drawn in a browser. As <canvas>
became popular and new browser-based games emerged, developers became increasingly frustrated
with the inaccuracy of setInterval() and setTimeout().

Exacerbating these problems is the timer resolution of the browser. Timers are not accurate to the
millisecond. Here are some common timer resolutions:

➤➤ Internet Explorer 8 and earlier have a timer resolution of 15.625ms.

➤➤ Internet Explorer 9 and later have a timer resolution of 4ms.

➤➤ Firefox and Safari have a timer resolution of ~10ms.

➤➤ Chrome has a timer resolution of 4ms.

Internet Explorer prior to version 9 has a timer resolution of 15.625ms, so any value between 0 and
15 could be either 0 or 15 but nothing else. Internet Explorer 9 improved timer resolution to 4ms,
but that’s still not very specific when it comes to animations. Chrome’s timer resolution is 4ms, while
Firefox’s and Safari’s is 10ms. Complicating matters more is that browsers have started to throttle
timers for tabs that are in the background or inactive. So even if you set your interval for optimum
display, you’re still only getting close to the timing you want.

requestAnimationFrame
Robert O’Callahan of Mozilla was thinking about this problem and came up with a unique solution.
He pointed out that CSS transitions and animations benefit from the browser knowing that some
animation should be happening, and so figured out the correct interval at which to refresh the UI.
With JavaScript animations, the browser has no idea that an animation is taking place. His solution
was to create a new method, called mozRequestAnimationFrame(), that indicates to the browser
that some JavaScript code is performing an animation. This allows the browser to optimize appropri-
ately after running some code. All browsers have converged on a prefix-less version of this method,
requestAnimationFrame().

The requestAnimationFrame() method accepts a single argument, which is a function to call prior
to repainting the screen. This function is where you make appropriate changes to DOM styles that
will be reflected with the next repaint. In order to create an animation loop, you can chain multiple
calls to requestAnimationFrame() together in the same way previously done with setTimeout().
For example:

function updateProgress() {
 var div = document.getElementById("status");
 div.style.width = (parseInt(div.style.width, 10) + 5) + "%";
 if (div.style.left != "100%") {
 requestAnimationFrame(updateProgress);
 }
}
requestAnimationFrame(updateProgress);

674 ❘ CHAPTER 18 AnimAtion And GrAphics with cAnvAs

Because requestAnimationFrame()runs the given function only once, you need to call it again
manually the next time you want to make a UI change for the animation. You also need to manage
when to stop the animation in the same way. The result is a very smooth animation.

So far, requestAnimationFrame() has solved the problem of browsers not knowing when a Java-
Script animation is happening and the problem of not knowing the best interval, but what about
the problem of not knowing when your code will actually execute? That’s also covered with the
same solution.

The function you pass into requestAnimationFrame() actually receives an argument, which is a
DOMHighResTimeStamp time code (such as the value returned from performance.now()) for when
the next repaint will actually occur. This is a very important point: requestAnimationFrame() actu-
ally schedules a repaint for some known point in the future and can tell you when that is. You’re then
able to determine how best to adjust your animation.

cancelAnimationFrame
Similar to setTimeout(), requestAnimationFrame() returns a request ID which can be used to
cancel the request via cancelAnimationFrame(). In the following example, the request callback is
enqueued but immediately cancelled:

let requestID = window.requestAnimationFrame(() => {
 console.log('Repaint!');
});
window.cancelAnimationFrame(requestID);

Performance Throttling with requestAnimationFrame
The name of requestAnimationFrame is somewhat misleading with respect to the task being per-
formed. Browsers that support this method are effectively exposing a hook callback queue. The hook
is the point just before the browser performs the next repaint. The callback queue is a mutable list of
functions, which should be invoked before performing that repaint. Invoking requestAnimation-
Frame() pushes a callback function onto that queue, and there is no limit to the length of the queue.

The behavior of the queued callback does not need to involve animation. However, recursively
enqueuing callback functions with requestAnimationFrame() ensures that the callback will be
invoked at most once per repaint, which is an excellent rate limiting tool. This is especially useful
when dealing with frequently invoked code that affects the visual appearance of the page, such as
scroll event listeners.

Consider the following naïve implementation, which will invoke the pseudo-expensive operation
upon a scroll event being fired from the window object. When scrolling down a web page, this event
can be fired hundreds or thousands of times very quickly:

function expensiveOperation() {
 console.log('Invoked at', Date.now());
}

Using RequestAnimationFrame ❘ 675

window.addEventListener('scroll', () => {
 expensiveOperation();
});

If you wanted to restrict the callback to only occur just before a repaint, you could wrap it inside a
requestAnimationFrame:

function expensiveOperation() {
 console.log('Invoked at', Date.now());
}

window.addEventListener('scroll', () => {
 window.requestAnimationFrame(expensiveOperation);
});

This will condense all the callback execution into the repaint hook, but it won’t prevent redundant
execution per repaint. You can prevent redundant repaint execution by introducing a flag that is set
and unset by the callback:

let enqueued = false;

function expensiveOperation() {
 console.log('Invoked at', Date.now());
 enqueued = false;
}

window.addEventListener('scroll', () => {
 if (!enqueued) {
 enqueued = true;
 window.requestAnimationFrame(expensiveOperation);
 }
});

Because repaints are a very frequent operation, this isn’t much of a throttle. Far better is to
combine this with a timer, which will throttle the frequency with which this operation can occur. This
way, the timer can restrict the real-world time interval at which the operation occurs, and request-
AnimationFrame controls when in the browser rendering cycle the execution occurs. The following
example will prevent the callback from executing more than once every 50ms:

let enabled = true;

function expensiveOperation() {
 console.log('Invoked at', Date.now());
}

window.addEventListener('scroll', () => {
 if (enabled) {
 enabled = false;
 window.requestAnimationFrame(expensiveOperation);
 window.setTimeout(() => enabled = true, 50);
 }
});

676 ❘ CHAPTER 18 AnimAtion And GrAphics with cAnvAs

BASIC CANVAS USAGE

The <canvas> element requires at least its width and height attributes to be set in order to indicate
the size of the drawing to be created. Any content appearing between the opening and closing tags is
fallback data that is displayed only if the <canvas> element isn’t supported. For example:

<canvas id="drawing" width="200" height="200">A drawing of something.</canvas>

As with other elements, the width and height attributes are also available as properties on the DOM
element object and may be changed at any time. The entire element may be styled using CSS as well,
and the element is invisible until it is styled or drawn upon.

To begin drawing on a canvas, you need to retrieve a drawing context. A reference to a drawing con-
text is retrieved using the getContext() method and passing in the name of the context. For exam-
ple, passing "2d" retrieves a 2D context object:

let drawing = document.getElementById("drawing");

// make sure <canvas> is completely supported
if (drawing.getContext) {

 let context = drawing.getContext("2d");

 // more code here
}

When using the <canvas> element, it’s important to test for the presence of the getContext()
method. Some browsers create default HTML element objects for elements that aren’t officially part
of HTML. In that case, the getContext() method would not be available even though drawing
would contain a valid element reference.

Images created on a <canvas> element can be exported using the toDataURL() method. This method
accepts a single argument, the MIME type format of the image to produce, and is applicable regard-
less of the context used to create the image. For example, to return a PNG-formatted image from a
canvas, use the following:

let drawing = document.getElementById("drawing");

// make sure <canvas> is completely supported
if (drawing.getContext) {

 // get data URI of the image
 let imgURI = drawing.toDataURL("image/png");

 // display the image
 let image = document.createElement("img");
 image.src = imgURI;
 document.body.appendChild(image);
}

By default, browsers encode the image as PNG unless otherwise specified. Firefox and Opera also
support JPEG encoding via "image/jpeg". Because this method was added later in the process, it
was adopted in later versions of supporting browsers, including Internet Explorer 9, Firefox 3.5,
and Opera 10.

The 2D Context ❘ 677

NOTE The toDataURL() method throws an error if an image from a different
domain is drawn onto a canvas. More details are available later in this chapter.

THE 2D CONTEXT

The 2D drawing context provides methods for drawing simple 2D shapes such as rectangles, arcs,
and paths. The coordinates in a 2D context begin at the upper-left of the <canvas> element, which is
considered point (0, 0). All coordinate values are calculated in relation to that point, with x increas-
ing to the right and y increasing toward the bottom. By default, the width and height indicate how
many pixels are available in each direction.

Fills and Strokes
There are two basic drawing operations on the 2D context: fill and stroke. Fill automatically fills in
the shape with a specific style (color, gradient, or image) while stroke colors only the edges. Most of
the 2D context operations have both fill and stroke variants, and how they are displayed is based on
a couple of properties: fillStyle and strokeStyle.

Both properties can be set to a string, a gradient object, or a pattern object, and both default to a
value of "#000000". A string value indicates a color defined using one of the various CSS color for-
mats: name, hex code, rgb, rgba, hsl, or hsla. For example:

let drawing = document.getElementById("drawing");

// make sure <canvas> is completely supported
if (drawing.getContext) {

 let context = drawing.getContext("2d");
 context.strokeStyle = "red";
 context.fillStyle = "#0000ff";
}

This code sets the strokeStyle to "red" (a named CSS color) and fillStyle to "#0000ff" (also
known as blue). All drawing operations involving stroke and fill will use these styles until the proper-
ties are changed again. These properties can also be set to a gradient or a pattern, both of which are
discussed later in this chapter.

Drawing Rectangles
The only shape that can be drawn directly on the 2D drawing context is the rectangle. There are
three methods for working with rectangles: fillRect(), strokeRect(), and clearRect(). Each
of these methods accepts four arguments: the x-coordinate of the rectangle, the y-coordinate of the
rectangle, the width of the rectangle, and the height of the rectangle. Each of these arguments is con-
sidered to be in pixels.

678 ❘ CHAPTER 18 AnimAtion And GrAphics with cAnvAs

The fillRect() method is used to draw a rectangle that is filled with a specific color onto the can-
vas. The fill color is specified using the fillStyle property. Consider the following example:

let drawing = document.getElementById("drawing");

// make sure <canvas> is completely supported
if (drawing.getContext) {
 let context = drawing.getContext("2d");

 /*
 * Based on Mozilla's documentation:
 * http:// developer.mozilla.org/en/docs/Canvas_tutorial:Basic_usage
 */

 // draw a red rectangle
 context.fillStyle = "#ff0000";
 context.fillRect(10, 10, 50, 50);

 // draw a blue rectangle that's semi-transparent
 context.fillStyle = "rgba(0,0,255,0.5)";
 context.fillRect(30, 30, 50, 50);
}

This code first sets the fillStyle to red and draws a rectangle located at (10,
10) that’s 50 pixels tall and wide. Next, it sets the fillStyle to a semitranspar-
ent blue color using rgba() format and draws another rectangle that overlaps the
first. The result is that you can see the red rectangle through the blue rectangle (see
Figure 18-1).

The strokeRect() method draws a rectangle outline using the color specified with
the strokeStyle property. Here is an example:

let drawing = document.getElementById("drawing");

// make sure <canvas> is completely supported
if (drawing.getContext) {
 let context = drawing.getContext("2d");

 /*
 * Based on Mozilla's documentation:
 * http:// developer.mozilla.org/en/docs/Canvas_tutorial:Basic_usage
 */

 // draw a red outlined rectangle
 context.strokeStyle = "#ff0000";
 context.strokeRect(10, 10, 50, 50);

 // draw a blue outlined rectangle that's semi-transparent
 context.strokeStyle = "rgba(0,0,255,0.5)";
 context.strokeRect(30, 30, 50, 50);
}

This code also draws two rectangles that overlap; however, they are just outlines
rather than filled rectangles (see Figure 18-2).

FIGURE 18-1:

FIGURE 18-2:

The 2D Context ❘ 679

NOTE The size of the stroke is controlled by the lineWidth property, which
can be set to any whole number. Likewise, a lineCap property describes the
shape that should be used at the end of lines ("butt", "round", or "square")
and lineJoin indicates how lines should be joined ("round", "bevel", or
"miter").

You can erase an area of the canvas by using the clearRect() method. This method is used to make
an area of the drawing context transparent. By drawing shapes and then clearing specific areas, you
are able to create interesting effects, such as cutting out a section of another shape. Consider the fol-
lowing example:

let drawing = document.getElementById("drawing");

// make sure <canvas> is completely supported
if (drawing.getContext) {
 let context = drawing.getContext("2d");
 /*
 * Based on Mozilla's documentation:
 * http:// developer.mozilla.org/en/docs/Canvas_tutorial:Basic_usage
 */

 // draw a red rectangle
 context.fillStyle = "#ff0000";
 context.fillRect(10, 10, 50, 50);

 // draw a blue rectangle that's semi-transparent
 context.fillStyle = "rgba(0,0,255,0.5)";
 context.fillRect(30, 30, 50, 50);

 // clear a rectangle that overlaps both of the previous rectangles
 context.clearRect(40, 40, 10, 10);
}

Here, two filled rectangles overlap one another and then a small rectangle is cleared
inside of that overlapping area. Figure 18-3 shows the result.

Drawing Paths
The 2D drawing context supports a number of methods for drawing paths on a can-
vas. Paths allow you to create complex shapes and lines. To start creating a path, you must first call
beginPath() to indicate that a new path has begun. After that, the following methods can be called
to create the path:

➤➤ arc(x, y, radius, startAngle, endAngle, counterclockwise)—Draws an arc cen-
tered at point (x, y) with a given radius and between startAngle and endAngle (expressed
in radians). The last argument is a Boolean indicating if startAngle and endAngle should
be calculated counterclockwise instead of clockwise.

FIGURE 18-3:

680 ❘ CHAPTER 18 AnimAtion And GrAphics with cAnvAs

➤➤ arcTo(x1, y1, x2, y2, radius)—Draws an arc from the last point to (x2, y2), passing
through (x1,y1) with the given radius.

➤➤ bezierCurveTo(c1x, c1y, c2x, c2y, x, y)—Draws a curve from the last point to the
point (x,y) using the control points (c1x,c1y) and (c2x, c2y).

➤➤ lineTo(x, y)—Draws a line from the last point to the point (x, y).

➤➤ moveTo(x, y)—Moves the drawing cursor to the point (x, y) without drawing a line.

➤➤ quadraticCurveTo(cx, cy, x, y)—Draws a quadratic curve from the last point to the
point (x, y) using a control point of (cx, cy).

➤➤ rect(x, y,width, height)—Draws a rectangle at point (x, y) with the given width and
height. This is different from strokeRect() and fillRect() in that it creates a path rather
than a separate shape.

Once the path has been created, you have several options. To draw a line back to the origin of
the path, you can call closePath(). If the path is already completed and you want to fill it with
fillStyle, call the fill() method. Another option is to stroke the path by calling the stroke()
method, which uses strokeStyle. The last option is to call clip(), which creates a new clipping
region based on the path.

As an example, consider the following code for drawing the face of a clock without the numbers:

let drawing = document.getElementById("drawing");

// make sure <canvas> is completely supported
if (drawing.getContext) {
 let context = drawing.getContext("2d");

 // start the path
 context.beginPath();

 // draw outer circle
 context.arc(100, 100, 99, 0, 2 * Math.PI, false);

 // draw inner circle
 context.moveTo(194, 100);
 context.arc(100, 100, 94, 0, 2 * Math.PI, false);

 // draw minute hand
 context.moveTo(100, 100);
 context.lineTo(100, 15);

 // draw hour hand
 context.moveTo(100, 100);
 context.lineTo(35, 100);

 // stroke the path
 context.stroke();
}

The 2D Context ❘ 681

This example draws two circles using arc(): an outer one and an inner one to create a border around
the clock. The outer circle has a radius of 99 pixels and is centered at (100, 100), which is the center
of the canvas. To draw a complete circle, you must start at an angle of 0 radians and draw all the way
around to 2π radians (calculated using Math.PI). Before drawing the inner circle, you must move
the path to a point that will be on the circle to avoid an additional line being drawn. The second call
to arc() uses a slightly smaller radius for the border effect. After that, combinations of moveTo()
and lineTo() are used to draw the hour and minute hands. The last step is to call stroke(), which
makes the image appear as shown in Figure 18-4.

Paths are the primary drawing mechanism for the 2D drawing context because they provide
more control over what is drawn. Because paths are used so often, there is also a method called
isPointInPath(), which accepts an x-coordinate and a y-coordinate as arguments. This method can
be called anytime before the path is closed to determine if a point exists on the path, as shown here:

if (context.isPointInPath(100, 100)) {
 alert("Point (100, 100) is in the path.");
}

The path API for the 2D drawing context is robust enough to create very complex images using mul-
tiple fill styles, stroke styles, and more.

Drawing Text
Because it’s often necessary to mix text and graphics, the 2D draw-
ing context provides methods to draw text. There are two methods for
drawing text, fillText() and strokeText(), and each takes four
arguments: the string to draw, the x-coordinate, the y-coordinate, and an
optional maximum pixel width to draw. Both methods base their draw-
ing on the following three properties:

➤➤ font—Indicates the font style, size, and family in the same
manner specified in CSS, such as "10px Arial".

➤➤ textAlign—Indicates how the text should be aligned. Possible values are "start", "end",
"left", "right", and "center". It’s recommended to use "start" and "end" instead of
"left" and "right" as these are more indicative of rendering in both left-to-right languages
and right-to-left languages.

➤➤ textBaseline—Indicates the baseline of the text. Possible values are "top", "hanging",
"middle", "alphabetic", "ideographic", and "bottom".

These properties have a default value, so there’s no need to set them each time you want to draw text.
The fillText() method uses the fillStyle property to draw the text, whereas the strokeText()
method uses the strokeStyle property. You will probably use fillText() most of the time because
this mimics normal text rendering on web pages. For example, the following renders a 12 at the top
of the clock created in the previous section:

context.font = "bold 14px Arial";
context.textAlign = "center";

FIGURE 18-4:

682 ❘ CHAPTER 18 AnimAtion And GrAphics with cAnvAs

context.textBaseline = "middle";
context.fillText("12", 100, 20);

The resulting image is displayed in Figure 18-5.

Because textAlign is set to "center" and textBaseline is set to
"middle", the coordinates (100, 80) indicate the horizontal and verti-
cal center and top coordinates for the text. If textAlign were "start",
then the x-coordinate would represent the left coordinate of the text in a
left-to-right language while "end" would make the x-coordinate repre-
sent the right coordinate in a left-to-right language. For example:

// normal
context.font = "bold 14px Arial";
context.textAlign = "center";
context.textBaseline = "middle";
context.fillText("12", 100, 20);
// start-aligned
context.textAlign = "start";
context.fillText("12", 100, 40);
// end-aligned
context.textAlign = "end";
context.fillText("12", 100, 60);

The string "12" is drawn three times, each using the same x-coordinate
but with three different textAlign values. The y-coordinate values are
also incremented so that the strings don’t render on top of one another.
The resulting image is shown in Figure 18-6.

The vertical line of the clock is directly at the center so the alignment
of the text becomes obvious. You can similarly adjust how the text is aligned vertically by altering
textBaseline. Setting to "top" means that the y-coordinate is the top of the text, "bottom" means
it’s the bottom, and "hanging", "alphabetic", and "ideographic" refer to specific baseline coordi-
nates of a font.

Because drawing text is quite complicated, especially when you want text to render within a specific
area, the 2D context provides a little extra help to determine the dimensions of text via the measure-
Text() method. This method accepts a single argument, the text to draw, and returns a TextMetrics
object. The returned object currently has only one property, width, but the intent is to provide more
metrics in the future.

The measureText() method uses the current values for font, textAlign, and textBaseline to
calculate the size of the specified text. For example, suppose you want to fit the text "Hello world!"
within a rectangle that is 140 pixels wide. The following code starts with a font size of 100 pixels and
decrements until the text fits:

let fontSize = 100;
context.font = fontSize + "px Arial";
while(context.measureText("Hello world!").width > 140) {
 fontSize--;

FIGURE 18-5:

FIGURE 18-6:

The 2D Context ❘ 683

 context.font = fontSize + "px Arial";
}
context.fillText("Hello world!", 10, 10);
context.fillText("Font size is " + fontSize + "px", 10, 50);

There is also a fourth argument for both fill-
Text() and strokeText(), which is the maxi-
mum width of the text. This argument is optional
and hasn’t been implemented in all browsers yet
(Firefox 4 was the first to implement it). When
provided, calling fillText() or strokeText()
with a string that will not fit within the maximum
width results in the text being drawn with the cor-
rect character height, but the characters are scaled
horizontally to fit. Figure 18-7 shows this effect.

Text drawing is one of the more complex drawing operations and, as such, not all portions of the API
have been implemented in the all browsers that support the <canvas> element.

Transformations
Context transformations allow the manipulation of images drawn onto the canvas. The 2D draw-
ing context supports all of the basic drawing transformations. When the drawing context is created,
the transformation matrix is initialized with default values that cause all drawing operations to be
applied directly as they are described. Applying transformations to the drawing context causes opera-
tions to be applied using a different transformation matrix and thus produces a different result.

The transformation matrix can be augmented by using any of the following methods:

➤➤ rotate(angle)—Rotates the image around the origin by angle radians.

➤➤ scale(scaleX, scaleY)—Scales the image by a multiple of scaleX in the x dimension and
by scaleY in the y dimension. The default value for both scaleX and scaleY is 1.0.

➤➤ translate(x, y)—Moves the origin to the point (x, y). After performing this operation,
the coordinates (0, 0) are located at the point previously described as (x, y).

➤➤ transform(m1_1, m1_2, m2_1, m2_2, dx, dy)—Changes the transformation matrix
directly by multiplying by the matrix described as this:

m1_1 m1_2 dx
m2_1 m2_2 dy
0 0 1

➤➤ setTransform(m1_1, m1_2, m2_1, m2_2, dx, dy)—Resets the transformation matrix to
its default state and then calls transform().

Transformations can be as simple or as complex as necessary. For example, it may be easier to draw
the hands on the clock in the previous example by translating the origin to the center of the clock and

FIGURE 18-7:

684 ❘ CHAPTER 18 AnimAtion And GrAphics with cAnvAs

then drawing the hands from there. Consider the following:

let drawing = document.getElementById("drawing");

// make sure <canvas> is completely supported
if (drawing.getContext) {
 let context = drawing.getContext("2d");

 // start the path
 context.beginPath();

 // draw outer circle
 context.arc(100, 100, 99, 0, 2 * Math.PI, false);

 // draw inner circle
 context.moveTo(194, 100);
 context.arc(100, 100, 94, 0, 2 * Math.PI, false);

 // translate to center
 context.translate(100, 100);

 // draw minute hand
 context.moveTo(0, 0);
 context.lineTo(0, -85);

 // draw hour hand
 context.moveTo(0, 0);
 context.lineTo(-65, 0);

 // stroke the path
 context.stroke();
}

After translating the origin to (100, 100), the center of the clock face, it’s just a matter of simple math
to draw the lines in the same direction. All math is now based on (0, 0) instead of (100, 100). You can
go further, moving the hands of the clock by using the rotate() method as shown here:

let drawing = document.getElementById("drawing");

// make sure <canvas> is completely supported
if (drawing.getContext) {
 let context = drawing.getContext("2d");

 // start the path
 context.beginPath();

 // draw outer circle
 context.arc(100, 100, 99, 0, 2 * Math.PI, false);

 // draw inner circle
 context.moveTo(194, 100);
 context.arc(100, 100, 94, 0, 2 * Math.PI, false);

 // translate to center
 context.translate(100, 100);

The 2D Context ❘ 685

 // rotate the hands
 context.rotate(1);

 // draw minute hand
 context.moveTo(0, 0);
 context.lineTo(0, -85);

 // draw hour hand
 context.moveTo(0, 0);
 context.lineTo(-65, 0);

 // stroke the path
 context.stroke();
}

Because the origin has already been translated to the center of the clock,
the rotation is applied from that point. This means that the hands are
anchored at the center and then rotated around to the right. The result is
displayed in Figure 18-8.

All of these transformations, as well as properties like fillStyle
and strokeStyle, remain set on the context until explicitly changed.
Although there’s no way to explicitly reset everything to their default
values, there are two methods that can help keep track of changes.
Whenever you want to be able to return to a specific set of properties
and transformations, call the save() method. Once called, this method
pushes all of the settings at the moment onto a stack for safekeeping.
You can then go on to make other changes to the context. When you want to go back to the previous
settings, call the restore() method, which pops the settings stack and restores all of the settings. You
can keep calling save() to store more settings on the stack and then systematically go back through
them using restore(). Here is an example:

context.fillStyle = "#ff0000";
context.save();

context.fillStyle = "#00ff00";
context.translate(100, 100);
context.save();

context.fillStyle = "#0000ff";
context.fillRect(0, 0, 100, 200); // draws blue rectangle at (100, 100)

context.restore();
context.fillRect(10, 10, 100, 200); // draws green rectangle at (110, 110)

context.restore();
context.fillRect(0, 0, 100, 200); // draws red rectangle at (0, 0)

In this code, the fillStyle is set to red and then save() is called. Next, the fillStyle is changed
to green, and the coordinates are translated to (100, 100). Once again, save() is called to save these
settings. The fillStyle property is then set to blue and a rectangle is drawn. Because the coordinates

FIGURE 18-8:

686 ❘ CHAPTER 18 AnimAtion And GrAphics with cAnvAs

are translated, the rectangle actually ends up being drawn at (100, 100). When restore() is called,
fillStyle is set back to green, so the next rectangle that’s drawn is green. This rectangle is drawn
at (110, 110) because the translation is still in effect. When restore() is called one more time, the
translation is removed and fillStyle is set back to red. The last rectangle is drawn at (0, 0).

Note that save() saves only the settings and transformations applied to the drawing context but not
the contents of the drawing context.

Drawing Images
The 2D drawing context has built-in support for working with images. If you have an existing image
that should be drawn on the canvas, you can do so using the drawImage() method. This method can
be called with three different sets of arguments based on the desired result. The simplest call is to pass
in an HTML element, as well as the destination x- and y-coordinates, which simply draws the
image at the specified location. Consider this example:

let image = document.images[0];
context.drawImage(image, 10, 10);

This code gets the first image in the document and draws it on the context at position (10, 10). The
image is drawn in the same scale as the original. You can change how the image is drawn by adding
two more arguments: the destination width and destination height. This scales the drawing without
affecting the transformation matrix of the context. Consider this example:

context.drawImage(image, 50, 10, 20, 30);

When this code is executed, the image is scaled to be 20 pixels wide by 30 pixels tall.

You can also select just a region of the image to be drawn onto the context. This is done by providing
nine arguments to drawImage(): the image to draw, the source x-coordinate, the source y-coordinate,
the source width, the source height, the destination x-coordinate, the destination y-coordinate, the
destination width, and the destination height. Using this overload of drawImage() gives you the most
control. Consider this example:

context.drawImage(image, 0, 10, 50, 50, 0, 100, 40, 60);

Here, only part of the image is drawn on the canvas. That part of the
image begins at point (0, 10) and is 50 pixels wide and 50 pixels tall.
The image is drawn to point (0, 100) on the context and scaled to fit in
a 40×60 area.

These drawing operations allow you to create interesting effects such
as those shown in Figure 18-9.

In addition to passing in an HTML element as the first argu-
ment, you can also pass in another <canvas> element to draw the
contents of one canvas onto another.

The drawImage() method, in combination with other methods,
can easily be used to perform basic image manipulation, the result of which can be retrieved using
toDataURL(). There is, however, one instance where this won’t work: if an image from a different
origin than the page is drawn onto the context. In that case, calling toDataURL() throws an error.

FIGURE 18-9:

The 2D Context ❘ 687

For example, if a page hosted on www.example.com draws an image hosted on www.wrox.com, the
context is considered "dirty" and an error is thrown.

Shadows
The 2D context will automatically draw a shadow along with a shape or path based on the value of
several properties:

➤➤ shadowColor—The CSS color in which the shadow should be drawn. The default is black.

➤➤ shadowOffsetX—The x-coordinate offset from the x-coordinate of the shape or path. The
default is 0.

➤➤ shadowOffsetY—The y-coordinate offset from the y-coordinate of the shape or path. The
default is 0.

➤➤ shadowBlur—The number of pixels to blur. If set to 0, the shadow has no blur. The
default is 0.

Each of these properties can be read and written on the context object. You just need to set the val-
ues appropriately before drawing and the shadows are drawn automatically. For example:

let context = drawing.getContext("2d");
// setup shadow
context.shadowOffsetX = 5;
context.shadowOffsetY = 5;
context.shadowBlur = 4;
context.shadowColor = "rgba(0, 0, 0, 0.5)";
// draw a red rectangle
context.fillStyle = "#ff0000";
context.fillRect(10, 10, 50, 50);
// draw a blue rectangle
context.fillStyle = "rgba(0,0,255,1)";
context.fillRect(30, 30, 50, 50);

A shadow is drawn using the same styles for both rectangles, resulting in the
image displayed in Figure 18-10.

Gradients
Gradients are represented by an instance of CanvasGradient and are very simple to create and mod-
ify using the 2D context. To create a new linear gradient, call the createLinearGradient() method.
This method accepts four arguments: the starting x-coordinate, the starting y-coordinate, the ending
x-coordinate, and the ending y-coordinate. Once called, the method creates a new CanvasGradient
object of the size you specified and returns the instance.

Once you have the gradient object, the next step is to assign color stops using the addColorStop()
method. This method accepts two arguments: the location of the color stop and a CSS color. The
color stop location is a number between 0 (the first color) and 1 (the last color). For example:

let gradient = context.createLinearGradient(30, 30, 70, 70);
gradient.addColorStop(0, "white");
gradient.addColorStop(1, "black");

FIGURE 18-10:

688 ❘ CHAPTER 18 AnimAtion And GrAphics with cAnvAs

The gradient object now represents a gradient that is drawn from point (30, 30) to point (70, 70) on
the canvas. The starting color is white and the stopping color is black. You can now set the fill-
Style or strokeStyle properties to this value to draw a shape using the gradient:

// draw a red rectangle
context.fillStyle = "#ff0000";
context.fillRect(10, 10, 50, 50);
// draw a gradient rectangle
context.fillStyle = gradient;
context.fillRect(30, 30, 50, 50);

In order for the gradient to be drawn over the entire rectangle and not just part of it, the coordinates
need to match up. This code produces the drawing in Figure 18-11.

If the rectangle isn’t drawn in exactly this spot, then only part of the gradient is displayed.
For example:

context.fillStyle = gradient;
context.fillRect(50, 50, 50, 50);

This code creates a rectangle with only a small amount of white in the upper-left
corner. That’s because the rectangle is drawn at the midpoint of the gradient,
where the color transition is almost complete. The rectangle is therefore mostly
black because gradients do not repeat. Keeping the gradient lined up with your
shapes is important, and sometimes using a function to calculate the appropriate
coordinates is useful. For example:

function createRectLinearGradient(context, x, y, width, height) {
 return context.createLinearGradient(x, y, x+width, y+height);
}

This function creates a gradient based on the starting x- and y-coordinates, along with a width and
height, so that the same numbers can be used as fillRect():

let gradient = createRectLinearGradient(context, 30, 30, 50, 50);
gradient.addColorStop(0, "white");
gradient.addColorStop(1, "black");
// draw a gradient rectangle
context.fillStyle = gradient;
context.fillRect(30, 30, 50, 50);

Keeping track of coordinates is an important and tricky aspect of using canvas. Helper functions such
as createRectLinearGradient() can take some of the pain out of managing coordinates.

Radial gradients are created using the createRadialGradient() method. This method accepts six
arguments corresponding to the center of a circle and its radius. The first three arguments define the
starting circle’s center (x and y) and radius, while the last three define the same for the ending circle.
When thinking about radial gradients, you will find it helps to think of a long cylinder where you’re
defining the size of the circle on each end. By making one circle smaller and the other larger, you’ve
effectively made a cone, and you rotate that cone around by moving the center of each circle.

To create a radial gradient that starts in the center of a shape and continues out, you need to set the
center of both circles to the same origin. For example, to create a radial gradient in the center of the

FIGURE 18-11:

The 2D Context ❘ 689

rectangle in the previous example, both circles must be centered at (55, 55). That’s because the rectan-
gle is drawn from point (30, 30) to point (80, 80). Here’s the code:

let gradient = context.createRadialGradient(55, 55, 10, 55, 55, 30);
gradient.addColorStop(0, "white");
gradient.addColorStop(1, "black");
// draw a red rectangle
context.fillStyle = "#ff0000";
context.fillRect(10, 10, 50, 50);
// draw a gradient rectangle
context.fillStyle = gradient;
context.fillRect(30, 30, 50, 50);

Running this code results in the drawing displayed in Figure 18-12.

Radial gradients are a little bit more difficult to work with because of the com-
plexities of their creation, but generally you’ll end up using the same center for
both starting circle and ending circle and just altering the radii of the circles for
most basic effects.

Patterns
Patterns are simply repeating images that may be used to fill or stroke a shape. To create a new pat-
tern, call the createPattern() method and pass in two arguments: an HTML element and
a string indicating how the image should be repeated. The second argument is the same as the values
for the CSS background-repeat property: "repeat", "repeat-x", "repeat-y", and "no-repeat".
For example:

let image = document.images[0],
 pattern = context.createPattern(image, "repeat");
// draw a rectangle
context.fillStyle = pattern;
context.fillRect(10, 10, 150, 150);

Keep in mind that, like gradients, a pattern actually
starts at point (0, 0) on the canvas. Setting the fill style
to a pattern means revealing the pattern in the specified
location rather than starting to draw at that position.
This code results in a page that looks like Figure 18-13.

The first argument for createPattern() can also be a
<video> element or another <canvas> element.

Working with Image Data
One of the more powerful aspects of the 2D context is
the ability to retrieve raw image data using the getImageData() method. This method accepts four
arguments: the left and top position of the first pixel whose data should be retrieved, and the pixel

FIGURE 18-12:

FIGURE 18-13:

690 ❘ CHAPTER 18 AnimAtion And GrAphics with cAnvAs

width and the pixel height to retrieve. For instance, to get image data for a 50 by 50 area starting at
(10, 5), use the following:

let imageData = context.getImageData(10, 5, 50, 50);

The returned object is an instance of ImageData. Each ImageData object contains just three proper-
ties: width, height, and data. The data property is an array that contains the raw pixel information
for the image. Each pixel is actually represented as four items in the data array, one each for red,
green, blue, and alpha. So the data for the first pixel is contained in items 0 through 3, such as:

let data = imageData.data,
 red = data[0],
 green = data[1],
 blue = data[2],
 alpha = data[3];

Each value in the array is a number between 0 and 255, inclusive. Having access to the raw image
data allows you to manipulate the image in a variety of ways. For example, a simple grayscale filter
can be created by changing the image data:

let drawing = document.getElementById("drawing");
// make sure <canvas> is completely supported
if (drawing.getContext) {
 let context = drawing.getContext("2d"),
 image = document.images[0],
 imageData, data,
 i, len, average,
 red, green, blue, alpha;

 // draw regular size
 context.drawImage(image, 0, 0);

 // get the image data
 imageData = context.getImageData(0, 0, image.width, image.height);
 data = imageData.data;
 for (i=0, len=data.length; i < len; i+=4) {

 red = data[i];
 green = data[i+1];
 blue = data[i+2];
 alpha = data[i+3];

 // get the average of rgb
 average = Math.floor((red + green + blue) / 3);

 // set the colors, leave alpha alone
 data[i] = average;
 data[i+1] = average;
 data[i+2] = average;

 }

 // assign back to image data and display
 imageData.data = data;
 context.putImageData(imageData, 0, 0);
}

The 2D Context ❘ 691

This example first draws an image onto the canvas and then retrieves its image data. A for loop
iterates over each pixel in the image data. Note that each trip through the loop adds 4 to the value of
i. Once the red, green, and blue values are retrieved, they are averaged together to get a new value.
Then each of the values is set back to that average, effectively washing out the color and leaving only
a gray of similar brightness in its place. The data array is then assigned back onto the imageData
object. After that, the putImageData() method is called to draw the image data back to the canvas.
The result is a grayscale version of the image.

Of course, grayscale isn’t the only type of filter that can be implemented by manipulating raw pixel
values. For more information on creating filters with raw image data, see “Making Image Filters with
Canvas” by Ilmari Heikkinen (www.jsl5rocks.com/en/tutorials/canvas/imagefilters/).

NOTE Image data is available only if the canvas isn’t dirty from loading a cross-
domain resource. Attempting to access image data when the canvas is dirty
causes a JavaScript error.

Compositing
There are two properties that apply to all drawing done on the 2D context: globalAlpha and
globalCompositionOperation. The globalAlpha property is a number between 0 and 1, inclusive,
that specifies the alpha value for all drawings. The default value is 0. If all of the upcoming drawings
should be done with the same alpha, set globalAlpha to the appropriate value, perform the draw-
ings, and then set globalAlpha back to 0. For example:

// draw a red rectangle
context.fillStyle = "#ff0000";
context.fillRect(10, 10, 50, 50);
// change the global alpha
context.globalAlpha = 0.5;
// draw a blue rectangle
context.fillStyle = "rgba(0,0,255,1)";
context.fillRect(30, 30, 50, 50);
// reset
context.globalAlpha = 0;

In this example, a blue rectangle is drawn on top of a red rectangle. Because globalAlpha is set to
0.5 before drawing the blue rectangle, it becomes partially transparent, allowing the red rectangle to
be seen through the blue.

The globalCompositionOperation property indicates how newly drawn shapes should merge with
the already-existing image on the context. This property is a string value of one of the following:

➤➤ source-over (default)—New drawing is drawn on top of the existing image.

➤➤ source-in—New drawing is drawn only where it overlaps the existing image. Everything
else becomes transparent.

➤➤ source-out—New drawing is drawn only where it does not overlap the existing image.
Everything else becomes transparent.

692 ❘ CHAPTER 18 AnimAtion And GrAphics with cAnvAs

➤➤ source-atop—New drawing is drawn only where it overlaps the existing image. The exist-
ing image is otherwise unaffected.

➤➤ destination-over—New drawing is drawn underneath the existing image, visible only
through previously transparent pixels.

➤➤ destination-in—New drawing is drawn underneath the existing image, and all places
where the two images do not overlap become transparent.

➤➤ destination-out—New drawing erases the parts of the existing image where they overlap.

➤➤ destination-atop—New drawing is drawn behind the existing image. The existing image
becomes transparent where there is no overlap with new drawing.

➤➤ lighter—New drawing is drawn by combining its values with the existing image values to
create a lighter image.

➤➤ copy—New drawing erases the existing image and replaces it completely.

➤➤ xor—New drawing is drawn by XORing the image data with the existing image.

The descriptions of these composite operations are difficult to represent in words or black-and-white
images. Here’s a simple example:

// draw a red rectangle
context.fillStyle = "#ff0000";
context.fillRect(10, 10, 50, 50);
// set composite operation
context.globalCompositeOperation = "destination-over";
// draw a blue rectangle
context.fillStyle = "rgba(0,0,255,1)";
context.fillRect(30, 30, 50, 50);

Even though the blue rectangle would normally be drawn over the red, changing globalComposite
Operation to "destination-over" means that the red rectangle actually ends up on top of the blue.

When using globalCompositionOperation, be sure to test across a wide variety of browsers. There
are still significant differences between how these operations are implemented cross-browser. Safari
and Chrome still have several issues with these operations, which can be seen by going to the previ-
ously mentioned URL and comparing the rendering to that of Internet Explorer or Firefox.

WEBGL

WebGL is a 3D context for canvas. Unlike other web technologies, WebGL is not specified by the
W3C. Instead, the Khronos Group is developing the specification. According to its website, “The
Khronos Group is a not for profit, member-funded consortium focused on the creation of royalty-free
open standards for parallel computing, graphics, and dynamic media on a wide variety of platforms
and devices.” The Khronos Group has also worked on other graphics APIs, such as OpenGL ES 2.0,
which is the basis for WebGL in the browser.

3D graphics languages such as OpenGL are complex topics, and it is beyond the scope of this book
to cover all concepts. Familiarity with OpenGL ES 2.0 is recommended for using WebGL as many
concepts map directly.

WebGL ❘ 693

This section assumes a working knowledge of OpenGL ES 2.0 concepts and simply attempts to
describe how certain parts of OpenGL ES 2.0 have been implemented in WebGL. For more informa-
tion on OpenGL, please visit www.opengl.org, and for an excellent series of WebGL tutorials, please
visit www.learningwebgl.com.

NOTE Typed arrays are an important part of performing operations in WebGL.
They are covered in depth in the Collection Reference Types chapter.

The WebGL Context
The WebGL 2.0 context name in fully supporting browsers is "webgl2". The WebGL 1.0 context
name in fully supporting browsers is "webgl". If the browser doesn’t support WebGL, then attempt-
ing to retrieve a WebGL context returns null. You should always check the returned value before
attempting to use the context:

let drawing = document.getElementById("drawing");

// make sure <canvas> is completely supported
if (drawing.getContext) {
 let gl = drawing.getContext("webgl");
 if (gl) {
 // proceed with WebGL
 }
}

The WebGL context object is typically called gl. Most WebGL applications and examples use this
convention because OpenGL ES 2.0 methods and values typically begin with "gl". Doing so means
the JavaScript code reads more closely like an OpenGL program.

WebGL Basics
Once the WebGL context is established, you’re ready to start 3D drawing. As mentioned previously,
because WebGL is a web version of OpenGL ES 2.0, the concepts discussed in this section are really
OpenGL concepts as implemented in JavaScript.

You can specify options for the WebGL context by passing in a second argument to getContext().
The argument is an object containing one or more of the following properties:

➤➤ alpha—When set to true, creates an alpha channel buffer for the context. Default is true.

➤➤ depth—When set to true, a 16-bit depth buffer is available. Default is true.

➤➤ stencil—When set to true, an 8-bit stencil buffer is available. Default is false.

➤➤ antialias—When set to true, antialiasing will be performed using the default mechanism.
Default is true.

694 ❘ CHAPTER 18 AnimAtion And GrAphics with cAnvAs

➤➤ premultipliedAlpha—When set to true, the drawing buffer is assumed to have premulti-
plied alpha values. Default is true.

➤➤ preserveDrawingBuffer—When set to true, the drawing buffer is preserved after drawing
is completed. Default is false. Recommended to change only if you know exactly what this
does, as there may be performance implications.

The options object is passed in like this:

let drawing = document.getElementById("drawing");

// make sure <canvas> is completely supported
if (drawing.getContext) {

 let gl = drawing.getContext("webgl", { alpha: false });
 if (gl) {
 // proceed with WebGL
 }
}

Most of the context options are for advanced use. In many cases, the default values will serve
your purpose.

Some browsers may throw an error if the WebGL context can’t be created via getContext(). For
that reason, it’s best to wrap the call in a try-catch block:

Insert IconMargin [download]let drawing = document.getElementById("drawing"),
 gl;

// make sure <canvas> is completely supported
if (drawing.getContext) {
 try {
 gl = drawing.getContext("webgl");
 } catch (ex) {
 // noop
 }
 if (gl) {
 // proceed with WebGL
 } else {
 alert("WebGL context could not be created.");
 }
}

Constants
If you’re familiar with OpenGL, then you’re familiar with the large number of constants used for
operations. These constants are named in OpenGL with a prefix of GL_. In WebGL, each constant is
available on the WebGL context object without the GL_ prefix. For example, the GL_COLOR_BUFFER_
BIT constant is available as gl.COLOR_BUFFER_BIT. WebGL supports most OpenGL constants in this
manner (some constants are not available).

WebGL ❘ 695

Method Naming
Many method names in OpenGL, and so also in WebGL, tend to include information about the type
of data to be used with the method. If a method can accept different types and numbers of arguments
then it is suffixed to indicate the expected input. The method will indicate the number of arguments
(1 through 4) followed by the data type (“f” for float and “i” for int). For example, gl.uniform4f()
expects four floats to be passed in and gl.uniform3i() expects three integers to be passed in.

Many methods also allow an array to be passed in instead of individual arguments. This is indicated
by the letter “v,” which is short for vector. So gl.uniform3iv() accepts an array of integers with
three values. Keep this convention in mind throughout the discussion of WebGL.

Getting Ready to Draw
One of the first steps when working on a WebGL context is to clear the <canvas> with a solid color
to prepare for drawing. To do this, you first must assign the color to use via the clearColor()
method. This method accepts four arguments: red, green, blue, and alpha. Each argument must be a
number between 0 and 1 defining the strength of value as part of a final color. Consider the follow-
ing example:

gl.clearColor(0, 0, 0, 1); // black
gl.clear(gl.COLOR_BUFFER_BIT);

This code sets the clear color buffer value to black and then calls the clear() method, which is the
equivalent of glClear() in OpenGL. Providing the argument gl.COLOR_BUFFER_BIT tells WebGL to
use the previously defined color to fill the area. Generally speaking, all drawing operations begin with
a call to clear the area for drawing.

Viewports and Coordinates
To get started, it’s a good idea to define the WebGL viewport. By default, the viewport is set to use
the entire <canvas> area. To change the viewport, call the viewport() method and pass in the x,
y, width, and height of the viewport relative to the
<canvas> element. For example, this call uses the
entire <canvas> element:

gl.viewport(0, 0, drawing.width,
drawing.height);

The viewport is defined using a different coordinate
system than is typically used in a web page. The x-
and y-coordinates start with (0, 0) at the bottom-left
of the <canvas> element and increase toward the top
and right, which can be defined as point (width–1,
height–1) (see Figure 18-14).

(0, 0)

<canvas> (width–1, height–1)

FIGURE 18-14:

696 ❘ CHAPTER 18 AnimAtion And GrAphics with cAnvAs

Knowing how the viewport is defined allows you to use just a part of the <canvas> element for
drawing. Consider the following examples:

// viewport is a quarter of the <canvas> in the lower-left corner
gl.viewport(0, 0, drawing.width/2, drawing.height/2);
// viewport is a quarter of the <canvas> in the upper-left corner
gl.viewport(0, drawing.height/2, drawing.width/2, drawing.height/2);
// viewport is a quarter of the <canvas> in the lower-right corner
gl.viewport(drawing.width/2, 0, drawing.width/2, drawing.height/2);

The coordinate system within a viewport is different than the
coordinate system for defining a viewport. Inside of a view-
port, the coordinates start with point (0, 0) in the center of the
viewport. The lower-left corner is (–1, –1) while the upper-right
is (1, 1) (see Figure 18-15).

If a coordinate outside of the viewport is used for a drawing
operation then the drawing is clipped along the viewport. For
instance, attempting to draw a shape with a vertex at (1, 2) will
result in a shape that is cut off on the right side of the viewport.

Buffers
Vertex information is stored in typed arrays in JavaScript and
must be converted into WebGL buffers for use. Buffers are created by calling gl.createBuffer()
and then bound to the WebGL context using gl.bindBuffer(). Once that happens, you can fill the
buffer with data. For example:

let buffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array([0, 0.5, 1]), gl.STATIC_DRAW);

The call to gl.bindBuffer() sets buffer as the current buffer for the context. After that point, all
buffer operations are performed on buffer directly. So the call to gl.bufferData() doesn’t contain
a direct reference to buffer but works on it nonetheless. That last line initializes buffer with infor-
mation from a Float32Array (you generally will be using Float32Array for all vertex information).
You can also use gl.ELEMENT_ARRAY_BUFFER if you intend to use drawElements() for outputting
the buffer content.

The last argument of gl.bufferData() indicates how the buffer will be used. This is one of the fol-
lowing constants:

➤➤ gl.STATIC_DRAW—The data will be loaded once and used for drawing multiple times.

➤➤ gl.STREAM_DRAW—The data will be loaded once and used for drawing just a few times.

➤➤ gl.DYNAMIC_DRAW—The data will be modified repeatedly and used for drawing mul-
tiple times.

You’ll likely use gl.STATIC_DRAW for most buffers unless you’re an experienced OpenGL
programmer.

(–1, –1)

(1, 1)

(0, 0)

Viewport

FIGURE 18-15:

WebGL ❘ 697

Buffers stay in memory until the containing page is unloaded. If you no longer need a buffer, then it’s
best to free its memory by calling gl.deleteBuffer():

gl.deleteBuffer(buffer);

Errors
One of the differences between most JavaScript and WebGL is that errors are generally not thrown
from WebGL operations. Instead, you must call the gl.getError() method after invoking a method
that may have failed. This method returns a constant value indicating the type of error that has
occurred. The constants are as follows:

➤➤ gl.NO_ERROR—There wasn’t an error during the last operation (value of 0).

➤➤ gl.INVALID_ENUM—An incorrect argument was passed to a method that was expecting one
of the WebGL constants.

➤➤ gl.INVALID_VALUE—A negative number was passed where only an unsigned number
is accepted.

➤➤ gl.INVALID_OPERATION—The operation cannot be completed in the current state.

➤➤ gl.OUT_OF_MEMORY—There is not enough memory to complete the operation.

➤➤ gl.CONTEXT_LOST_WEBGL—The WebGL context was lost because of an external event (such
as loss of power on a device).

Each call to gl.getError() returns a single error value. After the initial call, the next call to gl.
getError() may return another error value. If there are multiple errors, then this process continues
until gl.getError() returns gl.NO_ERROR. If you have performed a number of operations, then
you’ll likely want to call getError() in a loop, such as:

let errorCode = gl.getError();
while (errorCode) {
 console.log("Error occurred: " + errorCode);
 errorCode = gl.getError();
}

If your WebGL script is not resulting in the correct output, then putting a few calls to gl.getEr-
ror() into your script may help debug the issue.

Shaders
Shaders are another concept from OpenGL. There are two types of shaders in WebGL: vertex shaders
and fragment shaders. Vertex shaders are used to convert a 3D vertex into a 2D point to be rendered.
Fragment shaders are used to compute the correct color for drawing a single pixel. The unique and
challenging aspect of WebGL shaders is that they are not written in JavaScript. Shaders are written
using OpenGL Shading Language (GLSL), a completely separate language from C or JavaScript.

Writing Shaders
GLSL is a C-like language that is used specifically for defining OpenGL shaders. Because WebGL is
an implementation of OpenGL ES 2, the shaders used in OpenGL can be used directly in WebGL,
allowing for easy porting of desktop graphics to the Web.

698 ❘ CHAPTER 18 AnimAtion And GrAphics with cAnvAs

Each shader has a method called main() that is executed repeatedly during drawing. There are two
ways to pass data into a shader: attributes and uniforms. Attributes are used to pass vertices into a
vertex shader while uniforms are used to pass constant values to either type of shader. Attributes and
uniforms are defined outside of main() by using the keywords attribute or uniform, respectively.
After the value type keyword, the data type is specified followed by a name. Here’s a simple example
vertex shader:

// OpenGL Shading Language
// Shader by Bartek Drozdz in his article at
// http:// www.netmagazine.com/tutorials/get-started-webgl-draw-square
attribute vec2 aVertexPosition;

void main() {
 gl_Position = vec4(aVertexPosition, 0.0, 1.0);
}

This vertex shader defines a single attribute called aVertexPosition. This attribute is an array of
two items (vec2 data type) representing an x- and y-coordinate. A vertex shader must always result in
a four-part vertex being assigned to the special variable gl_Position even though only two coordi-
nates were passed. This shader creates a new four-item array (vec4) and fills in the missing coordi-
nates, effectively turning a 2D coordinate into a 3D one.

Fragment shaders are similar to vertex shaders except you can pass data only in via uniforms. Here’s
an example fragment shader:

// OpenGL Shading Language
// Shader by Bartek Drozdz in his article at
// http:// www.netmagazine.com/tutorials/get-started-webgl-draw-square
uniform vec4 uColor;

void main() {
 gl_FragColor = uColor;
}

Fragment shaders must result in a value being assigned to gl_FragColor, which indicates the color to
use while drawing. This shader defined a uniform four-part (vec4) color named uColor to be set. Lit-
erally, this shader does nothing but assign the passed-in value to gl_FragColor. The value of uColor
cannot be changed within the shader.

NOTE OpenGL Shading Language is a more complex language than repre-
sented here. There are entire books devoted to explaining the intricacies of the
languages, and so this section is just a quick introduction to the language as a
way of facilitating WebGL usage. For more information, please read OpenGL
Shading Language by Randi J. Rost (Addison-Wesley, 2006).

Creating Shader Programs
GLSL cannot be natively understood by a browser, so you must have a string of GLSL ready for
compilation and linking into a shader program. For ease of use, shaders are typically included in a
page using <script> elements with a custom type attribute. Using an invalid type attribute prevents

WebGL ❘ 699

the browser from attempting to interpret the <script> contents while allowing you easy access.
For example:

<script type="x-webgl/x-vertex-shader" id="vertexShader">
attribute vec2 aVertexPosition;

void main() {
 gl_Position = vec4(aVertexPosition, 0.0, 1.0);
}
</script>
<script type="x-webgl/x-fragment-shader" id="fragmentShader">
uniform vec4 uColor;

void main() {
 gl_FragColor = uColor;
}
</script>

You can then extract the contents of the <script> element using the text property:

let vertexGlsl = document.getElementById("vertexShader").text,
 fragmentGlsl = document.getElementById("fragmentShader").text;

More complex WebGL applications may choose to download shaders dynamically. The important
aspect is that you need a GLSL string in order to use a shader.

Once you have a GLSL string, the next step is to create a shader object. This is done by calling the
gl.createShader() method and passing in the type of shader to create (gl.VERTEX_SHADER or gl.
FRAGMENT_SHADER). After that, the source code of the shader is applied using gl.shaderSource()
and the shader is compiled using gl.compileShader(). Here’s an example:

let vertexShader = gl.createShader(gl.VERTEX_SHADER);
gl.shaderSource(vertexShader, vertexGlsl);
gl.compileShader(vertexShader);
let fragmentShader = gl.createShader(gl.FRAGMENT_SHADER);
gl.shaderSource(fragmentShader, fragmentGlsl);
gl.compileShader(fragmentShader);

This code creates two shaders and stores them in vertexShader and fragmentShader. These two
objects can then be linked into a shader program by using the following code:

let program = gl.createProgram();
gl.attachShader(program, vertexShader);
gl.attachShader(program, fragmentShader);
gl.linkProgram(program);

The first line creates a program and then attachShader() is used to include the two shaders. The
call to gl.linkProgram() encapsulates both shaders together into the variable program. With
the program linked, you can instruct the WebGL context to use the program via the gl.usePro-
gram() method:

gl.useProgram(program);

After gl.useProgram() has been called, all further drawing operations will use the speci-
fied program.

700 ❘ CHAPTER 18 AnimAtion And GrAphics with cAnvAs

Passing Values to Shaders
Each of the previously defined shaders has a value that must be passed in to complete the shader’s
job. To pass values into a shader, you must first locate the variable whose value must be filled. For
uniform variables, this is done through gl.getUniformLocation(), which returns an object repre-
senting the location of the uniform variable in memory. You can then use this location to assign data.
For example:

let uColor = gl.getUniformLocation(program, "uColor");
gl.uniform4fv(uColor, [0, 0, 0, 1]);

This example locates the uniform variable uColor in program and returns its memory location. The
second line assigns a value into uColor using gl.uniform4fv().

A similar process is followed for attribute variables in vertex shaders. To get the location of an
attribute variable, use gl.getAttribLocation(). Once the location is retrieved, it can be used as in
this example:

let aVertexPosition = gl.getAttribLocation(program, "aVertexPosition");
gl.enableVertexAttribArray(aVertexPosition);
gl.vertexAttribPointer(aVertexPosition, itemSize, gl.FLOAT, false, 0, 0);

Here, the location of aVertexPosition is retrieved so that it may be enabled for use via gl.ena-
bleVertexAttribArray(). The last line creates a pointer into the last buffer specified using gl.
bindBuffer() and stores it in aVertexPosition so that it may be used by the vertex shader.

Debugging Shaders and Programs
As with other operations in WebGL, shader operations may fail and will do so silently. You need to
manually ask the WebGL context for information about the shader or program if you think there has
been an error.

For shaders, call gl.getShaderParameter() to get the compiled status of the shader after attempt-
ing compilation:

if (!gl.getShaderParameter(vertexShader, gl.COMPILE_STATUS)) {
 alert(gl.getShaderInfoLog(vertexShader));
}

This example checks the compilation status of vertexShader. If the shader compiled successfully,
then the call to gl.getShaderParameter() returns true. If the call returns false, then there was
an error during compilation and you can retrieve the error by using gl.getShaderInfoLog() and
passing in the shader. This method returns a string message indicating the issue. Both gl.getShader-
Parameter() and gl.getShaderInfoLog() may be used on vertex shaders and fragment shaders.

Programs may also fail and have a similar method, gl.getProgramParameter(), to check status.
The most common program failure is during the linking process, for which you would check using
the following code:

if (!gl.getProgramParameter(program, gl.LINK_STATUS)) {
 alert(gl.getProgramInfoLog(program));
}

As with gl.getShaderParameter(), the gl.getProgramParameter() returns either true to indi-
cate that the link succeeded or false to indicate it failed. There is also gl.getProgramInfoLog(),
which is used to get information about the program during failures.

WebGL ❘ 701

These methods are primarily used during development to aid in debugging. As long as there are no
external dependencies, it’s safe to remove them in production.

Upgrading from GLSL 100 to GLSL 300
One of the primary changes in WebGL2 is the upgrade to the GLSL 3.00 ES shaders. This upgrade
exposes a wide range of new shader features such as 3D textures, which are available on devices that
support OpenGL ES 3.0. To use the upgraded shader version, the first line of the shaders must be the
following:

#version 300 es

This upgrade requires a few syntactical changes:

➤➤ Vertex attribute variables are declared using the in keyword instead of attribute.

➤➤ Variables using the varying keyword for things like vertex or fragment shaders now must
use in or out depending on their behavior with respect to the shader.

➤➤ The gl _ FragColor predefined output variable no longer exists; fragment shaders must
declare their own out variable for the color output.

➤➤ Texture lookup functions such as texture2D and textureCube have been unified into a
single texture function.

Drawing
WebGL can draw only three types of shapes: points, lines, and triangles. All other shapes must be
composed using a combination of these three basic shapes drawn in three-dimensional space. Draw-
ing is executed by using the drawArrays() or drawElements() methods; the former works on array
buffers while the latter acts on element array buffers.

The first argument for both gl.drawArrays() and drawElements() is a constant indicating the type
of shape to draw. The constants are:

➤➤ gl.POINTS—Treats each vertex as a single point to be drawn.

➤➤ gl.LINES—Treats the array as a series of vertices between which to draw lines. Each set of
vertices is a start point and an end point, so you must have an even number of vertices in the
array for all drawing to take place.

➤➤ gl.LINE_LOOP—Treats the array as a series of vertices between which to draw lines. The
line is drawn from the first vertex to the second, from the second to the third, and so on
until the last vertex is reached. A line is then drawn from the last vertex to the first vertex.
This effectively creates an outline of a shape.

➤➤ gl.LINE_STRIP—Same as gl.LINE_LOOP except a line is not drawn from the last vertex
back to the first.

➤➤ gl.TRIANGLES—Treats the array as a series of vertices within which triangles should be
drawn. Each triangle is drawn separately from the previous without sharing vertices unless
explicitly specified.

➤➤ gl.TRIANGLES_STRIP—Same as gl.TRIANGLES except vertices after the first three are
treated as the third vertex for a new triangle made with the previous two vertices. For

702 ❘ CHAPTER 18 AnimAtion And GrAphics with cAnvAs

example, if an array contains vertices A, B, C, D, the first triangle is drawn as ABC while
the second is drawn as BCD.

➤➤ gl.TRIANGLES_FAN—Same as gl.TRIANGLES except vertices after the first three are treated
as the third vertex for a triangle made with the previous vertex and the first coordinate. For
example, if an array contains vertices A, B, C, D, the first triangle is drawn as ABC while
the second is drawn as ACD.

The gl.drawArrays() method accepts one of these values as its first argument, the starting index
within the array buffer as the second argument, and the number of sets contained in the array buffer
as the third argument. The following code uses gl.drawArrays() to draw a single triangle across
the canvas:

// assume viewport is cleared using the shaders from earlier in the section
// define three vertices, x and y for each
let vertices = new Float32Array([0, 1, 1, -1, -1, -1]),
 buffer = gl.createBuffer(),
 vertexSetSize = 2,
 vertexSetCount = vertices.length/vertexSetSize,
 uColor,
 aVertexPosition;
// put data into the buffer
gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
gl.bufferData(gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW);
// pass color to fragment shader
uColor = gl.getUniformLocation(program, "uColor");
gl.uniform4fv(uColor, [0, 0, 0, 1]);
// pass vertex information to shader
aVertexPosition = gl.getAttribLocation(program, "aVertexPosition");
gl.enableVertexAttribArray(aVertexPosition);
gl.vertexAttribPointer(aVertexPosition, vertexSetSize, gl.FLOAT, false, 0, 0);
// draw the triangle
gl.drawArrays(gl.TRIANGLES, 0, vertexSetCount);

This example defines a Float32Array containing three sets of two-point vertices. It’s important to
keep track of the size and number of vertex sets for use in later calculations. The vertexSetSize is
set to 2 while the vertexSetCount is calculated. The vertex information is stored in a buffer. Color
information is then passed to the fragment shader.

The vertex shader is passed the size of the vertex set and indicates that the vertex coordinates are
floats (gl.FLOAT). The fourth argument is a Boolean indicating that the coordinates are not normal-
ized. The fifth argument is the stride value, which indicates how many array
items need to be skipped to get the next value. This is 0 unless you really
know what you’re doing. The last argument is the starting offset, which is 0
to start at the first item.

The last step is to draw the triangle by using gl.drawArrays(). By specify-
ing the first argument as gl.TRIANGLES, a triangle will be drawn from (0,
1) to (1, –1) to (–1, –1) and filled in with the color passed to the fragment
shader. The second argument is the starting offset in the buffer, and the last
argument is the total number of vertex sets to read. The result of this draw-
ing operation is displayed in Figure 18-16. FIGURE 18-16:

WebGL ❘ 703

By changing the first argument to gl.draw-
Arrays(), you can change how the triangle is
drawn. Figure 18-17 shows some other possible
outputs based on changing the first argument.

Textures
WebGL textures work together with images
from the DOM. You create a new texture using
gl.createTexture() and then bind an image
to that texture. If the image isn’t already loaded,
then you may create a new instance of Image to
dynamically load it. A texture isn’t initialized until the image is completely loaded, so texture setup
steps must be done after the load event has fired. For example:

let image = new Image(),
 texture;
image.src = "smile.gif";
image.onload = function() {
 texture = gl.createTexture();
 gl.bindTexture(gl.TEXTURE_2D, texture);
 gl.pixelStorei(gl.UNPACK_FLIP_Y_WEBGL, true);

 gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, image);
 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);

 // clear current texture
 gl.bindTexture(gl.TEXTURE_2D, null);
}

Aside from using a DOM image, these steps are the same for creating texture in OpenGL. The biggest
difference is in setting the pixel storage format with gl.pixelStorei(). The constant gl.UNPACK_
FLIP_Y_WEBGL is unique to WebGL and must be used in most circumstances when loading web-based
images. This is because of the different coordinate systems used by GIF, JPEG, and PNG images as
compared to the internal coordinate system of WebGL. Without this flag, the image is interpreted
upside down.

Images used for textures must be of the same origin as the containing page or else exist on servers
that have Cross-Origin Resource Sharing (CORS) enabled for the images.

NOTE Texture sources may be images, videos loaded into the <video> element,
and even another <canvas> element. The same restrictions regarding cross-origin
resources apply to videos.

Reading Pixels
As with the 2D context, it’s possible to read pixels from the WebGL context. The readPixels()
method has the same arguments as in OpenGL with the exception that the last argument must be
a typed array. Pixel information is read from the frame buffer and placed into the typed array. The

gl.LINE_LOOP gl.LINE_SET

FIGURE 18-17:

704 ❘ CHAPTER 18 AnimAtion And GrAphics with cAnvAs

arguments for readPixels() are x, y, width, height, image format, type, and typed array. The first
four arguments specify the location of the pixels to read. The image format argument will almost
always be gl.RGBA. The type argument is the type of data that will be stored in the typed array and
has the following restrictions:

➤➤ If the type is gl.UNSIGNED_BYTE, then the typed array must be Uint8Array.

➤➤ If the type is gl.UNSIGNED_SHORT_5_6_5, gl.UNSIGNED_SHORT_4_4_4_4, or gl.UNSIGNED_
SHORT_5_5_5_1, then the typed array must be Uint16Array.

Here’s a simple example:

let pixels = new Uint8Array(25*25);
gl.readPixels(0, 0, 25, 25, gl.RGBA, gl.UNSIGNED_BYTE, pixels);

This code reads a 25 × 25 area of the frame buffer and stores the pixel information in the pixels
array. Each pixel color is represented as four array items, one each for red, green, blue, and alpha. The
values are numbers 0 through 255, inclusive. Don’t forget to initialize the typed array for the amount
of data you’re expecting back.

Calling readPixels() before the browser has drawn the updated WebGL image works as expected.
After the paint has occurred, the frame buffer is reverted to its original cleared state and calling
readPixels() will result in pixel data matching the cleared state. If you want to read pixels after the
paint has occurred, then you must initialize the WebGL context with the preserveDrawingBuffer
option discussed previously:

let gl = drawing.getContext("webgl", { preserveDrawingBuffer: true; });

Setting this flag forces the frame buffer to stay in its last state until the next draw occurs. This option
does have some performance overhead, so it’s best to avoid using if possible.

WebGL1 versus WebGL2
Code written for WebGL1 is nearly 100 percent compatible with WebGL2. When using the webgl2
context, the only code modification that is needed to ensure compatibility is treatment of extensions.
In WebGL2, many extensions have become default features.

For example, to use draw buffers in WebGL1, you would test for the extension before use, as follows:

let ext = gl.getExtension('WEBGL_draw_buffers');

if (!ext) {
 // handle missing extension
} else {
 ext.drawBuffersWEBGL([...])
}

In WebGL2, this is no longer required, as the feature is available directly as a context object method:

gl.drawBuffers([...]);

Summary ❘ 705

The following have all become standard features:

➤➤ ANGLE_instanced_arrays

➤➤ EXT_blend_minmax

➤➤ EXT_frag_depth

➤➤ EXT_shader_texture_lod

➤➤ OES_element_index_uint

➤➤ OES_standard_derivatives

➤➤ OES_texture_float

➤➤ OES_texture_float_linear

➤➤ OES_vertex_array_object

➤➤ WEBGL_depth_texture

➤➤ WEBGL_draw_buffers

➤➤ Vertex shader texture access

NOTE There is an excellent post covering the basics of the WebGL upgrade,
which can be found at https://webgl2fundamentals.org/webgl/lessons/
webgl1-to-webgl2.html.

SUMMARY

The requestAnimationFrame is a simple but elegant tool that allows JavaScript to tap into the ren-
dering cycle of the browser in order to efficiently perform visual manipulation of the page.

The HTML5 <canvas> element provides a JavaScript API for creating graphics on the fly. Graph-
ics are created in a specific context, of which there are currently two. The first is a 2D context that
allows primitive drawing operations:

➤➤ Setting fill and stroke colors and patterns

➤➤ Drawing rectangles

➤➤ Drawing paths

➤➤ Drawing text

➤➤ Creating gradients and patterns

706 ❘ CHAPTER 18 AnimAtion And GrAphics with cAnvAs

The second is a 3D context called WebGL. WebGL is a browser port of OpenGL ES 2.0, a language
frequently used by game developers for computer graphics. WebGL allows far more powerful graph-
ics processing than the 2D context, providing:

➤➤ Vertex and fragment shaders written in OpenGL Shading Language (GLSL)

➤➤ Typed array support, limiting the type of data contained in an array to specific
numeric types

➤➤ Texture creation and manipulation

The <canvas> tag itself is now widely supported and is available in the most recent version of all
major browsers.

Scripting Forms
WHAT’S IN THIS CHAPTER?

➤➤ Understanding form basics

➤➤ Text box validation and interaction

➤➤ Working with other form controls

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/projavascript4e on the Down-
load Code tab.

One of the original uses of JavaScript was to offload some form-processing responsibilities onto
the browser instead of relying on the server to do it all. Although the web and JavaScript have
evolved since that time, web forms remain more or less unchanged. The failure of web forms to
provide out-of-the-box solutions for common problems led developers to use JavaScript not just
for form validation but also to augment the default behavior of standard form controls.

FORM BASICS

Web forms are represented by the <form> element in HTML and by the HTMLFormElement type
in JavaScript. The HTMLFormElement type inherits from HTMLElement and therefore has all of
the same default properties as other HTML elements. However, HTMLFormElement also has the
following additional properties and methods:

➤➤ acceptCharset—The character sets that the server can process; equivalent to the
HTML accept-charset attribute.

19

Professional JavaScript® for Web Developers, Fourth Edition. Matt Frisbie.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

708 ❘ CHAPTER 19 Scripting FormS

➤➤ action—The URL to send the request to; equivalent to the HTML action attribute.

➤➤ elements—An HTMLCollection of all controls in the form.

➤➤ enctype—The encoding type of the request; equivalent to the HTML enctype attribute.

➤➤ length—The number of controls in the form.

➤➤ method—The type of HTTP request to send, typically "get" or "post"; equivalent to the
HTML method attribute.

➤➤ name—The name of the form; equivalent to the HTML name attribute.

➤➤ reset()—Resets all form fields to their default values.

➤➤ submit()—Submits the form.

➤➤ target—The name of the window to use for sending the request and receiving the response;
equivalent to the HTML target attribute.

References to <form> elements can be retrieved in a number of different ways. The most common
way is to treat them as any other elements and assign the id attribute, allowing the use of
 getElementById(), as in the following example:

let form = document.getElementById("form1");

All forms on the page can also be retrieved from document.forms collection. Each form can be
accessed in this collection by numeric index and by name, as shown in the following examples:

// get the first form in the page
let firstForm = document.forms[0];

// get the form with a name of "form2"
let myForm = document.forms["form2"];

Older browsers, or those with strict backwards compatibility, also add each form with a name as
a property of the document object. For instance, a form named "form2" could be accessed via
 document.form2. This approach is not recommended, because it is error-prone and may be removed
from browsers in the future.

Note that forms can have both an id and a name and that these values need not be the same.

Submitting Forms
Forms are submitted when a user interacts with a submit button or an image button. Submit buttons
are defined using either the <input> element or the <button> element with a type attribute of "submit",
and image buttons are defined using the <input> element with a type attribute of "image". All of
the following, when clicked, will submit a form in which the button resides:

<!-- generic submit button -->
<input type="submit" value="Submit Form">

<!-- custom submit button -->
<button type="submit">Submit Form</button>

Form Basics ❘ 709

<!-- image button -->
<input type="image" src="graphic.gif">

If any one of these types of buttons is within a form that has a submit button, pressing Enter on the
keyboard while a form control has focus will also submit the form. (The one exception is a textarea,
within which Enter creates a new line of text.) Note that forms without a submit button will not be
submitted when Enter is pressed.

When a form is submitted in this manner, the submit event fires right before the request is sent to the
server. This gives you the opportunity to validate the form data and decide whether to allow the form
submission to occur. Preventing the event’s default behavior cancels the form submission. For exam-
ple, the following prevents a form from being submitted:

let form = document.getElementById("myForm");

form.addEventListener("submit", (event) => {
 // prevent form submission
 event.preventDefault();
});

The preventDefault() method stops the form from being submitted. Typically, this functionality is
used when data in the form is invalid and should not be sent to the server.

It’s possible to submit a form programmatically by calling the submit() method from JavaScript.
This method can be called at any time to submit a form and does not require a submit button to be
present in the form to function appropriately. Here’s an example:

let form = document.getElementById("myForm");

// submit the form
form.submit();

When a form is submitted via submit(), the submit event does not fire, so be sure to do data valida-
tion before calling the method.

One of the biggest issues with form submission is the possibility of submitting the form twice. Users
sometimes get impatient when it seems like nothing is happening and may click a submit button mul-
tiple times. The results can be annoying (because the server processes duplicate requests) or damag-
ing (if the user is attempting a purchase and ends up placing multiple orders). There are essentially
two ways to solve this problem: disable the submit button once the form is submitted, or use the
 onsubmit event handler to cancel any further form submissions.

Resetting Forms
Forms are reset when the user clicks a reset button. Reset buttons are created using either the
<input> or the <button> element with a type attribute of "reset", as in these examples:

<!-- generic reset button -->
<input type="reset" value="Reset Form">

<!-- custom reset button -->
<button type="reset">Reset Form</button>

710 ❘ CHAPTER 19 Scripting FormS

Either of these buttons will reset a form. When a form is reset, all of the form fields are set back to
the values they had when the page was first rendered. If a field was originally blank, it becomes blank
again, whereas a field with a default value reverts to that value.

When a form is reset by the user clicking a reset button, the reset event fires. This event gives you
the opportunity to cancel the reset if necessary. For example, the following prevents a form from
being reset:

let form = document.getElementById("myForm");

form.addEventListener("reset", (event) => {
 event.preventDefault();
});

As with form submission, resetting a form can be accomplished via JavaScript using the reset()
method, as in this example:

let form = document.getElementById("myForm");

// reset the form
form.reset();

Unlike the submit() method’s functionality, reset() fires the reset event the same as if a reset
button were clicked.

NOTE Form resetting is typically a frowned-upon approach to web form design.
It’s often disorienting to the user and, when triggered accidentally, can be quite
frustrating. There’s almost never a need to reset a form. It’s often enough to pro-
vide a cancel button that takes the user back to the previous page rather than
explicitly revert all values in the form.

Form Fields
Form elements can be accessed in the same ways as any other elements on the page using native
DOM methods. Additionally, all form elements are parts of an elements collection that is a property
of each form. The elements collection is an ordered list of references to all form fields in the form
and includes all <input>, <textarea>, <button>, <select>, and <fieldset> elements. Each form
field appears in the elements collection in the order in which it appears in the markup, indexed by
both position and name. Here are some examples:

let form = document.getElementById("form1");

// get the first field in the form
let field1 = form.elements[0];

// get the field named "textbox1"
let field2 = form.elements["textbox1"];

// get the number of fields
let fieldCount = form.elements.length;

Form Basics ❘ 711

If a name is in use by multiple form controls, as is the case with radio buttons, then an HTMLCollection
is returned containing all of the elements with the name. For example, consider the following HTML
snippet:

<form method="post" id="myForm">

 <input type="radio" name="color" value="red">Red
 <input type="radio" name="color" value="green">Green
 <input type="radio" name="color" value="blue">Blue

</form>

The form in this HTML has three radio controls that have "color" as their name, which ties the
fields together. When accessing elements["color"], a NodeList is returned, containing all three
elements; when accessing elements[0], however, only the first element is returned. Consider
this example:

let form = document.getElementById("myForm");

let colorFields = form.elements["color"];
console.log(colorFields.length); // 3

let firstColorField = colorFields[0];
let firstFormField = form.elements[0];
console.log(firstColorField === firstFormField); // true

This code shows that the first form field, accessed via form.elements[0], is the same as the first ele-
ment contained in form.elements["color"].

NOTE It’s possible to access elements as properties of a form as well, such as
form[0] to get the first form field and form["color"] to get a named field. These
properties always return the same thing as their equivalent in the elements
collection. This approach is provided for backwards compatibility with older
browsers and should be avoided when possible in favor of using elements.

Common Form-Field Properties
With the exception of the <fieldset> element, all form fields share a common set of properties.
Because the <input> type represents many form fields, some properties are used only with certain
field types, whereas others are used regardless of the field type. The common form-field properties
and methods are as follows:

➤➤ disabled—A Boolean indicating if the field is disabled.

➤➤ form—A pointer to the form that the field belongs to. This property is read-only.

➤➤ name—The name of the field.

➤➤ readOnly—A Boolean indicating if the field is read-only.

➤➤ tabIndex—Indicates the tab order for the field.

712 ❘ CHAPTER 19 Scripting FormS

➤➤ type—The type of the field: "checkbox", "radio", and so on.

➤➤ value—The value of the field that will be submitted to the server. For file-input fields, this
property is read only and simply contains the file’s path on the computer.

With the exception of the form property, JavaScript can change all other properties dynamically.
Consider this example:

let form = document.getElementById("myForm");
let field = form.elements[0];

// change the value
field.value = "Another value";

// check the value of form
console.log(field.form === form); // true

// set focus to the field
field.focus();

// disable the field
field.disabled = true;

// change the type of field (not recommended, but possible for <input>)
field.type = "checkbox";

The ability to change form-field properties dynamically allows you to change the form at any time
and in almost any way. For example, a common problem with web forms is users’ tendency to click
the submit button twice. This is a major problem when credit-card orders are involved because it may
result in duplicate charges. A very common solution to this problem is to disable the submit button
once it’s been clicked, which is possible by listening for the submit event and disabling the submit
button when it occurs. The following code accomplishes this:

// Code to prevent multiple form submissions
let form = document.getElementById("myForm");

form.addEventListener("submit", (event) => {
 let target = event.target;

 // get the submit button
 let btn = target.elements["submit-btn"];

 // disable the submit button
 btn.disabled = true;
});

This code attaches an event handler on the form for the submit event. When the event fires, the
submit button is retrieved and its disabled property is set to true. Note that you cannot attach an
onclick event handler to the submit button to do this because of a timing issue across browsers:
some browsers fire the click event before the form’s submit event, some after. For browsers that
fire click first, the button will be disabled before the submission occurs, meaning that the form will
never be submitted. Therefore it’s better to disable the submit button using the submit event. This
approach won’t work if you are submitting the form without using a submit button because, as stated
before, the submit event is fired only by a submit button.

Form Basics ❘ 713

The type property exists for all form fields except <fieldset>. For <input> elements, this value is
equal to the HTML type attribute. For other elements, the value of type is set as described in the
following table.

DESCRIPTION SAMPLE HTML VALUE OF TYPE

Single-select list <select>...</select> "select-one"

Multi-select list <select multiple>...</select> "select-multiple"

Custom button <button>...</button> "submit"

Custom nonsubmit button <button type="button">...</button> "button"

Custom reset button <button type="reset">...</button> "reset"

Custom submit button <button type="submit">...</button> "submit"

For <input> and <button> elements, the type property can be changed dynamically, whereas the
<select> element’s type property is read-only.

Common Form-Field Methods
Each form field has two methods in common: focus() and blur(). The focus() method sets the
browser’s focus to the form field, meaning that the field becomes active and will respond to keyboard
events. For example, a text box that receives focus displays its caret and is ready to accept input. The
focus() method is most often employed to call the user’s attention to some part of the page. It’s quite
common, for instance, to have the focus moved to the first field in a form when the page is loaded.
This can be accomplished by listening for the load event and then calling focus() on the first field,
as in the following example:

window.addEventListener("load", (event) => {
 document.forms[0].elements[0].focus();
});

Note that this code will cause an error if the first form field is an <input> element with a type of
"hidden" or if the field is being hidden using the display or visibility CSS property.

HTML5 introduces an autofocus attribute for form fields that causes supporting browsers to auto-
matically set the focus to that element without the use of JavaScript. For example:

<input type="text" autofocus>

In order for the previous code to work correctly with autofocus, you must first detect if it has been
set. If autofocus is set, you should not call focus():

window.addEventListener("load", (event) => {
 let element = document.forms[0].elements[0];

 if (element.autofocus !== true) {
 element.focus();
 console.log("JS focus");
 }
});

714 ❘ CHAPTER 19 Scripting FormS

Because autofocus is a Boolean attribute, the value of the autofocus property will be true in
supporting browsers. (It will be the empty string in browsers without support.) So this code calls
focus() only if the autofocus property is not equal to true, ensuring forwards compatibility. The
autofocus property is supported in most modern browsers. It only lacks support in iOS Safari,
Opera Mini, and Internet Explorer 10 and below.

NOTE By default, only form elements can have focus set to them. It’s possible to
allow any element to have focus by setting its tabIndex property to –1 and then
calling focus(). The only browser that doesn’t support this technique is Opera.

The opposite of focus() is blur(), which removes focus from the element. When blur() is called,
focus isn’t moved to any element in particular; it’s just removed from the field on which it was called.
This method was used early in web development to create read-only fields before the readonly
attribute was introduced. There’s rarely a need to call blur(), but it’s available if necessary. Here’s
an example:

document.forms[0].elements[0].blur();

Common Form-Field Events
All form fields support the following three events in addition to mouse, keyboard, mutation, and
HTML events:

➤➤ blur—Fires when the field loses focus.

➤➤ change—Fires when the field loses focus and the value has changed for <input> and
<textarea> elements; also fires when the selected option changes for <select> elements.

➤➤ focus—Fires when the field gets focus.

Both the blur and the focus events fire because of users manually changing the field’s focus, as well
as by calling the blur() and focus() methods, respectively. These two events work the same way for
all form fields. The change event, however, fires at different times for different controls. For <input>
and <textarea> elements, the change event fires when the field loses focus and the value has
changed since the time the control got focus. For <select> elements, however, the change event fires
whenever the user changes the selected option; the control need not lose focus for change to fire.

The focus and blur events are typically used to change the user interface in some way, to provide
either visual cues or additional functionality (such as showing a drop-down menu of options for a
text box). The change event is typically used to validate data that was entered into a field. For exam-
ple, consider a text box that expects only numbers to be entered. The focus event may be used to
change the background color to more clearly indicate that the field has focus, the blur event can be
used to remove that background color, and the change event can change the background color to red
if nonnumeric characters are entered. The following code accomplishes this:

let textbox = document.forms[0].elements[0];

Scripting Text Boxes ❘ 715

textbox.addEventListener("focus", (event) => {
 let target = event.target;
 if (target.style.backgroundColor != "red") {
 target.style.backgroundColor = "yellow";
 }
});

textbox.addEventListener("blur", (event) => {
 let target = event.target;
 target.style.backgroundColor = /[^\d]/.test(target.value) ? "red" : "";
});

textbox.addEventListener("change", (event) => {
 let target = event.target;
 target.style.backgroundColor = /[^\d]/.test(target.value) ? "red" : "";
});

The onfocus event handler simply changes the background color of the text box to yellow, more
clearly indicating that it’s the active field. The onblur and onchange event handlers turn the back-
ground color red if any nonnumeric character is found. To test for a nonnumeric character, use
a simple regular expression against the text box’s value. This functionality has to be in both the
onblur and onchange event handlers to ensure that the behavior remains consistent regardless of text
box changes.

NOTE The relationship between the blur and the change events is not strictly
defined. In some browsers, the blur event fires before change; in others, it’s the
opposite. You can’t depend on the order in which these events fire, so use care
whenever they are required.

SCRIPTING TEXT BOXES

There are two ways to represent text boxes in HTML: a single-line version using the <input> element
and a multiline version using <textarea>. These two controls are very similar and behave in similar
ways most of the time. There are, however, some important differences.

By default, the <input> element displays a text box, even when the type attribute is omitted (the
default value is "text"). The size attribute can then be used to specify how wide the text box should
be in terms of visible characters. The value attribute specifies the initial value of the text box, and
the maxlength attribute specifies the maximum number of characters allowed in the text box. So to
create a text box that can display 25 characters at a time but has a maximum length of 50, you can
use the following code:

<input type="text" size="25" maxlength="50" value="initial value">

The <textarea> element always renders a multiline text box. To specify how large the text box
should be, you can use the rows attribute, which specifies the height of the text box in number of
characters, and the cols attribute, which specifies the width in number of characters, similar to size

716 ❘ CHAPTER 19 Scripting FormS

for an <input> element. Unlike <input>, the initial value of a <textarea> must be enclosed between
<textarea> and </textarea>, as shown here:

<textarea rows="25" cols="5">initial value</textarea>

Also unlike the <input> element, a <textarea> cannot specify the maximum number of characters
allowed using HTML.

Despite the differences in markup, both types of text boxes store their contents in the value property.
The value can be used to read the text box value and to set the text box value, as in this example:

let textbox = document.forms[0].elements["textbox1"];
console.log(textbox.value);

textbox.value = "Some new value";

You should use the value property to read or write text box values rather than to use standard DOM
methods. For instance, don’t use setAttribute() to set the value attribute on an <input> element,
and don’t try to modify the first child node of a <textarea> element. Changes to the value property
aren’t always reflected in the DOM either, so it’s best to avoid using DOM methods when dealing
with text box values.

Text Selection
Both types of text boxes support a method called select(), which selects all of the text in a text box.
Most browsers automatically set focus to the text box when the select() method is called (Opera
does not). The method accepts no arguments and can be called at any time. Here’s an example:

let textbox = document.forms[0].elements["textbox1"];
textbox.select();

It’s quite common to select all of the text in a text box when it gets focus, especially if the text box
has a default value. The thinking is that it makes life easier for users when they don’t have to delete
text separately. This pattern is accomplished with the following code:

textbox.addEventListener("focus", (event) => {
 event.target.select();
});

With this code applied to a text box, all of the text will be selected as soon as the text box gets focus.
This can greatly aid the usability of forms.

The select Event
To accompany the select() method, there is a select event. The select event fires when text is
selected in the text box. Exactly when the event fires differs from browser to browser. In Internet
Explorer 9+, Opera, Firefox, Chrome, and Safari, the select event fires once the user has finished
selecting text, whereas in Internet Explorer 8 and earlier it fires as soon as one letter is selected. The
select event also fires when the select() method is called. Here’s a simple example:

let textbox = document.forms[0].elements["textbox1"];

textbox.addEventListener("select", (event) => {
 console.log('Text selected: ${textbox.value}');
});

Scripting Text Boxes ❘ 717

Retrieving Selected Text
Although useful for understanding when text is selected, the select event provides no information
about what text has been selected. HTML5 solved this issue by introducing some extensions to allow
for better retrieval of selected text. The specification approach adds two properties to text boxes:
selectionStart and selectionEnd. These properties contain zero-based numbers indicating the
text-selection boundaries (the offset of the beginning of text selection and the offset of end of text
selection, respectively). So, to get the selected text in a text box, you can use the following code:

function getSelectedText(textbox){
 return textbox.value.substring(textbox.selectionStart,
 textbox.selectionEnd);
}

Because the substring() method works on string offsets, the values from selectionStart and
selectionEnd can be passed in directly to retrieve the selected text.

This solution works for Internet Explorer 9+, Firefox, Safari, Chrome, and Opera. Internet Explorer 8
and earlier don’t support these properties, so a different approach is necessary.

Older versions of Internet Explorer have a document.selection object that contains text-selection
information for the entire document, which means you can’t be sure where the selected text is on the
page. When used in conjunction with the select event, however, you can be assured that the selec-
tion is inside the text box that fired the event. To get the selected text, you must first create a range
and then extract the text from it, as in the following:

function getSelectedText(textbox){
 if (typeof textbox.selectionStart == "number"){
 return textbox.value.substring(textbox.selectionStart,
 textbox.selectionEnd);
 } else if (document.selection){
 return document.selection.createRange().text;
 }
}

This function has been modified to determine whether to use the Internet Explorer approach to
selected text. Note that document.selection doesn’t need the textbox argument at all.

Partial Text Selection
HTML5 also specifies an addition to aid in partially selecting text in a text box. The
 setSelectionRange() method, originally implemented by Firefox, is now available on all text
boxes in addition to the select() method. This method takes two arguments: the index of the first
character to select and the index at which to stop the selection (the same as the string’s substring()
method). Here are some examples:

textbox.value = "Hello world!"

// select all text
textbox.setSelectionRange(0, textbox.value.length); // "Hello world!"

// select first three characters
textbox.setSelectionRange(0, 3); // "Hel"

718 ❘ CHAPTER 19 Scripting FormS

// select characters 4 through 6
textbox.setSelectionRange(4, 7); // "o w"

To see the selection, you must set focus to the text box either immediately before or after a call to
setSelectionRange(). This approach works for Internet Explorer 9, Firefox, Safari, Chrome,
and Opera.

Internet Explorer 8 and earlier allow partial text selection through the use of ranges. To select
part of the text in a text box, you must first create a range and place it in the correct position by
using the createTextRange() method that Internet Explorer provides on text boxes and using the
moveStart() and moveEnd() range methods to move the range into position. Before calling these
methods, however, you need to collapse the range to the start of the text box using collapse(). After
that, moveStart() moves both the starting and the end points of the range to the same position. You
can then pass in the total number of characters to select as the argument to moveEnd(). The last step
is to use the range’s select() method to select the text, as shown in these examples:

textbox.value = "Hello world!";

var range = textbox.createTextRange();

// select all text
range.collapse(true);
range.moveStart("character", 0);
range.moveEnd("character", textbox.value.length); // "Hello world!"
range.select();

// select first three characters
range.collapse(true);
range.moveStart("character", 0);
range.moveEnd("character", 3);
range.select(); // "Hel"

// select characters 4 through 6
range.collapse(true);
range.moveStart("character", 4);
range.moveEnd("character", 3);
range.select(); // "o w"

As with the other browsers, the text box must have focus in order for the selection to be visible.

Partial text selection is useful for implementing advanced text input boxes such as those that provide
autocomplete suggestions.

Input Filtering
It’s common for text boxes to expect a certain type of data or data format. Perhaps the data needs to
contain certain characters or must match a particular pattern. Because text boxes don’t offer much
in the way of validation by default, JavaScript must be used to accomplish such input filtering. Using
a combination of events and other DOM capabilities, you can turn a regular text box into one that
understands the data it is dealing with.

Scripting Text Boxes ❘ 719

Blocking Characters
Certain types of input require that specific characters be present or absent. For example, a text box
for the user’s phone number should not allow non-numeric values to be inserted. The keypress event
is responsible for inserting characters into a text box. Characters can be blocked by preventing this
event’s default behavior. For example, the following code blocks all key presses:

textbox.addEventListener("keypress", (event) => {
 event.preventDefault();
});

Running this code causes the text box to effectively become read only, because all key presses are
blocked. To block only specific characters, you need to inspect the character code for the event and
determine the correct response. For example, the following code allows only numbers:

textbox.addEventListener("keypress", (event) => {
 if (!/\d/.test(String.fromCharCode(event.charCode))){
 event.preventDefault();
 }
});

In this example, the character code is converted to a string using String.fromCharCode(), and the
result is tested against the regular expression /\d/, which matches all numeric characters. If that test
fails, then the event is blocked using preventDefault(). This ensures that the text box ignores non-
numeric keys.

Even though the keypress event should be fired only when a character key is pressed, some browsers
fire it for other keys as well. Firefox and Safari (versions prior to 3.1) fire keypress for keys such as
up, down, Backspace, and Delete; Safari versions 3.1 and later do not fire keypress events for these
keys. This means that simply blocking all characters that aren’t numbers isn’t good enough because
you’ll also be blocking these very useful and necessary keys. Fortunately, you can easily detect when
one of these keys is pressed. In Firefox, all noncharacter keys that fire the keypress event have a
character code of 0, whereas Safari versions prior to 3 give them all a character code of 8. To general-
ize the case, you don’t want to block any character codes lower than 10. The function can then be
updated as follows:

textbox.addEventListener("keypress", (event) => {
 if (!/\d/.test(String.fromCharCode(event.charCode)) &&
 event.charCode > 9){
 event.preventDefault();
 }
});

The event handler now behaves appropriately in all browsers, blocking nonnumeric characters but
allowing all basic keys that also fire keypress.

There is still one more issue to handle: copying, pasting, and any other functions that involve the Ctrl
key. In all browsers but Internet Explorer, the preceding code disallows the shortcut keystrokes of
Ctrl+C, Ctrl+V, and any other combinations using the Ctrl key. The last check, therefore, is to make
sure the Ctrl key is not pressed, as shown in the following example:

textbox.addEventListener("keypress", (event) => {
 if (!/\d/.test(String.fromCharCode(event.charCode)) &&
 event.charCode > 9 &&

720 ❘ CHAPTER 19 Scripting FormS

 !event.ctrlKey){
 event.preventDefault();
 }
});

This final change ensures that all of the default text box behaviors work. This technique can be cus-
tomized to allow or disallow any characters in a text box.

Dealing with the Clipboard
Internet Explorer was the first browser to support events related to the clipboard and access to
clipboard data from JavaScript. The Internet Explorer implementation became a de facto standard as
Safari, Chrome, Opera, and Firefox implemented similar events and clipboard access, and clipboard
events were later added to HTML5. The following six events are related to the clipboard:

➤➤ beforecopy—Fires just before the copy operation takes place.

➤➤ copy—Fires when the copy operation takes place.

➤➤ beforecut—Fires just before the cut operation takes place.

➤➤ cut—Fires when the cut operation takes place.

➤➤ beforepaste—Fires just before the paste operation takes place.

➤➤ paste—Fires when the paste operation takes place.

Because this is a fairly new standard governing clipboard access, the behavior of the events and
related objects differs from browser to browser. In Safari, Chrome, and Firefox, the beforecopy,
beforecut, and beforepaste events fire only when the context menu for the text box is displayed
(in anticipation of a clipboard event), but Internet Explorer fires them in that case and immediately
before firing the copy, cut, and paste events. The copy, cut, and paste events all fire when you
would expect them to in all browsers, both when the selection is made from a context menu and
when using keyboard shortcuts.

The beforecopy, beforecut, and beforepaste events give you the opportunity to change the data
being sent to or retrieved from the clipboard before the actual event occurs. However, canceling these
events does not cancel the clipboard operation—you must cancel the copy, cut, or paste event to
prevent the operation from occurring.

Clipboard data is accessible via the clipboardData object that exists either on the window object
(in Internet Explorer) or on the event object (in Firefox, Safari, and Chrome). In Firefox, Safari, and
Chrome, the clipboardData object is available only during clipboard events to prevent unauthorized
clipboard access; Internet Explorer exposes the clipboardData object all the time. For cross-browser
compatibility, it’s best to use this object only during clipboard events.

There are three methods on the clipboardData object: getData(), setData(), and clearData().
The getData() method retrieves string data from the clipboard and accepts a single argument, which
is the format for the data to retrieve. Internet Explorer specifies two options: "text" and "URL". Fire-
fox, Safari, and Chrome expect a MIME type but will accept "text" as equivalent to "text/plain".

The setData() method is similar: its first argument is the data type, and its second argument is the
text to place on the clipboard. Once again, Internet Explorer supports "text" and "URL", whereas

Scripting Text Boxes ❘ 721

Safari and Chrome expect a MIME type. Unlike getData(), however, Safari and Chrome won’t
recognize the "text" type. Only Internet Explorer 8 and earlier allow honors calling setData();
other browsers simply ignore the call. To even out the differences, you can use the following cross-
browser methods:

function getClipboardText(event){
 var clipboardData = (event.clipboardData || window.clipboardData);
 return clipboardData.getData("text");
}

function setClipboardText (event, value){
 if (event.clipboardData){
 return event.clipboardData.setData("text/plain", value);
 } else if (window.clipboardData){
 return window.clipboardData.setData("text", value);
 }
}

The getClipboardText() function is relatively simple. It needs only to identify the location of the
clipboardData object and then call getData() with a type of "text". Its companion method,
 setClipboardText(), is slightly more involved. Once the clipboardData object is located,
 setData() is called with the appropriate type for each implementation ("text/plain" for Firefox,
Safari, and Chrome; "text" for Internet Explorer).

Reading text from the clipboard is helpful when you have a text box that expects only certain
characters or a certain format of text. For example, if a text box allows only numbers, then pasted
values must also be inspected to ensure that the value is valid. In the paste event, you can determine
if the text on the clipboard is invalid and, if so, cancel the default behavior, as shown in the follow-
ing example:

textbox.addEventListener("paste", (event) => {
 let text = getClipboardText(event);

 if (!/^\d*$/.test(text)){
 event.preventDefault();
 }
});

This onpaste handler ensures that only numeric values can be pasted into the text box. If the clip-
board value doesn’t match the pattern, then the paste is canceled. Firefox, Safari, and Chrome allow
access to the getData() method only in an onpaste event handler.

Because not all browsers support clipboard access, it’s often easier to block one or more of the
clipboard operations. In browsers that support the copy, cut, and paste events (Internet Explorer,
Safari, Chrome, and Firefox), it’s easy to prevent the event’s default behavior. For Opera, you need to
block the keystrokes that cause the events and block the context menu from being displayed.

Automatic Tab Forward
JavaScript can be used to increase the usability of form fields in a number of ways. One of the most
common is to automatically move the focus to the next field when the current field is complete.
This is frequently done when entering data whose appropriate length is already known, such as for

722 ❘ CHAPTER 19 Scripting FormS

telephone numbers. In the United States, telephone numbers are typically split into three parts: the
area code, the exchange, and then four more digits. It’s quite common for web pages to represent this
as three text boxes, such as the following:

<input type="text" name="tel1" id="txtTel1" maxlength="3">
<input type="text" name="tel2" id="txtTel2" maxlength="3">
<input type="text" name="tel3" id="txtTel3" maxlength="4">

To aid in usability and speed up the data-entry process, you can automatically move focus to the next
element as soon as the maximum number of characters has been entered. So once the user types three
characters in the first text box, the focus moves to the second, and once the user types three charac-
ters in the second text box, the focus moves to the third. This "tab forward" behavior can be accom-
plished using the following code:

<script>
 function tabForward(event){
 let target = event.target;

 if (target.value.length == target.maxLength){
 let form = target.form;

 for (let i = 0, len = form.elements.length; i < len; i++) {
 if (form.elements[i] == target) {
 if (form.elements[i+1]) {
 form.elements[i+1].focus();
 }
 return;
 }
 }
 }
 }

 let inputIds = ["txtTel1", "txtTel2", "txtTel3"];

 for (let id of inputIds) {
 let textbox = document.getElementById(id);
 textbox.addEventListener("keyup", tabForward);
 }

 let textbox1 = document.getElementById("txtTel1");
 let textbox2 = document.getElementById("txtTel2");
 let textbox3 = document.getElementById("txtTel3");
</script>

The tabForward() function is the key to this functionality. It checks to see if the text box’s maximum
length has been reached by comparing the value to the maxlength attribute. If they’re equal (because
the browser enforces the maximum, there’s no way it could be more), then the next form element
needs to be found by looping through the elements collection until the text box is found and then set-
ting focus to the element in the next position. This function is then assigned as the onkeyup handler
for each text box. Since the keyup event fires after a new character has been inserted into the text
box, this is the ideal time to check the length of the text box contents. When filling out this simple
form, the user will never have to press the Tab key to move between fields and submit the form.

Scripting Text Boxes ❘ 723

Keep in mind that this code is specific to the markup mentioned previously and doesn’t take into
account possible hidden fields.

HTML5 Constraint Validation API
HTML5 introduces the ability for browsers to validate data in forms before submitting to the server.
This capability enables basic validation even when JavaScript is unavailable or fails to load. The
browser itself handles performing the validation based on rules in the code and then displays appro-
priate error messages on its own (without needing additional JavaScript). This functionality works
only in browsers that support this part of HTML5, which includes all modern browsers (except for
Safari) and IE 10+.

Validation is applied to a form field only under certain conditions. You can use HTML markup to
specify constraints on a particular field that will result in the browser automatically performing form
validation.

Required Fields
The first condition is when a form field has a required attribute, as in this example:

<input type="text" name="username" required>

Any field marked as required must have a value in order for the form to be submitted. This attribute
applies to <input>, <textarea>, and <select> fields (Opera through version 11 doesn’t support
required on <select>). You can check to see if a form field is required in JavaScript by using the
corresponding required property on the element:

let isUsernameRequired = document.forms[0].elements["username"].required;

You can also test to see if the browser supports the required attribute using this code snippet:

let isRequiredSupported = "required" in document.createElement("input");

This code uses simple feature detection to determine if the property required exists on a newly created
<input> element.

Keep in mind that different browsers behave differently when a form field is required. Firefox,
Chrome, IE, and Opera prevent the form from submitting and pop up a help box beneath the field,
while Safari does nothing and doesn’t prevent the form from submitting.

Alternate Input Types
HTML5 specifies several additional values for the type attribute on an <input> element. These type
attributes not only provide additional information about the type of data expected but also provide
some default validation. The two new input types that are most widely supported are "email" and
"url", and each comes with a custom validation that the browser applies. For example:

<input type="email" name="email">
<input type="url" name="homepage">

The "email" type ensures that the input text matches the pattern for an e-mail address, while the
"url" type ensures that the input text matches the pattern for a URL. Note that the browsers

724 ❘ CHAPTER 19 Scripting FormS

As mentioned earlier in this section all have some issues with proper pattern matching. Most nota-
bly, the text "-@-" is considered a valid e-mail address. Such issues are still being addressed with
browser vendors.

You can detect if a browser supports these new types by creating an element in JavaScript and setting
the type property to "email" or "url" and then reading the value back. Older browsers automati-
cally set unknown values back to "text", while supporting browsers echo the correct value back.
For example:

let input = document.createElement("input");
input.type = "email";
let isEmailSupported = (input.type == "email");

Keep in mind that an empty field is also considered valid unless the required attribute is applied.
Also, specifying a special input type doesn’t prevent the user from entering an invalid value; it only
applies some default validation.

Numeric Ranges
In addition to "email" and "url", there are several other new input element types defined in
HTML5. These are all numeric types that expect some sort of numbers-based input: "number",
"range", "datetime", "datetime-local", "date", "month", "week", and "time". These types
are not supported across all major browsers and thus should be used carefully. Browser vendors are
working toward better cross-compatibility and more logical functionality at this time. Therefore, the
information in this section is more forward looking rather than explanatory of existing functionality.

For each of these numeric types, you can specify a min attribute (the smallest possible value), a max
attribute (the largest possible value), and a step attribute (the difference between individual steps
along the scale from min to max). For instance, to allow only multiples of 5 between 0 and 100, you
could use the following:

<input type="number" min="0" max="100" step="5" name="count">

Depending on the browser, you may or may not see a spin control (up and down buttons) to auto-
matically increment or decrement the browser.

Each of the attributes have corresponding properties on the element that are accessible (and change-
able) using JavaScript. Additionally, there are two methods: stepUp() and stepDown(). These meth-
ods each accept an optional argument: the number to either subtract or add from the current value.
(By default, they increment or decrement by one.) The methods have not yet been implemented by
browsers but will be usable as in this example:

input.stepUp(); // increment by 1
input.stepUp(5); // increment by 5
input.stepDown(); // decrement by 1
input.stepDown(10); // decrement by 10

Input Patterns
The pattern attribute was introduced for text fields in HTML5. This attribute specifies a regular
expression with which the input value must match. For example, to allow only numbers in a text
field, the following code applies this constraint:

<input type="text" pattern="\d+" name="count">

Scripting Text Boxes ❘ 725

Note that ^ and $ are assumed at the beginning and end of the pattern, respectively. That means the
input must exactly match the pattern from beginning to end.

As with the alternate input types, specifying a pattern does not prevent the user from entering
in valid text. The pattern is applied to the value, and the browser then knows if the value is valid or
not. You can read the pattern by accessing the pattern property:

let pattern = document.forms[0].elements["count"].pattern;

You can also test to see if the browser supports the pattern attribute using this code snippet:

let isPatternSupported = "pattern" in document.createElement("input");

Checking Validity
You can check if any given field on the form is valid by using the checkValidity() method. This
method is provided on all elements and returns true if the field’s value is valid or false if not.
Whether or not a field is valid is based on the conditions previously mentioned in this section, so
a required field without a value is considered invalid, and a field whose value does not match the
pattern attribute is considered invalid. For example:

if (document.forms[0].elements[0].checkValidity()){
 // field is valid, proceed
} else {
 // field is invalid
}

To check if the entire form is valid, you can use the checkValidity() method on the form itself. This
method returns true if all form fields are valid and false if even one is not:

if(document.forms[0].checkValidity()){
 // form is valid, proceed
} else {
 // form field is invalid
}

While checkValidity() simply tells you if a field is valid or not, the validity property indi-
cates exactly why the field is valid or invalid. This object has a series of properties that return a
Boolean value:

➤➤ customError—true if setCustomValidity() was set, false if not.

➤➤ patternMismatch—true if the value doesn’t match the specified pattern attribute.

➤➤ rangeOverflow—true if the value is larger than the max value.

➤➤ rangeUnderflow—true if the value is smaller than the min value.

➤➤ stepMisMatch—true if the value isn’t correct given the step attribute in combination with
min and max.

➤➤ tooLong—true if the value has more characters than allowed by the maxlength property.
Some browsers, such as Firefox 4, automatically constrain the character count, and so this
value may always be false.

726 ❘ CHAPTER 19 Scripting FormS

➤➤ typeMismatch—value is not in the required format of either "email" or "url".

➤➤ valid—true if every other property is false. Same value that is required by
checkValidity().

➤➤ valueMissing—true if the field is marked as required and there is no value.

Therefore, you may wish to check the validity of a form field using validity to get more specific
information, as in the following code:

if (input.validity && !input.validity.valid){
 if (input.validity.valueMissing){
 console.log("Please specify a value.")
 } else if (input.validity.typeMismatch){
 console.log("Please enter an email address.");
 } else {
 console.log("Value is invalid.");
 }
}

Disabling Validation
You can instruct a form not to apply any validation to a form by specifying the novalidate
attribute:

<form method="post" action="/signup" novalidate>
 <!-- form elements here -->
</form>

This value can also be retrieved or set by using the JavaScript property noValidate, which is set to
true if the attribute is present and false if the attribute is omitted:

document.forms[0].noValidate = true; //turn off validation

If there are multiple submit buttons in a form, you can specify that the form not validate when a
particular submit button is used by adding the formnovalidate attribute to the button itself:

<form method="post" action="/foo">
 <!-- form elements here -->
 <input type="submit" value="Regular Submit">
 <input type="submit" formnovalidate name="btnNoValidate"
 value="Non-validating Submit">
</form>

In this example, the first submit button will cause the form to validate as usual while the second
disables validation when submitting. You can also set this property using JavaScript:

// turn off validation
document.forms[0].elements["btnNoValidate"].formNoValidate = true;

SCRIPTING SELECT BOXES

Select boxes are created using the <select> and <option> elements. To allow for easier interaction
with the control, the HTMLSelectElement type provides the following properties and methods in
addition to those that are available on all form fields:

➤➤ add(newOption, relOption)—Adds a new <option> element to the control before the
related option.

Scripting Select Boxes ❘ 727

➤➤ multiple—A Boolean value indicating if multiple selections are allowed; equivalent to the
HTML multiple attribute.

➤➤ options—An HTMLCollection of <option> elements in the control.

➤➤ remove(index)—Removes the option in the given position.

➤➤ selectedIndex—The zero-based index of the selected option or –1 if no options are
selected. For select boxes that allow multiple selections, this is always the first option in the
selection.

➤➤ size—The number of rows visible in the select box; equivalent to the HTML size attribute.

The type property for a select box is either "select-one" or "select-multiple", depending on
the absence or presence of the multiple attribute. The option that is currently selected determines a
select box’s value property according to the following rules:

➤➤ If there is no option selected, the value of a select box is an empty string.

➤➤ If an option is selected and it has a value attribute specified, then the select box’s value
is the value attribute of the selected option. This is true even if the value attribute is an
empty string.

➤➤ If an option is selected and it doesn’t have a value attribute specified, then the select box’s
value is the text of the option.

➤➤ If multiple options are selected, then the select box’s value is taken from the first selected
option according to the previous two rules.

Consider the following select box:

<select name="location" id="selLocation">
 <option value="Sunnyvale, CA">Sunnyvale</option>
 <option value="Los Angeles, CA">Los Angeles</option>
 <option value="Mountain View, CA">Mountain View</option>
 <option value="">China</option>
 <option>Australia</option>
</select>

If the first option in this select box is selected, the value of the field is "Sunnyvale, CA". If the option
with the text "China" is selected, then the field’s value is an empty string because the value attribute
is empty. If the last option is selected, then the value is "Australia" because there is no value attrib-
ute specified on the <option>.

Each <option> element is represented in the DOM by an HTMLOptionElement object. The
HTMLOptionElement type adds the following properties for easier data access:

➤➤ index—The option’s index inside the options collection.

➤➤ label—The option’s label; equivalent to the HTML label attribute.

➤➤ selected—A Boolean value used to indicate if the option is selected. Set this property to
true to select an option.

➤➤ text—The option’s text.

➤➤ value—The option’s value (equivalent to the HTML value attribute).

728 ❘ CHAPTER 19 Scripting FormS

Most of the <option> properties are used for faster access to the option data. Normal DOM func-
tionality can be used to access this information, but it’s quite inefficient, as this example shows:

let selectbox = document.forms[0].elements["location"];

// not recommended
let text = selectbox.options[0].firstChild.nodeValue; // option text
let value = selectbox.options[0].getAttribute("value"); // option value

This code gets the text and value of the first option in the select box using standard DOM techniques.
Compare this to using the special option properties:

let selectbox = document.forms[0].elements["location"];

// preferred
let text = selectbox.options[0].text; // option text
let value = selectbox.options[0].value; // option value

When dealing with options, it’s best to use the option-specific properties because they are well
supported across all browsers. The exact interactions of form controls may vary from browser to
browser when manipulating DOM nodes. It is not recommended to change the text or values of
<option> elements by using standard DOM techniques.

As a final note, there is a difference in the way the change event is used for select boxes. As opposed
to other form fields, which fire the change event after the value has changed and the field loses focus,
the change event fires on select boxes as soon as an option is selected.

NOTE There are differences in what the value property returns across browsers.
The value property is always equal to the value attribute in all browsers. When
the value attribute is not specified, Internet Explorer 8 and earlier versions
return an empty string, whereas Internet Explorer 9+, Safari, Firefox, Chrome,
and Opera return the same value as text.

Options Selection
For a select box that allows only one option to be selected, the easiest way to access the selected
option is by using the select box’s selectedIndex property to retrieve the option, as shown in the
following example:

let selectedOption = selectbox.options[selectbox.selectedIndex];

This can be used to display all of the information about the selected option, as in this example:

let selectedIndex = selectbox.selectedIndex;
let selectedOption = selectbox.options[selectedIndex];
console.log('Selected index: $[selectedIndex}\n' +
 'Selected text: ${selectedOption.text}\n' +
 'Selected value: ${selectedOption.value}');

Here, a log message is displayed showing the selected index along with the text and value of the
selected option.

Scripting Select Boxes ❘ 729

When used in a select box that allows multiple selections, the selectedIndex property acts as if
only one selection was allowed. Setting selectedIndex removes all selections and selects just the
single option specified, whereas getting selectedIndex returns only the index of the first option that
was selected.

Options can also be selected by getting a reference to the option and setting its selected property to
true. For example, the following selects the first option in a select box:

selectbox.options[0].selected = true;

Unlike selectedIndex, setting the option’s selected property does not remove other selections
when used in a multiselect select box, allowing you to dynamically select any number of options. If
an option’s selected property is changed in a single-select select box, then all other selections are
removed. It’s worth noting that setting the selected property to false has no effect in a single-select
select box.

The selected property is helpful in determining which options in a select box are selected. To get
all of the selected options, you can loop over the options collection and test the selected property.
Consider this example:

function getSelectedOptions(selectbox){
 let result = new Array();

 for (let option of selectbox.options) {
 if (option.selected) {
 result.push(option);
 }
 }

 return result;
}

This function returns an array of options that are selected in a given select box. First an array to
contain the results is created. Then a for loop iterates over the options, checking each option’s
selected property. If the option is selected, it is added to the result array. The last step is to return
the array of selected options. The getSelectedOptions() function can then be used to get informa-
tion about the selected options, like this:

let selectbox = document.getElementById("selLocation");
let selectedOptions = getSelectedOptions(selectbox);
let message = "";

for (let option of selectedOptions) {
 message += 'Selected index: ${option.index}\n' +
 'Selected text: ${option.text}\n' +
 'Selected value: ${option.value}\n'
}

console.log(message);

In this example, the selected options are retrieved from a select box. A for loop is used to construct a
message containing information about all of the selected options, including each option’s index, text,
and value. This can be used for select boxes that allow single or multiple selection.

730 ❘ CHAPTER 19 Scripting FormS

Adding Options
There are several ways to create options dynamically and add them to select boxes using JavaScript.
The first way is to use the DOM as follows:

let newOption = document.createElement("option");
newOption.appendChild(document.createTextNode("Option text"));
newOption.setAttribute("value", "Option value");

selectbox.appendChild(newOption);

This code creates a new <option> element, adds some text using a text node, sets its value attribute,
and then adds it to a select box. The new option shows up immediately after being created.

New options can also be created using the Option constructor, which is a holdover from pre-DOM
browsers. The Option constructor accepts two arguments, the text and the value, though the
second argument is optional. Even though this constructor is used to create an instance of Object,
DOM-compliant browsers return an <option> element. This means you can still use appendChild()
to add the option to the select box. Consider the following:

let newOption = new Option("Option text", "Option value");
selectbox.appendChild(newOption); // problems in IE <= 8

This approach works as expected in all browsers except Internet Explorer 8 and earlier. Because of a
bug, the browser doesn’t correctly set the text of the new option when using this approach.

Another way to add a new option is to use the select box’s add() method. The DOM specifies that
this method accepts two arguments: the new option to add and the option before which the new
option should be inserted. To add an option at the end of the list, the second argument should be
null. The Internet Explorer 8 and earlier implementation of add() is slightly different in that the
second argument is optional, and it must be the index of the option before which to insert the new
option. DOM-compliant browsers require the second argument, so you can’t use just one argument
for a cross-browser approach (Internet Explorer 9 is DOM-compliant). Instead, passing undefined
as the second argument ensures that the option is added at the end of the list in all browsers. Here’s
an example:

let newOption = new Option("Option text", "Option value");
selectbox.add(newOption, undefined); // best solution

This code works appropriately in all versions of Internet Explorer and DOM-compliant browsers. If
you need to insert a new option into a position other than last, you should use the DOM technique
and insertBefore().

NOTE As in HTML, you are not required to assign a value for an option. The
Option constructor works with just one argument (the option text).

Removing Options
As with adding options, there are multiple ways to remove options. You can use the DOM
 removeChild() method and pass in the option to remove, as shown here:

selectbox.removeChild(selectbox.options[0]); // remove first option

Scripting Select Boxes ❘ 731

The second way is to use the select box’s remove() method. This method accepts a single argument,
the index of the option to remove, as shown here:

selectbox.remove(0); // remove first option

The last way is to simply set the option equal to null. This is also a holdover from pre-DOM
browsers. Here’s an example:

selectbox.options[0] = null; // remove first option

To clear a select box of all options, you need to iterate over the options and remove each one, as in
this example:

function clearSelectbox(selectbox) {
 for (let option of selectbox.options) {
 selectbox.remove(0);
 }
}

This function simply removes the first option in a select box repeatedly. Because removing the first
option automatically moves all of the options up one spot, this removes all options.

Moving and Reordering Options
Before the DOM, moving options from one select box to another was a rather arduous process that
involved removing the option from the first select box, creating a new option with the same name
and value, and then adding that new option to the second select box. Using DOM methods, it’s
possible to literally move an option from the first select box into the second select box by using the
appendChild() method. If you pass an element that is already in the document into this method,
the element is removed from its parent and put into the position specified. For example, the following
code moves the first option from one select box into another select box.

let selectbox1 = document.getElementById("selLocations1");
let selectbox2 = document.getElementById("selLocations2");

selectbox2.appendChild(selectbox1.options[0]);

Moving options is the same as removing them in that the index property of each option is reset.

Reordering options is very similar, and DOM methods are the best way to accomplish this. To move
an option to a particular location in the select box, the insertBefore() method is most appropriate,
though the appendChild() method can be used to move any option to the last position. To move an
option up one spot in the select box, you can use the following code:

let optionToMove = selectbox.options[1];
selectbox.insertBefore(optionToMove,
 selectbox.options[optionToMove.index-1]);

In this code, an option is selected to move and then inserted before the option that is in the previous
index. The second line of code is generic enough to work with any option in the select box except the
first. The following similar code can be used to move an option down one spot:

let optionToMove = selectbox.options[1];
selectbox.insertBefore(optionToMove,
 selectbox.options[optionToMove.index+2]);

This code works for all options in a select box, including the last one.

732 ❘ CHAPTER 19 Scripting FormS

FORM SERIALIZATION

With the emergence of Ajax (discussed further in Chapter 21), form serialization has become a
common requirement. A form can be serialized in JavaScript using the type property of form fields
in conjunction with the name and value properties. Before writing the code, you need to understand
how the browser determines what gets sent to the server during a form submission:

➤➤ Field names and values are URL-encoded and delimited using an ampersand.

➤➤ Disabled fields aren’t sent at all.

➤➤ A check box or radio field is sent only if it is checked.

➤➤ Buttons of type "reset" or "button" are never sent.

➤➤ Multiselect fields have an entry for each value selected.

➤➤ When the form is submitted by clicking a submit button, that submit button is sent;
otherwise no submit buttons are sent. Any <input> elements with a type of "image" are
treated the same as submit buttons.

➤➤ The value of a <select> element is the value attribute of the selected <option> element.
If the <option> element doesn’t have a value attribute, then the value is the text of the
<option> element.

Form serialization typically doesn’t include any button fields, because the resulting string will most
likely be submitted in another way. All of the other rules should be followed. The code to accomplish
form serialization is as follows:

function serialize(form) {
 let parts = [];
 let optValue;

 for (let field of form.elements) {
 switch(field.type) {
 case "select-one":
 case "select-multiple":
 if (field.name.length) {
 for (let option of field.options) {
 if (option.selected) {
 if (option.hasAttribute){
 optValue = (option.hasAttribute("value") ?
 option.value : option.text);
 } else {
 optValue = (option.attributes["value"].specified ?
 option.value : option.text);
 }
 parts.push(encodeURIComponent(field.name)} + "=" +
 encodeURIComponent(optValue));
 }
 }
 }

Form Serialization ❘ 733

 break;
 case undefined: // fieldset
 case "file": // file input
 case "submit": // submit button
 case "reset": // reset button
 case "button": // custom button
 break;
 case "radio": // radio button
 case "checkbox": // checkbox
 if (!field.checked) {
 break;
 }
 default:
 // don't include form fields without names
 if (field.name.length) {
 parts.push('${encodeURIComponent(field.name)}=' +
 '${encodeURIComponent(field.value)}');

 }
 }
 return parts.join("&");
}

The serialize() function begins by defining an array called parts to hold the parts of the string
that will be created. Next, a for loop iterates over each form field, storing it in the field variable.
Once a field reference is obtained, its type is checked using a switch statement. The most involved
field to serialize is the <select> element, in either single-select or multiselect mode. Serialization is
done by looping over all of the options in the control and adding a value if the option is selected. For
single-select controls, there will be only one option selected, whereas multiselect controls may have
zero or more options selected. The same code can be used for both select types, because the restric-
tion on the number of selections is enforced by the browser. When an option is selected, you need to
determine which value to use. If the value attribute is not present, the text should be used instead,
although a value attribute with an empty string is completely valid. To check this, you’ll need to use
hasAttribute() in DOM-compliant browsers and the attribute’s specified property in Internet
Explorer 8 and earlier.

If a <fieldset> element is in the form, it appears in the elements collection but has no type prop-
erty. So if type is undefined, no serialization is necessary. The same is true for all types of buttons
and file input fields. (File input fields contain the content of the file in form submissions; however,
these fields can’t be mimicked, so they are typically omitted in serialization.) For radio and check box
controls, the checked property is inspected and if it is set to false, the switch statement is exited. If
checked is true, then the code continues executing in the default statement, which encodes the name
and value of the field and adds it to the parts array. Note that in all cases form fields without names
are not included as part of the serialization to mimic browser form submission behavior. The last part
of the function uses join() to format the string correctly with ampersands between fields.

The serialize() function outputs the string in query string format, though it can easily be adapted
to serialize the form into another format.

734 ❘ CHAPTER 19 Scripting FormS

RICH TEXT EDITING

One of the most requested features for web applications was the ability to edit rich text on a web
page (also called what you see is what you get, or WYSIWYG, editing). Though no specification
covers this, a de facto standard has emerged from functionality originally introduced by Internet
Explorer and now supported by Opera, Safari, Chrome, and Firefox. The basic technique is to embed
an iframe containing a blank HTML file in the page. Through the designMode property, this blank
document can be made editable, at which point you’re editing the HTML of the page’s <body>
element. The designMode property has two possible values: "off" (the default) and "on". When set
to "on", an entire document becomes editable (showing a caret), allowing you to edit text as if you
were using a word processor complete with keystrokes for making text bold, italic, and so forth.

A very simple, blank HTML page is used as the source of the iframe. Here’s an example:

<!DOCTYPE html>
<html>
 <head>
 <title>Blank Page for Rich Text Editing</title>
 </head>
 <body>
 </body>
</html>

This page is loaded inside an iframe as any other page would be. To allow it to be edited, you
must set designMode to "on", but this can happen only after the document is fully loaded. In the
containing page, you’ll need to use the onload event handler to indicate the appropriate time to set
designMode, as shown in the following example:

<iframe name="richedit" style="height: 100px; width: 100px"></iframe>

<script>
 window.addEventListener("load", () => {
 frames["richedit"].document.designMode = "on";
 });
</script>

Once this code is loaded, you’ll see what looks like a text box on the page. The box has the same
default styling as any web page, though this can be adjusted by applying CSS to the blank page.

Using contenteditable
Another way to interact with rich text, also first implemented by Internet Explorer, is through the use
of a special attribute called contenteditable. The contenteditable attribute can be applied to any
element on a page and instantly makes that element editable by the user. This approach has gained
favor because it doesn’t require the overhead of an iframe, blank page, and JavaScript. Instead, you
can just add the attribute to an element:

<div class="editable" id="richedit" contenteditable></div>

Rich Text Editing ❘ 735

Any text already contained within the element is automatically made editable by the user, making
it behave similarly to the <textarea> element. You can also toggle the editing mode on or off by
setting the contentEditable property on an element:

let div = document.getElementById("richedit");
richedit.contentEditable = "true";

There are three possible values for contentEditable: "true" to turn on, "false" to turn off, or
"inherit" to inherit the setting from a parent (required because elements can be created/destroyed
inside of a contenteditable element). The contentEditable attribute is supported in Internet
Explorer, Firefox, Chrome, Safari, and Opera, and on all major mobile browsers.

NOTE contenteditable is an extremely versatile attribute. For example, you’re
able to convert your browser window into a notepad by visiting the pseudo-URL
data:text/html, <html contenteditable>. This creates an ad-hoc DOM with
the entire document set to editable.

Interacting with Rich Text
The primary method of interacting with a rich text editor is through the use of document
.execCommand(). This method executes named commands on the document and can be used to
apply most formatting changes. There are three possible arguments for document.execCommand():
the name of the command to execute, a Boolean value indicating if the browser should provide a
user interface for the command, and a value necessary for the command to work (or null if none is
necessary). The second argument should always be false for cross-browser compatibility, because
Firefox throws an error when true is passed in.

Each browser supports a different set of commands. The most commonly supported commands are
listed in the following table.

COMMAND VALUE (THIRD ARGUMENT) DESCRIPTION

backcolor A color string Sets the background color of
the document.

bold null Toggles bold text for the text selection.

copy null Executes a clipboard copy on the text
selection.

createlink A URL string Turns the current text selection into a
link that goes to the given URL.

cut null Executes a clipboard cut on the text
selection.

continues

736 ❘ CHAPTER 19 Scripting FormS

COMMAND VALUE (THIRD ARGUMENT) DESCRIPTION

delete null Deletes the currently selected text.

fontname The font name Changes the text selection to use the
given font name.

fontsize 1 through 7 Changes the font size for the text
selection.

forecolor A color string Changes the text color for the text
selection.

formatblock The HTML tag to
surround the block with;
for example, <h1>

Formats the entire text box around the
selection with a particular HTML tag.

indent null Indents the text.

inserthorizontalrule null Inserts an <hr> element at the
caret location.

insertimage The image URL Inserts an image at the caret location.

insertorderedlist null Inserts an element at the
caret location.

insertparagraph null Inserts a <p> element at the
caret location.

insertunorderedlist null Inserts a element at the
caret location.

italic null Toggles italic text for the text selection.

justifycenter null Centers the block of text in which the
caret is positioned.

justifyleft null Left-aligns the block of text in which the
caret is positioned.

outdent null Outdents the text.

paste null Executes a clipboard paste on the text
selection.

removeformat null Removes block formatting from the
block in which the caret is positioned.
This is the opposite of formatblock.

(continued)

Rich Text Editing ❘ 737

COMMAND VALUE (THIRD ARGUMENT) DESCRIPTION

selectall null Selects all of the text in the document.

underline null Toggles underlined text for the text
selection.

unlink null Removes a text link. This is the opposite
of createlink.

The clipboard commands are very browser-dependent. Note that even though these commands aren’t
all available via document.execCommand(), they still work with the appropriate keyboard shortcuts.

These commands can be used at any time to modify the appearance of the iframe rich text area, as in
this example:

// toggle bold text in an iframe
frames["richedit"].document.execCommand("bold", false, null);

// toggle italic text in an iframe
frames["richedit"].document.execCommand("italic", false, null);

// create link to www.wrox.com in an iframe
frames["richedit"].document.execCommand("createlink", false,
 "http://www.wrox.com");

// format as first-level heading in an iframe
frames["richedit"].document.execCommand("formatblock", false, "<h1>");

You can use the same methods to act on a contenteditable section of the page; just use the
document object of the current window instead of referencing the iframe:

// toggle bold text
document.execCommand("bold", false, null);

// toggle italic text
document.execCommand("italic", false, null);

// create link to www.wrox.com
document.execCommand("createlink", false, "http://www.wrox.com");

// format as first-level heading
document.execCommand("formatblock", false, "<h1>");

Note that even when commands are supported across all browsers, the HTML that the commands
produce is often very different. For instance, applying the bold command surrounds text with
 in Internet Explorer and Opera, with in Safari and Chrome, and with a in
Firefox. You cannot rely on consistency in the HTML produced from a rich text editor, because of
both command implementation and the transformations done by innerHTML.

738 ❘ CHAPTER 19 Scripting FormS

There are some other methods related to commands. The first is queryCommandEnabled(), which
determines if a command can be executed given the current text selection or caret position. This
method accepts a single argument, the command name to check, and returns true if the command is
allowed given the state of the editable area or false if not. Consider this example:

let result = frames["richedit"].document.queryCommandEnabled("bold");

This code returns true if the "bold" command can be executed on the current selection. It’s worth
noting that queryCommandEnabled() indicates not if you are allowed to execute the
command but only if the current selection is appropriate for use with the command. In Firefox,
queryCommandEnabled("cut") returns true even though it isn’t allowed by default.

The queryCommandState() method lets you determine if a given command has been applied to the
current text selection. For example, to determine if the text in the current selection is bold, you can
use the following:

let isBold = frames["richedit"].document.queryCommandState("bold");

If the "bold" command was previously applied to the text selection, then this code returns true.
This is the method by which full-featured rich text editors are able to update buttons for bold, italic,
and so on.

The last method is queryCommandValue(), which is intended to return the value with which a
command was executed. (The third argument in execCommand is in the earlier example.) For instance,
a range of text that has the "fontsize" command applied with a value of 7 returns "7" from the
following:

let fontSize = frames["richedit"].document.queryCommandValue("fontsize");

This method can be used to determine how a command was applied to the text selection, allowing
you to determine whether the next command is appropriate to be executed.

Rich Text Selections
You can determine the exact selection in a rich text editor by using the getSelection() method of
the iframe. This method is available on both the document object and the window object and returns
a Selection object representing the currently selected text. Each Selection object has the following
properties:

➤➤ anchorNode—The node in which the selection begins.

➤➤ anchorOffset—The number of characters within the anchorNode that are skipped before
the selection begins.

➤➤ focusNode—The node in which the selection ends.

➤➤ focusOffset—The number of characters within the focusNode that are included in the
selection.

➤➤ isCollapsed—Boolean value indicating if the start and end of the selection are the same.

➤➤ rangeCount—The number of DOM ranges in the selection.

Rich Text Editing ❘ 739

The properties for a Selection don’t contain a lot of useful information. Fortunately, the following
methods provide more information and allow manipulation of the selection:

➤➤ addRange(range)—Adds the given DOM range to the selection.

➤➤ collapse(node, offset)—Collapses the selection to the given text offset within the
given node.

➤➤ collapseToEnd()—Collapses the selection to its end.

➤➤ collapseToStart()—Collapses the selection to its start.

➤➤ containsNode(node)—Determines if the given node is contained in the selection.

➤➤ deleteFromDocument()—Deletes the selection text from the document. This is the same as
execCommand("delete", false, null).

➤➤ extend(node, offset)—Extends the selection by moving the focusNode and focusOffset
to the values specified.

➤➤ getRangeAt(index)—Returns the DOM range at the given index in the selection.

➤➤ removeAllRanges()—Removes all DOM ranges from the selection. This effectively removes
the selection, because there must be at least one range in a selection.

➤➤ removeRange(range)—Removes the specified DOM range from the selection.

➤➤ selectAllChildren(node)—Clears the selection and then selects all child nodes of the
given node.

➤➤ toString()—Returns the text content of the selection.

The methods of a Selection object are extremely powerful and make extensive use of DOM ranges
to manage the selection. Access to DOM ranges allows you to modify the contents of the rich text
editor in even finer-grain detail than is available using execCommand() because you can directly
manipulate the DOM of the selected text. Consider the following example:

let selection = frames["richedit"].getSelection();

// get selected text
let selectedText = selection.toString();

// get the range representing the selection
let range = selection.getRangeAt(0);

// highlight the selected text
let span = frames["richedit"].document.createElement("span");
span.style.backgroundColor = "yellow";
range.surroundContents(span);

This code places a yellow highlight around the selected text in a rich text editor. Using the DOM
range in the default selection, the surroundContents() method surrounds the selection with a
 element whose background color is yellow.

740 ❘ CHAPTER 19 Scripting FormS

The getSelection() method was standardized in HTML5 and is implemented in Internet Explorer 9
and all modern versions of Firefox, Safari, Chrome, and Opera.

Internet Explorer 8 and earlier versions don’t support DOM ranges, but they do allow interaction
with the selected text via the proprietary selection object. The selection object is a property of
document, as discussed earlier in this chapter. To get the selected text in a rich text editor, you must
first create a text range and then use the text property as follows:

let range = frames["richedit"].document.selection.createRange();
let selectedText = range.text;

Performing HTML manipulations using Internet Explorer text ranges is not as safe as using DOM
ranges, but it is possible. To achieve the same highlighting effect as described using DOM ranges, you
can use a combination of the htmlText property and the pasteHTML() method:

let range = frames["richedit"].document.selection.createRange();
range.pasteHTML(
 '${range.htmlText}');

This code retrieves the HTML of the current selection using htmlText and then surrounds it with a
 and inserts it back into the selection using pasteHTML().

Rich Text in Forms
Because rich text editing is implemented using an iframe or a contenteditable element instead
of a form control, a rich text editor is technically not part of a form. That means the HTML will
not be submitted to the server unless you extract the HTML manually and submit it yourself. This
is typically done by having a hidden form field that is updated with the HTML from the iframe or
the contenteditable element. Just before the form is submitted, the HTML is extracted from the
iframe or element and inserted into the hidden field. For example, the following may be done in the
form’s onsubmit event handler when using an iframe:

form.addEventListener("submit", (event) => {
 let target = event.target;

 target.elements["comments"].value =
 frames["richedit"].document.body.innerHTML;
});

Here, the HTML is retrieved from the iframe using the innerHTML property of the document’s
body and inserted into a form field named "comments". Doing so ensures that the "comments"
field is filled in just before the form is submitted. If you are submitting the form manually using the
 submit() method, take care to perform this operation beforehand. You can perform a similar operation
with a contenteditable element:

form.addEventListener("submit", (event) => {
 let target = event.target;

 target.elements["comments"].value =
 document.getElementById("richedit").innerHTML;
});

Summary ❘ 741

SUMMARY

Even though HTML and web applications have changed dramatically since their inception, web
forms have remained mostly unchanged. JavaScript can be used to augment existing form fields to
provide new functionality and usability enhancements. To aid in this, forms and form fields have
properties, methods, and events for JavaScript usage. Here are some of the concepts introduced in
this chapter:

➤➤ It’s possible to select all of the text in a text box or just part of the text using a variety of
standard and nonstandard methods.

➤➤ All browsers have adopted Firefox’s way of interacting with text selection, making it a
true standard.

➤➤ Text boxes can be changed to allow or disallow certain characters by listening for keyboard
events and inspecting the characters being inserted.

All browsers support events for the clipboard, including copy, cut, and paste. Clipboard event
implementations across the other browsers vary widely between browser vendors.

Hooking into clipboard events is useful for blocking paste events when the contents of a text box
must be limited to certain characters.

Select boxes are also frequently controlled using JavaScript. Thanks to the DOM, manipulating select
boxes is much easier than it was previously. Options can be added, removed, moved from one select box
to another, or reordered using standard DOM techniques.

Rich text editing is handled by using an iframe containing a blank HTML document. By setting
the document’s designMode property to "on", you make the page editable and it acts like a word
processor. You can also use an element set as contenteditable. By default, you can toggle font
styles such as bold and italic and use clipboard actions. JavaScript can access some of this func-
tionality by using the execCommand() method and can get information about the text selection by
using the queryCommandEnabled(), queryCommandState(), and queryCommandValue() methods.
Because building a rich text editor in this manner does not create a form field, it’s necessary to copy
the HTML from the iframe or contenteditable element into a form field if it is to be submitted to
the server.

JavaScript APIs
WHAT’S IN THIS CHAPTER?

➤➤ Atomics and SharedArrayBuffer

➤➤ Cross-context messaging

➤➤ Encoding API

➤➤ File and Blob API

➤➤ Drag and drop

➤➤ Notifications API

➤➤ Page Visibility API

➤➤ Streams API

➤➤ Timing APIs

➤➤ Web components

➤➤ Web Cryptography API

The increasing versatility of web browsers is accompanied by a dizzying increase in complex-
ity. In many ways, the modern web browser has become a Swiss army knife of different APIs
detailed in a broad collection of specifications. This browser specification ecosystem is messy
and volatile. Some specifications like HTML5 are a bundle of APIs and browser features that
enhance an existing standard. Other specifications define an API for a single feature, such as the
Web Cryptography API or the Notifications API. Depending on the browser, adoption of these
newer APIs can sometimes be partial or nonexistent.

Ultimately, the decision to use newer APIs involves a tradeoff between supporting more brows-
ers and enabling more modern features. Some APIs can be emulated using a polyfill, but poly-
fills can often incur a performance hit or bloat your site’s JS payloads.

20

Professional JavaScript® for Web Developers, Fourth Edition. Matt Frisbie.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

744 ❘ CHAPTER 20 JavaScript apiS

NOTE The number of web APIs is mind-bogglingly huge (https://developer.
mozilla.org/en-US/docs/Web/API). This chapter’s API coverage is limited to
APIs that are relevant to most developers, supported by multiple browser ven-
dors, and not covered elsewhere in this book.

ATOMICS AND SharedArrayBuffer

When a SharedArrayBuffer is accessed by multiple contexts, race conditions can occur when opera-
tions on the buffer are performed simultaneously. The Atomics API allows multiple contexts to safely
read and write to a single SharedArrayBuffer by forcing buffer operations to occur only one at a
time. The Atomics API was defined in the ES2017 specification.

You will notice that the Atomics API in many ways resembles a stripped-down instruction set archi-
tecture (ISA)—this is no accident. The nature of atomic operations precludes some optimizations
that the operating system or computer hardware would normally perform automatically (such as
instruction reordering). Atomic operations also make concurrent memory access impossible, which
obviously can slow program execution when improperly applied. Therefore, the Atomics API was
designed to enable sophisticated multithreaded JavaScript programs to be architected out of a mini-
mal yet robust collection of atomic behaviors.

SharedArrayBuffer
A SharedArrayBuffer features an identical API to an ArrayBuffer. The primary difference is that,
whereas a reference to an ArrayBuffer must be handed off between execution contexts, a reference
to a SharedArrayBuffer can be used simultaneously by any number of execution contexts.

Sharing memory between multiple execution contexts means that concurrent thread operations
become a possibility. Traditional JavaScript operations offer no protection from race conditions
resulting from concurrent memory access. The following example demonstrates a race condition
between four dedicated workers accessing the same SharedArrayBuffer:

const workerScript = `
self.onmessage = ({data}) => {
 const view = new Uint32Array(data);

 // Perform 1000000 add operations
 for (let i = 0; i < 1E6; ++i) {
 // Thread-unsafe add operation introduces race condition
 view[0] += 1;
 }

 self.postMessage(null);
};
`;

const workerScriptBlobUrl = URL.createObjectURL(new Blob([workerScript]));

Atomics and SharedArrayBuffer ❘ 745

// Create worker pool of size 4
const workers = [];
for (let i = 0; i < 4; ++i) {
 workers.push(new Worker(workerScriptBlobUrl));
}

// Log the final value after the last worker completes
let responseCount = 0;
for (const worker of workers) {
 worker.onmessage = () => {
 if (++responseCount == workers.length) {
 console.log(`Final buffer value: ${view[0]}`);
 }
 };
}

// Initialize the SharedArrayBuffer
const sharedArrayBuffer = new SharedArrayBuffer(4);
const view = new Uint32Array(sharedArrayBuffer);
view[0] = 1;

// Send the SharedArrayBuffer to each worker
for (const worker of workers) {
 worker.postMessage(sharedArrayBuffer);
}

// (Expected result is 4000001. Actual output will be something like:)
// Final buffer value: 2145106

To address this problem, the Atomics API was introduced to allow for thread-safe JavaScript opera-
tions on a SharedArrayBuffer.

NOTE The SharedArrayBuffer API is identical to the ArrayBuffer API, which
is covered in the “Collection Reference Types” chapter. For details on how to use
a SharedArrayBuffer across multiple contexts, refer to the “Workers” chapter.

Atomics Basics
The Atomics object exists on all global contexts, and it exposes a suite of static methods for perform-
ing thread-safe operations. Most of these methods take a TypedArray instance (referencing a Shar-
edArrayBuffer) as the first argument and the relevant operands as subsequent arguments.

Atomic Arithmetic and Bitwise Methods
The Atomics API offers a simple suite of methods for performing an in-place modification. In the
ECMA specification, these methods are defined as AtomicReadModifyWrite operations. Under the
hood, each of these methods is performing a read from a location in the SharedArrayBuffer, an
arithmetic or bitwise operation, and a write to the same location. The atomic nature of these opera-
tors means that these three operations will be performed in sequence and without interruption by
another thread.

746 ❘ CHAPTER 20 JavaScript apiS

All the arithmetic methods are demonstrated here:

// Create buffer of size 1
let sharedArrayBuffer = new SharedArrayBuffer(1);

// Create Uint8Array from buffer
let typedArray = new Uint8Array(sharedArrayBuffer);

// All ArrayBuffers are initialized to 0
console.log(typedArray); // Uint8Array[0]

const index = 0;
const increment = 5;

// Atomic add 5 to value at index 0
Atomics.add(typedArray, index, increment);

console.log(typedArray); // Uint8Array[5]

// Atomic subtract 5 to value at index 0
Atomics.sub(typedArray, index, increment);

console.log(typedArray); // Uint8Array[0]

All the bitwise methods are demonstrated here:

// Create buffer of size 1
let sharedArrayBuffer = new SharedArrayBuffer(1);

// Create Uint8Array from buffer
let typedArray = new Uint8Array(sharedArrayBuffer);

// All ArrayBuffers are initialized to 0
console.log(typedArray); // Uint8Array[0]

const index = 0;

// Atomic or 0b1111 to value at index 0
Atomics.or(typedArray, index, 0b1111);

console.log(typedArray); // Uint8Array[15]

// Atomic and 0b1100 to value at index 0
Atomics.and(typedArray, index, 0b1100);

console.log(typedArray); // Uint8Array[12]

// Atomic xor 0b1111 to value at index 0
Atomics.xor(typedArray, index, 0b1111);

console.log(typedArray); // Uint8Array[3]

The thread-unsafe example from earlier can be corrected as follows:

const workerScript = `
self.onmessage = ({data}) => {

Atomics and SharedArrayBuffer ❘ 747

 const view = new Uint32Array(data);

 // Perform 1000000 add operations
 for (let i = 0; i < 1E6; ++i) {
 // Thread-safe add operation
 Atomics.add(view, 0, 1);
 }

 self.postMessage(null);
};
`;

const workerScriptBlobUrl = URL.createObjectURL(new Blob([workerScript]));

// Create worker pool of size 4
const workers = [];
for (let i = 0; i < 4; ++i) {
 workers.push(new Worker(workerScriptBlobUrl));
}

// Log the final value after the last worker completes
let responseCount = 0;
for (const worker of workers) {
 worker.onmessage = () => {
 if (++responseCount == workers.length) {
 console.log(`Final buffer value: ${view[0]}`);
 }
 };
}

// Initialize the SharedArrayBuffer
const sharedArrayBuffer = new SharedArrayBuffer(4);
const view = new Uint32Array(sharedArrayBuffer);
view[0] = 1;

// Send the SharedArrayBuffer to each worker
for (const worker of workers) {
 worker.postMessage(sharedArrayBuffer);
}

// (Expected result is 4000001)
// Final buffer value: 4000001

Atomic Reads and Writes
Both the browser’s JavaScript compiler and the CPU architecture itself are given license to reorder
instructions if they detect it will increase the overall throughput of program execution. Normally, the
single-threaded nature of JavaScript means this optimization should be welcomed with open arms.
However, instruction reordering across multiple threads can yield race conditions that are extremely
difficult to debug.

748 ❘ CHAPTER 20 JavaScript apiS

The Atomics API addresses this problem in two primary ways:

➤➤ All Atomics instructions are never reordered with respect to one another.

➤➤ Using an Atomic read or Atomic write guarantees that all instructions (both Atomic and
non-Atomic) will never be reordered with respect to that Atomic read/write. This means
that all instructions before an Atomic read/write will finish before the Atomic read/write
occurs, and all instructions after the Atomic read/write will not begin until the Atomic
read/write completes.

In addition to reading and writing values to a buffer, Atomics.load() and Atomics.store() behave
as “code fences.” The JavaScript engine guarantees that, although non-Atomic instructions may be
locally reordered relative to a load() or store(), the reordering will never violate the Atomic read/
write boundary. The following code annotates this behavior:

const sharedArrayBuffer = new SharedArrayBuffer(4);
const view = new Uint32Array(sharedArrayBuffer);

// Perform non-Atomic write
view[0] = 1;

// Non-Atomic write is guaranteed to occur before this read,
// so this is guaranteed to read 1
console.log(Atomics.load(view, 0)); // 1

// Perform Atomic write
Atomics.store(view, 0, 2);

// Non-Atomic read is guaranteed to occur after Atomic write,
// so this is guaranteed to read 2
console.log(view[0]); // 2

Atomic Exchanges
The Atomics API offers two types of methods that guarantee a sequential and uninterrupted
read-then-write: exchange() and compareExchange(). Atomics.exchange() performs a simple
swap, guaranteeing that no other threads will interrupt the value swap:

const sharedArrayBuffer = new SharedArrayBuffer(4);
const view = new Uint32Array(sharedArrayBuffer);

// Write 3 to 0-index
Atomics.store(view, 0, 3);

// Read value out of 0-index and then write 4 to 0-index
console.log(Atomics.exchange(view, 0, 4)); // 3

// Read value at 0-index
console.log(Atomics.load(view, 0)); // 4

One thread in a multithreaded program might want to perform a write to a shared buffer only if
another thread has not modified a specific value since it was last read. If the value has not changed,

Atomics and SharedArrayBuffer ❘ 749

it can safely write the update value. If the value has changed, performing a write would trample the
value calculated by another thread. For this task, the Atomics API features the compareExchange()
method. This method only performs a write if the value at the intended index matches an expected
value. Consider the following example:

const sharedArrayBuffer = new SharedArrayBuffer(4);
const view = new Uint32Array(sharedArrayBuffer);

// Write 5 to 0-index
Atomics.store(view, 0, 5);
// Read the value out of the buffer
let initial = Atomics.load(view, 0);

// Perform a non-atomic operation on that value
let result = initial ** 2;

// Write that value back into the buffer only if the buffer has not changed
Atomics.compareExchange(view, 0, initial, result);

// Check that the write succeeded
console.log(Atomics.load(view, 0)); // 25

If the value does not match, the compareExchange() call will simply behave as a passthrough:

const sharedArrayBuffer = new SharedArrayBuffer(4);
const view = new Uint32Array(sharedArrayBuffer);

// Write 5 to 0-index
Atomics.store(view, 0, 5);
// Read the value out of the buffer
let initial = Atomics.load(view, 0);

// Perform a non-atomic operation on that value
let result = initial ** 2;

// Write that value back into the buffer only if the buffer has not changed
Atomics.compareExchange(view, 0, -1, result);

// Check that the write failed
console.log(Atomics.load(view, 0)); // 5

Atomics Futex Operations and Locks
Multithreaded programs wouldn’t amount to much without some sort of locking construct. To
address this need, the Atomics API offers several methods modeled on the Linux futex (a portmanteau
of fast user-space mutex). The methods are fairly rudimentary, but they are intended to be used as a
fundamental building block for more elaborate locking constructs.

NOTE All Atomics futex operations only work with an Int32Array view. Fur-
thermore, they can only be used inside workers.

750 ❘ CHAPTER 20 JavaScript apiS

Atomics.wait() and Atomics.notify() are best understood by example. The following rudimen-
tary example spawns four workers to operate on an Int32Array of length 1. The spawned workers
will take turns obtaining the lock and performing their add operation:

const workerScript = `
self.onmessage = ({data}) => {
 const view = new Int32Array(data);

 console.log('Waiting to obtain lock');

 // Halt when encountering the initial value, timeout at 10000ms
 Atomics.wait(view, 0, 0, 1E5);

 console.log('Obtained lock');

 // Add 1 to data index
 Atomics.add(view, 0, 1);

 console.log('Releasing lock');

 // Allow exactly one worker to continue execution
 Atomics.notify(view, 0, 1);

 self.postMessage(null);
};
`;

const workerScriptBlobUrl = URL.createObjectURL(new Blob([workerScript]));

const workers = [];
for (let i = 0; i < 4; ++i) {
 workers.push(new Worker(workerScriptBlobUrl));
}

// Log the final value after the last worker completes
let responseCount = 0;
for (const worker of workers) {
 worker.onmessage = () => {
 if (++responseCount == workers.length) {
 console.log(`Final buffer value: ${view[0]}`);
 }
 };
}

// Initialize the SharedArrayBuffer
const sharedArrayBuffer = new SharedArrayBuffer(8);
const view = new Int32Array(sharedArrayBuffer);

// Send the SharedArrayBuffer to each worker
for (const worker of workers) {
 worker.postMessage(sharedArrayBuffer);
}

Cross-Context Messaging ❘ 751

// Release first lock in 1000ms
setTimeout(() => Atomics.notify(view, 0, 1), 1000);

// Waiting to obtain lock
// Waiting to obtain lock
// Waiting to obtain lock
// Waiting to obtain lock
// Obtained lock
// Releasing lock
// Obtained lock
// Releasing lock
// Obtained lock
// Releasing lock
// Obtained lock
// Releasing lock
// Final buffer value: 4

Because the SharedArrayBuffer is initialized with 0s, each worker will arrive at the Atomics.
wait() and halt execution. In the halted state, the thread of execution exists inside a wait queue,
remaining paused until the specified timeout elapses or until Atomics.notify() is invoked for that
index. After 1000 milliseconds, the top-level execution context will call Atomics.notify() to release
exactly one of the waiting threads. This thread will finish execution and call Atomics.notify() once
again, releasing yet another thread. This continues until all the threads have completed execution and
transmitted their final postMessage().

The Atomics API also features the Atomics.isLockFree() method. It is almost certain that you will
never need to use this method, as it is designed for high-performance algorithms to decide whether or
not obtaining a lock is necessary. The specification offers this description:

Atomics.isLockFree() is an optimization primitive. The intuition is that if the
atomic step of an atomic primitive (compareExchange, load, store, add, sub, and,
or, xor, or exchange) on a datum of size n bytes will be performed without the
calling agent acquiring a lock outside the n bytes comprising the datum, then Atom-
ics.isLockFree(n) will return true. High-performance algorithms will use Atom-
ics.isLockFree to determine whether to use locks or atomic operations in critical
sections. If an atomic primitive is not lock-free then it is often more efficient for an
algorithm to provide its own locking.

Atomics.isLockFree(4) always returns true as that can be supported on
all known relevant hardware. Being able to assume this will generally sim-
plify programs.

CROSS-CONTEXT MESSAGING

Cross-document messaging, sometimes abbreviated as XDM, is the capability to pass informa-
tion between different execution contexts, such as web workers or pages from different origins. For
example, a page on www.wrox.com wants to communicate with a page from p2p.wrox.com that is

752 ❘ CHAPTER 20 JavaScript apiS

contained in an iframe. Prior to XDM, achieving this communication in a secure manner took a lot of
work. XDM formalizes this functionality in a way that is both secure and easy to use.

NOTE Cross-context messaging is used for communication between windows
and communication with workers. This section focuses on using postMessage()
to communicate with other windows. For coverage on worker messaging, Mes-
sageChannel, and BroadcastChannel, refer to the “Workers” chapter.

At the heart of XDM is the postMessage() method. This method name is used in many parts
of HTML5 in addition to XDM and is always used for the same purpose: to pass data into
another location.

The postMessage() method accepts three arguments: a message, a string indicating the intended
recipient origin, and an optional array of transferable objects (only relevant to web workers). The
second argument is very important for security reasons and restricts where the browser will deliver
the message. Consider this example:

let iframeWindow = document.getElementById("myframe").contentWindow;
iframeWindow.postMessage("A secret", "http://www.wrox.com");

The last line attempts to send a message into the iframe and specifies that the origin must be
"http://www.wrox.com". If the origin matches, then the message will be delivered into the iframe;
otherwise, postMessage() silently does nothing. This restriction protects your information should
the location of the window change without your knowledge. It is possible to allow posting to any
origin by passing in "*" as the second argument to postMessage(), but this is not recommended.

A message event is fired on window when an XDM message is received. This message is fired asyn-
chronously so there may be a delay between the time at which the message was sent and the time
at which the message event is fired in the receiving window. The event object that is passed to an
onmessage event handler has three important pieces of information:

➤➤ data—The string data that was passed as the first argument to postMessage().

➤➤ origin—The origin of the document that sent the message, for example, "http://www.
wrox.com".

➤➤ source—A proxy for the window object of the document that sent the message. This
proxy object is used primarily to execute the postMessage() method on the window that
sent the last message. If the sending window has the same origin, this may be the actual
window object.

It’s very important when receiving a message to verify the origin of the sending window. Just as
specifying the second argument to postMessage() ensures that data doesn’t get passed unintention-
ally to an unknown page, checking the origin during onmessage ensures that the data being passed is
coming from the right place. The basic pattern is as follows:

window.addEventListener("message", (event) => {
 // ensure the sender is expected
 if (event.origin == "http://www.wrox.com") {

Encoding API ❘ 753

 // do something with the data
 processMessage(event.data);
 // optional: send a message back to the original window
 event.source.postMessage("Received!", "http://p2p.wrox.com");
 }
});

Keep in mind that event.source is a proxy for a window in most cases, not the actual window object,
so you can’t access all of the window information. It’s best to just use postMessage(), which is
always present and always callable.

There are a few quirks with XDM. First, the first argument of postMessage() was initially imple-
mented as always being a string. The definition of that first argument changed to allow any struc-
tured data to be passed in; however, not all browsers have implemented this change. For this reason,
it’s best to always pass a string using postMessage(). If you need to pass structured data, then the
best approach is to call JSON.stringify() on the data, passing the string to postMessage(), and
then call JSON.parse() in the onmessage event handler.

XDM is extremely useful when trying to sandbox content using an iframe to a different domain. This
approach is frequently used in mashups and social networking applications. The containing page is
able to keep itself secure against malicious content by only communicating into an embedded iframe
via XDM. XDM can also be used with pages from the same domain.

ENCODING API

The Encoding API allows for converting between strings and typed arrays. The specification intro-
duces four global classes for performing these conversions: TextEncoder, TextEncoderStream,
TextDecoder, and TextDecoderStream.

NOTE Support for stream encoding/decoding is much narrower than bulk
encoding/decoding.

Encoding Text
The Encoding API affords two ways of converting a string into its typed array binary equivalent:
a bulk encoding, and a stream encoding. When going from string to typed array, the encoder will
always use UTF-8.

Bulk Encoding
The bulk designation means that the JavaScript engine will synchronously encode the entire string.
For very long strings, this can be a costly operation. Bulk encoding is accomplished using an instance
of a TextEncoder:

const textEncoder = new TextEncoder();

754 ❘ CHAPTER 20 JavaScript apiS

This instance exposes an encode() method, which accepts a string and returns each character’s
UTF-8 encoding inside a freshly created Uint8Array:

const textEncoder = new TextEncoder();
const decodedText = 'foo';
const encodedText = textEncoder.encode(decodedText);

// f encoded in utf-8 is 0x66 (102 in decimal)
// o encoded in utf-8 is 0x6F (111 in decimal)
console.log(encodedText); // Uint8Array(3) [102, 111, 111]

The encoder is equipped to handle characters, which will take up multiple indices in the eventual
array, such as emojis:

const textEncoder = new TextEncoder();
const decodedText = ' ';
const encodedText = textEncoder.encode(decodedText);

// encoded in UTF-8 is 0xF0 0x9F 0x98 0x8A (240, 159, 152, 138 in decimal)
console.log(encodedText); // Uint8Array(4) [240, 159, 152, 138]

The instance also exposes an encodeInto() method, which accepts a string and the destination
Uint8Array. This method returns a dictionary containing read and written properties, indicating
how many characters were successfully read from the source string and written to the destination
array, respectively. If the typed array has insufficient space, the encoding will terminate early and the
dictionary will indicate that result:

const textEncoder = new TextEncoder();
const fooArr = new Uint8Array(3);
const barArr = new Uint8Array(2);
const fooResult = textEncoder.encodeInto('foo', fooArr);
const barResult = textEncoder.encodeInto('bar', barArr);

console.log(fooArr); // Uint8Array(3) [102, 111, 111]
console.log(fooResult); // { read: 3, written: 3 }

console.log(barArr); // Uint8Array(2) [98, 97]
console.log(barResult); // { read: 2, written: 2 }

encode() must allocate a new Uint8Array, whereas encodeInto() does not. For performance-sensi-
tive applications, this distinction may have significant implications.

NOTE Text encoding will always utilize the UTF-8 format and must write into
a Uint8Array instance. Attempting to use a different typed array when calling
encodeInto() will throw an error.

Stream Encoding
A TextEncoderStream is merely a TextEncoder in the form of a TransformStream. Piping a
decoded text stream through the stream encoder will yield a stream of encoded text chunks:

async function* chars() {
 const decodedText = 'foo';

Encoding API ❘ 755

 for (let char of decodedText) {
 yield await new Promise((resolve) => setTimeout(resolve, 1000, char));
 }
}

const decodedTextStream = new ReadableStream({
 async start(controller) {
 for await (let chunk of chars()) {
 controller.enqueue(chunk);
 }

 controller.close();
 }
});

const encodedTextStream = decodedTextStream.pipeThrough(new TextEncoderStream());

const readableStreamDefaultReader = encodedTextStream.getReader();

(async function() {
 while(true) {
 const { done, value } = await readableStreamDefaultReader.read();

 if (done) {
 break;
 } else {
 console.log(value);
 }
 }
})();

// Uint8Array[102]
// Uint8Array[111]
// Uint8Array[111]

Decoding Text
The Encoding API affords two ways of converting a typed array into its string equivalent: a bulk
decoding, and a stream decoding. Unlike the encoder classes, when going from typed array to string,
the decoder supports a large number of string encodings, listed here: https://encoding.spec
.whatwg.org/#names-and-labels

The default character encoding is UTF-8.

Bulk Decoding
The bulk designation means that the JavaScript engine will synchronously decode the entire string.
For very long strings, this can be a costly operation. Bulk decoding is accomplished using an instance
of a DecoderEncoder:

const textDecoder = new TextDecoder();

756 ❘ CHAPTER 20 JavaScript apiS

This instance exposes a decode() method, which accepts a typed array and returns the
decoded string:

const textDecoder = new TextDecoder();

// f encoded in utf-8 is 0x66 (102 in decimal)
// o encoded in utf-8 is 0x6F (111 in decimal)
const encodedText = Uint8Array.of(102, 111, 111);
const decodedText = textDecoder.decode(encodedText);

console.log(decodedText); // foo

The decoder does not care which typed array it is passed, so it will dutifully decode the entire binary
representation. In this example, 32-bit values only containing 8-bit characters are decoded as UTF-8,
yielding extra empty characters:

const textDecoder = new TextDecoder();

// f encoded in utf-8 is 0x66 (102 in decimal)
// o encoded in utf-8 is 0x6F (111 in decimal)
const encodedText = Uint32Array.of(102, 111, 111);
const decodedText = textDecoder.decode(encodedText);

console.log(decodedText); // "f o o "

The decoder is equipped to handle characters that span multiple indices in the typed array, such
as emojis:

const textDecoder = new TextDecoder();

// encoded in UTF-8 is 0xF0 0x9F 0x98 0x8A (240, 159, 152, 138 in decimal)
const encodedText = Uint8Array.of(240, 159, 152, 138);
const decodedText = textDecoder.decode(encodedText);

console.log(decodedText); //

Unlike TextEncoder, TextDecoder is compatible with a wide number of character encodings.
Consider the following example, which uses UTF-16 encoding instead of the default UTF-8:

const textDecoder = new TextDecoder('utf-16');

// f encoded in utf-8 is 0x0066 (102 in decimal)
// o encoded in utf-8 is 0x006F (111 in decimal)
const encodedText = Uint16Array.of(102, 111, 111);
const decodedText = textDecoder.decode(encodedText);

console.log(decodedText); // foo

Stream Decoding
A TextDecoderStream is merely a TextDecoder in the form of a TransformStream. Piping an
encoded text stream through the stream decoder will yield a stream of decoded text chunks:

async function* chars() {
 // Each chunk must exist as a typed array
 const encodedText = [102, 111, 111].map((x) => Uint8Array.of(x));

Encoding API ❘ 757

 for (let char of encodedText) {
 yield await new Promise((resolve) => setTimeout(resolve, 1000, char));
 }
}

const encodedTextStream = new ReadableStream({
 async start(controller) {
 for await (let chunk of chars()) {
 controller.enqueue(chunk);
 }

 controller.close();
 }
});

const decodedTextStream = encodedTextStream.pipeThrough(new TextDecoderStream());

const readableStreamDefaultReader = decodedTextStream.getReader();

(async function() {
 while(true) {
 const { done, value } = await readableStreamDefaultReader.read();

 if (done) {
 break;
 } else {
 console.log(value);
 }
 }
})();

// f
// o
// o

Text decoder streams implicitly understand that surrogate pairs may be split between chunks. The
decoder stream will retain any fragmented chunks until a complete character is formed. Consider
the following example, where the stream decoder will wait for all four chunks to be passed through
before the decoded stream emits the single character:

async function* chars() {
 // encoded in UTF-8 is 0xF0 0x9F 0x98 0x8A (240, 159, 152, 138 in decimal)
 const encodedText = [240, 159, 152, 138].map((x) => Uint8Array.of(x));

 for (let char of encodedText) {
 yield await new Promise((resolve) => setTimeout(resolve, 1000, char));
 }
}

const encodedTextStream = new ReadableStream({
 async start(controller) {
 for await (let chunk of chars()) {
 controller.enqueue(chunk);
 }

758 ❘ CHAPTER 20 JavaScript apiS

 controller.close();
 }
});

const decodedTextStream = encodedTextStream.pipeThrough(new TextDecoderStream());

const readableStreamDefaultReader = decodedTextStream.getReader();

(async function() {
 while(true) {
 const { done, value } = await readableStreamDefaultReader.read();

 if (done) {
 break;
 } else {
 console.log(value);
 }
 }
})();

//

Text decoder streams will be most commonly used in conjunction with fetch(), as the response body
can be processed as a ReadableStream. This might take the following form:

const response = await fetch(url);
const stream = response.body.pipeThrough(new TextDecoderStream());

for await (let decodedChunk of decodedStream) {
 console.log(decodedChunk);
}

BLOB AND FILE APIs

One of the major pain points of web applications has been the inability to interact with files
on a user’s computer. Since before 2000, the only way to deal with files was to place <input
type="file"> into a form and leave it at that. The Blob and File APIs are designed to give web
developers access to files on the client computer in a secure manner that allows for better interaction
with those files.

The File Type
The File API is still based around the file input field of a form but adds the ability to access the file
information directly. HTML5 adds a files collection to DOM for the file input element. When one
or more files are selected in the field, the files collection contains a sequence of File objects that
represent each file. Each File object has several read-only properties, including:

➤➤ name—The file name on the local system.

➤➤ size—The size of the file in bytes.

Blob and File APIs ❘ 759

➤➤ type—A string containing the MIME type of the file.

➤➤ lastModifiedDate—A string representing the last time the file was modified. This property
has been implemented only in Chrome.

For instance, you can retrieve information about each file selected by listening for the change event
and then looking at the files collection:

let filesList = document.getElementById("files-list");
filesList.addEventListener("change", (event) => {
 let files = event.target.files,
 i = 0,
 len = files.length;

 while (i < len) {
 const f = files[i];
 console.log('${f.name} (${f.type}, ${f.size} bytes)`);
 i++;
 }
});

This example simply outputs the information about each file to the console. This capability alone is a
big step forward for web applications, but the File API goes further by allowing you to actually read
data from the files via the FileReader type.

The FileReader Type
The FileReader type represents an asynchronous file-reading mechanism. You can think of File-
Reader as similar to XMLHttpRequest, only it is used for reading files from the file system as opposed
to reading data from the server. The FileReader type offers several methods to read in file data:

➤➤ readAsText(file, encoding)—Reads the file as plain text and stores the text in the
result property. The second argument, the encoding type, is optional.

➤➤ readAsDataURL(file)—Reads the file and stores a data URI representing the files in the
result property.

➤➤ readAsBinaryString(file)—Reads the file and stores a string where each character repre-
sents a byte in the result property.

➤➤ readAsArrayBuffer(file)—Reads the file and stores an ArrayBuffer containing the file
contents in the result property.

These various ways of reading in a file allow for maximum flexibility in dealing with the file data. For
instance, you may wish to read an image as a data URI in order to display it back to the user, or you
may wish to read a file as text in order to parse it.

Because the read happens asynchronously, there are several events published by each FileReader.
The three most useful events are progress, error, and load, which indicate when more data is avail-
able, when an error occurred, and when the file is fully read, respectively.

760 ❘ CHAPTER 20 JavaScript apiS

The progress event fires roughly every 50 milliseconds and has the same information available as
the XHR progress event: lengthComputable, loaded, and total. Additionally, the FileReader’s
result property is readable during the progress event even though it may not contain all of
the data yet.

The error event fires if the file cannot be read for some reason. When the error event fires, the
error property of the FileReader is filled in. This object has a single property, code, which is an
error code of 1 (file not found), 2 (security error), 3 (read was aborted), 4 (file isn’t readable), or 5
(encoding error).

The load event fires when the file has been successfully loaded; it will not fire if the error event has
fired. Here’s an example using all three events:

let filesList = document.getElementById("files-list");
filesList.addEventListener("change", (event) => {
 let info = "",
 output = document.getElementById("output"),
 progress = document.getElementById("progress"),
 files = event.target.files,
 type = "default",
 reader = new FileReader();

 if (/image/.test(files[0].type)) {
 reader.readAsDataURL(files[0]);
 type = "image";
 } else {
 reader.readAsText(files[0]);
 type = "text";
 }

 reader.onerror = function() {
 output.innerHTML = "Could not read file, error code is " +
 reader.error.code;
 };

 reader.onprogress = function(event) {
 if (event.lengthComputable) {
 progress.innerHTML = `${event.loaded}/${event.total}`;
 }
 };

 reader.onload = function() {
 let html = "";

 switch(type) {
 case "image":
 html = ``;
 break;
 case "text":
 html = reader.result;
 break;
 }
 output.innerHTML = html;
 };
});

Blob and File APIs ❘ 761

This code reads a file from a form field and displays it on the page. If the file has a MIME type
indicating it’s an image, then a data URI is requested and, upon load, this data URI is inserted as an
image into the page. If the file is not an image, then it is read in as a string and output as is into the
page. The progress event is used to track and display the bytes of data being read, while the error
event watches for any errors.

You can stop a read in progress by calling the abort() method, in which case an abort event is fired.
After the firing of load, error, or abort, an event called loadend is fired. The loadend event indi-
cates that all reading has finished for any of the three reasons. The readAsText() and readAsData-
URL() methods are supported across all implementing browsers.

The FileReaderSync Type
The FileReaderSync type, as its name suggests, is the synchronous version of FileReader. This
features the same methods as FileReader but performs a blocking read of a file, only continuing
execution after the entire file has been loaded into memory. FileReaderSync is only available inside
of web workers, as the extremely slow process of reading an entire file would never be practical to
use in the top-level execution environment.

Suppose a worker is sent a File object via postMessage(). The following code directs the worker to
synchronously read the entire file into memory and send back the file’s data URL:

// worker.js

self.omessage = (messageEvent) => {
 const syncReader = new FileReaderSync();
 console.log(syncReader); // FileReaderSync {}

 // Blocks worker thread while file is read
 const result = syncReader.readAsDataUrl(messageEvent.data);

 // Example response for PDF file
 console.log(result); // data:application/pdf;base64,JVBERi0xLjQK...

 // Send URL back up
 self.postMessage(result);
};

Blobs and Partial Reads
In some cases, you may want to read only parts of a file instead of the whole file. To that end, the
File object has a method called slice(). The slice() method accepts two arguments: the starting
byte and the number of bytes to read. This method returns an instance of Blob, which is actually the
super type of File.

A “blob,” short for binary large object, is a JavaScript wrapper for immutable binary data. Blobs
can be created from an array containing strings, ArrayBuffers, ArrayBufferViews, or even
other Blobs. The Blob constructor can optionally be provided a MIME type as part of its options
parameter:

console.log(new Blob(['foo']));
// Blob {size: 3, type: ""}

762 ❘ CHAPTER 20 JavaScript apiS

console.log(new Blob(['{"a": "b"}'], { type: 'application/json' }));
// {size: 10, type: "application/json"}

console.log(new Blob(['<p>Foo</p>', '<p>Bar</p>'], { type: 'text/html' }));
// {size: 20, type: "text/html"}

A Blob also has size and type properties, as well as the slice() method for further cutting down
the data. You can read from a Blob by using a FileReader as well. This example reads just the first
32 bytes from a file:

let filesList = document.getElementById("files-list");
filesList.addEventListener("change", (event) => {
 let info = "",
 output = document.getElementById("output"),
 progress = document.getElementById("progress"),
 files = event.target.files,
 reader = new FileReader(),
 blob = blobSlice(files[0], 0, 32);
 if (blob) {
 reader.readAsText(blob);

 reader.onerror = function() {
 output.innerHTML = "Could not read file, error code is " +
 reader.error.code;
 };
 reader.onload = function() {
 output.innerHTML = reader.result;
 };
 } else {
 console.log("Your browser doesn't support slice().");
 }
});

Reading just parts of a file can save time, especially when you’re just looking for a specific piece of
data, such as a file header.

Object URLs and Blobs
Object URLs, also sometimes called blob URLs, are URLs that reference data stored in a File or
Blob. The advantage of object URLs is that you don’t need to read the file contents into JavaScript in
order to use them. Instead, you simply provide the object URL in the appropriate place. To create an
object URL, use the window.URL.createObjectURL() method and pass in the File or Blob object.
The return value of this function is a string that points to a memory address. Because the string is a
URL, it can be used in the DOM. For example, the following displays an image file on the page:

let filesList = document.getElementById("files-list");
filesList.addEventListener("change", (event) => {
 let info = "",
 output = document.getElementById("output"),
 progress = document.getElementById("progress"),
 files = event.target.files,
 reader = new FileReader(),
 url = window.URL.createObjectURL(files[0]);
 if (url) {

Blob and File APIs ❘ 763

 if (/image/.test(files[0].type)) {
 output.innerHTML = ``;
 } else {
 output.innerHTML = "Not an image.";
 }
 } else {
 output.innerHTML = "Your browser doesn't support object URLs.";
 }
});

By feeding the object URL directly into an tag, there is no need to read the data into JavaScript
first. Instead, the tag goes directly to the memory location and reads the data into the page.

Once the data is no longer needed, it’s best to free up the memory associated with it. Memory cannot
be freed as long as an object URL is in use. You can indicate that the object URL is no longer needed
by passing it to window.URL.revokeObjectURL(). All object URLs are freed from memory auto-
matically when the page is unloaded. Still, it is best to free each object URL as it is no longer needed
to ensure the memory footprint of the page remains as low as possible.

Drag-and-Drop File Reading
Combining the HTML5 Drag-and-Drop API with the File API allows you to create interesting inter-
faces for the reading of file information. After creating a custom drop target on a page, you can drag
files from the desktop and drop them onto the drop target. This fires the drop event just like dragging
and dropping an image or link would. The files being dropped are available on event.dataTrans-
fer.files, which is a list of File objects just like those available on a file input field.

The following example prints out information about files that are dropped on a custom drop target
in the page:

let droptarget = document.getElementById("droptarget");
function handleEvent(event) {
 let info = "",
 output = document.getElementById("output"),
 files, i, len;
 event.preventDefault();

 if (event.type == "drop") {
 files = event.dataTransfer.files;
 i = 0;
 len = files.length;

 while (i < len) {
 info += `${files[i].name} (${files[i].type}, ${files[i].size} bytes)
`;
 i++;
 }

 output.innerHTML = info;
 }
}
droptarget.addEventListener("dragenter", handleEvent);
droptarget.addEventListener("dragover", handleEvent);
droptarget.addEventListener("drop", handleEvent);

764 ❘ CHAPTER 20 JavaScript apiS

As with earlier drag-and-drop examples, you must cancel the default behavior of dragenter,
dragover, and drop. During the drop event, the files become available on event.dataTransfer.
files, and you can read their information at that time.

MEDIA ELEMENTS

With the explosive popularity of embedded audio and video on the Web, most content produc-
ers have been forced to use Flash for optimal cross-browser compatibility. HTML5 introduces two
media-related elements to enable cross-browser audio and video embedding into a browser baseline
without any plug-ins: <audio> and <video>.

Both of these elements allow web developers to easily embed media files into a page, as well as
provide JavaScript hooks into common functionality, allowing custom controls to be created for the
media. The elements are used as follows:

<!-- embed a video -->
<video src="conference.mpg" id="myVideo">Video player not available.</video>
<!-- embed an audio file -->
<audio src="song.mp3" id="myAudio">Audio player not available.</audio>

Each of these elements requires, at a minimum, the src attribute indicating the media file to load.
You can also specify width and height attributes to indicate the intended dimensions of the video
player and a poster attribute that is an image URI to display while the video content is being loaded.
The controls attribute, if present, indicates that the browser should display a UI enabling the user to
interact directly with the media. Any content between the opening and the closing tags is considered
alternate content to display if the media player is unavailable.

You may optionally specify multiple different media sources because not all browsers support all
media formats. To do so, omit the src attribute from the element and instead include one or more
<source> elements, as in this example:

<!-- embed a video -->
<video id="myVideo">
 <source src="conference.webm" type="video/webm; codecs='vp8, vorbis'">
 <source src="conference.ogv" type="video/ogg; codecs='theora, vorbis'">
 <source src="conference.mpg">
 Video player not available.
</video>
<!-- embed an audio file -->
<audio id="myAudio">
 <source src="song.ogg" type="audio/ogg">
 <source src="song.mp3" type="audio/mpeg">
 Audio player not available.
</audio>

It’s beyond the scope of this book to discuss the various codecs used with video and audio, but suffice
to say that browsers support a varying range of codecs, so multiple source files are typically required.

Media Elements ❘ 765

Properties
The <video> and <audio> elements provide robust JavaScript interfaces. There are numerous proper-
ties shared by both elements that can be evaluated to determine the current state of the media, as
described in the following table.

PROPERTY NAME DATA TYPE DESCRIPTION

autoplay Boolean Gets or sets the autoplay flag.

buffered TimeRanges An object indicating the buffered time ranges
that have already been downloaded.

bufferedBytes ByteRanges An object indicating the buffered byte ranges
that have already been downloaded.

bufferingRate Integer The average number of bits per second
received from the download.

bufferingThrottled Boolean Indicates if the buffering has been throttled
by the browser.

controls Boolean Gets or sets the controls attribute,
which displays or hides the browser’s
built-in controls.

currentLoop Integer The number of loops that the media
has played.

currentSrc String The URL for the currently playing media.

currentTime Float The number of seconds that have
been played.

defaultPlaybackRate Float Gets or sets the default playback rate. By
default, this is 1.0 seconds.

duration Float The total number of seconds for the media.

ended Boolean Indicates if the media has completely played.

loop Boolean Gets or sets whether the media should loop
back to the start when finished.

muted Boolean Gets or sets if the media is muted.

networkState Integer Indicates the current state of the network
connection for the media: 0 for empty, 1 for
loading, 2 for loading meta data, 3 for loaded
first frame, and 4 for loaded.

continues

766 ❘ CHAPTER 20 JavaScript apiS

PROPERTY NAME DATA TYPE DESCRIPTION

paused Boolean Indicates if the player is paused.

playbackRate Float Gets or sets the current playback rate.
This may be affected by the user causing
the media to play faster or slower, unlike
defaultPlaybackRate, which remains
unchanged unless the developer changes it.

played TimeRanges The range of times that have been
played thus far.

readyState Integer Indicates if the media is ready to be played.
Values are 0 if the data is unavailable, 1 if
the current frame can be displayed, 2 if the
media can begin playing, and 3 if the media
can play from beginning to end.

seekable TimeRanges The ranges of times that are available
for seeking.

seeking Boolean Indicates that the player is moving to a new
position in the media file.

Src String The media file source. This can be rewritten
at any time.

start Float Gets or sets the location in the media file, in
seconds, where playing should begin.

totalBytes Integer The total number of bytes needed for the
resource (if known).

videoHeight Integer Returns the height of the video (not
necessarily of the element). Only
for <video>.

videoWidth Integer Returns the width of the video (not
necessarily of the element). Only
for <video>.

volume Float Gets or sets the current volume as a value
between 0.0 and 1.0.

Many of these properties can also be specified as attributes on either the <audio> or the
<video> elements.

TABLE (continued)

Media Elements ❘ 767

Events
In addition to the numerous properties, there are also numerous events that fire on these media ele-
ments. The events monitor all of the different properties that change because of media playback and
user interaction with the player. These events are listed in the following table.

EVENT NAME FIRES WHEN

abort Downloading has been aborted.

canplay Playback can begin; readyState is 2.

canplaythrough Playback can proceed and should be uninterrupted;
readyState is 3.

canshowcurrentframe The current frame has been downloaded; readyState is 1.

dataunavailable Playback can’t happen because there’s no data; readyState is 0.

durationchange The duration property value has changed.

emptied The network connection has been closed.

empty An error occurs that prevents the media download.

ended The media has played completely through and is stopped.

error A network error occurred during download.

load All of the media has been loaded. This event is considered
deprecated; use canplaythrough instead.

loadeddata The first frame for the media has been loaded.

loadedmetadata The meta data for the media has been loaded.

loadstart Downloading has begun.

pause Playback has been paused.

play The media has been requested to start playing.

playing The media has actually started playing.

progress Downloading is in progress.

ratechange The speed at which the media is playing has changed.

seeked Seeking has ended.

seeking Playback is being moved to a new position.

continues

768 ❘ CHAPTER 20 JavaScript apiS

EVENT NAME FIRES WHEN

stalled The browser is trying to download, but no data is being received.

timeupdate The currentTime is updated in an irregular or unexpected way.

volumechange The volume property value or muted property value has changed.

waiting Playback is paused to download more data.

These events are designed to be as specific as possible to enable web developers to create custom
audio/video players using little more than HTML and JavaScript (as opposed to creating a new
Flash movie).

Custom Media Players
You can manually control the playback of a media file, using the play() and pause() methods that
are available on both <audio> and <video>. Combining the properties, events, and these methods
makes it easy to create a custom media player, as shown in this example:

<div class="mediaplayer">
 <div class="video">
 <video id="player" src="movie.mov" poster="mymovie.jpg"
 width="300" height="200">
 Video player not available.
 </video>
 </div>
 <div class="controls">
 <input type="button" value="Play" id="video-btn">
 0/0
 </div>
</div>

This basic HTML can then be brought to life by using JavaScript to create a simple video player, as
shown here:

// get references to the elements
let player = document.getElementById("player"),
 btn = document.getElementById("video-btn"),
 curtime = document.getElementById("curtime"),
 duration = document.getElementById("duration");
// update the duration
duration.innerHTML = player.duration;

// attach event handler to button
btn.addEventListener("click", (event) => {
 if (player.paused) {
 player.play();
 btn.value = "Pause";
 } else {

TABLE (continued)

Media Elements ❘ 769

 player.pause();
 btn.value = "Play";
 }
});

// update the current time periodically
setInterval(() => {
 curtime.innerHTML = player.currentTime;
}, 250);

The JavaScript code here simply attaches an event handler to the button that either pauses or plays
the video, depending on its current state. Then, an event handler is set for the <video> element’s load
event so that the duration can be displayed. Last, a repeating timer is set to update the current time
display. You can extend the behavior of this custom video player by listening for more events and
making use of more properties. The exact same code can also be used with the <audio> element to
create a custom audio player.

Codec Support Detection
As mentioned previously, not all browsers support all codecs for <video> and <audio>, which
frequently means you must provide more than one media source. There is also a JavaScript API for
determining if a given format and codec is supported by the browser. Both media elements have a
method called canPlayType(), which accepts a format/codec string and returns a string value of
"probably", "maybe", or "" (empty string). The empty string is a falsy value, which means you can
still use canPlayType() in an if statement like this:

if (audio.canPlayType("audio/mpeg")) {
 // do something
}

Both "probably" and "maybe" are truthy values and so they get coerced to true within the context
of an if statement.

When just a MIME type is provided to canPlayType(), the most likely return values are "maybe"
and the empty string because a file is really just a container for audio or video data; it is the encoding
that really determines if the file can be played. When both a MIME type and a codec are specified,
you increase the likelihood of getting "probably" as the return value. Some examples:

let audio = document.getElementById("audio-player");
// most likely "maybe"
if (audio.canPlayType("audio/mpeg")) {
 // do something
}
// could be "probably"
if (audio.canPlayType("audio/ogg; codecs=\"vorbis\"")) {
 // do something
}

Note that the codecs list must always be enclosed in quotes to work properly. You can also detect
video formats using canPlayType() on any video element.

770 ❘ CHAPTER 20 JavaScript apiS

The Audio Type
The <audio> element also has a native JavaScript constructor called Audio to allow the playing of
audio at any point in time. The Audio type is similar to Image in that it is the equivalent of a DOM
element but doesn’t require insertion into the document to work. Just create a new instance and pass
in the audio source file:

let audio = new Audio("sound.mp3");
EventUtil.addHandler(audio, "canplaythrough", function(event) {
 audio.play();
});

Creating a new instance of Audio begins the process of downloading the specified filed. Once it’s
ready, you can call play() to start playing the audio.

Calling the play() method on iOS causes a dialog to pop up asking for the user’s permission to play
the sound. In order to play one sound after another, you must call play() immediately within the
onfinish event handler.

NATIVE DRAG AND DROP

Internet Explorer 4 first introduced JavaScript support for drag-and-drop functionality for web
pages. At the time, only two items on a web page could initiate a system drag: an image or some text.
When dragging an image, you simply held the mouse button down and then moved it; with text, you
first highlighted some text and then you could drag it the same way as you would drag an image.
In Internet Explorer 4, the only valid drop target was a text box. In version 5, Internet Explorer
extended its drag-and-drop capabilities by adding new events and allowing nearly anything on a web
page to become a drop target. Version 5.5 went a little bit further by allowing nearly anything to
become draggable. (Internet Explorer 6 supports this functionality as well.) HTML5 uses the Internet
Explorer drag-and-drop implementation as the basis for its drag-and-drop specification. All major
browsers have implemented native drag and drop according to the HTML5 spec.

Perhaps the most interesting thing about drag-and-drop support is that elements can be dragged
across frames, browser windows, and sometimes, other applications. Drag-and-drop support in the
browser allows you to tap into that functionality.

Drag-and-Drop Events
The events provided for drag and drop enable you to control nearly every aspect of a drag-and-drop
operation. The tricky part is determining where each event is fired: some fire on the dragged item;
others fire on the drop target. When an item is dragged, the following events fire (in this order):

1. dragstart

2. drag

3. dragend

Native Drag and Drop ❘ 771

At the moment you hold a mouse button down and begin to move the mouse, the dragstart event
fires on the item that is being dragged. The cursor changes to the no-drop symbol (a circle with a line
through it), indicating that the item cannot be dropped on itself. You can use the ondragstart event
handler to run JavaScript code as the dragging begins.

After the dragstart event fires, the drag event fires and continues firing as long as the object is
being dragged. This is similar to mousemove, which also fires repeatedly as the mouse is moved. When
the dragging stops (because you drop the item onto either a valid or an invalid drop target), the dra-
gend event fires.

The target of all three events is the element that is being dragged. By default, the browser does not
change the appearance of the dragged element while a drag is happening, so it’s up to you to change
the appearance. Most browsers do, however, create a semitransparent clone of the element being
dragged that always stays immediately under the cursor.

When an item is dragged over a valid drop target, the following sequence of events occurs:

1. dragenter

2. dragover

3. dragleave or drop

The dragenter event (similar to the mouseover event) fires as soon as the item is dragged over the
drop target. Immediately after the dragenter event fires, the dragover event fires and continues to
fire as the item is being dragged within the boundaries of the drop target. When the item is dragged
outside of the drop target, dragover stops firing and the dragleave event is fired (similar to mouse-
out). If the dragged item is actually dropped on the target, the drop event fires instead of drag leave.
The target of these events is the drop target element.

Custom Drop Targets
When you try to drag something over an invalid drop target, you see a special cursor (a circle with
a line through it) indicating that you cannot drop. Even though all elements support the drop tar-
get events, the default is to not allow dropping. If you drag an element over something that doesn’t
allow a drop, the drop event will never fire regardless of the user action. However, you can turn any
element into a valid drop target by overriding the default behavior of both the dragenter and the
dragover events. For example, if you have a <div> element with an ID of "droptarget", you can
use the following code to turn it into a drop target:

let droptarget = document.getElementById("droptarget");

droptarget.addEventListener("dragover", (event) => {
 event.preventDefault();
});

droptarget.addEventListener("dragenter", (event) => {
 event.preventDefault();
});

772 ❘ CHAPTER 20 JavaScript apiS

After making these changes, you’ll note that the cursor now indicates that a drop is allowed over the
drop target when dragging an element. Also, the drop event will fire.

In Firefox, the default behavior for a drop event is to navigate to the URL that was dropped on the
drop target. That means dropping an image onto the drop target will result in the page navigating to
the image file, and text that is dropped on the drop target results in an invalid URL error. For Firefox
support, you must also cancel the default behavior of the drop event to prevent this navigation from
happening:

droptarget.addEventListener("drop", (event) => {
 event.preventDefault();
});

The dataTransfer Object
Simply dragging and dropping isn’t of any use unless data is actually being affected. To aid in the
transmission of data via a drag-and-drop operation, Internet Explorer 5 introduced the dataTrans-
fer object, which exists as a property of event and is used to transfer string data from the dragged
item to the drop target. Because it is a property of event, the dataTransfer object doesn’t exist
except within the scope of an event handler for a drag-and-drop event. Within an event handler, you
can use the object’s properties and methods to work with your drag-and-drop functionality. The
dataTransfer object is now part of the working draft of HTML5.

The dataTransfer object has two primary methods: getData() and setData(). As you might
expect, getData() is capable of retrieving a value stored by setData(). The first argument for set-
Data(), and the only argument of getData(), is a string indicating the type of data being set: either
"text" or "URL", as shown here:

// working with text
event.dataTransfer.setData("text", "some text");
let text = event.dataTransfer.getData("text");

// working with a URL
event.dataTransfer.setData("URL", "http://www.wrox.com/");
let url = event.dataTransfer.getData("URL");

Even though Internet Explorer started out by introducing only "text" and "URL" as valid data types,
HTML5 extends this to allow any MIME type to be specified. The values "text" and "URL" will
be supported by HTML5 for backwards compatibility, but they are mapped to "text/plain" and
"text/uri-list".

The dataTransfer object can contain exactly one value of each MIME type, meaning that you can
store both text and a URL at the same time without overwriting either. The data stored in the data-
Transfer object is available only until the drop event. If you do not retrieve the data in the ondrop
event handler, the dataTransfer object is destroyed and the data is lost.

When you drag text from a text box, the browser calls setData() and stores the dragged text in
the "text" format. Likewise, when a link or image is dragged, setData() is called and the URL
is stored. It is possible to retrieve these values when the data is dropped on a target by using get-
Data(). You can also call setData() manually during the dragstart event to store custom data that
you may want to retrieve later.

Native Drag and Drop ❘ 773

There is a difference between data treated as text and data treated as a URL. When you specify data
to be stored as text, it gets no special treatment whatsoever. When you specify data to be stored as a
URL, however, it is treated just like a link on a web page, meaning that if you drop it onto another
browser window, the browser will navigate to that URL.

Firefox through version 5 doesn’t properly alias "url" to "text/uri-list" or "text" to "text/
plain". It does, however, alias "Text" (uppercase T) to "text/plain". For best cross-browser com-
patibility of retrieving data from dataTransfer, you’ll need to check for two values for URLs and
use "Text" for plain text:

let dataTransfer = event.dataTransfer;
// read a URL
let url = dataTransfer.getData("url") || dataTransfer.getData("text/uri-list");
// read text
let text = dataTransfer.getData("Text");

It’s important that the shortened data name be tried first because Internet Explorer through ver-
sion 10 doesn’t support the extended names and also throws an error when the data name isn’t
recognized.

dropEffect and effectAllowed
The dataTransfer object can be used to do more than simply transport data to and fro; it can also
be used to determine what type of actions can be done with the dragged item and the drop target.
You accomplish this by using two properties: dropEffect and effectAllowed.

The dropEffect property is used to tell the browser which type of drop behaviors are allowed. This
property has the following four possible values:

➤➤ "none"—A dragged item cannot be dropped here. This is the default value for everything
except text boxes.

➤➤ "move"—The dragged item should be moved to the drop target.

➤➤ "copy"—The dragged item should be copied to the drop target.

➤➤ "link"—Indicates that the drop target will navigate to the dragged item (but only if it
is a URL).

Each of these values causes a different cursor to be displayed when an item is dragged over the drop
target. It is up to you, however, to actually cause the actions indicated by the cursor. In other words,
nothing is automatically moved, copied, or linked without your direct intervention. The only thing
you get for free is the cursor change. In order to use the dropEffect property, you must set it in the
ondragenter event handler for the drop target.

The dropEffect property is useless, unless you also set the effectAllowed. This property indicates
which dropEffect is allowed for the dragged item. The possible values are as follows:

➤➤ "uninitialized"—No action has been set for the dragged item.

➤➤ "none"—No action is allowed on the dragged item.

➤➤ "copy"—Only dropEffect "copy" is allowed.

774 ❘ CHAPTER 20 JavaScript apiS

➤➤ "link"—Only dropEffect "link" is allowed.

➤➤ "move"—Only dropEffect "move" is allowed.

➤➤ "copyLink"—dropEffect "copy" and "link" are allowed.

➤➤ "copyMove"—dropEffect "copy" and "move" are allowed.

➤➤ "linkMove"—dropEffect "link" and "move" are allowed.

➤➤ "all"—All dropEffect values are allowed.

This property must be set inside the ondragstart event handler.

Suppose that you want to allow a user to move text from a text box into a <div>. To accomplish this,
you must set both dropEffect and effectAllowed to "move". The text won’t automatically move
itself because the default behavior for the drop event on a <div> is to do nothing. If you override the
default behavior, the text is automatically removed from the text box. It is then up to you to insert
it into the <div> to finish the action. If you were to change dropEffect and effectAllowed to
"copy", the text in the text box would not automatically be removed.

Draggability
By default, images, links, and text are draggable, meaning that no additional code is necessary to
allow a user to start dragging them. Text is draggable only after a section has been highlighted, while
images and links may be dragged at any point in time.

It is possible to make other elements draggable. HTML5 specifies a draggable property on all
HTML elements indicating if the element can be dragged. Images and links have draggable automat-
ically set to true, whereas everything else has a default value of false. This property can be set in
order to allow other elements to be draggable or to ensure that an image or link won’t be draggable.
For example:

<!-- turn off dragging for this image -->

<!-- turn on dragging for this element -->
<div draggable="true">...</div>

Additional Members
The HTML5 specification indicates the following additional methods on the dataTransfer object:

➤➤ addElement(element)—Adds an element to the drag operation. This is purely for data pur-
poses and doesn’t affect the appearance of the drag operation. As of the time of this writing,
no browsers have implemented this method.

➤➤ clearData(format)—Clears the data being stored with the particular format.

➤➤ setDragImage(element, x, y)—Allows you to specify an image to be displayed under the
cursor as the drag takes place. This method accepts three arguments: an HTML element to
display and the x- and y-coordinates on the image where the cursor should be positioned.

Notifications API ❘ 775

The HTML element may be an image, in which case the image is displayed, or any other
element, in which case a rendering of the element is displayed.

➤➤ types—A list of data types currently being stored. This collection acts like an array and
stores the data types as strings such as "text".

NOTIFICATIONS API

The Notifications API, as its name suggests, is used to display notifications to the user. In many ways,
notifications are similar to alert() dialogue boxes: both use a JavaScript API to trigger browser
behavior outside of the page itself, and both allow the page to handle the various ways in which users
interact with the dialogue boxes or notification tiles. Notifications, however, offer a far greater degree
of customizability.

The Notifications API is especially useful in the context of service workers. It allows a progressive
web application (PWA) to behave more like a native app by triggering notifications to show even
when a browser page is not active.

Notification Permissions
The Notification API has the potential for abuse, so it enforces two security features by default:

➤➤ Notifications can be triggered only by code executing in a secure context.

➤➤ Notifications must be explicitly allowed by the user on a per-origin basis.

The user grants notification permission to an origin inside a browser dialog box. Unless the user
declines to explicitly allow or deny permissions, this permission request can only happen a single time
per domain: the browser will remember the user’s choice, and if denied there is no redress.

The page can ask for notification permission using the Notification global object. This object
features a requestPemission() method that returns a promise, which resolves when the user takes
action on the permission dialog box.

Notification.requestPermission()
 .then((permission) => {
 console.log('User responded to permission request:', permission);
 });

A value of granted means the user explicitly granted permission to show notifications. Any other
value indicates that attempts to show a notification will silently fail. If a user denies permission, the
value will be denied. There is no programmatic redress for this, as it is not possible to re-trigger the
permissions prompt.

Showing and Hiding Notification
The Notification constructor is used to create and show notifications. The simplest form of a
notification is with only a title string that is passed as the first required parameter to the constructor.
When the constructor is called in this way, the notification will display immediately:

new Notification('Title text!');

776 ❘ CHAPTER 20 JavaScript apiS

Notifications are highly customizable with the options parameter. Settings such as the notification
body, images, and vibration are all controllable via this object:

new Notification('Title text!', {
 body: 'Body text!',
 image: 'path/to/image.png',
 vibrate: true
});

The Notification object returned from the constructor can be used to close an active notification
using a close() method. The following example opens a notification and then closes it after 1000
milliseconds:

const n = new Notification('I will close in 1000ms');
setTimeout(() => n.close(), 1000);

Notification Lifecycle Callbacks
Notifications aren’t always just for displaying text strings; they’re also designed to be interactive. The
Notification API offers four lifecycle hooks for attaching callbacks:

➤➤ onshow is triggered when the notification is displayed.

➤➤ onclick is triggered when the notification is clicked.

➤➤ onclose is triggered when the notification is dismissed or closed via close().

➤➤ onerror is triggered when an error occurs that prevents the notification from being
displayed.

The following notification logs a message upon each lifecycle event:

const n = new Notification('foo');

n.onshow = () => console.log('Notification was shown!');
n.onclick = () => console.log('Notification was clicked!');
n.onclose = () => console.log('Notification was closed!');
n.onerror = () => console.log('Notification experienced an error!');

PAGE VISIBILITY API

A major pain point for web developers is knowing when users are actually interacting with the page.
If a page is minimized or hidden behind another tab, it may not make sense to continue functionality
such as polling the server for updates or performing animations. The Page Visibility API aims to give
developers information about whether or not the page is visible to the user.

The API itself is very simple, consisting of three parts:

➤➤ document.visibilityState—A value indicating one of four states:

➤➤ The page is in a background tab or the browser is minimized.

➤➤ The page is in the foreground tab.

Streams API ❘ 777

➤➤ The actual page is hidden, but a preview of the page is visible (such as in Windows 7
when moving the mouse over an icon in the taskbar shows a preview).

➤➤ The page is being prerendered off-screen.

➤➤ visibilitychange event—This event fires when a document changes from hidden to visible,
or vice versa.

➤➤ document.hidden—A Boolean value indicating if the page is hidden from view. This may
mean the page is in a background tab or that the browser is minimized. This value is sup-
ported for backwards compatibility, you should use document.visibilityState to assess if
the page is visible or not.

To be notified when the page changes from visible to hidden or hidden to visible, you can listen for
the visibilitychange event.

document.visibilityState is one of three possible string values:

➤➤ hidden

➤➤ visible

➤➤ prerender

STREAMS API

The Streams API is the answer to a simple but fundamental question: How can a web application
consume information in sequential chunks rather than in bulk? This capability is massively useful in
two main ways:

➤➤ A block of data may not be available all at once. A perfect example of this is a response to
a network request. Network payloads are delivered as a sequence of packets, and stream
processing can allow an application to use network-delivered data as it becomes available
rather than waiting for the full payload to finish loading.

➤➤ A block of data can be processed in small portions. Video processing, data decompression,
image decoding, and JSON parsing are all examples of computation that is localized to a
portion of a data block and does not require it to be in memory all at once.

The “Network Requests and Remote Resources” chapter covers how the Streams API is involved with
fetch(), but the Streams API is totally generalizable. JavaScript libraries that implement Observables
share many fundamental concepts with streams.

NOTE Although the Fetch API is well-supported by major browsers, support for
the Streams API lags behind considerably.

778 ❘ CHAPTER 20 JavaScript apiS

Introduction to Streams
When thinking about streams, imagining the data as a liquid flowing through pipes is an apt mental
framework. JavaScript streams borrow heavily from the plumbing lexicon due to their substantial
conceptual overlap. Per the Streams specification, “These APIs have been designed to efficiently map
to low-level I/O primitives, including specializations for byte streams where appropriate.” Two com-
mon tasks that the Stream API directly addresses are handling network requests and reading/writ-
ing to disk.

The Streams API features three types of streams:

➤➤ Readable streams are streams from which chunks can be read via a public interface. Data
enters the stream internally from an underlying source and is processed by a consumer.

➤➤ Writable streams are streams to which chunks can be written via a public interface. A
producer writes data into the stream, and that data is passed internally in an underlying
sink.

➤➤ Transform streams are made up of two streams: a writable stream to accept input data (the
writable side), and a readable stream to emit output data (the readable side). In between
these two streams is the transformer, which can be used to inspect and modify the stream
data as necessary.

Chunks, Internal Queues, and Backpressure
The fundamental unit in streams is the chunk. A chunk can be of any data type, but frequently it will
take the form of a typed array. Each chunk is a discrete segment of the stream that can be handled
in its entirety. Importantly, chunks do not have a fixed size or arrive at fixed intervals. In an ideal
stream, chunks will generally be approximately the same size and arrive at approximately regular
intervals, but any good stream implementation should be prepared to handle edge cases.

For all types of streams, there is a shared concept of an entrance and exit to the stream. There will
sometimes be a mismatch between the rate of data entering and exiting the stream. This stream bal-
ance can take one of three forms:

➤➤ The exit of the stream can process data faster than the data is provided at the entrance.
The stream exit will often be idle (which may indicate potential inefficiencies at the stream
entrance), but there is little wasted memory or computation so this stream imbalance is
acceptable.

➤➤ The stream entrance and exit are in equilibrium. This balance is ideal.

➤➤ The entrance of the stream can provide data faster than the exit can process it. This stream
imbalance is inherently problematic. There will necessarily be a backlog of data somewhere,
and streams must handle this accordingly.

Stream imbalance is a common problem, but streams are tooled to address it. All streams maintain an
internal queue of chunks that have entered the stream but not yet exited. For a stream in equilibrium,
the internal queue will consistently have zero or a small number of enqueued chunks because the
stream exit is dequeuing chunks approximately as fast as they can be enqueued. The memory foot-
print of such a stream’s internal queue will remain relatively small.

Streams API ❘ 779

When chunks are enqueued faster than they can be dequeued, the size of the internal queue will grow.
The stream cannot allow its internal queue to grow indefinitely, so it uses backpressure to signal the
stream entrance to stop sending data until the queue size returns below a predetermined threshold.
This threshold is governed by a queueing strategy that defines the high water mark, the maximum
memory footprint of the internal queue.

Readable Streams
Readable streams are a wrapper for an underlying source of data. This underlying source is able to
feed its data into the stream and allow that data to be read from the stream’s public interface.

Using the ReadableStreamDefaultController
Consider the following generator, which produces an incremented integer every 1000 milliseconds:

async function* ints() {
 // yield an incremented integer every 1000ms
 for (let i = 0; i < 5; ++i) {
 yield await new Promise((resolve) => setTimeout(resolve, 1000, i));
 }
}

These values can be passed into a readable stream via its controller. The simplest way to access a
controller is by creating a new instance of a ReadableStream, defining a start() method inside the
constructor’s underlyingSource parameter, and using the controller parameter passed to that
method. By default, the controller parameter is an instance of ReadableStreamDefaultController:

const readableStream = new ReadableStream({
 start(controller) {
 console.log(controller); // ReadableStreamDefaultController {}
 }
});

Use the enqueue() method to pass values into the controller. Once all the values have been passed,
the stream is closed using close():

async function* ints() {
 // yield an incremented integer every 1000ms
 for (let i = 0; i < 5; ++i) {
 yield await new Promise((resolve) => setTimeout(resolve, 1000, i));
 }
}

const readableStream = new ReadableStream({
 async start(controller) {
 for await (let chunk of ints()) {
 controller.enqueue(chunk);
 }

 controller.close();
 }
});

780 ❘ CHAPTER 20 JavaScript apiS

Using the ReadableStreamDefaultReader
This example so far successfully enqueues five values in the stream, but there is nothing reading them
out of that queue. To do so, a ReadableStreamDefaultReader instance can be acquired from the
stream with getReader(). This will obtain a lock on the stream, ensuring only this reader can read
values from that stream:

async function* ints() {
 // yield an incremented integer every 1000ms
 for (let i = 0; i < 5; ++i) {
 yield await new Promise((resolve) => setTimeout(resolve, 1000, i));
 }
}

const readableStream = new ReadableStream({
 async start(controller) {
 for await (let chunk of ints()) {
 controller.enqueue(chunk);
 }

 controller.close();
 }
});

console.log(readableStream.locked); // false
const readableStreamDefaultReader = readableStream.getReader();
console.log(readableStream.locked); // true

A consumer can get values from this reader instance using its read() method:

async function* ints() {
 // yield an incremented integer every 1000ms
 for (let i = 0; i < 5; ++i) {
 yield await new Promise((resolve) => setTimeout(resolve, 1000, i));
 }
}

const readableStream = new ReadableStream({
 async start(controller) {
 for await (let chunk of ints()) {
 controller.enqueue(chunk);
 }

 controller.close();
 }
});

console.log(readableStream.locked); // false
const readableStreamDefaultReader = readableStream.getReader();
console.log(readableStream.locked); // true

// Consumer
(async function() {
 while(true) {
 const { done, value } = await readableStreamDefaultReader.read();

Streams API ❘ 781

 if (done) {
 break;
 } else {
 console.log(value);
 }
 }
})();

// 0
// 1
// 2
// 3
// 4

Writable Streams
Writable streams are a wrapper for an underlying sink for data. This underlying sink handles data
from the stream’s public interface.

Creating a WriteableStream
Consider the following generator, which produces an incremented integer every 1000 milliseconds:

async function* ints() {
 // yield an incremented integer every 1000ms
 for (let i = 0; i < 5; ++i) {
 yield await new Promise((resolve) => setTimeout(resolve, 1000, i));
 }
}

These values can be written to a writable stream via its public interface. When the public write()
method is invoked, the write() method defined on the underlyingSink object passed to the
constructor is also called:

const readableStream = new ReadableStream({
 write(value) {
 console.log(value);
 }
});

Using a WritableStreamDefaultWriter
To write values to this stream, a WritableStreamDefaultWriter instance can be acquired from the
stream with getWriter(). This will obtain a lock on the stream, ensuring only this writer can write
values to that stream:

async function* ints() {
 // yield an incremented integer every 1000ms
 for (let i = 0; i < 5; ++i) {
 yield await new Promise((resolve) => setTimeout(resolve, 1000, i));
 }
}

const writableStream = new WritableStream({

782 ❘ CHAPTER 20 JavaScript apiS

 write(value) {
 console.log(value);
 }
});

console.log(writableStream.locked); // false
const writableStreamDefaultWriter = writableStream.getWriter();
console.log(writableStream.locked); // true

Before writing values to the stream, the producer must ensure the writer is capable of accepting val-
ues. WritableStreamDefaultWriter.ready returns a promise that resolves when the writer is ready
for writing values to the stream. Following this, values can be passed with write() until the data
stream is complete, at which point the stream can be terminated with close():

async function* ints() {
 // yield an incremented integer every 1000ms
 for (let i = 0; i < 5; ++i) {
 yield await new Promise((resolve) => setTimeout(resolve, 1000, i));
 }
}

const writableStream = new WritableStream({
 write(value) {
 console.log(value);
 }
});

console.log(writableStream.locked); // false
const writableStreamDefaultWriter = writableStream.getWriter();
console.log(writableStream.locked); // true

// Producer
(async function() {
 for await (let chunk of ints()) {
 await writableStreamDefaultWriter.ready;
 writableStreamDefaultWriter.write(chunk);
 }

 writableStreamDefaultWriter.close();
})();

Transform Streams
Transform streams combine both a readable stream and a writeable stream. In between the two
streams is the transform() method, which is the intermediate point at which the chunk transforma-
tion occurs.

Consider the following generator, which produces an incremented integer every 1000 milliseconds:

async function* ints() {
 // yield an incremented integer every 1000ms
 for (let i = 0; i < 5; ++i) {
 yield await new Promise((resolve) => setTimeout(resolve, 1000, i));
 }
}

Streams API ❘ 783

A TransformStream, which doubles the values emitted from this generator, can be defined as follows:

async function* ints() {
 // yield an incremented integer every 1000ms
 for (let i = 0; i < 5; ++i) {
 yield await new Promise((resolve) => setTimeout(resolve, 1000, i));
 }
}

const { writable, readable } = new TransformStream({
 transform(chunk, controller) {
 controller.enqueue(chunk * 2);
 }
});

Passing data into and pulling data out of the transform stream’s component streams can be accom-
plished identically to the previous readable stream and writable stream sections of this chapter:

async function* ints() {
 // yield an incremented integer every 1000ms
 for (let i = 0; i < 5; ++i) {
 yield await new Promise((resolve) => setTimeout(resolve, 1000, i));
 }
}

const { writable, readable } = new TransformStream({
 transform(chunk, controller) {
 controller.enqueue(chunk * 2);
 }
});

const readableStreamDefaultReader = readable.getReader();
const writableStreamDefaultWriter = writable.getWriter();

// Consumer
(async function() {
 while (true) {
 const { done, value } = await readableStreamDefaultReader.read();

 if (done) {
 break;
 } else {
 console.log(value);
 }
 }
})();

// Producer
(async function() {
 for await (let chunk of ints()) {
 await writableStreamDefaultWriter.ready;
 writableStreamDefaultWriter.write(chunk);
 }

 writableStreamDefaultWriter.close();
})();

784 ❘ CHAPTER 20 JavaScript apiS

Piping Streams
Streams can be piped into one another to form a chain. One common form of this is to pipe a
ReadableStream into a TransformStream using the pipeThrough() method. Internally, the initial
ReadableStream passes its values into the TransformStream’s internal WritableStream, the stream
performs the transformation, and the transformed values emerge from the new ReadableStream
endpoint. Consider the following example where a ReadableStream of integers is passed through a
TransformStream that doubles each value:

async function* ints() {
 // yield an incremented integer every 1000ms
 for (let i = 0; i < 5; ++i) {
 yield await new Promise((resolve) => setTimeout(resolve, 1000, i));
 }
}

const integerStream = new ReadableStream({
 async start(controller) {
 for await (let chunk of ints()) {
 controller.enqueue(chunk);
 }

 controller.close();
 }
});

const doublingStream = new TransformStream({
 transform(chunk, controller) {
 controller.enqueue(chunk * 2);
 }
});

// Perform stream piping
const pipedStream = integerStream.pipeThrough(doublingStream);

// Acquire reader on output of piped streams
const pipedStreamDefaultReader = pipedStream.getReader();

// Consumer
(async function() {
 while(true) {
 const { done, value } = await pipedStreamDefaultReader.read();

 if (done) {
 break;
 } else {
 console.log(value);
 }
 }
})();

Timing APIs ❘ 785

// 0
// 2
// 4
// 6
// 8

It’s also possible to pipe a ReadableStream to a WritableStream using the pipeTo() method. This
behaves in a similar fashion to pipeThrough():

async function* ints() {
 // yield an incremented integer every 1000ms
 for (let i = 0; i < 5; ++i) {
 yield await new Promise((resolve) => setTimeout(resolve, 1000, i));
 }
}

const integerStream = new ReadableStream({
 async start(controller) {
 for await (let chunk of ints()) {
 controller.enqueue(chunk);
 }

 controller.close();
 }
});

const writableStream = new WritableStream({
 write(value) {
 console.log(value);
 }
});

const pipedStream = integerStream.pipeTo(writableStream);

// 0
// 1
// 2
// 3
// 4

Notice here that the piping operation is implicitly acquiring a reader from the ReadableStream and
feeding the produced values into the WritableStream.

TIMING APIs

Page performance is always an area of concern for web developers. The Performance interface
changes that by exposing internal browser metrics through a JavaScript API, allowing developers to
directly access this information and do as they please with it. This interface is available through the
window.performance object. All metrics related to the page, both those already defined and those in
the future, exist on this object.

786 ❘ CHAPTER 20 JavaScript apiS

The performance interface is composed of a number of APIs, most of which have two specifica-
tion levels:

➤➤ High Resolution Time API

Level 1: https://www.w3.org/TR/hr-time-1/#dom-performance-now

Level 2: https://www.w3.org/TR/hr-time/

➤➤ Performance Timeline API

Level 1: https://www.w3.org/TR/performance-timeline/#sec-window
.performance-attribute

Level 2: https://w3c.github.io/performance-timeline/#extensions-to-the-
performance-interface

➤➤ Navigation Timing API

Level 1: https://www.w3.org/TR/navigation-timing/

Level 2: https://w3c.github.io/navigation-timing/

➤➤ User Timing API

Level 1: https://www.w3.org/TR/user-timing/#extensions-performance-interface

Level 2: https://w3c.github.io/user-timing/#extensions-performance-interface

➤➤ Resource Timing API

Level 1: https://www.w3.org/TR/resource-timing-1/#extensions-performance-
interface

Level 2: https://www.w3.org/TR/resource-timing-2/#extensions-performance-
interface

➤➤ Paint Timing API

https://w3c.github.io/paint-timing/#sec-PerformancePaintTiming

NOTE Browsers will generally support the deprecated version 1 and the
replacement version 2. This section focuses on the Level 2 specification where
applicable.

High Resolution Time API
The Date.now() method is only useful for datetime operations, which do not require precision
timekeeping. In the following example, a timestamp is captured before and after a function foo()
is invoked:

const t0 = Date.now();
foo();
const t1 = Date.now();

Timing APIs ❘ 787

const duration = t1 – t0;

console.log(duration);

Consider the following scenarios where duration has an unexpected value:

➤➤ duration is 0. Date.now() only has millisecond precision, and both timestamps will capture
the same value if foo() executes quickly enough.

➤➤ duration is negative or enormous. If the system clock is adjusted backwards or forwards
while foo() executes (such as during daylight saving time), the captured timestamps will
not account for this and the difference will incorporate the adjustment.

For these reasons, a different time measurement API must be used to precisely and accurately measure
the passage of time. To address these needs, the High Resolution Time API defines window.perfor-
mance.now(), which returns a floating point number with up to microsecond precision. As a result,
it is much more unlikely to sequentially capture timestamps and have them be identical. This method
also guarantees monotonically increasing timestamps.

const t0 = performance.now();
const t1 = performance.now();

console.log(t0); // 1768.625000026077
console.log(t1); // 1768.6300000059418

const duration = t1 – t0;

console.log(duration); // 0.004999979864805937

The performance.now() timer is a relative measurement. It begins counting at 0 when its execution
context is spawned: for example, when a page is opened or when a worker is created. Because the
timer initialization will be offset between contexts, direct comparison of performance.now() values
across execution contexts is not possible without a shared reference point. The performance.time-
Origin property returns the global system clock’s value when the timer initialization occurred.

const relativeTimestamp = performance.now();

const absoluteTimestamp = performance.timeOrigin + relativeTimestamp;

console.log(relativeTimestamp); // 244.43500000052154
console.log(absoluteTimestamp); // 1561926208892.4001

NOTE Security exploits such as Spectre can perform cache inference attacks by
using performance.now() to measure the latency delta between the L1 cache
and main memory. To address this vulnerability, all major browsers have either
reduced the precision of performance.now() or incorporated some randomness
into the timestamp. The WebKit blog has an excellent article on this topic at
https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-web-
kit/.

788 ❘ CHAPTER 20 JavaScript apiS

Performance Timeline API
The Performance Timeline API extends the Performance interface with a suite of tools intended to
measure client-side latency. Performance measurements will almost always take the form of calculat-
ing the difference between an end and a start time. These start and end times are recorded as DOM-
HighResTimeStamp values, and the objects that wrap these timestamps are PerformanceEntry
instances.

The browser automatically records a variety of different PerformanceEntry objects, and it is also
possible to record your own with performance.mark(). All recorded entries recorded in an execu-
tion context can be accessed using performance.getEntires():

console.log(performance.getEntries());

// [PerformanceNavigationTiming, PerformanceResourceTiming, ...]

This collection represents the browser’s performance timeline. Every PerformanceEntry object fea-
tures a name, entryType, startTime, and duration property:

const entry = performance.getEntries()[0];

console.log(entry.name); // "https://foo.com"
console.log(entry.entryType); // navigation
console.log(entry.startTime); // 0
console.log(entry.duration); // 182.36500001512468

However, PerformanceEntry is effectively an abstract base class, as recorded entries will always
inherit from PerformanceEntry but ultimately exist as one of the following classes:

➤➤ PerformanceMark

➤➤ PerformanceMeasure

➤➤ PerformanceFrameTiming

➤➤ PerformanceNavigationTiming

➤➤ PerformanceResourceTiming

➤➤ PerformancePaintTiming

Each of these types adds a substantial number of properties that describe metadata involving what
the entry represents. The name and entryType property for an instance will differ based on its type.

User Timing API
The User Timing API allows you to record and analyze custom performance entries. Recording a
custom performance entry is accomplished with performance.mark():

performance.mark('foo');

console.log(performance.getEntriesByType('mark')[0]);
// PerformanceMark {
// name: "foo",
// entryType: "mark",

Timing APIs ❘ 789

// startTime: 269.8800000362098,
// duration: 0
// }

Creating two performance entries on either side of the computation allows you to calculate the
time delta. The newest marks are pushed onto the beginning of the array returned from get-
EntriesByType():

performance.mark('foo');
for (let i = 0; i < 1E6; ++i) {}
performance.mark('bar');

const [endMark, startMark] = performance.getEntriesByType('mark');
console.log(startMark.startTime - endMark.startTime); // 1.3299999991431832

It’s also possible to generate a PerformanceMeasure entry that corresponds to the duration of time
between two marks identified via their name. This is accomplished with performance.measure():

performance.mark('foo');
for (let i = 0; i < 1E6; ++i) {}
performance.mark('bar');

performance.measure('baz', 'foo', 'bar');

const [differenceMark] = performance.getEntriesByType('measure');

console.log(differenceMark);
// PerformanceMeasure {
// name: "baz",
// entryType: "measure",
// startTime: 298.9800000214018,
// duration: 1.349999976810068
// }

Navigation Timing API
The Navigation Timing API offers high-precision timestamps for metrics covering how quickly the
current page loaded. The browser automatically records a PerformanceNavigationTiming entry
when a navigation event occurs. This object captures a broad range of timestamps describing how
and when the page loaded.

The following example calculates the amount of time between the loadEventStart and loadEven-
tEnd timestamps:

const [performanceNavigationTimingEntry] = performance.getEntriesByType('navigation');

console.log(performanceNavigationTimingEntry);
// PerformanceNavigationTiming {
// connectEnd: 2.259999979287386
// connectStart: 2.259999979287386
// decodedBodySize: 122314
// domComplete: 631.9899999652989
// domContentLoadedEventEnd: 300.92499998863786
// domContentLoadedEventStart: 298.8950000144541

790 ❘ CHAPTER 20 JavaScript apiS

// domInteractive: 298.88499999651685
// domainLookupEnd: 2.259999979287386
// domainLookupStart: 2.259999979287386
// duration: 632.819999998901
// encodedBodySize: 21107
// entryType: "navigation"
// fetchStart: 2.259999979287386
// initiatorType: "navigation"
// loadEventEnd: 632.819999998901
// loadEventStart: 632.0149999810383
// name: "https://foo.com"
// nextHopProtocol: "h2"
// redirectCount: 0
// redirectEnd: 0
// redirectStart: 0
// requestStart: 7.7099999762140214
// responseEnd: 130.50999998813495
// responseStart: 127.16999999247491
// secureConnectionStart: 0
// serverTiming: []
// startTime: 0
// transferSize: 21806
// type: "navigate"
// unloadEventEnd: 132.73999997181818
// unloadEventStart: 132.41999997990206
// workerStart: 0
// }

console.log(performanceNavigationTimingEntry.loadEventEnd –
 performanceNavigationTimingEntry.loadEventStart);
// 0.805000017862767

Resource Timing API
The Resource Timing API offers high-precision timestamps for metrics covering how quickly
resources requested for the current page loaded. The browser automatically records a Perfor-
manceResourceTiming entry when an asset is loaded. This object captures a broad range of time-
stamps describing how quickly that resource loaded.

The following example calculates the amount of time it took to load a specific resource:

const performanceResourceTimingEntry = performance.getEntriesByType('resource')[0];

console.log(performanceResourceTimingEntry);
// PerformanceResourceTiming {
// connectEnd: 138.11499997973442
// connectStart: 138.11499997973442
// decodedBodySize: 33808
// domainLookupEnd: 138.11499997973442
// domainLookupStart: 138.11499997973442
// duration: 0
// encodedBodySize: 33808
// entryType: "resource"
// fetchStart: 138.11499997973442

Web Components ❘ 791

// initiatorType: "link"
// name: "https://static.foo.com/bar.png",
// nextHopProtocol: "h2"
// redirectEnd: 0
// redirectStart: 0
// requestStart: 138.11499997973442
// responseEnd: 138.11499997973442
// responseStart: 138.11499997973442
// secureConnectionStart: 0
// serverTiming: []
// startTime: 138.11499997973442
// transferSize: 0
// workerStart: 0
// }

console.log(performanceResourceTimingEntry.responseEnd –
 performanceResourceTimingEntry.requestStart);
// 493.9600000507198

Using the difference between various times can give you a good idea about how a page is being
loaded into the browser and where the potential bottlenecks are hiding.

WEB COMPONENTS

The term "web components" refers to a handful of tools designed to enhance DOM behavior:
shadow DOM, custom elements, and HTML templates. This collection of browser APIs is particu-
larly messy:

➤➤ There is no single "Web Components" specification: each web component is defined in a dif-
ferent specification.

➤➤ Several web components, such as shadow DOM and custom elements, have undergone back-
wards-incompatible versioning.

➤➤ Adoption across browser vendors is extremely inconsistent.

Because of these issues, adopting web components often demands a web component library, such as
Polymer (https://www.polymer-project.org/), to polyfill and emulate missing web components
in the browser.

NOTE This chapter covers only the latest versions of web components.

HTML Templates
Before web components, there wasn’t a particularly good way of writing HTML that would allow
the browser to build a DOM subtree from parsed HTML but decline to render that subtree until
instructed to do so. One workaround was to use innerHTML to convert a markup string into
DOM elements, but this strategy has serious security implications. Another workaround was to

792 ❘ CHAPTER 20 JavaScript apiS

construct each element using document.createElement() and progressively attach them to an
orphaned root node (not attached to the DOM), but doing so is quite laborious and circumnavi-
gates using markup at all.

Instead, it would be far better to write special markup in the page that the browser automatically
parses into a DOM subtree but skips rendering. This is the core idea of HTML templates, which use
the <template> tag for precisely this purpose. A simple example of an HTML template is as follows:

<template id="foo">
 <p>I'm inside a template!</p>
</template>

Using a DocumentFragment
When rendered inside a browser, you will not see this text render on the page. Because the <tem-
plate> content is not considered part of the active document, DOM matching methods such as
document.querySelector() will be unable to find the <p> tag. This is because it exists inside a new
Node subclass added as part of HTML templates: the DocumentFragment.

The DocumentFragment inside a <template> is visible when inspecting inside the browser:

<template id="foo">
 #document-fragment
 <p>I'm inside a template!</p>
</template>

A reference to this DocumentFragment can be retrieved via the content property of the <tem-
plate> element:

console.log(document.querySelector('#foo').content); // #document-fragment

The DocumentFragment behaves as a minimal document object for that subtree. For example, DOM
matching methods on a DocumentFragment can find nodes in its subtree:

const fragment = document.querySelector('#foo').content;

console.log(document.querySelector('p')); // null
console.log(fragment.querySelector('p')); // <p>...<p>

A DocumentFragment is also incredibly useful for adding HTML in bulk. Consider a scenario where
one wishes to add multiple children to an HTML element as efficiently as possible. Using consecu-
tive document.appendChild() calls for each child is painstaking and can potentially incur multiple
reflows. Using a DocumentFragment allows for you to batch these child additions, guaranteeing at
most a single reflow:

// Start state:
// <div id="foo"></div>
//
// Desired end state:
// <div id="foo">
// <p></p>
// <p></p>
// <p></p>
// </div>

Web Components ❘ 793

// Also can use document.createDocumentFragment()
const fragment = new DocumentFragment();

const foo = document.querySelector('#foo');

// Adding children to a DocumentFragment incurs no reflow
fragment.appendChild(document.createElement('p'));
fragment.appendChild(document.createElement('p'));
fragment.appendChild(document.createElement('p'));

console.log(fragment.children.length); // 3

foo.appendChild(fragment);

console.log(fragment.children.length); // 0

console.log(document.body.innerHTML);
// <div id="foo">
// <p></p>
// <p></p>
// <p></p>
// </div>

Using <template> tags
Notice in the previous example how the child nodes of the DocumentFragment are effectively trans-
ferred onto the foo element, leaving the DocumentFragment empty. This same procedure can be
replicated using a <template>:

const fooElement = document.querySelector('#foo');
const barTemplate = document.querySelector('#bar');
const barFragment = barTemplate.content;

console.log(document.body.innerHTML);
// <div id="foo">
// </div>
// <template id="bar">
// <p></p>
// <p></p>
// <p></p>
// </template>

fooElement.appendChild(barFragment);

console.log(document.body.innerHTML);
// <div id="foo">
// <p></p>
// <p></p>
// <p></p>
// </div>
// <tempate id="bar"></template>

794 ❘ CHAPTER 20 JavaScript apiS

If you wish to instead copy the template, a simple importNode() can be used to clone the Docu-
mentFragment:

const fooElement = document.querySelector('#foo');
const barTemplate = document.querySelector('#bar');
const barFragment = barTemplate.content;

console.log(document.body.innerHTML);
// <div id="foo">
// </div>
// <template id="bar">
// <p></p>
// <p></p>
// <p></p>
// </template>

fooElement.appendChild(document.importNode(barFragment, true));

console.log(document.body.innerHTML);
// <div id="foo">
// <p></p>
// <p></p>
// <p></p>
// </div>
// <template id="bar">
// <p></p>
// <p></p>
// <p></p>
// </template>

Template Scripts
Script execution will be deferred until the DocumentFragment is added to the real DOM tree. This is
demonstrated here:

// Page HTML:
//
// <div id="foo"></div>
// <template id="bar">
// <script>console.log('Template script executed');</script>
// </template>

const fooElement = document.querySelector('#foo');
const barTemplate = document.querySelector('#bar');
const barFragment = barTemplate.content;

console.log('About to add template');
fooElement.appendChild(barFragment);
console.log('Added template');

// About to add template
// Template script executed
// Added template

This is useful in situations where addition of the new elements requires some initialization.

Web Components ❘ 795

Shadow DOM
Conceptually, the shadow DOM web component is fairly straightforward: It allows you to attach an
entirely separate DOM tree as a node on a parent DOM tree. This allows for DOM encapsulation,
meaning that things like CSS styling and CSS selectors can be restricted to a shadow DOM subtree
instead of the entire top-level DOM tree.

Shadow DOM is similar to HTML templates in that both are a document-like structure that enables
a degree of separation from the top-level DOM. However, shadow DOM is distinct from HTML
templates in that shadow DOM content is actually rendered on the page, whereas HTML template
content is not.

Introduction to Shadow DOM
Consider a scenario where you have multiple similarly structured DOM subtrees:

<div>
 <p>Make me red!</p>
</div>
<div>
 <p>Make me blue!</p>
</div>
<div>
 <p>Make me green!</p>
</div>

As you’ve likely surmised from the text nodes, each of these three DOM subtrees should be assigned
different colors. Normally, in order to apply a style uniquely to each of these without resorting to the
style attribute, you’d likely apply a unique class name to each subtree and define the styling inside a
corresponding selector:

<div class="red-text">
 <p>Make me red!</p>
</div>
<div class="green-text">
 <p>Make me green!</p>
</div>
<div class="blue-text">
 <p>Make me blue!</p>
</div>

<style>
.red-text {
 color: red;
}
.green-text {
 color: green;
}
.blue-text {
 color: blue;
}
</style>

796 ❘ CHAPTER 20 JavaScript apiS

Of course, this is a less than ideal solution. This isn’t much different than defining variables in a
global namespace; this CSS will be applied to the entire DOM even though you know with certainty
that these style definitions are not needed anywhere else. You could keep adding CSS selector speci-
ficity to prevent these styles from bleeding elsewhere, but this is little more than a half-measure.
Ideally, you’d prefer to restrict CSS to only a portion of the DOM: therein lies the raw utility of the
shadow DOM.

Creating a Shadow DOM
For reasons involving security or preventing shadow DOM collisions, not all element types can have
a shadow DOM attached to them. Attempting to attach a shadow DOM to an invalid element type,
or an element with a shadow DOM already attached, will throw an error.

The following is a list of elements capable of hosting a shadow DOM:

➤➤ Any autonomous custom element with a valid name (as defined in the HTML specifica-
tion: https://html.spec.whatwg.org/multipage/custom-elements.html#valid-custom-
element-name)

➤➤ <article>

➤➤ <aside>

➤➤ <blockquote>

➤➤ <body>

➤➤ <div>

➤➤ <footer>

➤➤ <h1>

➤➤ <h2>

➤➤ <h3>

➤➤ <h4>

➤➤ <h5>

➤➤ <h6>

➤➤ <header>

➤➤ <main>

➤➤ <nav>

➤➤ <p>

➤➤ <section>

➤➤

Web Components ❘ 797

A shadow DOM is created by attaching it to a valid HTML element using the attachShadow()
method. The element to which a shadow DOM is attached is referred to as the shadow host. The root
node of the shadow DOM is referred to as the shadow root.

The attachShadow() method expects a required shadowRootInit object and returns the instance of
the shadow DOM. The shadowRootInit object must contain a single mode property specifying either
"open" or "closed". A reference to an open shadow DOM can be obtained on an HTML element
via the shadowRoot property; this is not possible with a closed shadow DOM.

The mode difference is demonstrated here:

document.body.innerHTML = `
 <div id="foo"></div>
 <div id="bar"></div>
`;

const foo = document.querySelector('#foo');
const bar = document.querySelector('#bar');

const openShadowDOM = foo.attachShadow({ mode: 'open' });
const closedShadowDOM = bar.attachShadow({ mode: 'closed' });

console.log(openShadowDOM); // #shadow-root (open)
console.log(closedShadowDOM); // #shadow-root (closed)

console.log(foo.shadowRoot); // #shadow-root (open)
console.log(bar.shadowRoot); // null

In general, there is rarely a situation in which creating a closed shadow DOM is necessary. Although
it confers the ability to restrict programmatic access to a shadow DOM from the shadow host, there
are plenty of ways for malicious code to circumnavigate this and regain access to the shadow DOM.
In short, creating a closed shadow DOM should not be used for security purposes.

NOTE If you wish to protect a separate DOM tree from untrusted code, a
shadow DOM is unsuitable for such a requirement. The cross-origin restrictions
enforced on an <iframe> are much more robust.

Using a Shadow DOM
Once attached to an element, a shadow DOM can be used as a normal DOM. Consider the following
example, which recreates the red/green/blue example shown previously:

for (let color of ['red', 'green', 'blue']) {
 const div = document.createElement('div');
 const shadowDOM = div.attachShadow({ mode: 'open' });

 document.body.appendChild(div);

798 ❘ CHAPTER 20 JavaScript apiS

 shadowDOM.innerHTML = `
 <p>Make me ${color}</p>

 <style>
 p {
 color: ${color};
 }
 </style>
 `;
}

Although there are three identical selectors applying three different colors, the selectors will only be
applied to the shadow DOM in which they are defined. As such, the three <p> elements will appear in
three different colors.

You can verify that these elements exist inside their own shadow DOM as follows:

for (let color of ['red', 'green', 'blue']) {
 const div = document.createElement('div');
 const shadowDOM = div.attachShadow({ mode: 'open' });

 document.body.appendChild(div);

 shadowDOM.innerHTML = `
 <p>Make me ${color}</p>

 <style>
 p {
 color: ${color};
 }
 </style>
 `;
}

function countP(node) {
 console.log(node.querySelectorAll('p').length);
}

countP(document); // 0

for (let element of document.querySelectorAll('div')) {
 countP(element.shadowRoot);
}

// 1
// 1
// 1

Browser inspector tools will make it clear where a shadow DOM exists. For example, the preceding
example will appear as the following in the browser inspector:

<body>
<div>
 #shadow-root (open)
 <p>Make me red!</p>

Web Components ❘ 799

 <style>
 p {
 color: red;
 }
 </style>
</div>
<div>
 #shadow-root (open)
 <p>Make me green!</p>

 <style>
 p {
 color: green;
 }
 </style>
</div>
<div>
 #shadow-root (open)
 <p>Make me blue!</p>

 <style>
 p {
 color: blue;
 }
 </style>
</div>
</body>

Shadow DOMs are not an impermeable boundary. An HTML element can be moved between DOM
trees without restriction:

document.body.innerHTML = `
<div></div>
<p id="foo">Move me</p>
`;

const divElement = document.querySelector('div');
const pElement = document.querySelector('p');

const shadowDOM = divElement.attachShadow({ mode: 'open' });

// Remove element from parent DOM
divElement.parentElement.removeChild(pElement);

// Add element to shadow DOM
shadowDOM.appendChild(pElement);

// Check to see that element was moved
console.log(shadowDOM.innerHTML); // <p id="foo">Move me</p>

Composition and Shadow DOM Slots
The shadow DOM is designed to enable customizable components, and this requires the ability
to handle nested DOM fragments. Conceptually, this is relatively straightforward: HTML inside a
shadow host element needs a way to render inside the shadow DOM without actually being part of
the shadow DOM tree.

800 ❘ CHAPTER 20 JavaScript apiS

By default, nested content will be hidden. Consider the following example where the text becomes
hidden after 1000 milliseconds:

document.body.innerHTML = `
<div>
 <p>Foo</p>
</div>
`;

setTimeout(() => document.querySelector('div').attachShadow({ mode: 'open' }), 1000);

Once the shadow DOM is attached, the browser gives priority to the shadow DOM and will render
its contents instead of the text. In this example, the shadow DOM is empty, so the <div> will appear
empty in turn.

To show this content, you can use a <slot> tag to instruct where the browser should place the
HTML. In the code that follows, the previous example is reworked so the text reappears inside the
shadow DOM:

document.body.innerHTML = `
<div id="foo">
 <p>Foo</p>
</div>
`;

document.querySelector('div')
 .attachShadow({ mode: 'open' })
 .innerHTML = `<div id="bar">
 <slot></slot>
 <div>`

Now, the projected content will behave as if it exists inside the shadow DOM. Inspecting the page
reveals that the content appears to actually replace the <slot>:

<body>
<div id="foo">
 #shadow-root (open)
 <div id="bar">
 <p>Foo</p>
 </div>
</div>
</body>

Note that, despite its appearance in the page inspector, this is only a projection of DOM content. The
element remains attached to the outer DOM:

document.body.innerHTML = `
<div id="foo">
 <p>Foo</p>
</div>
`;

document.querySelector('div')
 .attachShadow({ mode: 'open' })
 .innerHTML = `

Web Components ❘ 801

 <div id="bar">
 <slot></slot>
 </div>`

console.log(document.querySelector('p').parentElement);
// <div id="foo"></div>

The red-green-blue example from before can be reworked to use slots as follows:

for (let color of ['red', 'green', 'blue']) {
 const divElement = document.createElement('div');
 divElement.innerText = `Make me ${color}`;
 document.body.appendChild(divElement)

 divElement
 .attachShadow({ mode: 'open' })
 .innerHTML = `
 <p><slot></slot></p>

 <style>
 p {
 color: ${color};
 }
 </style>
 `;
}

It’s also possible to use named slots to perform multiple projections. This is accomplished with
matching slot/name attribute pairs. The element identified with a slot="foo" attribute will be
projected into the <slot> with name="foo". The following example demonstrates this by switching
the rendered order of the shadow host element’s children:

 document.body.innerHTML = `
<div>
 <p slot="foo">Foo</p>
 <p slot="bar">Bar</p>
</div>
`;

document.querySelector('div')
 .attachShadow({ mode: 'open' })
 .innerHTML = `
 <slot name="bar"></slot>
 <slot name="foo"></slot>
 `;

// Renders:
// Bar
// Foo

Event Retargeting
If a browser event like click occurs inside a shadow DOM, the browser needs a way for the par-
ent DOM to handle the event. However, the implementation must also respect the shadow DOM
boundary. To address this, events that escape a shadow DOM and are handled outside undergo

802 ❘ CHAPTER 20 JavaScript apiS

event retargeting. Once escaped, this event will appear to have been thrown by the shadow host itself
instead of the true encapsulated element. This behavior is demonstrated here:

// Create element to be shadow host
document.body.innerHTML = `
<div onclick="console.log('Handled outside:', event.target)"></div>
`;

// Attach shadow DOM and insert HTML into it
document.querySelector('div')
 .attachShadow({ mode: 'open' })
 .innerHTML = `
<button onclick="console.log('Handled inside:', event.target)">Foo</button>
`;

// When clicking the button:
// Handled inside: <button onclick="..."></button>
// Handled outside: <div onclick="..."></div>

Note that retargeting only occurs for elements that actually exist inside a shadow DOM. Elements
projected from outside using a <slot> tag will not have their events retargeted, as they still techni-
cally exist outside the shadow DOM.

Custom Elements
If you’ve used a JavaScript framework, you’re likely familiar with the concept of custom elements,
as all major frameworks provide this feature in some form. Custom elements introduce an object-
oriented programming flavor to HTML elements. With them, it is possible to create custom, complex,
and reusable elements and create instances with a simple HTML tag or attribute.

Defining a Custom Element
Browsers already will attempt to incorporate unrecognized elements into the DOM as generic ele-
ments. Of course, by default they won’t do anything special that a generic HTML element doesn’t
already do. Consider the following example, where a nonsense HTML tag becomes an instance of an
HTMLElement:

document.body.innerHTML = `
<x-foo >I'm inside a nonsense element.</x-foo >
`;

console.log(document.querySelector('x-foo') instanceof HTMLElement); // true

Custom elements take this further. They allow you to define complex behavior whenever an <x-foo>
tag appears, and also to tap into the element’s lifecycle with respect to the DOM. Custom element
definition is accomplished using the global customElements property, which returns the Custom-
ElementRegistry object.

console.log(customElements); // CustomElementRegistry {}

Web Components ❘ 803

Defining a custom element is accomplished with the define() method. The following creates a trivial
custom element, which inherits from a vanilla HTMLElement:

class FooElement extends HTMLElement {}
customElements.define('x-foo', FooElement);

document.body.innerHTML = `
<x-foo >I'm inside a nonsense element.</x-foo >
`;

console.log(document.querySelector('x-foo') instanceof FooElement); // true

NOTE Custom element names must have at least one hyphen that does not start
or end the name string, and the element tag must not self-close.

The power of custom elements is housed in the class definition. For example, now each instance of
this class in the DOM will call the constructor that you control:

class FooElement extends HTMLElement {
 constructor() {
 super();
 console.log('x-foo')
 }
}
customElements.define('x-foo', FooElement);

document.body.innerHTML = `
<x-foo></x-foo>
<x-foo></x-foo>
<x-foo></x-foo>
`;

// x-foo
// x-foo
// x-foo

NOTE super() must always be called first in the custom element constructor.
If the element inherits from HTMLElement or similar without overriding the con-
structor, calling super() is not necessary as the prototype constructor will do it
by default. It is very rare to define a custom element that should not inherit from
HTMLElement.

If a custom element inherits from an element class, the tag can be specified as an instance of that
custom element using the is attribute and the extends option:

class FooElement extends HTMLDivElement {
 constructor() {

804 ❘ CHAPTER 20 JavaScript apiS

 super();
 console.log('x-foo')
 }
}
customElements.define('x-foo', FooElement, { extends: 'div' });

document.body.innerHTML = `
<div is="x-foo"></div>
<div is="x-foo"></div>
<div is="x-foo"></div>
`;

// x-foo
// x-foo
// x-foo

Adding Web Component Content
Because the custom element class constructor is called each time the element is added to the DOM,
it is easy to automatically populate a custom element with child DOM content. Although you are
forbidden from adding DOM children inside the constructor (a DOMException will be thrown), you
can attach a shadow DOM and place content inside:

class FooElement extends HTMLElement {
 constructor() {
 super();

 // 'this' refers to the web component node
 this.attachShadow({ mode: 'open' });

 this.shadowRoot.innerHTML = `
 <p>I'm inside a custom element!</p>
 `;
 }
}
customElements.define('x-foo', FooElement);

document.body.innerHTML += `<x-foo></x-foo`;

// Resulting DOM:
// <body>
// <x-foo>
// #shadow-root (open)
// <p>I'm inside a custom element!</p>
// <x-foo>
// </body>

To avoid the nastiness of string templates and innerHTML, this example can be refactored to use
HTML templates and document.createElement():

// (Initial HTML)
// <template id="x-foo-tpl">
// <p>I'm inside a custom element template!</p>
// </template>

Web Components ❘ 805

const template = document.querySelector('#x-foo-tpl');

class FooElement extends HTMLElement {
 constructor() {
 super();

 this.attachShadow({ mode: 'open' });

 this.shadowRoot.appendChild(template.content.cloneNode(true));
 }
}
customElements.define('x-foo', FooElement);

document.body.innerHTML += `<x-foo></x-foo`;

// Resulting DOM:
// <body>
// <template id="x-foo-tpl">
// <p>I'm inside a custom element template!</p>
// </template>
// <x-foo>
// #shadow-root (open)
// <p>I'm inside a custom element template!</p>
// <x-foo>
// </body>

This practice allows for a high degree of HTML and code reuse as well as DOM encapsulation inside
your custom element. With it, you are free to build reusable widgets without fear of outside CSS
trampling your styling.

Using Custom Element Lifecycle Hooks
It is possible to execute code at various points in the lifecycle of a custom element. Instance methods
on the custom element class with the corresponding name will be called during that lifecycle phase.
There are five available hooks:

➤➤ constructor() is called when an element instance is created, or an existing DOM element
is upgraded to a custom element.

➤➤ connectedCallback() is called each time this instance of the custom element is added
into the DOM.

➤➤ disconnectedCallback() is called each time this instance of the custom element is removed
from the DOM.

➤➤ attributeChangedCallback() is called each time the value of an observed attribute is
changed. When the element instance is instantiated, definition of the initial value counts
as a change.

➤➤ adoptedCallback() is called each time this instance is moved to a new document object
with document.adoptNode().

806 ❘ CHAPTER 20 JavaScript apiS

The following example demonstrates the construction, connected, and disconnected callbacks:

class FooElement extends HTMLElement {
 constructor() {
 super();
 console.log('ctor');
 }

 connectedCallback() {
 console.log('connected');
 }

 disconnectedCallback() {
 console.log('disconnected');
 }
}
customElements.define('x-foo', FooElement);

const fooElement = document.createElement('x-foo');
// ctor

document.body.appendChild(fooElement);
// connected

document.body.removeChild(fooElement);
// disconnected

Reflecting Custom Element Attributes
Because an element exists as both a DOM entity and a JavaScript object, a common pattern is to
reflect changes between the two. In other words, a change to the DOM should reflect a change in the
object, and vice versa. To reflect from the object to the DOM, a common strategy is to use getters and
setters. The following example reflects the bar property of the object up to the DOM:

document.body.innerHTML = `<x-foo></x-foo>`;

class FooElement extends HTMLElement {
 constructor() {
 super();

 this.bar = true;
 }

 get bar() {
 return this.getAttribute('bar');
 }

 set bar(value) {
 this.setAttribute('bar', value)
 }
}
customElements.define('x-foo', FooElement);

Web Components ❘ 807

console.log(document.body.innerHTML);
// <x-foo bar="true"></x-foo>

Reflecting in the reverse direction—from the DOM to the object—requires setting a listener for that
attribute. To accomplish this, you can instruct the custom element to call the attributeChanged-
Callback() each time the attribute’s value changes by using the observedAttributes() getter:

class FooElement extends HTMLElement {
 static get observedAttributes() {
 // List attributes which should trigger attributeChangedCallback()
 return ['bar'];
 }

 get bar() {
 return this.getAttribute('bar');
 }

 set bar(value) {
 this.setAttribute('bar', value)
 }

 attributeChangedCallback(name, oldValue, newValue) {
 if (oldValue !== newValue) {
 console.log(`${oldValue} -> ${newValue}`);

 this[name] = newValue;
 }
 }
}
customElements.define('x-foo', FooElement);

document.body.innerHTML = `<x-foo bar="false"></x-foo>`;
// null -> false

document.querySelector('x-foo').setAttribute('bar', true);
// false -> true

Upgrading Custom Elements
It’s not always possible to define a custom element before the custom element tag appears in the
DOM. Web components address this ordering problem by exposing several additional methods on the
CustomElementRegistry that allow you to detect when a custom element is eventually defined and
upgrade existing elements.

The CustomElementRegistry.get() method returns the custom element class if it was already
defined. In a similar vein, the CustomElementRegistry.whenDefined() method returns a promise
that resolves when a custom element becomes defined:

customElements.whenDefined('x-foo').then(() => console.log('defined!'));

console.log(customElements.get('x-foo'));
// undefined

808 ❘ CHAPTER 20 JavaScript apiS

customElements.define('x-foo', class {});
// defined!

console.log(customElements.get('x-foo'));
// class FooElement {}

Elements connected to the DOM will be automatically upgraded when the custom element is defined.
If you wish to forcibly upgrade an element before it is connected to the DOM, this can be accom-
plished with CustomElementRegistry.upgrade():

// Create HTMLUnknownElement object before custom element definition
const fooElement = document.createElement('x-foo');

// Define custom element
class FooElement extends HTMLElement {}
customElements.define('x-foo', FooElement);

console.log(fooElement instanceof FooElement); // false

// Force the upgrade
customElements.upgrade(fooElement);

console.log(fooElement instanceof FooElement); // true

NOTE There is also an HTML imports web component, but the specification
remains a working draft and no major browsers support it. It remains unclear if
any browsers will eventually add support.

THE WEB CRYPTOGRAPHY API

The Web Cryptography API (https://www.w3.org/TR/WebCryptoAPI) describes a suite of cryp-
tography tools that standardize how JavaScript can wield cryptographic behavior in a secure and
idiomatic fashion. These tools include the ability to generate, use, and apply cryptographic key pairs;
encrypt and decrypt messages; and robustly generate random numbers.

NOTE The organization of the cryptography is somewhat bizarre, featuring an
outer Crypto object with an inner SubtleCrypto object. Before the Web Cryp-
tography API was standardized, the window.crypto property was highly frag-
mented across browsers. To allow for cross-browser compatibility, the bulk of
the API is exposed on the SubtleCrypto object.

Random Number Generation
When tasked with generating random values, most developers reach for Math.random(). This
method is implemented in browsers as a pseudorandom number generator (PRNG). The "pseudo"
designation stems from the nature of the value generation in that it is not truly random. Values

The Web Cryptography API ❘ 809

emitted from a PRNG only emulate properties that are associated with randomness. This appear-
ance of randomness is made possible through some clever engineering. The browser’s PRNG doesn’t
utilize any true sources of randomness—it is purely a fixed algorithm applied to a hermetic internal
state. Each time Math.random() is called, the internal state is mutated by an algorithm and the result
is converted into a new random value. For example, the V8 engine uses an algorithm called xor-
shift128+ to perform this mutation.

Because this algorithm is fixed and its input is only the previous state, the order of random numbers
is deterministic. xorshift128+ uses 128 bits of internal state, and the algorithm is designed such that
any initial state will produce a sequence of 2128–1 pseudorandom values before repeating itself. This
looping behavior is called a permutation cycle, and the length of this cycle is referred to as the period.
The implications of this are clear: If an attacker knows the internal state of the PRNG, they are able
to predict the pseudorandom values that it will subsequently emit. If an unwitting developer were
to use the PRNG to generate a private key for the purposes of encryption, the attacker could use the
properties of the PRNG to determine the private key.

Pseudorandom number generators are designed to be able to quickly calculate values that seem to be
random. They are, however, unsuitable for the purposes of cryptographic computation. To address
this, a cryptographically secure pseudorandom number generator (CSPRNG) additionally incorpo-
rates a source of entropy as its input, such as measuring hardware timings or other system properties
that exhibit unpredictable behavior. Doing so is much slower than a regular PRNG, but values emit-
ted by a CSPRNG are sufficiently unpredictable for cryptographic purposes.

The Web Cryptography API introduces a CSPRNG that can be accessed on the global Crypto object
via crypto.getRandomValues(). Unlike Math.random(), which returns a floating point number
between 0 and 1, getRandomValues() writes random numbers into the typed array provided as a
parameter. The typed array class is not important, as the underlying buffer is being filled with random
binary bits.

The following generates five 8-bit random values:

const array = new Uint8Array(1);

for (let i=0; i<5; ++i) {
 console.log(crypto.getRandomValues(array));
}

// Uint8Array [41]
// Uint8Array [250]
// Uint8Array [51]
// Uint8Array [129]
// Uint8Array [35]

getRandomValues() will generate up to 216 bytes; above that it will throw an error:

const fooArray = new Uint8Array(2 ** 16);
console.log(window.crypto.getRandomValues(fooArray)); // Uint32Array(16384) [...]

const barArray = new Uint8Array((2 ** 16) + 1);
console.log(window.crypto.getRandomValues(barArray)); // Error

810 ❘ CHAPTER 20 JavaScript apiS

Reimplementing Math.random() using the CSPRNG could be accomplished by generating a single
random 32-bit number and dividing this into the maximum possible value, 0xFFFFFFFF. This yields a
value between 0 and 1:

function randomFloat() {
 // Generate 32 random bits
 const fooArray = new Uint32Array(1);

 // Maximum value is 2^32 - 1
 const maxUint32 = 0xFFFFFFFF;

 // Divide by maximum possible value
 return crypto.getRandomValues(fooArray)[0] / maxUint32;
}

console.log(randomFloat()); // 0.5033651619458955

Using the SubtleCrypto Object
The overwhelming majority of the Web Cryptography API resides inside the SubtleCrypto object,
accessible via window.crypto.subtle:

console.log(crypto.subtle); // SubtleCrypto {}

This object contains a collection of methods for performing common cryptographic functions such
as encryption, hashing, signing, and key generation. Because all cryptographic operations are
performed on raw binary data, every SubtleCrypto method deals in ArrayBuffer and ArrayBuff-
erView types. Because strings are so frequently the subject of cryptographic operations, the Text-
Encoder and TextDecoder classes will often be used alongside SubtleCrypto to convert to and
from strings.

NOTE The SubtleCrypto object is only accessible in a secure context (https). In
an insecure context, the subtle property will be undefined.

Generating Cryptographic Digests
One extremely common cryptography operation is to calculate a cryptographic digest of data. The
specification supports four algorithms for this, SHA-1 and three flavors of SHA-2:

➤➤ Secure Hash Algorithm 1 (SHA-1)—A hash function with an architecture similar to MD5.
It takes an input of any size and generates a 160-bit message digest. This algorithm is no
longer considered secure as it is vulnerable to collision attacks.

➤➤ Secure Hash Algorithm 2 (SHA-2)—A family of hash functions all built upon the same
collision-resistant one-way compression function. The specification supports three members
of this family: SHA-256, SHA-384, and SHA-512. The size of the generated message digest
can be 256 bits (SHA-256), 384 bits (SHA-384), or 512 bits (SHA-512). This algorithm is
considered secure and widely used in many applications and protocols, including TLS, PGP,
and cryptocurrencies like Bitcoin.

The Web Cryptography API ❘ 811

The SubtleCrypto.digest() method is used to generate a message digest. The hash algorithm is
specified using a string: SHA-1, SHA-256, SHA-384, or SHA-512. The following example demonstrates
a simple application of SHA-256 to generate a message digest of the string foo:

(async function() {
 const textEncoder = new TextEncoder();
 const message = textEncoder.encode('foo');
 const messageDigest = await crypto.subtle.digest('SHA-256', message);

 console.log(new Uint32Array(messageDigest));
})();

// Uint32Array(8) [1806968364, 2412183400, 1011194873, 876687389,
// 1882014227, 2696905572, 2287897337, 2934400610]

Commonly, the message digest binary will be used in a hex string format. Converting an array
buffer to this format is accomplished by splitting the buffer up into 8-bit pieces and converting using
toString() in base 16:

(async function() {
 const textEncoder = new TextEncoder();
 const message = textEncoder.encode('foo');
 const messageDigest = await crypto.subtle.digest('SHA-256', message);

 const hexDigest = Array.from(new Uint8Array(messageDigest))
 .map((x) => x.toString(16).padStart(2, '0'))
 .join('');

 console.log(hexDigest);
})();

// 2c26b46b68ffc68ff99b453c1d30413413422d706483bfa0f98a5e886266e7ae

Software companies usually publish a digest of their install binaries so that people who wish to
safely install their software can verify that the binary they download is the version that the company
actually published (and not one with injected malware). The following example downloads v67.0 of
Firefox, hashes it with SHA-512, downloads the SHA-512 binary verification, and checks that the
two hex strings match:

(async function() {
 const mozillaCdnUrl = '//download-
origin.cdn.mozilla.net/pub/firefox/releases/67.0/';
 const firefoxBinaryFilename = 'linux-x86_64/en-US/firefox-67.0.tar.bz2';
 const firefoxShaFilename = 'SHA512SUMS';

 console.log('Fetching Firefox binary...');
 const fileArrayBuffer = await (await fetch(mozillaCdnUrl + firefoxBinaryFilename))
 .arrayBuffer();

 console.log('Calculating Firefox digest...');
 const firefoxBinaryDigest = await crypto.subtle.digest('SHA-512', fileArrayBuffer);

812 ❘ CHAPTER 20 JavaScript apiS

 const firefoxHexDigest = Array.from(new Uint8Array(firefoxBinaryDigest))
 .map((x) => x.toString(16).padStart(2, '0'))
 .join('');

 console.log('Fetching published binary digests...');
 // The SHA file contains digests of every firefox binary in this release,
 // so there is some organization performed.
 const shaPairs = (await (await fetch(mozillaCdnUrl + firefoxShaFilename)).text())
 .split(/\n/).map((x) => x.split(/\s+/));

 let verified = false;

 console.log('Checking calculated digest against published digests...');
 for (const [sha, filename] of shaPairs) {
 if (filename === firefoxBinaryFilename) {
 if (sha === firefoxHexDigest) {
 verified = true;
 break;
 }
 }
 }

 console.log('Verified:', verified);
})();

// Fetching Firefox binary...
// Calculating Firefox digest...
// Fetching published binary digests...
// Checking calculated digest against published digests...
// Verified: true

CryptoKeys and Algorithms
Cryptography would be meaningless without secret keys, and the SubtleCrypto object uses instances
of the CryptoKey class to house these secrets. The CryptoKey class supports multiple types of encryp-
tion algorithms and allows for control over key extraction and usage.

The CryptoKey class supports the following algorithms, categorized by their parent cryptosystem:

➤➤ RSA (Rivest-Shamir-Adleman)—A public-key cryptosystem in which two large prime num-
bers are used to derive a pair of public and private keys that can be used to sign/verify or
encrypt/decrypt messages. The trapdoor function for RSA is called the factoring problem.

➤➤ RSASSA-PKCS1-v1_5—An application of RSA used to sign messages with the private key
and allow that signature to be verified with the public key.

➤➤ SSA stands for signature schemes with appendix, indicating the algorithm supports
signature generation and verification operations.

➤➤ PKCS1 stands for Public-Key Cryptography Standards #1, indicating the algorithm
exhibits mathematical properties that RSA keys must have.

➤➤ RSASSA-PKCS1-v1_5 is deterministic, meaning the same message and key will pro-
duce an identical signature each time it is performed.

The Web Cryptography API ❘ 813

➤➤ RSA-PSS—Another application of RSA used to sign and verify messages.

➤➤ PSS stands for probabilistic signature scheme, indicating that the signature genera-
tion incorporates a salt to randomize the signature.

➤➤ Unlike RSASSA-PKCS1-v1_5, the same message and key will produce a different
signature each time it is performed.

➤➤ Unlike RSASSA-PKCS1-v1_5, RSA-PSS is provably reducible to the hardness of the
RSA factoring problem.

➤➤ In general, although RSASSA-PKCS1-v1_5 is still considered secure, RSA-PSS
should be used as a replacement for RSASSA-PKCS1-v1_5.

➤➤ RSA-OAEP—An application of RSA used to encrypt messages with the public key and
decrypt them with the private key.

➤➤ OAEP stands for Optimal Asymmetric Encryption Padding, indicating that the
algorithm utilizes a Feistel network to process the unencrypted message prior to
encryption.

➤➤ OAEP serves to convert the deterministic RSA encryption scheme to a probabilistic
encryption scheme.

➤➤ ECC (Elliptic-Curve Cryptography)—A public-key cryptosystem in which a prime number
and an elliptic curve are used to derive a pair of public and private keys that can be used
to sign/verify messages. The trapdoor function for ECC is called the elliptic curve discrete
logarithm problem. ECC is considered to be superior to RSA: Although both RSA and ECC
are cryptographically strong, ECC keys are shorter than RSA keys and ECC cryptographic
operations are faster than RSA operations.

➤➤ ECDSA (Elliptic Curve Digital Signature Algorithm)—An application of ECC used to sign
and verify messages. This algorithm is an elliptic curve–flavored variant of the Digital Sig-
nature Algorithm (DSA).

➤➤ ECDH (Elliptic Curve Diffie-Hellman)—A key-generation and key-agreement application
of ECC that allows for two parties to establish a shared secret over a public communica-
tion channel. This algorithm is an elliptic curve-flavored variant of the Diffie-Hellman key
exchange (DH) protocol.

➤➤ AES (Advanced Encryption Standard)—A symmetric-key cryptosystem that encrypts/
decrypts data using a block cipher derived from a substitution-permutation network. AES is
used in different modes, which change the algorithm’s characteristics.

➤➤ AES-CTR—The counter mode of AES. This mode behaves as a stream cipher by using an
incremented counter to generate its keystream. It must also be provided a nonce, which is
effectively used as an initialization vector. AES-CTR encryption/decryption is able to be
parallelized.

➤➤ AES-CBC—The cipher block chaining mode of AES. Before encrypting each block of plain-
text, it is XORed with the previous block of ciphertext—hence the "chaining" name. An
initialization vector is used as the XOR input for the first block.

814 ❘ CHAPTER 20 JavaScript apiS

➤➤ AES-GCM—The Galois/Counter mode of AES. This mode uses a counter and initialization
vector to generate a value, which is XORed with the plaintext of each block. Unlike CBC,
the XOR inputs do not have dependencies on the previous block’s encryption and therefore
the GCM mode can be parallelized. Because of its excellent performance characteristics,
AES-GCM enjoys utilization in many networking security protocols.

➤➤ AES-KW—The key wrapping mode of AES. This algorithm wraps a secret key into a
portable and encrypted format that is safe for transmission on an untrusted channel.
Once transmitted, the receiving party can then unwrap the key. Unlike other AES modes,
AES-KW does not require an initialization vector.

➤➤ HMAC (Hash-Based Message Authentication Code)—An algorithm that generates mes-
sage authentication codes used to verify that a message arrives unaltered when sent over an
untrusted network. Two parties use a hash function and a shared private key to sign and
verify messages.

➤➤ KDF (Key Derivation Functions)—Algorithms that can derive one or many keys from a
master key using a hash function. KDFs are capable of generating keys of a different length
or converting keys to different formats.

➤➤ HKDF (HMAC-Based Key Derivation Function)—A key derivation function designed to be
used with a high-entropy input such as an existing key.

➤➤ PBKDF2 (Password-Based Key Derivation Function 2)—A key derivation function designed
to be used with a low-entropy input such as a password string.

NOTE The CryptoKey supports a large number of algorithms, but only some
algorithms are applicable to some SubtleCrypto methods. Refer to the specifi-
cation for an overview of which algorithms are supported for which methods:
https://www.w3.org/TR/WebCryptoAPI/#algorithm-overview.

Generating CryptoKeys
Generating a random CryptoKey is accomplished with the SubtleCrypto.generateKey() method,
which returns a promise that resolves to one or many CryptoKey instances. This method is passed a
params object specifying the target algorithm, a boolean indicating whether or not the key should be
extractable from the CryptoKey object, and an array of strings—keyUsages—indicating which Sub-
tleCrypto methods the key can be used with.

Because different cryptosystems require different inputs to generate keys, the params object provides
the required inputs for each cryptosystem:

➤➤ The RSA cryptosystem uses a RsaHashedKeyGenParams object.

➤➤ The ECC cryptosystem uses an EcKeyGenParams object.

➤➤ The HMAC cryptosystem uses an HmacKeyGenParams object.

➤➤ The AES cryptosystem uses an AesKeyGenParams object.

The Web Cryptography API ❘ 815

The keyUsages object describes which algorithms the key can be used with. It expects at least one of
the following strings:

➤➤ encrypt

➤➤ decrypt

➤➤ sign

➤➤ verify

➤➤ deriveKey

➤➤ deriveBits

➤➤ wrapKey

➤➤ unwrapKey

Suppose you want to generate a symmetric key with the following properties:

➤➤ Supports the AES-CTR algorithm

➤➤ Key length of 128 bits

➤➤ Cannot be extracted from the CryptoKey object

➤➤ Is able to be used with the encrypt() and decrypt() methods

Generating this key can be accomplished in the following fashion:

(async function() {
 const params = {
 name: 'AES-CTR',
 length: 128
 };

 const keyUsages = ['encrypt', 'decrypt'];

 const key = await crypto.subtle.generateKey(params, false, keyUsages);

 console.log(key);
 // CryptoKey {type: "secret", extractable: true, algorithm: {...}, usages: Array(2)}
})();

Suppose you want to generate an asymmetric key pair with the following properties:

➤➤ Supports the ECDSA algorithm

➤➤ Uses the P-256 elliptic curve

➤➤ Can be extracted from the CryptoKey object

➤➤ Is able to be used with the sign() and verify() methods

816 ❘ CHAPTER 20 JavaScript apiS

Generating this key pair can be accomplished in the following fashion:

(async function() {
 const params = {
 name: 'ECDSA',
 namedCurve: 'P-256'
 };

 const keyUsages = ['sign', 'verify'];

 const {publicKey, privateKey} = await crypto.subtle.generateKey(params, true,
 keyUsages);

 console.log(publicKey);
 // CryptoKey {type: "public", extractable: true, algorithm: {...}, usages: Array(1)}

 console.log(privateKey);
 // CryptoKey {type: "private", extractable: true, algorithm: {...}, usages: Array(1)}
})();

Exporting and Importing Keys
If a key is extractable, it is possible to expose the raw key binary from inside the CryptoKey object.
The exportKey() method allows you to do so while also specifying the target format (raw, pkcs8,
spki, or jwk). The method returns a promise that resolves to an ArrayBuffer containing the key:

(async function() {
 const params = {
 name: 'AES-CTR',
 length: 128
 };
 const keyUsages = ['encrypt', 'decrypt'];

 const key = await crypto.subtle.generateKey(params, true, keyUsages);

 const rawKey = await crypto.subtle.exportKey('raw', key);

 console.log(new Uint8Array(rawKey));
 // Uint8Array[93, 122, 66, 135, 144, 182, 119, 196, 234, 73, 84, 7, 139, 43, 238,
 // 110]
})();

The inverse operation of exportKey() is importKey(). This method’s signature is essentially a com-
bination of generateKey() and exportKey(). The following method generates a key, exports it, and
imports it once again:

(async function() {
 const params = {
 name: 'AES-CTR',
 length: 128
 };
 const keyUsages = ['encrypt', 'decrypt'];
 const keyFormat = 'raw';
 const isExtractable = true;

The Web Cryptography API ❘ 817

 const key = await crypto.subtle.generateKey(params, isExtractable, keyUsages);

 const rawKey = await crypto.subtle.exportKey(keyFormat, key);

 const importedKey = await crypto.subtle.importKey(keyFormat, rawKey, params.name,
 isExtractable, keyUsages);

 console.log(importedKey);
 // CryptoKey {type: "secret", extractable: true, algorithm: {...}, usages: Array(2)}
})();

Deriving Keys from Master Keys
The SubtleCrypto object allows you to derive new keys with configurable properties from an exist-
ing secret. It supports a deriveKey() method that returns a promise resolving to a CryptoKey, and a
deriveBits() method that returns a promise resolving to an ArrayBuffer.

NOTE The difference between deriveKey() and deriveBits() is trivial, as
calling deriveKey() is effectively the same as calling deriveBits() and passing
the result to importKey().

The deriveBits() function accepts an algorithm params object, the master key, and the length in
bits of the output. This can be used in situations where two people, each with their own key pairs,
wish to obtain a shared secret key. The following example uses the ECDH algorithm to generate
reciprocal keys from two keypairs and ensures that they derive the same key bits:

(async function() {
 const ellipticCurve = 'P-256';
 const algoIdentifier = 'ECDH';
 const derivedKeySize = 128;

 const params = {
 name: algoIdentifier,
 namedCurve: ellipticCurve
 };

 const keyUsages = ['deriveBits'];

 const keyPairA = await crypto.subtle.generateKey(params, true, keyUsages);
 const keyPairB = await crypto.subtle.generateKey(params, true, keyUsages);

 // Derive key bits from A's public key and B's private key
 const derivedBitsAB = await crypto.subtle.deriveBits(
 Object.assign({ public: keyPairA.publicKey }, params),
 keyPairB.privateKey,
 derivedKeySize);

 // Derive key bits from B's public key and A's private key
 const derivedBitsBA = await crypto.subtle.deriveBits(

818 ❘ CHAPTER 20 JavaScript apiS

 Object.assign({ public: keyPairB.publicKey }, params),
 keyPairA.privateKey,
 derivedKeySize);

 const arrayAB = new Uint32Array(derivedBitsAB);
 const arrayBA = new Uint32Array(derivedBitsBA);

 // Ensure key arrays are identical
 console.log(
 arrayAB.length === arrayBA.length &&
 arrayAB.every((val, i) => val === arrayBA[i])); // true
})();

The deriveKey() method behaves similarly, returning an instance of a CryptoKey instead of an
ArrayBuffer. The following example takes a raw string, applies the PBKDF2 algorithm to import it
into a raw master key, and derives a new key in AES-GCM format:

(async function() {
 const password = 'foobar';
 const salt = crypto.getRandomValues(new Uint8Array(16));
 const algoIdentifier = 'PBKDF2';
 const keyFormat = 'raw';
 const isExtractable = false;

 const params = {
 name: algoIdentifier
 };

 const masterKey = await window.crypto.subtle.importKey(
 keyFormat,
 (new TextEncoder()).encode(password),
 params,
 isExtractable,
 ['deriveKey']
);

 const deriveParams = {
 name: 'AES-GCM',
 length: 128
 };

 const derivedKey = await window.crypto.subtle.deriveKey(
 Object.assign({salt, iterations: 1E5, hash: 'SHA-256'}, params),
 masterKey,
 deriveParams,
 isExtractable,
 ['encrypt']
);

 console.log(derivedKey);
 // CryptoKey {type: "secret", extractable: false, algorithm: {...}, usages: Array(1)}
})();

The Web Cryptography API ❘ 819

Signing and Verifying Messages with Asymmetric Keys
The SubtleCrypto object allows you to use public-key algorithms to generate signatures using a
private key or to verify signatures using a public key. These are performed using the SubtleCrypto.
sign() and SubtleCrypto.verify() methods, respectively.

Signing a message requires a params object to specify the algorithm and any necessary values, the
private CryptoKey, and the ArrayBuffer or ArrayBufferView to be signed. The following example
generates an elliptic curve key pair and uses the private key to sign a message:

(async function() {
 const keyParams = {
 name: 'ECDSA',
 namedCurve: 'P-256'
 };

 const keyUsages = ['sign', 'verify'];

 const {publicKey, privateKey} = await crypto.subtle.generateKey(keyParams, true,
 keyUsages);

 const message = (new TextEncoder()).encode('I am Satoshi Nakamoto');

 const signParams = {
 name: 'ECDSA',
 hash: 'SHA-256'
 };

 const signature = await crypto.subtle.sign(signParams, privateKey, message);

 console.log(new Uint32Array(signature));
 // Uint32Array(16) [2202267297, 698413658, 1501924384, 691450316, 778757775, ...]
})();

An individual wishing to verify this message against the signature could use the public key and the
SubtleCrypto.verify() method. This method’s signature is nearly identical to sign() with the
exception that it must be provided the public key as well as the signature. The following example
extends the previous example by verifying the generated signature:

(async function() {
 const keyParams = {
 name: 'ECDSA',
 namedCurve: 'P-256'
 };

 const keyUsages = ['sign', 'verify'];

 const {publicKey, privateKey} = await crypto.subtle.generateKey(keyParams, true,
 keyUsages);

 const message = (new TextEncoder()).encode('I am Satoshi Nakamoto');

 const signParams = {

820 ❘ CHAPTER 20 JavaScript apiS

 name: 'ECDSA',
 hash: 'SHA-256'
 };

 const signature = await crypto.subtle.sign(signParams, privateKey, message);

 const verified = await crypto.subtle.verify(signParams, publicKey, signature,
 message);

 console.log(verified); // true
})();

Encrypting and Decrypting with Symmetric Keys
The SubtleCrypto object allows you to use both public-key and symmetric algorithms to encrypt
and decrypt messages. These are performed using the SubtleCrypto.encrypt() and Subtle-
Crypto.decrypt() methods, respectively.

Encrypting a message requires a params object to specify the algorithm and any necessary values, the
encryption key, and the data to be encrypted. The following example generates a symmetric AES-CBC
key, encrypts it, and finally decrypts a message:

(async function() {
 const algoIdentifier = 'AES-CBC';

 const keyParams = {
 name: algoIdentifier,
 length: 256
 };

 const keyUsages = ['encrypt', 'decrypt'];

 const key = await crypto.subtle.generateKey(keyParams, true,
 keyUsages);

 const originalPlaintext = (new TextEncoder()).encode('I am Satoshi Nakamoto');

 const encryptDecryptParams = {
 name: algoIdentifier,
 iv: crypto.getRandomValues(new Uint8Array(16))
 };

 const ciphertext = await crypto.subtle.encrypt(encryptDecryptParams, key,
 originalPlaintext);

 console.log(ciphertext);
 // ArrayBuffer(32) {}

 const decryptedPlaintext = await crypto.subtle.decrypt(encryptDecryptParams, key,
 ciphertext);

 console.log((new TextDecoder()).decode(decryptedPlaintext));
 // I am Satoshi Nakamoto
})();

The Web Cryptography API ❘ 821

Wrapping and Unwrapping a Key
The SubtleCrypto object allows you to wrap and unwrap keys to allow for transmission over an
untrusted channel. These are performed using the SubtleCrypto.wrapKey() and SubtleCrypto.
unwrapKey() methods, respectively.

Wrapping a key requires a format string, the CryptoKey instance to be wrapped, the CryptoKey to
perform the wrapping, and a params object to specify the algorithm and any necessary values. The
following example generates a symmetric AES-GCM key, wraps the key with AES-KW, and finally
unwraps the key:

(async function() {
 const keyFormat = 'raw';
 const extractable = true;

 const wrappingKeyAlgoIdentifier = 'AES-KW';
 const wrappingKeyUsages = ['wrapKey', 'unwrapKey'];
 const wrappingKeyParams = {
 name: wrappingKeyAlgoIdentifier,
 length: 256
 };

 const keyAlgoIdentifier = 'AES-GCM';
 const keyUsages = ['encrypt'];
 const keyParams = {
 name: keyAlgoIdentifier,
 length: 256
 };

 const wrappingKey = await crypto.subtle.generateKey(wrappingKeyParams, extractable,
 wrappingKeyUsages);

 console.log(wrappingKey);
 // CryptoKey {type: "secret", extractable: true, algorithm: {...}, usages: Array(2)}

 const key = await crypto.subtle.generateKey(keyParams, extractable, keyUsages);

 console.log(key);
 // CryptoKey {type: "secret", extractable: true, algorithm: {...}, usages: Array(1)}

 const wrappedKey = await crypto.subtle.wrapKey(keyFormat, key, wrappingKey,
 wrappingKeyAlgoIdentifier);

 console.log(wrappedKey);
 // ArrayBuffer(40) {}

 const unwrappedKey = await crypto.subtle.unwrapKey(keyFormat, wrappedKey,
 wrappingKey, wrappingKeyParams, keyParams, extractable, keyUsages);

 console.log(unwrappedKey);
 // CryptoKey {type: "secret", extractable: true, algorithm: {...}, usages: Array(1)}
})()

822 ❘ CHAPTER 20 JavaScript apiS

SUMMARY

HTML5, in addition to defining new markup rules, also defines several JavaScript APIs. These APIs
are designed to enable better web interfaces that can rival the capabilities of desktop applications.
The APIs covered in this chapter are as follows:

➤➤ The Atomics API allows you to protect your code from race conditions resulting from multi-
threaded memory access patterns.

➤➤ The postMessage() API provides the ability to send messages across documents from differ-
ent origins while keeping the security of the same-origin policy intact.

➤➤ The Encoding API enables you to seamlessly convert between strings and buffers—an
increasingly common pattern.

➤➤ The File API affords you robust tools for sending, receiving, and reading large
binary objects.

➤➤ The media elements <audio> and <video> have their own APIs for interacting with the
audio and video. Not all media formats are supported by all browsers, so make use of the
canPlayType() method to properly detect browser support.

➤➤ The Drag-and-Drop API allows you to easily indicate that an element is draggable and
responds as the operating system does to drops. You can create custom draggable elements
and drop targets.

➤➤ The Notifications API gives you a browser-independent way of presenting interactive tiles
to the user.

➤➤ The Streams API affords an entirely new way of incrementally reading, writing, and
processing data.

➤➤ The Timing APIs provide a robust way of measuring latency in and around the browser.

➤➤ The Web Components API introduces a gigantic leap forward for element reusability and
encapsulation.

➤➤ The Web Cryptography API makes cryptographic operations such as random number gener-
ation, encrypting, and signing messages first-class citizens.

Error Handling and Debugging
WHAT’S IN THIS CHAPTER?

➤➤ Understanding browser error reporting

➤➤ Handling errors

➤➤ Debugging JavaScript code

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/projavascript4e on the Down-
load Code tab.

JavaScript has traditionally been known as one of the most difficult programming languages
to debug because of its dynamic nature and years without proper development tools. Errors
typically resulted in confusing browser messages such as "object expected" that provided
little or no contextual information. The third edition of ECMAScript aimed to improve this
situation, introducing the try-catch and throw statements, along with various error types to
help developers deal with errors when they occur. A few years later, JavaScript debuggers and
debugging tools began appearing for web browsers. By 2008, most web browsers supported
some JavaScript debugging capabilities.

Armed with the proper language support and development tools, web developers are now
empowered to implement proper error-handling processes and figure out the cause of problems.

21

Professional JavaScript® for Web Developers, Fourth Edition. Matt Frisbie.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

824 ❘ CHAPTER 21 Error Handling and dEbugging

BROWSER ERROR REPORTING

All of the major desktop web browsers—Internet Explorer/Edge, Firefox, Safari, Chrome, and
Opera—have some way to report JavaScript errors to the user. By default, all browsers hide this infor-
mation, both because it’s of little use to anyone but the developer, and because it’s the nature of web
pages to throw errors during normal operation.

Desktop Consoles
All modern desktop web browsers expose errors through their web console. These errors can be
revealed in the developer tools console. In all the previously mentioned browsers, they share a com-
mon path to accessing the web console. Perhaps the easiest way to view errors is to right-click on the
web page, select Inspect or Inspect Element, and click the Console tab.

To proceed directly to the console, different operating systems and browsers support different key
combinations:

BROWSER WINDOWS/LINUX MAC

Chrome Ctrl+Shift+J Cmd+Opt+J

Firefox Ctrl+Shift+K Cmd+Opt+K

Internet Explorer/Edge F12, then Ctrl+2 NA

Opera Ctrl+Shift+I Cmd+Opt+I

Safari NA Cmd+Opt+C

Mobile Consoles
Natively, mobile phones will not offer a console interface directly on the device. However, there are
several options for you to use in situations where you would like to inspect errors that are thrown on
a mobile device.

Chrome for mobile and Safari on iOS come bundled with utilities that allow you to connect the
device to a host operating system running that same browser, and you can then view the errors
thrown through the paired desktop browser. This involves physically connecting the device and
following the setup instructions for Chrome (https://developers.google.com/web/tools/
chrome-devtools/remote-debugging/) or Safari (https://developer.apple.com/library/
content/documentation/AppleApplications/Conceptual/Safari_Developer_Guide/

GettingStarted/GettingStarted.html).

It’s also possible to use a third-party utility to debug directly on the mobile device. A commonly used
utility for debugging Firefox is Firebug Lite (https://getfirebug.com/firebuglite_mobile).
This works by shimming the Firebug script into the current web page using a JavaScript bookmarklet.
Once the script runs, you’ll be able to open a debug interface right on the mobile browser. Firebug
Lite also has versions for different browsers such as Chrome (http://getfirebug.com/releases/
lite/chrome/).

Error Handling ❘ 825

ERROR HANDLING

No one doubts the importance of error handling in programming. Every major web application needs
a good error-handling protocol and most good applications have one, though it is typically on the
server side of the application. In fact, great care is usually taken by the server-side team to define an
error-logging mechanism that categorizes errors by type, frequency, and any other metric that may be
important. The result is the ability to understand how the application is working in the public with a
simple database query or report-generating script.

Error handling has slowly been adopted on the browser side of web applications even though it is just
as important. An important fact to understand is that most people who use the web are not techni-
cally savvy—most don’t even fully comprehend what a web browser is, let alone which one they’re
using. As described earlier in this chapter, each browser behaves a little bit differently when a Java-
Script error occurs. The default browser experience for JavaScript errors is horrible for the end user.
In the best case, the user has no idea what happened and will try again; in the worst case, the user
gets incredibly annoyed and never comes back. Having a good error-handling strategy keeps your
users informed about what is going on without scaring them. To accomplish this, you must under-
stand the various ways that you can trap and deal with JavaScript errors as they occur.

The try-catch Statement
ECMA-262, third edition, introduced the try-catch statement as a way to handle exceptions in
JavaScript. The basic syntax is as follows, which is the same as the try-catch statement in Java:

try {
 // code that may cause an error
} catch (error) {
 // what to do when an error occurs
}

Any code that might possibly throw an error should be placed in the try portion of the statement,
and the code to handle the error is placed in the catch portion, as shown in the following example:

try {
 window.someNonexistentFunction();
} catch (error){
 console.log("An error happened!");
}

If an error occurs at any point in the try portion of the statement, code execution immediately exits
and resumes in the catch portion. The catch portion of the statement receives an object containing
information about the error that occurred. Unlike other languages, you must define a name for the
error object even if you don’t intend to use it. The exact information available on this object varies
from browser to browser but contains, at a minimum, a message property that holds the error mes-
sage. ECMA-262 also specifies a name property that defines the type of error; this property is avail-
able in all current browsers. You can, therefore, display the actual browser message if necessary, as
shown in the following example:

try {
 window.someNonexistentFunction();
} catch (error){
 console.log(error.message);
}

826 ❘ CHAPTER 21 Error Handling and dEbugging

This example uses the message property when displaying an error message to the user. The mes-
sage property is the only one that is guaranteed to be there across Internet Explorer, Firefox, Safari,
Chrome, and Opera, even though each browser adds other information. Internet Explorer adds a
description property, which is always equal to the message, as well as a number property,
which gives an internal error number. Firefox adds fileName, lineNumber, and stack (which con-
tains a stack trace). Safari adds line (for the line number), sourceId (an internal error code), and
sourceURL. Once again, it is best to rely only on the message property for cross-browser
compatibility.

The finally Clause
The optional finally clause of the try-catch statement always runs its code no matter what. If
the code in the try portion runs completely, the finally clause executes; if there is an error and the
catch portion executes, the finally portion still executes. There is literally nothing that can be done
in the try or catch portion of the statement to prevent the code in finally from executing, which
includes using a return statement. Consider the following function:

function testFinally(){
 try {
 return 2;
 } catch (error){
 return 1;
 } finally {
 return 0;
 }
}

This function simply places a return statement in each portion of the try-catch statement. It looks
like the function should return 2 because that is in the try portion and wouldn’t cause an error.
However, the presence of the finally clause causes that return to be ignored; the function returns
0 when called no matter what. If the finally clause were removed, the function would return 2. If
finally is provided, then catch becomes optional (only one or the other is required).

NOTE It’s very important to understand that any return statements in either
the try or the catch portion will be ignored if a finally clause is also included
in your code. Be sure to double-check the intended behavior of your code when
using finally.

Error Types
Several different types of errors can occur during the course of code execution. Each error type has
a corresponding object type that is thrown when an error occurs. ECMA-262 defines the following
eight error types:

➤➤ Error

➤➤ InternalError

➤➤ EvalError

Error Handling ❘ 827

➤➤ RangeError

➤➤ ReferenceError

➤➤ SyntaxError

➤➤ TypeError

➤➤ URIError

The Error type is the base type from which all other error types inherit. As a result of this, all error
types share the same properties (the only methods on error objects are the default object methods).
An error of type Error is rarely, if ever, thrown by a browser; it is provided mainly for developers to
throw custom errors.

The InternalError type is thrown when the underlying JavaScript engine throws an exception—for
example, when a stack overflow occurs from too much recursion. This is not an error type that you
would explicitly handle inside your code; if this error is thrown, chances are very good that your code
is doing something incorrect or dangerous and should be fixed.

The EvalError type is thrown when an exception occurs while using the eval() function. ECMA-
262 states that this error is thrown “if value of the eval property is used in any way other than a
direct call (that is, other than by the explicit use of its name as an Identifier, which is the Mem-
berExpression in a CallExpression), or if the eval property is assigned to.” This basically means
using eval() as anything other than a function call, such as:

new eval(); // throws EvalError
eval = foo; // throws EvalError

In practice, browsers don’t always throw EvalError when they’re supposed to. For example, Firefox
and Internet Explorer throw a TypeError in the first case but the second succeeds without error.
Because of this and the unlikelihood of these patterns being used, it is highly unlikely that you will
run into this error type.

A RangeError occurs when a number is outside the bounds of its range. For example, this error may
occur when an attempt is made to define an array with an unsupported number of items, such as –20
or Number.MAX_VALUE, as shown here:

let items1 = new Array(-20); // throws RangeError
let items2 = new Array(Number.MAX_VALUE); // throws RangeError

Range errors occur infrequently in JavaScript.

The ReferenceError type is used when an object is expected. (This is literally the cause of the
famous "object expected" browser error.) This type of error typically occurs when attempting to
access a variable that doesn’t exist, as in this example:

let obj = x; // throws ReferenceError when x isn't declared

A SyntaxError object is thrown most often when there is a syntax error in a JavaScript string that is
passed to eval(), as in this example:

eval("a ++ b"); // throws SyntaxError

828 ❘ CHAPTER 21 Error Handling and dEbugging

Outside of using eval(), the SyntaxError type is rarely used, because syntax errors occurring in
JavaScript code stop execution immediately.

The TypeError type is the most used in JavaScript and occurs when a variable is of an unexpected
type or an attempt is made to access a nonexistent method. This can occur for any number of rea-
sons, most often when a type-specific operation is used with a variable of the wrong type. Here are
some examples:

let o = new 10; // throws TypeError
console.log("name" in true); // throws TypeError
Function.prototype.toString.call("name"); // throws TypeError

Type errors occur most frequently with function arguments that are used without their type being
verified first.

The last type of error is URIError, which occurs only when using the encodeURI() or decodeURI()
with a malformed URI. This error is perhaps the most infrequently observed in JavaScript, because
these functions are incredibly robust.

The different error types can be used to provide more information about an exception, allowing
appropriate error handling. You can determine the type of error thrown in the catch portion of a
try-catch statement by using the instanceof operator, as shown here:

try {
 someFunction();
} catch (error){
 if (error instanceof TypeError){
 // handle type error
 } else if (error instanceof ReferenceError){
 // handle reference error
 } else {
 // handle all other error types
 }
}

Checking the error type is the easiest way to determine the appropriate course of action in a cross-
browser way because the error message contained in the message property differs from browser
to browser.

Usage of try-catch
When an error occurs within a try-catch statement, the browser considers the error to have been
handled, and so it won’t report it using the mechanisms discussed earlier in this chapter. This is ideal
for web applications with users who aren’t technically inclined and wouldn’t otherwise understand
when an error occurs. The try-catch statement allows you to implement your own error-handling
mechanism for specific error types.

The try-catch statement is best used where an error might occur that is out of your control. For
example, if you are using a function that is part of a larger JavaScript library, that function may
throw errors either purposefully or by mistake. Because you can’t modify the library’s code, it would
be appropriate to surround the call in a try-catch statement in case an error does occur and then
handle the error appropriately.

Error Handling ❘ 829

It’s not appropriate to use a try-catch statement if you know an error will occur with your code
specifically. For example, if a function will fail when a string is passed in instead of a number, you
should check the data type of the argument and act accordingly; there is no need in this case to use a
try-catch statement.

Throwing Errors
A companion to the try-catch statement is the throw operator, which can be used to throw custom
errors at any point in time. The throw operator must be used with a value but places no limitation on
the type of value. All of the following lines are legal:

throw 12345;
throw "Hello world!";
throw true;
throw { name: "JavaScript" };

When the throw operator is used, code execution stops immediately and continues only if a try-
catch statement catches the value that was thrown.

Browser errors can be more accurately simulated by using one of the built-in error types. Each error
type’s constructor accepts a single argument, which is the exact error message. Here is an example:

throw new Error("Something bad happened.");

This code throws a generic error with a custom error message. The error is handled by the browser as
if it were generated by the browser itself, meaning that it is reported by the browser in the usual way
and your custom error message is displayed. You can achieve the same result using the other error
types, as shown in these examples:

throw new SyntaxError("I don't like your syntax.");
throw new InternalError("I can't do that, Dave.");
throw new TypeError("What type of variable do you take me for?");
throw new RangeError("Sorry, you just don't have the range.");
throw new EvalError("That doesn't evaluate.");
throw new URIError("Uri, is that you?");
throw new ReferenceError("You didn't cite your references properly.");

The most often used error types for custom error messages are Error, RangeError, Reference-
Error, and TypeError.

You can also create custom error types by inheriting from Error (discussed in Chapter 6). You should
provide both a name property and a message property on your error type. Here is an example:

class CustomError extends Error {
 constructor(message) {
 super(message);
 this.name = "CustomError";
 this.message = message;
 }
}

throw new CustomError("My message");

Custom error types that are inherited from Error are treated just like any other error by the browser.
Creating custom error types is helpful when you will be catching the errors that you throw and need
to decipher them from browser-generated errors.

830 ❘ CHAPTER 21 Error Handling and dEbugging

When to Throw Errors
Throwing custom errors is a great way to provide more information about why a function has failed.
Errors should be thrown when a particular known error condition exists that won’t allow the func-
tion to execute properly. That is, the browser will throw an error while executing this function given
a certain condition. For example, the following function will fail if the argument is not an array:

function process(values){
 values.sort();

 for (let value of values){
 if (value > 100){
 return value;
 }
 }

 return -1;
}

If this function is run with a string as the argument, the call to sort() fails. Each browser gives a
different, though somewhat obtuse, error message, as listed here:

➤➤ Internet Explorer—Property or method doesn’t exist.

➤➤ Firefox—values.sort() is not a function.

➤➤ Safari—Value undefined (result of expression values.sort) is not an object.

➤➤ Chrome—Object name has no method 'sort'.

➤➤ Opera—Type mismatch (usually a non-object value used where an object is required).

Although Firefox, Chrome, and Safari at least indicate the part of the code that caused the error, none
of the error messages are particularly clear as to what happened or how it could be fixed. When deal-
ing with one function, as in the preceding example, debugging is easy enough to handle with these
error messages. However, when you’re working on a complex web application with thousands of
lines of JavaScript code, finding the source of the error becomes much more difficult.

This is where a custom error with appropriate information will significantly contribute to the main-
tainability of the code. Consider the following example:

function process(values){
 if (!(values instanceof Array)){
 throw new Error("process(): Argument must be an array.");
 }

 values.sort();

 for (let value of values){
 if (value > 100){
 return value;
 }
 }

 return -1;
}

Error Handling ❘ 831

In this rewritten version of the function, an error is thrown if the values argument isn’t an array. The
error message provides the name of the function and a clear description as to why the error occurred.
If this error occurred in a complex web application, you would have a much clearer idea of where the
real problem is.

When you’re developing JavaScript code, critically evaluate each function and the circumstances
under which it may fail. A good error-handling protocol ensures that the only errors that occur are
the ones that you throw.

Throwing Errors versus try-catch
A common question that arises is when to throw errors versus when to use try-catch to capture
them. Generally speaking, errors are thrown in the low levels of an application architecture, at a level
where not much is known about the ongoing process, and so the error can’t really be handled. If
you are writing a JavaScript library that may be used in a number of different applications, or even
a utility function that will be used in a number of different places in a single application, you should
strongly consider throwing errors with detailed information. It is then up to the application to catch
the errors and handle them appropriately.

The best way to think about the difference between throwing errors and catching errors is this: you
should catch errors only if you know exactly what to do next. The purpose of catching an error is to
prevent the browser from responding in its default manner; the purpose of throwing an error is to
provide information about why an error occurred.

The error Event
Any error that is not handled by a try-catch causes the error event to fire on the window object.
This event was one of the first supported by web browsers, and its format has remained intact for
backwards compatibility in all major browsers. An onerror event handler doesn’t create an event
object in any browser. Instead, it receives three arguments: the error message, the URL on which the
error occurred, and the line number. In most cases, only the error message is relevant because the
URL is the same as the location of the document, and the line number could be for inline JavaScript
or code in external files. The onerror event handler needs to be assigned using the DOM Level 0
technique shown here because it doesn’t follow the DOM Level 2 Events standard format:

window.onerror = (message, url, line) => {
 console.log(message);
};

When any error occurs, whether browser-generated or not, the error event fires, and this event han-
dler executes. Then, the default browser behavior takes over, displaying the error message as it would
normally. You can prevent the default browser error reporting by returning false, as shown here:

window.onerror = (message, url, line) => {
 console.log(message);
 return false;
};

By returning false, this function effectively becomes a try-catch statement for the entire document,
capturing all unhandled runtime errors. This event handler is the last line of defense against errors

832 ❘ CHAPTER 21 Error Handling and dEbugging

being reported by the browser and, ideally, should never have to be used. Proper usage of the try-
catch statement means that no errors reach the browser level and, therefore, should never fire the
error event.

NOTE There is a significant difference between the way browsers handle errors
using this event. When the error event occurs in Internet Explorer, normal code
execution continues; all variables and data are retained and remain accessible
from within the onerror event handler. In Firefox, however, normal code execu-
tion ends, and all variables and data that existed prior to the error occurring are
destroyed, making it difficult to truly evaluate the error.

Images also support an error event. Any time the URL in an image’s src attribute doesn’t return a
recognized image format, the error event fires. This event follows the DOM format by returning an
event object with the image as the target. Here is an example:

const image = new Image();

image.addEventListener("load", (event) => {
 console.log("Image loaded!");
});
image.addEventListener("error", (event) => {
 console.log("Image not loaded!");
});

image.src = "doesnotexist.gif"; // does not exist, resoure will fail to load

In this example, an alert is displayed when the image fails to load. It’s important to understand that
once the error event fires, the image download process is already over and will not be resumed.

Error-Handling Strategies
Error-handling strategies have traditionally been confined to the server for web applications. There’s
often a lot of thought that goes into errors and error handling, including logging and monitoring sys-
tems. The point of such tools is to analyze error patterns in the hopes of tracking down the root cause
and understanding how many users the error affects.

It is equally important to have an error-handling strategy for the JavaScript layer of a web applica-
tion. Because any JavaScript error can cause a web page to become unusable, understanding when
and why errors occur is vital. Most web-application users are not technical and can easily get con-
fused when something doesn’t work as expected. They may reload the page in an attempt to fix the
problem, or they may just stop trying. As the developer, you should have a good understanding of
when and how the code could fail and have a system to track such issues.

Error Handling ❘ 833

Identify Where Errors Might Occur
The most important part of error handling is to first identify where errors might occur in the code.
Since JavaScript is loosely typed and function arguments aren’t verified, there are often errors that
become apparent only when the code is executed. In general, there are three error categories to
watch for:

➤➤ Type coercion errors

➤➤ Data type errors

➤➤ Communication errors

Each of these errors occurs when using specific patterns or not applying sufficient value checking.

Static Code Analyzer
It would be irresponsible to not mention here that an overwhelming abundance of errors you might
encounter can be preemptively handled by using a static code analyzer or linter as part of your
application build process. There is a terrific list of resources at https://gist.github.com/
listochkin/6250151. The most commonly used static analyzers are JSHint, JSLint, Google Closure,
and TypeScript.

Static code analyzers will require you to annotate your JavaScript with types, function signatures,
and other directives that describe how the program will run outside of the base executable code.
The analyzer will compare your annotations against various parts of your JavaScript codebase that
use each other and make you aware of any potential incompatibilities that might manifest inside the
actual runtime.

NOTE As a codebase grows, you will find that static analyzers become
increasingly essential—especially as the number of developers working on the
same code increases. All major tech companies that maintain extremely large
JavaScript codebases use a robust form of static analysis as part of their build
processes.

Type Coercion Errors
Type coercion errors occur as the result of using an operator or other language construct that
automatically changes the data type of a value. The two most common type coercion errors occur as
a result of using the equal (==) or not equal (!=) operator and using a non-Boolean value in a flow
control statement, such as if, for, and while.

The equal and not equal operators, discussed in Chapter 3, automatically convert values of
different types before performing a comparison. Since the same symbols typically perform straight

834 ❘ CHAPTER 21 Error Handling and dEbugging

comparisons in nondynamic languages, developers often mistakenly use them in JavaScript in the
same way. In most cases, it’s best to use the identically equal (===) and not identically equal (!==)
operators to avoid type coercion. Here is an example:

console.log(5 == "5"); // true
console.log(5 === "5"); // false
console.log(1 == true); // true
console.log(1 === true); // false

In this code, the number 5 and the string "5" are compared using the equal operator and the identi-
cally equal operator. The equal operator first converts the string "5" into the number 5 and then
compares it with the other number 5, resulting in true. The identically equal operator notes that the
two data types are different and simply returns false. The same occurs with the values 1 and true:
they are considered equal by the equal operator but not equal using the identically equal operator.
Using the identically equal and not identically equal operators can prevent type coercion errors that
occur during comparisons and are highly recommended over using the equal and not equal operators.

NOTE Codebase style guides will often assert how === vs. == should be
applied. Some style guides subscribe to the notion that if === is always used for
comparison, type coercion is a non-issue. Others dictate that an unflinching uti-
lization of === is overkill in all places except for ones in which string/Boolean
coercion is possible.

Type coercion errors also occur in flow control statements. Statements such as if automatically con-
vert any value into a Boolean before determining the next step. The if statement, specifically, is often
used in error-prone ways. Consider the following example:

function concat(str1, str2, str3) {
 let result = str1 + str2;
 if (str3) { // avoid!!!
 result += str3;
 }
 return result;
}

This function’s intended purpose is to concatenate two or three strings and return the result. The third
string is an optional argument and so must be checked. As mentioned in Chapter 3, named variables
that aren’t used are automatically assigned the value of undefined. The value undefined converts
into the Boolean value false, so the intent of the if statement in this function is to concatenate
the third argument only if it is provided. The problem is that undefined is not the only value that
gets converted to false, and a string is not the only value that gets converted to true. If the third
argument is the number 0, for example, the if condition fails, while a value of 1 causes the condi-
tion to pass.

Using non-Boolean values as conditions in a flow control statement is a very common cause of errors.
To avoid such errors, always make sure that a Boolean value is passed as the condition. This is most

Error Handling ❘ 835

often accomplished by doing a comparison of some sort. For example, the previous function can be
rewritten as shown here:

function concat(str1, str2, str3){
 let result = str1 + str2;
 if (typeof str3 === "string") { // proper comparison
 result += str3;
 }
 return result;
}

In this updated version of the function, the if statement condition returns a Boolean value based on a
comparison. This function is much safer and is less affected by incorrect values.

Data Type Errors
Because JavaScript is loosely typed, variables and function arguments aren’t compared to ensure that
the correct type of data is being used. It is up to you, as the developer, to do an appropriate amount
of data type checking to ensure that an error will not occur. Data type errors most often occur as a
result of unexpected values being passed into a function.

In the previous example, the data type of the third argument is checked to ensure that it’s a string, but
the other two arguments aren’t checked at all. If the function must return a string, then passing in two
numbers and omitting the third argument easily breaks it. A similar situation is present in the follow-
ing function:

// unsafe function, any non-string value causes an error
function getQueryString(url) {
 const pos = url.indexOf("?");
 if (pos > -1){
 return url.substring(pos +1);
 }
 return "";
}

The purpose of this function is to return the query string of a given URL. To do so, it first looks for a
question mark in the string using indexOf() and, if found, returns everything after the question mark
using the substring() method. The two methods used in this example are specific to strings, so any
other data type that is passed in will cause an error. The following simple type check makes this
function less error prone:

function getQueryString(url) {
 if (typeof url === "string") { // safer with type check
 let pos = url.indexOf("?");
 if (pos > -1) {
 return url.substring(pos +1);
 }
 }
 return "";
}

In this rewritten version of the function, the first step is to check that the value passed in is actually a
string. This ensures that the function will never cause an error because of a nonstring value.

836 ❘ CHAPTER 21 Error Handling and dEbugging

As discussed in the previous section, using non-Boolean values as conditions for flow control state-
ments is a bad idea because of type coercion. This is also a bad practice that can cause data type
errors. Consider the following function:

// unsafe function, non-array values cause an error
function reverseSort(values) {
 if (values) { // avoid!!!
 values.sort();
 values.reverse();
 }
}

The reverseSort() function sorts an array in reverse order, using both the sort() and the
reverse() methods. Because of the control condition in the if statement, any nonarray value that
converts to true will cause an error. Another common mistake is to compare the argument against
null, as in this example:

// still unsafe, non-array values cause an error
function reverseSort(values) {
 if (values != null){ // avoid!!!
 values.sort();
 values.reverse();
 }
}

Comparing a value against null only protects the code from two values: null and undefined (which
are equivalent to using the equal and not equal operators). A null comparison doesn’t do enough
to ensure that the value is appropriate; therefore, this technique should be avoided. It’s also recom-
mended that you don’t compare a value against undefined, for the same reason.

Another poor choice is to use feature detection for only one of the features being used. Here is
an example:

// still unsafe, non-array values cause an error
function reverseSort(values) {
 if (typeof values.sort === "function") { // avoid!!!
 values.sort();
 values.reverse();
 }
}

In this example, the code checks for the existence of a sort() method on the argument. This leaves
open the possibility that an object may be passed in with a sort() function that is not an array, in
which case the call to reverse() causes an error. When you know the exact type of object that is
expected, it’s best to use instanceof, as shown in the following example, to determine that the value
is of the right type:

// safe, non-array values are ignored
function reverseSort(values) {
 if (values instanceof Array) { // fixed
 values.sort();
 values.reverse();
 }
}

Error Handling ❘ 837

This last version of reverseSort() is safe—it tests the values argument to see if it’s an instance of
Array. In this way, the function is assured that any nonarray values are ignored.

Generally speaking, values that should be primitive types should be checked using typeof, and values
that should be objects should be checked using instanceof. Depending on how a function is being
used, it may not be necessary to check the data type of every argument, but any public-facing APIs
should definitely perform type checking to ensure proper execution.

Communication Errors
Since the advent of Ajax programming, it has become quite common for web applications to dynami-
cally load information or functionality throughout the application’s life cycle. Any communication
between JavaScript and the server is an opportunity for an error to occur.

The first type of communication error involves malformed URLs or post data. This typically occurs
when data isn’t encoded using encodeURIComponent() before being sent to the server. The following
URL, for example, isn’t formed correctly:

http://www.yourdomain.com/?redir=http://www.someotherdomain.com?a=b&c=d

This URL can be fixed by using encodeURIComponent() on everything after "redir=", which pro-
duces the following result:

http://www.example.com/?redir=http%3A%2F%2Fwww.someotherdomain.com%3Fa%3Db%26c%3Dd

The encodeURIComponent() method should always be used for query string arguments. To ensure
that this happens, you will find it’s sometimes helpful to define a function that handles query string
building, such as the following:

function addQueryStringArg(url, name, value) {
 if (url.indexOf("?") == -1){
 url += "?";
 } else {
 url += "&";
 }

 url += '${encodeURIComponent(name)=${encodeURIComponent(value)}';
 return url;
}

This function accepts three arguments: the URL to append the query string argument to, the name of
the argument, and the argument value. If the URL that’s passed in doesn’t contain a question mark,
then one is added; otherwise, an ampersand is added because this means there are other query string
arguments. The query string name and value are then encoded and added to the URL. The function
can be used as in the following example:

const url = "http://www.somedomain.com";
const newUrl = addQueryStringArg(url, "redir",
 "http://www.someotherdomain.com?a=b&c=d");
console.log(newUrl);

Using this function instead of manually building URLs can ensure proper encoding and avoid errors
related to it.

838 ❘ CHAPTER 21 Error Handling and dEbugging

Communication errors also occur when the server response is not as expected. When using dynamic
script loading or dynamic style loading, there is the possibility that the requested resource is not avail-
able. Some browsers fail silently when a resource isn’t returned, whereas others error out. Unfortu-
nately, there is little you can do when using these techniques to determine that an error has occurred.
In some cases, using Ajax communication can provide additional information about error conditions.

Distinguishing between Fatal and Nonfatal Errors
One of the most important parts of any error-handling strategy is to determine whether or not an
error is fatal. One or more of the following identifies a nonfatal error:

➤➤ It won’t interfere with the user’s main tasks.

➤➤ It affects only a portion of the page.

➤➤ Recovery is possible.

➤➤ Repeating the action may result in success.

In essence, nonfatal errors aren’t a cause for concern. For example, Gmail (https://mail.google
.com) has a feature that allows users to send Hangouts messages from the interface. If, for some rea-
son, Hangouts don’t work, it’s a nonfatal error because that is not the application’s primary function.
The primary use case for Gmail is to read and write e-mail messages, and as long as the user can do
that, there is no reason to interrupt the user experience. Nonfatal errors don’t require you to send an
explicit message to the user. You may be able to replace the area of the page that is affected with a
message indicating that the functionality isn’t available, but it’s not necessary to interrupt the user.

Fatal errors, on the other hand, are identified by one or more of the following:

➤➤ The application absolutely cannot continue.

➤➤ The error significantly interferes with the user’s primary objective.

➤➤ Other errors will occur as a result.

It’s vitally important to understand when a fatal error occurs in JavaScript so appropriate action can
be taken. When a fatal error occurs, you should send a message to the users immediately to let them
know that they will not be able to continue what they were doing. If the page must be reloaded for
the application to work, then you should tell the user this and provide a button that automatically
reloads the page.

You must also make sure that your code doesn’t dictate what is and is not a fatal error. Nonfatal and
fatal errors are primarily indicated by their affect on the user. Good code design means that an error
in one part of the application shouldn’t unnecessarily affect another part that, in reality, isn’t related
at all. For example, consider a personalized home page, such as Gmail (https://mail.google.com),
that has multiple independent modules on the page. If each module has to be initialized using a Java-
Script call, you may see code that looks something like this:

for (let mod of mods){
 mod.init(); // possible fatal error
}

On its surface, this code appears fine: the init() method is called on each module. The problem is
that an error in any module’s init() method will cause all modules that come after it in the array

Error Handling ❘ 839

to never be initialized. If the error occurs on the first module, then none of the modules on the page
will be initialized. Logically, this doesn’t make sense because each module is an independent entity
that isn’t reliant on any other module for its functionality. It’s the structure of the code that makes
this type of error fatal. Fortunately, the code can be rewritten as follows to make an error in any one
module nonfatal:

for (let mod of mods){
 try {
 mod.init();
 } catch (ex){
 // handle error here
 }
}

By adding a try-catch statement into the for loop, any error when a module initializes will not
prevent other modules from initializing. When an error occurs in this code, it can be handled indepen-
dently and in a way that doesn’t interfere with the user experience.

Log Errors to the Server
A common practice in web applications is to have a centralized error log where important errors are
written for tracking purposes. Database and server errors are regularly written to the log and catego-
rized through some common API. With complex web applications, it’s recommended that you also log
JavaScript errors back to the server. The idea is to log the errors into the same system used for server-
side errors and categorize them as having come from the front end. Using the same system allows for
the same analytics to be performed on the data regardless of the error’s source.

To set up a JavaScript error-logging system, you’ll first need a page or entry point on the server that
can handle the error data. The page need not do anything more than take data from the query string
and save it to an error log. This page can then be used with code such as the following:

function logError(sev, msg) {
 let img = new Image(),
 encodedSev = encodeURIComponent(sev),
 encodedMsg = encodeURIComponent(msg);
 img.src = 'log.php?sev=${encodedSev}&msg=${encodedMsg}';
}

The logError() function accepts two arguments: a severity and the error message. The severity may
be numbers or strings, depending on the system you’re using. An Image object is used to send the
request because of its flexibility, as described here:

➤➤ The Image object is available in all browsers, even those that don’t support the XMLHttpRe-
quest object.

➤➤ Cross-domain restrictions don’t apply. Often there is one server responsible for handling
error logging from multiple servers, and XMLHttpRequest would not work in that situation.

➤➤ There’s less chance that an error will occur in the process of logging the error. Most Ajax
communication is handled through functionality wrappers provided by JavaScript libraries.
If that library’s code fails, and you’re trying to use it to log the error, the message may never
get logged.

840 ❘ CHAPTER 21 Error Handling and dEbugging

Whenever a try-catch statement is used, it’s likely that the error should be logged. Here is
an example:

for (let mod of mods){
 try {
 mod.init();
 } catch (ex){
 logError("nonfatal", 'Module init failed: ${ex.message}');
 }
}

In this code, logError() is called when a module fails to initialize. The first argument is "nonfa-
tal", indicating the severity of the error, and the message provides contextual information plus the
true JavaScript error message. Error messages that are logged to the server should provide as much
contextual information as possible to help identify the exact cause of the error.

DEBUGGING TECHNIQUES

Before JavaScript debuggers were readily available, developers had to use creative methods to debug
their code. This led to the placement of code specifically designed to output debugging information in
one or more ways. The most common debugging technique was to insert alerts throughout the code
in question, which was both tedious, because it required cleanup after the code was debugged, and
annoying if an alert was mistakenly left in code that was used in a production environment. Alerts
are no longer recommended for debugging purposes, because several other, more elegant solutions are
available.

Logging Messages to a Console
All major browsers have JavaScript consoles that can be used to view JavaScript errors. All three also
allow you to write directly to the JavaScript console via the console object, which has the follow-
ing methods:

➤➤ error(message)—Logs an error message to the console

➤➤ info(message)—Logs an informational message to the console

➤➤ log(message)—Logs a general message to the console

➤➤ warn(message)—Logs a warning message to the console

The message display on the error console differs according to the method that was used to log the
message. Error messages contain a red icon, whereas warnings contain a yellow icon. Console mes-
sages may be used, as in the following function:

function sum(num1, num2){
 console.log('Entering sum(), arguments are ${num1},${num2}');

Debugging Techniques ❘ 841

 console.log("Before calculation");
 const result = num1 + num2;
 console.log("After calculation");

 console.log("Exiting sum()");
 return result;
}

As the sum() function is called, several messages are output to the JavaScript console to aid in
debugging.

Logging messages to the JavaScript console is helpful in debugging code, but all messages should be
removed when code goes to production. This can be done automatically, using a code-processing step
in deployment, or manually.

NOTE Logging messages is considered a better debugging method than using
alerts, because alerts interrupt program execution, which may affect the result of
the code as timing of asynchronous processes are affected. Logging also allows
you to print an arbitrary number of arguments and inspect object instances
(alerting an object will serialize it to a string before alerting, leading you to all-
too-often see Object[Object] as the alert message).

Understanding the Console Runtime
The browser console is a REPL (read-eval-print loop) that is concurrent with the page’s JavaScript
runtime. It behaves effectively the same way as if the browser were evaluating a newly discovered
<script> tag inside the DOM. Commands executed from inside the console can access globals and
various APIs in the same way that page-level JavaScript can. An arbitrary amount of code can be
evaluated from the console; as is the case with any other page-level code it is blocking. Modifications,
objects, and callbacks will persist to the DOM and/or runtime.

The JavaScript runtime will restrict what different windows can access, and so in all major browsers
you are able to select which window the JavaScript console inputs should execute in. The code you
execute does not execute with elevated privilege—it is still subject to cross-origin restrictions and any
other controls that are enforced by the browser.

The console runtime also has developer tool integration that offers you some contextual bonus tools
to help with debugging that are not available in normal JavaScript. One of the most useful tools is the
last-clicked selector, which is available in some form in all major browsers. In the Element tab inside
the developer tools, when you click a node in the DOM tree, you gain a reference to the JavaScript
instance of that node inside the Console tab by using $0. It behaves as a normal JavaScript instance,
so reading properties such as $0.scrollWidth and invoking member methods such as $0.remove()
are allowed.

842 ❘ CHAPTER 21 Error Handling and dEbugging

Using the JavaScript Debugger
Also available to you in all major browsers is the JavaScript debugger. As part of the ECMAScript 5.1
specification, the debugger keyword will attempt to invoke any available debugging functionality. If
there is no associated behavior, this statement will be silently skipped as a no-op. The statement can
be used as follows:

function pauseExecution(){
 console.log("Will print before breakpoint");
 debugger;
 console.log("Will not print until breakpoint continues");
}

When the runtime encounters the keyword, in all major browsers it will open the developer tools
panel with a breakpoint set at that exact point. You will then be able to use a separate browser
console that executes code at the specific lexical scope in which the breakpoint is currently stopped.
Additionally, you will be able to perform standard code debugger operations (step into, step over,
continue, and so on).

Browsers will also commonly allow you to set breakpoints manually (without using the debugger
keyword statement) by inspecting the actual loaded JavaScript code inside the developer tools and
selecting the line at which you would like to set the breakpoint. This set breakpoint will behave in the
same way, but it will not persist through browser sessions.

Logging Messages to the Page
Another common way to log debugging messages is to specify an area of the page that messages are
written to. This may be an element that is included all the time but only used for debugging purposes,
or an element that is created only when necessary. For example, the log() function may be changed
to the following:

function log(message) {
 // Lexical scope of this function will use the following instance
 // instead of window.console
 const console = document.getElementById("debuginfo");
 if (console === null){
 console = document.createElement("div");
 console.id = "debuginfo";
 console.style.background = "#dedede";
 console.style.border = "1px solid silver";
 console.style.padding = "5px";
 console.style.width = "400px";
 console.style.position = "absolute";
 console.style.right = "0px";
 console.style.top = "0px";
 document.body.appendChild(console);
 }

 console.innerHTML += '<p> ${message}</p>';
}

Debugging Techniques ❘ 843

In this new version of log(), the code first checks to see if the debugging element already exists. If
not, then a new <div> element is created and assigned stylistic information to separate it from the
rest of the page. After that, the message is written into the <div> using innerHTML. The result is a
small area that displays log information on the page.

NOTE As with console logging, page-logging code should be removed before the
code is used in a production environment.

Shimming Console Methods
It is burdensome to a developer to remember to use two different types of log statements—the native
console.log(), and a separately defined custom log(). Because console is a global object with
writable member methods, it is completely possible to overwrite its member methods with custom
behavior and allow log statements sprinkled throughout the codebase to happily log to whatever you
have defined.

You can define a shim as follows:

// Join all arguments into string and alert the result
console.log = function() {
 // 'arguments' does not have a join method, first convert arguments to array
 const args = Array.prototype.slice.call(arguments);
 console.log(args.join(', '));
}

Now, this will be invoked instead of the conventional log behavior. This modification will not persist
a page reload so it is a useful and lightweight strategy for debugging or log interception.

Throwing Errors
As mentioned earlier, throwing errors is an excellent way to debug code. If your error messages are
specific enough, just seeing the error as it’s reported may be enough to determine the error’s source.
The key to good error messages is for them to provide exact details about the cause of the error so
that additional debugging is minimal. Consider the following function:

function divide(num1, num2) {
 return num1 / num2;
}

This simple function divides two numbers but will return NaN if either of the two arguments isn’t a
number. Simple calculations often cause problems in web applications when they return NaN unex-
pectedly. In this case, you can check that the type of each argument is a number before attempting the
calculation. Consider the following example:

function divide(num1, num2) {
 if (typeof num1 != "number" || typeof num2 != "number"){

844 ❘ CHAPTER 21 Error Handling and dEbugging

 throw new Error("divide(): Both arguments must be numbers.");
 }
 return num1 / num2;
}

Here, an error is thrown if either of the two arguments isn’t a number. The error message provides the
name of the function and the exact cause of the error. When the browser reports this error message, it
immediately gives you a place to start looking for problems and a basic summary of the issue. This is
much easier than dealing with a nonspecific browser error message.

In large applications, custom errors are typically thrown using an assert() function. Such a function
takes a condition that should be true and throws an error if the condition is false. The following is a
very basic assert() function:

function assert(condition, message) {
 if (!condition) {
 throw new Error(message);
 }
}

The assert() function can be used in place of multiple if statements in a function and can be a
good location for error logging. This function can be used as follows:

function divide(num1, num2) {
 assert(typeof num1 == "number" && typeof num2 == "number",
 "divide(): Both arguments must be numbers.");
 return num1 / num2;
}

Using an assert() function reduces the amount of code necessary to throw custom errors and makes
the code more readable compared to the previous example.

COMMON LEGACY INTERNET EXPLORER ERRORS

Internet Explorer has traditionally been one of the most difficult browsers in which to debug Java-
Script errors. Legacy versions of the browser throw error messages that are generally short and
confusing, with little or no context given. The following sections provide a list of common and
difficult-to-debug JavaScript errors that may occur in legacy versions of Internet Explorer. Because
these browsers do not support ES6, the code will be backwards compatible.

Invalid Character
The syntax of a JavaScript file must be made up of certain characters. When an invalid character is
detected in a JavaScript file, IE throws the "invalid character" error. An invalid character is any
character not defined as part of JavaScript syntax. For example, there is a character that looks like
a minus sign but is represented by the Unicode value 8211 (\u2013). This character cannot be used
in place of a regular minus sign (ASCII code 45) because it’s not part of JavaScript syntax. This
special character is often automatically inserted into Microsoft Word documents, so you will get an
illegal character error if you were to copy code written in Word to a text editor and then run it in

Common Legacy Internet Explorer Errors ❘ 845

Internet Explorer. Other browsers react similarly. Firefox throws an "illegal character" error,
Safari reports a syntax error, and Opera reports a ReferenceError, because it interprets the charac-
ter as an undefined identifier.

Member Not Found
As mentioned previously, all DOM objects in Internet Explorer are implemented as COM objects
rather than in native JavaScript. This can result is some very strange behavior when it comes to
garbage collection. The "member not found" error is the direct result of the mismatched garbage
collection routines in Internet Explorer.

This error typically occurs when you’re trying to assign a value to an object property after the object
has already been destroyed. The object must be a COM object to get this specified error message.
The best example of this occurs when you are using the event object. The Internet Explorer event
object exists as a property of window and is created when the event occurs and destroyed after the last
event handler has been executed. So if you were to use the event object in a closure that was to be
executed later, any attempt to assign to a property of event will result in this error, as in the follow-
ing example:

document.onclick = function() {
 var event = window.event;
 setTimeout(function(){
 event.returnValue = false; // member not found error
 }, 1000);
};

In this code, a click handler is assigned to the document. It stores a reference to window.event in a
local variable named event. This event variable is then referenced in a closure that is passed into
setTimeout(). When the onclick event handler is exited, the event object is destroyed, so the refer-
ence in the closure is to an object whose members no longer exist. Assigning a value to returnValue
causes the "member not found" error because you cannot write to a COM object that has already
destroyed its members.

Unknown Runtime Error
An unknown runtime error occurs when HTML is assigned using the innerHTML or outerHTML prop-
erty in one of the following ways: if a block element is being inserted into an inline element or you’re
accessing either property on any part of a table (<table>, <tbody>, and so on). For example, a <p>
tag cannot technically contain a block-level element such as a <div>, so the following code will cause
an unknown runtime error:

p.innerHTML = "<div>Hi</div>"; // where p contains a <p> element

Other browsers attempt to error-correct when block elements are inserted in invalid places so that no
error occurs, but Internet Explorer is much stricter in this regard.

Syntax Error
Often when Internet Explorer reports a syntax error, the cause is immediately apparent. You can usu-
ally trace back the error to a missing semicolon or an errant closing brace. However, there is another
instance where a syntax error occurs that may not be immediately apparent.

846 ❘ CHAPTER 21 Error Handling and dEbugging

If you are referencing an external JavaScript file that for some reason returns non-JavaScript code,
Internet Explorer throws a syntax error. For example, if you set the src attribute of a <script> to
point to an HTML file, a syntax error occurs. The syntax error is typically reported as the first line
and first character of a script. Opera and Safari report a syntax error as well, but they will also report
the referenced file that caused the problem. Internet Explorer gives no such information, so you need
to double-check every externally referenced JavaScript file. Firefox simply ignores any parsing errors
in a non-JavaScript file that’s included as if it were JavaScript.

This type of error typically occurs when JavaScript is being dynamically generated by a server-side
component. Many server-side languages automatically insert HTML into the output if a runtime error
occurs, and such output clearly breaks JavaScript syntax. If you’re having trouble tracking down
a syntax error, double-check each external JavaScript file to be sure that it doesn’t contain HTML
inserted by the server because of an error.

The System Cannot Locate the Resource Specified
Perhaps one of the least useful error messages is "The system cannot locate the resource
specified." This error occurs when JavaScript is used to request a resource by URL and the URL
is longer than Internet Explorer’s maximum URL length of 2083 characters. This URL length limit
applies not just to JavaScript but also to Internet Explorer in general. (Other browsers do not limit
URL length so tightly.) There is also a URL path limit of 2048 characters. The following example
causes this error:

function createLongUrl(url) {
 var s = "?";
 for (var i = 0, len = 2500; i < len; i++){
 s += "a";
 }

 return url + s;
}

var x = new XMLHttpRequest();
x.open("get", createLongUrl("http://www.somedomain.com/"), true);
x.send(null);

In this code, the XMLHttpRequest object attempts to make a request to a URL that exceeds the
maximum URL limit. The error occurs when open() is called. One workaround for this type of error
is to shorten the query string necessary for the request to succeed, either by decreasing the size of the
named query string arguments or by eliminating unnecessary data. Another workaround is to change
the request to a POST and send the data as the request body instead of in the query string.

SUMMARY

Error handling in JavaScript is critical for today’s complex web applications. Failing to anticipate
where errors might occur and how to recover from them can lead to a poor user experience and pos-
sibly frustrated users. Most browsers don’t report JavaScript errors to users by default, so you need to
enable error reporting when developing and debugging. In production, however, no errors should ever
be reported this way.

Summary ❘ 847

The following methods can be used to prevent the browser from reacting to a JavaScript error:

➤➤ The try-catch statement can be used where errors may occur, giving you the opportu-
nity to respond to errors in an appropriate way instead of allowing the browser to handle
the error.

➤➤ Another option is to use the window.onerror event handler, which receives all errors that
are not handled by a try-catch (Internet Explorer, Firefox, and Chrome only).

Each web application should be inspected to determine where errors might occur and how those
errors should be dealt with.

➤➤ A determination as to what constitutes a fatal error or a nonfatal error needs to be made
ahead of time.

➤➤ After that, code can be evaluated to determine where the most likely errors will occur.
Errors commonly occur in JavaScript because of the following factors:

➤➤ Type coercion

➤➤ Insufficient data type checking

➤➤ Incorrect data being sent to or received from the server

Internet Explorer, Firefox, Chrome, Opera, and Safari each have JavaScript debuggers that either
come with the browser or can be downloaded as an add-on. Each debugger offers the ability to set
breakpoints, control code execution, and inspect the value of variables at runtime.

XML in JavaScript
WHAT’S IN THIS CHAPTER?

➤➤ Examining XML DOM support in browsers

➤➤ Understanding XPath in JavaScript

➤➤ Using XSLT processors

At one point in time, XML was the standard for structured data storage and transmission over
the Internet. The evolution of XML closely mirrored the evolution of web technologies, as the
DOM was developed for use not just in web browsers but also in desktop and server applica-
tions for dealing with XML data structures. Many developers started writing their own XML
parsers in JavaScript to deal with the lack of built-in solutions. Since that time, all browsers
have introduced native support for XML, the XML DOM, and many related technologies.

XML DOM SUPPORT IN BROWSERS

Because browser vendors began implementing XML solutions before formal standards were
created, each offers not only different levels of support but also different implementations.
DOM Level 2 was the first specification to introduce the concept of dynamic XML DOM
creation. This capability was expanded in DOM Level 3 to include parsing and serialization.
By the time DOM Level 3 was finalized, however, most browsers had implemented their own
solutions.

22

Professional JavaScript® for Web Developers, Fourth Edition. Matt Frisbie.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

850 ❘ CHAPTER 22 XML in JavaScript

DOM Level 2 Core
As mentioned in Chapter 12, DOM Level 2 introduced the createDocument() method of docu-
ment.implementation. You may recall that it’s possible to create a blank XML document using the
following syntax:

let xmldom = document.implementation.createDocument(namespaceUri, root, doctype);

When dealing with XML in JavaScript, the root argument is typically the only one that is used
because this defines the tag name of the XML DOM’s document element. The namespaceUri argu-
ment is used sparingly because namespaces are difficult to manage from JavaScript. The doctype
argument is rarely, if ever, used.

To create a new XML document with document element of <root>, you can use the following code:

let xmldom = document.implementation.createDocument("", "root", null);

console.log(xmldom.documentElement.tagName); // "root"

let child = xmldom.createElement("child");
xmldom.documentElement.appendChild(child);

This example creates an XML DOM document with no default namespace and no doctype. Note
that even though a namespace and doctype aren’t needed, the arguments must still be passed in. An
empty string is passed as the namespace URI so that no namespace is applied, and null is passed as
the doctype. The xmldom variable contains an instance of the DOM Level 2 Document type, complete
with all of the DOM methods and properties discussed in Chapter 12. In this example, the document
element’s tag name is displayed and then a new child element is created and added.

You can check to see if DOM Level 2 XML support is enabled in a browser by using the following
line of code:

let hasXmlDom = document.implementation.hasFeature("XML", "2.0");

In practice, it is rare to create an XML document from scratch and then build it up systematically
using DOM methods. It is much more likely that an XML document needs to be parsed into a DOM
structure, or vice versa. Because DOM Level 2 didn’t provide for such functionality, a couple of de
facto standards emerged.

The DOMParser Type
Firefox introduced the DOMParser type specifically for parsing XML into a DOM document, and it
was later adopted by all other browser vendors. To use it, you must first create an instance of DOM-
Parser and then call the parseFromString() method. This method accepts two arguments: the
XML string to parse and a content type, which should always be "text/xml". The return value is an
instance of Document. Consider the following example:

let parser = new DOMParser();
let xmldom = parser.parseFromString("<root><child/></root>", "text/xml");

console.log(xmldom.documentElement.tagName); // "root"
console.log(xmldom.documentElement.firstChild.tagName); // "child"

XML DOM Support in Browsers ❘ 851

let anotherChild = xmldom.createElement("child");
xmldom.documentElement.appendChild(anotherChild);

let children = xmldom.getElementsByTagName("child");
console.log(children.length); // 2

In this example, a simple XML string is parsed into a DOM document. The DOM structure has
<root> as the document element with a single <child> element as its child. You can then interact
with the returned document using DOM methods.

The DOMParser can parse only well-formed XML and, as such, cannot parse HTML into an HTML
document. Unfortunately, browsers behave differently when a parsing error occurs. When a parsing
error occurs in Firefox, Opera, Safari, and Chrome, a Document object is still returned from parse-
FromString(), but its document element is <parsererror> and the content of the element is a
description of the parsing error. Here is an example:

<parsererror xmlns="http://www.mozilla.org/newlayout/xml/parsererror.xml">XML
Parsing Error: no element found Location: file:// /I:/My%20Writing/My%20Books/
Professional%20JavaScript/Second%20Edition/Examples/Ch15/DOMParserExample2.js Line
Number 1, Column 7:<sourcetext><root> ------^</sourcetext></parsererror>

Firefox and Opera both return documents in this format. Safari and Chrome return a document that
has a <parsererror> element embedded at the point where the parsing error occurred. Early Internet
Explorer versions throw a parsing error at the point where parseFromString() is called. Because
of these differences, the best way to determine if a parsing error has occurred is to use a try-catch
block, and if there’s no error, look for a <parsererror> element anywhere in the document via
getElementsByTagName(), as shown here:

let parser = new DOMParser(),
 xmldom,
 errors;
try {
 xmldom = parser.parseFromString("<root>", "text/xml");
 errors = xmldom.getElementsByTagName("parsererror");
 if (errors.length > 0) {
 throw new Error("Parsing error!");
 }
} catch (ex) {
 console.log("Parsing error!");
}

In this example, the string to be parsed is missing a closing </root> tag, which causes a parse
error. In Internet Explorer, this throws an error. In Firefox and Opera, the <parsererror> element
will be the document element, whereas it’s the first child <root> in Chrome and Safari. The call to
getElementsByTagName("parsererror") covers both cases. If any elements are returned by this
method call, then an error has occurred and an alert is displayed. You could go one step further and
extract the error information from the element as well.

The XMLSerializer Type
As a companion to DOMParser, Firefox also introduced the XMLSerializer type to provide the
reverse functionality: serializing a DOM document into an XML string. Since that time, the XMLSeri-
alizer has been adopted by all major browser vendors.

852 ❘ CHAPTER 22 XML in JavaScript

To serialize a DOM document, you must create a new instance of XMLSerializer and then pass the
document into the serializeToString() method, as in this example:

let serializer = new XMLSerializer();
let xml = serializer.serializeToString(xmldom);
console.log(xml);

The value returned from serializeToString() is a string that is not pretty-printed, so it may be
difficult to read with the naked eye.

The XMLSerializer is capable of serializing any valid DOM object, which includes individual nodes
and HTML documents. When an HTML document is passed into serializeToString(), it is
treated as an XML document, and so the resulting code is well-formed.

NOTE If a non-DOM object is passed into the serializeToString() method,
an error is thrown.

XPATH SUPPORT IN BROWSERS

XPath was created as a way to locate specific nodes within a DOM document, so it’s important to
XML processing. An API for XPath wasn’t part of a specification until DOM Level 3, which intro-
duced the DOM Level 3 XPath recommendation. Many browsers chose to implement this specifica-
tion, but Internet Explorer decided to implement support in its own way.

DOM Level 3 XPath
The DOM Level 3 XPath specification defines interfaces to use for evaluating XPath expressions
in the DOM. To determine if the browser supports DOM Level 3 XPath, use the following Java-
Script code:

let supportsXPath = document.implementation.hasFeature("XPath", "3.0");

Although there are several types defined in the specification, the two most important ones are
XPathEvaluator and XPathResult. The XPathEvaluator is used to evaluate XPath expressions
within a specific context. This type has the following three methods:

➤➤ createExpression(expression, nsresolver)—Computes the XPath expression and
accompanying namespace information into an XPathExpression, which is a compiled ver-
sion of the query. This is useful if the same query is going to be run multiple times.

➤➤ createNSResolver(node)—Creates a new XPathNSResolver object based on the
namespace information of node. An XPathNSResolver object is required when evaluating
against an XML document that uses namespaces.

➤➤ evaluate(expression, context, nsresolver, type, result)—Evaluates an XPath
expression in the given context and with specific namespace information. The additional
arguments indicate how the result should be returned.

XPath Support in Browsers ❘ 853

The Document type is typically implemented with the XPathEvaluator interface. So you can either
create a new instance of XPathEvaluator or use the methods located on the Document instance (for
both XML and HTML documents).

Of the three methods, evaluate() is the most frequently used. This method takes five arguments: the
XPath expression, a context node, a namespace resolver, the type of result to return, and an XPath-
Result object to fill with the result (usually null, because the result is also returned as the function
value). The third argument, the namespace resolver, is necessary only when the XML code uses an
XML namespace. If namespaces aren’t used, this should be set to null. The fourth argument, the type
of result to return, is one of the following 10 constants values:

➤➤ XPathResult.ANY_TYPE—Returns the type of data appropriate for the XPath expression.

➤➤ XPathResult.NUMBER _ TYPE—Returns a number value.

➤➤ XPathResult.STRING _ TYPE—Returns a string value.

➤➤ XPathResult.BOOLEAN _ TYPE—Returns a Boolean value.

➤➤ XPathResult.UNORDERED _ NODE _ ITERATOR _ TYPE—Returns a node set of matching
nodes, although the order may not match the order of the nodes within the document.

➤➤ XPathResult.ORDERED _ NODE _ ITERATOR _ TYPE—Returns a node set of matching
nodes in the order in which they appear in the document. This is the most commonly used
result type.

➤➤ XPathResult.UNORDERED _ NODE _ SNAPSHOT _ TYPE—Returns a node set snapshot, cap-
turing the nodes outside of the document so that any further document modification doesn’t
affect the node set. The nodes in the node set are not necessarily in the same order as they
appear in the document.

➤➤ XPathResult.ORDERED _ NODE _ SNAPSHOT _ TYPE—Returns a node set snapshot, cap-
turing the nodes outside of the document so that any further document modification doesn’t
affect the result set. The nodes in the result set are in the same order as they appear in
the document.

➤➤ XPathResult.ANY _ UNORDERED _ NODE _ TYPE—Returns a node set of matching nodes,
although the order may not match the order of the nodes within the document.

➤➤ XPathResult.FIRST _ ORDERED _ NODE _ TYPE—Returns a node set with only one node,
which is the first matching node in the document.

The type of result you specify determines how to retrieve the value of the result. Here’s a typi-
cal example:

let result = xmldom.evaluate("employee/name", xmldom.documentElement, null,
 XPathResult.ORDERED_NODE_ITERATOR_TYPE, null);

if (result !== null) {
 let element = result.iterateNext();
 while(element) {

854 ❘ CHAPTER 22 XML in JavaScript

 console.log(element.tagName);
 node = result.iterateNext();
 }
}

This example uses the XPathResult.ORDERED_NODE_ITERATOR_TYPE result, which is the most com-
monly used result type. If no nodes match the XPath expression, evaluate() returns null; other-
wise, it returns an XPathResult object. The XPathResult has properties and methods for retrieving
results of specific types. If the result is a node iterator, whether it be ordered or unordered, the
iterateNext() method must be used to retrieve each matching node in the result. When there are no
further matching nodes, iterateNext() returns null.

If you specify a snapshot result type (either ordered or unordered), you must use the snapshotItem()
method and snapshotLength property, as in the following example:

let result = xmldom.evaluate("employee/name", xmldom.documentElement, null,
 XPathResult.ORDERED_NODE_SNAPSHOT_TYPE, null);
if (result !== null) {
 for (let i = 0, len=result.snapshotLength; i < len; i++) {
 console.log(result.snapshotItem(i).tagName);
 }
}

In this example, snapshotLength returns the number of nodes in the snapshot, and snapshotItem()
returns the node in a given position in the snapshot (similar to length and item() in a NodeList).

Single Node Results
The XPathResult.FIRST_ORDERED_NODE_TYPE result returns the first matching node, which is acces-
sible through the singleNodeValue property of the result. For example:

let result = xmldom.evaluate("employee/name", xmldom.documentElement, null,
 XPathResult.FIRST_ORDERED_NODE_TYPE, null);

if (result !== null) {
 console.log(result.singleNodeValue.tagName);
}

As with other queries, evaluate() returns null when there are no matching nodes. If a node is
returned, it is accessed using the singleNodeValue property. This is the same for XPathResult.
FIRST_ORDERED_NODE_TYPE.

Simple Type Results
It’s possible to retrieve simple, nonnode data types from XPath as well, using the XPathResult types
of Boolean, number, and string. These result types return a single value using the booleanValue, num-
berValue, and stringValue properties, respectively. For the Boolean type, the evaluation typically
returns true if at least one node matches the XPath expression and returns false otherwise. Con-
sider the following:

let result = xmldom.evaluate("employee/name", xmldom.documentElement, null,
 XPathResult.BOOLEAN_TYPE, null);
console.log(result.booleanValue);

XPath Support in Browsers ❘ 855

In this example, if any nodes match "employee/name", the booleanValue property is equal to true.

For the number type, the XPath expression must use an XPath function that returns a number, such
as count(), which counts all the nodes that match a given pattern. Here’s an example:

let result = xmldom.evaluate("count(employee/name)", xmldom.documentElement,
 null, XPathResult.NUMBER_TYPE, null);
console.log(result.numberValue);

This code outputs the number of nodes that match "employee/name" (which is 2). If you try using
this method without one of the special XPath functions, numberValue is equal to NaN.

For the string type, the evaluate() method finds the first node matching the XPath expression and
then returns the value of the first child node, assuming the first child node is a text node. If not, the
result is an empty string. Here is an example:

let result = xmldom.evaluate("employee/name", xmldom.documentElement, null,
 XPathResult.STRING_TYPE, null);
console.log(result.stringValue);

In this example, the code outputs the string contained in the first text node under the first element
matching "element/name".

Default Type Results
All XPath expressions automatically map to a specific result type. Setting the specific result type
limits the output of the expression. You can, however, use the XPathResult.ANY_TYPE constant to
allow the automatic result type to be returned. Typically, the result type ends up as a Boolean value, a
number value, a string value, or an unordered node iterator. To determine which result type has been
returned, use the resultType property on the evaluation result, as shown in this example:

let result = xmldom.evaluate("employee/name", xmldom.documentElement, null,
 XPathResult.ANY_TYPE, null);

if (result !== null) {
 switch(result.resultType) {
 case XPathResult.STRING_TYPE:
 // handle string type
 break;

 case XPathResult.NUMBER_TYPE:
 // handle number type
 break;

 case XPathResult.BOOLEAN_TYPE:
 // handle boolean type
 break;

 case XPathResult.UNORDERED_NODE_ITERATOR_TYPE:
 // handle unordered node iterator type
 break;

 default:
 // handle other possible result types

 }
}

856 ❘ CHAPTER 22 XML in JavaScript

Using the XPathResult.ANY_TYPE constant allows more natural use of XPath but may also require
extra processing code after the result is returned.

Namespace Support
For XML documents that make use of namespaces, the XPathEvaluator must be informed of the
namespace information in order to make a proper evaluation. There are a number of ways to accom-
plish this. Consider the following XML code:

<?xml version="1.0" ?>
<wrox:books xmlns:wrox="http://www.wrox.com/">
 <wrox:book>
 <wrox:title>Professional JavaScript for Web Developers</wrox:title>
 <wrox:author>Nicholas C. Zakas</wrox:author>
 </wrox:book>
 <wrox:book>
 <wrox:title>Professional Ajax</wrox:title>
 <wrox:author>Nicholas C. Zakas</wrox:author>
 <wrox:author>Jeremy McPeak</wrox:author>
 <wrox:author>Joe Fawcett</wrox:author>
 </wrox:book>
</wrox:books>

In this XML document, all elements are part of the http://www.wrox.com/ namespace, identified
by the wrox prefix. If you want to use XPath with this document, you need to define the namespaces
being used; otherwise the evaluation will fail.

The first way to handle namespaces is to create an XPathNSResolver object via the createNSRe-
solver() method. This method accepts a single argument, which is a node in the document that
contains the namespace definition. In the previous example, this node is the document element
<wrox:books>, which has the xmlns attribute defining the namespace. This node can be passed into
createNSResolver(), and the result can then be used in evaluate()as follows:

let nsresolver = xmldom.createNSResolver(xmldom.documentElement);

let result = xmldom.evaluate("wrox:book/wrox:author",
 xmldom.documentElement, nsresolver,
 XPathResult.ORDERED_NODE_SNAPSHOT_TYPE, null);

console.log(result.snapshotLength);

When the nsresolver object is passed into evaluate(), it ensures that the wrox prefix used in the
XPath expression will be understood appropriately. Attempting to use this same expression without
using an XPathNSResolver will result in an error.

The second way to deal with namespaces is by defining a function that accepts a namespace prefix
and returns the associated URI, as in this example:

let nsresolver = function(prefix) {
 switch(prefix) {

XSLT Support in Browsers ❘ 857

 case "wrox": return "http://www.wrox.com/";
 // others here
 }
};

let result = xmldom.evaluate("count(wrox:book/wrox:author)",
 xmldom.documentElement, nsresolver, XPathResult.NUMBER_TYPE, null);

console.log(result.numberValue);

Defining a namespace-resolving function is helpful when you’re not sure which node of a document
contains the namespace definitions. As long as you know the prefixes and URIs, you can define a
function to return this information and pass it in as the third argument to evaluate().

XSLT SUPPORT IN BROWSERS

XSLT is a companion technology to XML that makes use of XPath to transform one document
representation into another. Unlike XML and XPath, XSLT has no formal API associated with it and
is not represented in the formal DOM at all. This left browser vendors to implement support in their
own way. The first browser to add XSLT processing in JavaScript was Internet Explorer.

The XSLTProcessor Type
Mozilla implemented JavaScript support for XSLT in Firefox by creating a new type. The XSLT-
Processor type allows developers to transform XML documents by using XSLT in a manner similar
to the XSL processor in Internet Explorer. Since it was first implemented, all major browsers have
copied the implementation, making XSLTProcessor into a de facto standard for JavaScript-enabled
XSLT transformations.

As with the Internet Explorer implementation, the first step is to load two DOM documents, one with
the XML and the other with the XSLT. After that, create a new XSLTProcessor and use the import-
Stylesheet() method to assign the XSLT to it, as shown in this example:

let processor = new XSLTProcessor()
processor.importStylesheet(xsltdom);

The last step is to perform the transformation. This can be done in two different ways. If you want
to return a complete DOM document as the result, call transformToDocument(). You can also get
a document fragment object as the result by calling transformToFragment(). Generally speak-
ing, the only reason to use transformToFragment() is if you intend to add the results to another
DOM document.

When using transformToDocument(), just pass in the XML DOM and use the result as another
completely different DOM. Here’s an example:

let result = processor.transformToDocument(xmldom);
console.log(serializeXml(result));

The transformToFragment() method accepts two arguments: the XML DOM to transform and the
document that should own the resulting fragment. This ensures that the new document fragment is

858 ❘ CHAPTER 22 XML in JavaScript

valid in the destination document. You can, therefore, create the fragment and add it to the page by
passing in document as the second argument. Consider the following example:

let fragment = processor.transformToFragment(xmldom, document);
let div = document.getElementById("divResult");
div.appendChild(fragment);

Here, the processor creates a fragment owned by the document object. This enables the fragment to
be added to a <div> element that exists in the page.

When the output format for an XSLT style sheet is either "xml" or "html", creating a document or
document fragment makes perfect sense. When the output format is "text", however, you typically
just want the text result of the transformation. Unfortunately, there is no method that returns text
directly. Calling transformToDocument() when the output is "text" results in a full XML docu-
ment being returned, but the contents of that document are different from browser to browser. Safari,
for example, returns an entire HTML document, whereas Opera and Firefox return a one-element
document with the output as the element’s text.

The solution is to call transformToFragment(), which returns a document fragment that has a sin-
gle child node containing the result text. You can, therefore, get the text by using the following code:

let fragment = processor.transformToFragment(xmldom, document);
let text = fragment.firstChild.nodeValue;
console.log(text);

This code works the same way for each of the supporting browsers and correctly returns just the text
output from the transformation.

Using Parameters
The XSLTProcessor also allows you to set XSLT parameters using the setParameter() method,
which accepts three arguments: a namespace URI, the parameter local name, and the value to set.
Typically, the namespace URI is null, and the local name is simply the parameter’s name. This
method must be called prior to transformToDocument() or transformToFragment(). Here’s
an example:

let processor = new XSLTProcessor()
processor.importStylesheet(xsltdom);
processor.setParameter(null, "message", "Hello World!");
let result = processor.transformToDocument(xmldom);

Two other methods are related to parameters, getParameter() and removeParameter(); they
are used to get the current value of a parameter and remove the parameter value, respectively. Each
method takes the namespace URI (once again, typically null) and the local name of the parameter.
For example:

let processor = new XSLTProcessor()
processor.importStylesheet(xsltdom);
processor.setParameter(null, "message", "Hello World!");

console.log(processor.getParameter(null, "message")); // outputs "Hello World!"
processor.removeParameter(null, "message");

let result = processor.transformToDocument(xmldom);

Summary ❘ 859

These methods aren’t used often and are provided mostly for convenience.

Resetting the Processor
Each XSLTProcessor instance can be reused multiple times for multiple transformations with differ-
ent XSLT style sheets. The reset() method removes all parameters and style sheets from the proces-
sor, allowing you to once again call importStylesheet() to load a different XSLT style sheet, as in
this example:

let processor = new XSLTProcessor()
processor.importStylesheet(xsltdom);

// do some transformations

processor.reset();
processor.importStylesheet(xsltdom2);

// do more transformations

Reusing a single XSLTProcessor saves memory when using multiple style sheets to perform trans-
formations.

SUMMARY

There is a great deal of support for XML and related technologies in JavaScript. Unfortunately,
because of an early lack of specifications, there are several different implementations for common
functionality. DOM Level 2 provides an API for creating empty XML documents but not for parsing
or serialization. Browsers implemented two new types to deal with XML parsing and serialization
as follows:

➤➤ The DOMParser type is a simple object that parses an XML string into a DOM document.

➤➤ The XMLSerializer type performs the opposite operation, serializing a DOM document
into an XML string.

DOM Level 3 introduced a specification for an XPath API that has been implemented by all major
browsers. The API enables JavaScript to run any XPath query against a DOM document and retrieve
the result regardless of its data type.

The last related technology is XSLT, which has no public specification defining an API for its usage.
Firefox created the XSLTProcessor type to handle transformations via JavaScript.

JSON
WHAT’S IN THIS CHAPTER?

➤➤ Understanding JSON syntax

➤➤ JSON parsing

➤➤ JSON serialization

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/projavascript4e on the Down-
load Code tab.

There was a time when XML was the de facto standard for transmitting structured data over
the internet. The first iteration of web services was largely XML-based, highlighting its target of
server-to-server communication. XML was not, however, without its detractors. Some believed
that the language was overly verbose and redundant. Several solutions arose to counter these
problems, but the web had already started moving in a new direction.

Douglas Crockford first specified JavaScript Object Notation (JSON) as IETF RFC 4627 in
2006, even though it was in use as early as 2001. JSON is a strict subset of JavaScript, making
use of several patterns found in JavaScript to represent structured data. Crockford put forth
JSON as a better alternative to XML for accessing structured data in JavaScript because it
could be passed directly to eval() and didn’t require the creation of a DOM.

The most important thing to understand about JSON is that it is a data format, not a program-
ming language. JSON is not a part of JavaScript even though they share syntax. JSON is also
not solely used by JavaScript because it is a data format. There are parsers and serializers avail-
able in many programming languages.

23

Professional JavaScript® for Web Developers, Fourth Edition. Matt Frisbie.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

862 ❘ CHAPTER 23 JSON

SYNTAX

JSON syntax allows the representation of three types of values:

➤➤ Simple values—Strings, numbers, Booleans, and null can all be represented in JSON using
the same syntax as JavaScript. The special value undefined is not supported.

➤➤ Objects—The first complex data type, objects represent ordered key-value pairs. Each value
may be a primitive type or a complex type.

➤➤ Arrays—The second complex data type, arrays represent an ordered list of values that are
accessible via a numeric index. The values may be of any type, including simple values,
objects, and even other arrays.

There are no variables, functions, or object instances in JSON. JSON is all about representing struc-
tured data, and although it shares syntax with JavaScript, it should not be confused with JavaScript
paradigms.

Simple Values
In its simplest form, JSON represents a small number of simple values. For example, the following is
valid JSON:

5

This is JSON that represents the number 5. Likewise, the following is also valid JSON represent-
ing a string:

"Hello world!"

The big difference between JavaScript strings and JSON strings is that JSON strings must use double
quotes to be valid (single quotes causes a syntax error).

Boolean values and null are valid exactly as they are as standalone JSON. In practice, however,
JSON is most often used to represent more complex data structures of which simple values represent
just part of the overall information.

Objects
Objects are represented using a slight modification of object literal notation. Object literals in Java-
Script look like this:

let person = {
 name: "Nicholas",
 age: 29
};

While this is the standard way that developers create object literals, it’s the quoted property format
that is used in JSON. The following is exactly the same as the previous example:

let object = {
 "name": "Nicholas",
 "age": 29
};

Syntax ❘ 863

The JSON representation of this same object is then:

{
 "name": "Nicholas",
 "age": 29
}

There are a couple of differences from the JavaScript example. First, there is no variable declaration
(variables don’t exist in JSON). Second, there is no trailing semicolon (not needed because this isn’t
a JavaScript statement). Once again, the quotes around the property name are required to be valid
JSON. The value can be any simple or complex value, which allows you to embed objects within
objects, such as:

{
 "name": "Nicholas",
 "age": 29,
 "school": {
 "name": "Merrimack College",
 "location": "North Andover, MA"
 }
}

This example embeds school information into the top-level object. Even though there are two proper-
ties called "name", they are in two different objects and so are allowed. You do want to avoid having
two properties of the same name in the same object.

Unlike JavaScript, object property names in JSON must always be double-quoted. It’s a common
mistake to hand-code JSON without these double quotes or using single quotes.

Arrays
The second complex type in JSON is the array. Arrays are represented in JSON using array literal
notation from JavaScript. For example, this is an array in JavaScript:

let values = [25, "hi", true];

You can represent this same array in JSON using a similar syntax:

[25, "hi", true]

Note once again the absence of a variable or a semicolon. Arrays and objects can be used together to
represent more complex collections of data, such as:

[
 {
 "title": "Professional JavaScript",
 "authors": [
 "Nicholas C. Zakas",
 "Matt Frisbie"
],
 "edition": 4,
 "year": 2017
 },
 {
 "title": "Professional JavaScript",

864 ❘ CHAPTER 23 JSON

 "authors": [
 "Nicholas C. Zakas"
],
 "edition": 3,
 "year": 2011
 },
 {
 "title": "Professional JavaScript",
 "authors": [
 "Nicholas C. Zakas"
],
 "edition": 2,
 "year": 2009
 },
 {
 "title": "Professional Ajax",
 "authors": [
 "Nicholas C. Zakas",
 "Jeremy McPeak",
 "Joe Fawcett"
],
 "edition": 2,
 "year": 2008
 },
 {
 "title": "Professional Ajax",
 "authors": [
 "Nicholas C. Zakas",
 "Jeremy McPeak",
 "Joe Fawcett"
],
 "edition": 1,
 "year": 2007
 },
 {
 "title": "Professional JavaScript",
 "authors": [
 "Nicholas C. Zakas"
],
 "edition": 1,
 "year": 2006
 }
]

This array contains a number of objects representing books. Each object has several keys, one of
which is "authors", which is another array. Objects and arrays are typically top-level parts of a
JSON data structure (even though this is not required) and can be used to create a large number of
data structures.

PARSING AND SERIALIZATION

JSON rose to popularity not necessarily because it used familiar syntax. Rather, it became popular
because the data could be parsed into a usable object in JavaScript. This stood in stark contrast to
XML that was parsed into a DOM document, making extraction of data into a bit of a chore for

Parsing and Serialization ❘ 865

JavaScript developers. For example, the JSON code in the previous section contains a list of books,
and you can easily get the title of the third book via:

books[2].title

This assumes that the data structure was stored in a variable named books. Compare this to a typical
walk through of a DOM structure:

doc.getElementsByTagName("book")[2].getAttribute("title");

With all of the extra method calls, it’s no wonder that JSON became incredibly popular with
JavaScript developers. After that, JSON went on to become the de facto serialization standard for
web services.

The JSON Object
Early JSON parsers did little more than use JavaScript’s eval() function. Because JSON is a subset
of JavaScript’s syntax, eval() could parse, interpret, and return the data as JavaScript objects and
arrays. ECMAScript 5 formalized JSON parsing under a native global called JSON. This object is
supported in all major browsers. A shim for older browsers can be found at https://github.com/
douglascrockford/JSON-js. It’s important not to use eval() alone for evaluating JSON in older
browsers because of the risk of executable code. The JSON shim is the best option for browsers with-
out native JSON parsing.

The JSON object has two methods: stringify() and parse(). In simple usage, these methods
serialize JavaScript objects into a JSON string and parse JSON into a native JavaScript value, respec-
tively. For example:

let book = {
 title: "Professional JavaScript",
 authors: [
 "Nicholas C. Zakas",
 "Matt Frisbie"
],
 edition: 4,
 year: 2017
};
let jsonText = JSON.stringify(book);

This example serializes a JavaScript object into a JSON string using JSON.stringify() and stores it
in jsonText. By default, JSON.stringify() outputs a JSON string without any extra white space or
indentation, so the value stored in jsonText is as follows:

{"title":"Professional JavaScript","authors":["Nicholas C. Zakas","Matt Frisbie"],"
edition":4,"year":2017}

When serializing a JavaScript object, all functions and prototype members are intentionally omitted
from the result. Additionally, any property whose value is undefined is also skipped. You’re left with
just a representation of the instance properties that are one of the JSON data types.

A JSON string can be passed directly into JSON.parse() and it creates an appropriate JavaScript
value. For example, you can create an object similar to the book object using this code:

let bookCopy = JSON.parse(jsonText);

866 ❘ CHAPTER 23 JSON

Note that book and bookCopy are each separate objects without any relationship to one another even
though they do share the same properties.

An error is thrown if the text passed into JSON.parse() is not valid JSON.

Serialization Options
The JSON.stringify() method actually accepts two arguments in addition to the object to serialize.
These arguments allow you to specify alternate ways to serialize a JavaScript object. The first argu-
ment is a filter, which can be either an array or a function, and the second argument is an option for
indenting the resulting JSON string. When used separately or together, this provides some very useful
functionality for controlling JSON serialization.

Filtering Results
If the argument is an array, then JSON.stringify()will include only object properties that are listed
in the array. Consider the following:

let book = {
 title: "Professional JavaScript",
 authors: [
 "Nicholas C. Zakas",
 "Matt Frisbie"
],
 edition: 4,
 year: 2017
};
let jsonText = JSON.stringify(book, ["title", "edition"]);

The second argument to JSON.stringify() is an array with two strings: "title" and "edition".
These correspond to properties in the object being serialized, so only those properties appear in the
resulting JSON string:

{"title":"Professional JavaScript","edition":4}

When the second argument is a function, the behavior is slightly different. The provided function
receives two arguments: the property key name and the property value. You can look at the key to
determine what to do with the property. The key is always a string but might be an empty string if a
value isn’t part of a key-value pair.

In order to change the serialization of the object, return the value that should be included for that
key. Keep in mind that returning undefined will result in the property being omitted from the result.
Here’s an example:

let book = {
 title: "Professional JavaScript",
 authors: [
 "Nicholas C. Zakas",
 "Matt Frisbie"
],
 edition: 4,
 year: 2017
};

Parsing and Serialization ❘ 867

let jsonText = JSON.stringify(book, (key, value) => {
 switch(key) {
 case "authors":
 return value.join(",")
 case "year":
 return 5000;
 case "edition":
 return undefined;
 default:
 return value;
 }
});

The function filters based on the key. The "authors" key is translated from an array to a string, the
"year" key is set to 5000, and the "edition" key is removed altogether by returning undefined. It’s
important to provide a default behavior that returns the passed-in value so that all other values are
passed through to the result. The first call to this function actually has key equal to an empty string
and the value set to the book object. The resulting JSON string is:

{"title":"Professional JavaScript","authors":"Nicholas C. Zakas,Matt
Frisbie","year":5000}

Keep in mind that filters apply to all objects contained in the object to be serialized, so an array of
multiple objects with these properties will result in every object including only the "title" and
"edition" properties.

Firefox 3.5–3.6 had a bug in its implementation of JSON.stringify() when a function was used as
the second argument. The function can act only as a filter: returning undefined means the property
is skipped, while returning anything else causes the property to be included. This behavior was fixed
in Firefox 4.

String Indentation
The third argument of JSON.stringify() controls indentation and white space. When this argument
is a number, it represents the number of spaces to indent each level. For example, to indent each level
by four spaces, use the following:

let book = {
 title: "Professional JavaScript",
 authors: [
 "Nicholas C. Zakas",
 "Matt Frisbie"
],
 edition: 4,
 year: 2017
};
let jsonText = JSON.stringify(book, null, 4);

The following is the string stored in jsonText:

{
 "title": "Professional JavaScript",
 "authors": [
 "Nicholas C. Zakas",

868 ❘ CHAPTER 23 JSON

 "Matt Frisbie"
],
 "edition": 4,
 "year": 2017
}

You may have noticed that JSON.stringify() also inserts new lines into the JSON string for easier
reading. This happens for all valid indentation argument values. (Indentation without new lines isn’t
very useful.) The maximum numeric indentation value is 10; passing in a value larger than 10 auto-
matically sets the value to 10.

If the indentation argument is a string instead of a number, then the string is used as the indentation
character for the JSON string instead of a space. Using a string, you can set the indentation character
to be a tab or something completely arbitrary like two dashes:

let jsonText = JSON.stringify(book, null, "--");

The jsonText value then becomes:

{
--"title": "Professional JavaScript",
--"authors": [
----"Nicholas C. Zakas",
----"Matt Frisbie"
--],
--"edition": 4,
--"year": 2017
}

There is a ten-character limit on the indentation string to use. If a string longer than ten characters is
used, then it is truncated to the first ten characters.

The toJSON() Method
Sometimes objects need custom JSON serialization above and beyond what JSON.stringify()
can do. In those cases, you can add a toJSON() method to the object and have it return the proper
JSON representation for itself. In fact, the native Date object has a toJSON() method that automati-
cally converts JavaScript Date objects into an ISO 8601 date string (essentially, the same as calling
toISOString() on the Date object).

A toJSON() method can be added to any object, for example:

let book = {
 title: "Professional JavaScript",
 authors: [
 "Nicholas C. Zakas",
 "Matt Frisbie"
],
 edition: 4,
 year: 2017,
 toJSON: function() {
 return this.title;
 }
};
let jsonText = JSON.stringify(book);

Parsing and Serialization ❘ 869

This code defines a toJSON() method on the book object that simply returns the title of the book.
Similar to the Date object, this object is serialized to a simple string instead of an object. You can
return any serialization value from toJSON(), and it will work appropriately. Returning undefined
causes the value to become null if the object is embedded in another object or else is just undefined
if the object is top-level. Note here that an arrow function is not used for the toJSON() method. This
is primarily because the lexical scope of the arrow function will be the global scope, which is unhelp-
ful in this example.

The toJSON() method can be used in addition to the filter function so it’s important to understand
the order in which the various parts of a serialization process take place. When an object is passed
into JSON.stringify(), the following steps are taken:

1. Call the toJSON() method if it’s available to retrieve the actual value. Use the default seriali-
zation otherwise.

2. If the second argument is provided, apply the filter. The value that is passed into a filter func-
tion will be the value returned from Step 1.

3. Each value from Step 2 is serialized appropriately.

4. If the third argument is provided, format appropriately.

It’s important to understand this order when deciding whether to create a toJSON() method or to use
a filter function or to do both.

Parsing Options
The JSON.parse() method also accepts an additional argument, which is a function that is called on
each key-value pair. The function is called a reviver function to distinguish it from the replacer (filter)
function that JSON.stringify() accepts, even though the format is exactly the same: the function
receives two arguments, the key and the value, and needs to return a value.

If the reviver function returns undefined, then the key is removed from the result; if it returns any
other value, that value is inserted into the result. A very common use of the reviver function is to turn
date strings into Date objects. For example:

let book = {
 title: "Professional JavaScript",
 authors: [
 "Nicholas C. Zakas",
 "Matt Frisbie"
],
 edition: 4,
 year: 2017,
 releaseDate: new Date(2017, 11, 1)
};
let jsonText = JSON.stringify(book);
let bookCopy = JSON.parse(jsonText,
 (key, value) => key == "releaseDate" ? new Date(value) : value);
alert(bookCopy.releaseDate.getFullYear());

870 ❘ CHAPTER 23 JSON

This code starts with the addition of a releaseDate property to the book object, which is a Date.
The object is serialized to get a valid JSON string and then parsed back into an object, bookCopy. The
reviver function looks for the "releaseDate" key and, when found, creates a new Date object based
on that string. The resulting bookCopy.releaseDate property is then a Date object so the getFul-
lYear() method can be called.

SUMMARY

JSON is a lightweight data format designed to easily represent complex data structures. The format
uses a subset of JavaScript syntax to represent objects, arrays, strings, numbers, Booleans, and null.
Even though XML can handle the same job, JSON is less verbose and has better support in Java-
Script. What’s more, the native JSON object is well supported across all browsers.

ECMAScript 5 defines a native JSON object that is used for serialization of objects into JSON for-
mat and for parsing JSON data into JavaScript objects. The JSON.stringify() and JSON.parse()
methods are used for these two operations, respectively. Both methods have a number of options that
allow you to change the default behavior to filter or otherwise modify the process.

Network Requests and
Remote Resources

WHAT’S IN THIS CHAPTER?

➤➤ Using the XMLHttpRequest object

➤➤ Working with XMLHttpRequest events

➤➤ Cross-domain Ajax restrictions

➤➤ Fetch API

➤➤ Streams API

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/projavascript4e on the Down-
load Code tab.

In 2005, Jesse James Garrett penned an online article titled “Ajax: A New Approach to Web
Applications”. This article outlined a technique that he referred to as Ajax, short for Asynchro-
nous JavaScript+XML. The technique consisted of making server requests for additional data
without unloading the web page, resulting in a better user experience. Garrett explained how
this technique could be used to change the traditional click-and-wait paradigm that the web
had been stuck in since its inception.

The key technology pushing Ajax forward was the XMLHttpRequest (XHR) object, first
invented by Microsoft and then duplicated by other browser vendors. Prior to the introduction
of XHR, Ajax-style communication had to be accomplished through a number of hacks, mostly
using hidden frames or iframes. XHR introduced a streamlined interface for making server
requests and evaluating the responses. This allowed for asynchronous retrieval of additional

24

Professional JavaScript® for Web Developers, Fourth Edition. Matt Frisbie.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

872 ❘ CHAPTER 24 Network requests aNd remote resources

information from the server, meaning that a user click didn’t have to refresh the page to retrieve more
data. Instead, an XHR object could be used to retrieve the data and then the data could be inserted
into the page using the DOM. And despite the mention of XML in the name, Ajax communication is
format-agnostic; the technique is about retrieving data from the server without refreshing a page, not
necessarily about XML.

The technique that Garrett referred to as Ajax had, in fact, been around for some time. Typically called
remote scripting prior to Garrett’s article, such browser-server communication has been possible since
1998 using different techniques. Early on, server requests could be made from JavaScript through an
intermediary, such as a Java applet or Flash movie. The XHR object brought native browser communi-
cation capabilities to developers, reducing the amount of work necessary to achieve the result.

The XHR object’s API is widely regarded as difficult to use, and, in the time since its introduction, the
Fetch API has blossomed as a modernized replacement for XHR. Its support for promises and service
workers has made it an incredibly powerful web development tool.

NOTE This chapter includes full coverage of XMLHttpRequest, but in general
it is an artifact of outdated JavaScript specifications and should only be used for
legacy browser support—use fetch() whenever possible.

THE XMLHttpRequest OBJECT

Internet Explorer 5 was the first browser to introduce the XHR object. It did so through the
use of an ActiveX object included as part of the MSXML library. As such, three versions of the
XHR object may be used in the browser: MSXML2.XMLHttp, MSXML2.XMLHttp.3.0, and MXSML2.
XMLHttp.6.0.

All modern browsers support a native XHR object that can be created using the XMLHttpRequest
constructor as follows:

let xhr = new XMLHttpRequest();

XHR Usage
To begin using an XHR object, you will first call the method open(), which accepts three arguments:
the type of request to be sent ("get", "post", and so on), the URL for the request, and a Boolean
value indicating if the request should be sent asynchronously. Here’s an example:

xhr.open("get", "example.php", false);

This line opens a synchronous GET request for example.php. There are a couple of things to note
about this code. First, the URL is relative to the page on which the code is called, although an abso-
lute path can be given as well. Second, the call to open() does not actually send the request; it simply
prepares a request to be sent.

The XMLHttpRequest Object ❘ 873

NOTE You can access only URLs that exist on the same origin, which means the
same domain, using the same port, and with the same protocol. If the URL spec-
ifies any of these differently than the page making the request, a security error is
thrown.

To send the specified request, you must call the send() method as follows:

xhr.open("get", "example.txt", false);
xhr.send(null);

The send() method accepts a single argument, which is data to be sent as the body of the request.
If no body data needs to be sent, you must pass in null because this argument is required for some
browsers. Once send() is called, the request is dispatched to the server.

Because this request is synchronous, the JavaScript code will wait for the response to return before
continuing execution. When a response is received, the XHR object properties are filled with data.
The relevant properties are as follows:

➤➤ responseText—The text that was returned as the body of the response.

➤➤ responseXML—Contains an XML DOM document with the response data if the response
has a content type of "text/xml" or "application/xml".

➤➤ status—The HTTP status of the response.

➤➤ statusText—The description of the HTTP status.

When a response is received, the first step is to check the status property to ensure that the response
was returned successfully. Generally, HTTP status codes in the 200s are considered successful and
some content will be available in responseText and possibly in responseXML if the content type is
correct. In addition, the status code of 304 indicates that a resource hasn’t been modified and is being
served from the browser’s cache, which also means a response is available. To ensure that a proper
response was received, you should check for all of these statuses, as shown here:

xhr.open("get", "example.txt", false);
xhr.send(null);

if ((xhr.status >= 200 && xhr.status < 300) || xhr.status == 304) {
 alert(xhr.responseText);
} else {
 alert("Request was unsuccessful: " + xhr.status);
}

This code displays either the content returned from the server or an error message, depending on
the status code that was returned. It’s recommended to always check the status property to deter-
mine the best course of action and to avoid using statusText for this purpose, because the lat-
ter has proven to be unreliable across browsers. The responseText property is always filled with
the body of the response, regardless of the content type, whereas responseXML will be null for
non-XML data.

874 ❘ CHAPTER 24 Network requests aNd remote resources

Although it’s possible to make synchronous requests such as this one, most of the time it’s better to
make asynchronous requests that allow JavaScript code execution to continue without waiting for
the response. The XHR object has a readyState property that indicates what phase of the request/
response cycle is currently active. The possible values are as follows:

➤➤ 0—Uninitialized. The open() method hasn’t been called yet.

➤➤ 1—Open. The open() method has been called but send() has not been called.

➤➤ 2—Sent. The send() method has been called but no response has been received.

➤➤ 3—Receiving. Some response data has been retrieved.

➤➤ 4—Complete. All of the response data has been retrieved and is available.

Whenever the readyState changes from one value to another, the readystatechange event is fired.
You can use this opportunity to check the value of readyState. Generally speaking, the only ready
State of interest is 4, which indicates that all of the data is ready. The onreadystatechange event
handler should be assigned prior to calling open() for cross-browser compatibility. Consider the
following example:

let xhr = new XMLHttpRequest();
xhr.onreadystatechange = function() {
 if (xhr.readyState == 4) {
 if ((xhr.status >= 200 && xhr.status < 300) || xhr.status == 304) {
 alert(xhr.responseText);
 } else {
 alert("Request was unsuccessful: " + xhr.status);
 }
 }
};
xhr.open("get", "example.txt", true);
xhr.send(null);

Note that this code uses the DOM Level 0 style of attaching an event handler to the XHR object
because not all browsers support the DOM Level 2 style of event attachment. Unlike other event
handlers, no event object is passed into the onreadystatechange event handler. Instead you must
use the XHR object itself to determine what to do next.

NOTE This example uses the xhr object inside the onreadystatechange event
handler instead of the this object because of scoping issues with the onready
statechange event handler. Using this may cause the function to fail or cause
an error, depending on the browser being used, so it’s safer to use the actual
XHR object-instance variable.

You can cancel an asynchronous request before a response is received by calling the abort() method
like this:

xhr.abort();

The XMLHttpRequest Object ❘ 875

Calling this method makes the XHR object stop firing events and prevents access to any of the
response-related properties on the object. Once a request has been aborted, the XHR object should be
dereferenced. Because of memory issues, reusing an XHR object is not recommended.

HTTP Headers
Every HTTP request and response sends along with it a group of header information that may or
may not be of interest to the developer. The XHR object exposes both types of headers—those on the
request and those on the response—through several methods.

By default, the following headers are sent when an XHR request is sent:

➤➤ Accept—The content types that the browser can handle.

➤➤ AcceptCharset—The character sets that the browser can display.

➤➤ AcceptEncoding—The compression encodings handled by the browser.

➤➤ AcceptLanguage—The languages the browser is running in.

➤➤ Connection—The type of connection the browser is making with the server.

➤➤ Cookie—Any cookies set on the page.

➤➤ Host—The domain of the page making the request.

➤➤ Referer—The URI of the page making the request. Note that this header is spelled incor-
rectly in the HTTP specification and so must be spelled incorrectly for compatibility pur-
poses. (The correct spelling of this word is “referrer.”)

➤➤ UserAgent—The browser’s user-agent string.

Although the exact request headers sent vary from browser to browser, these are the ones that are
generally sent. You can set additional request headers by using the setRequestHeader() method.
This method accepts two arguments: the name of the header and the value of the header. For request
headers to be sent, setRequestHeader() must be called after open() but before send(), as in the
following example:

let xhr = new XMLHttpRequest();
xhr.onreadystatechange = function() {
 if (xhr.readyState == 4) {
 if ((xhr.status >= 200 && xhr.status < 300) || xhr.status == 304) {
 alert(xhr.responseText);
 } else {
 alert("Request was unsuccessful: " + xhr.status);
 }
 }
};
xhr.open("get", "example.php", true);
xhr.setRequestHeader("MyHeader", "MyValue");
xhr.send(null);

876 ❘ CHAPTER 24 Network requests aNd remote resources

The server can read these custom request headers to determine an appropriate course of action. It’s
advisable to always use custom header names rather than those the browser normally sends because
using the default ones may affect the server response. Some browsers will allow overwriting default
headers, but others will not.

You can retrieve the response headers from an XHR object by using the getResponseHeader()
method and passing in the name of the header to retrieve. It’s also possible to retrieve all headers as a
long string by using the getAllResponseHeaders() method. Here’s an example of both methods:

let myHeader = xhr.getResponseHeader("MyHeader");
let allHeaders xhr.getAllResponseHeaders();

Headers can be used to pass additional, structured data from the server to the browser. The getAll
ResponseHeaders() method typically returns something along the lines of the following:

Date: Sun, 14 Nov 2004 18:04:03 GMT
Server: Apache/1.3.29 (Unix)
Vary: Accept
XPoweredBy: PHP/4.3.8
Connection: close
ContentType: text/html; charset=iso88591

This output allows you to parse the response headers to find all of the header names that were sent
rather than check for the existence of each one individually.

GET Requests
The most common type of request to execute is a GET, which is typically made when the server is
being queried for some sort of information. If necessary, query-string arguments can be appended to
the end of the URL to pass information to the server. For XHR, this query string must be present and
encoded correctly on the URL that is passed into the open() method.

One of the most frequent errors made with GET requests is to have an improperly formatted query
string. Each query-string name and value must be encoded using encodeURIComponent() before
being attached to the URL, and all of the name-value pairs must be separated by an ampersand, as in
this example:

xhr.open("get", "example.php?name1=value1&name2=value2", true);

The following function helps to add query-string arguments to the end of an existing URL:

function addURLParam(url, name, value) {
 url += (url.indexOf("?") == 1 ? "?" : "&");
 url += encodeURIComponent(name) + "=" + encodeURIComponent(value);
 return url;
}

The addURLParam() function takes three arguments: the URL to add the parameters to, the param-
eter name, and the parameter value. First, the function checks to see if the URL already contains
a question mark (to determine if other parameters already exist). If it doesn’t, then the function
appends a question mark; otherwise it adds an ampersand. Next, the name and value are encoded
and appended to the end of the URL. The last step is to return the updated URL.

This function can be used to build up a URL for a request, as shown in the following example:

let url = "example.php";

The XMLHttpRequest Object ❘ 877

// add the arguments
url = addURLParam(url, "name", "Nicholas");
url = addURLParam(url, "book", "Professional JavaScript");

// initiate request
xhr.open("get", url, false);

Using the addURLParam() function here ensures that the query string is properly formed for use with
the XHR object.

POST Requests
The second most frequent type of request is POST, which is typically used to send data to the server
that should save data. Each POST request is expected to have data submitted as the body of the
request, whereas GET requests traditionally do not. The body of a POST request can contain a very
large amount of data, and that data can be in any format. You can initiate a POST request by specify-
ing post as the first argument to the open() method. For example:

xhr.open("post", "example.php", true);

The second part is to pass some data to the send() method. Since XHR was originally designed to
work primarily with XML, you can pass in an XML DOM document that will be serialized and sub-
mitted as the request body. You can also pass in any string to send to the server.

By default, a POST request does not appear the same to the server as a web-form submission. Server
logic will need to read the raw post data to retrieve your data. You can, however, mimic a form sub-
mission using XHR. The first step is to set the ContentType header to application/xwwwform
urlencoded, which is the content type set when a form is submitted. The second step is to create
a string in the appropriate format. Post data is sent in the same format as a query string. If a form
already on the page should be serialized and sent to the server via XHR, you can use the serial
ize() function from Chapter 14 to create the string, as shown here:

function submitData() {
 let xhr = new XMLHttpRequest();
 xhr.onreadystatechange = function() {
 if (xhr.readyState == 4) {
 if ((xhr.status >= 200 && xhr.status < 300) || xhr.status == 304) {
 alert(xhr.responseText);
 } else {
 alert("Request was unsuccessful: " + xhr.status);
 }
 }
 };

 xhr.open("post", "postexample.php", true);
 xhr.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");
 let form = document.getElementById("user-info");
 xhr.send(serialize(form));
}

In this function, form data from a form with the ID "userinfo" is serialized and sent to the server.
The PHP file postexample.php can then retrieve the posted data via $_POST. Consider this example:

<?php
 header("ContentType: text/plain");
 echo <<<EOF

878 ❘ CHAPTER 24 Network requests aNd remote resources

Name: {$_POST['username']}
Email: {$_POST['useremail']}
EOF;
?>

Without including the ContentType header, the data will not appear in the $_POST superglobal—
you’d need to use $HTTP_RAW_POST_DATA to access it.

NOTE POST requests have more overhead associated with them than do GET
requests. In terms of performance, GET requests can be up to two times faster
than POST requests sending the same amount of data.

XMLHttpRequest LEVEL 2

The popularity of the XHR object as a de facto standard led to the creation of official specifications
from the W3C to govern its behavior. XMLHttpRequest Level 1 simply defined the already existing
implementation details of the XHR object. XMLHttpRequest Level 2 went on to evolve the XHR object
further. Not all browsers have implemented all parts of the Level 2 specification, but all browsers
have implemented some of the functionality.

The FormData Type
The serialization of form data is frequently needed in modern web applications, and so the
XMLHttp Request Level 2 specification introduces the FormData type. The FormData type makes it
easy to both serialize existing forms and create data in the same format as a form for easy transmis-
sion via XHR. The following creates a FormData object and populates it with some data:

let data = new FormData();
data.append("name", "Nicholas");

The append() method accepts two arguments, a key and a value, essentially the name of a form field
and the value that the field contains. You can add as many of these pairs as you would like. It’s also
possible to prepopulate the key-value pairs with data that exists in a form element by passing in the
form element to the FormData constructor:

let data = new FormData(document.forms[0]);

Once you have an instance of FormData, it can be passed directly into the XHR send() method, as in
this example:

let xhr = new XMLHttpRequest();
xhr.onreadystatechange = function() {
 if (xhr.readyState == 4) {
 if ((xhr.status >= 200 && xhr.status < 300) || xhr.status == 304) {
 alert(xhr.responseText);
 } else {
 alert("Request was unsuccessful: " + xhr.status);
 }
 }

XMLHttpRequest Level 2 ❘ 879

};
xhr.open("post", "postexample.php", true);
let form = document.getElementById("user-info");
xhr.send(new FormData(form));

One of the conveniences of the FormData type is that you don’t need to explicitly set any request
headers on the XHR object. The XHR object recognizes the passed-in data type as an instance of Form
Data and configures the headers appropriately.

Timeouts
In Internet Explorer 8, the XHR object was augmented to include a timeout property that indicates
the number of milliseconds the request should wait for a response before aborting. All browsers have
since adopted this property into their XHR implementations. When the timeout property is set to a
number and the response is not received within that number of milliseconds, a timeout event is fired
and the ontimeout event handler is called. This functionality was later added into the XMLHttp-
Request Level 2 specification. Here’s an example:

let xhr = new XMLHttpRequest();
xhr.onreadystatechange = function() {
 if (xhr.readyState == 4) {
 try {
 if ((xhr.status >= 200 && xhr.status < 300) || xhr.status == 304) {
 alert(xhr.responseText);
 } else {
 alert("Request was unsuccessful: " + xhr.status);
 }
 } catch (ex) {
 // assume handled by ontimeout
 }
 }
};

xhr.open("get", "timeout.php", true);
xhr.timeout = 1000; // set timeout for 1 second
xhr.ontimeout = function() {
 alert("Request did not return in a second.");
};
xhr.send(null);

This example illustrates the use of the timeout property. Setting it equal to 1,000 milliseconds means
that if the request doesn’t return in 1 second or less, the request is aborted. When that happens, the
ontimeout event handler is called. The readyState is still changed to 4, which means the onready
statechange event handler is called. However, an error occurs if you try to access the status prop-
erty after a timeout has occurred. To protect against this, encapsulate the code that checks the status
property in a trycatch statement.

The overrideMimeType() Method
Firefox first introduced overrideMimeType() as a way to override the MIME type of an XHR
response. This was later added to XMLHttpRequest Level 2. Because the returned MIME type for a
response determines how the response is handled by the XHR object, having a way to override the
type returned by the server is a useful addition.

880 ❘ CHAPTER 24 Network requests aNd remote resources

Consider the case where the server sends a MIME type of text/plain that actually contains XML.
This would result in the responseXML property being null even though the data is actually XML. By
calling overrideMimeType(), you can ensure the response is treated as XML instead of plain text:

let xhr = new XMLHttpRequest();
xhr.open("get", "text.php", true);
xhr.overrideMimeType("text/xml");
xhr.send(null);

This example forces the XHR object to treat the response as XML instead of plain text. The call
to overrideMimeType() must happen before the call to send() in order to correctly override the
response MIME type.

PROGRESS EVENTS

The Progress Events specification is a W3C Working Draft defining events for client-server commu-
nication. These events were first targeted at XHR explicitly but have now also made their way into
other similar APIs. There are six progress events:

➤➤ loadstart—Fires when the first byte of the response has been received.

➤➤ progress—Fires repeatedly as a response is being received.

➤➤ error—Fires when there was an error attempting the request.

➤➤ abort—Fires when the connection was terminated by calling abort().

➤➤ load—Fires when the response has been fully received.

➤➤ loadend—Fires when the communication is complete and after firing error,
abort, or load.

Each request begins with the loadstart event being fired; followed by one or more progress events;
then one of error, abort, or load; finally ending with loadend.

Most of these events are straightforward, but there are two that have some subtleties to be aware of.

The load Event
When Firefox first implemented a version of the XHR object, it sought to simplify the interaction
model. To that end, the load event was introduced as a replacement for the readystatechange
event. The load event fires as soon as the response has been completely received, eliminating the need
to check the readyState property. The onload event handler receives an event object whose tar
get property is set to the XHR object instance, and all of the XHR object properties and methods are
available from within. However, not all browsers properly implement the event object for this event,
which necessitates the use of the XHR object variable itself, as shown in the following example:

let xhr = new XMLHttpRequest();
xhr.onload = function() {
 if ((xhr.status >= 200 && xhr.status < 300) || xhr.status == 304) {
 alert(xhr.responseText);
 } else {

Cross-Origin Resource Sharing ❘ 881

 alert("Request was unsuccessful: " + xhr.status);
 }
};
xhr.open("get", "altevents.php", true);
xhr.send(null);

As long as a response is received from the server, regardless of the status, the load event will fire. This
means you must check the status property to determine if the appropriate data is available. The
load event is supported by Firefox, Opera, Chrome, and Safari.

The progress Event
Another XHR innovation from Mozilla is the progress event, which fires periodically as the browser
receives new data. The onprogress event listener receives an event object whose target is the XHR
object and contains three additional properties: lengthComputable, a Boolean indicating if progress
information is available; position, which is the number of bytes that have already been received; and
totalSize, which is the total number of expected bytes as defined by the ContentLength response
header. With that information, you can provide a progress indicator to the user. The following code
includes an example of how this is done:

let xhr = new XMLHttpRequest();
xhr.onload = function(event) {
 if ((xhr.status >= 200 && xhr.status < 300) ||
 xhr.status == 304) {
 alert(xhr.responseText);
 } else {
 alert("Request was unsuccessful: " + xhr.status);
 }
};
xhr.onprogress = function(event) {
 let divStatus = document.getElementById("status");
 if (event.lengthComputable) {
 divStatus.innerHTML = "Received " + event.position + " of " +
 event.totalSize +
" bytes";
 }
};

xhr.open("get", "altevents.php", true);
xhr.send(null);

For proper execution, the onprogress event handler must be attached prior to calling open(). In the
preceding example, an HTML element is filled with status information every time the progress event
is fired. Assuming that the response has a ContentLength header, you can also use this information
to calculate the percentage of the response that has already been received.

CROSS-ORIGIN RESOURCE SHARING

One of the major limitations of Ajax communication via XHR is the cross-origin security policy. By
default, XHR objects can access resources only on the domain from which the containing web page
originates. This security feature prevents some malicious behavior. However, the need for legitimate
cross-origin access was great enough for solutions to begin appearing in browsers.

882 ❘ CHAPTER 24 Network requests aNd remote resources

Cross-Origin Resource Sharing (CORS) defines how the browser and server must communicate when
accessing sources across origins. The basic idea behind CORS is to use custom HTTP headers to
allow both the browser and the server to know enough about each other to determine if the request
or response should succeed or fail.

For a simple request, one that uses either GET or POST with no custom headers and whose body is
text/plain, the request is sent with an extra header called Origin. The Origin header contains the
origin (protocol, domain name, and port) of the requesting page so that the server can easily deter-
mine whether or not it should serve a response. An example Origin header might look like this:

Origin: http://www.nczonline.net

If the server decides that the request should be allowed, it sends an AccessControlAllowOrigin
header echoing back the same origin that was sent or "*" if it’s a public resource. For example:

AccessControlAllowOrigin: http://www.nczonline.net

If this header is missing, or the origins don’t match, then the browser disallows the request. If all is
well, then the browser processes the request. Note that neither the requests nor the responses include
cookie information.

Modern browsers support CORS natively through the XMLHttpRequest object. When attempting to
open a resource on a different origin, this behavior automatically gets triggered without any extra
code. To make a request to a resource on another domain, the standard XHR object is used with an
absolute URL specified in open(), such as this:

let xhr = new XMLHttpRequest();
xhr.onreadystatechange = function() {
 if (xhr.readyState == 4) {
 if ((xhr.status >= 200 && xhr.status < 300) || xhr.status == 304) {
 alert(xhr.responseText);
 } else {
 alert("Request was unsuccessful: " + xhr.status);
 }
 }
};
xhr.open("get", "http://www.somewhere-else.com/page/", true);
xhr.send(null);

The cross-domain XHR object allows access to the status and statusText properties and allows
synchronous requests. There are some additional limitations on a cross-domain XHR object that are
necessary for security purposes. They are as follows:

➤➤ Custom headers cannot be set using setRequestHeader().

➤➤ Cookies are neither sent nor received.

➤➤ The getAllResponseHeaders() method always returns an empty string.

Because the same interface is used for both same- and cross-domain requests, it’s best to always
use a relative URL when accessing a local resource, and an absolute URL when accessing a remote
resource. This disambiguates the use case and can prevent problems such as limiting access to header
and/or cookie information for local resources.

Cross-Origin Resource Sharing ❘ 883

Preflighted Requests
CORS allows the use of custom headers, methods other than GET or POST, and different body
content types through a transparent mechanism of server verification called preflighted requests.
When you try to make a request with one of the advanced options, a “preflight” request is made to
the server. This request uses the OPTIONS method and sends the following headers:

➤➤ Origin—Same as in simple requests.

➤➤ AccessControlRequestMethod—The method that the request wants to use.

➤➤ AccessControlRequestHeaders—(Optional) A comma-separated list of the custom
headers being used.

Here’s an example assuming a POST request with a custom header called NCZ:

Origin: http://www.nczonline.net
AccessControlRequestMethod: POST
AccessControlRequestHeaders: NCZ

During this request, the server can determine whether or not it will allow requests of this type. The
server communicates this to the browser by sending the following headers in the response:

➤➤ AccessControlAllowOrigin—Same as in simple requests.

➤➤ AccessControlAllowMethods—A comma-separated list of allowed methods.

➤➤ AccessControlAllowHeaders—A comma-separated list of headers that the server
will allow.

➤➤ AccessControlMaxAge—The amount of time in seconds that this preflight request should
be cached for.

For example:

AccessControlAllowOrigin: http://www.nczonline.net
AccessControlAllowMethods: POST, GET
AccessControlAllowHeaders: NCZ
AccessControlMaxAge: 1728000

Once a preflight request has been made, the result is cached for the period of time specified in
the response; you’ll only incur the cost of an extra HTTP request the first time a request of this
type is made.

Credentialed Requests
By default, cross-origin requests do not provide credentials (cookies, HTTP authentication, and client-
side SSL certificates). You can specify that a request should send credentials by setting the with
Credentials property to true. If the server allows credentialed requests, then it responds with the
following HTTP header:

AccessControlAllowCredentials: true

If a credentialed request is sent and this header is not sent as part of the response, then the browser
doesn’t pass the response to JavaScript (responseText is an empty string, status is 0, and

884 ❘ CHAPTER 24 Network requests aNd remote resources

onerror() is invoked). Note that the server can also send this HTTP header as part of the preflight
response to indicate that the origin is allowed to send credentialed requests.

ALTERNATE CROSS-DOMAIN TECHNIQUES

Before CORS came about, achieving cross-domain Ajax communication was a bit trickier. Developers
came to rely on parts of the DOM that could perform cross-domain requests as a simple way to make
certain types of requests without using the XHR object. Despite the ubiquity of CORS, these tech-
niques are still popular because they don’t involve changes on the server.

Image Pings
One of the first techniques for cross-domain communication was through the use of the tag.
Images can be loaded cross-domain by any page without worrying about restrictions. This is the main
way that online advertisements track views. You can also dynamically create images and use their
onload and onerror event handlers to tell you when the response has been received.

Dynamically creating images is often used for image pings. Image pings are simple, cross-domain,
one-way communication with the server. The data is sent via query-string arguments and the response
can be anything, though typically it’s a pixel image or a 204 response. The browser can’t get any spe-
cific data back from an image ping but it can tell when the response has been received by listening for
the load and error events. Here’s a simple example:

let img = new Image();
img.onload = img.onerror = function() {
 alert("Done!");
};
img.src = "http://www.example.com/test?name=Nicholas";

This example creates a new instance of Image and then assigns both the onload and the onerror
event handlers to the same function. This ensures that regardless of the response, you’ll be notified
when the request has completed. The request begins when the src property is set and this example is
sending along a name parameter.

Image pings are frequently used for tracking user clicks on a page or dynamic ad impressions. The
two main downsides to image pings are that you can only send GET requests and you cannot access
the response text from the server. This is why image pings are best used for one-way communication
between the browser and the server.

JSONP
JSONP is short for “JSON with padding” and is a special variant of JSON that has become popular
for web services. JSONP looks just like JSON except that the data is wrapped within what looks like
a function call. For example:

callback({ "name": "Nicholas" });

The JSONP format is made up of two parts: the callback and the data. The callback is the function
that should be called on the page when the response has been received. Typically the name of the

The Fetch API ❘ 885

callback is specified as part of the request. The data is simply the JSON data to pass to the function.
A typical JSONP request looks like this:

http://freegeoip.net/json/?callback=handleResponse

This URL is for a JSONP geolocation service. It’s quite common to have the callback parameter
specified as a query string argument for JSONP services, and in this case, I’ve specified the callback
function name to be handleResponse().

JSONP is used through dynamic <script> elements assigning the src to a cross-domain URL. The
<script> element, similar to , is capable of loading resources from other domains without
restriction. Because JSONP is valid JavaScript, the JSONP response gets pulled into the page and
executed immediately upon completion. Here’s an example:

function handleResponse(response) {
 console.log(`
 You're at IP address ${response.ip}, which is in
 ${response.city}, ${response.region_name}`);
}
let script = document.createElement("script");
script.src = "http://freegeoip.net/json/?callback=handleResponse";
document.body.insertBefore(script, document.body.firstChild);

This example displays your IP address and location information from the geolocation service.

JSONP is very popular for web developers because of its simplicity and ease of use. Its advantage over
image pings is that you can access the response text directly, allowing bidirectional communication
between browser and server. There are, however, a couple of downsides to using JSONP.

First, you’re pulling executable code into your page from another domain. If that domain isn’t
trusted, it could very easily swap the response for something more malicious, and you would have
no recourse aside from removing the JSONP call altogether. When using a web service that you don’t
operate, make sure that it comes from a trusted source.

The second downside is that there is no easy way to determine that a JSONP request has failed.
Although HTML5 has specified an onerror event handler for <script> elements, it hasn’t yet been
implemented by any browser. Developers frequently used timers to see if a response has or has not
been received within a set amount of time, but even this is tricky because not every user has the same
connection speed and bandwidth.

THE FETCH API

The Fetch API can perform all the same tasks as an XMLHttpRequest object, but is much easier to
use, has a more modern interface, and is able to be used by modern web tools like web workers.
Whereas the XMLHttpRequest is optionally asynchronous, all requests dispatched by the Fetch API
are strictly asynchronous. The Fetch API is a WHATWG living standard specification, which can be
found at https://fetch.spec.whatwg.org/. The specification puts it best: “The Fetch standard
defines requests, responses, and the process that binds them: fetching.”

The Fetch API itself is a superior tool for requesting resources in JavaScript, but the API is also
relevant in the domain of service workers in that it provides an interface for intercepting, redirecting,
and altering requests made via fetch().

886 ❘ CHAPTER 24 Network requests aNd remote resources

Basic API Utilization
The fetch() method is available in any global scope, both in the primary page execution, modules,
and inside workers. Invoking it will instruct the browser to send a request to a provided URL.

Dispatching a Request
The fetch() method has only a single required parameter input, which most of the time will be the
URL of the resource you wish to fetch. This method returns a promise:

let r = fetch('/bar');
console.log(r); // Promise <pending>

The interpretation of this URL (relative paths, absolute paths, and so on) is performed identically to
that of an XHR request.

When the request completes and the resource is available, the promise will resolve into a Response object,
which is used as the API wrapper for whatever resource was fetched. This object exposes a number of
properties and methods to inspect the response and convert the payload into a useful form, as shown here:

fetch('bar.txt')
 .then((response) => {
 console.log(response);
 });

// Response { type: "basic", url: ... }

Reading a Response
The simplest way to read the contents of a response is in the raw text format, which is accessed using the
text() method. This method returns a promise that resolves with the full contents of the fetched resource:

fetch('bar.txt')
 .then((response) => {
 response.text().then((data) => {
 console.log(data);
 });
 });

// Contents of bar.txt!

This promise structure is commonly flattened:

fetch('bar.txt')
 .then((response) => response.text())
 .then((data) => console.log(data));

// Contents of bar.txt!

The Fetch API ❘ 887

Handling Status Codes and Request Failures
The Fetch API allows you to inspect the Response object’s status code and status text, accessible via
the status and statusText properties, respectively. Successfully fetching the resource will typically
yield a response code of 200, as shown in this example:

fetch('/bar')
 .then((response) => {
 console.log(response.status); // 200
 console.log(response.statusText); // OK
 });

Requesting a resource that doesn’t exist will typically yield a response code of 404:

fetch('/doesnotexist')
 .then((response) => {
 console.log(response.status); // 404
 console.log(response.statusText); // Not Found
 });

Requesting a resource URL that throws a server error will typically yield a response code of 500:

fetch('/throwservererror')
 .then((response) => {
 console.log(response.status); // 500
 console.log(response.statusText); // Internal Server Error
 });

The behavior of fetch() with respect to redirects can be explicitly set (as detailed later in this
chapter), but the default behavior is to follow a redirect and return a response that does not have a
response code of 300–399. When a fetch is followed, the redirected property is set to true on the
response object but will still feature a response code of 200:

fetch('/permanentredirect')
 .then((response) => {
 // Default behavior is to follow the redirects until reaching a terminal URL.
 // This example would incur at least two round trip network requests:
 // <origin url>/permanentredirect > <redirect url>
 console.log(response.status); // 200
 console.log(response.statusText); // OK
 console.log(response.redirected); // true
 });

In all of these examples, notice that the resolved handler of the fetch promise is being executed—even
when the request could be considered a failure, such as a 500 status. If the server sends a response
of any kind, the fetch() promise will resolve. This behavior should make sense: the system-level
network protocol has completed a successful round-trip message transmission. What qualifies as a
“successful” request should be defined in how that response is handled.

Commonly, a response in the 200s is considered successful, and anything else is considered unsuccess-
ful. To differentiate between these, the Response object’s ok property identifies when the response
code is between 200–299.

fetch('/bar')
 .then((response) => {
 console.log(response.status); // 200
 console.log(response.ok); // true

888 ❘ CHAPTER 24 Network requests aNd remote resources

 });
fetch('/doesnotexist')
 .then((response) => {
 console.log(response.status); // 404
 console.log(response.ok); // false
 });

A true fetch() failure—such as a browser timeout where there is no server response—will reject:

fetch('/hangsforever')
 .then((response) => {
 console.log(response);
 }, (err) => {
 console.log(err);
 });

// (after browser timeout duration)
// TypeError: "NetworkError when attempting to fetch resource."

The request promise rejects for reasons such as for reasons such as CORS violations, a lack of con-
nection to a network, HTTPS violations, and other browser/network policy violations.

You can inspect the full URL used by fetch() when dispatching the request with the url property:

// Requests made from foo.com/bar/baz
console.log(window.location.href); // https://foo.com/bar/baz

fetch('qux').then((response) => console.log(response.url));
// https://foo.com/bar/qux

fetch('/qux').then((response) => console.log(response.url));
// https://foo.com/qux

fetch('//qux.com').then((response) => console.log(response.url));
// https://qux.com

fetch('https://qux.com').then((response) => console.log(response.url));
// https://qux.com

Custom Fetch Options
When used with only a URL, fetch()will dispatch a GET request with a minimal set of request
headers. To configure how a request is dispatched, an init object can be passed as the optional
second argument to fetch(). The init object should be populated with any number of the keys and
corresponding values in the table that follows.

KEY VALUE

body Used to specify the body field for requests that make use of a body.

Must be any Blob, BufferSource, FormData, URLSearchParams,
ReadableStream, or string instance.

The Fetch API ❘ 889

KEY VALUE

cache Used to control how the browser will interact with the HTTP cache when performing
the fetch. For cached redirects to be followed, the request must have follow as its
redirect value and must also comply with same-origin restrictions.Must be one of
the following string values:

default

➤➤ A fresh cache hit is returned from fetch(). No request is sent.

➤➤ A stale cache hit will send a conditional request. If the response has changed,
the cached value is updated. The cached value is then returned from fetch().

➤➤ A cache miss will send a request and the response is cached. The response is
returned from fetch().

nostore

➤➤ The browser sends a request without checking the cache.

➤➤ The response is not cached and is returned from fetch().

reload

➤➤ The browser sends a request without checking the cache.

➤➤ The response is cached and is returned from fetch().

nocache

➤➤ Both a fresh or stale cache hit will send a conditional request. If the
response has changed, the cached value is updated. The cached value is
then returned from fetch().

➤➤ A cache miss will send a request and the response is cached. The
response is returned from fetch().

forcecache

➤➤ Both a fresh or stale cache hit will be returned from fetch(). No
request is sent.

➤➤ A cache miss will send a request and the response is cached. The
response is returned from fetch().

onlyifcached

➤➤ Can only be used if the request mode is sameorigin.

➤➤ Both a fresh or stale cache hit will be returned from fetch(). No
request is sent.

➤➤ A cache miss will return a response with a status of 504
(Gateway timeout).

Defaults to default.

890 ❘ CHAPTER 24 Network requests aNd remote resources

KEY VALUE

creden tials Used to specify if and how cookies should be included with the outgoing request.
This is similar to the XMLHttpRequest withCredentials flag.

Must be one of the following string values:

➤➤ omit: No cookies are sent.

➤➤ sameorigin: Only send cookies when the request URL origin matches the
origin of the script executing the fetch.

➤➤ include: Cookies are included with both same-origin and cross-
origin requests.

Can also be a FederatedCredential instance or a PasswordCredential instance
in browsers that support the Credential Management API.

Defaults to sameorigin.

headers Used to specify headers for a request.

Must be either a Headers object instance or regular object instance containing
header key-value string pairs.

Defaults to a Headers object with no key-value pairs. This does not mean the
request will be sent with no headers; the browser may still add headers when the
request is formally dispatched. This disparity will be invisible to JavaScript but can
still be observed in the browser’s network inspector.

integrity Used to enforce subresource integrity.

Must be a string containing the subresource integrity identifier.

Defaults to an empty string.

keepalive Used to direct the browser to allow the request to exist beyond the page’s lifetime.
This is useful for reporting events or analytics metrics to a server when a page unload
might occur soon after a fetch is dispatched. Fetch with the keepalive flag can be
used as a substitute for Navigator.sendBeacon().

Must be a boolean.

Defaults to false.

method Used to specify the HTTP method of a request.

Will almost always be one of the following string values:

GET

POST

PUT

PATCH

DELETE

HEAD

OPTIONS

The Fetch API ❘ 891

KEY VALUE

CONNECT

TRACE

Defaults to GET.

mode Used to specify the mode for the request. The mode determines if a response from a
cross-origin request is valid and how much of the response is readable by the client.
Requests that violate the specified mode will throw an error.

Must be one of the following string values:

➤➤ cors: Cross-origin requests that comply with the CORS protocol are allowed.
The response will be a “CORS-filtered response,” meaning the headers acces-
sible in the response are filtered by a browser-enforced whitelist.

➤➤ nocors: Cross-origin requests that do not require a preflight request (HEAD,
GET, and POST with only CORS-safelisted request headers) are allowed. The
response type will be opaque, meaning the content of the response can-
not be read.

➤➤ sameorigin: No cross-origin requests of any kind are allowed.

➤➤ navigate: Intended for supporting HTML navigation, created only when navi-
gating between documents. You will likely never need to use this mode.

When a Request instance is manually created via its constructor, defaults to cors.
Otherwise, defaults to nocors.

redirect Used to specify how redirected responses (defined as a response status code of 301,
302, 303, 307, or 308) should be handled.

Must be one of the following string values:

➤➤ follow: Requests that redirect will be followed and the eventual URL that has
a non-redirected response will be returned as the final response.

➤➤ error: Requests that redirect will throw an error.

➤➤ manual: Requests that redirect will not follow the redirect and instead return a
response with type opaqueredirect while still exposing the intended redirect
URL. This allows the redirect to be followed manually.

Defaults to follow.

referrer Used to specify what should be sent as the HTTP Referer header.

Must be one of the following string values:

➤➤ noreferrer: Send noreferrer as the HTTP referrer value.

➤➤ client/about:client: Send the current URL or noreferrer (determined by
the referrer policy) as the actual HTTP referrer value.

➤➤ <URL>: Spoof the URL sent as the HTTP Referer. The origin of the spoofed
URL must match the origin of the executing script.

Defaults to client/about:client.

892 ❘ CHAPTER 24 Network requests aNd remote resources

KEY VALUE

referrer

Policy
Used to specify the HTTP Referer header.

Must be one of the following string values:

noreferrer

➤➤ The Referer header is omitted entirely from the request.

noreferrerwhendowngrade:

➤➤ For requests sent from a secure HTTPS context to an HTTP URL, the
Referer header is omitted.

➤➤ For all other requests, the Referer header is set to the full URL.

origin

➤➤ For all requests, the Referer header is set to only the origin.

sameorigin

➤➤ For cross-origin requests, the Referer header is omitted.

➤➤ For same-origin requests, the Referer header is set to the full URL.

strictorigin

➤➤ For requests sent from a secure HTTPS context to an HTTP URL, the
Referer header is omitted.

➤➤ For all other requests, the Referer header is set to the origin only.

originwhencrossorigin

➤➤ For cross-origin requests, the Referer header is set to the origin only.

➤➤ For same-origin requests, the Referer header is set to the full URL.

strictoriginwhencrossorigin

➤➤ For cross-origin requests sent from a secure HTTPS context to an
HTTP URL, the Referer header is omitted.

➤➤ For all other cross-origin requests, the Referer header is set to only
the origin.

➤➤ For same-origin requests, the Referer header is set to the full URL.

unsafeurl

➤➤ For all requests, the Referer header is set to the full URL.

Defaults to noreferrerwhendowngrade.

signal Used to enable the ability to abort an inflight fetch via an associated
AbortController.

Must be an AbortSignal instance.

Defaults to an unassociated AbortSignal instance.

The Fetch API ❘ 893

Common Fetch Patterns
As with XMLHttpRequest, fetch() is used both to retrieve data as well as send it. Using the init
object, fetch() can be configured to send an assortment of serializable data types in the request body.

Sending JSON Data
A simple JSON string could be sent to a server as follows:

let payload = JSON.stringify({
 foo: 'bar'
});

let jsonHeaders = new Headers({
 'ContentType': 'application/json'
});

fetch('/sendmejson', {
 method: 'POST', // Must use an HTTP method which sends a body
 body: payload,
 headers: jsonHeaders
});

Sending Parameters in a Request Body
Because the request body supports any string values, it is also easy to send parameters as a serialized
body string:

let payload = 'foo=bar&baz=qux';

let paramHeaders = new Headers({
 'ContentType': 'application/xwwwformurlencoded; charset=UTF8'
});

fetch('/sendmeparams', {
 method: 'POST', // Must use an HTTP method which sends a body
 body: payload,
 headers: paramHeaders
});

Sending Files
Because the body supports FormData instances, a fetch() will happily serialize and send a file
plucked from a file picker form input:

let imageFormData = new FormData();
let imageInput = document.querySelector("input[type='file']");

imageFormData.append('image', imageInput.files[0]);

fetch('/imgupload', {
 method: 'POST',
 body: imageFormData
});

894 ❘ CHAPTER 24 Network requests aNd remote resources

Such a fetch() implementation can support multiple files as well:

let imageFormData = new FormData();
let imageInput = document.querySelector("input[type='file'][multiple]");

for (let i = 0; i < imageInput.files.length; ++i) {
 imageFormData.append('image', imageInput.files[i]);
}

fetch('/imgupload', {
 method: 'POST',
 body: imageFormData
});

Loading Files as Blobs
The Fetch API is able to provide the response as a Blob, which in turn is compatible with multiple
browser APIs. One common manifestation of this is explicitly loading an image file into memory and
attaching it to an HTML image element. To do so, the response object exposes a blob() method that
returns a promise that resolves to a Blob instance. This in turn can be passed to URL.createObject
Url() to generate a valid value for the image element’s src attribute:

const imageElement = document.querySelector('img');

fetch('myimage.png')
 .then((response) => response.blob())
 .then((blob) => {
 imageElement.src = URL.createObjectURL(blob);
 });

Sending a Cross-Origin Request
Requesting a resource from a different origin requires the response to have CORS headers for the
browser to accept it. Without the headers, the cross-origin request will fail and throw an error.

fetch('//crossorigin.com');
// TypeError: Failed to fetch
// No 'AccessControlAllowOrigin' header is present on the requested resource.

If the code does not need access to the response, it is possible to send a nocors fetch. In this case,
the response type property will be opaque, therefore preventing you from inspecting it. This strategy
can be useful for sending pings or in cases where the response can be merely cached for later use.

fetch('//crossorigin.com', { method: 'no-cors' })
 .then((response) => console.log(response.type));

// opaque

Aborting a Request
The Fetch API supports aborting a request via an AbortController/AbortSignal pair. Calling Abort
Controller.abort() terminates all network transmission, so this is especially useful when you wish to
halt transferring a large payload. Aborting an inflight fetch() will cause it to reject with an error.

let abortController = new AbortController();

fetch('wikipedia.zip', { signal: abortController.signal })

The Fetch API ❘ 895

 .catch(() => console.log('aborted!');

// Abort the fetch after 10ms
setTimeout(() => abortController.abort(), 10);

// aborted!

The Headers Object
The Headers object is used as a container for all outgoing requests and incoming response head-
ers. Every outgoing Request instance includes an empty Headers instance accessible via Request.
prototype.headers, and every incoming Response instance includes a populated Headers instance
accessible via Response.prototype.headers—both of which are mutable properties. You can also
create a fresh instance through the constructor via new Headers().

Exploring Headers-Map Similarity
The Headers object has a high degree of overlap with the Map object. This should make sense, as
HTTP headers are essentially serialized key-value pairs, and their JavaScript representation is the
intermediate interface. The Headers and Map types share a number of instance methods: get(),
set(), has(), and delete(), shown here:

let h = new Headers();
let m = new Map();

// Set key
h.set('foo', 'bar');
m.set('foo', 'bar');

// Check for key
console.log(h.has('foo')); // true
console.log(m.has('foo')); // true
console.log(h.has('qux')); // false
console.log(m.has('qux')); // false

// Get value
console.log(h.get('foo')); // bar
console.log(m.get('foo')); // bar

// Replace value
h.set('foo', 'baz');
m.set('foo', 'baz');

// Get replaced value
console.log(h.get('foo')); // baz
console.log(m.get('foo')); // baz

// Remove value
h.delete('foo');
m.delete('foo');

// Check that value is removed
console.log(h.get('foo')); // undefined
console.log(m.get('foo')); // undefined

896 ❘ CHAPTER 24 Network requests aNd remote resources

These types can both be initialized with an iterable, as shown here:

let seed = [['foo', 'bar']];

let h = new Headers(seed);
let m = new Map(seed);

console.log(h.get('foo')); // bar
console.log(m.get('foo')); // bar

They also feature identical keys(), values(), and entries() iterator interfaces:

let seed = [['foo', 'bar'], ['baz', 'qux']];

let h = new Headers(seed);
let m = new Map(seed);

console.log(...h.keys()); // foo, baz
console.log(...m.keys()); // foo, baz

console.log(...h.values()); // bar, qux
console.log(...m.values()); // bar, qux

console.log(...h.entries()); // ['foo', 'bar'], ['baz', 'qux']
console.log(...m.entries()); // ['foo', 'bar'], ['baz', 'qux']

Unique Features of the Headers Object
The Headers object is not an exact facsimile of a Map. When initializing, a Headers object can be
initialized with an object of key-value pairs, whereas a Map cannot:

let seed = {foo: 'bar'};

let h = new Headers(seed);
console.log(h.get('foo')); // bar

let m = new Map(seed);
// TypeError: object is not iterable

A single HTTP header may be assigned multiple values, and the Headers object supports this via the
append() method. When used with a header that does not yet exist in a Headers instance, append()
behaves identically to set(). Subsequent uses will concatenate the header value delimited with a comma:

let h = new Headers();

h.append('foo', 'bar');
console.log(h.get('foo')); // "bar"

h.append('foo', 'baz');
console.log(h.get('foo')); // "bar, baz"

Header Guards
In some cases, not all HTTP headers are mutable by the client, and the Headers object uses guards
to enforce this. Different guard settings will change how set(), append(), and delete() behave.
Violating the guard restrictions will throw a TypeError.

The Fetch API ❘ 897

A Headers instance will behave differently based on its provenance; this behavior is governed by the
guard. It is not possible to determine the guard setting of a Headers instance in JavaScript. The table
that follows describes the various possible guard settings and the behavioral implications of each.

GUARD APPLICABLE SCENARIO RESTRICTIONS

none Active when a Headers
instance is created via its
constructor.

None.

request Active when a Request
object is instantiated via its
constructor with any mode that
is not nocors.

No modifications are allowed to headers
with forbidden header names (https://
developer.mozilla.org/enUS/docs/

Glossary/Forbidden_header_name).

requestno

cors
Active when a Request
object is instantiated via
its constructor with a mode
of nocors.

No modifications are allowed to headers
that are not simple headers (https://
developer.mozilla.org/enUS/docs/

Glossary/simple_header).

response Active when a Response
object is instantiated via its
constructor.

No modifications are allowed to headers
with forbidden response header names
(https://developer.mozilla.org/
enUS/docs/Glossary/Forbidden_

response_header_name).

immutable Active when a Response object
is instantiated via the error()
or redirect() static methods.

No header modifications are allowed.

The Request Object
As its name indicates, the Request object is an interface to the request for a fetched resource. This
interface exposes information about the nature of the request as well as different ways of consuming
the body of the request.

NOTE The properties and methods involving the body are covered in the
“Requests, Responses, and the Body Mixin” section in this chapter.

Creating Request Objects
A Request object can be instantiated via a constructor. It requires an input argument, which will
most commonly be a URL:

let r = new Request('https://foo.com');
console.log(r);
// Request {...}

898 ❘ CHAPTER 24 Network requests aNd remote resources

The Request constructor also accepts a second optional argument, an init object. This init
object is identical to that of fetch(), as described earlier in the chapter in the section “Cus-
tom Fetch Options.” Values not specified inside init will be assigned their default values in the
Request instance:

// Creates Request object with all default values:
console.log(new Request(''));

// Request {
// bodyUsed: false
// cache: "default"
// credentials: "sameorigin"
// destination: ""
// headers: Headers {}
// integrity: ""
// keepalive: false
// method: "GET"
// mode: "cors"
// redirect: "follow"
// referrer: "about:client"
// referrerPolicy: ""
// signal: AbortSignal {aborted: false, onabort: null}
// url: "<current URL>"
// }

// Creates Request object with specified init values:
console.log(new Request('https://foo.com',
 { method: 'POST' }));

// Request {
// bodyUsed: false
// cache: "default"
// credentials: "sameorigin"
// destination: ""
// headers: Headers {}
// integrity: ""
// keepalive: false
// method: "POST"
// mode: "cors"
// redirect: "follow"
// referrer: "about:client"
// referrerPolicy: ""
// signal: AbortSignal {aborted: false, onabort: null}
// url: "https://foo.com/"
// }

Cloning Request Objects
The Fetch API offers two slightly different ways of making copies of a Request object: using the
Request constructor, and using the clone() method.

The Fetch API ❘ 899

Passing a Request instance as the input argument to the Request constructor will make a copy of
that request:

let r1 = new Request('https://foo.com');
let r2 = new Request(r1);

console.log(r2.url); // https://foo.com/

Values inside the init object will override those of the source object:

let r1 = new Request('https://foo.com');
let r2 = new Request(r1, {method: 'POST'});

console.log(r1.method); // GET
console.log(r2.method); // POST

This copying strategy will not always yield an exact copy. Most notably, it will mark the first request
body as used:

let r1 = new Request('https://foo.com',
 { method: 'POST', body: 'foobar' });
let r2 = new Request(r1);

console.log(r1.bodyUsed); // true
console.log(r2.bodyUsed); // false

If the source object has a different origin than where the new object is created, the referrer property
is cleared. Furthermore, if the source object has a mode value of navigate, this will be converted to
sameorigin.

The second way of cloning a Request object is to use the clone() method, which creates an exact
copy with no opportunity to override any values. Unlike the first technique, this will not mark any
request body as used:

let r1 = new Request('https://foo.com', { method: 'POST', body: 'foobar' });
let r2 = r1.clone();

console.log(r1.url); // https://foo.com/
console.log(r2.url); // https://foo.com/

console.log(r1.bodyUsed); // false
console.log(r2.bodyUsed); // false

Cloning a Request using either technique is not allowed if the bodyUsed request property is false, mean-
ing the body has not yet been read. Once the body is read, attempting to clone will throw a TypeError.

let r = new Request('https://foo.com');
r.clone();
new Request(r);
// No error

r.text(); // sets the bodyUsed field to false

900 ❘ CHAPTER 24 Network requests aNd remote resources

r.clone();
// TypeError: Failed to execute 'clone' on 'Request': Request body is already used

new Request(r);
// TypeError: Failed to construct 'Request': Cannot construct a Request with a
Request object that has already been used.

Using Request Objects with fetch()
The fact that fetch() and the Request constructor have identical function signatures is no accident.
When calling fetch(), you are able to pass an already-created Request instance instead of a URL.
As with the Request constructor, values provided in the fetch() init object will override the pro-
vided request’s values:

let r = new Request('https://foo.com');

// send GET request to foo.com
fetch(r);

// send POST request to foo.com
fetch(r, { method: 'POST' });

Internally, a fetch is cloning the provided Request object. As with cloning a Request, a fetch cannot
be dispatched with a Request that has a used body:

let r = new Request('https://foo.com',
 { method: 'POST', body: 'foobar' });

r.text();

fetch(r);
// TypeError: Cannot construct a Request with a Request object that has already
been used.

Importantly, using a Request in a fetch will also serve to mark the body as used. Therefore, only a
single fetch can be performed with a Request that has a body. (Requests that do not include a body
are not subject to this restriction). This is demonstrated here:

let r = new Request('https://foo.com',
 { method: 'POST', body: 'foobar' });

fetch(r);

fetch(r);
// TypeError: Cannot construct a Request with a Request object that has already
been used.

In order to invoke fetch() multiple times with the same Request object that includes a body,
clone() must be invoked prior to dispatching the first fetch():

let r = new Request('https://foo.com',
 { method: 'POST', body: 'foobar' });

// All 3 succeed
fetch(r.clone());
fetch(r.clone());
fetch(r);

The Fetch API ❘ 901

The Response Object
As its name indicates, the Response object is an interface to the response from a fetched resource.
This interface exposes information about the nature of the response as well as different ways of con-
suming the body of the response.

NOTE The properties and methods involving the body are covered in the section
“Requests, Responses, and the Body Mixin” in this chapter.

Creating Response Objects
A Response object can be instantiated via a constructor. It requires no arguments. Its properties will
be populated with default values since this instance does not represent an actual HTTP response:

let r = new Response();
console.log(r);
// Response {
// body: (...)
// bodyUsed: false
// headers: Headers {}
// ok: true
// redirected: false
// status: 200
// statusText: "OK"
// type: "default"
// url: ""
// }

The Response constructor accepts a first optional argument, a body. This body, which can be null,
is identical to that of the init body, as described earlier in the chapter in the section “Custom Fetch
Options.” The second optional argument, the init object, should be populated with any number of
the keys and corresponding values in the table that follows.

KEY VALUE

headers Must be either a Headers object instance or regular object instance containing
header key-value string pairs.

Defaults to a Headers object with no key-value pairs.

status The integer indicating the HTTP response status code. Defaults to 200.

statusText A string describing the HTTP response status. Defaults to an empty string.

The body and init can be used to build a Response as follows:

let r = new Response('foobar', {
 status: 418,
 statusText: 'I\'m a teapot'
});
console.log(r);

902 ❘ CHAPTER 24 Network requests aNd remote resources

// Response {
// body: (...)
// bodyUsed: false
// headers: Headers {}
// ok: false
// redirected: false
// status: 418
// statusText: "I'm a teapot"
// type: "default"
// url: ""
// }

For most applications, the most common way of producing a Response object is by calling fetch();
this returns a promise that resolves to a Response object that does represent an actual HTTP
response. The following code shows an example Response object you might expect:

fetch('https://foo.com')
 .then((response) => {
 console.log(response);
 });

// Response {
// body: (...)
// bodyUsed: false
// headers: Headers {}
// ok: true
// redirected: false
// status: 200
// statusText: "OK"
// type: "basic"
// url: "https://foo.com/"
// }

The Response class also features two static methods for generating Response objects, Response.
redirect() and Response.error(). Response.redirect() accepts a URL and redirect status code
(301, 302, 303, 307, or 308) and returns a redirected Response object:

console.log(Response.redirect('https://foo.com', 301));
// Response {
// body: (...)
// bodyUsed: false
// headers: Headers {}
// ok: false
// redirected: false
// status: 301
// statusText: ""
// type: "default"
// url: ""
// }

The provided status code must qualify as a redirect; otherwise an error is thrown:

Response.redirect('https://foo.com', 200);
// RangeError: Failed to execute 'redirect' on 'Response': Invalid status code

The Fetch API ❘ 903

Also available for use is Response.error(). This static method produces a response that you would
expect from a network error, which would cause a fetch() promise to reject.

console.log(Response.error());
// Response {
// body: (...)
// bodyUsed: false
// headers: Headers {}
// ok: false
// redirected: false
// status: 0
// statusText: ""
// type: "error"
// url: ""
// }

Reading Response Status Information
The Response object offers a suite of read-only properties describing how the request completed, as
you can see in the table that follows.

PROPERTY VALUE

headers The Headers object associated with the response.

ok A Boolean indicating the nature of the HTTP status code. A status code of
200–299 returns true, other status codes false.

redirected A Boolean indicating if the response was subjected to at least one redirect.

status An integer indicating the HTTP status code of the response.

statusText A string containing the canonical description associated with the HTTP status code.
This value is derived from the optional HTTP Reason-Phrase field, so this field may
be an empty string if the server declines to respond with a Reason-Phrase.

type A string containing the type of response. It will contain one of the following
string values:

➤➤ basic: Indicates a standard same-origin response.

➤➤ cors: Indicates a standard cross-origin response.

➤➤ error: Indicates the response object was created via Response.error().

➤➤ opaque: Indicates a cross-origin response to a nocors fetch.

➤➤ opaqueredirect: Indicates a response to a request with redirect set
to manual.

url A string containing the URL of the response. For redirected responses, this will be
the final URL, which produced a non-redirect response.

904 ❘ CHAPTER 24 Network requests aNd remote resources

The following demonstrates typical response content for URLs that return 200, 302, 404, and 500:

fetch('//foo.com').then(console.log);
// Response {
// body: (...)
// bodyUsed: false
// headers: Headers {}
// ok: true
// redirected: false
// status: 200
// statusText: "OK"
// type: "basic"
// url: "https://foo.com/"
// }

fetch('//foo.com/redirectme').then(console.log);
// Response {
// body: (...)
// bodyUsed: false
// headers: Headers {}
// ok: true
// redirected: true
// status: 200
// statusText: "OK"
// type: "basic"
// url: "https://foo.com/redirected-url/"
// }

fetch('//foo.com/doesnotexist').then(console.log);
// Response {
// body: (...)
// bodyUsed: false
// headers: Headers {}
// ok: false
// redirected: true
// status: 404
// statusText: "Not Found"
// type: "basic"
// url: "https://foo.com/doesnotexist/"
// }

fetch('//foo.com/throwserror').then(console.log);
// Response {
// body: (...)
// bodyUsed: false
// headers: Headers {}
// ok: false
// redirected: true
// status: 500
// statusText: "Internal Server Error"
// type: "basic"
// url: "https://foo.com/throwserror/"
// }

The Fetch API ❘ 905

Cloning Response Objects
The primary way of cloning a Response object is to use the clone() method, which creates an exact
copy with no opportunity to override any values. This will not mark any request body as used:

let r1 = new Response('foobar');
let r2 = r1.clone();

console.log(r1.bodyUsed); // false
console.log(r2.bodyUsed); // false

Cloning a Response is not allowed if the bodyUsed request property is false, meaning the body has
not yet been read. Once the body is read, attempting to clone will throw a TypeError.

let r = new Response('foobar');
r.clone();
// No error

r.text(); // sets the bodyUsed field to false

r.clone();
// TypeError: Failed to execute 'clone' on 'Response': Response body is
already used

Only a body read can be performed with a Response that has a body. (Responses that do not include
a body are not subject to this restriction.) This is demonstrated here:

let r = new Response('foobar');

r.text().then(console.log); // foobar

r.text().then(console.log);
// TypeError: Failed to execute 'text' on 'Response': body stream is locked

In order to read the body multiple times with the same Response object that includes a body,
clone() must be invoked prior to performing the first read:

let r = new Response('foobar');

r.clone().text().then(console.log); // foobar
r.clone().text().then(console.log); // foobar
r.text().then(console.log); // foobar

Alternately, it is also possible to perform a pseudo-clone operation by creating a new Response
instance with the original body. Importantly, this strategy will not mark the first Response as read,
but the body is shared between the two responses:

let r1 = new Response('foobar');
let r2 = new Response(r1.body);

console.log(r1.bodyUsed); // false
console.log(r2.bodyUsed); // false

r2.text().then(console.log); // foobar
r1.text().then(console.log);
// TypeError: Failed to execute 'text' on 'Response': body stream is locked

906 ❘ CHAPTER 24 Network requests aNd remote resources

Requests, Responses, and the Body Mixin
Both Request and Response incorporate the Fetch API’s Body mixin to accommodate the payload-
carrying nature of both types. This mixin confers to each type a read-only body (implemented as
a ReadableStream), a read-only bodyUsed Boolean indicating if the body stream was read, and a
handful of methods that read the stream to completion and convert the result into a certain Java-
Script object type.

Generally, there are two primary reasons to consume a Request or Response body as a stream:
Either network latency is a factor due to the size of the payload, or the stream API itself is inherently
useful for processing the payload. In almost all other cases, the body of a fetched resource will be
most useful when consumed all at once.

The Body mixin affords you five different methods which flush the ReadableStream into a single
buffer in memory, cast the buffer into a certain JavaScript object type, and produce it inside a prom-
ise. This promise will wait until the body stream reports as finished and the buffer is parsed before
resolving. This means you must wait for the fetched resource to be fully loaded on the client before
being able to access its contents.

Body.text()
The Body.text() method returns a promise that resolves with the flushed buffer decoded as a UTF-8
string. Use of Body.text() is shown here with a Response object:

fetch('https://foo.com')
 .then((response) => response.text())
 .then(console.log);

// <!doctype html><html lang="en">
// <head>
// <meta charset="utf8">
// ...

Use of Body.text() is shown here with a Request object:

let request = new Request('https://foo.com',
 { method: 'POST', body: 'barbazqux' });

request.text()
 .then(console.log);

// barbazqux

Body.json()
The Body.json() method returns a promise that resolves with the flushed buffer decoded as JSON.
Use of Body.json() is shown here with a Response object:

fetch('https://foo.com/foo.json')
 .then((response) => response.json())
 .then(console.log);

// {"foo": "bar"}

The Fetch API ❘ 907

Use of Body.json() is shown here with a Request object:

let request = new Request('https://foo.com',
 { method:'POST', body: JSON.stringify({ bar: 'baz' }) });

request.json()
 .then(console.log);

// {bar: 'baz'}

Body.formData()
Browsers are able to serialize/deserialize FormData objects as a body. For example, consider the fol-
lowing FormData instance:

let myFormData = new FormData();
myFormData.append('foo', 'bar');

When transmitted via HTTP, a WebKit browser might serialize this as follows:

WebKitFormBoundarydR9Q2kOzE6nbN7eR
ContentDisposition: formdata; name="foo"

bar
WebKitFormBoundarydR9Q2kOzE6nbN7eR

The Body.formData() method returns a promise that resolves with the flushed buffer decoded as a
FormData instance. Use of Body.formData() is shown here with a Response object:

fetch('https://foo.com/formdata')
 .then((response) => response.formData())
 .then((formData) => console.log(formData.get('foo'));

// bar

Use of Body.formData() is shown here with a Request object:

let myFormData = new FormData();
myFormData.append('foo', 'bar');

let request = new Request('https://foo.com',
 { method:'POST', body: myFormData });

request.formData()
 .then((formData) => console.log(formData.get('foo'));

// bar

Body.arrayBuffer()
You may find the need to inspect and modify the body payload as raw binary. For such a task, the
body can be converted to an ArrayBuffer instance using Body.arrayBuffer(). This method returns
a promise that resolves with the flushed buffer exposed as an ArrayBuffer. Use of Body.array
Buffer() is shown here with a Response object:

fetch('https://foo.com')
 .then((response) => response.arrayBuffer())

908 ❘ CHAPTER 24 Network requests aNd remote resources

 .then(console.log);

// ArrayBuffer(...) {}

Use of Body.arrayBuffer() is shown here with a Request object:

let request = new Request('https://foo.com',
 { method:'POST', body: 'abcdefg' });

// Logs the encoded string binary values as integers
request.arrayBuffer()
 .then((buf) => console.log(new Int8Array(buf)));

// Int8Array(7) [97, 98, 99, 100, 101, 102, 103]

Body.blob()
You may find the need to use the body payload as raw binary without inspection or modification.
For such a task, the body can be used as a Blob instance using Body.blob(). This method returns a
promise that resolves with the flushed buffer exposed as a Blob. Use of Body.blob() is shown here
with a Response object:

fetch('https://foo.com')
 .then((response) => response.blob())
 .then(console.log);

// Blob(...) {size:..., type: "..."}

Use of Body.blob() is shown here with a Request object:

let request = new Request('https://foo.com',
 { method:'POST', body: 'abcdefg' });

request.blob()
 .then(console.log);

// Blob(7) {size: 7, type: "text/plain;charset=utf8"}

Single-Use Streams
Because the Body mixin is built atop a ReadableStream, this means that the body stream can only be
read a single time. The implication of this is that all of the Body mixin methods can only be called a
single time; subsequent attempts to invoke a mixin method will throw an error.

fetch('https://foo.com')
 .then((response) => response.blob().then(() => response.blob()));

// TypeError: Failed to execute 'blob' on 'Response': body stream is locked
let request = new Request('https://foo.com',
 { method: 'POST', body: 'foobar' });

request.blob().then(() => request.blob());
// TypeError: Failed to execute 'blob' on 'Request': body stream is locked

The Fetch API ❘ 909

Even if the stream is merely in the process of being read, all of these methods will place a lock on the
ReadableStream as soon as they are called and prevent a second reader from accessing the stream:

fetch('https://foo.com')
 .then((response) => {
 response.blob(); // First call locks the stream
 response.blob(); // Second call attempts to lock the stream and fails
 });

// TypeError: Failed to execute 'blob' on 'Response': body stream is locked
let request = new Request('https://foo.com',
 { method: 'POST', body: 'foobar' });

request.blob(); // First call locks the stream
request.blob(); // Second call attempts to lock the stream and fails
// TypeError: Failed to execute 'blob' on 'Request': body stream is locked

As part of the Body mixin, a bodyUsed Boolean property indicates if the ReadableStream is dis-
turbed, meaning a reader has already placed a lock on the stream. This doesn’t necessarily indicate
that the stream is fully drained. This property is demonstrated here:

let request = new Request('https://foo.com',
 { method: 'POST', body: 'foobar' });
let response = new Response('foobar');

console.log(request.bodyUsed); // false
console.log(response.bodyUsed); // false

request.text().then(console.log); // foobar
response.text().then(console.log); // foobar

console.log(request.bodyUsed); // true
console.log(response.bodyUsed); // true

Using a ReadableStream Body
Much of JavaScript programming treats networking as atomic operations; requests are created and
sent off all at once, and responses are exposed as a unified data payload that becomes available all at
once. This convention hides the underlying messiness, making network-involved code nice to write.

By the very nature of TCP/IP, transmitted data arrives at an endpoint in chunks, and only as fast as
the network can deliver those chunks. A receiving endpoint allocates memory and writes what is
received over the network as it arrives. The Fetch API allows you to read and manipulate this data as
it arrives in real time via a ReadableStream.

NOTE Examples in this section will fetch the HTML of the Fetch specifica-
tion, found at https://fetch.spec.whatwg.org/. This page has roughly 1MB of
markup, which is a large enough payload that the stream examples in this section
will arrive in multiple chunks.

910 ❘ CHAPTER 24 Network requests aNd remote resources

A ReadableStream, as defined in the Stream API, exposes a getReader() method that produces a
ReadableStreamDefaultReader, which can be used to asynchronously retrieve chunks of the body
as they arrive. Each chunk of the body stream is provided as a Uint8Array.

The following snippet invokes read() on the reader to log the first available chunk:

fetch('https://fetch.spec.whatwg.org/')
 .then((response) => response.body)
 .then((body) => {
 let reader = body.getReader();

 console.log(reader); // ReadableStreamDefaultReader {}

 reader.read()
 .then(console.log);
 });

// { value: Uint8Array{}, done: false }

To retrieve the entire payload as it becomes available, the read() method can be called recursively:

 fetch('https://fetch.spec.whatwg.org/')
 .then((response) => response.body)
 .then((body) => {
 let reader = body.getReader();

 function processNextChunk({value, done}) {
 if (done) {
 return;
 }

 console.log(value);

 return reader.read()
 .then(processNextChunk);
 }

 return reader.read()
 .then(processNextChunk);
 });

// { value: Uint8Array{}, done: false }
// { value: Uint8Array{}, done: false }
// { value: Uint8Array{}, done: false }
// ...

Async functions are highly appropriate for use in fetch() operations. This recursive implementation
can be flattened using async/await:

 fetch('https://fetch.spec.whatwg.org/')
 .then((response) => response.body)
 .then(async function(body) {
 let reader = body.getReader();

 while(true) {
 let { value, done } = await reader.read();

The Fetch API ❘ 911

 if (done) {
 break;
 }

 console.log(value);
 }
 });

// { value: Uint8Array{}, done: false }
// { value: Uint8Array{}, done: false }
// { value: Uint8Array{}, done: false }
// ...

Alternately, the read() method is close enough to the Iterable interface that it is trivial to convert
this to use a forawaitof loop:

fetch('https://fetch.spec.whatwg.org/')
 .then((response) => response.body)
 .then(async function(body) {
 let reader = body.getReader();

 let asyncIterable = {
 [Symbol.asyncIterator]() {
 return {
 next() {
 return reader.read();
 }
 };
 }
 };

 for await (chunk of asyncIterable) {
 console.log(chunk);
 }
 });

// { value: Uint8Array{}, done: false }
// { value: Uint8Array{}, done: false }
// { value: Uint8Array{}, done: false }
// ...

This can be reduced further into a slightly cleaner generator function. Furthermore, this implementa-
tion can be made more robust by allowing for a partial stream read. If the stream terminates either
via depletion or throwing an error, the reader should release the lock to allow for a different stream
reader to pick up where it left off:

async function* streamGenerator(stream) {
 const reader = stream.getReader();

 try {
 while (true) {
 const { value, done } = await reader.read();

912 ❘ CHAPTER 24 Network requests aNd remote resources

 if (done) {
 break;
 }

 yield value;
 }
 } finally {
 reader.releaseLock();
 }
}

fetch('https://fetch.spec.whatwg.org/')
 .then((response) => response.body)
 .then(async function(body) {
 for await (chunk of streamGenerator(body)) {
 console.log(chunk);
 }
 });

In these examples, after the current Uint8Array chunk goes out of scope, the browser marks it as
eligible for garbage collection. This allows for potentially massive memory savings in scenarios where
it is suitable to examine a large payload serially and in discrete segments.

The size of the buffer and whether or not the browser waits for it to be filled before pushing it into
the stream is subject to the JavaScript runtime’s implementation. The browser is sensitive to the fact
that it is ideal to wait and fill up an allocated buffer when possible, but at the same time to keep the
stream full by sending (sometimes unfilled) buffers as often as possible.

Browsers may vary the size of the chunk’s buffer based on factors such as bandwidth or network
latency. Furthermore, the browser might decide to send a partially filled buffer to the stream if
it decides not to wait for the network. Ultimately, your code should be prepared to handle the
following:

➤➤ Uint8Array chunks of variable size

➤➤ Uint8Array chunks being partially filled

➤➤ Chunks arriving at unpredictable intervals

By default, chunks will arrive in a Uint8Array format. Because the termination of a chunk does not
respect the encoded content, there may be values such as multi-byte characters split between two
separate sequential chunks. There are messy ways to manually account for this, but for many cases
there are plug-and-play solutions from the Encoding API.

To convert the Uint8Array to readable text, a TextDecoder can be passed a buffer and return the
converted value. Setting the stream:true configuration allows it to keep the previous buffer in
memory so that content bridged between the two chunks can be correctly decoded:

let decoder = new TextDecoder();

async function* streamGenerator(stream) {
 const reader = stream.getReader();

 try {

The Fetch API ❘ 913

 while (true) {
 const { value, done } = await reader.read();

 if (done) {
 break;
 }

 yield value;
 }
 } finally {
 reader.releaseLock();
 }
}

fetch('https://fetch.spec.whatwg.org/')
 .then((response) => response.body)
 .then(async function(body) {
 for await (chunk of streamGenerator(body)) {
 console.log(decoder.decode(chunk, { stream: true }));
 }
 });

// <!doctype html><html lang="en"> ...
// whether a <a datalinktype="dfn" href="#conceptheader" ...
// result to <var>rangeValue</var>. ...
// ...

Because a Response object can be created using a ReadableStream, it is possible to read a stream,
pipe it into a newly created secondary stream, and use that secondary stream for Body methods such
as text(). This allows for inspection and manipulation of the stream contents as they become avail-
able. This dual-stream technique is shown here:

fetch('https://fetch.spec.whatwg.org/')
 .then((response) => response.body)
 .then((body) => {
 const reader = body.getReader();

 // create secondary stream
 return new ReadableStream({
 async start(controller) {
 try {
 while (true) {
 const { value, done } = await reader.read();

 if (done) {
 break;
 }

 // Push the body stream's chunk onto the secondary stream
 controller.enqueue(value);
 }
 } finally {
 controller.close();
 reader.releaseLock();
 }

914 ❘ CHAPTER 24 Network requests aNd remote resources

 }
 })
 })
 .then((secondaryStream) => new Response(secondaryStream))
 .then(response => response.text())
 .then(console.log);

// <!doctype html><html lang="en"><head><meta charset="utf8"> ...

THE BEACON API

To maximize the amount of information transmitted about a page, many analytics tools need to send
telemetry or analytics data to a server as late in a page’s lifecycle as possible. As a result, the optimal
pattern is to send a network request on the browser’s unload event. This event signals that a page
departure is occurring and that no more useful information will be generated on that page.

When an unload event is fired, analytics tools want to cease collecting information and attempt
to ship off what they have to the server. This presents a problem, as the unload event means to the
browser that there is little reason to dispatch any pending network requests (since the page is being
discarded anyway). For example, any asynchronous requests created in an unload handler will be
cancelled by the browser. Therefore, an asynchronous XMLHttpRequest or fetch() is unsuitable for
this task. Analytics tools could use a synchronous XMLHttpRequest to force delivery of the request,
but doing so causes user experience problems. Because the browser pauses waiting for the request to
return, navigation to the next page is delayed while the browser waits for the unload handler inside
the unload handler to complete.

To address this issue, a supplemental Beacon API was introduced by the W3C. The API adds a single
sendBeacon() method to the navigator object. This simple method accepts a URL and a data
payload and dispatches a POST request. The optional data payload can be an ArrayBufferView, a
Blob, a DOMString, or a FormData instance. The method returns true if the request was successfully
enqueued for eventual transmission, else false.

The method can be used as follows:

// Sends POST request
// URL: 'https://example.com/analyticsreportingurl'
// Request Payload: '{foo: "bar"}'

navigator.sendBeacon('https://example.com/analyticsreportingurl', '{foo: "bar"}');

This method may seem like mere syntactical sugar for a POST request, but there are several notable
features of the method:

➤➤ sendBeacon() is not restricted to the end of a page’s lifecycle, it can be used at any time.

➤➤ Once sendBeacon() is called, the browser adds the requests to an internal request queue.
The browser will eagerly attempt to send requests in the queue.

➤➤ The browser guarantees it will attempt to send the request even if the browser has already
torn down the original page.

Web Sockets ❘ 915

➤➤ Response codes, timeouts, and any other network failures are totally opaque and cannot be
handled programmatically.

➤➤ The beacon request is sent with all relevant cookies at the time sendBeacon()
was originally invoked.

WEB SOCKETS

The goal of Web Sockets is to provide full-duplex, bidirectional communication with the server over
a single, long-lasting connection. When a Web Socket is created in JavaScript, an HTTP request is
sent to the server to initiate a connection. When the server responds, the connection uses the HTTP
Upgrade header to switch from HTTP to the Web Socket protocol. This means that Web Sockets can-
not be implemented with a standard HTTP server and must use a specialized server supporting the
protocol to work properly.

Because Web Sockets uses a custom protocol, the URL scheme is slightly different. Instead of using
the http:// or https:// schemes, there are ws:// for an unsecured connection and wss:// for a
secured connection. When specifying a Web Socket URL, you must include the scheme since other
schemes may be supported in the future.

The advantage of using a custom protocol over HTTP is that very small amounts of data, unencum-
bered by the byte overhead of HTTP, can be sent between the client and the server. Using smaller data
packets makes Web Sockets ideal for mobile applications where bandwidth and latency are a prob-
lem. The disadvantage of using a custom protocol is that it has taken longer to define protocol than
the JavaScript API. Web sockets are supported in all major browsers.

The API
To create a new Web Socket, instantiate a WebSocket object and pass in the URL that will provide
the connection:

let socket = new WebSocket("ws://www.example.com/server.php");

Note that you must pass in an absolute URL to the WebSocket constructor. The same-origin policy
does not apply to Web Sockets, so you can open a connection to any site. It is completely up to the
server whether or not it will communicate with a page from a particular origin. (It can determine
from where the request originated using information in the handshake.)

The browser attempts to create the connection as soon as the WebSocket object is instantiated.
Similar to XHR, WebSocket has a readyState property that indicates the current state. The values,
however, are different from those for XHR and are as follows:

➤➤ WebSocket.OPENING (0)—The connection is being established.

➤➤ WebSocket.OPEN (1)—The connection has been established.

➤➤ WebSocket.CLOSING (2)—The connection is beginning to close.

➤➤ WebSocket.CLOSE (3)—The connection is closed.

916 ❘ CHAPTER 24 Network requests aNd remote resources

There is no readystatechange event for WebSocket; however, there are other events that correspond
to the various states. The readyState always starts at 0.

You can close a Web Socket connection at any time using the close() method:

socket.close();

Upon calling close(), the readyState immediately changes to 2 (closing) and will transition to 3
when complete.

Sending/Receiving Data
Once a Web Socket is open, you can both send data over and receive data from the connection.
To send data to the server, use the send() method and pass in a string, ArrayBuffer, or Blob, as
shown here:

let socket = new WebSocket("ws://www.example.com/server.php");

let stringData = "Hello world!";
let arrayBufferData = Uint8Array.from(['f', 'o' 'o']);
let blobData = new Blob(['f', 'o' 'o']);

socket.send(stringData);
socket.send(arrayBufferData.buffer);
socket.send(blobData);

When the server sends a message to the client, a message event is fired on the WebSocket object. The
message event works similar to other messaging protocols, with the payload available through the
event.data property:

socket.onmessage = function(event) {
 let data = event.data;
 // do something with data
};

Similar to data that is sent to the server via send(), data returned in event.data can be procured as
an ArrayBuffer or a Blob. This is governed by the binaryType of the WebSocket object, which can
either be "blob" or "arraybuffer".

Other Events
The WebSocket object has three more events that fire during the lifetime of the connection:

➤➤ open—Fires when the connection has been successfully made.

➤➤ error—Fires when an error occurs. The connection is unable to persist.

➤➤ close—Fires when the connection is closed.

The WebSocket object doesn’t support DOM Level 2 event listeners, so you need to use DOM Level
0 style event handlers for each:

let socket = new WebSocket("ws://www.example.com/server.php");
socket.onopen = function() {
 alert("Connection established.");

Security ❘ 917

};
socket.onerror = function() {
 alert("Connection error.");
};
socket.onclose = function() {
 alert("Connection closed.");
};

Of these three events, only the close event has additional information on the event object. There are
three additional properties on the event object: wasClean, a Boolean indicating if the connection was
closed cleanly; code, a numeric status code sent from the server; and reason, a string containing a
message sent from the server. You may want to use this information either to display to the user or to
log for analytics:

socket.onclose = function(event) {
 console.log(`as clean? ${event.wasClean} Code=${event.code} Reason=${
 event.reason}`);
};

SECURITY

A lot has been published about Ajax security; in fact, there are entire books dedicated to the topic.
Security considerations for large-scale Ajax applications are vast, but there are some basic things to
understand about Ajax security in general.

First, any URL that can be accessed via Ajax can also be accessed by a browser or a server. For exam-
ple, consider the following URL:

/getuserinfo.php?id=23

If a request is made to this URL, it will presumably return some data about a user whose ID is 23.
There is nothing to stop someone from changing the URL to a user ID of 24 or 56 or any other value.
The getuserinfo.php file must know whether the requestor actually has access to the data that is
being requested; otherwise, you have left the server wide open to relay data about anyone.

When an unauthorized system is able to access a resource, it is considered a cross-site request for-
gery (CSRF) attack. The unauthorized system is making itself appear to be legitimate to the server
handling the request. Ajax applications, large and small, have been affected by CSRF attacks ranging
from benign proof-of-vulnerability attacks to malicious data-stealing or data-destroying attacks.

The prevailing theory of how to secure URLs accessed via Ajax is to validate that the sender has
access to the resource. This can be done in the following ways:

➤➤ Requiring SSL to access resources that can be requested via Ajax

➤➤ Requiring a computed token to be sent along with every request

Please recognize that the following are ineffective against CSRF attacks:

➤➤ Requiring a POST instead of a GET—This is easily changed.

➤➤ Using the referrer as a determination of origin—Referrers are easily spoofed.

➤➤ Validating based on cookie information—Also easily spoofed.

918 ❘ CHAPTER 24 Network requests aNd remote resources

SUMMARY

Ajax is a method for retrieving data from the server without refreshing the current page. Ajax has the
following characteristics:

➤➤ The central object responsible for the growth of Ajax is the XMLHttpRequest (XHR) object.

➤➤ This object was created by Microsoft and first introduced in Internet Explorer 5 as a way to
retrieve XML data from the server in JavaScript.

➤➤ Since that time, Firefox, Safari, Chrome, and Opera have all duplicated the implementa-
tion, and the W3C has written a specification defining the XHR behavior, making XHR a
Web standard.

➤➤ Though there are some differences in implementations, the basic usage of the XHR
object is relatively normalized across all browsers and can therefore safely be used in web
applications.

One of the major constraints on XHR is the same-origin policy that limits communication to the
same domain, using the same port, and with the same protocol. Any attempts to access resources
outside of these restrictions cause a security error, unless an approved cross-domain solution is used.
The solution is called Cross-Origin Resource Sharing (CORS) and is supported natively through the
XHR object. Image pings and JSONP are other techniques for cross-domain communication, though
they are less robust than CORS.

The Fetch API was introduced as an end-to-end replacement of the incumbent XHR object. The API
offers a superior promise-based structure, a more intuitive interface, and first-class support for the
Stream API.

Web Sockets are a full-duplex, bidirectional communication channel with the server. Unlike other
solutions, Web Sockets do not use HTTP but rather use a custom protocol designed to deliver small
pieces of data quickly. This requires a different web server but gives a speed advantage.

Client-Side Storage
WHAT’S IN THIS CHAPTER?

➤➤ Cookies

➤➤ Browser storage APIs

➤➤ IndexedDB

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/projavascript4e on the Down-
load Code tab.

Along with the emergence of web applications came a call for the ability to store user informa-
tion directly on the client. The idea is logical: information pertaining to a specific user should
live on that user’s machine. Whether that is login information, preferences, or other data, web
application providers found themselves searching for ways to store data on the client. The first
solution to this problem came in the form of cookies, a creation of the old Netscape Communi-
cations Corporation and described in a specification titled Persistent Client State: HTTP Cook-
ies (still available at http://curl.haxx.se/rfc/cookie_spec.html). Today, cookies are just
one option available for storing data on the client.

COOKIES

HTTP cookies, commonly just called cookies, were originally intended to store session informa-
tion on the client. The specification called for the server to send a Set-Cookie HTTP header
containing session information as part of any response to an HTTP request. For instance, the
headers of a server response may look like this:

25

Professional JavaScript® for Web Developers, Fourth Edition. Matt Frisbie.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

920 ❘ CHAPTER 25 Client-Side Storage

HTTP/1.1 200 OK
Content-type: text/html
Set-Cookie: name=value
Other-header: other-header-value

This HTTP response sets a cookie with the name of "name" and a value of "value". Both the name
and the value are URL-encoded when sent. Browsers store such session information and send it back
to the server via the Cookie HTTP header for every request after that point, such as the following:

GET /index.jsl HTTP/1.1
Cookie: name=value
Other-header: other-header-value

This extra information being sent back to the server can be used to uniquely identify the client from
which the request was sent.

Restrictions
Cookies are, by nature, tied to a specific domain. When a cookie is set, it is sent along with requests
to the same domain from which it was created. This restriction ensures that information stored in
cookies is available only to approved recipients and cannot be accessed by other domains.

Because cookies are stored on the client computer, restrictions have been put in place to ensure that
cookies can’t be used maliciously and that they won’t take up too much disk space.

In general, if you use the following approximate limits, you will run into no problems across all
browser traffic:

➤➤ 300 cookies total

➤➤ 4096 bytes per cookie

➤➤ 20 cookies per domain

➤➤ 81920 bytes per domain

The total number of cookies per domain is limited, although it varies from browser to browser.
For example:

➤➤ Latest editions of Internet Explorer and Edge limit cookies to 50 per domain.

➤➤ Latest editions of Firefox limit cookies to 150 per domain.

➤➤ Latest editions of Opera limit cookies to 180 per domain.

➤➤ Safari and Chrome have no hard limit on the number of cookies per domain.

When cookies are set above the per-domain limit, the browser starts to eliminate previously set cook-
ies. Internet Explorer and Opera begin by removing the least recently used (LRU) cookie to allow
space for the newly set cookie. Firefox seemingly randomly decides which cookies to eliminate, so it’s
very important to mind the cookie limit to avoid unintended consequences.

There are also limitations as to the size of cookies in browsers. Most browsers have a byte-count limit
of around 4096 bytes, give or take a byte. For best cross-browser compatibility, it’s best to keep the total
cookie size to 4095 bytes or less. The size limit applies to all cookies for a domain, not per cookie.

Cookies ❘ 921

If you attempt to create a cookie that exceeds the maximum cookie size, the cookie is silently
dropped. Note that one character typically takes one byte, unless you’re using multibyte characters—
such as some UTF-8 Unicode characters, which can be up to 4 bytes per character.

Cookie Parts
Cookies are made up of the following pieces of information stored by the browser:

➤➤ Name—Unique name to identify the cookie. Cookie names are case-insensitive, so
myCookie and MyCookie are considered to be the same. In practice, however, it’s always best
to treat the cookie names as case-sensitive because some server software may treat them as
such. The cookie name must be URL-encoded.

➤➤ Value—String value stored in the cookie. This value must also be URL-encoded.

➤➤ Domain—Domain for which the cookie is valid. All requests sent from a resource at this
domain will include the cookie information. This value can include a subdomain (such
as www.wrox.com) or exclude it (such as .wrox.com, which is valid for all subdomains
of wrox.com). If not explicitly set, the domain is assumed to be the one from which the
cookie was set.

➤➤ Path—Path within the specified domain for which the cookie should be sent to the server.
For example, you can specify that the cookie be accessible only from http://www.wrox.com/
books/ so pages at http://www.wrox.com won’t send the cookie information, even though
the request comes from the same domain.

➤➤ Expiration—Time stamp indicating when the cookie should be deleted (that is, when it
should stop being sent to the server). By default, all cookies are deleted when the browser
session ends; however, it is possible to set another time for the deletion. This value is set as a
date in GMT format (Wdy, DD-Mon-YYYY HH:MM:SS GMT) and specifies an exact time
when the cookie should be deleted. Because of this, a cookie can remain on a user’s machine
even after the browser is closed. Cookies can be deleted immediately by setting an expira-
tion date that has already occurred.

➤➤ Secure flag—When specified, the cookie information is sent to the server only if an SSL
connection is used. For instance, requests to https://www.wrox.com should send cookie
information, whereas requests to http://www.wrox.com should not.

Each piece of information is specified as part of the Set-Cookie header using a semicolon-space
combination to separate each section, as shown in the following example:

HTTP/1.1 200 OK
Content-type: text/html
Set-Cookie: name=value; expires=Mon, 22-Jan-07 07:10:24 GMT; domain=.wrox.com
Other-header: other-header-value

This header specifies a cookie called "name" that expires on Monday, January 22, 2007, at
7:10:24 GMT and is valid for www.wrox.com and any other subdomains of wrox.com such as
p2p.wrox.com.

922 ❘ CHAPTER 25 Client-Side Storage

The secure flag is the only part of a cookie that is not a name-value pair; the word "secure" is
simply included. Consider the following example:

HTTP/1.1 200 OK
Content-type: text/html
Set-Cookie: name=value; domain=.wrox.com; path=/; secure
Other-header: other-header-value

Here, a cookie is created that is valid for all subdomains of wrox.com and all pages on that domain
(as specified by the path argument). This cookie can be transmitted only over an SSL connection
because the secure flag is included.

It’s important to note that the domain, path, expiration date, and secure flag are indications to the
browser as to when the cookie should be sent with a request. These arguments are not actually sent as
part of the cookie information to the server; only the name-value pairs are sent.

Cookies in JavaScript
Dealing with cookies in JavaScript is a little complicated because of a notoriously poor interface,
the BOM’s document.cookie property. This property is unique in that it behaves very differently
depending on how it is used. When used to retrieve the property value, document.cookie returns a
string of all cookies available to the page (based on the domain, path, expiration, and security settings
of the cookies) as a series of name-value pairs separated by semicolons, as in the following example:

name1=value1;name2=value2;name3=value3

All of the names and values are URL-encoded and so must be decoded via decodeURIComponent().

When used to set a value, the document.cookie property can be set to a new cookie string. That
cookie string is interpreted and added to the existing set of cookies. Setting document.cookie does
not overwrite any cookies unless the name of the cookie being set is already in use. The format to set
a cookie is as follows, and is the same format used by the Set-Cookie header:

name=value; expires=expiration_time; path=domain_path; domain=domain_name; secure

Of these parameters, only the cookie’s name and value are required. Here’s a simple example:

document.cookie = "name=Nicholas";

This code creates a session cookie called "name" that has a value of "Nicholas". This cookie will be
sent every time the client makes a request to the server; it will be deleted when the browser is closed.
Although this will work, as there are no characters that need to be encoded in either the name or the
value, it’s a best practice to always use encodeURIComponent() when setting a cookie, as shown in
the following example:

document.cookie = encodeURIComponent("name") + "=" +
 encodeURIComponent("Nicholas");

To specify additional information about the created cookie, just append it to the string in the same
format as the Set-Cookie header, like this:

document.cookie = encodeURIComponent("name") + "=" +
 encodeURIComponent("Nicholas") + "; domain=.wrox.com; path=/";

Cookies ❘ 923

Because the reading and writing of cookies in JavaScript isn’t very straightforward, functions are
often used to simplify cookie functionality. There are three basic cookie operations: reading, writing,
and deleting. These are all represented in the CookieUtil object as follows:

class CookieUtil {
 static get(name) {
 let cookieName = `${encodeURIComponent(name)}=`,
 cookieStart = document.cookie.indexOf(cookieName),
 cookieValue = null;

 if (cookieStart > -1){
 let cookieEnd = document.cookie.indexOf(";", cookieStart);
 if (cookieEnd == -1){
 cookieEnd = document.cookie.length;
 }
 cookieValue = decodeURIComponent(document.cookie.substring(cookieStart
 + cookieName.length, cookieEnd));
 }

 return cookieValue;
 }

 static set(name, value, expires, path, domain, secure) {
 let cookieText =
 `${encodeURIComponent(name)}=${encodeURIComponent(value)}`

 if (expires instanceof Date) {
 cookieText += `; expires=${expires.toGMTString()}`;
 }

 if (path) {
 cookieText += `; path=${path}`;
 }

 if (domain) {
 cookieText += `; domain=${domain}`;
 }

 if (secure) {
 cookieText += "; secure";
 }

 document.cookie = cookieText;
 }

 static unset(name, path, domain, secure) {
 CookieUtil.set(name, "", new Date(0), path, domain, secure);
 }
};

The CookieUtil.get() method retrieves the value of a cookie with the given name. To do so, it
looks for the occurrence of the cookie name followed by an equal sign in document.cookie. If
that pattern is found, then indexOf() is used to find the next semicolon after that location (which
indicates the end of the cookie). If the semicolon isn’t found, this means that the cookie is the last

924 ❘ CHAPTER 25 Client-Side Storage

one in the string, so the entire rest of the string should be considered the cookie value. This value is
decoded using decodeURIComponent() and returned. In the case where the cookie isn’t found, null
is returned.

The CookieUtil.set() method sets a cookie on the page and accepts several arguments: the name
of the cookie, the value of the cookie, an optional Date object indicating when the cookie should be
deleted, an optional URL path for the cookie, an optional domain for the cookie, and an optional
Boolean value indicating if the secure flag should be added. The arguments are in the order in which
they are most frequently used, and only the first two are required. Inside the method, the name and
value are URL-encoded using encodeURIComponent(), and then the other options are checked. If the
expires argument is a Date object, then an expires option is added using the Date object’s toGMT-
String() method to format the date correctly. The rest of the method simply builds up the cookie
string and sets it to document.cookie.

There is no direct way to remove existing cookies. Instead, you need to set the cookie again—with
the same path, domain, and secure options—and set its expiration date to some time in the past. The
CookieUtil.unset() method handles this case. It accepts four arguments: the name of the cookie to
remove, an optional path argument, an optional domain argument, and an optional secure argument.

These arguments are passed through to CookieUtil.set() with the value set to a blank string and
the expiration date set to January 1, 1970 (the value of a Date object initialized to 0 milliseconds).
Doing so ensures that the cookie is removed.

These methods can be used as follows:

// set cookies
CookieUtil.set("name", "Nicholas");
CookieUtil.set("book", "Professional JavaScript");

// read the values
alert(CookieUtil.get("name")); // "Nicholas"
alert(CookieUtil.get("book")); // "Professional JavaScript"

// remove the cookies
CookieUtil.unset("name");
CookieUtil.unset("book");

// set a cookie with path, domain, and expiration date
CookieUtil.set("name", "Nicholas", "/books/projs/", "www.wrox.com",
 new Date("January 1, 2010"));

// delete that same cookie
CookieUtil.unset("name", "/books/projs/", "www.wrox.com");

// set a secure cookie
CookieUtil.set("name", "Nicholas", null, null, null, true);

These methods make using cookies to store data on the client easier by handling the parsing and
cookie string construction tasks.

Cookies ❘ 925

Subcookies
To get around the per-domain cookie limit imposed by browsers, some developers use a concept
called subcookies. Subcookies are smaller pieces of data stored within a single cookie. The idea is to
use the cookie’s value to store multiple name-value pairs within a single cookie. The most common
format for subcookies is as follows:

name=name1=value1&name2=value2&name3=value3&name4=value4&name5=value5

Subcookies tend to be formatted in query string format. These values can then be stored and accessed
using a single cookie, rather than using a different cookie for each name-value pair. The result is that
more structured data can be stored by a website or web application without reaching the per-domain
cookie limit.

To work with subcookies, you need a new set of methods. The parsing and serialization of subcookies
are slightly different and a bit more complicated because of the expected subcookie usage. To get a
subcookie, for example, you need to follow the same basic steps to get a cookie, but before decoding
the value, you need to find the subcookie information as follows:

class SubCookieUtil {
 static get(name, subName) {
 let subCookies = SubCookieUtil.getAll(name);
 return subCookies ? subCookies[subName] : null;
 }

 static getAll(name) {
 let cookieName = encodeURIComponent(name) + "=",
 cookieStart = document.cookie.indexOf(cookieName),
 cookieValue = null,
 cookieEnd,
 subCookies,
 parts,
 result = {};

 if (cookieStart > -1) {
 cookieEnd = document.cookie.indexOf(";", cookieStart);
 if (cookieEnd == -1) {
 cookieEnd = document.cookie.length;
 }
 cookieValue = document.cookie.substring(cookieStart +
 cookieName.length, cookieEnd);
 if (cookieValue.length > 0) {
 subCookies = cookieValue.split("&");

 for (let i = 0, len = subCookies.length; i < len; i++) {
 parts = subCookies[i].split("=");
 result[decodeURIComponent(parts[0])] =
 decodeURIComponent(parts[1]);
 }

 return result;
 }
 }

926 ❘ CHAPTER 25 Client-Side Storage

 return null;
 }

 // more code here
};

There are two methods for retrieving subcookies: get() and getAll(). Whereas get() retrieves a single
subcookie value, getAll() retrieves all subcookies and returns them in an object whose properties are
equal to the subcookie names and the values are equal to the subcookie values. The get() method accepts
two arguments: the name of the cookie and the name of the subcookie. It simply calls getAll() to retrieve
all of the subcookies and then returns just the one of interest (or null if the cookie doesn’t exist).

The SubCookieUtil.getAll() method is very similar to CookieUtil.get() in the way it parses a
cookie value. The difference is that the cookie value isn’t immediately decoded. Instead, it is split on
the ampersand character to get all subcookies into an array. Then, each subcookie is split on the equal
sign so that the first item in the parts array is the subcookie name, and the second is the subcookie
value. Both items are decoded using decodeURIComponent() and assigned on the result object,
which is returned as the method value. If the cookie doesn’t exist, then null is returned.

These methods can be used as follows:

// assume document.cookie=data=name=Nicholas&book=Professional%20JavaScript

// get all subcookies
let data = SubCookieUtil.getAll("data");
alert(data.name); // "Nicholas"
alert(data.book); // "Professional JavaScript"

// get subcookies individually
alert(SubCookieUtil.get("data", "name")); // "Nicholas"
alert(SubCookieUtil.get("data", "book")); // "Professional JavaScript"

To write subcookies, you can use two methods: set() and setAll(). The following code shows their
constructs:

class SubCookieUtil {
 // previous code here

 static set(name, subName, value, expires, path, domain, secure) {
 let subcookies = SubCookieUtil.getAll(name) || {};
 subcookies[subName] = value;
 SubCookieUtil.setAll(name, subcookies, expires, path, domain, secure);
 }

 static setAll(name, subcookies, expires, path, domain, secure) {
 let cookieText = encodeURIComponent(name) + "=",
 subcookieParts = new Array(),
 subName;
 for (subName in subcookies){
 if (subName.length > 0 && subcookies.hasOwnProperty(subName)){
 subcookieParts.push(
 '${encodeURIComponent(subName)}=${encodeURIComponent(subcookies[subName])}');
 }
 }

Cookies ❘ 927

 if (cookieParts.length > 0) {
 cookieText += subcookieParts.join("&");

 if (expires instanceof Date) {
 cookieText += `; expires=${expires.toGMTString()}`;
 }

 if (path) {
 cookieText += `; path=${path}`;
 }

 if (domain) {
 cookieText += `; domain=${domain}`;
 }

 if (secure) {
 cookieText += "; secure";
 }
 } else {
 cookieText += `; expires=${(new Date(0)).toGMTString()}`;
 }
 document.cookie = cookieText;
 }

 // more code here
};

The set() method accepts seven arguments: the cookie name, the subcookie name, the subcookie
value, an optional Date object for the cookie expiration day/time, an optional cookie path, an
optional cookie domain, and an optional Boolean secure flag. All of the optional arguments refer
to the cookie itself and not to the subcookie. In order to store multiple subcookies in the same
cookie, the path, domain, and secure flag must be the same; the expiration date refers to the entire
cookie and can be set whenever an individual subcookie is written. Inside the method, the first step
is to retrieve all of the subcookies for the given cookie name. The logical OR operator is used to set
subcookies to a new object if getAll() returns null. After that, the subcookie value is set on the
subcookies object and then passed into setAll().

The setAll() method accepts six arguments: the cookie name, an object containing all of the sub-
cookies, and then the rest of the optional arguments used in set(). This method iterates over the
properties of the second argument using a for-in loop. To ensure that the appropriate data is saved,
use the hasOwnProperty() method to ensure that only the instance properties are serialized into
subcookies. Since it’s possible to have a property name equal to the empty string, the length of the
property name is also checked before being added to the result. Each subcookie name-value pair is
added to the subcookieParts array so that they can later be easily joined with an ampersand using
the join() method. The rest of the method is the same as CookieUtil.set().

These methods can be used as follows:

// assume document.cookie=data=name=Nicholas&book=Professional%20JavaScript

// set two subcookies
SubCookieUtil.set("data", "name", "Nicholas");
SubCookieUtil.set("data", "book", "Professional JavaScript");

928 ❘ CHAPTER 25 Client-Side Storage

// set all subcookies with expiration date
SubCookieUtil.setAll("data", { name: "Nicholas", book: "Professional JavaScript" },
 new Date("January 1, 2010"));

// change the value of name and change expiration date for cookie
SubCookieUtil.set("data", "name", "Michael", new Date("February 1, 2010"));

The last group of subcookie methods has to do with removing subcookies. Regular cookies are
removed by setting the expiration date to some time in the past, but subcookies cannot be removed
as easily. In order to remove a subcookie, you need to retrieve all subcookies contained within the
cookie, eliminate just the one that is meant to be removed, and then set the value of the cookie back
with the remaining subcookie values. Consider the following:

class SubCookieUtil {
 // previous code here

 static unset(name, subName, path, domain, secure) {
 let subcookies = SubCookieUtil.getAll(name);
 if (subcookies){
 delete subcookies[subName]; // fix?
 SubCookieUtil.setAll(name, subcookies, null, path, domain, secure);
 }
 }

 static unsetAll(name, path, domain, secure) {
 SubCookieUtil.setAll(name, null, new Date(0), path, domain, secure);
 }
}

The two methods defined here serve two different purposes. The unset() method is used to remove
a single subcookie from a cookie while leaving the rest intact; whereas the unsetAll() method is the
equivalent of CookieUtil.unset(), which removes the entire cookie. As with set() and setAll(),
the path, domain, and secure flag must match the options with which a cookie was created. These
methods can be used as follows:

// just remove the "name" subcookie
SubCookieUtil.unset("data", "name");

// remove the entire cookie
SubCookieUtil.unsetAll("data");

If you are concerned about reaching the per-domain cookie limit in your work, subcookies are an
attractive alternative. You will have to more closely monitor the size of your cookies to stay within
the individual cookie size limit.

Cookie Considerations
There is also a type of cookie called HTTP-only. HTTP-only cookies can be set either from the
browser or from the server but can be read only from the server because JavaScript cannot get the
value of HTTP-only cookies.

Because all cookies are sent as request headers from the browser, storing a large amount of infor-
mation in cookies can affect the overall performance of browser requests to a particular domain.
The larger the cookie information, the longer it will take to complete the request to the server. Even

Web Storage ❘ 929

though the browser places size limits on cookies, it’s a good idea to store as little information as pos-
sible in cookies, to avoid performance implications.

The restrictions on and nature of cookies make them less than ideal for storing large amounts of
information, which is why other approaches have emerged.

NOTE Avoid storing important or sensitive data in cookies. Cookie data is not
stored in a secure environment, so any data contained within may be accessible
by others. You should avoid storing data such as credit card numbers or personal
addresses in cookies.

WEB STORAGE

Web Storage was first described in the Web Applications 1.0 specification of the Web Hypertext
Application Technical Working Group (WHAT-WG). The initial work from this specification eventu-
ally became part of HTML5 before being split into its own specification. Its intent is to overcome
some of the limitations imposed by cookies when data is needed strictly on the client side, with no
need to continuously send data back to the server.

The most modern edition of the Web Storage specification is its second edition. The two primary
goals of the Web Storage specification are:

➤➤ To provide a way to store session data outside of cookies.

➤➤ To provide a mechanism for storing large amounts of data that persists across sessions.

The second edition of the Web Storage specification includes definitions for two objects: localStor-
age, the permanent storage mechanism, and sessionStorage, the session-scoped storage mechanism.
Both of these browser storage APIs afford you two different ways of storing data in the browser that
can survive a page reload. Both localStorage and sessionStorage are available as a property of
window in all major vendor browser versions released since 2009.

NOTE globalStorage was formerly part of the first edition of the Web Storage
specification and has since been deprecated.

The Storage Type
The Storage type is designed to hold name-value pairs up to a maximum size (determined by
the browser). An instance of Storage acts like any other object and has the following addi-
tional methods:

➤➤ clear()—Removes all values; not implemented in Firefox.

➤➤ getItem(name)—Retrieves the value for the given name.

930 ❘ CHAPTER 25 Client-Side Storage

➤➤ key(index)—Retrieves the name of the value in the given numeric position.

➤➤ removeItem(name)—Removes the name-value pair identified by name.

➤➤ setItem(name, value)—Sets the value for the given name.

The getItem(), removeItem(), and setItem() methods can be called directly or indirectly by
manipulating the Storage object. Since each item is stored on the object as a property, you can
simply read values by accessing the property with dot or bracket notation, set the value by doing
the same, or remove it by using the delete operator. Even so, it’s generally recommended to use the
methods instead of property access to ensure you don’t end up overwriting one of the already avail-
able object members with a key.

You can determine how many name-value pairs are in a Storage object by using the length prop-
erty. It’s not possible to determine the size of all data in the object, although Internet Explorer 8
provides a remainingSpace property that retrieves the amount of space, in bytes, that is still avail-
able for storage.

NOTE The Storage type is capable of storing only strings. Nonstring data is
automatically converted into a string before being stored. Keep in mind that this
conversion is not undone upon retrieval.

The sessionStorage Object
The sessionStorage object stores data only for a session, meaning that the data is stored until
the browser is closed. This is the equivalent of a session cookie that disappears when the browser is
closed. Data stored on sessionStorage persists across page refreshes and may also be available if
the browser crashes and is restarted, depending on the browser vendor. (Firefox and WebKit support
this, but Internet Explorer does not.)

Because the sessionStorage object is tied to a server session, it isn’t available when a file is run
locally. Data stored on sessionStorage is accessible only from the page that initially placed the data
onto the object, making it of limited use for multipage applications.

Because the sessionStorage object is an instance of Storage, you can assign data onto it
either by using setItem() or by assigning a new property directly. Here’s an example of each of
these methods:

// store data using method
sessionStorage.setItem("name", "Nicholas");

// store data using property
sessionStorage.book = "Professional JavaScript";

All modern browsers implement storage writing as a blocking synchronous action, so data added
to storage is committed right away. The API implementation might not write the value to disk right
away (and prefers to initially use a different physical storage), but this difference is invisible at the
JavaScript level, and any writes using some form of Web Storage can immediately be read.

Web Storage ❘ 931

Older Internet Explorer implementations write data asynchronously so there may be a lag between
the time when data is assigned and the time that the data is written to disk. For small amounts of
data, the difference is negligible. For large amounts of data, you’ll notice that JavaScript in Internet
Explorer resumes execution faster than in other browsers because it offloads the actual disk write
process. You can force disk writing to occur in Internet Explorer 8 by using the begin() method
before assigning any new data, and the commit() method after all assignments have been made. Con-
sider the following example:

// IE8 only
sessionStorage.begin();
sessionStorage.name = "Nicholas";
sessionStorage.book = "Professional JavaScript";
sessionStorage.commit();

This code ensures that the values for "name" and "book" are written as soon as commit() is called.
The call to begin() ensures that no disk writes will occur while the code is executed. For small
amounts of data, this process isn’t necessary; however, you may wish to consider this transactional
approach for larger amounts of data such as documents.

When data exists on sessionStorage, it can be retrieved either by using getItem() or by accessing
the property name directly. Here’s an example of each of these methods:

// get data using method
let name = sessionStorage.getItem("name");

// get data using property
let book = sessionStorage.book;

You can iterate over the values in sessionStorage using a combination of the length property and
key() method, as shown here:

for (let i = 0, len = sessionStorage.length; i < len; i++){
 let key = sessionStorage.key(i);
 let value = sessionStorage.getItem(key);
 alert(`${key}=`${value}`);
}

The name-value pairs in sessionStorage can be accessed sequentially by first retrieving the name
of the data in the given position via key() and then using that name to retrieve the value via
getItem().

It’s also possible to iterate over the values in sessionStorage using a for-in loop:

for (let key in sessionStorage){
 let value = sessionStorage.getItem(key);
 alert(`${key}=${value}`);
}

Each time through the loop, key is filled with another name in sessionStorage; none of the built-in
methods or the length property will be returned.

To remove data from sessionStorage, you can use either the delete operator on the object prop-
erty or the removeItem() method. Here’s an example of each of these methods:

// use delete to remove a value
delete sessionStorage.name;

932 ❘ CHAPTER 25 Client-Side Storage

// use method to remove a value
sessionStorage.removeItem("book");

The sessionStorage object should be used primarily for small pieces of data that are valid only for
a session. If you need to persist data across sessions, then either globalStorage or localStorage is
more appropriate.

The localStorage Object
The localStorage object superceded globalStorage in the revised HTML5 specification as a way
to store persistent client-side data. In order to access the same localStorage object, pages must
be served from the same domain (subdomains aren’t valid), using the same protocol, and on the
same port.

Because localStorage is an instance of Storage, it can be used in exactly the same manner as ses-
sionStorage. Here are some examples:

// store data using method
localStorage.setItem("name", "Nicholas");

// store data using property
localStorage.book = "Professional JavaScript";

// get data using method
let name = localStorage.getItem("name");

// get data using property
let book = localStorage.book;

The difference between the two storage methods is that data stored in localStorage is persisted
until it is specifically removed via JavaScript or the user clears the browser’s cache. localStorage
data will remain through page reloads, closing windows and tabs, and restarting the browser.

The storage Event
Whenever a change is made to a Storage object, the storage event is fired on the document. This
occurs for every value set using either properties or setItem(), every value removal using either delete
or removeItem(), and every call to clear(). The event object has the following four properties:

➤➤ domain—The domain for which the storage changed.

➤➤ key—The key that was set or removed.

➤➤ newValue—The value that the key was set to, or null if the key was removed.

➤➤ oldValue—The value prior to the key being changed.

You can listen for the storage event using the following code:

window.addEventListener("storage",
 (event) => alert('Storage changed for ${event.domain}'));

The storage event is fired for all changes to sessionStorage and localStorage but doesn’t distin-
guish between them.

IndexedDB ❘ 933

Limits and Restrictions
As with other client-side data storage solutions, Web Storage also has limitations. These limitations
are browser-specific. Generally speaking, the size limit for client-side data is set on a per-origin (pro-
tocol, domain, and port) basis, so each origin has a fixed amount of space in which to store its data.
Analyzing the origin of the page that is storing the data enforces this restriction.

Storage limits for localStorage and sessionStorage are inconsistent across browsers, but most
will limit the per-origin storage to 5MB. A table containing up-to-date storage limits for each medium
can be found at https://www.html5rocks.com/en/tutorials/offline/quota-research/.

For more information about Web Storage limits, please see the Web Storage Support Test at http://
dev-test.nemikor.com/web-storage/support-test/.

INDEXEDDB

The Indexed Database API, IndexedDB for short, is a structured data store in the browser.
IndexedDB came about as an alternative to the now-deprecated Web SQL Database API. The idea
behind IndexedDB was to create an API that easily allowed the storing and retrieval of JavaScript
objects while still allowing querying and searching.

IndexedDB is designed to be almost completely asynchronous. As a result, most operations are per-
formed as requests that will execute later and produce either a successful result or an error. Nearly
every IndexedDB operation requires you to attach onerror and onsuccess event handlers to deter-
mine the outcome.

As of 2017, the latest releases of most major vendor browsers (Chrome, Firefox, Opera, Safari) fully
support IndexedDB. Internet Explorer 10/11 and Edge browsers partially support IndexedDB.

Databases
IndexedDB is a database similar to databases you’ve probably used before, such as MySQL or Web
SQL Database. The big difference is that IndexedDB uses object stores instead of tables to keep track
of data. An IndexedDB database is simply a collection of object stores grouped under a common
name—a NoSQL-style implementation.

The first step to using a database is to open it using indexedDB.open() and passing in the name of
the database to open. If a database with the given name already exists, then a request is made to open
it; if the database doesn’t exist, then a request is made to create and open it. The call to indexDB.
open() returns an instance of IDBRequest onto which you can attach onerror and onsuccess event
handlers. Here’s an example:

let db,
 request,
 version = 1;

request = indexedDB.open("admin", version);
request.onerror = (event) =>
 alert(`Failed to open: ${event.target.errorCode}`);

934 ❘ CHAPTER 25 Client-Side Storage

request.onsuccess = (event) => {
 db = event.target.result;
};

Formerly, IndexedDB used the setVersion() method to specify which version should be accessed.
This method is now deprecated; as shown here, the version is now specified when opening the
database. The version numbers will be converted to an unsigned long long number, so do not use
decimal points; use whole integers instead.

In both event handlers, event.target points to request, so these may be used interchangeably. If
the onsuccess event handler is called, then the database instance object (IDBDatabase) is available
in event.target.result and stored in the database variable. From this point on, all requests to
work with the database are made through the database object itself. If an error occurs, an error code
stored in event.target.errorCode indicates the nature of the problem.

NOTE Formerly, IDBDatabaseException was used to indicate the error that
IndexedDB experienced. This has been replaced with standard DOMExceptions.

Object Stores
Once you have established a connection to the database, the next step is to interact with object stores.
If the database version doesn’t match the one you expect then you likely will need to create an object
store. Before creating an object store, however, it’s important to think about the type of data you
want to store.

Suppose that you’d like to store user records containing username, password, and so on. The object
to hold a single record may look like this:

let user = {
 username: "007",
 firstName: "James",
 lastName: "Bond",
 password: "foo"
};

Looking at this object, you can easily see that an appropriate key for this object store is the username
property. A username must be globally unique, and it’s probably the way you’ll be accessing data
most of the time. This is important because you must specify a key when creating an object store.

The version of the database determines the database schema, which consists of the object stores in the
database and the structures of those object stores. If the database doesn’t yet exist, the open() opera-
tion creates it; then, an upgradeneeded event is fired. You can set a handler for this event and create
the database schema in the handler. If the database exists but you are specifying an upgraded version
number, an upgradeneeded event is fired immediately, allowing you to provide an updated schema in
the event handler.

Here’s how you would create an object store for these users:

request.onupgradeneeded = (event) => {
 const db = event.target.result;

IndexedDB ❘ 935

 // Delete the current objectStore if it exists. This is useful for testing,
 // but this will wipe existing data each time this event handler executes.
 if (db.objectStoreNames.contains("users")) {
 db.deleteObjectStore("users");
 }

 db.createObjectStore("users", { keyPath: "username" });
};

The keyPath property of the second argument indicates the property name of the stored objects that
should be used as a key.

Transactions
Past the creation step of an object store, all further operations are done through transactions. A
transaction is created using the transaction() method on the database object. Any time you want
to read or change data, a transaction is used to group all changes together. In its simplest form, you
create a new transaction as follows:

let transaction = db.transaction();

With no arguments specified, you have read-only access to all object stores in the database. A more
targeted strategy is to specify one or more object store names that you want to access:

let transaction = db.transaction("users");

This ensures that only information about the users object store is loaded and available during the
transaction. If you want access to more than one object store, the first argument can also be an array
of strings:

let transaction = db.transaction(["users", "anotherStore"]);

As mentioned previously, each of these transactions accesses data in a read-only manner. To change
that, you must pass in a second argument indicating the access mode. This argument should be one of
three strings: "readonly", "readwrite", or "versionchange". You can specify the second argument
to transaction():

let transaction = db.transaction("users", "readwrite");

This transaction is capable of both reading and writing into the users object store.

Once you have a reference to the transaction, you can access a particular object store using the
objectStore() method and passing in the store name you want to work with. You can then use
add() and put() as before, as well as get() to retrieve values, delete() to remove an object, and
clear() to remove all objects. Both the get() and delete() methods accept an object key as their
argument, and all five of these methods create a new request object. For example:

const transaction = db.transaction("users"),
 store = transaction.objectStore("users"),
 request = store.get("007");
request.onerror = (event) => alert("Did not get the object!");
request.onsuccess = (event) => alert(event.target.result.firstName);

936 ❘ CHAPTER 25 Client-Side Storage

Because any number of requests can be completed as part of a single transaction, the transac-
tion object itself also has event handlers: onerror and oncomplete. These are used to provide
transaction-level state information:

transaction.onerror = (event) => {
 // entire transaction was cancelled
};
transaction.oncomplete = (event) => {
 // entire transaction completed successfully
};

Keep in mind that the event object for oncomplete doesn’t give you access to any data returned by
get() requests, so you still need an onsuccess event handler for those types of requests.

Insertion
Because you now have a reference to the object store, it’s possible to populate the object store with
data using either add() or put(). Both of these methods accept a single argument, the object to
store, and save the object into the object store. The difference between these two occurs only when
an object with the same key already exists in the object store. In that case, add() will cause an error
while put() will simply overwrite the object. More simply, think of add() as being used for inserting
new values while put() is used for updating values. So to initialize an object store for the first time,
you may want to do something like this:

// where users is an array of new users
for (let user of users) {
 store.add(user);
}

Each call to add() or put() creates a new update request for the object store. If you want verifica-
tion that the request completed successfully, you can store the request object in a variable and assign
onerror and onsuccess event handlers:

// where users is an array of new users
let request,
 requests = [];
for (let user of users) {
 request = store.add(user);
 request.onerror = () => {
 // handle error
 };
 request.onsuccess = () => {
 // handle success
 };
 requests.push(request);
}

Once the object store is created and filled with data, it’s time to start querying.

IndexedDB ❘ 937

Querying with Cursors
Transactions can be used directly to retrieve a single item with a known key. When you want to
retrieve multiple items, you need to create a cursor within the transaction. A cursor is a pointer into
a result set. Unlike traditional database queries, a cursor doesn’t gather all of the result set up front.
Instead, a cursor points to the first result and doesn’t try to find the next until instructed to do so.

Cursors are created using the openCursor() method on an object store. As with other operations
with IndexedDB, the return value of openCursor() is a request, so you must assign onsuccess and
onerror event handlers. For example:

const transaction = db.transaction("users"),
 store = transaction.objectStore("users"),
 request = store.openCursor();
request.onsuccess = (event) => {
 // handle success
};
request.onfailure = (event) => {
 // handle failure
};

When the onsuccess event handler is called, the next item in the object store is accessible via event.
target.result, which holds an instance of IDBCursor when there is a next item or null when there
are no further items. The IDBCursor instance has several properties:

➤➤ direction—A numeric value indicating the direction the cursor should travel in and
whether or not it should traverse all duplicate values. There are four possible string values:
"next", "nextunique", "prev", and "prevunique".

➤➤ key—The key for the object.

➤➤ value—The actual object.

➤➤ primaryKey—The key being used by the cursor. Could be the object key or an index key
(discussed later).

You can retrieve information about a single result using the following:

request.onsuccess = (event) => {
 const cursor = event.target.result;
 if (cursor) { // always check
 console.log(`Key: ${cursor.key}, Value: ${JSON.stringify(cursor.value)}`);
 }
};

Keep in mind that cursor.value in this example is an object, which is why it is JSON encoded
before being displayed.

A cursor can be used to update an individual record. The update() method updates the current cur-
sor value with the specified object. As with other such operations, the call to update() creates a new
request so you need to assign onsuccess and onerror if you want to know the result:

request.onsuccess = (event) => {
 const cursor = event.target.result;
 let value,
 updateRequest;

938 ❘ CHAPTER 25 Client-Side Storage

 if (cursor) { // always check
 if (cursor.key == "foo") {
 value = cursor.value; // get current value
 value.password = "magic!"; // update the password
 updateRequest = cursor.update(value); // request the update be saved
 updateRequest.onsuccess = () => {
 // handle success;
 };
 updateRequest.onfailure = () => {
 // handle failure
 };
 }
 }
};

You can also delete the item at that position by calling delete(). As with update(), this also creates
a request:

request.onsuccess = (event) => {
 const cursor = event.target.result;
 let value,
 deleteRequest;
 if (cursor) { // always check
 if (cursor.key == "foo") {
 deleteRequest = cursor.delete(); // request the value be deleted
 deleteRequest.onsuccess = () => {
 // handle success;
 };
 deleteRequest.onfailure = () => {
 // handle failure
 };
 }
 }
};

Both update() and delete() will throw errors if the transaction doesn’t have permission to modify
the object store.

Each cursor makes only one request by default. To make another request, you must call one of the
following methods:

➤➤ continue(key)—Moves to the next item in the result set. The argument key is optional.
When not specified, the cursor just moves to the next item; when provided, the cursor will
move to the specified key.

➤➤ advance(count)—Moves the cursor ahead by count number of items.

Each of these methods causes the cursor to reuse the same request so the same onsuccess and
onfailure event handlers are reused until no longer needed. For example, the following iterates over
all items in an object store:

request.onsuccess = (event) => {
 const cursor = event.target.result;
 if (cursor) { // always check
 console.log(`Key: ${cursor.key}, Value: ${JSON.stringify(cursor.value)}`);

IndexedDB ❘ 939

 cursor.continue(); // go to the next one
 } else {
 console.log("Done!");
 }
};

The call to continue() triggers another request and onsuccess is called again. When there are
no more items to iterate over, onsuccess is called one last time with event.target.result
equal to null.

Key Ranges
Working with cursors may seem suboptimal given that you’re limited in the ways data can be
retrieved. Key ranges are used to make working with cursors a little more manageable. A key range is
represented by an instance of IDBKeyRange. There are four different ways to specify key ranges. The
first is to use the only() method and pass in the key you want to retrieve:

const onlyRange = IDBKeyRange.only("007");

This range ensures that only the value with a key of "007" will be retrieved. A cursor created using
this range is similar to directly accessing an object store and calling get("007").

The second type of range defines a lower bound for the result set. The lower bound indicates the item
at which the cursor should start. For example, the following key range ensures the cursor starts at the
key "007" and continues until the end:

// start at item "007", go to the end
const lowerRange = IDBKeyRange.lowerBound("007");

If you want to start at the item immediately following the value at "007", then you can pass in a
second argument of true:

// start at item after "007", go to the end
const lowerRange = IDBKeyRange.lowerBound("007", true);

The third type of range is an upper bound, indicating the key you don’t want to go past by using the
upperBound() method. The following key ensures that the cursor starts at the beginning and stops
when it gets to the value with key "ace":

// start at beginning, go to "ace"
const upperRange = IDBKeyRange.upperBound("ace");

If you don’t want to include the given key, then pass in true as the second argument:

// start at beginning, go to the item just before "ace"
const upperRange = IDBKeyRange.upperBound("ace", true);

To specify both a lower and an upper bound, use the bound() method. This method accepts four
arguments, the lower bound key, the upper bound key, an optional Boolean indicating to skip the
lower bound, and an optional Boolean indicating to skip the upper bound. Here are some examples:

// start at "007", go to "ace"
const boundRange = IDBKeyRange.bound("007", "ace");
// start at item after "007", go to "ace"
const boundRange = IDBKeyRange.bound("007", "ace", true);
// start at item after "007", go to item before "ace"

940 ❘ CHAPTER 25 Client-Side Storage

const boundRange = IDBKeyRange.bound("007", "ace", true, true);
// start at "007", go to item before "ace"
const boundRange = IDBKeyRange.bound("007", "ace", false, true);

Once you have defined a range, pass it into the openCursor() method and you’ll create a cursor that
stays within the constraints:

const store = db.transaction("users").objectStore("users"),
 range = IDBKeyRange.bound("007", "ace");
 request = store.openCursor(range);
request.onsuccess = function(event){
 const cursor = event.target.result;
 if (cursor) { // always check
 console.log(`Key: ${cursor.key}, Value: ${JSON.stringify(cursor.value)}`);
 cursor.continue(); // go to the next one
 } else {
 console.log("Done!");
 }
};

This example outputs only the values between keys "007" and "ace", which are fewer than the previ-
ous section’s example.

Setting Cursor Direction
There are actually two arguments to openCursor(). The first is an instance of IDBKeyRange and the
second is a string indicating the direction. Typically, cursors start at the first item in the object store
and progress toward the last with each call to continue() or advance(). These cursors have the
default direction value of "next". If there are duplicates in the object store, you may want to have a
cursor that skips over the duplicates. You can do so by passing "nextunique" into openCursor() as
the second argument:

const transaction = db.transaction("users"),
 store = transaction.objectStore("users"),
 request = store.openCursor(null, "nextunique");

Note that the first argument to openCursor() is null, which indicates that the default key range of all
values should be used. This cursor will iterate through the items in the object store starting from the
first item and moving toward the last while skipping any duplicates.

You can also create a cursor that moves backward through the object store, starting at the last item
and moving toward the first by passing in either "prev" or "prevunique" (the latter, of course, to
avoid duplicates). For example:

const transaction = db.transaction("users"),
 store = transaction.objectStore("users"),
 request = store.openCursor(null, "prevunique");

When you open a cursor using "prev" or "prevunique", each call to continue() or advance()
moves the cursor backward through the object store instead of forward.

IndexedDB ❘ 941

Indexes
For some data sets, you may want to specify more than one key for an object store. For example, if
you’re tracking users by both a user ID and a username, you may want to access records using either
piece of data. To do so, you would likely consider the user ID as the primary key and create an index
on the username.

To create a new index, first retrieve a reference to the object store and then call createIndex(), as in
this example:

const transaction = db.transaction("users"),
 store = transaction.objectStore("users"),
 index = store.createIndex("username", "username", { unique: true });

The first argument to createIndex() is the name of the index, the second is the name of the prop-
erty to index, and third is an options object containing the key unique. This option should always
be specified so as to indicate whether or not the key is unique across all records. Because username
may not be duplicated, this index is unique.

The returned value from createIndex() is an instance of IDBIndex. You can also retrieve the same
instance via the index() method on an object store. For example, to use an already existing index
named "username", the code would be:

const transaction = db.transaction("users"),
 store = transaction.objectStore("users"),
 index = store.index("username");

An index acts a lot like an object store. You can create a new cursor on the index using the openCur-
sor() method, which works exactly the same as openCursor() on an object store except that the
result.key property is filled in with the index key instead of the primary key. Here’s an example:

const transaction = db.transaction("users"),
 store = transaction.objectStore("users"),
 index = store.index("username"),
 request = index.openCursor();
request.onsuccess = (event) => {
 // handle success
};

An index can also create a special cursor that returns just the primary key for each record using the
openKeyCursor() method, which accepts the same arguments as openCursor(). The big difference
is that event.result.key is the index key and event.result.value is the primary key instead of
the entire record.

const transaction = db.transaction("users"),
 store = transaction.objectStore("users"),
 index = store.index("username"),
 request = index.openKeyCursor();
request.onsuccess = (event) => {
 // handle success
 // event.result.key is the index key, event.result.value is the primary key
};

942 ❘ CHAPTER 25 Client-Side Storage

You can also retrieve a single value from an index by using get() and passing in the index key, which
creates a new request:

const transaction = db.transaction("users"),
 store = transaction.objectStore("users"),
 index = store.index("username"),
 request = index.get("007");
request.onsuccess = (event) => {
 // handle success
};
request.onfailure = (event) => {
 // handle failure
};

To retrieve just the primary key for a given index key, use the getKey() method. This also creates a
new request but result.value is equal to the primary key value rather than the entire record:

const transaction = db.transaction("users"),
 store = transaction.objectStore("users"),
 index = store.index("username"),
 request = index.getKey("007");
request.onsuccess = (event) => {
 // handle success
 // event.result.key is the index key, event.result.value is the primary key
};

In the onsuccess event handler in this example, event.result.value would be the user ID.

At any point in time, you can retrieve information about the index by using properties on the IDBIn-
dex object:

➤➤ name—The name of the index.

➤➤ keyPath—The property path that was passed into createIndex().

➤➤ objectStore—The object store that this index works on.

➤➤ unique—A Boolean indicating if the index key is unique.

The object store itself also tracks the indexes by name in the indexNames property. This makes it easy
to figure out which indexes already exist on an object using the following code:

const transaction = db.transaction("users"),
 store = transaction.objectStore("users"),
 indexNames = store.indexNames
for (let indexName in indexNames) {
 const index = store.index(indexName);
 console.log(`Index name: ${index.name}
 KeyPath: ${index.keyPath}
 Unique: ${index.unique}`);
}

This code iterates over each index and outputs its information to the console.

IndexedDB ❘ 943

An index can be deleted by calling the deleteIndex() method on an object store and passing in the
name of the index:

const transaction = db.transaction("users"),
 store = transaction.objectStore("users"),
 store.deleteIndex("username");

Because deleting an index doesn’t touch the data in the object store, the operation happens without
any callbacks.

Concurrency Issues
While IndexedDB is an asynchronous API inside of a web page, there are still concurrency issues. If
the same web page is open in two different browser tabs at the same time, it’s possible that one may
attempt to upgrade the database before the other is ready. The problematic operation is in setting the
database to a new version, and so version changes can be completed only when there is just one tab
in the browser using the database.

When you first open a database, it’s important to assign an onversionchange event handler. This
callback is executed when another tab from the same origin opens the DB to a new version. The best
response to this event is to immediately close the database so that the version upgrade can be com-
pleted. For example:

let request, database;

request = indexedDB.open("admin", 1);
request.onsuccess = (event) => {
 database = event.target.result;
 database.onversionchange = () => database.close();
};

You should assign onversionchange after every successful opening of a database. Remember,
onversionchange will have been called in the other tab(s) as well.

By always assigning these event handlers, you will ensure your web application will be able to better
handle concurrency issues related to IndexedDB.

Limits and Restrictions
Many of the restrictions on IndexedDB are exactly the same as those for Web Storage. First,
IndexedDB databases are tied to the origin (protocol, domain, and port) of the page, so the informa-
tion cannot be shared across domains. This means there is a completely separate data store for www.
wrox.com as for p2p.wrox.com.

Second, there is a limit to the amount of data that can be stored per origin. The current limit in Fire-
fox is 50MB per origin while Chrome has a limit of 5MB. Firefox for mobile has a limit of 5MB and
will ask the user for permission to store more than that if the quota is exceeded.

Firefox imposes an extra limitation that local files cannot access IndexedDB databases at all.
Chrome doesn’t have this restriction. When running the examples from this book locally, be sure to
use Chrome.

944 ❘ CHAPTER 25 Client-Side Storage

SUMMARY

Web Storage defines two objects to save data: sessionStorage and localStorage. The former is
used strictly to save data within a browser session because the data is removed once the browser is
closed. The latter is used to persist data across sessions.

IndexedDB is a structured data storage mechanism similar to an SQL database. Instead of storing
data in tables, data is stored in object stores. Object stores are created by defining a key and then
adding data. Cursors are used to query object stores for particular pieces of data, and indexes may be
created for faster lookups on particular properties.

With all of these options available, it’s possible to store a significant amount of data on the client
machine using JavaScript. You should use care not to store sensitive information because the data
cache isn’t encrypted.

Modules
WHAT’S IN THIS CHAPTER?

➤➤ Understanding the module pattern

➤➤ Improvising module systems

➤➤ Working with pre-ES6 module loaders

➤➤ Working with ES6 modules

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/projavascript4e on the Down-
load Code tab.

Writing modern JavaScript essentially guarantees that you will be working with large codebases
and using third-party resources. A consequence of these is that you will end up using code bro-
ken into different parts and connecting them together in some way.

Prior to the ECMAScript 6 module specification, there was a dire need for module-like behavior
even though browsers did not natively support it. ECMAScript did not support modules in any
way, so libraries and codebases that wanted to use the module pattern were required to cleverly
use JavaScript constructs and lexical features to “fake” module-like behavior.

Because JavaScript is an asynchronously loaded interpreted language, the module implementa-
tions that emerged and gained widespread use took on a handful of different forms. These dif-
ferent forms took their shape in order to accomplish different results, but ultimately, they were
all implementations of the canonical module pattern.

26

Professional JavaScript® for Web Developers, Fourth Edition. Matt Frisbie.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

946 ❘ CHAPTER 26 Modules

UNDERSTANDING THE MODULE PATTERN

Splitting code into independent pieces and connecting those pieces together can be robustly imple-
mented with the module pattern. The central ideas for this pattern are simple: break logic into pieces
that are totally encapsulated from the rest of the code, allow each piece to explicitly define what parts
of itself are exposed to external pieces, and allow each piece to explicitly define what external pieces
it needs to execute. There are various implementations and features that complicate these concepts,
but these fundamental ideas are the foundation for all module systems in JavaScript.

Module Identifiers
Common to all module systems is the concept of module identifiers. Module systems are essentially
key-value entities, where each module has an identifier that can be used to reference it. This token
will sometimes be a string in cases where the module system is emulated, or it might be an actual path
to a module file in cases where the module system is natively implemented.

Some module systems will allow you to explicitly declare the identity of a module, and some module
systems will implicitly use the filename as the module identity token. In either case, a well-formed
module system will have no module identity collisions, and any module in the system should be able
to reference a different module in the system with no ambiguity.

Exactly how a module identifier is resolved to an actual module will be subject to the identifier
implementation in any given module system. Native browser module identifiers must provide a
path to an actual JavaScript file. In addition to file paths, NodeJS will perform a search for module
matches inside the node_modules directory, and can also match an identifier to a directory contain-
ing index.js.

Module Dependencies
The real meat of module systems comes into play when considering how to manage dependencies.
A module specifying a dependency is entering into a contract with the surrounding environment.
The local module declares to the module system a list of external modules—“dependencies”—that it
knows exist and are required for the local module to function properly. The module system inspects
the dependencies and in turn guarantees that these modules will be loaded and initialized by the time
the local module executes.

Each module also is associated with some unique token that can be used to retrieve the module. Fre-
quently, this is a path to the JavaScript file, but in some module systems this can also be a namespace
path string declared within the module itself.

Module Loading
The concept of “loading” a module is borne out of the requirements of a dependency contract. When
an external module is specified as a dependency, the local module expects that when it is executed, the
dependencies will be ready and initialized.

Understanding the Module Pattern ❘ 947

In the context of browsers, loading a module has several components. Loading a module involves
executing the code inside it, but this cannot begin until all the dependencies are loaded and executed
first. A module dependency, if it is code that has not yet been sent to the browser, must be requested
and delivered over the network. Once the code payload is received by the browser, the browser must
determine if the newly loaded external module has its own dependencies, and it will recursively evalu-
ate those dependencies and load them in turn until all dependent modules are loaded. Only once the
entire dependency graph is loaded can the entry module begin to execute.

Entry Points
A network of modules that depend upon each other must specify a single module as the “entry point,”
where the path of execution will begin. This should make good sense, as the JavaScript execution
environment is serially executed and single
threaded—so the code must start somewhere.
This entry point module will likely have
module dependencies, and some of those
dependencies will in turn have dependencies.
The net effect of this is that all the modules of
a modular JavaScript application will form a
dependency graph.

Dependencies between modules in an applica-
tion can be represented as a directed graph.
Suppose the dependency graph shown in
Figure 26-1 represents an imaginary
application:

Arrows represent the flow of module dependencies: Module A depends on Module B and Module C,
Module B depends on Module D and Module E, and so on. Because a module cannot be loaded until
its dependencies are loaded, it follows that Module A, the entry point in this imaginary application,
must be executed only after the rest of the application loads.

In JavaScript, the concept of “loading” can take a number of different forms. Because modules are
implemented as a file containing JavaScript code that will immediately execute, it is possible to
request the individual scripts in an order that will satisfy the dependency graph. For the preceding
application, the following script order would satisfy the dependency graph:

<script src="moduleE.js"></script>
<script src="moduleD.js"></script>
<script src="moduleC.js"></script>
<script src="moduleB.js"></script>
<script src="moduleA.js"></script>

Module loading is “blocking”, meaning further execution cannot continue until an operation fin-
ishes. Each module progressively loads after its script payload is delivered to the browser, with all its
dependencies already loaded and initialized. This strategy has a number of performance and complex-
ity implications, however: loading five JavaScript files sequentially to do the work of one application
is not ideal, and managing the correct load order is not an easy task to do by hand.

Module A Module B

Module C

Module D

Module E

FIGURE 26-1:

948 ❘ CHAPTER 26 Modules

Asynchronous Dependencies
Because JavaScript is an asynchronous language, it can also be useful to load modules on demand by
allowing JavaScript code to instruct the module system to load a new module, and provide the mod-
ule to a callback once it is ready. At the code level, pseudocode for this might appear as follows:

// moduleA definition
load('moduleB').then(function(moduleB) {
 moduleB.doStuff();
});

Module A’s code is using the moduleB token to request that the module system load Module B, and
invoke the callback with Module B provided as a parameter. Module B might have already been
loaded, or it might have to be freshly requested and initialized, but this code does not care—those
responsibilities are delegated to the module loader.

If you were to rework the previous application to use only programmatic module loading, you would
only need to use a single <script> tag for Module A to load, and Module A would request module
files as needed—no generating an ordered list of dependencies required. This has a number of ben-
efits, one of which is performance, as only one file synchronously loading is required on pageload.

It would also be possible to keep these scripts separated, apply a defer or async attribute to the
<script> tags, and include logic that can discern when an asynchronously script is loaded and ini-
tialized. This behavior would emulate what is implemented in the ES6 module specification, which is
covered later in the chapter.

Programmatic Dependencies
Some module systems will require you to specify all dependencies at the beginning of a module, but
some module systems will allow you to dynamically add dependencies inside the program struc-
ture. This is distinct from regular dependencies listed at the beginning of a module, all of which are
required to load before a module can begin to execute.

The following is an example of programmatic dependency loading.

if (loadCondition) {
 require('./moduleA');
}

Inside this module, it is determined only at runtime if moduleA is loaded. The loading of moduleA
might be blocking, or it might yield execution and only continue once the module is loaded. Either
way, execution inside this module cannot continue until moduleA is loaded because the assumption is
that moduleA’s presence is critical for subsequent module behavior.

Programmatic dependencies allow for more complex dependency utilization, but at a cost—it makes
static analysis of a module more difficult.

Static Analysis
The JavaScript that you build into modules and deliver to the browser is often subject to static analy-
sis, where tools will inspect the structure of your code and reason about how it will behave without
performing program execution. A module system that is friendly to static analysis will allow module

Understanding the Module Pattern ❘ 949

bundling systems to have an easier time when figuring out how to combine your code into fewer files.
It will also offer you the ability to perform intelligent autocomplete inside a smart editor.

More complicated module behavior, such as programmatic dependencies, will make static analysis
more difficult. Different module systems and module loaders will offer varying levels of complexity.
With respect to a module’s dependencies, additional complexity will make it more difficult for tooling
to predict exactly which dependencies a module will need when it executes.

Circular Dependencies
It is nearly impossible to architect a JavaScript application that is
free of dependency cycles, and therefore all module systems including
CommonJS, AMD, and ES6—support cyclical dependencies. In an
application with dependency cycles, the order in which modules are
loaded may not be what you expect. However, if you have properly
structured your modules in a way that has no side-effects, the load
order should not be a detriment to your overall application.

In the following module (which uses module-agnostic pseudocode),
any of the modules could be used as the entry point module even
though there are cycles in the dependency graph:

require('./moduleD');
require('./moduleB');

console.log('moduleA');
require('./moduleA');
require('./moduleC');

console.log('moduleB');
require('./moduleB');
require('./moduleD');

console.log('moduleC');

require('./moduleA');
require('./moduleC');

console.log('moduleD');

Changing the module that is used as the main module will change the
dependency load order. If moduleA were to be loaded first, it would
print the following, which is indicative of the absolute order of when
a module load completes:

moduleB
moduleC
moduleD
moduleA

The load order can be visualized with the dependency graph in
Figure 26-2, where the loader will perform a depth-first load of the
dependencies:

moduleA

require(D)
require(B)

moduleD

require(C)
require(A)

moduleB

(cached)

moduleC

require(B)
require(D)

moduleB

require(A)
require(C)

moduleA

(cached)

moduleA

(cached)

moduleD

(cached)

moduleC

(cached)

FIGURE 26-2:

950 ❘ CHAPTER 26 Modules

If, instead, moduleC were to be loaded first, it would print the follow-
ing, which is indicative of the absolute order of module loads:

moduleD
moduleA
moduleB
moduleC

The load order can be visualized with the dependency graph in
Figure 26-3, where the loader will perform a depth-first load of the
dependencies:

IMPROVISING MODULE SYSTEMS

In order to offer the encapsulation required by the module pattern,
pre-ES6 modules sometimes used function scope and immediately
invoked function expressions (IIFEs) to wrap the module definition
in an anonymous closure. The module definition is executed immedi-
ately, as shown here:

(function() {
 // private Foo module code
 console.log('bar');
})();

// 'bar'

When the return value of this module was assigned to a variable, this
effectively created a namespace for the module:

var Foo = (function() {
 console.log('bar');
})();

'bar'

In order to expose a public API, the module IIFE would return an
object whose properties would be the public members inside the
module namespace:

var Foo = (function() {
 return {
 bar: 'baz',
 baz: function() {
 console.log(this.bar);
 }
 };
})();

console.log(Foo.bar); // 'baz'
Foo.baz(); // 'baz'

moduleC

require(B)
require(D)

moduleB

require(A)
require(C)

moduleD

(cached)

moduleA

require(D)
require(B)

moduleD

require(C)
require(A)

moduleC

(cached)

moduleC

(cached)

moduleB

(cached)

moduleA

(cached)

FIGURE 26-3:

Improvising Module Systems ❘ 951

A similar pattern to the previous one, termed the “Revealing module pattern,” only returns an object
whose properties are references to private data and members:

var Foo = (function() {
 var bar = 'baz';
 var baz = function() {
 console.log(bar);
 };

 return {
 bar: bar,
 baz: baz
 };
})();

console.log(Foo.bar); // 'baz'
Foo.baz(); // 'baz'

It’s also possible to define modules within modules, which can be useful for namespace nest-
ing purposes:

var Foo = (function() {
 return {
 bar: 'baz'
 };
})();

Foo.baz = (function() {
 return {
 qux: function() {
 console.log('baz');
 }
 };
})();

console.log(Foo.bar); // 'baz'
Foo.baz.qux(); // 'baz'

For the module to use external values properly, they can be passed in as parameters to the IIFE:

var globalBar = 'baz';

var Foo = (function(bar) {
 return {
 bar: bar,
 baz: function() {
 console.log(bar);
 }
 };
})(globalBar);

console.log(Foo.bar); // 'baz'
Foo.baz(); // 'baz'

952 ❘ CHAPTER 26 Modules

Because the module implementations here are simply creating an instance of JavaScript object, it’s
entirely possible to augment the module after its definition:

// Original Foo
var Foo = (function(bar) {
 var bar = 'baz';

 return {
 bar: bar
 };
})();

// Augment Foo
var Foo = (function(FooModule) {
 FooModule.baz = function() {
 console.log(FooModule.bar);
 }

 return FooModule;
})(Foo);

console.log(Foo.bar); // 'baz'
Foo.baz(); // 'baz'

It can also be useful to configure the module augmentation to perform the augmentation whether the
module is present or not:

// Augment Foo to add alert method
var Foo = (function(FooModule) {
 FooModule.baz = function() {
 console.log(FooModule.bar);
 }

 return FooModule;
})(Foo || {});

// Augment Foo to add data
var Foo = (function(FooModule) {
 FooModule.bar = 'baz';

 return FooModule;
})(Foo || {});

console.log(Foo.bar); // 'baz'
Foo.baz(); // 'baz'

As you might suspect, designing your own module system is an interesting exercise, but is not recom-
mended for actual use, as the result is brittle. The preceding examples do not have a good way of
programmatically loading dependencies other than using the maligned eval. Dependencies must be
managed and ordered manually. Asynchronous loading and circular dependencies are extremely dif-
ficult to add. Lastly, performing static analysis on such a system would be quite difficult.

Working with pre-ES6 Module Loaders ❘ 953

WORKING WITH PRE-ES6 MODULE LOADERS

Prior to the introduction of native ES6 module support, JavaScript codebases using modules essen-
tially wanted to use a language feature that was not available by default. Therefore, codebases would
be written in a module syntax that conformed to a certain specification, and separate module tooling
would serve to bridge the gap between the module syntax and the JavaScript runtime. The module
syntax and bridging took a number of different forms, usually either a supplementary library in the
browser or preprocessing at build time.

CommonJS
The CommonJS specification outlines a convention for module definition that uses synchronous
declarative dependencies. This specification is primarily intended for module organization on the
server, but it can also be used to define dependencies for modules that will be used in the browser.
CommonJS module syntax will not work natively in the browser.

NOTE Often, NodeJS and CommonJS will be described as using the same style
of module systems, and this is not entirely true. NodeJS uses a slightly modified
version of CommonJS, which is appropriate in a server environment because it
does not need to deal with the issue of network latency. For consistency, this sec-
tion will use the NodeJS-flavored module definition syntax.

A CommonJS module definition will specify its dependencies using require(), and it will define its
public API using an exports object. A simple module definition might appear as follows:

var moduleB = require('./moduleB');

module.exports = {
 stuff: moduleB.doStuff();
};

moduleA specifies its dependency on moduleB by using a relative path to the module definition. What
counts as a “module definition,” and how a string references that module, is entirely up to the module
system’s implementation. In NodeJS for example, a module identifier might point to a single file, or it
might point to a directory with an index.js file inside.

Requiring a module will load it, and assignment of the module to a variable is extremely com-
mon, but assignment to a variable is not required. Invoking require() means the module will load
all the same.

console.log('moduleA');
require('./moduleA'); // "moduleA"

954 ❘ CHAPTER 26 Modules

Modules are always singletons, irrespective of how many times a module is referenced inside
require(). In the following example, moduleA will only ever be printed once because moduleA is
only ever loaded a single time—even though it is required multiple times.

console.log('moduleA');
var a1 = require('./moduleA');
var a2 = require('./moduleA');

console.log(a1 === a2); // true

Modules are cached after the first time they are loaded; subsequent attempts to load a module will
retrieve the cached module. Module load order is determined by the dependency graph.

console.log('moduleA');
require('./moduleA');
require('./moduleB'); // "moduleA"
require('./moduleA');

In CommonJS, module loading is a synchronous operation performed by the module system, so
require() can be programmatically invoked inline in a module, as well as conditionally.

console.log('moduleA');
if (loadCondition) {
 require('./moduleA');
}

Here, moduleA will load only if loadCondition evaluates to true. The load is synchronous, so any
code that precedes the if() block will execute before moduleA loads, and any code that follows the
if() block will execute after moduleA loads. All the same load order rules apply, so if moduleA had
been loaded previously elsewhere in the module graph, this conditional require() would only serve
to allow you to use the moduleA namespace.

In these examples, the module system is implemented inside NodeJS, so ./moduleB is a relative path
to a module target in the same directory as this module. NodeJS will use the module identifier string
in the require() call to resolve the module reference dependency. NodeJS can use absolute or rela-
tive paths to modules, or it can also use module identifiers for dependencies installed in the node_
modules directory. These details aren’t germane to the subject matter of this book, but it’s important
to know that the module’s string reference might be differently implemented inside different Com-
monJS implementations. However, common to all CommonJS-style implementations is that modules
will not specify their identifier; it is derived from their location in the module file hierarchy.

The path to the module definition might reference a directory, or it might be a single JavaScript
file—either way, this local module is unconcerned with the module implementation, and Module B
is loaded into a local variable. Module A in turn defines its public interface, the foo property, on the
module.exports object.

If another module wanted to use this interface, it could import the module as follows:

var moduleA = require('./moduleA');

console.log(moduleA.stuff);

Working with pre-ES6 Module Loaders ❘ 955

Note here that this module does not export anything. Even though it has no public interface, if the
module were required in an application, it would still execute the module body on load.

The exports object is extremely flexible, and can take on multiple forms. If you are looking to export
only a single entity, you are able to perform a direct assignment to module.exports:

module.exports = 'foo';

This way, the entire module interface is a string, which can be used as follows:

var moduleA = require('./moduleB');

console.log(moduleB); // 'foo'

It is also very common to bundle multiple values into exports, which can either be done with an
object literal assignment or a one-off property assignment:

// Equivalent:

module.exports = {
 a: 'A',
 b: 'B'
};

module.exports.a = 'A';
module.exports.b = 'B';

One of the primary uses of modules is to house class definitions (shown here using ES6-style class
definition, but ES5-style class definition is also compatible):

class A {}

module.exports = A;
var A = require('./moduleA');

var a = new A();

It is also possible to assign an instance of a class as the exported value:

class A {}

module.exports = new A();

Furthermore, CommonJS supports programmatic dependencies:

if (condition) {
 var A = require('./moduleA');
}

CommonJS relies on several globals such as require and module.exports to work. For CommonJS
modules to be usable in the browser, there needs to be some sort of bridge between its non-native
module syntax. There also needs to be some sort of barrier between the module-level code and the
browser runtime, as CommonJS code executed without encapsulation will declare global variables in
the browser—behavior that is undesirable in the module pattern.

956 ❘ CHAPTER 26 Modules

A common solution is to bundle the module files together ahead of time, convert the globals to native
JavaScript constructs, encapsulate the module code inside function closures, and serve a single file.
Comprehension of the dependency graph is required to bundle the modules in the correct order.

Asynchronous Module Definition
Whereas CommonJS is targeted at a server execution model—where there is no penalty for loading
everything into memory at once—the Asynchronous Module Definition (AMD) system of mod-
ule definition is specifically targeted at a browser execution model, where there are penalties from
increased network latency. The general strategy of AMD is for modules to declare their dependencies,
and the module system running in the browser will fetch the dependencies on demand and execute
the module that depends on them once they have all loaded.

The core of the AMD module implementation is a function wrapper around the module definition.
This prevents the declaration of global variables and allows for the loader library to control when to
load the module. The function wrapper also allows for superior portability of module code because
all the module code inside the function wrapper uses native JavaScript constructs. This function wrap-
per is an argument to the define global, which is defined by the AMD loader library implementation.

An AMD module can specify its dependencies with string identifiers, and the AMD loader will call
the module factory function once all the dependent modules have loaded. Unlike CommonJS, AMD
allows you to optionally specify the string identifier for your module.

// Definition for a module with id 'moduleA'. moduleA depends on moduleB,
// which will be loaded asynchronously.
define('moduleA', ['moduleB'], function(moduleB) {
 return {
 stuff: moduleB.doStuff();
 };
});

AMD also supports the require and exports objects, which allow for construction of CommonJS-
style modules inside an AMD module factory function. These are required in the same way as
modules, but the AMD loader will recognize them as native AMD constructs rather than module
definitions:

define('moduleA', ['require', 'exports'], function(require, exports) {
 var moduleB = require('moduleB');

 exports.stuff = moduleB.doStuff();
});

Programmatic dependencies are supported using this style:

define('moduleA', ['require'], function(require) {
 if (condition) {
 var moduleB = require('moduleB');
 }
});

Working with pre-ES6 Module Loaders ❘ 957

Universal Module Definition
In an attempt to unify the CommonJS and AMD ecosystems, the Universal Module Definition (UMD)
convention was introduced to create module code that could be used by both systems. Essentially, the
pattern defines modules in a way that detects which module system is being used upon startup, con-
figures it as appropriate, and wraps the whole thing in an immediately invoked function expression. It
is an imperfect combination, but for the purposes of combining the two ecosystems it is suitable in a
surprisingly large number of scenarios.

An example module with a single dependency (based on the UMD repository on GitHub) is
as follows:

 (function (root, factory) {
 if (typeof define === 'function' && define.amd) {
 // AMD. Register as an anonymous module.
 define(['moduleB'], factory);
 } else if (typeof module === 'object' && module.exports) {
 // Node. Does not work with strict CommonJS, but
 // only CommonJS-like environments that support module.exports,
 // like Node.
 module.exports = factory(require(' moduleB '));
 } else {
 // Browser globals (root is window)
 root.returnExports = factory(root. moduleB);
 }
}(this, function (moduleB) {
 //use moduleB in some fashion.

 // Just return a value to define the module export.
 // This example returns an object, but the module
 // can return a function as the exported value.
 return {};
}));

There are variations on this pattern that enable support for strict CommonJS and browser globals.
You should never be expected to be authoring this exact wrapper by hand—it should be automati-
cally generated by a build tool. Your goal is to be concerned with the content of the modules, not the
boilerplate that connects each of them.

Module Loader Deprecation
Ultimately, the patterns shown in this section will become increasingly obsolete as support broadens
for the ECMAScript 6 module specification. That being so, it still is quite useful to know what the
ES6 module specification grew out of in order to learn why design decisions were chosen. The intense
conflict between CommonJS and AMD cultivated the ECMAScript 6 module specification that we
now enjoy.

958 ❘ CHAPTER 26 Modules

WORKING WITH ES6 MODULES

One of ECMAScript 6’s most significant introductions was a specification for modules. The specifica-
tion in many ways is simpler than its predecessor module loaders, and native browser support means
that loader libraries and other preprocessing is not necessary. In many ways, ES6 module system uni-
fies the best features of AMD and CommonJS into a single specification.

Module Tagging and Definition
ECMAScript 6 modules exist as a monolithic chunk of JavaScript. A script tag with type="module"
will signal to the browser that the associated code should be executed as a module, as opposed to
execution as a traditional script. Modules can be defined inline or in an external file:

<script type="module">
 // module code
</script>

<script type="module" src="path/to/myModule.js"></script>

Even though they are handled in a different way than a conventionally loaded JavaScript file,
Java Script module files do not have a special content type.

Unlike their traditional script counterparts, all modules will execute in the same order that a
<script defer> would execute. Downloading a module file begins immediately after the <script
type="module"> tag is parsed, but execution is delayed until the document is completely parsed. This
applies to both inline modules and modules defined in external files. The order in which <script
type="module"> code appears on the page is the order in which it will execute. As is the case with
<script defer>, changing the location of the module tags—either in <head> or <body>—will only
control when the files load, not when the modules are loaded.

The following is the order of execution for an inline module:

<!-- Executes 2nd -->
<script type="module"></script>

<!-- Executes 3rd -->
<script type="module"></script>

<!-- Executes 1st -->
<script></script>

Alternately, this can be reworked with an external JS module definition:

<!-- Executes 2nd -->
<script type="module" src="module.js"></script>

<!-- Executes 3rd -->
<script type="module" src="module.js"></script>

<!-- Executes 1st -->
<script><script>

It is also possible to add an async attribute to module tags. The effect of this is twofold: the order of
module execution no longer is bound to the order of script tags on the page, and the module will not

Working with ES6 Modules ❘ 959

wait for the document to be finished parsing before beginning execution. The entry module must still
wait for its dependencies to load.

ES6 modules associated with a <script type="module"> tag are considered to be the entry module
for a module graph. There are no restrictions as to how many entry modules there can be on a page,
and there is no limit to overlap of modules. No matter how many times a module is loaded in a page,
irrespective of how that load occurs, it will only ever load a single time, as demonstrated here:

<!-- moduleA will only load a single time on this page -->

<script type="module">
 import './moduleA.js'
<script>
<script type="module">
 import './moduleA.js'
<script>
<script type="module" src="./moduleA.js"></script>
<script type="module" src="./moduleA.js"></script>

Modules defined inline cannot be loaded into other modules using import. Only modules loaded
from an external file can be loaded using import. Therefore, inline modules are only useful as an
entry point module.

Module Loading
ECMAScript 6 modules are unique in their ability to be loaded both natively by the browser as well
as in conjunction with third-party loaders and build tools. Some browsers still do not natively sup-
port ES6 modules, so third-party tooling may be required. In many cases, third-party tooling may, in
fact, be more desirable.

A browser that offers full ECMAScript 6 module support will be able to load the entire depend-
ency graph from a top-level module, and it will do so asynchronously. The browser will interpret the
entry module, identify its dependencies, and send out requests for its dependent modules. When these
files are returned over the network, the browser will parse their contents, identify their dependen-
cies, and send out more requests for those second-order dependencies if they are not already loaded.
This recursive asynchronous process will continue until the entire application’s dependency graph is
resolved. Once the dependencies are resolved, the application can begin to formally load.

This process is very similar to the AMD style of module loading. Module files are loaded on demand,
and successive rounds of module file requests are delayed by the network latency of each dependency
module file. That is, if entry moduleA depends on moduleB, and moduleB depends on moduleC, the
browser will not know to send a request for C until the request for B has first completed. This style
of loading is efficient and requires no outside tooling, but loading a large application with a deep
dependency graph may take too long.

Module Behavior
ECMAScript 6 modules borrow many of the best features from CommonJS and AMD predecessors.
To name a few:

➤➤ Module code is only executed when it is loaded.

➤➤ A module will only ever be loaded a single time.

960 ❘ CHAPTER 26 Modules

➤➤ Modules are singletons.

➤➤ Modules can define a public interface with which other modules can observe and interact.

➤➤ Modules can request that other modules be loaded.

➤➤ Circular dependencies are supported.

The ES6 module system also introduces new behavior:

➤➤ ES6 modules by default execute in strict mode.

➤➤ ES6 modules do not share a global namespace.

➤➤ The value of this at the top-level of a module is undefined (as opposed to window in the
case of normal scripts).

➤➤ var declarations will not be added to the window object.

➤➤ ES6 modules are loaded and executed asynchronously.

The behavior described here characterizing an ECMAScript 6 module is conditionally enforced by the
browser’s runtime when it knows to consider a certain file to be a module. A JavaScript file is desig-
nated as a module either when it is associated with a <script type="module"> or when it is loaded
via an import statement.

Module Exports
The public exports system for ES6 modules is very similar to CommonJS. The exports keyword
is used to control what parts of a module are visible to external modules. There are two types of
exports in ES6 modules: named exports and default exports. Different types of exports means they
are imported differently—this is covered in the following section.

The export keyword is used to declare a value as a named export. Exports must occur in the top-
level of the module; they cannot be nested inside blocks:

// Allowed
export ...

// Disallowed
if (condition) {
 export ...
}

Exporting a value has no direct effect on JavaScript execution inside a module, so there is no restric-
tion on the locality of the export statement relative to what is being exported, or what order the
export keyword must appear in the module. An export may even precede the declaration of the
value it is exporting:

// Allowed
const foo = 'foo';
export { foo };

// Allowed
export const foo = 'foo';

Working with ES6 Modules ❘ 961

// Allowed, but avoid
export { foo };
const foo = 'foo';

A named export behaves as if the module is a container for exported values. Inline named exports,
as the name suggests, can be performed in the same line as variable declaration. In the following
example, a variable declaration is paired with an inline export. An external module could import this
module, and the value foo would be available inside it as a property of that module:

export const foo = 'foo';

Declaration does not need to occur in the same line as the export; you can perform the declaration
and export the identifier elsewhere in the module inside an export clause:

const foo = 'foo';
export { foo };

It is also possible to provide an alias when exporting. An alias must occur inside the export clause
bracket syntax; therefore, declaring a value, exporting it, and providing an alias cannot all be done in
the same line. In the following example, an external module would access this value by importing this
module and using the myFoo export:

const foo = 'foo';
export { foo as myFoo };

Because ES6 named exports allow you to treat the module as a container, you can declare multiple
named exports inside a single module. Values can be declared inside the export statement, or they can
be declared prior to specifying it as an export:

export const foo = 'foo';
export const bar = 'bar';
export const baz = 'baz';

Because exporting multiple values is common behavior, grouping export declarations is supported, as
is aliasing some or all of those exports:

const foo = 'foo';
const bar = 'bar';
const baz = 'baz';
export { foo, bar as myBar, baz };

A default export behaves as if the module is the same entity as the exported value. The default
keyword modifier is used to declare a value as a default export, and there can only ever be a single
default export. Attempting to specify duplicate default exports will result in a SyntaxError.

In the following example, an external module could import this module, and the module itself would
be the value of foo:

const foo = 'foo';
export default foo;

Alternately, the ES6 module system will recognize the default keyword when provided as an alias,
and will apply the default export to the value even though it uses the named export syntax:

const foo = 'foo';

// Behaves identically to "export default foo;"
export { foo as default };

962 ❘ CHAPTER 26 Modules

Because there are no incompatibilities between named exports and default exports, ES6 allows you to
use both in the same module:

const foo = 'foo';
const bar = 'bar';

export { bar };
export default foo;

The two export statements can be combined into the same line:

const foo = 'foo';
const bar = 'bar';

export { foo as default, bar };

The ES6 specification restricts what can and cannot be done inside various forms of an export state-
ment. Some forms allow declaration and assignment, some forms allow only expressions, and some
forms only allow simple identifiers. Note that some forms utilize semicolons, and some do not.

// Named inline exports
export const baz = 'baz';
export const foo = 'foo', bar = 'bar';
export function foo() {}
export function* foo() {}
export class Foo {}

// Named clause exports
export { foo };
export { foo, bar };
export { foo as myFoo, bar };

// Default exports
export default 'foo';
export default 123;
export default /[a-z]*/;
export default { foo: 'foo' };
export { foo, bar as default };
export default foo
export default function() {}
export default function foo() {}
export default function*() {}
export default class {}

// Various disallowed forms that will cause errors:

// Variable declarations cannot occur inside inline default exports
export default const foo = 'bar';

// Only identifiers can appear in export clauses
export { 123 as foo }'

// Aliasing only can occur in export clauses
export const foo = 'foo' as myFoo;

Working with ES6 Modules ❘ 963

NOTE Rules for what can and cannot appear in the same line as the export
keyword can be difficult to remember. Generally, it is a good practice to perform
declarations and assignments separately, and later on export the identifier. This
allows you to easily follow correct export syntax, as well as keep your export
statements grouped together.

Module Imports
Modules can use exports from other modules using the import keyword. Like export, import must
appear in the top level of a module:

// Allowed
import ...

// Disallowed
if (condition) {
 import ...
}

import statements are hoisted to the top of the module. Therefore, like the export keyword, the
order in which import statements appear relative to the use of the imported values is unimportant. It
is recommended, however, that imports be kept at the top of the module.

// Allowed
import { foo } from './fooModule.js';
console.log(foo); // 'foo'

// Allowed, but avoid
console.log(foo); // 'foo'
import { foo } from './fooModule.js';

A module identifier can be either the relative path to that module file from the current module or the
absolute path to that module file from the base path. It must be a plain string; the identifier cannot be
dynamically computed, for example, concatenating strings.

If the modules are being natively loaded in the browser via the path in their module identifier, a .js
extension is required for the correct file to be referenced. However, if the ES6 modules are being bun-
dled or interpreted by a build tool or third-party module loader, you may not need to include the file
extension of the module in its identifier.

// Resolves to /components/bar.js
import ... from './bar.js';

// Resolves to /bar.js
import ... from '../bar.js';

// Resolves to /bar.js
import ... from '/bar.js';

964 ❘ CHAPTER 26 Modules

Modules do not need to be imported via their exported members. If you do not need specific exported
bindings from a module, but you still seed to load and execute the module for its side effects, you can
load it with only its path:

import './foo.js';

Imports are treated as read-only views to the module, effectively the same as const-declared vari-
ables. When performing a bulk import using *, the aliased collection of named exports behaves as if it
were treated with Object.freeze(). Direct manipulation of exported values is impossible, although
modifying properties of an exported object is still possible. Adding or removing exported properties
of the exported collection is also disallowed. Mutation of exported values must occur using exported
methods that have access to internal variables and properties.

import foo, * as Foo './foo.js';

foo = 'foo'; // Error

Foo.foo = 'foo'; // Error

foo.bar = 'bar'; // Allowed

The distinction between named exports and default exports is mirrored in the way they are imported.
Named exports can be retrieved in bulk without specifying their exact identifier using * and provid-
ing an identifier for the collection of exports:

const foo = 'foo', bar = 'bar', baz = 'baz';
export { foo, bar, baz }
import * as Foo from './foo.js';

console.log(Foo.foo); // foo
console.log(Foo.bar); // bar
console.log(Foo.baz); // baz

To perform explicit imports, the identifiers can be placed inside an import clause. Using an import
clause also allows you to specify aliases for the imports:

import { foo, bar, baz as myBaz } from './foo.js';

console.log(foo); // foo
console.log(bar); // bar
console.log(myBaz); // baz

Default exports behave as if the module target is the exported value. They can be imported using the
default keyword and providing an alias; alternately, they can be imported without the use of curly
braces, and the identifier you specify is effectively the alias for the default export:

// Equivalent
import { default as foo } from './foo.js';
import foo from './foo.js';

If a module exports both named exports and default exports, it’s possible to retrieve them in the same
import statement. This retrieval can be performed by enumerating specific exports, or using *:

import foo, { bar, baz } from './foo.js';

import { default as foo, bar, baz } from './foo.js';

import foo, * as Foo from './foo.js';

Working with ES6 Modules ❘ 965

NOTE There is a proposal currently in stage 3 for dynamically importing mod-
ules: https://tc39.github.io/proposal-dynamic-import/.

Module Passthrough Exports
Imported values can be piped directly through to an export. You are also able to convert default to
named exports, and vice versa. If you wanted to incorporate all the named exports from one module
into another, this can be accomplished with a * export:

export * from './foo.js';

All named exports in foo.js will be available when importing bar.js. This syntax will ignore the
default value of foo.js if it has one. This syntax also requires care around export name collisions. If
foo.js exports baz, and bar.js also exports baz, the ultimate export value will be the one specified
in bar.js. This "overwrite" will occur silently:

foo.js

export const baz = 'origin:foo';

bar.js

export * from './foo.js';
export const baz = 'origin:bar';
import { baz } from './bar.js';

main.js

console.log(baz); // origin:bar

It’s also possible to enumerate which values from the external module are being passed through to the
local exports. This syntax supports aliasing:

export { foo, bar as myBar } from './foo.js';

Similarly, the default export of an imported module can be reused and exported as the default export
of the current module:

 export { default } from './foo.js';

This does not perform any copy of the export; it merely propagates the imported reference to the
original module. The defined value of that import still lives in the original module, and the same
restrictions involving mutation of imports apply to imports that are re-exported.

When performing a re-export, it is also possible to alter the named/default designation from the
imported module. A named import can be specified as the default export as follows:

export { foo as default } from './foo.js';

Worker Modules
ECMAScript 6 modules are fully compatible with Worker instances. When instantiating, Workers can
be passed a path to a module file in the same way you would pass a normal script file. The Worker
constructor accepts a second argument allowing you to inform it that you are passing a module file.

966 ❘ CHAPTER 26 Modules

Worker instantiation for both types of workers would behave as follows:

// Second argument defaults to { type: 'classic' }
const scriptWorker = new Worker('scriptWorker.js');

const moduleWorker = new Worker('moduleWorker.js', { type: 'module' });

Inside a module-based Worker, the self.importScripts() method is typically used to load external
scripts inside a script-based Worker will throw an error. This is because a module’s import behavior
subsumes that of importScripts().

Backwards Compatibility
Because adoption of ECMAScript module compatibility will be gradual, it is valuable for early mod-
ule adopters to have the ability to develop for both browsers that support modules and browsers that
do not. For users who want to natively use ECMAScript 6 modules in the browser when possible,
solutions will involve serving two versions of your code—a module-based version and a script-based
version. If this is undesirable to you, utilizing third-party module systems such as SystemJS or tran-
spiling down ES6 modules at build time are better options.

The first strategy involves inspecting the browser’s user-agent on the server, matching it against a
known list of browsers that support modules, and using that to decide which JS files to serve. This
method is brittle and complicated, and is not recommended. A better and more elegant solution to
this is to make use of the script type attribute and the script nomodule attribute.

When a browser does not recognize the type attribute value of a <script> element, it will decline
to execute its contents. For legacy browsers that do not support modules, this means that <script
type="module"> will never execute. Therefore, it is possible to place a fallback <script> tag right
next to the <script type="module"> tag:

// Legacy browser will not execute this
<script type="module" src="module.js"></script>

// Legacy browser will execute this
<script src="script.js"></script>

This, of course, leaves the problem of browsers that do support modules. In this case, the preceding
code will execute twice—obviously an undesirable outcome. To prevent this, browsers that support
ECMAScript 6 modules natively will also recognize the nomodule attribute. This attribute informs
browsers that support ES6 modules to not execute the script. Legacy browsers will not recognize the
attribute and ignore it.

Therefore, the following configuration will yield a setup in which both modern and legacy browsers
will execute exactly one of these scripts:

// Modern browser will execute this
// Legacy browser will not execute this
<script type="module" src="module.js"></script>

// Modern browser will not execute this
// Legacy browser will execute this
<script nomodule src="script.js"></script>

Summary ❘ 967

SUMMARY

The module pattern remains a timeless tool for managing complexity. It allows developers to create
segments of isolated logic, declare dependencies between these segments, and connect them together.
What’s more, the pattern is one that has proven to scale elegantly to arbitrary complexity and across
platforms.

For years, the ecosystem grew around a contentious dichotomy between CommonJS, a module system
targeted at server environments, and AMD, a module system targeted at latency-constrained client
environments. Both systems enjoyed explosive growth, but the code written for each was in many
ways at odds, and often incurred an unholy amount of boilerplate. What’s more, neither system was
natively implemented by browsers, and in the wake of this incompatibility rose a deluge of tooling
that allowed for the module pattern to be used in browsers.

Included in the ECMAScript 6 specification is a wholly new concept for browser modules that takes
the best of both worlds and combines them into a simpler declarative syntax. Browsers increasingly
offer support for native module utilization, but also provide robust tooling to bridge the gap between
marginal and full support for ES6 modules.

Workers
WHAT’S IN THIS CHAPTER?

➤➤ Introduction to workers

➤➤ Running background tasks with dedicated workers

➤➤ Using with shared workers

➤➤ Managing requests with service workers

The statement “JavaScript is single-threaded” is practically a mantra for the frontend develop-
ment community. This assertion, although it makes some simplifying assumptions, effectively
describes how the JavaScript environment generally behaves inside a browser. Therefore, it is
useful as a pedagogical tool for helping web developers understand JavaScript.

This single-threaded paradigm is inherently restrictive as it prevents programming patterns that
are otherwise feasible in languages capable of delegating work to separate threads or processes.
JavaScript is bound to this single-threaded paradigm to preserve compatibility with the vari-
ous browser APIs that it must interact with. Constructs such as the Document Object Model
would encounter problems if subjected to concurrent mutations via multiple JavaScript threads.
Therefore, traditional concurrency constructs such as POSIX threads or Java’s Thread class are
non-starters for augmenting JavaScript.

Therein lies the core value proposition of workers: Allow the primary execution thread to del-
egate work to a separate entity without changing the existing single-threaded model. Although
the various worker types covered in this chapter all have different forms and functions, they are
unified in their separation from the primary JavaScript environment.

27

Professional JavaScript® for Web Developers, Fourth Edition. Matt Frisbie.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

970 ❘ CHAPTER 27 Workers

INTRODUCTION TO WORKERS

A single JavaScript environment is essentially a virtualized environment running inside the host
operating system. Each open page in a browser is allocated its own environment. This provides each
page its own memory, event loop, DOM, and so on. Each page is more or less sandboxed and cannot
interfere with other pages. It is trivial for a browser to manage many environments at once—all of
which are executing in parallel.

Using workers, browsers are able to allocate a second child environment that is totally separated from
the original page environment. This child environment is prevented from interacting with single-
thread–dependent constructs such as the DOM, but is otherwise free to execute code in parallel with
the parent environment.

Comparing Workers and Threads
Introductory resources will commonly draw a comparison between workers and execution threads. In
many ways, this is an apt comparison, as workers and threads do indeed share many characteristics:

➤➤ Workers are implemented as actual threads. For example, the Blink browser engine imple-
ments workers with a WorkerThread that corresponds to an underlying platform thread.

➤➤ Workers execute in parallel. Even though the page and the worker both implement the
single-threaded JavaScript environment, instructions in each environment can be executed
in parallel.

➤➤ Workers can share some memory. Workers are able to use a SharedArrayBuffer to share
memory between multiple environments. Whereas threads will use locks to implement con-
currency control, JavaScript uses the Atomics interface to implement concurrency control.

Workers and threads have a great deal of overlap, yet there are some important differences
between them:

➤➤ Workers do not share all memory. In a traditional thread model, multiple threads have the
capability to read and write to a shared memory space. With the exception of the Shared
ArrayBuffer, moving data in and out of workers requires it to be copied or transferred.

➤➤ Worker threads are not necessarily part of the same process. Typically, a single process
is able to spawn multiple threads inside of it. Depending on the browser engine’s imple-
mentation, a worker thread may or may not be part of the same process as the page. For
example, Chrome’s Blink engine uses a separate process for shared worker and service
worker threads.

➤➤ Worker threads are more expensive to create. Worker threads include their own sepa-
rate event loop, global objects, event handlers, and other features that are part and parcel
of a JavaScript environment. The computational expense of creating these should not be
overlooked.

In both form and function, workers are not a drop-in replacement for threads. The HTML Web
Worker specification says the following:

Introduction to Workers ❘ 971

Workers are relatively heavy-weight, and are not intended to be used in large num-
bers. For example, it would be inappropriate to launch one worker for each pixel
of a four megapixel image. Generally, workers are expected to be long-lived, have a
high start-up performance cost, and a high per-instance memory cost.

Types of Workers
There are three primary types of workers defined in the Web Worker specification: the dedicated web
worker, the shared web worker, and the service worker. These are all widely available in modern
web browsers.

NOTE The Web Worker specification can be found at https://html.spec
.whatwg.org/multipage/workers.html.

Dedicated Web Worker
The dedicated web worker, usually just referred to as a dedicated worker, web worker, or just worker,
is the bread-and-butter utility that allows scripts to spawn a separate JavaScript thread and del-
egate tasks to it. A dedicated worker, as the name suggests, can only be accessed by the page that
spawned it.

Shared Web Worker
A shared web worker behaves much like a dedicated worker. The primary difference is that a shared
worker can be accessed across multiple contexts, including different pages. Any scripts executing on
the same origin as the script that originally spawned the shared worker can send and receive messages
to a shared worker.

Service Worker
A service worker is wholly different from that of a dedicated or shared worker. Its primary purpose
is to act as a network request arbiter capable of intercepting, redirecting, and modifying requests
dispatched by the page.

NOTE There is a handful of other worker specifications, such as the Chrome-
Worker or Web Audio API. These are not widely supported, or they target niche
applications and therefore are not included in the book.

The WorkerGlobalScope
On a web page, the window object exposes a broad suite of global variables to scripts running inside
it. Inside a worker, the concept of a "window" does not make sense, and therefore its global object

972 ❘ CHAPTER 27 Workers

is an instance of WorkerGlobalScope. Instead of window, this global object is accessible via the
self keyword.

WorkerGlobalScope Properties and Methods
The properties available on self are a strict subset of those available on window. Some properties
return a worker-flavored version of the object:

➤➤ navigator—Returns the WorkerNavigator associated with this worker.

➤➤ self—Returns the WorkerGlobalScope object.

➤➤ location—Returns the WorkerLocation associated with this worker.

➤➤ performance—Returns a Performance object (with a reduced set of properties
and methods).

➤➤ console—Returns the Console object associated with this worker. No restriction on API.

➤➤ caches—Returns the CacheStorage object associated with this worker. No
restriction on API.

➤➤ indexedDB—Returns an IDBFactory object.

➤➤ isSecureContext—Returns a Boolean indicating if the context of the worker is secure.

➤➤ origin—Returns the origin of the WorkerGlobalScope object.

Similarly, some methods available on self are a subset of those available on window. The methods on
self operate identically to their counterparts on window:

➤➤ atob()

➤➤ btoa()

➤➤ clearInterval()

➤➤ clearTimeout()

➤➤ createImageBitmap()

➤➤ fetch()

➤➤ setInterval()

➤➤ setTimeout()

The WorkerGlobalScope also introduces a new global method importScripts(), which is only
available inside a worker. This method is described later in the chapter.

Subclasses of WorkerGlobalScope
The WorkerGlobalScope is not actually implemented anywhere. Each type of worker uses its own
flavor of global object, which inherits from WorkerGlobalScope.

➤➤ A dedicated worker uses a DedicatedWorkerGlobalScope.

Dedicated Workers ❘ 973

➤➤ A shared worker uses a SharedWorkerGlobalScope.

➤➤ A service worker uses a ServiceWorkerGlobalScope.

The differences between these global objects are discussed in their respective sections in this chapter.

DEDICATED WORKERS

A dedicated worker is the simplest type of web worker. Dedicated workers are created by a web page
to execute scripts outside the page’s thread of execution. These workers are capable of exchanging
information with the parent page, sending network requests, performing file I/O, executing intense
computation, processing data in bulk, or any other number of computational tasks that are unsuited
for the page execution thread (where they would introduce latency issues).

NOTE When dealing with workers, where a script is executing and where it
was loaded from are important concepts. Unless otherwise specified, assume
throughout this chapter that main.js is a top-level script loaded from and exe-
cuting on the root path of the https://example.com domain.

Dedicated Worker Basics
Dedicated workers can be aptly described as background scripts. The characteristics of a JavaScript
worker—including lifecycle management, code path, and input/output—are governed by a singular
script provided when the worker is initialized. This script may in turn request additional scripts, but a
worker always begins with a single script source.

Creating a Dedicated Worker
The most common way to create a dedicated worker is through a loaded JavaScript file. The file path
is provided to the Worker constructor, which in turn asynchronously loads the script in the back-
ground and instantiates the worker. The constructor requires a path to a file, although that path can
take several different forms.

The following simple example creates an empty dedicated worker:

EMPTYWORKER.JS

// empty JS worker file

MAIN.JS

console.log(location.href); // "https://example.com/"
const worker = new Worker(location.href + 'emptyWorker.js');
console.log(worker); // Worker {}

974 ❘ CHAPTER 27 Workers

This demonstration is trivial, but it involves several foundational concepts:

➤➤ The emptyWorker.js file is loaded from an absolute path. Depending on the structure of
your application, using an absolute URL will often be redundant.

➤➤ This file is loaded in the background, and the worker initialization occurs on a thread
totally separate from that of main.js.

➤➤ The worker itself exists in a separate JavaScript environment, so the main.js must use a
Worker object as a proxy to communicate with that worker. In the above example, this
object is assigned to the worker variable.

➤➤ Although the worker itself may not yet exist, this Worker object is available immediately
inside the original environment.

The previous example could be altered to use a relative path; however, this requires that main.js is
executing on the same path that emptyWorker.js can be loaded from:

const worker = new Worker('./emptyWorker.js');
console.log(worker); // Worker {}

Worker Security Restrictions
Worker script files can only be loaded from the same origin as the parent page. Attempts to load a
worker script file from a remote origin will throw an error when attempting to construct the worker,
as shown here:

// Attempt to build worker from script at https://example.com/worker.js
const sameOriginWorker = new Worker('./worker.js');

// Attempt to build worker from script at https://untrusted.com/worker.js
const remoteOriginWorker = new Worker('https://untrusted.com/worker.js');

// Error: Uncaught DOMException: Failed to construct 'Worker':
// Script at https://untrusted.com/main.js cannot be accessed
// from origin https://example.com

NOTE The worker origin restriction does not prevent you from executing code
from remote origins. This can be accomplished inside the worker via the use of
importScripts(), which is covered later in the chapter.

Workers created from a loaded script are not subject to the document’s content security policy
because workers execute in a separate context from the parent document. However, if the worker is
loaded from a script with a globally unique identifier—as is the case when a worker is loaded from a
blob—it will be subject to the content security policy of the parent document.

Dedicated Workers ❘ 975

NOTE Creating workers from blobs is covered in the “Creating a Worker from
Inline JavaScript” section.

Using the Worker Object
The Worker object returned from the Worker() constructor is used as the single point of communi-
cation with the newly created dedicated worker. It can be used to transmit information between the
worker and the parent context, as well as catch events emitted from the dedicated worker.

NOTE Carefully track references to the Worker objects associated with each
worker you create. Until a worker is terminated, it cannot be garbage collected,
and there is no programmatic tool that you can use to regain a reference to the
worker object.

The Worker object supports the following event handler properties:

➤➤ onerror—Can be assigned an event handler that will be called whenever an ErrorEvent of
type error bubbles from the worker.

➤➤ This event occurs when an error is thrown inside the worker.

➤➤ This event can also be handled using worker.
addEventListener('error', handler).

➤➤ onmessage—Can be assigned an event handler that will be called whenever a Message
Event of type message bubbles from the worker.

➤➤ This event occurs when the worker script sends a message event back to the par-
ent context.

➤➤ This event can also be handled using worker.addEventListener('message',
handler).

➤➤ onmessageerror—Can be assigned an event handler that will be called whenever a
Message Event of type messageerror event bubbles from the worker.

➤➤ This event occurs when a message is received that cannot be deserialized.

➤➤ This event can also be handled using worker.addEventListener('messageerror',
handler).

The Worker object also supports the following methods:

➤➤ postMessage()—Used to send information to the worker via asynchronous message events.

➤➤ terminate()—Used to immediately terminate the worker. No opportunity for cleanup is
afforded to the worker, and the script is abruptly ended.

976 ❘ CHAPTER 27 Workers

The DedicatedWorkerGlobalScope
Inside the dedicated worker, the global scope is an instance of DedicatedWorkerGlobalScope. This
inherits from WorkerGlobalScope and therefore includes all its properties and methods. A worker is
able to access this global scope via self:

GLOBALSCOPEWORKER.JS

console.log('inside worker:', self);

MAIN.JS

const worker = new Worker('./globalScopeWorker.js');

console.log('created worker:', worker);

// created worker: Worker {}

// inside worker: DedicatedWorkerGlobalScope {}

As shown here, the console object in both the top-level script and the worker will write to the
browser console, which is useful for debugging. Because the web worker has a non-negligible startup
latency, the worker’s log message prints after the main thread’s log message even though the Worker
object exists.

NOTE Note here that two separate JavaScript threads are sending messages to a
singular console object, which subsequently serializes the messages and prints
them in the browser console. The browser receives messages from two different
JavaScript threads and is responsible for interleaving them as it sees fit. Because
of this, using log messages from multiple threads to ascertain order of operation
should be done with caution.

DedicatedWorkerGlobalScope extends the WorkerGlobalScope with the following properties
and methods:

➤➤ name—An optional string identifier that can be provided to the Worker constructor.

➤➤ postMessage()—The counterpart to worker.postMessage(). It is used to send messages
back out of the worker to the parent context.

➤➤ close()—The counterpart to worker.terminate(). It is used to immediately terminate the
worker. No opportunity for cleanup is afforded to the worker; the script is abruptly ended.

➤➤ importScripts()—Used to import an arbitrary number of scripts into the worker.

Dedicated Workers and Implicit MessagePorts
You will notice that the dedicated worker object and the DedicatedWorkerGlobalScope object share
some pieces of interface handlers and methods with MessagePort: onmessage, onmessageerror,
close(), and postMessage(). This is no accident: dedicated workers implicitly use a MessagePort
to communicate between contexts.

Dedicated Workers ❘ 977

The implementation is such that the object in the parent context and the DedicatedWorkerGlobalS
cope effectively absorb the MessagePort and expose its handlers and methods as part of their own
interfaces. In other words, you are still sending messages via a MessagePort; you just aren’t given
access to the port itself.

There are some inconsistencies, such as the start() and close() conventions. Dedicated worker
ports will automatically start the sending of queued messages so no start() is required. Further-
more, the close() method doesn’t make sense in the context of a dedicated worker as closing the
port would effectively orphan the worker. Therefore, a close() called from inside the worker (or
terminate() from outside) will not just close the port but shut down the worker as well.

Understanding the Dedicated Worker Lifecycle
The Worker() constructor is the beginning of life for a dedicated worker. Once called, it initiates a
request for the worker script and returns a Worker object to the parent context. Although the Worker
object is immediately available for use in the parent context, the associated worker may not yet have
been created due to the worker script’s network latency or initialization latency.

Generally speaking, dedicated workers can be informally characterized as existing in one of three
states: initializing, active, and terminated. The state of a dedicated worker is opaque to any other
contexts. Although a Worker object may exist in the parent context, it cannot be ascertained if a
dedicated worker is initializing, active, or terminated. In other words, a Worker object associated with
an active dedicated worker is indistinguishable from a Worker object associated with a terminated
dedicated worker.

While initializing, although the worker script has yet to begin execution, it is possible to enqueue
messages for the worker. These messages will wait for the worker to become active and subsequently
be added to its message queue. This behavior is demonstrated here:

INITIALIZINGWORKER.JS

self.addEventListener('message', ({data}) => console.log(data));

MAIN.JS

const worker = new Worker('./initializingWorker.js');

// Worker may still be initializing,
// yet postMessage data is handled correctly.
worker.postMessage('foo');
worker.postMessage('bar');
worker.postMessage('baz');

// foo
// bar
// baz

Once created, a dedicated worker will last the lifetime of the page unless explicitly terminated either
via self-termination (self.close()) or external termination (worker.terminate()). Even when the
worker script has run to completion, the worker environment will persist. As long as the worker is

978 ❘ CHAPTER 27 Workers

still alive, the Worker object associated with it will not be garbage collected.

Self-termination and external termination ultimately perform the same worker termination routine.
Consider the following example, where a worker self-terminates in between dispatching messages:

CLOSEWORKER.JS

self.postMessage('foo');
self.close();
self.postMessage('bar');
setTimeout(() => self.postMessage('baz'), 0);

MAIN.JS

const worker = new Worker('./worker.js');
worker.onmessage = ({data}) => console.log(data);

// foo
// bar

Although close() is invoked, clearly execution of the worker is not immediately terminated.
close() only instructs the worker to discard all tasks in the event loop and prevent further tasks
from being added. This is why "baz" never prints. It does not demand that synchronous execution
halt, and therefore "bar" is still printed, as it is handled in the parent context’s event loop.

Now, consider the following external termination example:

TERMINATEWORKER.JS

self.onmessage = ({data}) => console.log(data);

MAIN.JS

const worker = new Worker('./worker.js');

// Allow 1000ms for worker to initialize
setTimeout(() => {
 worker.postMessage('foo');
 worker.terminate();
 worker.postMessage('bar');
 setTimeout(() => worker.postMessage('baz'), 0);
}, 1000);

// foo

Here, the worker is first sent a postMessage with "foo," which it is able to handle prior to the exter-
nal termination. Once terminate() is invoked, the worker’s message queue is drained and locked—
this is why only "foo" is printed.

NOTE Both close() and terminate() are idempotent operations; they may
be called multiple times without harm. These methods merely serve to flag the
worker for teardown, so invoking them multiple times will have no ill effects.

Dedicated Workers ❘ 979

Over its lifecycle, a dedicated worker is associated with exactly one web page (referred to in the Web
Worker specification as a document). Unless explicitly terminated, a dedicated worker will persist as
long as the associated document exists. If the browser leaves the page (perhaps via navigation or clos-
ing a tab or window), the browser will flag workers associated with that document for termination,
and their execution will immediately halt.

Configuring Worker Options
The Worker() constructor allows for an optional configuration object as the second argument. The
configuration object supports the following properties:

➤➤ name—A string identifier that can be read from inside the worker via self.name.

➤➤ type—Specifies how the loaded script should be run, either classic or module. classic
executes the script as a normal script; module executes the script as a module.

➤➤ credentials—When type is set to "module," specifies how worker module scripts should
be retrieved with respect to transmitting credential data. Can be omit, sameorigin, or
include. These options operate identically to the fetch() credentials option. When type is
set to classic, defaults to omit.

NOTE Some modern browsers still do not fully support module workers or may
require the use of a flag to enable their support.

Creating a Worker from Inline JavaScript
Workers need to be created from a script file, but this does not mean that the script must be loaded
from a remote resource. A dedicated worker can also be created from an inline script via a blob object
URL. This allows for faster worker initialization due to the elimination of roundtrip network latency.

The following example creates a worker from an inline script:

// Create string of JavaScript code to execute
const workerScript = `
 self.onmessage = ({data}) => console.log(data);
`;

// Generate a blob instance from the script string
const workerScriptBlob = new Blob([workerScript]);

// Create an object URL for the blob instance
const workerScriptBlobUrl = URL.createObjectURL(workerScriptBlob);

// Create a dedicated worker from the blob
const worker = new Worker(workerScriptBlobUrl);

worker.postMessage('blob worker script');
// blob worker script

980 ❘ CHAPTER 27 Workers

In this example, the script string is passed into a blob instance, which is then assigned an object URL,
which in turn is passed to the Worker() constructor. The constructor happily creates the dedicated
worker as normal.

Condensed, this same example could appear as follows:

const worker = new Worker(URL.createObjectURL(new Blob([`self.onmessage =
({data}) => console.log(data);`])));

worker.postMessage('blob worker script');
// blob worker script

Workers can also take advantage of function serialization with inline script initialization. Because a
function’s toString() method returns the actual function code, a function can be defined in a parent
context but executed in a child context. Consider the following simple example of this:

function fibonacci(n) {
 return n < 1 ? 0
 : n <= 2 ? 1
 : fibonacci(n - 1) + fibonacci(n - 2);
}

const workerScript = `
 self.postMessage(
 (${fibonacci.toString()})(9)
);
`;

const worker = new Worker(URL.createObjectURL(new Blob([workerScript])));

worker.onmessage = ({data}) => console.log(data);

// 34

Here, this intentionally expensive implementation of a Fibonacci sequence is serialized and passed
into a worker. It’s invoked as an immediately invoked function expression (IIFE) and passed a param-
eter, and the result is messaged back up to the main thread. Even though the Fibonacci computation
here is quite expensive, all the computation is delegated to the worker and therefore does not harm
the performance of the parent context.

NOTE Importantly, this function serialization method requires that the function
passed in does not use any references obtained through a closure, including
global variables like window, as these will break when executed inside the worker.

Dynamic Script Execution Inside a Worker
Worker scripts do not need to be monolithic entities. You are able to programmatically load and
execute an arbitrary number of scripts with the importScripts() method, which is available on the
global worker object. This method will load scripts and synchronously execute them in order. Con-
sider the following example, which loads and executes two scripts:

Dedicated Workers ❘ 981

MAIN.JS

const worker = new Worker('./worker.js');

// importing scripts
// scriptA executes
// scriptB executes
// scripts imported

SCRIPTA.JS

console.log('scriptA executes');

SCRIPTB.JS

console.log('scriptB executes');

WORKER.JS

console.log('importing scripts');

importScripts('./scriptA.js');
importScripts('./scriptB.js');

console.log('scripts imported');

importScripts() accepts an arbitrary number of script arguments. The browser may download
them in any order, but the scripts will be strictly executed in parameter order. Therefore, the following
worker script would be equivalent:

console.log('importing scripts');

importScripts('./scriptA.js', './scriptB.js');

console.log('scripts imported');

Script loading is subject to normal CORS restrictions, but otherwise workers are free to request
scripts from other origins. This import strategy is analogous to dynamic script loading via <script>
tag generation. In that spirit, scope is shared with imported scripts. This behavior is demon-
strated here:

MAIN.JS

const worker = new Worker('./worker.js', {name: 'foo'});

// importing scripts in foo with bar
// scriptA executes in foo with bar
// scriptB executes in foo with bar
// scripts imported

SCRIPTA.JS

console.log(`scriptA executes in ${self.name} with ${globalToken}`);

982 ❘ CHAPTER 27 Workers

SCRIPTB.JS

console.log(`scriptB executes in ${self.name} with ${globalToken}`);

WORKER.JS

const globalToken = 'bar';

console.log(`importing scripts in ${self.name} with ${globalToken}`);

importScripts('./scriptA.js', './scriptB.js');

console.log('scripts imported');

Delegating Tasks to Subworkers
You may find the need for workers to spawn their own "subworkers." This can be useful in cases
where you have multiple CPU cores at your disposal for parallelization of computation. Electing to
use a subworker model should be done only after a careful design consideration: running multiple
web workers may incur a considerable computational overhead and should only be done if the gains
from parallelization outweigh the costs.

Subworker creation works nearly identically to normal worker creation with the exception of path
resolution: a subworker script path will be resolved with respect to its parent worker rather than the
main page. This is demonstrated as follows (note the addition of the script directory):

MAIN.JS

const worker = new Worker('./js/worker.js');

// worker
// subworker

JS/WORKER.JS

console.log('worker');

const worker = new Worker('./subworker.js');

JS/SUBWORKER.JS

console.log('subworker');

NOTE Both top-level worker scripts and subworker scripts must be loaded from
the same origin as the main page.

Dedicated Workers ❘ 983

Handling Worker Errors
If an error is thrown inside a worker script, the worker’s sandboxing will serve to prevent it from
interrupting the parent thread of execution. This is demonstrated here, where an enclosing try/catch
block does not catch the thrown error:

MAIN.JS

try {
 const worker = new Worker('./worker.js');
 console.log('no error');
} catch(e) {
 console.log('caught error');
}

// no error

WORKER.JS

throw Error('foo');

However, this event will still bubble up to the global worker context and can be accessed by setting
an error event listener on the Worker object. This is demonstrated here:

MAIN.JS

const worker = new Worker('./worker.js');
worker.onerror = console.log;

// ErrorEvent {message: "Uncaught Error: foo"}

WORKER.JS

throw Error('foo');

Communicating with a Dedicated Worker
All communication to and from a worker occurs via asynchronous messages, but these messages can
take on a handful of different forms.

Communicating with postMessage()
The easiest and most common form is using postMessage() to pass serialized messages back and
forth. A simple factorial example of this is shown here:

FACTORIALWORKER.JS

function factorial(n) {
 let result = 1;
 while(n) { result *= n; }
 return result;
}

984 ❘ CHAPTER 27 Workers

self.onmessage = ({data}) => {
 self.postMessage(`${data}! = ${factorial(data)}`);
};

MAIN.JS

const factorialWorker = new Worker('./factorialWorker.js');

factorialWorker.onmessage = ({data}) => console.log(data);

factorialWorker.postMessage(5);
factorialWorker.postMessage(7);
factorialWorker.postMessage(10);

// 5! = 120
// 7! = 5040
// 10! = 3628800

For simple message passing, using postMessage() to communicate between window and worker is
extremely similar to message passing between two windows. The primary difference is that there is
no concept of a targetOrigin restriction, which is present for Window.prototype.postMessage
but not WorkerGlobalScope.prototype.postMessage or Worker.prototype.postMessage. The
reason for this convention is simple: the worker script origin is restricted to the main page origin so
there is no use for a filtering mechanism.

Communicating with MessageChannel
For both the main thread and the worker thread, communication via postMessage() involves invok-
ing a method on the global object and defining an ad-hoc transmission protocol therein. This can be
replaced by the Channel Messaging API, which allows you to create an explicit communication chan-
nel between the two contexts.

A MessageChannel instance has two ports representing the two communication endpoints. To enable
a parent page and a worker to communicate over a channel, one port can be passed into the worker,
as shown here:

WORKER.JS

// Store messagePort globally inside listener
let messagePort = null;

function factorial(n) {
 let result = 1;
 while(n) { result *= n; }
 return result;
}

// Set message handler on global object
self.onmessage = ({ports}) => {
 // Only set the port a single time
 if (!messagePort) {
 // Initial message sends the port,
 // assign to variable and unset listener

Dedicated Workers ❘ 985

 messagePort = ports[0];
 self.onmessage = null;

 // Set message handler on global object
 messagePort.onmessage = ({data}) => {
 // Subsequent messages send data
 messagePort.postMessage(`${data}! = ${factorial(data)}`);
 };
 }
};

MAIN.JS

const channel = new MessageChannel();
const factorialWorker = new Worker('./worker.js');

// Send the MessagePort object to the worker.
// Worker is responsible for handling this correctly
factorialWorker.postMessage(null, [channel.port1]);

// Send the actual message on the channel
channel.port2.onmessage = ({data}) => console.log(data);

// Worker will respond on the channel
channel.port2.postMessage(5);

// // 5! = 120

In this example, the parent page shares a MessagePort with a worker via postMessage. The array
notation is to pass a transferable object between contexts. This concept is covered later in the chapter.
The worker maintains a reference to this port and uses it to transmit messages in lieu of transmitting
them via the global object. Of course, this format still utilizes a kind of ad-hoc protocol: the worker is
written to expect the first message to send the port and subsequent messages to send data.

Using a MessageChannel instance to communicate with the parent page is largely redundant, as
the global postMessage affordance is essentially performing the same task as channel.postMes
sage (not including the additional features of the MessageChannel interface). A MessageChannel
truly becomes useful in a situation in which two workers would like to directly communicate with
one another. This can be accomplished by passing one port into each worker. Consider the following
example where an array is passed into a worker, passed to another worker, and passed back up to the
main page:

MAIN.JS

const channel = new MessageChannel();
const workerA = new Worker('./worker.js');
const workerB = new Worker('./worker.js');

workerA.postMessage('workerA', [channel.port1]);
workerB.postMessage('workerB', [channel.port2]);

workerA.onmessage = ({data}) => console.log(data);
workerB.onmessage = ({data}) => console.log(data);

986 ❘ CHAPTER 27 Workers

workerA.postMessage(['page']);

// ['page', 'workerA', 'workerB']

workerB.postMessage(['page'])

// ['page', 'workerB', 'workerA']

WORKER.JS

let messagePort = null;
let contextIdentifier = null;

function addContextAndSend(data, destination) {
 // Add identifier to show when it reached this worker
 data.push(contextIdentifier);

 // Send data to next destination
 destination.postMessage(data);
}

self.onmessage = ({data, ports}) => {
 // If ports exist in the message,
 // set up the worker
 if (ports.length) {
 // Record the identifier
 contextIdentifier = data;

 // Capture the MessagePort
 messagePort = ports[0];

 // Add a handler to send the received data
 // back up to the parent
 messagePort.onmessage = ({data}) => {
 addContextAndSend(data, self);
 }
 } else {
 addContextAndSend(data, messagePort);
 }
};

In this example, each part of the array’s journey will add a string to the array to mark when it
arrived. The array is passed from the parent page into a worker, which adds its context identifier. It
is then passed from one worker to the other, which adds a second context identifier. It is then passed
back up to the main page, where the array is logged. Note in this example how, because the two
workers share a common script, this array passing scheme works bidirectionally.

Communicating with BroadcastChannel
Scripts that run on the same origin are capable of sending and receiving conmessages on a shared
BroadcastChannel. This channel type is simpler to set up and doesn’t require the messiness of port
passing required with MessageChannel. This can be accomplished as follows:

MAIN.JS

const channel = new BroadcastChannel('worker_channel');

Dedicated Workers ❘ 987

const worker = new Worker('./worker.js');

channel.onmessage = ({data}) => {
 console.log(`heard ${data} on page`);
}

setTimeout(() => channel.postMessage('foo'), 1000);

// heard foo in worker
// heard bar on page

WORKER.JS

const channel = new BroadcastChannel('worker_channel');

channel.onmessage = ({data}) => {
 console.log(`heard ${data} in worker`);
 channel.postMessage('bar');
}

Note here that the page waits 1,000 milliseconds before sending the initial message on the Broad
castChannel. Because there is no concept of port ownership with this type of channel, messages
broadcasted will not be handled if there is no other entity listening on the channel. In this case,
without the setTimeout, the latency of the worker initialization is sufficiently long to prevent the
worker’s message handler from being set before the message is actually sent.

Worker Data Transfer
Workers will often need to be provided with a data payload in some form. Because workers oper-
ate in a separate context, there is overhead involved in getting a piece of data from one context to
another. In languages that support traditional models of multithreading, you have concepts such as
locks, mutexes, and volatile variables at your disposal. In JavaScript, there are three ways of mov-
ing information between contexts: the structured clone algorithm, transferable objects, and shared
array buffers.

Structured Clone Algorithm
The structured clone algorithm can be used to share a piece of data between two separate execution
contexts. This algorithm is implemented by the browser behind the scenes, but it cannot be invoked
explicitly.

When an object is passed to postMessage(), the browser traverses the object and makes a copy in
the destination context. The following types are fully supported by the structured clone algorithm:

➤➤ All primitive types except Symbol

➤➤ Boolean object

➤➤ String object

➤➤ BDate

➤➤ RegExp

988 ❘ CHAPTER 27 Workers

➤➤ Blob

➤➤ File

➤➤ FileList

➤➤ ArrayBuffer

➤➤ ArrayBufferView

➤➤ ImageData

➤➤ Array

➤➤ Object

➤➤ Map

➤➤ Set

Some things to note about the behavior of the structured clone algorithm:

➤➤ Once copied, mutations to the object in the source context will not be propagated to the
destination context object.

➤➤ The structured clone algorithm recognizes when an object contains a cycle and will not infi-
nitely traverse the object.

➤➤ Attempting to clone an Error object, a Function object, or a DOM node will
throw an error.

➤➤ The structured clone algorithm will not always create an exact copy.

➤➤ Object property descriptors, getters, and setters are not cloned and will revert to defaults
where applicable.

➤➤ Prototype chains are not cloned.

➤➤ The RegExp.prototype.lastIndex property is not cloned.

NOTE The structured clone algorithm can be computationally expensive when
the object being copied is large. Avoid large or excessive copying when possible.

Transferable Objects
It is possible to transfer ownership from one context to another using transferable objects. This is
especially useful in cases where it is impractical to copy large amounts of data between contexts. Only
a handful of types are transferable:

➤➤ ArrayBuffer

➤➤ MessagePort

Dedicated Workers ❘ 989

➤➤ ImageBitmap

➤➤ OffscreenCanvas

The second optional argument to postMessage() is an array specifying which objects should be
transferred to the destination context. When traversing the message payload object, the browser will
check object references against the transfer object array and perform a transfer upon those objects
instead of copying them. This means that transferred objects can be sent in a message payload, which
itself is copied, such as an object or array.

The following example demonstrates a normal structured clone of an ArrayBuffer into a worker.
No object transfer occurs in this example:

MAIN.JS

const worker = new Worker('./worker.js');

// Create 32 byte buffer
const arrayBuffer = new ArrayBuffer(32);

console.log(`page's buffer size: ${arrayBuffer.byteLength}`); // 32

worker.postMessage(arrayBuffer);

console.log(`page's buffer size: ${arrayBuffer.byteLength}`); // 32

WORKER.JS

self.onmessage = ({data}) => {
 console.log(`worker's buffer size: ${data.byteLength}`); // 32
};

When the ArrayBuffer is specified as a transferable object, the reference to the buffer memory is
wiped out in the parent context and allocated to the worker context. This is demonstrated here,
where the memory allocated inside the ArrayBuffer is removed from the parent context:

MAIN.JS

const worker = new Worker('./worker.js');

// Create 32 byte buffer
const arrayBuffer = new ArrayBuffer(32);

console.log(`page's buffer size: ${arrayBuffer.byteLength}`); // 32

worker.postMessage(arrayBuffer, [arrayBuffer]);

console.log(`page's buffer size: ${arrayBuffer.byteLength}`); // 0

WORKER.JS

self.onmessage = ({data}) => {
 console.log(`worker's buffer size: ${data.byteLength}`); // 32
};

990 ❘ CHAPTER 27 Workers

It is perfectly fine to nest transferable objects inside other object types. The encompassing object will
be copied and the nested object will be transferred:

MAIN.JS

const worker = new Worker('./worker.js');

// Create 32 byte buffer
const arrayBuffer = new ArrayBuffer(32);

console.log(`page's buffer size: ${arrayBuffer.byteLength}`); // 32

worker.postMessage({foo: {bar: arrayBuffer}}, [arrayBuffer]);

console.log(`page's buffer size: ${arrayBuffer.byteLength}`); // 0

WORKER.JS

self.onmessage = ({data}) => {
 console.log(`worker's buffer size: ${data.foo.bar.byteLength}`); // 32
};

SharedArrayBuffer

NOTE The SharedArrayBuffer was disabled across all major browsers in
January 2018 due to Spectre (https://cve.mitre.org/cgibin/cvename
.cgi?name=CVE20175753) and Meltdown (https://cve.mitre.org/cgibin/
cvename.cgi?name=CVE20175754) vulnerabilities. As of 2019, some browsers
have begun to gradually re-enable the feature.

Rather than being cloned or transferred, a SharedArrayBuffer is an ArrayBuffer that is shared
between browser contexts. When passing a SharedArrayBuffer inside postMessage(), the browser
will pass only a reference to the original buffer. As a result, two different JavaScript contexts will each
maintain their own reference to the same block of memory. Each context is free to modify the buffer
as it would with a normal ArrayBuffer. This behavior is demonstrated here:

MAIN.JS

const worker = new Worker('./worker.js');

// Create 1 byte buffer
const sharedArrayBuffer = new SharedArrayBuffer(1);

// Create view onto 1 byte buffer
const view = new Uint8Array(sharedArrayBuffer);

// Parent context assigns value of 1
view[0] = 1;

Dedicated Workers ❘ 991

worker.onmessage = () => {
 console.log(`buffer value after worker modification: ${view[0]}`);
};

// Send reference to sharedArrayBuffer
worker.postMessage(sharedArrayBuffer);

// buffer value before worker modification: 1
// buffer value after worker modification: 2

WORKER.JS

self.onmessage = ({data}) => {
 const view = new Uint8Array(data);

 console.log(`buffer value before worker modification: ${view[0]}`);

 // Worker assigns new value to shared buffer
 view[0] += 1;

 // Send back empty postMessage to signal assignment is complete
 self.postMessage(null);
};

Of course, sharing the block of memory between two parallel threads introduces a risk of race condi-
tions. In other words, the SharedArrayBuffer instance is effectively being treated as volatile mem-
ory. This problem is demonstrated in the following example:

MAIN.JS

// Create worker pool of size 4
const workers = [];
for (let i = 0; i < 4; ++i) {
 workers.push(new Worker('./worker.js'));
}

// Log the final value after the last worker completes
let responseCount = 0;
for (const worker of workers) {
 worker.onmessage = () => {
 if (++responseCount == workers.length) {
 console.log(`Final buffer value: ${view[0]}`);
 }
 };
}

// Initialize the SharedArrayBuffer
const sharedArrayBuffer = new SharedArrayBuffer(4);
const view = new Uint32Array(sharedArrayBuffer);
view[0] = 1;

992 ❘ CHAPTER 27 Workers

// Send the SharedArrayBuffer to each worker
for (const worker of workers) {
 worker.postMessage(sharedArrayBuffer);
}

// (Expected result is 4000001. Actual output will be something like:)
// Final buffer value: 2145106

WORKER.JS

self.onmessage = ({data}) => {
 const view = new Uint32Array(data);

 // Perform 1000000 add operations
 for (let i = 0; i < 1E6; ++i) {
 view[0] += 1;
 }

 self.postMessage(null);
};

Here, each worker is executing 1,000,000 sequential operations, which read from the shared array
index, perform an add, and write that value back into the array index. A race condition occurs when
worker read/write operations are interleaved. For example:

1. Worker A reads a value of 1.

2. Worker B reads a value of 1.

3. Worker A adds 1 and writes 2 back into the array.

4. Worker B, still using the stale array value of 1, writes 2 back into the array.

To address this, the Atomics global object allows for a worker to effectively obtain a lock on the
SharedArrayBuffer instance and perform the entire read/add/write sequence before allowing
another worker to perform any operations. Incorporating Atomics.add() into this example yields a
correct final value:

MAIN.JS

// Create worker pool of size 4
const workers = [];
for (let i = 0; i < 4; ++i) {
 workers.push(new Worker('./worker.js'));
}

// Log the final value after the last worker completes
let responseCount = 0;
for (const worker of workers) {
 worker.onmessage = () => {
 if (++responseCount == workers.length) {
 console.log(`Final buffer value: ${view[0]}`);
 }
 };
}

Dedicated Workers ❘ 993

// Initialize the SharedArrayBuffer
const sharedArrayBuffer = new SharedArrayBuffer(4);
const view = new Uint32Array(sharedArrayBuffer);
view[0] = 1;

// Send the SharedArrayBuffer to each worker
for (const worker of workers) {
 worker.postMessage(sharedArrayBuffer);
}

// (Expected result is 4000001)
// Final buffer value: 4000001

WORKER.JS

self.onmessage = ({data}) => {
 const view = new Uint32Array(data);

 // Perform 1000000 add operations
 for (let i = 0; i < 1E6; ++i) {
 Atomics.add(view, 0, 1);
 }

 self.postMessage(null);
};

NOTE The SharedArrayBuffer and Atomics API are fully covered in the
chapter “JavaScript APIs.”

Worker Pools
Because starting a worker is quite expensive, there may be situations where it is more efficient to keep
a fixed number of workers alive and dispatch work to them as necessary. When a worker is perform-
ing computation, it is marked as busy and will only be ready to take on another task once it notifies
the pool that it is available again. This is commonly referred to as a "thread pool" or "worker pool."

Determining the ideal number of workers in a pool is not an exact science, but the navigator.hard
wareConcurrency property will return the number of cores available on the system. Because you
will likely not be able to ascertain the multithreading ability of each core, it may be best to treat this
number as the upper bound for pool size.

One scenario you may encounter involves a fixed set of workers in a pool all performing the same
task that is controlled by a small set of input parameters. By using a task-specific worker pool, you
can allocate a fixed number of workers and feed them parameters on demand. The worker will take
in these parameters, perform the long-running computation, and return the value to the pool. In turn,
the pool will then send the worker additional work to perform. This example will build a relatively
simplistic worker pool, but it will cover all the foundational requirements for this concept.

994 ❘ CHAPTER 27 Workers

Begin by defining a TaskWorker, which extends the Worker class. This class has two jobs: keep track
of whether or not it is busy performing work, and manage the information and events going in and
out of the worker. Furthermore, tasks passed to this worker will be wrapped in a promise and will
resolve/reject appropriately. The class can be defined as follows:

class TaskWorker extends Worker {
 constructor(notifyAvailable, ...workerArgs) {
 super(...workerArgs);

 // Initialize as unavailable
 this.available = false;
 this.resolve = null;
 this.reject = null;

 // Worker pool will pass a callback so that the
 // worker can signal it needs another task
 this.notifyAvailable = notifyAvailable;

 // Worker script will send a 'ready' postmessage
 // once fully initialized
 this.onmessage = () => this.setAvailable();
 }

 // Called by the worker pool to begin a new task
 dispatch({ resolve, reject, postMessageArgs }) {
 this.available = false;

 this.onmessage = ({ data }) => {
 resolve(data);
 this.setAvailable();
 };

 this.onerror = (e) => {
 reject(e);
 this.setAvailable();
 };

 this.postMessage(...postMessageArgs);
 }

 setAvailable() {
 this.available = true;
 this.resolve = null;
 this.reject = null;
 this.notifyAvailable();
 }
}

Next, the WorkerPool class definition must make use of this TaskWorker class. It must also main-
tain a queue of tasks that have yet to be assigned to a worker. Two events can signal that a new task
should be dispatched: a new task is added to the queue, or a worker finishes a task and should be sent
another. The class can be defined as follows:

class WorkerPool {
 constructor(poolSize, ...workerArgs) {

Dedicated Workers ❘ 995

 this.taskQueue = [];
 this.workers = [];

 // Initialize the worker pool
 for (let i = 0; i < poolSize; ++i) {
 this.workers.push(
 new TaskWorker(() => this.dispatchIfAvailable(), ...workerArgs));
 }
 }

 // Pushes a task onto the queue
 enqueue(...postMessageArgs) {
 return new Promise((resolve, reject) => {
 this.taskQueue.push({ resolve, reject, postMessageArgs });

 this.dispatchIfAvailable();
 });
 }

 // Sends a task to the next available worker if there is one
 dispatchIfAvailable() {
 if (!this.taskQueue.length) {
 return;
 }
 for (const worker of this.workers) {
 if (worker.available) {
 let a = this.taskQueue.shift();
 worker.dispatch(a);
 break;
 }
 }
 }

 // Kills all the workers
 close() {
 for (const worker of this.workers) {
 worker.terminate();
 }
 }
}

With these two classes defined, it is now trivial to dispatch tasks to the worker pool and have them
be executed as workers become available. In this example, suppose you wanted to sum 10 million
floating point numbers. To save on transfer costs, this will utilize a SharedArrayBuffer. The worker
definition might appear as follows:

self.onmessage = ({data}) => {
 let sum = 0;
 let view = new Float32Array(data.arrayBuffer)

 // Perform sum
 for (let i = data.startIdx; i < data.endIdx; ++i) {
 // No need for Atomics since only performing reads
 sum += view[i];
 }

996 ❘ CHAPTER 27 Workers

 // Send the result to the worker
 self.postMessage(sum);
};

// Send messagemessate to TaskWorker to signal worker is
// ready to receive tasks.
self.postMessage('ready');

With all this in place, the code that utilizes the worker pools might appear as follows:

Class TaskWorker {
 ...
]

Class WorkerPool {
 ...
}

const totalFloats = 1E8;
const numTasks = 20;
const floatsPerTask = totalFloats / numTasks;
const numWorkers = 4;

// Create pool
const pool = new WorkerPool(numWorkers, './worker.js');

// Fill array of floats
let arrayBuffer = new SharedArrayBuffer(4 * totalFloats);
let view = new Float32Array(arrayBuffer);
for (let i = 0; i < totalFloats; ++i) {
 view[i] = Math.random();
}

let partialSumPromises = [];
for (let i = 0; i < totalFloats; i += floatsPerTask) {
 partialSumPromises.push(
 pool.enqueue({
 startIdx: i,
 endIdx: i + floatsPerTask,
 arrayBuffer: arrayBuffer
 })
);
}

// Wait for all promises to complete, then sum
Promise.all(partialSumPromises)
 .then((partialSums) => partialSums.reduce((x, y) => x + y))
 .then(console.log);

// (In this example, sum should be roughly 1E8/2)
// 49997075.47203197

Shared Workers ❘ 997

NOTE Blindly introducing parallelization is not a one-size-fits-all upgrade.
Performance tuning for worker pools will vary by what the task computation
involves and what the system hardware is.

SHARED WORKERS

A shared web worker or shared worker behaves like a dedicated worker but is accessible across
multiple trusted execution contexts. For example, two different tabs on the same origin will be able to
access a single web worker. SharedWorker and Worker feature slightly different messaging interfaces,
both externally and internally.

A shared worker is valuable in situations where the developer wishes to reduce computational
overhead by allowing multiple execution contexts to share a worker. An example of this could be a
single shared worker managing a websocket to send and receive messages for multiple same-origin
pages. Shared workers are also useful when same-origin contexts wish to communicate via the
shared worker.

Shared Worker Basics
Behaviorally speaking, shared workers can be considered an extension of dedicated workers. Worker
creation, worker options, security restrictions, and importScripts() all behave in the same way. As
is the case with a dedicated worker, the shared worker also runs inside a separate execution context
and can only communicate asynchronously with other contexts.

Creating a Shared Worker
As with dedicated workers, the most common way of creating a shared worker is through a loaded
JavaScript file. The file path is provided to the SharedWorker constructor, which in turn asynchro-
nously loads the script in the background and instantiates the worker.

The following simple example creates an empty shared worker from an absolute path:

EMPTYSHAREDWORKER.JS

// empty JS worker file

MAIN.JS

console.log(location.href); // "https://example.com/"
const sharedWorker = new SharedWorker(
 location.href + 'emptySharedWorker.js');
console.log(sharedWorker); // SharedWorker {}

998 ❘ CHAPTER 27 Workers

The previous example could be altered to use a relative path; however, this requires that main.js is
executing on the same path that emptySharedWorker.js can be loaded from:

const worker = new Worker('./emptyWorker.js');
console.log(worker); // Worker {}

Shared workers can also be created from an inline script, but there is little point in doing so: each
blob created from an inline script string is assigned its own unique in-browser URL, and therefore
shared workers created from inline scripts will always be unique. The reasons for this are covered in
the next section.

SharedWorker Identity and Single Occupancy
An important difference between a shared worker and a dedicated worker is that, whereas the
Worker() constructor always creates a new worker instance, the SharedWorker() constructor will
only create a new worker instance if one with the same identity does not yet exist. If a shared worker
matching the identity does exist, a new connection will be formed with the existing shared worker.

Shared worker identity is derived from the resolved script URL, the worker name, and the document
origin. For example, the following script would instantiate a single shared worker and add two subse-
quent connections:

// Instantiates single shared worker
// Constructors called all on same origin
// All scripts resolve to same URL
// All workers have same name
new SharedWorker('./sharedWorker.js');
new SharedWorker('./sharedWorker.js');
new SharedWorker('./sharedWorker.js');

Similarly, because all three of the following script strings resolve to the same URL, only a single
shared worker is created:

// Instantiates single shared worker
// Constructors called all on same origin
// All scripts resolve to same URL
// All workers have same name
new SharedWorker('./sharedWorker.js');
new SharedWorker('sharedWorker.js');
new SharedWorker('https://www.example.com/sharedWorker.js');

Because the optional worker name is part of the shared worker identity, using different worker names
will coerce the browser to create multiple shared workers—one with name 'foo' and one with name
'bar'—even though they have the same origin and script URL:

// Instantiates two shared workers
// Constructors called all on same origin
// All scripts resolve to same URL
// One shared worker has name 'foo', one has name 'bar'
new SharedWorker('./sharedWorker.js', {name: 'foo'});
new SharedWorker('./sharedWorker.js', {name: 'foo'});
new SharedWorker('./sharedWorker.js', {name: 'bar'});

Shared Workers ❘ 999

As the name implies, shared workers are shared across tabs, windows, iframes, or other workers run-
ning on the same origin. Therefore, the following script run on multiple tabs will only create a worker
the first time it is executed, and each successive run will connect to that same worker:

// Instantiates single shared worker
// Constructors called all on same origin
// All scripts resolve to same URL
// All workers have same name
new SharedWorker('./sharedWorker.js');

The script aspect of the shared worker identity is restricted to the URL only, so the following will cre-
ate two shared workers even though the same script is loaded:

// Instantiates two shared workers
// Constructors called all on same origin
// '?' token differentiates URLs
// All workers have same name
new SharedWorker('./sharedWorker.js');
new SharedWorker('./sharedWorker.js?');

If this script was run in two different tabs, there would still only be two shared workers created
in total. Each constructor would check for a matching shared worker and merely connect to it if
it exists.

Using the SharedWorker Object
The SharedWorker object returned from the SharedWorker() constructor is used as the single point
of communication with the newly created dedicated worker. It can be used to transmit information
between the worker and the parent context via a MessagePort, as well as catch error events emitted
from the dedicated worker.

The SharedWorker object supports the following properties:

➤➤ onerror—Can be assigned an event handler that will be called whenever an ErrorEvent of
type error bubbles from the worker.

➤➤ This event occurs when an error is thrown inside the worker.

➤➤ This event can also be handled using sharedWorker.addEventListener('error',
handler).

➤➤ port—The dedicated MessagePort for communication with the shared worker.

The SharedWorkerGlobalScope
Inside the shared worker, the global scope is an instance of SharedWorkerGlobalScope. This inherits
from WorkerGlobalScope and therefore includes all its properties and methods. As with dedicated
workers, a shared worker is able to access this global scope via self.

SharedWorkerGlobalScope extends the WorkerGlobalScope with the following properties
and methods:

➤➤ name—An optional string identifier, which can be provided to the SharedWorker
constructor.

➤➤ importScripts()—Used to import an arbitrary number of scripts into the worker.

1000 ❘ CHAPTER 27 Workers

➤➤ close()—The counterpart to worker.terminate(). It is used to immediately terminate the
worker. No opportunity for cleanup is afforded to the worker; the script is abruptly ended.

➤➤ onconnect—Should be set as the handler for when a new connection is made to the shared
worker. connect events include a ports array of MessagePort instances, which can be used
to send messages back up to the parent context.

➤➤ The connect event occurs when a connection is made to the shared worker either
via worker.port.onmessage or worker.port.start().

➤➤ This event can also be handled using sharedWorker.addEventListener('connect',
handler).

NOTE Depending on the browser implementation, logging to console inside
the SharedWorker may not print in the default browser console view.

Understanding the Shared Worker Lifecycle
A shared worker’s lifecycle has the same stages and features of a dedicated worker. The difference is
that, while a dedicated worker is inextricably bound to a single page, a shared worker will persist as
long as a context remains connected to it.

Consider the following script, which creates a dedicated worker each time it is executed:

new Worker('./worker.js');

The following table details what happens when three tabs that spawn workers are opened and closed
in sequence.

EVENT RESULT TOTAL WORKERS AFTER EVENT

Tab 1 executes main.js Dedicated worker 1 spawned 1

Tab 2 executes main.js Dedicated worker 2 spawned 2

Tab 3 executes main.js Dedicated worker 3 spawned 3

Tab 1 closed Dedicated worker 1 terminated 2

Tab 2 closed Dedicated worker 2 terminated 1

Tab 3 closed Dedicated worker 3 terminated 0

Shared Workers ❘ 1001

As shown in the table, parity exists between the number of times the script is executed, the number
of open tabs, and the number of running workers. Next, consider the following trivial script, which
creates or connects to a shared worker each time it is executed:

new SharedWorker('./sharedWorker.js');

The following table details what happens when three tabs are opened and closed in sequence.

EVENT RESULT TOTAL WORKERS AFTER EVENT

Tab 1 executes main.js Shared worker 1 spawned 1

Tab 2 executes main.js Connects to shared worker 1 1

Tab 3 executes main.js Connects to shared worker 1 1

Tab 1 closed Disconnects from shared worker 1 1

Tab 2 closed Disconnects from shared worker 1 1

Tab 3 closed Disconnects from shared worker
1. No connections remain, so
worker 1 is terminated.

0

As shown in this table, subsequently invoking new SharedWorker() in tab 2 and 3 will connect to
the existing worker. As connections are added and removed from the worker, the total number of con-
nections is tracked. When the number of connections goes to zero, the worker is terminated.

Importantly, there is no way to programmatically terminate a shared worker. You will notice that the
terminate() method is absent from the SharedWorker object. Furthermore, calling close() on a
shared worker port (discussed later in the chapter) will not trigger the termination of the worker, even
if there is only a single port connected to the worker.

A SharedWorker "connection" is uncorrelated with the connected state of an associated Message
Port or MessageChannel. As soon as a connection to a shared worker is established, the browser
is responsible for managing that connection. The established connection will persist for the lifetime
of the page, and only when the page is torn down and there are no further connections to a shared
worker will the browser elect to terminate the worker.

Connecting to a Shared Worker
A connect event is fired inside a shared worker each time the SharedWorker constructor is called,
whether or not a worker was created. This is demonstrated in the following example, where the con-
structor is called inside a loop:

SHAREDWORKER.JS

let i = 0;
self.onconnect = () => console.log(`connected ${++i} times`);

1002 ❘ CHAPTER 27 Workers

MAIN.JS

for (let i = 0; i < 5; ++i) {
 new SharedWorker('./sharedWorker.js');
}

// connected 1 times
// connected 2 times
// connected 3 times
// connected 4 times
// connected 5 times

Upon a connect event, the SharedWorker constructor implicitly creates a MessageChannel and
passes ownership of a MessagePort unique to that instance of SharedWorker. This MessagePort
is available inside the connect event object as the ports array. Because a connect event will only
ever represent a single connection, you can safely assume that the ports array will have a length of
exactly 1.

The following demonstrates accessing the event’s ports array. Here, a Set is used to ensure that only
unique object instances are tracked:

SHAREDWORKER.JS

const connectedPorts = new Set();

self.onconnect = ({ports}) => {
 connectedPorts.add(ports[0]);

 console.log(`${connectedPorts.size} unique connected ports`);
};

MAIN.JS

for (let i = 0; i < 5; ++i) {
 new SharedWorker('./sharedWorker.js');
}

// 1 unique connected ports
// 2 unique connected ports
// 3 unique connected ports
// 4 unique connected ports
// 5 unique connected ports

Importantly, shared workers behave asymmetrically in terms of setup and teardown. Each new
SharedWorker connection triggers an event, but there is no corresponding event for when a Shared
Worker instance disconnects (such as when a page is closed).

In the previous example, as pages connect and disconnect to the same shared worker, the connected
Ports collection will become polluted with dead ports with no way to identify them. One solution to
this problem is to send an explicit teardown message right as the page is about to be destroyed at the
beforeunload event, and to allow the shared worker to clean up.

Service Workers ❘ 1003

SERVICE WORKERS

A service worker is a type of web worker that behaves like a proxy server inside the browser. Service
workers allow you to intercept outgoing requests and cache the response. This allows a web page
to work without network connectivity, as some or all of the page can potentially be served from the
service worker cache. A service worker can also make use of the Notifications API, the Push API, the
Background Sync API, and the Channel Messaging API.

Like shared workers, multiple pages on a single domain will all interact with a single service worker
instance. However, to enable features such as the Push API, service workers can also survive the asso-
ciated tab or browser being closed and wait for an incoming push event.

Ultimately, most developers will find that service workers are most useful for two primary tasks: act-
ing as a caching layer for network requests, and enabling push notifications. In this sense, the service
worker is a tool designed to enable web pages to behave like native applications.

NOTE The service worker is an incredibly broad topic that could nearly fill an
entire book of its own. To extend your understanding beyond this chapter, con-
sider taking the Udacity course “Offline Web Applications” (https://www.udac
ity.com/course/offlinewebapplicationsud899). Furthermore, Mozilla
maintains a service worker cookbook site (https://serviceworke.rs/), which is
an excellent reference for common service worker patterns.

NOTE The service worker lifecycle is heavily dependent on the number of open
tabs on the same origin (referred to as "clients"), whether the page has under-
gone a navigation event, and whether the service worker script has changed
(among many other factors). Some examples in the “Service Workers” section
may not behave as expected if you do not have a good understanding of the ser-
vice worker lifecycle. The section “Understanding the Service Worker Lifecycle”
sheds light on what is happening under the hood.

Furthermore, be wary of using the browser’s hard refresh feature (Ctrl+Shift+R)
when dealing with service workers. A hard refresh will force the browser to
ignore all network caches, and a service worker is considered by most major
browsers to be a network cache.

Service Worker Basics
As a class of web worker, a service worker exhibits many of the same rhythms as a dedicated or
shared worker. It exists in a totally separate execution context and can only be interacted with via
asynchronous messaging. However, there are a number of fundamental differences between service
and dedicated/shared.

1004 ❘ CHAPTER 27 Workers

The ServiceWorkerContainer
Service workers are different from dedicated and shared workers in that they have no global con-
structor. Instead, a service worker is managed through the ServiceWorkerContainer, available via
navigator.serviceWorker. This object is the top-level interface, which allows you to direct the
browser to create, update, destroy, or interact with a service worker.

console.log(navigator.serviceWorker);
// ServiceWorkerContainer { ... }

Creating a Service Worker
Service workers are similar to shared workers in that a new one will be spawned if it does not yet
exist; otherwise a connection is obtained to an existing one. Instead of creation through a global con-
structor, the ServiceWorkerContainer exposes a register() method, which is passed a script URL
in the same fashion as the Worker or SharedWorker constructors:

EMPTYSERVICEWORKER.JS

// empty service worker script

MAIN.JS

navigator.serviceWorker.register('./emptyServiceWorker.js');

The register() method returns a promise, which resolves to a ServiceWorkerRegistration
object or rejects if registration fails.

EMPTYSERVICEWORKER.JS

// empty service worker script

MAIN.JS

// Successfully registers a service worker, resolves
navigator.serviceWorker.register('./emptyServiceWorker.js')
 .then(console.log, console.error);

// ServiceWorkerRegistration { ... }

// Attempts to register service worker from nonexistent file, rejects
navigator.serviceWorker.register('./doesNotExist.js')
 .then(console.log, console.error);

// TypeError: Failed to register a ServiceWorker:
// A bad HTTP response code (404) was received when fetching the script.

The nature of service workers allows you some flexibility with respect to choosing when to begin
the registration. Once a service worker is activated after the initial register(), subsequent calls to
register() on the same page and with the same URL are effectively a no-op. Furthermore, even
though service workers are not globally supported by browsers, a service worker should be effectively
invisible to the page because its proxy-like behavior means actions that would otherwise be handled
will merely be dispatched to the network as normal.

Service Workers ❘ 1005

Because of the aforementioned properties, an extremely common pattern for service worker reg-
istration is to gate it behind feature detection and the page’s load event. This frequently appears
as follows:

if ('serviceWorker' in navigator) {
 window.addEventListener('load', () => {
 navigator.serviceWorker.register('./serviceWorker.js');
 });
}

Without the load event gating, the service worker’s registration will overlap with loading of page
resources, which may slow the overall initial page render. Unless the service worker is responsible for
managing cache behavior, which must occur as early as possible in the page setup process (such as
when using clients.claim(), discussed later in the chapter), waiting for the load event is usually a
sensible choice that still allows the page to enjoy all the benefits of using service workers.

Using the ServiceWorkerContainer Object
The ServiceWorkerContainer interface is the top-level wrapper for the browser’s service worker
ecosystem. It provides facilities for managing service worker state and lifecycle.

The ServiceWorkerContainer is always accessible in the client context:

console.log(navigator.serviceWorker);

// ServiceWorkerContainer { ... }

A ServiceWorkerContainer supports the following event handlers:

➤➤ oncontrollerchange—Can be assigned an event handler that will be called whenever a
controllerchange event is emitted from the ServiceWorkerContainer.

➤➤ This event occurs when a new activated ServiceWorkerRegistration is acquired.

➤➤ This event can also be handled using navigator.serviceWorker.
addEventListener ('controllerchange', handler).

➤➤ onerror—Can be assigned an event handler that will be called whenever an ErrorEvent of
type error bubbles from any associated service worker.

➤➤ This event occurs when an error is thrown inside any associated service worker.

➤➤ This event can also be handled using navigator.serviceWorker.
addEventListener('error', handler).

➤➤ onmessage—Can be assigned an event handler that will be called whenever a Messa
geEvent of type message is sent from the service worker.

➤➤ This event occurs when the service worker script sends a message event back to the
parent context.

➤➤ This event can also be handled using navigator.serviceWorker.
addEventListener('message', handler).

1006 ❘ CHAPTER 27 Workers

A ServiceWorkerContainer supports the following properties:

➤➤ ready—Returns a promise, which might resolve with an activated ServiceWorkerRegis
tration object. This promise will never reject.

➤➤ controller—Returns the activated ServiceWorker object associated with the current
page, or null if there is no active service worker.

A ServiceWorkerContainer supports the following methods:

➤➤ register()—Creates or updates a ServiceWorkerRegistration using the provided url
and options object.

➤➤ getRegistration()—Returns a promise, which will resolve with a ServiceWorkerRegi
stration object that matches the provided scope, or resolve with undefined if there is no
matching service worker.

➤➤ getRegistration()—Returns a promise, which will resolve with an array of all Service
WorkerRegistration objects that are associated with the ServiceWorkerContainer, or an
empty array if there are no associated service workers.

➤➤ startMessage()—Starts the transmission of message dispatches via Client.
postMessage().

Using the ServiceWorkerRegistration Object
The ServiceWorkerRegistration object represents a successful registration of a service worker. The
object is available inside the resolved promise handler returned from register(). This object allows
you to determine the lifecycle status of the associated service worker via several properties.

The registration object is provided inside a promise after navigator.serviceWorker.register() is
called. Multiple calls on the same page with the same URL will return the same registration object.

navigator.serviceWorker.register('./serviceWorker.js')
.then((registrationA) => {
 console.log(registrationA);

 navigator.serviceWorker.register('./serviceWorker2.js')
 .then((registrationB) => {
 console.log(registrationA === registrationB);
 });
});

A ServiceWorkerRegistration supports the following event handler:

➤➤ onupdatefound can be assigned an event handler, which will be called whenever an event of
type updatefound is fired from the service worker.

➤➤ This event occurs when a new version of this service worker begins installation,
signified by ServiceWorkerRegistration.installing acquiring a new ser-
vice worker.

➤➤ This event can also be handled using serv serviceWorkerRegistration.addEvent
Listener('updatefound', handler).

Service Workers ❘ 1007

A ServiceWorkerRegistration supports the following general properties:

➤➤ scope—Returns the full URL path of the service worker’s scope. This value is derived from
the path from which the service worker’s script was retrieved and/or the scope provided
inside register().

➤➤ navigationPreload—Returns the NavigationPreloadManager instance associated with
this registration object.

➤➤ pushManager—Returns the PushManager instance associated with this registration object.

A ServiceWorkerRegistration also supports the following properties, which can be used to inspect
service workers at various stages of their lifecycles:

➤➤ installing—Returns the service worker with a state of installing if there is currently
one, else null.

➤➤ waiting—Returns the service worker with a state of waiting if there is currently one,
else null.

➤➤ active—Returns the service worker with a state of activating or active if there is cur-
rently one, else null.

Note that these properties are a one-time snapshot of the state of a service worker. These are suitable
for most use cases, as an active service worker will not change state over the lifetime of a page unless
coerced to do so with something like ServiceWorkerGlobalScope.skipWaiting().

A ServiceWorkerRegistration supports the following methods:

➤➤ getNotifications()—Returns a promise, which resolves with an array of Notifica
tion objects.

➤➤ showNotifications()—Displays a notification configurable with a title and options
arguments.

➤➤ update()—Re-requests the service worker script directly from the server and initiates fresh
installation if the new script differs.

➤➤ unregister()—Will attempt to un-register a service worker registration. This allows ser-
vice worker execution to complete before performing the unregistration.

Using the ServiceWorker Object
The ServiceWorker object can be obtained in one of two ways: via the controller property on the
ServiceWorkerController object, and the active property on the ServiceWorkerRegistration
object. This object inherits from the Worker prototype, and therefore offers all its properties and
methods, but notably absent is the terminate() method.

A ServiceWorker supports the following event handler:

➤➤ onstatechange can be assigned an event handler that will be called whenever a stat
echange event is emitted from the ServiceWorker.

1008 ❘ CHAPTER 27 Workers

➤➤ This event occurs when ServiceWorker.state changes.

➤➤ This event can also be handled using serviceWorker.addEventListener
('statechange', handler).

A ServiceWorker supports the following properties:

➤➤ scriptURL—The resolved URL used to register the service worker. For example, if the
service worker was created with the relative path './serviceWorker.js', then if it were
registered on https://www.example.com the scriptURL property would return https://
www.example.com/serviceWorker.js.

➤➤ state—Returns a string identifying the state of the service worker. The possible states are
as follows:

➤➤ installing

➤➤ installed

➤➤ activating

➤➤ activated

➤➤ redundant

Service Worker Security Restrictions
As a class of web worker, service workers are subject to the normal restrictions with respect to origin
matching of the loaded script. (See the section “Worker Security Restrictions” earlier in the chap-
ter for details on this.) Additionally, because service workers are granted nearly unlimited power
to modify and redirect network requests and loaded static resources, the service worker API is only
available in secure https contexts; in http contexts, navigator.serviceWorker will be undefined.
To allow for ease of development, browsers make an exemption to the secure context rule for pages
loaded locally, either via localhost or 127.0.0.1.

NOTE A handy tool for assessing if the current context is secure is window
.isSecureContext.

The ServiceWorkerGlobalScope
Inside the service worker, the global scope is an instance of ServiceWorkerGlobalScope. This inher-
its from WorkerGlobalScope and therefore includes all its properties and methods. A service worker
is able to access this global scope via self.

ServiceWorkerGlobalScope extends the WorkerGlobalScope with the following properties
and methods:

➤➤ caches—Returns the service worker’s CacheStorage object.

➤➤ clients—Returns the service worker’s Clients interface. Used to access underlying
Client objects.

Service Workers ❘ 1009

➤➤ registration—Returns the service worker’s ServiceWorkerRegistration object.

➤➤ skipWaiting()—Forces the service worker into an active state. This is used in conjunction
with Clients.claim().

➤➤ fetch()—Performs a normal fetch from inside the service worker. This is used when the
service worker determines that an actual outgoing network request should be made (instead
of returning a cached value).

Whereas dedicated or shared workers have only a message event as an input, service workers are able
to consume a large number of events, which are triggered by actions on the page, notification actions,
or push events.

NOTE Depending on the browser implementation, logging to console inside
the SharedWorker may not print in the default browser console view.

A service worker’s global scope can listen for the following events, broken down here by category:

Service worker state

➤➤ install is fired when the service worker enters the installing state (visible in the client via
ServiceWorkerRegistration.installing). You can also set a handler for this event on
self.oninstall.

➤➤ This is the first event received by a service worker and is fired as soon as worker exe-
cution begins.

➤➤ Called only once per service worker.

➤➤ activate is fired when the service worker enters the activating or activated state (visible
in the client via ServiceWorkerRegistration.active). You can also set a handler for this
event on self.onactivate.

➤➤ This event is fired when the service worker is ready to handle functional events and
control clients.

➤➤ This event does not mean that the service worker is controlling a client, only that it
is prepared to do so.

Fetch API

➤➤ fetch is fired when the service worker intercepts a fetch() called in the main page. The ser-
vice worker’s fetch event handler has access to the FetchEvent and can adjust the outcome
as it sees fit. You can also set a handler for this event on self.onfetch.

Message API

➤➤ message is fired when the service worker receives data via postMesssage(). You can also set
a handler for this event on self.onmessage.

1010 ❘ CHAPTER 27 Workers

➤➤ Notification API.

➤➤ notificationclick is fired when the system reports to the browser that a notification
spawned by ServiceWorkerRegistration.showNotification() was clicked. You can also
set a handler for this event on self.onnotificationclick.

➤➤ notificationclose is fired when the system reports to the browser that a notification
spawned by ServiceWorkerRegistration.showNotification() was closed or dismissed.
You can also set a handler for this event on self.onnotificationclose.

Push API

➤➤ push is fired when the service worker receives a push message. You can also set a handler
for this event on self.onpush.

➤➤ pushsubscriptionchange is fired when there is a change in push subscription state that
occurred outside the control of the application (not explicitly in JavaScript). You can also set
a handler for this event on self.onpushsubscriptionchange.

NOTE Some browsers also support a sync event, which is part of the
Background Sync API. This API is not standardized and only currently sup-
ported on Chrome and Opera. Therefore, it is not included in this book.

Service Worker Scope Limitations
Service workers will only intercept requests from clients that are inside the service worker’s scope.
The scope is defined relative to the path from which the service worker’s script was served. If not
specified inside register(), the scope becomes the path to the service worker script.

(All the service worker registrations in these examples use absolute URLs for the script to avoid path
confusion.) This first example demonstrates a default root scope for a worker script served from the
root path:

navigator.serviceWorker.register('/serviceWorker.js')
.then((serviceWorkerRegistration) => {
 console.log(serviceWorkerRegistration.scope);
 // https://example.com/
});

// All of the following would be intercepted:
// fetch('/foo.js');
// fetch('/foo/fooScript.js');
// fetch('/baz/bazScript.js');

The following example demonstrates a same-directory scope for a worker script served from the
root path:

navigator.serviceWorker.register('/serviceWorker.js', {scope: './'})
.then((serviceWorkerRegistration) => {
 console.log(serviceWorkerRegistration.scope);

Service Workers ❘ 1011

 // https://example.com/
});

// All of the following would be intercepted:
// fetch('/foo.js');
// fetch('/foo/fooScript.js');
// fetch('/baz/bazScript.js');

The following example demonstrates a restricted scope for a worker script served from the root path:

navigator.serviceWorker.register('/serviceWorker.js', {scope: './foo'})
.then((serviceWorkerRegistration) => {
 console.log(serviceWorkerRegistration.scope);
 // https://example.com/foo/
});

// All of the following would be intercepted:
// fetch('/foo/fooScript.js');

// All of the following would not be intercepted:
// fetch('/foo.js');
// fetch('/baz/bazScript.js');

The following example demonstrates a same-directory scope for a worker script served from a
nested path:

navigator.serviceWorker.register('/foo/serviceWorker.js')
.then((serviceWorkerRegistration) => {
 console.log(serviceWorkerRegistration.scope);
 // https://example.com/foo/
});

// All of the following would be intercepted:
// fetch('/foo/fooScript.js');

// All of the following would not be intercepted:
// fetch('/foo.js');
// fetch('/baz/bazScript.js');

The service worker scope effectively follows a directory permissions model in that it is only possible
to reduce the scope of the service worker relative to where the file was served from. Attempting to
expand the scope as follows throws an error:

navigator.serviceWorker.register('/foo/serviceWorker.js', {scope: '/'});

// Error: The path of the provided scope 'https://example.com/'
// is not under the max scope allowed 'https://example.com/foo/'

Typically, service worker scope will be defined as an absolute path with a trailing slash, as follows:

navigator.serviceWorker.register('/serviceWorker.js', {scope: '/foo/'})

This style of scope path definition accomplishes two tasks: it decouples the relative path of the script
file from the relative scope path, and it prevents the path itself from being included in the scope. For
example, in the preceding code snippet, it is probably undesirable for the /foo path to be included in
the service worker scope; appending a trailing / will explicitly exclude the /foo path. Of course, this
requires that the absolute scope path does not expand outside the service worker path.

1012 ❘ CHAPTER 27 Workers

If you wish to expand the scope of the service worker, there are two primary ways of doing so:

➤➤ Serve the service worker script from a path that encompasses the desired scope.

➤➤ Add a ServiceWorkerAllowed header to the service worker script response with its value
set to the desired scope. This scope value should match the scope value inside register().

The Service Worker Cache
Before service workers, web pages lacked a robust mechanism for caching network requests. Brows-
ers have always made use of an HTTP cache, but this has no programmatic interface available inside
JavaScript, and its behavior is governed outside the JavaScript runtime. It was possible to develop an
ad-hoc caching mechanism, which cached the response string or blob, but such strategies were messy
and inefficient.

JavaScript cache implementations have been tried before. The MDN docs describe it marvelously:

The previous attempt—AppCache—seemed to be a good idea because it allowed
you to specify assets to cache really easily. However, it made many assumptions
about what you were trying to do and then broke horribly when your app didn’t
follow those assumptions exactly.

One of the major features of service workers is a true network request caching mechanism that can
be programmatically managed. Unlike the HTTP cache or a CPU cache, the service worker cache is
fairly primitive:

➤➤ The service worker cache does not cache any requests automatically. All cache entries must
be explicitly added.

➤➤ The service worker cache has no concept of time-based expiration. A cache entry will
remain cached unless explicitly removed.

➤➤ Service worker cache entries must be manually updated and deleted.

➤➤ Caches must be manually versioned. Each time a service worker updates, the new service
worker is responsible for providing a fresh cache key to store new cache entries.

➤➤ The only browser-enforced eviction policy is based on storage available for the service
worker cache to use. The service worker is responsible for managing the amount of space
its cache uses. When the size of the cache exceeds browser limits, the browser will utilize a
least recently used (LRU) eviction policy to make room for new cache entries.

At its core, the service worker cache mechanism is a two-tier dictionary in which each entry in the
top-level dictionary maps to a second nested dictionary. The top-level dictionary is the CacheStor
age object, which is available on the global scope of a service worker via the caches property. Each
value in this top-level dictionary is a Cache object, which is a dictionary of Request objects mapping
to Response objects.

As with LocalStorage, Cache objects inside CacheStorage persist indefinitely and will survive past
the end of a browser session. Furthermore, Cache entries are only accessible on a per-origin basis.

Service Workers ❘ 1013

NOTE Although the CacheStorage and Cache objects are defined inside the Ser-
vice Worker specification, they can be used by the main page or other types of
web workers.

The CacheStorage Object
The CacheStorage object is a key-value store of string keys mapping to Cache objects. The
CacheStorage object features an API that resembles an asynchronous Map. The CacheStorage inter-
face is available on the global object via its caches property.

console.log(caches); // CacheStorage {}

Individual caches inside CacheStorage are retrieved by passing their string key to caches.open().
Non-string keys are converted to a string. If the cache does not yet exist, it will be created.

The Cache object is returned in a promise:

caches.open('v1').then(console.log);

// Cache {}

Similar to a Map, CacheStorage features has(), delete(), and keys() methods. These methods all
behave as promise-based analogues of their Map counterparts:

CACHESTORAGEEXAMPLE01.JS

// open a new v1 cache,
// check for the v1 cache,
// check for the nonexistent v2 cache

caches.open('v1')
.then(() => caches.has('v1'))
.then(console.log) // true
.then(() => caches.has('v2'))
.then(console.log); // false

CACHESTORAGEEXAMPLE02.JS

// open a new v1 cache,
// check for the v1 cache,
// delete the v1 cache,
// check again for the deleted v1 cache

caches.open('v1')
.then(() => caches.has('v1'))
.then(console.log) // true
.then(() => caches.delete('v1'))
.then(() => caches.has('v1'))
.then(console.log); // false

1014 ❘ CHAPTER 27 Workers

CACHESTORAGEEXAMPLE03.JS

// open a v1, v3, and v2 cache
// check keys of current caches
// NOTE: cache keys are printed in creation order

caches.open('v1')
.then(() => caches.open('v3'))
.then(() => caches.open('v2'))
.then(() => caches.keys())
.then(console.log); // ["v1", "v3", "v2"]

The CacheStorage interface also features a match() method that can be used to check a Request
object against all Cache objects in CacheStorage. The Cache objects are checked in CacheStorage.
keys() order, and the first match is the response returned:

CACHESTORAGEEXAMPLE04.JS

// Create one request key and two response values
const request = new Request('');
const response1 = new Response('v1');
const response2 = new Response('v2');

// Use same key in both caches. v1 is found first since it has
// caches.keys() order priority
caches.open('v1')
.then((v1cache) => v1cache.put(request, response1))
.then(() => caches.open('v2'))
.then((v2cache) => v2cache.put(request, response2))
.then(() => caches.match(request))
.then((response) => response.text())
.then(console.log); // v1

CacheStorage.match() can be configured using an options object. This object is detailed in the
following section, “The Cache Object.”

The Cache Object
A CacheStorage maps strings to Cache objects. Cache objects behave similarly to CacheStorage in
that they, too, resemble an asynchronous Map. Cache keys can either be a URL string or a Request
object; these keys will map to Response object values.

The service worker cache is intended to only cache GET http requests. This should make sense: this
HTTP method implies that the response will not change over time. On the other hand, request meth-
ods such as POST, PUT, and DELETE are, by default, disallowed by the Cache. They imply a dynamic
exchange with the server and therefore are unsuitable for caching by the client.

To populate a Cache, you have three methods at your disposal:

➤➤ put(request, response)—Used when you already have both the key (a Request object or
URL string) and value (Response object) pair and wish to add the cache entry. This method
returns a promise, which resolves when the cache entry is successfully added.

Service Workers ❘ 1015

➤➤ add(request)—Used when you have only a Request object or URL. add() will dispatch
a fetch() to the network and cache the response. This method returns a promise, which
resolves when the cache entry is successfully added.

➤➤ addAll(requests)—Used when you wish to perform an all-or-nothing bulk addition to
the cache—for example, the initial population of the cache when the service worker ini-
tializes. The method accepts an array of URLs or Request objects. addAll() performs an
add() operation for each entry in the requests array. This method returns a promise, which
resolves only when every cache entry is successfully added.

Similar to a Map, Cache features delete() and keys() methods. These methods all behave as
promise-based analogues of their Map counterparts:

const request1 = new Request('https://www.foo.com');
const response1 = new Response('fooResponse');

caches.open('v1')
.then((cache) => {
 cache.put(request1, response1)
 .then(() => cache.keys())
 .then(console.log) // [Request]
 .then(() => cache.delete(request1))
 .then(() => cache.keys())
 .then(console.log); // []
});

To check a Cache, you have two methods at your disposal:

➤➤ matchAll(request, options)—Returns a promise, which resolves to an array of matching
cache Response objects.

➤➤ This method is useful in scenarios where you wish to perform a bulk action upon similarly
organized cache entries, such as deleting all the cached values inside the /images directory.

➤➤ The request matching schema can be configured via an options object, described later in
this section.

➤➤ match(request, options)—Returns a promise, which resolves to a matching cache
Response object, or undefined if there are no cache hits.

➤➤ This is essentially equivalent to matchAll(request, options)[0].

➤➤ The request matching schema can be configured via an options object, described later in
this section.

Cache hits are determined by matching URL strings and/or Request URLs. URL strings and Request
objects are interchangeable, as the match is determined by extracting the Request object’s URL. This
interchangeability is demonstrated here:

const request1 = 'https://www.foo.com';
const request2 = new Request('https://www.bar.com');

1016 ❘ CHAPTER 27 Workers

const response1 = new Response('fooResponse');
const response2 = new Response('barResponse');

caches.open('v1').then((cache) => {
 cache.put(request1, response1)
 .then(() => cache.put(request2, response2))
 .then(() => cache.match(new Request('https://www.foo.com')))
 .then((response) => response.text())
 .then(console.log) // fooResponse
 .then(() => cache.match('https://www.bar.com'))
 .then((response) => response.text())
 .then(console.log); // barResponse
});

The Cache object makes use of the Request and Response objects’ clone() method to create dupli-
cates and store them as the key-value pair. This is demonstrated here, where the retrieved instances do
not match the original key-value pair:

const request1 = new Request('https://www.foo.com');
const response1 = new Response('fooResponse');

caches.open('v1')
.then((cache) => {
 cache.put(request1, response1)
 .then(() => cache.keys())
 .then((keys) => console.log(keys[0] === request1)) // false
 .then(() => cache.match(request1))
 .then((response) => console.log(response === response1)); // false
});

Cache.match(), Cache.matchAll(), and CacheStorage.matchAll() all support an optional
options object, which allows you to configure how the URL matching behaves by setting the follow-
ing properties:

➤➤ cacheName—Only supported by CacheStorage.matchAll(). When set to a string, it will
only match cache values inside the Cache keyed by the provided string.

➤➤ ignoreSearch—When set to true, directs the URL matcher to ignore query strings, both
in the request query and the cache key. For example, https://example.com?foo=bar and
https://example.com would match.

➤➤ ignoreMethod—When set to true, directs the URL matcher to ignore the http method
of the request query. Consider the following example where a POST request can be
matched to a GET:

const request1 = new Request('https://www.foo.com');
const response1 = new Response('fooResponse');

const postRequest1 = new Request('https://www.foo.com',
 { method: 'POST' });

caches.open('v1')
.then((cache) => {
 cache.put(request1, response1)
 .then(() => cache.match(postRequest1))

Service Workers ❘ 1017

 .then(console.log) // undefined
 .then(() => cache.match(postRequest1, { ignoreMethod: true }))
 .then(console.log); // Response {}
});

➤➤ ignoreVary—The Cache matcher respects the Vary HTTP header, which specifies which
request headers may cause the server response to differ. When ignoreVary is set to true,
this directs the URL matcher to ignore the Vary header when matching.

const request1 = new Request('https://www.foo.com');
const response1 = new Response('fooResponse',
 { headers: {'Vary': 'Accept' }});

const acceptRequest1 = new Request('https://www.foo.com',
 { headers: { 'Accept': 'text/json' } });

caches.open('v1')
.then((cache) => {
 cache.put(request1, response1)
 .then(() => cache.match(acceptRequest1))
 .then(console.log) // undefined
 .then(() => cache.match(acceptRequest1, { ignoreVary: true }))
 .then(console.log); // Response {}
});

Maximum Cache Storage
Browsers need to restrict the amount of storage any given cache is allowed to use; otherwise, unlim-
ited storage would surely be subject to abuse. This storage limit does not follow any formal specifica-
tion; it is entirely subject to the individual browser vendor’s preference.

Using the StorageEstimate API, it is possible to determine approximately how much space is available
(in bytes) and how much is currently used. This method is only available in a secure browser context:

navigator.storage.estimate()
.then(console.log);

// Your browser's output will differ:
// { quota: 2147483648, usage: 590845 }

Per the service worker specification:

These are not exact numbers; between compression, deduplication, and obfuscation
for security reasons, they will not be precise.

Service Worker Clients
A service worker tracks an association with a window, worker, or service worker with a Client
object. Service workers can access these Client objects via the Clients interface, available on the
global object via the self.clients property.

1018 ❘ CHAPTER 27 Workers

A Client object features the following properties and methods:

➤➤ id—Returns the universally unique identifier for this client, such as 7e4248ecb25e4b33
b15f4af8bb0a3ac4. This can be used to retrieve a reference to the client via Clients.get().

➤➤ type—Returns the type of the client as a string. Its value will be one of window, worker, or
sharedworker.

➤➤ url—Returns the client’s URL.

➤➤ postMessage()—Allows you to send targeted messaging to a single client.

The Clients interface allows you to access Client objects via get() and matchAll(), both of
which use a promise to return results. matchAll() can also be passed an options object that sup-
ports the following properties:

➤➤ includeUncontrolled—When set to true, returns clients that are not yet controlled by
this service worker. Defaults to false.

➤➤ type—When set to window, worker, or sharedworker, filters returned clients to only that
type. Defaults to all, which returns all types of clients.

The Clients interface also provides two methods:

➤➤ openWindow(url)—Allows you to open a new window at the specified URL, effectively
adding a new Client to this service worker. The new Client object is returned in a resolved
promise. This method is useful when a notification is clicked; the service worker can detect
the click event and open a window in response to that click.

➤➤ claim()—Will forcibly set this service worker to control all clients in its scope. This is
useful when you do not wish to wait for a page reload for the service worker to begin
managing the page.

Service Workers and Consistency
Service workers should be understood through the lens of their overall intended purpose: to enable
web pages to emulate native application behavior. Behaving like a native application demands that
service workers support versioning.

At a high level, service worker versioning ensures that there is consistency between how two web
pages on the same origin operate at any given time. This consistency guarantee takes two pri-
mary forms:

➤➤ Code consistency—Web pages are not created from a single binary like a native application,
but instead from many HTML, CSS, JavaScript, image, JSON, and really any type of file
assets that a page might load. Web pages will commonly undergo incremental upgrades—
versions—to add or modify behavior. If a web page loads 100 files in total, and the assets
loaded are a mix of versions 1 and 2, the resulting behavior is completely unpredictable
and likely incorrect. Service workers provide an enforcement mechanism to ensure that
all concurrently running pages on the same origin are always built from assets from the
same version.

Service Workers ❘ 1019

➤➤ Data consistency—Web pages are not hermetic applications. They can read and write data
on the local device via various browser APIs such as LocalStorage or IndexedDB. They can
also send and receive data to remote APIs. The format that data is read or written in may
change between versions. If one page writes data in a version 1 format, but a second page
attempts to read data in a version 2 format, the resulting behavior is completely unpredict-
able and likely incorrect. The service worker’s asset consistency mechanism also ensures
that web page I/O behaves identically for all concurrently running pages on the same origin.

To preserve consistency, the service worker lifecycle goes to great lengths to avoid reaching a state
that might compromise this consistency. For example:

➤➤ Service workers fail early. When attempting to install a service worker, any unexpected
problem will prevent the service worker from being installed. This includes failing to load
the service worker script, a syntax or runtime error in the service worker script, failing to
load a worker dependency via importScripts(), or failing to load even a single cache asset.

➤➤ Service workers aggressively update. When the browser loads the service worker script again
(either manually via register() or on a page reload), browsers will begin installation of a
new service worker version if there is even a single byte of difference between the service
worker script or any dependencies loaded via importScripts().

➤➤ Inactive service workers passively activate. When register() is invoked for the first time
on a page, the service worker is installed but will not be activated and begin to control the
page until after a navigation event. This should make sense: the current page has presum-
ably already loaded assets, so the service worker should not be activated and begin loading
inconsistent assets.

➤➤ Active service workers are sticky. As long as there is at least one client associated with
the active service worker, the browser will continue to use it for all pages of that origin.
The browser can begin installation of a new service worker instance intended to replace
the active one, but the browser will not switch to the new worker until there are 0 clients
controlling the active one (or until the service worker is forcibly updated). This service
worker eviction strategy prevents two clients from running two different service worker ver-
sions at once.

Understanding the Service Worker Lifecycle
The service worker specification defines six discrete states that a service worker might exist in:
parsed, installing, installed, activating, activated, and redundant. A full lifecycle for a service worker
will always visit these states in this order, although it may not visit every state. A service worker that
encounters an error during installation or activation will skip to the redundant state.

Each state change will fire a statechange event on the ServiceWorker object. A handler can be set
to listen for this event as follows:

navigator.serviceWorker.register('./serviceWorker.js')
.then((registration) => {
 registration.installing.onstatechange = ({ target: { state } }) => {
 console.log('state changed to', state);
 };
});

1020 ❘ CHAPTER 27 Workers

The Parsed State
A call to navigator.serviceWorker.register() will initiate the process of creating a service
worker instance. The parsed state is assigned to that freshly created service worker. This state has no
events or ServiceWorker.state value associated with it.

NOTE Note that, although parsed is a formally defined state in the Service
Worker specification, ServiceWorker.prototype.state will never return
parsed. The earliest state that property can return is installing.

The browser fetches the script file and performs some initial tasks to begin the lifecycle:

1. Ensure the service worker script is served on the same domain.

2. Ensure the service worker registration occurs inside a secure context.

3. Ensure the service worker script can be successfully parsed by the browser’s JavaScript inter-
preter without throwing any errors.

4. Capture a snapshot of the service worker script. The next time the browser downloads the
service worker script, it will diff it against this snapshot and use that to decide if it should
update the service worker or not.

If all these succeed, the promise returned from register() will resolve with a ServiceWorker
Registration object, and a newly created service worker instance proceeds to the installing state.

The Installing State
The installing state is where all service worker "setup" tasks should be performed. This includes work
that must occur prior to the service worker controlling the page.

On the client, this phase can be identified by checking to see if the ServiceWorkerRegistration.
installing property is set to a ServiceWorker instance:

navigator.serviceWorker.register('./serviceWorker.js')
.then((registration) => {
 if (registration.installing) {
 console.log('Service worker is in the installing state');
 }
});

The associated ServiceWorkerRegistration object will also fire the updatefound event any time a
service worker reaches this state:

navigator.serviceWorker.register('./serviceWorker.js')
.then((registration) => {
 registration.onupdatefound = () =>
 console.log('Service worker is in the installing state');
 };
});

Service Workers ❘ 1021

In the service worker, this phase can be identified by setting a handler for the install event:

self.oninstall = (installEvent) => {
 console.log('Service worker is in the installing state');
};

The installing state is frequently used to populate the service worker’s cache. The service worker can
be directed to remain in the installing state until a collection of assets is successfully cached. If any of
the assets fail to cache, the service worker will fail to install and will be sent to the redundant state.

The service worker can be held in the installing state by means of an ExtendableEvent. The
InstallEvent inherits from ExtendableEvent and therefore exposes an API, which allows you to
delay a state transition until a promise resolves. This is accomplished with the ExtendableEvent.
waitUntil() method. This method expects to be passed a promise that will delay transitioning to the
next state until that promise resolves. For example, the following example would delay transitioning
to the installed state by five seconds:

self.oninstall = (installEvent) => {
 installEvent.waitUntil(
 new Promise((resolve, reject) => setTimeout(resolve, 5000))
);
};

A more pragmatic use of this method would be to cache a group of assets via Cache.addAll():

const CACHE_KEY = 'v1';

self.oninstall = (installEvent) => {
 installEvent.waitUntil(
 caches.open(CACHE_KEY)
 .then((cache) => cache.addAll([
 'foo.js',
 'bar.html',
 'baz.css',
]))
);
};

If there is no error thrown or promise rejected, the service worker proceeds to the installed state.

The Installed State
The installed state, also referred to as the waiting state, indicates that the service worker has no addi-
tional setup tasks to perform and that it is prepared to assume control of clients once it is allowed
to do so. If there is no active service worker, a freshly installed service worker will skip this state and
proceed directly to the activating state since there is no reason to wait.

On the client, this phase can be identified by checking to see if the ServiceWorkerRegistration.
waiting property is set to a ServiceWorker instance:

navigator.serviceWorker.register('./serviceWorker.js')
.then((registration) => {
 if (registration.waiting) {
 console.log('Service worker is in the installing/waiting state');
 }
});

1022 ❘ CHAPTER 27 Workers

If there is already an active service worker, the installed state can be the appropriate time to trigger
logic, which will promote this new service worker to the activating state. This might take the form
of forcibly promoting this service worker via self.skipWaiting(). It also might take the form of
prompting the user to reload the application, thereby allowing the browser to organically promote
the service worker.

The Activating State
The activating state indicates that the service worker has been selected by the browser to become
the service worker that should control the page. If there is no incumbent active service worker in the
browser, this new service worker will automatically reach the activating state. If, however, there is an
incumbent active service worker, this new replacement service worker can reach the activating state in
the following ways:

➤➤ The number of clients controlled by the incumbent service worker goes to 0. This often
takes the form of all controlled browser tabs being closed. On the next navigation event, the
new service worker will reach the activating state.

➤➤ The installed service worker calls self.skipWaiting(). This takes effect immediately and
does not need to wait for a navigation event.

While in the activating state, no functional events such as fetch or push are dispatched until the ser-
vice worker reaches the activated state.

On the client, this phase can be partially identified by checking to see if the ServiceWorkerRegis
tration.active property is set to a ServiceWorker instance:

navigator.serviceWorker.register('./serviceWorker.js')
.then((registration) => {
 if (registration.active) {
 console.log('Service worker is in the activating/activated state');
 }
});

Note that the ServiceWorkerRegistration.active property indicates that the service worker is in
either the activating or activated state.

In the service worker, this phase can be identified by setting a handler for the activate event:

self.oninstall = (activateEvent) => {
 console.log('Service worker is in the activating state');
};

The activate event indicates that it is safe to clean up after the old service worker, and this event is
frequently used to purge old cache data and migrate databases. For example, the following example
purges all older cache versions:

const CACHE_KEY = 'v3';

self.oninstall = (activateEvent) => {
 caches.keys()
 .then((keys) => keys.filter((key) => key != CACHE_KEY))
 .then((oldKeys) => oldKeys.forEach((oldKey) => caches.delete(oldKey));
};

Service Workers ❘ 1023

An activate event also inherits from ExtendableEvent and therefore also supports the waitUn
til() convention for delaying a transition to the activated state—or transitioning to the redundant
state upon a rejected promise.

NOTE The active event in a service worker does not mean that this service
worker is controlling clients.

The Activated State
The activated state indicates that the service worker is in control of one or many clients. In this
state, the service worker will capture fetch() events inside its scope as well as notification and
push events.

On the client, this phase can be partially identified by checking to see if the ServiceWorkerRegis
tration.active property is set to a ServiceWorker instance:

navigator.serviceWorker.register('./serviceWorker.js')
.then((registration) => {
 if (registration.active) {
 console.log('Service worker is in the activating/activated state');
 }
});

Note that the ServiceWorkerRegistration.active property indicates that the service worker is in
either the activating or activated state.

A superior indication that a service worker is in the activated state is to check the controller
property of the ServiceWorkerRegistration. This will return the activated ServiceWorker
instance, which is controlling the page:

navigator.serviceWorker.register('./serviceWorker.js')
.then((registration) => {
 if (registration.controller) {
 console.log('Service worker is in the activated state');
 }
});

When a new service worker takes control of a client, the ServiceWorkerContainer in that client will
fire a controllerchange event:

navigator.serviceWorker.oncontrollerchange = () => {
 console.log('A new service worker is controlling this client');
};

It’s also possible to use the ServiceWorkerContainer.ready promise to detect an active service
worker. This ready promise resolves once the current page has an active worker:

navigator.serviceWorker.ready.then(() => {
 console.log('A new service worker is controlling this client');
});

1024 ❘ CHAPTER 27 Workers

The Redundant State
The redundant state is the graveyard for service workers. No events will be passed to it, and the
browser is free to destroy it and free up its resources.

Updating a Service Worker
Because the concept of versioning is baked into service workers, they are expected to periodically
change. Therefore, service workers feature a robust and intricate updating process for safely replacing
an outdated active service worker.

This update process begins with an update check, where the browser re-requests the service worker
script. A check for an update can be triggered by the following events:

➤➤ navigator.serviceWorker.register() is called with a different URL string than the cur-
rently active service worker.

➤➤ The browser navigates to a page inside the service worker’s scope.

➤➤ A functional event such as fetch or push occurs and an update check has not occurred for
at least 24 hours.

The freshly fetched service worker script is diffed against the incumbent service worker’s script. If
they are not identical, the browser initializes a new service worker with the new script. The updated
service worker will proceed through its lifecycle until it reaches the installed state. Once it reaches
the installed state, the updated service worker will wait until the browser decides it can safely obtain
control of the page (or until the user forces it to take control of the page).

Importantly, refreshing a page will not allow the updated service worker to activate and replace the
incumbent service worker. Consider a scenario where there is a single page open with an incumbent
service worker controlling it and an updated service worker waiting in the installed state. Clients
overlap during a page refresh—meaning the new page is loaded before the old page dies—and
therefore the incumbent service worker never relinquishes control because it still controls a nonzero
number of clients. Because of this, closing all controlled pages is the only way to allow the incumbent
service worker to be replaced.

Inversion of Control and Service Worker Persistence
Whereas dedicated and shared workers are designed to be stateful, service workers are designed to
be stateless. More specifically, service workers follow the Inversion of Control (IOC) pattern and are
built to be event driven.

The primary implication of this is that service workers should have no reliance whatsoever on the
global state of the worker. Nearly all code inside the service worker should be defined inside event
handlers—the notable exception being global constants such as the service worker version. The num-
ber of times a service worker script will execute is wildly variable and highly dependent on browser
state, and therefore the service worker script’s behavior should be idempotent.

It’s important to understand that the lifetime of a service worker is uncorrelated with the lifetime of
the clients it is connected to. Most browsers implement service workers as a separate process, and

Service Workers ❘ 1025

this process is independently managed by the browser. If a browser detects a service worker is idle,
it can terminate the worker and restart it again when needed. This means that, while you can rely
on a service worker to handle events once activated, you cannot rely on a service worker’s persistent
global state.

Managing Service Worker File Caching with
updateViaCache

Normally, all JavaScript assets loaded by the browser are subject to the browser’s HTTP cache as
defined by their CacheControl header. Because service worker scripts are not given preferen-
tial treatment, the browser will not receive updated service worker script updates until the cached
file expires.

To propagate service worker updates as quickly as possible, a common solution is to serve service
worker scripts with a CacheControl: maxage=0 header. With this, the browser will always fetch
the most up-to-date script file.

This instant-expiry solution works well, but solely relying on HTTP headers to dictate service worker
behavior means that only the server decides how the client should update. To allow the client agency
over its updating behavior, the updateViaCache property exists to allow for control over how the
client should treat service worker scripts. This property can be defined when registering the service
worker, and it accepts three string values:

➤➤ imports: the default value. The top-level service worker script file will never be cached,
but files imported inside the service worker via importScripts() will still be subject to the
HTTP cache and CacheControl header.

➤➤ all: No service worker scripts are given special treatment. All files are subject to the HTTP
cache and CacheControl header.

➤➤ none: Both the top-level service worker script and files imported inside the service worker
via importScripts() will never be cached.

The updateViaCache property is used as follows:

navigator.serviceWorker.register('/serviceWorker.js', {
 updateViaCache: 'none'
});

Browsers are still in the process of moving to support this option, so it is strongly recommended
that you use both updateViaCache and the CacheControl header to dictate caching behavior on
the client.

Forced Service Worker Operation
In some cases, it makes sense to coerce a service worker into the activated state as quickly as pos-
sible—even at the expense of potential asset versioning conflicts. This commonly takes the form of
caching assets at the install event, forcing the service worker to activate, and then forcing the acti-
vated service worker to control the associated clients.

1026 ❘ CHAPTER 27 Workers

A basic version of this might appear as follows:

const CACHE_KEY = 'v1';

self.oninstall = (installEvent) => {
 // Populate the cache, then force the service worker
 // into the activated state. This triggers the 'activate' event.
 installEvent.waitUntil(
 caches.open(CACHE_KEY)
 .then((cache) => cache.addAll([
 'foo.css',
 'bar.js',
]))
 .then(() => self.skipWaiting())
);
};

// Force the service worker to take control of the clients. This fires a
// controllerchange event on each client.
self.onactivate = (activateEvent) => clients.claim();

Browsers will check for a new service worker script on each navigation event, but sometimes this is
too infrequent. The ServiceWorkerRegistration object features an update() method that can
be used to instruct the browser to re-request the service worker script, compare it to the existing
one, and begin installation of an updated service worker if necessary. This might be accomplished
as follows:

navigator.serviceWorker.register('./serviceWorker.js')
.then((registration) => {
 // Check for an updated version every ~17 minutes
 setInterval(() => registration.update(), 1E6);
});

Service Worker Messaging
As with dedicated workers and shared workers, service workers are able to exchange asynchronous
messages with clients using postMessage(). One of the simplest ways of accomplishing this is to
send a message to the active worker and use the event object to send a reply. Messages sent to the
service worker can be handled on the global scope, whereas messages sent back to the client can be
handled on the ServiceWorkerContext object:

SERVICEWORKER.JS

self.onmessage = ({data, source}) => {
 console.log('service worker heard:', data);

 source.postMessage('bar');
};

MAIN.JS

navigator.serviceWorker.onmessage = ({data}) => {
 console.log('client heard:', data);
};

Service Workers ❘ 1027

navigator.serviceWorker.register('./serviceWorker.js')
.then((registration) => {
 if (registration.active) {
 registration.active.postMessage('foo');
 }
});

// service worker heard: foo
// client heard: bar

This can just as easily use the serviceWorker.controller property:

SERVICEWORKER.JS

self.onmessage = ({data, source}) => {
 console.log('service worker heard:', data);

 source.postMessage('bar');
};

MAIN.JS

navigator.serviceWorker.onmessage = ({data}) => {
 console.log('client heard:', data);
};

navigator.serviceWorker.register('./serviceWorker.js')
.then(() => {
 if (navigator.serviceWorker.controller) {
 navigator.serviceWorker.controller.postMessage('foo');
 }
});

// service worker heard: foo
// client heard: bar

The preceding examples will work every time the page reloads, as the service worker will reply to
the new message sent from the client script after each reload. It will also work every time this page is
opened in a new tab.

If, instead, the service worker should initiate the message handshake, a reference to the client can be
obtained as follows:

SERVICEWORKER.JS

self.onmessage = ({data}) => {
 console.log('service worker heard:', data);
};

self.onactivate = () => {
 self.clients.matchAll({includeUncontrolled: true})
 .then((clientMatches) => clientMatches[0].postMessage('foo'));
};

1028 ❘ CHAPTER 27 Workers

MAIN.JS

navigator.serviceWorker.onmessage = ({data, source}) => {
 console.log('client heard:', data);

 source.postMessage('bar');
};

navigator.serviceWorker.register('./serviceWorker.js')

// client heard: foo
// service worker heard: bar

The preceding example will only work once, as the active event is only fired a single time per ser-
vice worker.

Because clients and service workers can send messages back and forth, it is also possible to set up a
MessageChannel or BroadcastChannel to exchange messages.

Intercepting a fetch Event
One of the most important features of service workers is their ability to intercept network requests.
A network request inside the scope of a service worker will register as a fetch event. This intercep-
tion ability is not limited to the fetch() method; it also can intercept requests for JavaScript, CSS,
images, and HTML—including the primary HTML document itself. These requests can come from
JavaScript, or they can be requests created by tags such as <script>, <link>, or tags. Intui-
tively, this should make sense: for a service worker to emulate an offline web app, it must be able to
account for all the requested assets needed for the page to function properly.

A FetchEvent inherits from ExtendableEvent. The valuable method that allows service workers
to decide how to handle a fetch event is event.respondWith(). This method expects a promise,
which should resolve with a Response object. Of course, your service worker gets to decide where
this Response object actually comes from. It could be from the network, from the cache, or created
on the fly. The following sections cover a handful of network/cache strategies to employ inside a
service worker.

Return from Network
This strategy is a simple passthrough for a fetch event. A good use case for this might be any
requests that definitely need to reach the server, such as a POST request. This strategy can be imple-
mented as follows:

self.onfetch = (fetchEvent) => {
 fetchEvent.respondWith(fetch(fetchEvent.requeest));
};

Service Workers ❘ 1029

NOTE The preceding code is only to demonstrate how to use event.respond
With(). If event.respondWith() isn’t called, the browser will send the request
out to the network.

Return from Cache
This strategy is a simple cache check. A good use case for this might be any requests that are guaran-
teed to be in the cache—such as assets cached during the installation phase.

self.onfetch = (fetchEvent) => {
 fetchEvent.respondWith(caches.match(fetchEvent.request));
};

Return from Network with Cache Fallback
This strategy gives preference to up-to-date responses from the network but will still return values
in the cache if they exist. A good use case for this is when your application needs to show the most
up-to-date information as often as possible, but would still like to show something if the application
is offline.

self.onfetch = (fetchEvent) => {
 fetchEvent.respondWith(
 fetch(fetchEvent.request)
 .catch(() => caches.match(fetchEvent.request))
);
};

Return from Cache with Network Fallback
This strategy gives preference to responses it can show more quickly but will still fetch from the
network if a value is uncached. This is the superior fetch handling strategy for most progressive web
applications.

self.onfetch = (fetchEvent) => {
 fetchEvent.respondWith(
 caches.match(fetchEvent.request)
 .then((response) => response || fetch(fetchEvent.request))
);
};

Generic Fallback
Applications need to account for scenarios where both the cache and network fail to produce a
resource. Service workers can handle this by caching fallback resources upon install and returning
them when both cache and network fail.

self.onfetch = (fetchEvent) => {
 fetchEvent.respondWith(

1030 ❘ CHAPTER 27 Workers

 // Begin with 'Return from cache with network fallback' stragegy
 caches.match(fetchEvent.request)
 .then((response) => response || fetch(fetchEvent.request))
 .catch(() => caches.match('/fallback.html'))
);
};

The catch() clause can be extended to support many different types of fallbacks such as placeholder
images, dummy data, and so on.

NOTE The Google Developers site has a smashing article on network/caching
strategies: https://developers.google.com/web/fundamentals/instantand
offline/offlinecookbook.

Push Notifications
For a web application to properly emulate a native application, it must be able to support push noti-
fications. This means that a web page must be able to receive a push event from a server and display
a notification on the device—even when the application is not running. With conventional web pages,
this, of course is impossible, but the addition of service workers means that this behavior is now
supported.

For push notifications to work in a progressive web application, four behavioral aspects must be
supported:

➤➤ The service worker must be able to display notifications.

➤➤ The service worker must be able to handle interactions with those notifications.

➤➤ The service worker must be able to subscribe to server-sent push notifications.

➤➤ The service worker must be able to handle push messages, even when the application is not
in the foreground or open.

Displaying Notifications
Service workers have access to the Notification API via their registration object. There is good reason
for this: notifications associated with a service worker will also trigger interaction events inside that
service worker.

Showing notifications requires explicit permission from the user. Once this is granted, notifications
can be shown via ServiceWorkerRegistration.showNotification(). This can be accomplished
as follows:

navigator.serviceWorker.register('./serviceWorker.js')
.then((registration) => {
 Notification.requestPermission()
 .then((status) => {

Service Workers ❘ 1031

 if (status === 'granted') {
 registration.showNotification('foo');
 }
 });
 });

Similarly, a notification can be triggered from inside a service worker using the global registra
tion property:

self.onactivate = () => self.registration.showNotification('bar');

In these examples, once notification permissions are granted, a foo notification is shown in the
browser. This notification will be visually indistinguishable from one generated using new Notifi
cation(). Furthermore, it doesn’t require the service worker to do any work for it to appear. The
service worker comes into play when notification events are required.

Handling Notification Events
A notification created via a ServiceWorkerRegistration object will send notificationclick and
notificationclose events to the service worker. Suppose the previous example’s service worker
script was defined as follows:

self.onnotificationclick = ({notification}) => {
 console.log('notification click', notification);
};

self.onnotificationclose = ({notification}) => {
 console.log('notification close', notification);
};

In this example, both types of interactions with a notification will register inside the service worker.
The notificationevent exposes a notification property, containing the Notification object
that generated the event. These event handlers can decide what to do after an interaction.

Frequently, clicking a notification means the user wishes to be taken to a specific view. Inside the
service worker handler, this can be accomplished via clients.openWindow(), shown here:

self.onnotificationclick = ({notification}) => {
 clients.openWindow('https://foo.com');
};

Subscribing to Push Events
For push messages to be sent to a service worker, the subscription must happen via the service
worker’s PushManager. This will allow the service worker to handle push messages in a push
event handler.

The subscription can be done using ServiceWorkerRegistration.pushManager, as shown here:

navigator.serviceWorker.register('./serviceWorker.js')
.then((registration) => {
 registration.pushManager.subscribe({
 applicationServerKey: key, // derived from server's public key
 userVisibleOnly: true
 });
 });

1032 ❘ CHAPTER 27 Workers

Alternately, the service worker can subscribe itself using the global registration property:

self.onactivate = () => {
 self.registration.pushManager.subscribe({
 applicationServerKey: key, // derived from server's public key
 userVisibleOnly: true
 });
};

Handling Push Events
Once subscribed, the service worker will receive push events each time the server pushes a message.
They can be handled as follows:

self.onpush = (pushEvent) => {
 console.log('Service worker was pushed data:', pushEvent.data.text());
};

To implement a true push notification, this handler only needs to create a notification via the registra-
tion object. However, a well-behaved push notification needs to keep the service worker that pro-
duced it alive long enough for its interaction event to be handled.

To accomplish this, the push event inherits from ExtendableEvent. The promise returned from
showNotification() can be passed to waitUntil(), which will keep the service worker alive until
the notification’s promise resolves.

A simple push notification implementation might appear as follows:

MAIN.JS

navigator.serviceWorker.register('./serviceWorker.js')
.then((registration) => {
 // Request permission to show notifications
 Notification.requestPermission()
 .then((status) => {
 if (status === 'granted') {
 // Only subscribe to push messages if
 // notification permission is granted
 registration.pushManager.subscribe({
 applicationServerKey: key, // derived from server's public key
 userVisibleOnly: true
 });
 }
 });
 });

SERVICEWORKER.JS

// When a push event is received, display the data as text
// inside a notification.
self.onpush = (pushEvent) => {
 // Keep the service worker alive until notification promise resolves
 pushEvent.waitUntil(
 self.registration.showNotification(pushEvent.data.text())
);
};

Summary ❘ 1033

// When a notification is clicked, open relevant application page
self.onnotificationclick = ({notification}) => {
 clients.openWindow('https://example.com/clickednotification');
};

SUMMARY

Workers allow you to run asynchronous JavaScript that will not block the user interface. This is very
useful for complex calculations and data processing that would otherwise take up a lot of time and
interfere with the user’s ability to use the page. Workers are always given their own execution envi-
ronment, and can only be communicated with via asynchronous messaging.

Workers can be dedicated, meaning they are associated with a single page, or shared, meaning that
any page on the same origin can establish a connection with a single worker.

Service workers are designed to allow web pages to behave like native apps. Service workers are also
a type of worker, but they behave more like a network proxy than a separate browser thread. They
can behave as a highly customizable network cache, and they also can enable push notifications for
progressive web applications.

Best Practices
WHAT’S IN THIS CHAPTER?

➤➤ Writing maintainable code

➤➤ Ensuring code performance

➤➤ Deploying code to production

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/projavascript4e on the Down-
load Code tab.

The discipline of web development has grown at an extraordinary rate since 2000. What used to
be a virtual Wild West, where just about anything was acceptable, has evolved into a complete dis-
cipline with research and established best practices. As simple websites grew into more complex
web applications, and web hobbyists became paid professionals, the world of web development
was filled with information about the latest techniques and development approaches. JavaScript,
in particular, was the beneficiary of a lot of research and conjecture. Best practices for JavaScript
fall into several categories and are handled at different points in the development process.

MAINTAINABILITY

In early websites, JavaScript was used primarily for small effects or form validation. Today’s
web applications are filled with thousands of lines of JavaScript executing all types of compli-
cated processes. This evolution requires that developers take maintainability into account. As
with software engineers in more traditional disciplines, JavaScript developers are hired to create
value for their company, and they do that not just by delivering products on time but also by
developing intellectual property that continues to add value long after.

28

Professional JavaScript® for Web Developers, Fourth Edition. Matt Frisbie.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

1036 ❘ CHAPTER 28 Best Practices

Writing maintainable code is important because most developers spend a large amount of their time
maintaining other people’s code. It’s a truly rare occurrence to be able to develop new code from
scratch; it’s often the case that you must build on work that someone else has done. Making sure that
your code is maintainable ensures that other developers can perform their jobs as well as possible.

NOTE Note that the concept of maintainable code is not unique to JavaScript.
Some of these concepts apply broadly to any programming language, although
there are some JavaScript-specific concepts as well.

What Is Maintainable Code?
Maintainable code has several characteristics. In general, code is said to be maintainable when it is all
of the following:

➤➤ Understandable—Someone else can pick up the code and figure out its purpose and general
approach without a walk-through by the original developer.

➤➤ Intuitive—Things in the code just seem to make sense, no matter how complex the operation.

➤➤ Adaptable—The code is written in such a way that variation in data doesn’t require a
complete rewrite.

➤➤ Extendable—Care has been given in the code architecture to allow extension of the core
functionality in the future.

➤➤ Debuggable—When something goes wrong, the code gives you enough information to iden-
tify the issue as directly as possible.

Being able to write maintainable JavaScript code is an important skill for professionals. This is the
difference between hobbyists who hack together a site over the weekend and professional developers
who really know their craft.

Code Conventions
One of the simplest ways to start writing maintainable code is to come up with code conventions
for the JavaScript that you write. Code conventions have been developed for most programming
languages, and a quick Internet search is likely to turn up thousands of documents. Professional
organizations have long instituted code conventions for developers in an attempt to make code more
maintainable for everyone. The best-run open-source projects have strict code convention require-
ments that allow everyone in the community to easily understand how code is organized.

Code conventions are important for JavaScript because of the language’s adaptability. Unlike most
object-oriented languages, JavaScript doesn’t force developers into defining everything as objects.
The language can support any number of programming styles, from traditional object-oriented
approaches to declarative approaches to functional approaches. A quick review of several open-
source JavaScript libraries can easily yield multiple approaches to creating objects, defining methods,
and managing the environment.

Maintainability ❘ 1037

The following sections discuss the basics of how to develop code conventions. These topics are important
to address, although the way in which they are addressed may differ, depending on your individual needs.

Readability
For code to be maintainable, it must first be readable. Readability has to do with the way the code is
formatted as a text file. A large part of readability has to do with the indentation of the code. When
everyone is using the same indentation scheme, code across an entire project becomes much easier to
read. Indentation is usually done by using a number of spaces instead of by using the tab character,
which is typically displayed differently by different text editors. A good general indentation size is
four spaces, although you may decide to use less or more.

Another part of readability is comments. In most programming languages, it’s an accepted practice to
comment each method. Because of JavaScript’s ability to create functions at any point in the code, this
is often overlooked. Because of this, it is perhaps even more important to document each function in
JavaScript. Generally speaking, the places that should be commented in your code are as follows:

➤➤ Functions and methods—Each function or method should include a comment that describes
its purpose and possibly the algorithm being used to accomplish the task. It’s also important
to state assumptions that are being made, what the arguments represent, and whether or not
the function returns a value (since this is not discernible from a function definition).

➤➤ Large sections of code—Multiple lines of code that are all used to accomplish a single task
should be preceded with a comment describing the task.

➤➤ Complex algorithms—If you’re using a unique approach to solve a problem, explain how
you are doing it as a comment. This will not only help others who are looking at your code
but also help you the next time you look at it.

➤➤ Hacks—Because of browser differences, JavaScript code typically contains some hacks.
Don’t assume that someone else who is looking at the code will understand the browser
issue that such a hack is working around. If you need to do something differently because
one of the browsers can’t use the normal way, put that in a comment. It reduces the
likelihood that someone will come along, see your hack, and “fix” it, inadvertently intro-
ducing the bug that you had already worked around.

Indentation and comments create more readable code that is easier to maintain in the future.

Variable and Function Naming
The proper naming of variables and functions in code is vital to making it understandable and main-
tainable. Because many JavaScript developers began as hobbyists, there’s a tendency to use nonsensi-
cal names such as "foo" and "bar" for variables and names such as "doSomething" for functions.
A professional JavaScript developer must overcome these old habits to create maintainable code. Gen-
eral rules for naming are as follows:

➤➤ Variable names should be nouns, such as "car" or "person".

➤➤ Function names should begin with a verb, such as getName(). Functions that return Boolean
values typically begin with is, as in isEnabled().

1038 ❘ CHAPTER 28 Best Practices

➤➤ Use logical names for both variables and functions, without worrying about the length.
Length can be mitigated through postprocessing and compression (discussed later in
this chapter).

➤➤ Variables, functions, and methods should begin with a lowercase letter and camelCase, such
as getName() and isPerson. Classes like Person and RequestFactory should be capital-
ized. Constant values should be all uppercase and underscores, such as REQUEST_TIMEOUT.

➤➤ Be descriptive and sensible with names, but not too verbose. getName() intuitively will
return a name value. PersonFactory will be producing some sort of Person object or entity.

It’s imperative to avoid useless variable names that don’t indicate the type of data they contain. With
proper naming, code reads like a narrative of what is happening, making it easier to understand.

Variable Type Transparency
Because variables are loosely typed in JavaScript, it is easy to lose track of the type of data that a
variable should contain. Proper naming mitigates this to some point, but it may not be enough in all
cases. There are three ways to indicate the data type of a variable.

The first way is through initialization. When a variable is defined, it should be initialized to a value
that indicates how it will be used in the future. For example, a variable that will hold a Boolean
should be initialized to either true or false, and a variable to hold numbers should be initialized to
a number, as in the following example:

// variable type indicated by initialization
let found = false; // Boolean
let count = -1; // number
let name = ""; // string
let person = null; // object

Initialization to a particular data type is a good indication of a variable’s type. The downside of ini-
tialization is that it cannot be used with function arguments in the function declaration.

The second way to indicate a variable’s type is to use Hungarian notation. Hungarian notation pre-
pends one or more characters to the beginning of a variable to indicate the data type. This notation is
popular among scripted languages and was, for quite some time, the preferred format for JavaScript
as well. The most traditional Hungarian notation format for JavaScript prepends a single character
for the basic data types: "o" for objects, "s" for strings, "i" for integers, "f" for floats, and "b" for
Booleans. Here’s an example:

// Hungarian notation used to indicate data type
let bFound; // Boolean
let iCount; // integer
let sName; // string
let oPerson; // object

Hungarian notation for JavaScript is advantageous in that it can be used equally well for function
arguments. The downside of Hungarian notation is that it makes code somewhat less readable, inter-
rupting the intuitive, sentence-like nature of code that is accomplished without it. For this reason,
Hungarian notation has started to fall out of favor among some developers.

Maintainability ❘ 1039

The last way to indicate variable type is to use type comments. Type comments are placed right after
the variable name but before any initialization. The idea is to place a comment indicating the data
type right by the variable, as in this example:

// type comments used to indicate type
let found /*:Boolean*/ = false;
let count /*:int*/ = 10;
let name /*:String*/ = "Nicholas";
let person /*:Object*/ = null;

Type comments maintain the overall readability of code while injecting type information at the same
time. The downside of type comments is that you cannot comment out large blocks of code using
multiline comments because the type comments are also multiline comments that will interfere, as this
example demonstrates:

// The following won't work correctly
/*
let found /*:Boolean*/ = false;
let count /*:int*/ = 10;
let name /*:String*/ = "Nicholas";
let person /*:Object*/ = null;
*/

Here, the intent was to comment out all of the variables using a multiline comment. The type com-
ments interfere with this because the first instance of /* (second line) is matched with the first
instance of */ (third line), which will cause a syntax error. If you want to comment out lines of
code using type comments, it’s best to use single-line comments on each line (many editors will do
this for you).

These are the three most common ways to indicate the data type of variables. Each has advantages
and disadvantages for you to evaluate before deciding on one. The important thing is to decide which
works best for your project and use it consistently.

Loose Coupling
Whenever parts of an application depend too closely on one another, the code becomes too tightly
coupled and hard to maintain. The typical problem arises when objects refer directly to one another
in such a way that a change to one always requires a change to the other. Tightly coupled software is
difficult to maintain and invariably has to be rewritten frequently.

Because of the technologies involved, there are several ways in which web applications can become
too tightly coupled. It’s important to be aware of this and to try to maintain loosely coupled code
whenever possible.

Decouple HTML/JavaScript
One of the most common types of coupling is HTML/JavaScript coupling. On the web, HTML and
JavaScript each represent a different layer of the solution: HTML is the data, and JavaScript is the
behavior. Because they are intended to interact, there are a number of different ways to tie these
two technologies together. Unfortunately, there are some ways that too tightly couple HTML and
JavaScript.

1040 ❘ CHAPTER 28 Best Practices

JavaScript that appears inline in HTML, either using a <script> element with inline code or
using HTML attributes to assign event handlers, is too tightly coupled. Consider the following
code examples:

<!-- tightly coupled HTML/JavaScript using <script> -->
<script>
 document.write("Hello world!");
</script>

<!-- tightly coupled HTML/JavaScript using event handler attribute -->
<input type="button" value="Click Me" onclick="doSomething()"/>

Although these are both technically correct, in practice they tightly couple the HTML represent-
ing the data with the JavaScript that defines the behavior. Ideally, HTML and JavaScript should be
completely separate, with the JavaScript being included via external files and attaching behavior
using the DOM.

When HTML and JavaScript are too tightly coupled, interpreting a JavaScript error means first
determining whether the error occurred in the HTML portion of the solution or in a JavaScript file. It
also introduces new types of errors related to the availability of code. In this example, the button may
be clicked before the doSomething() function is available, causing a JavaScript error. Maintainability
is affected because any change to the button’s behavior requires touching both the HTML and the
JavaScript, when it should require only the latter.

HTML and JavaScript can also be too tightly coupled when the reverse is true: HTML is contained
within JavaScript. This usually occurs when using innerHTML to insert a chunk of HTML text into
the page, as in this example:

// tight coupling of HTML to JavaScript
function insertMessage(msg) {
 let container = document.getElementById("container");
 container.innerHTML = `<div class="msg">
 <p> class="post">${msg}</p>
 <p>Latest message above.</p>
 </div>`;
}

Generally speaking, you should avoid creating large amounts of HTML in JavaScript. This, once
again, has to do with keeping the layers separate and being able to easily identify the source of errors.
When using this example code, a problem with page layout may be related to dynamically created
HTML that is improperly formatted. However, locating the error may be difficult because you would
typically first view the source of the page to look for the offending HTML but wouldn’t find it there
because it’s dynamically generated. Changes to the data or layout would also require changes to the
JavaScript, which indicates that the two layers are too tightly coupled.

HTML rendering should be kept separate from JavaScript as much as possible. When JavaScript is
used to insert data, it should do so without inserting markup whenever possible. Markup can typi-
cally be included and hidden when the entire page is rendered such that JavaScript can be used to
display the markup later, instead of generating it. Another approach is to make an Ajax request to
retrieve additional HTML to be displayed; this approach allows the same rendering layer (PHP, JSP,
Ruby, and so on) to output the markup, instead of embedding it in JavaScript.

Maintainability ❘ 1041

Decoupling HTML and JavaScript can save time during debugging by making it easier to identify the
source of errors, and it also eases maintainability: changes to behavior occur only in JavaScript files,
whereas changes to markup occur only in rendering files.

Decouple CSS/JavaScript
Another layer of the web tier is CSS, which is primarily responsible for the display of a page. JavaScript
and CSS are closely related: they are both layers on top of HTML and as such are often used together. As
with HTML and JavaScript, however, it’s possible for CSS and JavaScript to be too tightly coupled. The
most common example of tight coupling is using JavaScript to change individual styles, as shown here:

// tight coupling of CSS to JavaScript
element.style.color = "red";
element.style.backgroundColor = "blue";

Because CSS is responsible for the display of a page, any trouble with the display should be address-
able by looking just at CSS files. However, when JavaScript is used to change individual styles, such as
color, it adds a second location that must be checked and possibly changed. The result is that Java-
Script is somewhat responsible for the display of the page and a tight coupling with CSS. If the styles
need to change in the future, both the CSS and the JavaScript files may require changes. This creates a
maintenance nightmare for developers. A cleaner separation between the layers is needed.

Modern web applications use JavaScript to change styles frequently, so although it’s not possible to
completely decouple CSS and JavaScript, the coupling can be made looser. This is done by dynami-
cally changing classes instead of individual styles, as in the following example:

// loose coupling of CSS to JavaScript
element.className = "edit";

By changing only the CSS class of an element, you allow most of the style information to remain
strictly in the CSS. JavaScript can be used to change the class, but it’s not directly affecting the style of
the element. As long as the correct class is applied, then any display issues can be tracked directly to
CSS and not to JavaScript.

Once again, the importance of keeping a good separation of layers is paramount. The only source for
display issues should be CSS, and the only source for behavior issues should be JavaScript. Keeping a
loose coupling between these layers makes your entire application more maintainable.

Decouple Application Logic/Event Handlers
Every web application is typically filled with lots of event handlers listening for numerous different
events. Few of them, however, take care to separate application logic from event handlers. Consider
the following example:

function handleKeyPress(event) {
 if (event.keyCode == 13) {
 let target = event.target;
 let value = 5 * parseInt(target.value);
 if (value > 10) {
 document.getElementById("error-msg").style.display = "block";
 }
 }
}

1042 ❘ CHAPTER 28 Best Practices

This event handler contains application logic in addition to handling the event. The problem with this
approach is twofold. First, there is no way to cause the application logic to occur other than through
the event, which makes it difficult to debug. What if the anticipated result didn’t occur? Does that
mean that the event handler wasn’t called or that the application logic failed? Second, if a subsequent
event causes the same application logic to occur, you’ll need to duplicate the functionality or else
extract it into a separate function. Either way, it requires more changes to be made than are really
necessary.

A better approach is to separate the application logic from event handlers, so that each handles just
what it’s supposed to. An event handler should interrogate the event object for relevant information
and then pass that information to some method that handles the application logic. For example, the
previous code can be rewritten like this:

function validateValue(value) {
 value = 5 * parseInt(value);
 if (value > 10) {
 document.getElementById("error-msg").style.display = "block";
 }
}

function handleKeyPress(event) {
 if (event.keyCode == 13) {
 let target = event.target;
 validateValue(target.value);
 }
}

This updated code properly separates the application logic from the event handler. The handleKey-
Press() function checks to be sure that the Enter key was pressed (event.keyCode is 13) and then
gets the target of the event and passes the value property into the validateValue() function, which
contains the application logic. Note that there is nothing in validateValue() that depends on any
event handler logic whatsoever; it just receives a value and can do everything else based on that value.

Separating application logic from event handlers has several benefits. First, it allows you to easily
change the events that trigger certain processes with a minimal amount of effort. If a mouse click ini-
tially caused the processing to occur, but now a key press should do the same, it’s quite easy to make
that change. Second, you can test code without attaching events, making it easier to create unit tests
or to automate application flow.

Here are a few rules to keep in mind for loose coupling of application and business logic:

➤➤ Don’t pass the event object into other methods; pass only the data from the event object
that you need.

➤➤ Every action that is possible in the application should be possible without executing an
event handler.

➤➤ Event handlers should process the event and then hand off processing to application logic.

Keeping this approach in mind is a huge maintainability win in any code base, opening up numerous
possibilities for testing and further development.

Maintainability ❘ 1043

Programming Practices
Writing maintainable JavaScript isn’t just about how the code is formatted; it’s also about what the
code does. Web applications created in an enterprise environment are often worked on by numer-
ous people at the same time. The goal in these situations is to ensure that the browser environment
in which everyone is working has constant and unchanging rules. To achieve this, developers should
adhere to certain programming practices.

Respect Object Ownership
The dynamic nature of JavaScript means that almost anything can be modified at any point in time.
It’s been said that nothing in JavaScript is sacred, as you’re unable to mark something as final or
constant. This changed somewhat with ECMAScript 5’s introduction of tamper-proof objects, but by
default, all objects can be modified. In other languages, objects and classes are immutable when you
don’t have the actual source code. JavaScript allows you to modify any object at any time, making
it possible to override default behaviors in unanticipated ways. Because the language doesn’t impose
limits, it’s important and necessary for developers to do so.

Perhaps the most important programming practice in an enterprise environment is to respect object
ownership, which means that you don’t modify objects that don’t belong to you. Put simply: if you’re
not responsible for the creation or maintenance of an object, its constructor, or its methods, you
shouldn’t be making changes to it. More specifically:

➤➤ Don’t add properties to instances or prototypes.

➤➤ Don’t add methods to instances or prototypes.

➤➤ Don’t redefine existing methods.

The problem is that developers assume that the browser environment works in a certain way.
Changes to objects that are used by multiple people mean that errors will occur. If someone expects a
function called stopEvent() to cancel the default behavior for an event, and you change it so it does
that and also attaches other event handlers, it is certain that problems will follow. Other developers
are assuming that the function just does what it did originally, so their usage will be incorrect and
possibly harmful because they don’t know the side effects.

These rules apply not only to custom types and objects but also to native types and objects such as
Object, String, document, window, and so on. The potential issues here are even more perilous
because browser vendors may change these objects in unannounced and unanticipated ways.

An example of this occurred in the popular Prototype JavaScript library, which implemented the
getElementsByClassName() method on the document object, returning an instance of Array that
had also been augmented to include a method called each(). John Resig outlined on his blog the
sequence of events that caused the issue. In his post (http://ejohn.org/blog/getelementsby-
classname-pre-prototype-16/), he noted that the problem occurred when browsers began to
natively implement getElementsByClassName(), which returns not an Array but rather a Node List
that doesn’t have an each() method. Developers using the Prototype library had gotten used to writ-
ing code such as this:

document.getElementsByClassName("selected").each(Element.hide);

1044 ❘ CHAPTER 28 Best Practices

Although this code worked fine in browsers that didn’t implement getElementsByClassName()
natively, it caused an error in the ones that did, as a result of the return value differences. You cannot
anticipate how browser vendors will change native objects in the future, so modifying them in any
way can lead to issues down the road when your implementation clashes with theirs.

The best approach, therefore, is to never modify objects you don’t own. You own an object only when
you created it yourself, such as a custom type or object literal. You don’t own Array, document, and
so on, because they were there before your code executed. You can still create new functionality for
objects by doing the following:

➤➤ Create a new object with the functionality you need, and let it interact with the object
of interest.

➤➤ Create a custom type that inherits from the type you want to modify. You can then modify
the custom type with the additional functionality.

Many JavaScript libraries now subscribe to this theory of development, allowing them to grow and
adapt even as browsers continually change.

Avoid Globals
Closely related to respecting object ownership is avoiding global variables and functions whenever
possible. Once again, this has to do with creating a consistent and maintainable environment in
which scripts will be executed. At most, a single global variable should be created on which other
objects and functions exist. Consider the following:

// two globals - AVOID!!!
var name = "Nicholas";
function sayName() {
 console.log(name);
}

This code contains two globals: the variable name and the function sayName(). These can easily be
created on an object that contains both, as in this example:

// one global - preferred
var MyApplication = {
 name: "Nicholas",
 sayName: function() {
 console.log(this.name);
 }
};

This rewritten version of the code introduces a single global object, MyApplication, onto which both
name and sayName() are attached. Doing so clears up a couple of issues that existed in the previous
code. First, the variable name overwrites the window.name property, which possibly interferes with
other functionality. Second, it helps to clear up confusion over where the functionality lives. Calling
MyApplication.sayName() is a logical hint that any issues with the code can be identified by look-
ing at the code in which MyApplication is defined.

An extension of the single global approach is the concept of namespacing. Namespacing involves
creating an object to hold functionality. The Google Closure library utilizes namespaces to organize
its contents. Here are some examples:

Maintainability ❘ 1045

➤➤ goog.string—Methods for manipulating strings.

➤➤ goog.html.utils—Methods for working with HTML.

➤➤ goog.i18n—Methods for helping with internationalization (i18n).

The single global object goog serves as a container onto which other objects are defined. Whenever
objects are used simply to group together functionality in this manner, they are called namespaces.
The entire Google Closure library is built on this concept, allowing it to coexist on the same page
with any other JavaScript library.

The important part of namespacing is to decide on a global object name that everyone agrees to use
and that is unique enough that others aren’t likely to use it as well. In most cases, this can be the
name of the company for which you’re developing the code, such as goog or Wrox. You can then start
creating namespaces to group your functionality, as in this example:

// create global object
var Wrox = {};

// create namespace for Professional JavaScript
Wrox.ProJS = {};

// attach other objects used in the book
Wrox.ProJS.EventUtil = { ... };
Wrox.ProJS.CookieUtil = { ... };

In this example, Wrox is the global on which namespaces are created. If all code for this book is
placed under the Wrox.ProJS namespace, it leaves other authors to add their code onto the Wrox
object as well. As long as everyone follows this pattern, there’s no reason to be worried that someone
else will also write an object called EventUtil or CookieUtil because it will exist on a different
namespace. Consider this example:

// create namespace for Professional Ajax
Wrox.ProAjax = {};

// attach other objects
Wrox.ProAjax.EventUtil = { ... };
Wrox.ProAjax.CookieUtil = { ... };

// you can still access the ProJS one
Wrox.ProJS.EventUtil.addHandler(...);

// and the ProAjax one separately
Wrox.ProAjax.EventUtil.addHandler(...);

Although namespacing requires a little more code, it is worth the trade-off for maintainability purposes.
Namespacing helps ensure that your code can work on a page with other code in a nonharmful way.

Avoid Null Comparisons
Because JavaScript doesn’t do any automatic type checking, it becomes the developer’s responsibil-
ity. As a result, very little type checking actually gets done in JavaScript code. The most common

1046 ❘ CHAPTER 28 Best Practices

type check is to see if a value is null. Unfortunately, checking a value against null is overused and
frequently leads to errors due to insufficient type checking. Consider the following:

function sortArray(values) {
 if (values != null) { // AVOID!!
 values.sort(comparator);
 }
}

The purpose of this function is to sort an array with a given comparator. The values argument must
be an array for the function to execute correctly, but the if statement simply checks to see that values
isn’t null. There are several values that can make it past the if statement, including any string or any
number, which would then cause the function to throw an error.

Realistically, null comparisons are rarely good enough to be used. Values should be checked for what
they are expected to be, not for what they aren’t expected to be. For example, in the previous code, the
values argument is expected to be an array, so you should be checking to see if it is an array, rather
than checking to see if it’s not null. The function can be rewritten more appropriately as follows:

function sortArray(values) {
 if (values instanceof Array) { // preferred
 values.sort(comparator);
 }
}

This version of the function protects against all invalid values and doesn’t need to use null at all.

If you see a null comparison in code, try replacing it using one of the following techniques:

➤➤ If the value should be a reference type, use the instanceof operator to check its
constructor.

➤➤ If the value should be a primitive type, use the typeof operator to check its type.

➤➤ If you’re expecting an object with a specific method name, use the typeof operator to
ensure that a method with the given name exists on the object.

The fewer null comparisons in code, the easier it is to determine the purpose of the code and to
eliminate unnecessary errors.

Use Constants
The goal of relying on constants is to isolate data from application logic in such a way that it can be
changed without risking the introduction of errors. Strings that are displayed in the user interface
should always be extracted in such a way as to allow for internationalization. URLs should also be
extracted because they have a tendency to change as an application grows. Basically, each of these has
a possibility of changing for one reason or another, and a change would mean going into the function
and changing code there. Any time you’re changing application logic code, you open up the possibil-
ity of creating errors. You can insulate application logic from data changes by extracting data into
constants that are defined separately.

Performance ❘ 1047

The key is to separate data from the logic that uses it. The types of values to look for are as follows:

➤➤ Repeated values—Any values that are used in more than one place should be extracted into
a constant. This limits the chance of errors when one value is changed but others are not.
This includes CSS class names.

➤➤ User interface strings—Any strings that are to be displayed to the user should be extracted
for easier internationalization.

➤➤ URLs—Resource locations tend to change frequently in web applications, so having a
common place to store all URLs is recommended.

➤➤ Any value that may change—Any time you’re using a literal value in code, ask yourself if
this value might change in the future. If the answer is yes, then the value should be extracted
into a constant.

Using constants is an important technique for enterprise JavaScript development because it makes
code more maintainable and keeps it safe from data changes.

PERFORMANCE

The amount of JavaScript that developers now write per web page has grown dramatically since
the language was first introduced. With that increase came concerns over the runtime execution of
JavaScript code. JavaScript was originally an interpreted language, so the speed of execution was
significantly slower than it was for compiled languages. Chrome was the first browser to introduce an
optimizing engine that compiles JavaScript into native code. Since then, all other major browsers have
followed suit and have implemented JavaScript compilation.

Even with the move to compiled JavaScript, it’s still possible to write slow code. However, there are
some basic patterns that, when followed, ensure the fastest possible execution of code.

Be Scope-Aware
The “Variables, Scope, and Memory” chapter discussed the concept of scopes in JavaScript and how the
scope chain works. As the number of scopes in the scope chain increases, so does the amount of time
it takes to access variables outside of the current scope. It is always slower to access a global variable
than it is to access a local variable, because the scope chain must be traversed. Anything you can do to
decrease the amount of time spent traversing the scope chain will increase overall script performance.

Avoid Global Lookups
Perhaps the most important thing you can do to improve the performance of your scripts is to be
wary of global lookups. Global variables and functions are always more expensive to use than local
ones because they involve a scope chain lookup. Consider the following function:

function updateUI() {
 let imgs = document.getElementsByTagName("img");
 for (let i = 0, len = imgs.length; i < len; i++) {
 imgs[i].title = '${document.title} image ${i}';
 }

1048 ❘ CHAPTER 28 Best Practices

 let msg = document.getElementById("msg");
 msg.innerHTML = "Update complete.";
}

This function may look perfectly fine, but it has three references to the global document object. If
there are multiple images on the page, the document reference in the for loop could get executed
dozens or hundreds of times, each time requiring a scope chain lookup. By creating a local variable
that points to the document object, you can increase the performance of this function by limiting the
number of global lookups to just one:

function updateUI() {
 let doc = document;
 let imgs = doc.getElementsByTagName("img");
 for (let i = 0, len = imgs.length; i < len; i++) {
 imgs[i].title = '${doc.title} image ${i}';
 }

 let msg = doc.getElementById("msg");
 msg.innerHTML = "Update complete.";
}

Here, the document object is first stored in the local doc variable. The doc variable is then used in
place of document throughout the rest of the code. There’s only one global lookup in this function,
compared to the previous version, ensuring that it will run faster.

A good rule of thumb is to store any global object that is used more than once in a function as a
local variable.

Avoid the with Statement
The with statement should be avoided where performance is important. Similar to functions, the
with statement creates its own scope and therefore increases the length of the scope chain for code
executed within it. Code executed within a with statement is guaranteed to run slower than code
executing outside because of the extra steps in the scope chain lookup.

It is rare that the with statement is required because it is mostly used to eliminate extra characters.
In most cases, a local variable can be used to accomplish the same thing without introducing a new
scope. Here is an example:

function updateBody() {
 with(document.body) {
 console.log(tagName);
 innerHTML = "Hello world!";
 }
}

The with statement in this code enables you to use document.body more easily. The same effect can
be achieved by using a local variable, as follows:

function updateBody() {
 let body = document.body;
 console.log(body.tagName);
 body.innerHTML = "Hello world!";
}

Performance ❘ 1049

Although this code is slightly longer, it reads better than the with statement, ensuring that you know
the object to which tagName and innerHTML belong. This code also saves global lookups by storing
document.body in a local variable.

Choose the Right Approach
As with other languages, part of the performance equation has to do with the algorithm or approach
used to solve the problem. Skilled developers know from experience which approaches are likely to
achieve better performance results. Many of the techniques and approaches that are typically used in
other programming languages can also be used in JavaScript.

Avoid Unnecessary Property Lookup
In computer science, the complexity of algorithms is represented using O notation. The simplest, and
fastest, algorithm is a constant value or O(1). After that, the algorithms just get more complex and
take longer to execute. The following table lists the common types of algorithms found in JavaScript.

NOTATION NAME DESCRIPTION

O(1) Constant Amount of time to execute remains constant no matter the number
of values. Represents simple values and values stored in variables.

O(log n) Logarithmic Amount of time to execute is related to the number of values, but
each value need not be retrieved for the algorithm to complete.
Example: binary search.

O(n) Linear Amount of time to execute is directly related to the number of
values. Example: iterating over all items in an array.

O(n^2) Quadratic Amount of time to execute is related to the number of values such that
each value must be retrieved at least n times. Example: insertion sort.

Constant values, or O(1), refer to both literals and values that are stored in variables. The nota-
tion O(1) indicates that the amount of time necessary to retrieve a constant value remains the same
regardless of the number of values. Retrieving a constant value is an extremely efficient process and
so is quite fast. Consider the following:

let value = 5;
let sum = 10 + value;
console.log(sum);

This code performs four constant value lookups: the number 5, the variable value, the number 10,
and the variable sum. The overall complexity of this code is then considered to be O(1).

Accessing array items is also an O(1) operation in JavaScript, performing just as well as a simple vari-
able lookup. So the following code is just as efficient as the previous example:

let values = [5, 10];
let sum = values[0] + values[1];
console.log(sum);

1050 ❘ CHAPTER 28 Best Practices

Using variables and arrays is more efficient than accessing properties on objects, which is an O(n)
operation. Every property lookup on an object takes longer than accessing a variable or array,
because a search must be done for a property of that name up the prototype chain. Put simply, the
more property lookups there are, the slower the execution time. Consider the following:

let values = { first: 5, second: 10 };
let sum = values.first + values.second;
console.log(sum);

This code uses two property lookups to calculate the value of sum. Doing one or two property
lookups may not result in significant performance issues, but doing hundreds or thousands will defi-
nitely slow down execution.

Be wary of multiple property lookups to retrieve a single value. For example, consider the following:

let query = window.location.href.substring(window.location.href.indexOf("?"));

In this code, there are six property lookups: three for window.location.href.substring() and
three for window.location.href.indexOf(). You can easily identify property lookups by count-
ing the number of dots in the code. This code is especially inefficient because the window.location.
href value is being used twice, so the same lookup is done twice.

Whenever an object property is being used more than once, store it in a local variable. You’ll still
take the initial O(n) hit to access the value the first time, but every subsequent access will be O(1),
which more than makes up for it. For example, the previous code can be rewritten as follows:

let url = window.location.href;
let query = url.substring(url.indexOf("?"));

This version of the code has only four property lookups, a savings of 33 percent over the original.
Making this kind of optimization in a large script is likely to lead to larger gains.

Generally speaking, any time you can decrease the complexity of an algorithm, you should replace as
many property lookups as possible by using local variables to store the values. Furthermore, if you
have an option to access something as a numeric array position or a named property (such as with
NodeList objects), use the numeric position.

Optimize Loops
Loops are one of the most common constructs in programming and, as such, are found frequently
in JavaScript. Optimizing these loops is an important part of the performance optimization process
because they run the same code repeatedly, automatically increasing execution time. There’s been
a great deal of research done into loop optimization for other languages, and these techniques also
apply to JavaScript. The basic optimization steps for a loop are as follows:

1. Simplify the terminal condition—Because the terminal condition is evaluated each time
through the loop, it should be as fast as possible. This means avoiding property lookups or
other O(n) operations.

2. Simplify the loop body—The body of the loop is executed the most, so make sure it’s as opti-
mized as possible. Make sure there’s no intensive computation being performed that could
easily be moved to outside the loop.

3. Use posttest loops—The most commonly used loops are for and while, both of which are
pretest loops. Posttest loops, such as do-while, avoid the initial evaluation of the terminal
condition and tend to run faster.

Performance ❘ 1051

NOTE In older browsers, it was more efficient to start loop iterators at their
maximum value and decrement them down to 0. This was faster due to the
reduced number of instructions that the JavaScript engine would use to check
the loop branch condition. In modern browsers, there will be no perceptible
performance difference, so you should use an iterator format that is most sen-
sible for the purposes of your code.

These changes are best illustrated with an example. The following is a basic for loop:

for (let i = 0; i < values.length; i++) {
 process(values[i]);
}

This code increments the variable i from 0 up to the total number of items in the values array.
Assuming that the order in which the values are processed is irrelevant, the loop can be changed to
decrement i instead, as follows:

for (let i = values.length - 1; i >= 0; i--) {
 process(values[i]);
}

Here, the variable i is decremented each time through the loop. In the process, the terminal condi-
tion is simplified by removing the O(n) call to values.length and replacing it with the O(1) call of
0. Because the loop body has only a single statement, it can’t be optimized further. However, the loop
itself can be changed into a posttest loop like this:

let i = values.length-1;
if (i > -1) {
 do {
 process(values[i]);
 }while(--i >= 0);
}

The primary optimization here is combining the terminal condition and the decrement operator into
a single statement. At this point, any further optimization would have to be done to the process()
function itself because the loop is fully optimized.

Keep in mind that using a posttest loop works only when you’re certain that there will always be at
least one value to process. An empty array causes an unnecessary trip through the loop that a pre-test
loop would otherwise avoid.

Unrolling Loops
When the number of times through a loop is finite, it is often faster to eliminate the loop altogether
and replace it with multiple function calls. Consider the loop from the previous example. If the length
of the array will always be the same, it may be more optimal to simply call process() on each item,
as in the following code:

// eliminated the loop
process(values[0]);
process(values[1]);
process(values[2]);

1052 ❘ CHAPTER 28 Best Practices

This example assumes that there are only three items in the values array and simply calls process()
directly on each item. Unrolling loops in this way eliminates the overhead of setting up a loop and
processing a terminal condition, making the code run faster.

If the number of iterations through the loop can’t be determined ahead of time, you may want to
consider using a technique called Duff’s device. The technique is named after its creator, Tom Duff,
who first proposed using it in the C programming language. Jeff Greenberg is credited with imple-
menting Duff’s device in JavaScript. The basic idea of Duff’s device is to unroll a loop into a series
of statements by calculating the number of iterations as a multiple of 8. Consider the following
code example:

// credit: Jeff Greenberg for JS implementation of Duff's Device
// assumes values.length > 0
let iterations = Math.ceil(values.length / 8);
let startAt = values.length % 8;
let i = 0;

do {
 switch(startAt) {
 case 0: process(values[i++]);
 case 7: process(values[i++]);
 case 6: process(values[i++]);
 case 5: process(values[i++]);
 case 4: process(values[i++]);
 case 3: process(values[i++]);
 case 2: process(values[i++]);
 case 1: process(values[i++]);
 }
 startAt = 0;
} while (--iterations > 0);

This implementation of Duff’s device starts by calculating how many iterations through the loop need
to take place by dividing the total number of items in the values array by 8. The ceiling function
is then used to ensure that the result is a whole number. The startAt variable holds the number of
items that wouldn’t be processed if the iterations were based solely on dividing by 8. When the loop
executes for the first time, the startAt variable is checked to see how many extra calls should be
made. For instance, if there are 10 values in the array, startAt would be equal to 2, so process()
would be called only twice the first time through the loop. At the bottom of the loop, startAt is reset
to 0 so that each subsequent time through the loop results in eight calls to process(). This unrolling
speeds up processing of large data sets.

The book Speed Up Your Site by Andrew B. King (New Riders, 2003) proposed an even faster Duff’s
device technique that separated the do-while loop into two separate loops. Here’s an example:

// credit: Speed Up Your Site (New Riders, 2003)
let iterations = Math.floor(values.length / 8);
let leftover = values.length % 8;
let i = 0;

if (leftover > 0) {
 do {
 process(values[i++]);
 } while (--leftover > 0);
}

Performance ❘ 1053

do {
 process(values[i++]);
 process(values[i++]);
 process(values[i++]);
 process(values[i++]);
 process(values[i++]);
 process(values[i++]);
 process(values[i++]);
 process(values[i++]);
} while (--iterations > 0);

In this implementation, the leftover count that wouldn’t have been handled in the loop when simply
dividing by 8 is handled in an initial loop. Once those extra items are processed, execution continues
in the main loop that calls process() eight times. This approach is almost 40 percent faster than the
original Duff’s device implementation.

Unrolling loops can yield big savings for large data sets but may not be worth the extra effort for
small data sets. The trade-off is that it takes more code to accomplish the same task, which is typi-
cally not worth it when large data sets aren’t being processed.

Avoid Double Interpretation
Double interpretation penalties exist when JavaScript code tries to interpret JavaScript code. This
situation arises when using the eval() function or the Function constructor or when using set-
Timeout() with a string argument. Here are some examples:

// evaluate some code - AVOID!!
eval("console.log('Hello world!')");

// create a new function - AVOID!!
let sayHi = new Function("console.log('Hello world!')");

// set a timeout - AVOID!!
setTimeout("console.log('Hello world!')", 500);

In each of these instances, a string containing JavaScript code has to be interpreted. This can’t be done
during the initial parsing phase because the code is contained in a string, which means a new parser
has to be started while the JavaScript code is running to parse the new code. Instantiating a new
parser has considerable overhead, so the code runs slower than if it were included natively.

There are workarounds for all of these instances. It’s rare that eval() is absolutely necessary, so try
to avoid it whenever possible. In this case, the code could just be included inline. For the Function
constructor, the code can be rewritten as a regular function quite easily, and the setTimeout() call
can pass in a function as the first argument. Here are some examples:

// fixed
console.log('Hello world!');

// create a new function - fixed
let sayHi = function() {
 console.log('Hello world!');
};

// set a timeout - fixed
setTimeout(function() {

1054 ❘ CHAPTER 28 Best Practices

 console.log('Hello world!');
}, 500);

To increase the performance of your code, avoid using strings that need to be interpreted as
 JavaScript whenever possible.

Other Performance Considerations
There are a few other things to consider when evaluating the performance of your script. The follow-
ing aren’t major issues, but they can make a difference when used frequently:

➤➤ Native methods are fast—Whenever possible, use a native method instead of one written in
JavaScript. Native methods are written in compiled languages such as C or C++ and thus
run much faster than those in JavaScript. The most often forgotten methods in JavaScript
are the complex mathematical operations available on the Math object; these methods
always run faster than any JavaScript equivalent for calculating sine, cosine, and so on.

➤➤ Switch statements are fast—If you have a complex series of if-else statements, converting it to
a single switch statement can result in faster code. You can further improve the performance of
switch statements by organizing the cases in the order of most likely to least likely.

➤➤ Bitwise operators are fast—When performing mathematical operations, bitwise operations
are always faster than any Boolean or numeric arithmetic. Selectively replacing arithmetic
operations with bitwise operations can greatly improve the performance of complex calcula-
tions. Operations such as modulus, logical AND, and logical OR are good candidates to be
replaced with bitwise operations.

Minimize Statement Count
The number of statements in JavaScript code affects the speed with which the operations are per-
formed. A single statement can complete multiple operations faster than multiple statements each
performing a single operation. The task, then, is to seek out statements that can be combined in order
to decrease the execution time of the overall script. To do so, you can look for several patterns.

Multiple Variable Declarations
One area in which developers tend to create too many statements is in the declaration of multiple
variables. It’s quite common to see code declaring multiple variables using multiple let statements,
such as the following:

// four statements - wasteful
let count = 5;
let color = "blue";
let values = [1,2,3];
let now = new Date();

In strongly typed languages, variables of different data types must be declared in separate statements.
In JavaScript, however, all variables can be declared using a single let statement. The preceding code
can be rewritten as follows:

// one statement
let count = 5,
 color = "blue",

Performance ❘ 1055

 values = [1,2,3],
 now = new Date();

Here, the variable declarations use a single let statement and are separated by commas. This is an
optimization that is easy to make in most cases and performs much faster than declaring each vari-
able separately.

Insert Iterative Values
Any time you are using an iterative value (that is, a value that is being incremented or decremented at
various locations), combine statements whenever possible. Consider the following code snippet:

let name = values[i];
i++;

Each of the two preceding statements has a single purpose: the first retrieves a value from values and
stores it in name; the second increments the variable i. These can be combined into a single statement
by inserting the iterative value into the first statement, as shown here:

let name = values[i++];

This single statement accomplishes the same thing as the previous two statements. Because the incre-
ment operator is postfix, the value of i isn’t incremented until after the rest of the statement exe-
cutes. Whenever you have a similar situation, try to insert the iterative value into the last statement
that uses it.

Use Array and Object Literals
Throughout this book, you’ve seen two ways of creating arrays and objects: using a constructor or using
a literal. Using constructors always leads to more statements than are necessary to insert items or define
properties, whereas literals complete all operations in a single statement. Consider the following example:

// four statements to create and initialize array - wasteful
let values = new Array();
values[0] = 123;
values[1] = 456;
values[2] = 789;

// four statements to create and initialize object - wasteful
let person = new Object();
person.name = "Nicholas";
person.age = 29;
person.sayName = function() {
 console.log(this.name);
};

In this code, an array and an object are created and initialized. Each requires four statements: one to
call the constructor and three to assign data. These can easily be converted to use literals as follows:

// one statement to create and initialize array
let values = [123, 456, 789];

// one statement to create and initialize object
let person = {
 name: "Nicholas",
 age: 29,

1056 ❘ CHAPTER 28 Best Practices

 sayName() {
 console.log(this.name);
 }
};

This rewritten code contains only two statements: one to create and initialize the array, and one to
create and initialize the object. What previously took eight statements now takes only two, reducing
the statement count by 75 percent. The value of these optimizations is even greater in codebases that
contain thousands of lines of JavaScript.

Whenever possible, replace your array and object declarations with their literal representation to
eliminate unnecessary statements.

NOTE Reducing statement count in your codebase is a good goal, but not an
absolute law. It is possible to condense too much logic into a single statement for
it to be easily comprehensible.

Optimize DOM Interactions
Of all the parts of JavaScript, the DOM is without a doubt the slowest part. DOM manipulations and
interactions take a large amount of time because they often require rerendering all or part of the page.
Furthermore, seemingly trivial operations can take longer to execute because the DOM manages so
much information. Understanding how to optimize interactions with the DOM can greatly increase
the speed with which scripts complete.

Minimize Live Updates
Whenever you access part of the DOM that is part of the displayed page, you are performing a live
update. Live updates are so called because they involve immediate (live) updates of the page’s display
to the user. Every change, whether it be inserting a single character or removing an entire section,
incurs a performance penalty as the browser recalculates thousands of measurements to perform the
update. The more live updates you perform, the longer it will take for the code to completely execute.
The fewer live updates necessary to complete an operation, the faster the code will be. Consider the
following example:

let list = document.getElementById("myList"),
 item;

for (let i = 0; i < 10; i++) {
 item = document.createElement("li");
 list.appendChild(item);
 item.appendChild(document.createTextNode('Item ${i}');
}

This code adds ten items to a list. For each item that is added, there are two live updates: one to add
the element and another to add the text node to it. Because ten items are being added, that’s a
total of twenty live updates to complete this operation.

Performance ❘ 1057

To fix this performance bottleneck, you need to reduce the number of live updates. There are gener-
ally two approaches to this. The first is to remove the list from the page, perform the updates, and
then reinsert the list into the same position. This approach is not ideal because it can cause unneces-
sary flickering as the page updates each time. The second approach is to use a document fragment to
build up the DOM structure and then add it to the list element. This approach avoids live updates
and page flickering. Consider the following:

let list = document.getElementById("myList"),
 fragment = document.createDocumentFragment(),
 item;

for (let i = 0; i < 10; i++) {
 item = document.createElement("li");
 fragment.appendChild(item);
 item.appendChild(document.createTextNode("Item " + i));
}

list.appendChild(fragment);

There is only one live update in this example, and it occurs after all items have been created. The
document fragment is used as a temporary placeholder for the newly created items. All items are
then added to the list, using appendChild(). Remember, when a document fragment is passed in
to appendChild(), all of the children of the fragment are appended to the parent, but the fragment
itself is never added.

Whenever updates to the DOM are necessary, consider using a document fragment to build up the
DOM structure before adding it to the live document.

Use innerHTML
There are two ways to create new DOM nodes on the page: using DOM methods such as createEl-
ement() and appendChild(), and using innerHTML. For small DOM changes, the two techniques
perform roughly the same. For large DOM changes, however, using innerHTML is much faster than
creating the same DOM structure using standard DOM methods.

When innerHTML is set to a value, an HTML parser is created behind the scenes, and the DOM struc-
ture is created using the native DOM calls rather than JavaScript-based DOM calls. The native meth-
ods execute much faster because they are compiled rather than interpreted. The previous example can
be rewritten to use innerHTML like this:

let list = document.getElementById("myList"),
 html = "";

for (let i = 0; i < 10; i++) {
 html += 'Item ${i}';
}

list.innerHTML = html;

This code constructs an HTML string and then assigns it to list.innerHTML, which creates the
appropriate DOM structure. Although there is always a small performance hit for string concatena-
tion, this technique still performs faster than performing multiple DOM manipulations.

1058 ❘ CHAPTER 28 Best Practices

The key to using innerHTML, as with other DOM operations, is to minimize the number of times it is
called. For instance, the following code uses innerHTML too much for this operation:

let list = document.getElementById("myList");

for (let i = 0; i < 10; i++) {
 list.innerHTML += 'Item ${i}'; // AVOID!!!
}

The problem with this code is that innerHTML is called each time through the loop, which is incred-
ibly inefficient. A call to innerHTML is, in fact, a live update and should be treated as such. It’s far
faster to build up a string and call innerHTML once than it is to call innerHTML multiple times.

NOTE innerHTML may offer superior performance, but it exposes an enor-
mous XSS attack surface. Any time it is used to interpolate data that you do not
explicitly control, an attacker can inject executable code. Use with caution.

Use Event Delegation
Most web applications make extensive use of event handlers for user interaction. There is a direct rela-
tionship between the number of event handlers on a page and the speed with which the page responds
to user interaction. To mitigate these penalties, you should use event delegation whenever possible.

Event delegation takes advantage of events that bubble. Any event that bubbles can be handled
not just at the event target but also at any of the target’s ancestors. Using this knowledge, you can
attach event handlers at a high level that are responsible for handling events for multiple targets.
Whenever possible, attach an event handler at the document level that can handle events for the
entire page.

Beware of HTMLCollections
The pitfalls of HTMLCollection objects have been discussed throughout this book because they are a
big performance sink for web applications. Keep in mind that any time you access an HTMLCollec-
tion, whether it be a property or a method, you are performing a query on the document, and that
querying is quite expensive. Minimizing the number of times you access an HTMLCollection can
greatly improve the performance of a script.

Perhaps the most important area in which to optimize HTMLCollection access is loops. Moving the
length calculation into the initialization portion of a for loop was discussed previously. Now con-
sider this example:

let images = document.getElementsByTagName("img");

for (let i = 0, len = images.length; i < len; i++) {
 // process
}

The key here is that the length is stored in the len variable instead of constantly accessing the
length property of the HTMLCollection. When using an HTMLCollection in a loop, you should

Deployment ❘ 1059

make your next step a retrieval of a reference to the item you’ll be using, as shown here, in order to
avoid calling the HTMLCollection multiple times in the loop body:

let images = document.getElementsByTagName("img"),
 image;

for (let i = 0, len=images.length; i < len; i++) {
 image = images[i];
 // process
}

This code adds the image variable, which stores the current image. Once this is complete, there
should be no further reason to access the images HTMLCollection inside the loop.

When writing JavaScript, it’s important to realize when HTMLCollection objects are being returned so you
can minimize accessing them. An HTMLCollection object is returned when any of the following occurs:

➤➤ A call to getElementsByTagName() is made.

➤➤ The childNodes property of an element is retrieved.

➤➤ The attributes property of an element is retrieved.

➤➤ A special collection is accessed, such as document.forms, document.images, and so forth.

Understanding when you’re using HTMLCollection objects and making sure you’re using them
appropriately can greatly speed up code execution.

DEPLOYMENT

Perhaps the most important part of any JavaScript solution is the final deployment to the website or
web application in production. You’ve done a lot of work before this point, architecting and optimiz-
ing a solution for general consumption. It’s time to move out of the development environment and
into the web, where real users can interact with it. Before you do so, however, there are a number of
issues that need to be addressed.

Build Process
One of the most important things you can do to ready JavaScript code for deployment is to develop
some type of build process around it. The typical pattern for developing software is write-compile-
test, in that you write the code, compile it, and then run it to ensure that it works. Because JavaScript
is not a compiled language, the pattern often becomes write-test, where the code you write is the same
code you test in the browser. The problem with this approach is that it’s not optimal; the code you
write should not be passed, untouched, to the browser, for the following reasons:

➤➤ Intellectual property issues—If you put the fully commented source code online, it’s easier
for others to figure out what you’re doing, reuse it, and potentially figure out security holes.

➤➤ File size—You write code in a way that makes it easy to read, which is good for maintain-
ability but bad for performance. The browser doesn’t benefit from the extra white space,
indentation, or verbose function and variable names.

1060 ❘ CHAPTER 28 Best Practices

➤➤ Code organization—The way you organize code for maintainability isn’t necessarily the
best way to deliver it to the browser.

For these reasons, it’s best to define a build process for your JavaScript files.

File Structure
A build process starts by defining a logical structure for storing your files in source control. It’s best
to avoid having a single file that contains all of your JavaScript. Instead, follow the pattern that
is typically taken in object-oriented languages: separate each object or custom type into its own
file. Doing so ensures that each file contains just the minimum amount of code, making it easier to
make changes without introducing errors. Additionally, in environments that use concurrent source
control systems such as Git, CVS, or Subversion, this reduces the risk of conflicts during merge
operations.

Keep in mind that separating your code into multiple files is for maintainability and not for deployment.
For deployment, you’ll want to combine the source files into one or more rollup files. It’s recommended
that web applications use the smallest number of JavaScript files possible, because HTTP requests are
some of the main performance bottlenecks on the web. Keep in mind that including a JavaScript file via
a vanilla <script> tag is a blocking operation that stops all other downloads while the code is down-
loaded and executed. Therefore, try to logically group JavaScript code into deployment files.

Task Runners
If you’re putting together an application that’s anything more than a few files, you will likely
find yourself reaching for a task runner to automate tasks for you. The task runner can perform
jobs such as linting, bundling, transpilation, starting a local server, deployment, or any other
scripted program.

Much of the time, jobs that your task runner will perform are available through command-line
interfaces, and therefore your task runner will merely be a tool that aids in grouping and ordering
complex command line invocations. In this sense, a task runner in many ways is very similar to a
.bashrc file. In other cases, the tools you wish to use in automated tasks will have designated plugins
compatible

If you’re using NodeJS and npm to package your JavaScript assets, two popular task runners are
Grunt (www.gruntjs.com) and Gulp (www.gulpjs.com). Both of these tools are robust task run-
ners whose jobs and instructions are defined inside configuration files written in plain JavaScript.
The benefit of using these task runners is that each enjoys an ecosystem of plugins, which allow
the tools to directly interface with npm packages. Details of these plugins can be found in the
appendixes.

Tree Shaking
An increasingly common and extremely effective strategy for reducing payload size is tree shaking. As
mentioned in the Modules chapter, using a static module declaration style means that build tools can
determine which parts of the codebase depend on other parts. More importantly, tree shaking is also
capable of determining which parts of the codebase are not needed at all.

Deployment ❘ 1061

Build tools that implement tree shaking acknowledge that module imports are frequently selective
and that entire segments of module files can be ignored in the final bundled file. Suppose this is your
example application:

import { foo } from './utils.js';

console.log(foo);
export const foo = 'foo';
export const bar = 'bar'; // unused

Here, the bar export is never used, and static analysis by a build tool can easily determine this is the
case. When performing tree shaking, the build tool will completely strip out the bar export from
the bundled file. Static analysis also means that the build tool can determine dependencies that are
unused and decline to include those as well. By performing tree shaking, the file size savings of the
eventual bundle can be enormous.

Module Bundlers
Just because your codebase is written in modules doesn’t mean that it should necessarily be served
as modules. Often, JavaScript codebases composed of a large collection of modules will be bundled
together at build time and served as one or a few different JavaScript files.

The module bundler’s job is to identify the landscape of JavaScript dependencies involved in an appli-
cation, combine them into a monolithic application, make informed decisions about how the modules
should be serially organized and concatenated, and generate the output files that will be provided to
the browser.

There is an abundance of build tooling that allows you to accomplish such a feat. Webpack, Rollup,
and Browserify are just a few of the many options you have to convert a module-based codebase into
a universally compatible page script.

Validation
Even though IDEs that understand and support JavaScript are starting to appear, most developers still
check their syntax by running code in a browser. There are a couple of problems with this approach.
First, this validation can’t be easily automated or ported from system to system. Second, aside from
syntax errors, problems are encountered only when code is executed, leaving it possible for errors to
occur. Several tools are available to help identify potential issues with JavaScript code, the most popu-
lar being Douglas Crockford’s JSLint (www.jslint.com) and ESLint (www.eslint.org).

Linters look for syntax errors and common coding errors in JavaScript code. Some of the potential
issues they surface are as follows:

➤➤ Use of eval()

➤➤ Use of undeclared variables

➤➤ Omission of semicolons

➤➤ Improper line breaks

➤➤ Incorrect comma usage

1062 ❘ CHAPTER 28 Best Practices

➤➤ Omission of braces around statements

➤➤ Omission of break in switch cases

➤➤ Variables being declared twice

➤➤ Use of with

➤➤ Incorrect use of equals (instead of double- or triple-equals)

➤➤ Unreachable code

Adding code validation to your development cycle helps to avoid errors down the road. It’s recom-
mended that developers add some type of code validation to the build process as a way of identifying
potential issues before they become errors.

NOTE A list of JavaScript code validators can be found in Appendix D.

Compression
When talking about JavaScript file compression, you’re really talking about two things: code size and
wire weight. Code size refers to the number of bytes that need to be parsed by the browser, and wire
weight refers to the number of bytes that are actually transmitted from the server to the browser. In
the early days of web development, these two numbers were almost always identical because source
files were transmitted, unchanged, from server to client. In today’s web, however, the two are rarely
equal and realistically should never be.

Code Minification
Because JavaScript isn’t compiled into byte code and is transmitted as source code, the source code
files usually contain additional information and formatting that have no effect on the browser’s
JavaScript interpreter. A JavaScript minifier will perform transformations on your source code to
make the file size as small as possible while retaining identical program flow.

Comments, extra white space, and long variable or function names improve readability for develop-
ers but are unnecessary extra bytes when sent to the browser. A minifier can decrease the file size by
performing the following duties:

➤➤ Remove extra white space (including line breaks)

➤➤ Remove all comments

➤➤ Shorten variable names, function names, and other identifiers

All JavaScript files should be minified with a minification tool before being deployed to a produc-
tion environment. Adding a step in your build process to compress JavaScript files is an easy way to
ensure that this always happens.

Deployment ❘ 1063

NOTE In the context of web development, the term “minification” is often used
interchangeably with “compression.” Doing so can be considered a minor faux
pas, as the semantics of each have little overlap.

Minification is a process where the minified file size is smaller than the original, but
the minified file is still syntactically correct code. Generally, minification is only
useful for interpreted languages like JavaScript because languages that are formally
compiled into a binary will be minified by the compiler as a matter of course.

Compression is distinct from minification in that a compressed file is also smaller
than the original but is not syntactically correct code. A compressed file must be
uncompressed in order to regain the form of readable code. Compression will result
in a smaller file size than minification, as compression algorithms do not have to pre-
serve the syntactical structure of the file and therefore can take additional liberties.

JavaScript Compilation
Similar in spirit to minification, code compilation generally refers to the process of taking source code
and converting it into a form that is behaviorally identical but uses fewer bytes of JavaScript. This is
distinct from minification in that the post-compilation code structure may be different, but it will still
exhibit the same behavior as your original source code. Compilers are able to do this by ingesting the
entirety of your JavaScript code and performing robust analysis on program flow.

Compilation might perform some of the following operations:

➤➤ Remove unused code

➤➤ Transform parts of code to use more concise syntax

➤➤ Global inlining of function calls, constants, and variables

JavaScript Transpilation
The code in your project repository will almost never be the exact code that will execute in your
browser. ES6, ES7, and ES8 all introduce wonderful abilities into the ECMAScript specification, but
different browsers will fully implement each of their features at different paces.

Using transpilation will allow you to wield all the newest syntactical specification features without
having to worry about backwards browser compatibility. You can transpile your modern code to an
older ECMAScript version—typically ES3 or ES5, depending on your needs—so that your code can
work everywhere. Transpilation tools are covered in the appendixes.

NOTE The terms "transpilation" and "compilation" are often used interchangeably.
Compilation is the process of converting source code written in one language into
a different language. Transpilation is essentially the same process as compilation,
but the end language will have a similar level of abstraction as the original language.
Therefore, converting ES6/7/8 code into ES3/5 is technically both compilation and
transpilation, although transpilation is a more exact term to describe the process.

1064 ❘ CHAPTER 28 Best Practices

HTTP Compression
Wire weight refers to the actual number of bytes sent from the server to the browser. The number of
bytes doesn’t necessarily have to be the same as the code size, because of the compression capabili-
ties of both the server and the browser. All of the five major web browsers—Internet Explorer/Edge,
Firefox, Safari, Chrome, and Opera—support client-side decompression of resources that they receive.
The server is therefore able to compress JavaScript files using server-dependent capabilities. As part
of the server response, a header is included indicating that the file has been compressed using a given
format. The browser then looks at the header to determine that the file is compressed, and then
decompresses it using the appropriate format. The result is that the amount of bytes transferred over
the network is significantly less than the original code size.

For example, using two modules available for the Apache web server (mod_gzip and mod_deflate)
results in savings of around 70 percent of the original file size of JavaScript files. This is largely due to
the fact that JavaScript files are plain text and can therefore be compressed very efficiently. Decreas-
ing the wire weight of your files decreases the amount of time it takes to transmit to the browser.
Keep in mind that there is a slight trade-off because the server must spend time compressing the files
on each request, and the browser must take some time to decompress the files once they arrive. Gen-
erally speaking, however, the trade-off is well worth it.

NOTE Most web servers, both open source and commercial, have some HTTP
compression capabilities. Please consult the documentation for your server to
determine how to configure compression properly.

SUMMARY

As JavaScript development has matured, best practices have emerged. What once was considered a
hobby is now a legitimate profession and, as such, has experienced the type of research into maintain-
ability, performance, and deployment traditionally done for other programming languages.

Maintainability in JavaScript has to do partially with the following code conventions:

➤➤ Code conventions from other languages may be used to determine when to comment and
how to indent, but JavaScript requires some special conventions to make up for the loosely
typed nature of the language.

➤➤ Because JavaScript must coexist with HTML and CSS, it’s also important to let each wholly
define its purpose: JavaScript should define behavior, HTML should define content, and
CSS should define appearance.

➤➤ Any mixing of these responsibilities can lead to difficult-to-debug errors and maintenance issues.

As the amount of JavaScript has increased in web applications, performance has become more impor-
tant. Therefore, you should keep these things in mind:

➤➤ The amount of time it takes JavaScript to execute directly affects the overall performance of
a web page, so its importance cannot be dismissed.

Summary ❘ 1065

➤➤ A lot of the performance recommendations for C-based languages also apply to JavaScript
relating to loop performance and using switch statements instead of if.

➤➤ Another important thing to remember is that DOM interactions are expensive, so you
should limit the number of DOM operations.

The last step in the process is deployment. Here are some key points discussed in this chapter:

➤➤ To aid in deployment, you should set up a build process that combines JavaScript files into a
small number of files (ideally just one).

➤➤ Having a build process also gives you the opportunity to automatically run additional
processes and filters on the source code. You can, for example, run a JavaScript verifier to
ensure that there are no syntax errors or potential issues with the code.

➤➤ A compressor can get your files as small as possible before deployment.

➤➤ Coupling that with HTTP compression ensures that the JavaScript files are as small as pos-
sible and will have the least possible impact on overall page performance.

ES2018 and ES2019
Beginning with ECMAScript 2015, the TC-39 committee moved to begin releasing a new
ECMA specification each year. Doing so allows them to collect all individual proposals that are
at a sufficiently advanced stage and package them as a single bundle. This packaging is of lim-
ited importance, however, as browser vendors tend to adopt proposals in a piecemeal fashion.
When a proposal has reached stage 4, its behavior will not change, it is likely to be included in
the next ECMAScript release, and browsers will begin adopting the proposal’s features at their
discretion.

The ECMAScript 2018 proposal was finalized in January 2018 and features enhancements for
asynchronous iteration, the rest and spread operators, regular expressions, and promises. TC-39
maintains a GitHub repository (https://github.com/tc39/ecma262) that you can use to
track the status of various proposals:

TODO FIX ASYNC ITERATION
TODO ES2019 http://exploringjs.com/es2018-es2019/toc.html

ASYNCHRONOUS ITERATION

Asynchronous execution and the iterator protocol are two extremely pervasive themes in new
ECMAScript features over recent releases. Asynchronous execution involves releasing control of
the execution thread to allow slow operations to finish before regaining control, and the itera-
tor protocol involves defining a canonical ordering for arbitrary objects. Asynchronous iteration
is merely the logical assimilation of these two concepts.

A synchronous iterator provides you with a { value, done } pair each time next() is
invoked. Of course, this requires that the computation and resource fetching needed to deter-
mine the contents of this pair be completed by the time the next() invocation exits—otherwise,
these values are indeterminate. When using a synchronous iterator to iterate over values that are

A

NOTE Because the features described in this chapter are so new, they will have
limited browser support (if any at all). Consult https://caniuse.com/ to deter-
mine if a browser version supports a certain feature.

Professional JavaScript® for Web Developers, Fourth Edition. Matt Frisbie.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

1068 ❘ APPENDIX A ES2018 and ES2019

determined asynchronously, the main execution thread will be blocked while waiting for the asyn-
chronous operation to complete.

With asynchronous iterators, this problem is totally solved. An asynchronous iterator provides you
with a promise that resolves to a { value, done } pair each time next() is invoked. This way, the
thread of execution can be released and perform work elsewhere while the current loop iteration is
being resolved.

Creating and Using an Async Iterator
Async iterators are best understood through comparison with a traditional synchronous iterator. The
following is a simple Emitter class, which contains a synchronous generator function that produces a
synchronous iterator that will count from 0 to 4:

class Emitter {
 constructor(max) {
 this.max = max;
 this.syncIdx = 0;
 }

 *[Symbol.iterator]() {
 while(this.syncIdx < this.max) {
 yield this.syncIdx++;
 }
 }
}

const emitter = new Emitter(5);

function syncCount() {
 const syncCounter = emitter[Symbol.iterator]();

 for (const x of syncCounter) {
 console.log(x);
 }
}

syncCount();
// 0
// 1
// 2
// 3
// 4

The previous example only works because in each iteration, the next value is immediately able to
be yielded. If instead you did not want to block the main thread of execution while determining the
next value to yield, you can also define an asynchronous generator function that will yield Promise-
wrapped values.

This can be accomplished using async-flavored versions of iterators and generators. ECMAScript
2018 defines Symbol.asyncIterator, which allows you to define and invoke Promise-yielding gen-
erator functions. The specification also introduces an asynchronous for loop iterator, the for-
await-of loop, intended to consume this async iterator.

Asynchronous Iteration ❘ 1069

Using these, the previous example can be extended to support both synchronous and asynchronous
iteration:

class Emitter {
 constructor(max) {
 this.max = max;
 this.syncIdx = 0;
 this.asyncIdx = 0;
 }

 *[Symbol.iterator]() {
 while(this.syncIdx < this.max) {
 yield this.syncIdx++;
 }
 }
 async *[Symbol.asyncIterator]() {
 *[Symbol.asyncIterator]() {
 while(this.asyncIdx < this.max) {
 yield new Promise((resolve) => resolve(this.asyncIdx++;
 }
 }
}

const emitter = new Emitter(5);

function syncCount() {
 const syncCounter = emitter[Symbol.iterator]();

 for (const x of syncCounter) {
 console.log(x);
 }
}

async function asyncCount() {
 const asyncCounter = emitter[Symbol.asyncIterator]();

 for await(const x of asyncCounter) {
 console.log(x);
 }
}

syncCount();
// 0
// 1
// 2
// 3
// 4

asyncCount();
// 0
// 1
// 2
// 3
// 4

1070 ❘ APPENDIX A ES2018 and ES2019

To further your understanding, swap out the above example so that the synchronous generator is
passed to a for-await-of loop:

const emitter = new Emitter(5);

async function asyncIteratorSyncCount() {
 const syncCounter = emitter[Symbol.iterator]();

 for await(const x of syncCounter) {
 console.log(x);
 }
}

asyncIteratorSyncCount();
// 0
// 1
// AsyncIteratorExample01.js
2
// 3
// 4

Even though the sync counter iterates through primitive values, the for-await-of loop will handle the
values as if they were returned wrapped in promises. This demonstrates the power of the for-await-of
loop, which allows it to fluently handle both synchronous and asynchronous iterables. This is not true
for a normal for loop, which cannot handle an asynchronous iterator:

function syncIteratorAsyncCount() {
 const asyncCounter = emitter[Symbol.asyncIterator]();

 for (const x of asyncCounter) {
 console.log(x);
 }
}

syncIteratorAsyncCount();
// TypeError: asyncCounter is not iterable

One of the most important concepts to understand about async iterators is that the Symbol.asyncIterator
designation doesn’t alter the behavior of the generator function or how the generator is consumed.
Note that the generator function is defined as an async function, and designated as a generator using an
asterisk. Symbol.asyncIterator merely suggests to an external construct such as a for-await-of loop that
the associated iterator will return a sequence promise objects.

Understanding the Async Iterator Queue
Of course, the previous example is quite contrived, as the promises returned from the iterator are
instantaneously resolved, and therefore it is little more than a thinly wrapped synchronous itera-
tor. Suppose instead that the yielded promises resolved after an indeterminate period of time; what’s
more, suppose they return out of order. An asynchronous iterator should emulate a synchronous
iterator in every way possible, including in-order execution of code associated with each iteration. To
address this, asynchronous iterators maintain a queue of callbacks to ensure that the iterator handler

Asynchronous Iteration ❘ 1071

for an earlier value will always complete execution before proceeding to a later value, even if the later
value resolves before the earlier value.

To prove this, the async iterator in the following example returns promises which resolve after a
random period of time. The async iteration queue ensures that the promise resolution order does
not interfere with the order of iteration. As a result, the integers will be printed in order (at random
intervals):

class Emitter {
 constructor(max) {
 this.max = max;
 this.syncIdx = 0;
 this.asyncIdx = 0;
 }

 *[Symbol.iterator]() {
 while(this.syncIdx < this.max) {
 yield this.syncIdx++;
 }
 }
 async *[Symbol.asyncIterator]() {
 while(this.asyncIdx < this.max) {
 yield new Promise((resolve) => {
 setTimeout(() => {
 resolve(this.asyncIdx++);
 }, Math.floor(Math.random() * 1000));
 });
 }
 }
}

const emitter = new Emitter(5);

function syncCount() {
 const syncCounter = emitter[Symbol.iterator]();

 for (const x of syncCounter) {
 console.log(x);
 }
}

async function asyncCount() {
 const asyncCounter = emitter[Symbol.asyncIterator]();

 for await(const x of asyncCounter) {
 console.log(x);
 }
}

syncCount();
// 0
// 1
// 2
// 3
// 4

1072 ❘ APPENDIX A ES2018 and ES2019

asyncCount();
// 0
// 1
// 2
// 3
// 4
AsyncIteratorExample02.js

Async Iterator reject() Handling
Because the composition of asynchronous iterators consists of promises, one must consider the
possibility that one of the promises produced by the iterator will reject. Because the design of asyn-
chronous iteration insists on in-order completion, it would not make sense to proceed past a rejected
promise through the loop; therefore, a rejected promise will force the iterator to exit:

class Emitter {
 constructor(max) {
 this.max = max;
 this.asyncIdx = 0;
 }

 async *[Symbol.asyncIterator]() {
 while (this.asyncIdx < this.max) {
 if (this.asyncIdx < 3) {
 yield this.asyncIdx++;
 } else {
 throw 'Exited loop';
 }
 }
 }
}

const emitter = new Emitter(5);

async function asyncCount() {
 const asyncCounter = emitter[Symbol.asyncIterator]();

 for await (const x of asyncCounter) {
 console.log(x);
 }
}

asyncCount();
// 0
// 1
// 2
// Uncaught (in promise) Exited loop

Manual Async Iteration Using next()
The for-await-of loop offers two useful features: it makes use of the async iterator queue to ensure
in-order execution, and it hides the promise structure of the async iterator. However, using such a
loop conceals much of the underlying behavior.

Asynchronous Iteration ❘ 1073

Because the async iterator still follows the iterator protocol, you can just as easily progress through
the async iterable using next(). As described earlier, next() contains a promise that will resolve to
{ value, done }. This means that you must use the Promise API to retrieve methods, but it also
means that you are not forced to use the async iterator queue.

const emitter = new Emitter(5);

const asyncCounter = emitter[Symbol.asyncIterator]();

console.log(asyncCounter.next());
// { value: Promise, done: false }

Top-Level Async Loops
As a rule, async behavior—including for-await-of loops—cannot exist outside of an async func-
tion. However, you may find it necessary on occasion to make use of async behavior in such a con-
text. This can be accomplished by creating an async IIFE:

class Emitter {
 constructor(max) {
 this.max = max;
 this.asyncIdx = 0;
 }

 async *[Symbol.asyncIterator]() {
 while(this.asyncIdx < this.max) {
 yield new Promise((resolve) => resolve(this.asyncIdx++));
 }
 }
}

const emitter = new Emitter(5);

(async function() {
 const asyncCounter = emitter[Symbol.asyncIterator]();

 for await(const x of asyncCounter) {
 console.log(x);
 }
})();
// 0
// 1
// 2
// 3
// 4

Implementing Observables
Because asynchronous iterators will patiently wait for the next iteration without incurring computa-
tional cost, an entirely new avenue for implementing an observable interface opens up. At a high level,
this will take the form of capturing events, wrapping them in promises, and then feeding these events
through the iterator to allow for the listener to hook into the asynchronous iterator. When an event is
fired, the next promise in the async iterator will resolve with that event.

1074 ❘ APPENDIX A ES2018 and ES2019

NOTE The topic of observables is outside the scope of this book because they
are largely implemented as third-party libraries. For further reading, look into
the wildly popular RxJS library (http://reactivex.io/rxjs/).

A simplistic example of this would be to capture an observable stream of browser events. This
requires a queue of promises, each of which corresponds to a single event. The queue will also pre-
serve the order in which events are generated, which is a desirable feature for this sort of problem.

class Observable {
 constructor() {
 this.promiseQueue = [];

 // Holds the resolver for the next promise in the queue
 this.resolve = null;

 // Pushes the initial promise on the queue which will
 // resolve with the first observed event
 this.enqueue();
 }

 // Create a new promise, save its resolve method, and
 // store it on the queue
 enqueue() {
 this.promiseQueue.push(
 new Promise((resolve) => this.resolve = resolve));
 }

 // Remove the promise at the front of the queue and
 // return it
 dequeue() {
 return this.promiseQueue.shift();
 }
}

To make use of this promise queue, define an asynchronous generator method on this class. This gen-
erator should work for any event type:

class Observable {
 constructor() {
 this.promiseQueue = [];

 // Holds the resolver for the next promise in the queue
 this.resolve = null;

 // Pushes the initial promise on the queue which will
 // resolve with the first observed event
 this.enqueue();
 }

 // Create a new promise, save its resolve method, and
 // store it on the queue
 enqueue() {

Asynchronous Iteration ❘ 1075

 this.promiseQueue.push(
 new Promise((resolve) => this.resolve = resolve));
 }

 // Remove the promise at the front of the queue and
 // return it
 dequeue() {
 return this.promiseQueue.shift();
 }

 async *fromEvent (element, eventType) {
 // Whenever an event is generated, resolve the promise
 // at the front of the queue with the event object and
 // enqueue another promise.
 element.addEventListener(eventType, (event) => {
 this.resolve(event);
 this.enqueue();
 });

 // Each resolved promise at the front of the queue will
 // yield the event object to the async iterator
 while (1) {
 yield await this.dequeue();
 }
 }
}

With this fully defined class, it is now trivial to define an observable on DOM elements. Suppose the
page has a <button> inside it; you could capture a stream of click events on this button and log
each of them to the console as follows:

class Observable {
 constructor() {
 this.promiseQueue = [];

 // Holds the resolver for the next promise in the queue
 this.resolve = null;

 // Pushes the initial promise on the queue which will
 // resolve with the first observed event
 this.enqueue();
 }

 // Create a new promise, save its resolve method, and
 // store it on the queue
 enqueue() {
 this.promiseQueue.push(
 new Promise((resolve) => this.resolve = resolve));
 }

 // Remove the promise at the front of the queue and
 // return it
 dequeue() {
 return this.promiseQueue.shift();
 }

1076 ❘ APPENDIX A ES2018 and ES2019

 async *fromEvent (element, eventType) {
 // Whenever an event is generated, resolve the promise
 // at the front of the queue with the event object and
 // enqueue another promise.
 element.addEventListener(eventType, (event) => {
 this.resolve(event);
 this.enqueue();
 });

 // Each resolved promise at the front of the queue will
 // yield the event object to the async iterator
 while (1) {
 yield await this.dequeue();
 }
 }
}

(async function() {
 const observable = new Observable();

 const button = document.querySelector('button');
 const mouseClickIterator = observable.fromEvent(button, 'click');

 for await (const clickEvent of mouseClickIterator) {
 console.log(clickEvent);
 }
})();

REST AND SPREAD OPERATORS FOR OBJECT LITERALS

In the ECMAScript 2018 specification, all the elegance of rest and spread operators in arrays is
now also available inside object literals. This allows you to merge objects or collect properties into
new objects.

Rest Operator
The rest operator allows you to use a single rest operator when destructuring an object to collect all
remaining unspecified enumerable properties into a single object. This can be done as follows:

const person = { name: 'Matt', age: 27, job: 'Engineer' };
const { name, ...remainingData } = person;

console.log(name); // Matt
console.log(remainingData); // { age: 27, job: 'Engineer' }

The rest operator can be used at most once per object literal and must be listed last. Because there can
be only a single rest operator per object literal, it is possible to nest the rest operators. When nesting,
because there is no ambiguity about which elements of the property subtree are allocated to any given
rest operator, the resulting objects will never overlap with respect to their contents:

const person = { name: 'Matt', age: 27, job: { title: 'Engineer', level: 10 } };

const { name, job: { title, ...remainingJobData }, ...remainingPersonData } = person;

Rest and Spread Operators for Object Literals ❘ 1077

console.log(name); // Matt
console.log(title); // Engineer
console.log(remainingPersonData); // { age: 27 }
console.log(remainingJobData); // { level: 10 }

const { ...a, job } = person;
// SyntaxError: Rest element must be last element

The rest operator performs a shallow copy between objects, so object references will be copied
instead of creating entire object clones:

const person = { name: 'Matt', age: 27, job: { title: 'Engineer', level: 10 } };

const { ...remainingData } = person;

console.log(person === remainingData); // false
console.log(person.job === remainingData.job); // true

The rest operator will copy all enumerable own properties, including symbols:

const s = Symbol();
const foo = { a: 1, [s]: 2, b: 3 }

const {a, ...remainingData} = foo;

console.log(remainingData);
// { b: 3, Symbol(): 2 }

Spread Operator
The spread operator allows you to join two objects together in a fashion similar to array concatena-
tion. The spread operator applied to an inner object will perform a shallow copy of all enumerable
own properties, including symbols, into the outer object:

const s = Symbol();
const foo = { a: 1 };
const bar = { [s]: 2 };

const foobar = {...foo, c: 3, ...bar};

console.log(foobar);
// { a: 1, c: 3 Symbol(): 2 }

The order in which the spread objects are listed matters for two reasons:

1. Objects track insertion order. The properties copied from spread objects will be performed in
the order they are listed inside the object literal.

2. Objects will overwrite properties as duplicates are encountered. The last property encoun-
tered will be the one that assumes the value.

These ordering conventions are demonstrated here:

const foo = { a: 1 };
const bar = { b: 2 };

1078 ❘ APPENDIX A ES2018 and ES2019

const foobar = {c: 3, ...bar, ...foo};

console.log(foobar);
// { c: 3, b: 2, a: 1}

const baz = { c: 4 };

const foobarbaz = {...foo, ...bar, c: 3, ...baz };

console.log(foobarbaz);
// { a: 1, b: 2, c: 4 }

As with the rest operator, all copies performed are shallow:

const foo = { a: 1 };
const bar = { b: 2, c: { d: 3 } };

const foobar = {...foo, ...bar};

console.log(foobar.c === bar.c); // true

PROMISE FINALLY() DEFINITION

Formerly, there were only inelegant ways of defining behavior that would execute after a prom-
ise exits the “pending” state no matter the outcome. Usually, this would take the form of recycling
the handler:

let resolveA, rejectB;

function finalHandler() {
 console.log('finished');
}

function resolveHandler(val) {
 console.log('resolved');
 finalHandler();
}

function rejectHandler(err) {
 console.log('rejected');
 finalHandler();
}

new Promise((resolve, reject) => {
 resolveA = resolve;
})
.then(resolveHandler, rejectHandler);

new Promise((resolve, reject) => {
 rejectB = reject;
})
.then(resolveHandler, rejectHandler);

Regular Expression Enhancements ❘ 1079

resolveA();
rejectB();
// resolved
// finished
// rejected
// finished

With Promise.prototype.finally(), you are able to unify the shared handler. The finally()
handler is not passed any arguments and does not know if it is handling a resolved or rejected prom-
ise. The preceding example can be refactored to the following:

let resolveA, rejectB;

function finalHandler() {
 console.log('finished');
}

function resolveHandler(val) {
 console.log('resolved');
}

function rejectHandler(err) {
 console.log('rejected');
}

new Promise((resolve, reject) => {
 resolveA = resolve;
})
.then(resolveHandler, rejectHandler)
.finally(finalHandler);

new Promise((resolve, reject) => {
 rejectB = reject;
})
.then(resolveHandler, rejectHandler)
.finally(finalHandler);

resolveA();
rejectB();
// resolved
// rejected
// finished
// finished

You’ll note here that the order of logging has changed. Each finally() creates a new promise
instance, and these new promises are added to the browser’s microtask queue and only resolved after
the preceding handler promises are resolved.

REGULAR EXPRESSION ENHANCEMENTS

ECMAScript 2018 features a handful of new bells and whistles for regular expressions.

1080 ❘ APPENDIX A ES2018 and ES2019

dotAll Flag
One annoying quirk of regular expressions was that the single character match token (the period “.”)
does not match line terminator characters, such as \n and \r, or non-BMP characters, such as emojis.

const text = `
foo
bar
`;

const re = /foo.bar/;

console.log(re.test(text)); // false

This proposal introduces the “s” flag (standing for singleline), which corrects for this behavior:

const text = `
foo
bar
`;

const re = /foo.bar/s;

console.log(re.test(text)); // true

Lookbehind Assertions
Regular expressions support both positive and negative lookahead assertions, which allow declara-
tion of expectations following a matched segment:

const text = 'foobar';

// Positive lookahead
// Assert that a value follows, but do not capture
const rePositiveMatch = /foo(?=bar)/;
const rePositiveNoMatch = /foo(?=baz)/;

console.log(rePositiveMatch.exec(text));
// ["foo"]

console.log(rePositiveNoMatch.exec(text));
// null

// Negative lookahead
// Assert that a value does not follow, but do not capture
const reNegativeNoMatch = /foo(?!bar)/;
const reNegativeMatch = /foo(?!baz)/;

console.log(reNegativeNoMatch.exec(text));
// null

console.log(reNegativeMatch.exec(text));
// ["foo"]

Regular Expression Enhancements ❘ 1081

The new proposal introduces the mirror image of these assertions, positive and negative lookbehinds.
These work identically to lookahead assertions, with the exception that they work to inspect content
preceding the matched segment:

const text = 'foobar';

// Positive lookbehind
// Assert that a value precedes, but do not capture
const rePositiveMatch = /(?<=foo)bar/;
const rePositiveNoMatch = /(?<=baz)bar/;

console.log(rePositiveMatch.exec(text));
// ["bar"]

console.log(rePositiveNoMatch.exec(text));
// null

// Negative behind
// Assert that a value does not precede, but do not capture
const reNegativeNoMatch = /(?<!foo)bar/;
const reNegativeMatch = /(?<!baz)bar/;

console.log(reNegativeNoMatch.exec(text));
// null

console.log(reNegativeMatch.exec(text));
// ["bar"]

Named Capture Groups
Typically, multiple capture groups were accessed by index, which was a terrific exercise in frustration
because indices offer no context as to what they actually contain:

const text = '2018-03-14';

const re = /(\d+)-(\d+)-(\d+)/;

console.log(re.exec(text));
//["2018-03-14", "2018", "03", "14"]

The proposal allows for associating a valid JavaScript identifier with a capture group that can then be
retrieved from the groups property of the result:

const text = '2018-03-14';

const re = /(?<year>\d+)-(?<month>\d+)-(?<day>\d+)/;

console.log(re.exec(text).groups);
// { year: "2018", month: "03", day: "14" }

Unicode Property Escapes
The Unicode standard defines properties for each character. Character properties such as character
name, categories, white space designation, and the script or language the character is defined inside
are all available as character properties. Unicode property escapes allow you to use these properties
inside regular expressions.

1082 ❘ APPENDIX A ES2018 and ES2019

Some properties are binary, meaning they can be applied standalone. Examples of this are Uppercase
and White_Space. Other properties behave as key/value pairs, where a property will correspond to a
property value. An example of this is Script_Extensions=Greek.

A list of Unicode properties can be found at http://unicode.org/Public/UNIDATA/
PropertyAliases.txt.

A list of Unicode property values can be found at http://unicode.org/Public/
UNIDATA/PropertyValueAliases.txt.

Unicode property escapes in regular expressions can use \p to select a match, or \P to select a
non-match:

const pi = String.fromCharCode(0x03C0);
const linereturn = `
`;

const reWhiteSpace = /\p{White_Space}/u;
const reGreek = /\p{Script_Extensions=Greek}/u;
const reNotWhiteSpace = /\P{White_Space}/u;
const reNotGreek = /\P{Script_Extensions=Greek}/u;

console.log(reWhiteSpace.test(pi)); // false
console.log(reWhiteSpace.test(linereturn)); // true
console.log(reNotWhiteSpace.test(pi)); // true
console.log(reNotWhiteSpace.test(linereturn)); // false

console.log(reGreek.test(pi)); // true
console.log(reGreek.test(linereturn)); // false
console.log(reNotGreek.test(pi)); // false
console.log(reNotGreek.test(linereturn)); // true

ARRAY FLATTENING METHODS

ECMAScript 2019 added two methods to the Array prototype, flat() and flatMap(), which make
array flattening operations much easier. Without these methods, flattening arrays is a nasty business
which involved either an iterative or recursive solution.

NOTE flat() and flatMap() are strictly limited to flattening nested arrays.
Nested iterable objects such as Map and Set will not be flattened.

Array.prototype.flatten()
The following is an example of how a simple recursive implementation might look without using
these new methods:

function flatten(sourceArray, flattenedArray = []) {
 for (const element of sourceArray) {
 if (Array.isArray(element)) {
 flatten(element, flattenedArray);
 } else {

Array Flattening Methods ❘ 1083

 flattenedArray.push(element);
 }
 }

 return flattenedArray;
}

const arr = [[0], 1, 2, [3, [4, 5]], 6];

console.log(flatten(arr))
// [0, 1, 2, 3, 4, 5, 6]

In many ways, this example resembles a tree data structure; each element in an array behaves like a
child node, and non-array elements are leaves. Therefore, in this example the input array is a tree of
height 2 with 7 leaves. Flattening this array is in essence an in-order traversal of the leaves.

It is sometimes useful to be able to specify how many levels of array nesting should be flattened. Con-
sider the following example which modifies the initial implementation and allows for the flattening
depth to be specified:

function flatten(sourceArray, depth, flattenedArray = []) {
 for (const element of sourceArray) {
 if (Array.isArray(element) && depth > 0) {
 flatten(element, depth - 1, flattenedArray);
 } else {
 flattenedArray.push(element);
 }
 }

 return flattenedArray;
}

const arr = [[0], 1, 2, [3, [4, 5]], 6];

console.log(flatten(arr, 1));
// [0, 1, 2, 3, [4, 5], 6]

To address these use cases, the Array.prototype.flat() method was added. This method accepts
a depth argument (defaulting to a depth of 1) and returns a shallow copy of the Array instance flat-
tened to the specified depth. This is demonstrated here:

const arr = [[0], 1, 2, [3, [4, 5]], 6];

console.log(arr.flat(2));
// [0, 1, 2, 3, 4, 5, 6]

console.log(arr.flat());
// [0, 1, 2, 3, [4, 5], 6]

Because a shallow copy is performed, arrays with cycles will copy values from the source array when
flattening:

const arr = [[0], 1, 2, [3, [4, 5]], 6];

arr.push(arr);

1084 ❘ APPENDIX A ES2018 and ES2019

console.log(arr.flat());
// [0, 1, 2, 3, 4, 5, 6, [0], 1, 2, [3, [4, 5]], 6]

Array.prototype.flatMap()
The Array.prototype.flatMap() method allows you to perform a map operation before flattening
the array. arr.flatMap(f) is functionally equivalent to arr.map(f).flat(), but arr.flatMap() is
more efficient since the browser only must perform a single traversal.

The function signature of flatMap() is identical to map(). A simple example is as follows:

const arr = [[1], [3], [5]];

console.log(arr.map(([x]) => [x, x + 1]));
// [[1, 2], [3, 4], [5, 6]]

console.log(arr.flatMap(([x]) => [x, x + 1]));
// [1, 2, 3, 4, 5, 6]

flatMap() is especially useful in situations where a non-array object’s method returns an array, such
as split(). Consider the following example, where a collection of input strings is split into words
and joined into a single word array:

const arr = ['Lorem ipsum dolor sit amet,', 'consectetur adipiscing elit.'];

console.log(arr.flatMap((x) => x.split(/[\W+]/)));
// ["Lorem", "ipsum", "dolor", "sit", "amet", "", "consectetur", "adipiscing",
"elit", ""]

A handy trick (albeit one which may incur a performance hit) is to use an empty array to filter out
results after a map. The following example extends the above example to strip out the empty strings:

const arr = ['Lorem ipsum dolor sit amet,', 'consectetur adipiscing elit.'];

console.log(arr.flatMap((x) => x.split(/[\W+]/)).flatMap((x) => x || []));
// ["Lorem", "ipsum", "dolor", "sit", "amet", consectetur", "adipiscing", "elit"]

Here, each empty string in the results is first mapped to an empty array. When flattening, these empty
arrays are effectively skipped in the array which is eventually returned.

NOTE This strategy is not recommended, as each value to be filtered requires
construction of a new Array instance that is immediately discarded.

OBJECT.FROMENTRIES()

ECMAScript 2019 added a static method fromEntries() to the Object class which builds an object
from a collection of key-value array pairs. This method performs the opposite operation of Object.
entries(). This method is demonstrated here:

const obj = {
 foo: 'bar',

Symbol.Prototype.Description ❘ 1085

 baz: 'qux'
};

const objEntries = Object.entries(obj);

console.log(objEntries);
// [["foo", "bar"], ["baz", "qux"]]

console.log(Object.fromEntries(objEntries));
// { foo: "bar", baz: "qux" }

The static method expects an iterable object containing any number of iterable objects of size 2. This
is especially useful in cases where you wish to convert a Map instance to an Object instance, as the
Map iterator’s output exactly matches the signature that fromEntries() ingests:

const map = new Map().set('foo', 'bar');

console.log(Object.fromEntries(map));
// { foo: "bar" }

STRING TRIMMING METHODS

ECMAScript 2019 added two methods to the String prototype, trimStart() and trimEnd(),
which allow for targeted whitespace removal. These methods are intended to replace trimLeft() and
trimRight() which have ambiguous meaning in the context of right-to-left languages such as Arabic
and Hebrew.

These two methods are effectively the opposite of padStart() and padEnd() with a single space
character. The following example adds whitespace to a string and then removes it on either side:

let s = ' foo ';

console.log(s.trimStart()); // "foo "
console.log(s.trimEnd()); // " foo"

SYMBOL.PROTOTYPE.DESCRIPTION

ECMAScript 2019 added the ability to inspect the optional Symbol description via the description
property. Formerly, this was only available when the symbol was casted to a string:

const s = Symbol('foo');

console.log(s.toString());
// Symbol(foo)

With the ES2019 addition, each Symbol object has a read-only description property which exposes
the description. If there is no description, this default to undefined.

const s = Symbol('foo');

console.log(s.description);
// foo

1086 ❘ APPENDIX A ES2018 and ES2019

OPTIONAL CATCH BINDING

Prior to ES2019, the structure of a try/catch block was fairly rigid. Even if you did not wish to use the
error object caught, the parser still required you to assign the error object a variable name inside the
catch clause:

try {
 throw 'foo';
} catch (e) {
 // An error happened, but you don't care about the error object
}

In ES2019, you are now able to omit the error object assignment and simply ignore the error entirely:

try {
 throw 'foo';
} catch {
 // An error happened, but you don't care about the error object
}

MISCELLANEOUS ENHANCEMENTS

ES2019 also introduces a handful of tweaks to existing tooling:

➤➤ Array.prototype.sort() is stable, meaning that equivalent objects will not be reordered in
the output.

➤➤ Lone UTF-16 surrogate characters cannot be encoded in UTF-8, which causes problems
with JSON.stringify(). Rather than return unpaired surrogate code points as single UTF-
16 code units, they are now represented with JSON escape sequences.

➤➤ Previously, both U+2028 LINE SEPARATOR and U+2029 PARAGRAPH SEPARATOR
were valid in JSON strings but invalid in ECMAScript strings. ES2019 introduces compati-
bility between ECMAScript strings and JSON strings.

➤➤ Formerly, browser vendors had lots of room to specify what was returned from Function.
prototype.toString(). ES2019 requires that this method return the function’s source code
whenever possible, otherwise { [native code] }.

Strict Mode
ECMAScript 5 was the first to introduce the concept of strict mode. Strict mode allows you to
opt-in to stricter checking for JavaScript error conditions either globally or locally within a sin-
gle function. The advantage of strict mode is that you’ll be informed of errors earlier, so some of
the ECMAScript quirks that cause programming errors will be caught immediately.

The rules of strict mode are important to understand, as future versions of ECMAScript
will mandate the increasingly pervasive use of strict mode. Strict mode is supported in all
major browsers.

OPTING-IN

To opt-in to strict mode, use the strict mode pragma, which is simply a string that isn’t assigned
to any variable:

"use strict";

Using this syntax, which is valid even in ECMAScript 3, allows seamless fallback for JavaScript
engines that don’t support strict mode. The engines that support strict mode will enable it, while
engines that don’t will simply ignore the pragma as an unassigned string literal.

When the pragma is applied globally, outside of a function, strict mode is enabled for the entire
script. That means adding the pragma to a single script that is concatenated with other scripts
into a single file puts all JavaScript in the file into strict mode.

You can also turn on strict mode within a function only, such as:

function doSomething() {
 "use strict";
 // other processing
}

If you don’t have complete control over all of the scripts on a page, then it’s advisable to enable
strict mode only within specific functions for which it has been tested.

B

Professional JavaScript® for Web Developers, Fourth Edition. Matt Frisbie.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

1088 ❘ APPENDIX B Strict Mode

VARIABLES

How and when variables get created is different in strict mode. The first change disallows accidental
creation of global variables. In nonstrict mode, the following creates a global variable:

// Variable is not declared
// Non-strict mode: creates a global
// Strict mode: Throws a ReferenceError
message = "Hello world!";

Even though message isn’t preceded by the let keyword and isn’t explicitly defined as a property of
the global object, it is still automatically created as a global. In strict mode, assigning a value to an
undeclared variable throws a ReferenceError when the code is executed.

A related change is the inability to call delete on a variable. Nonstrict mode allows this and may
silently fail (returning false). In strict mode, an attempt to delete a variable causes an error:

// Deleting a variable
// Non-strict mode: Fails silently
// Strict mode: Throws a ReferenceError
let color = "red";
delete color;

Strict mode also imposes restrictions on variable names. Specifically, it disallows variables named
implements, interface, let, package, private, protected, public, static, and yield. These
are now reserved words that are intended for use in future ECMAScript editions. Any attempt to use
these as variable names while in strict mode will result in a syntax error.

OBJECTS

In strict mode, object manipulation is more likely to throw errors than in nonstrict mode. Strict mode
tends to throw errors in situations where nonstrict mode silently fails, increasing the likelihood of
catching an error early on in development.

To begin, there are several cases where attempting to manipulate an object property will
throw an error:

➤➤ Assigning a value to a read-only property throws a TypeError.

➤➤ Using delete on a nonconfigurable property throws a TypeError.

➤➤ Attempting to add a property to a nonextensible object throws a TypeError.

Another restriction on objects has to do with declaring them via object literals. When using an object
literal, property names must be unique. For instance:

// Two properties with the same name
// Non-strict mode: No error, second property wins
// Strict mode: Throws a syntax error
let person = {
 name: "Nicholas",
 name: "Greg"
};

Functions ❘ 1089

The object literal for person has two properties called name in this code. The second property is the
one that ends up on person in nonstrict mode. In strict mode, this is a syntax error.

NOTE The restriction on duplicate property names was removed in ECMAScript
6. Duplicate object literal property keys do not throw an error in strict mode.

FUNCTIONS

First, strict mode requires that named function arguments be unique. Consider the following:

// Duplicate named arguments
// Non-strict mode: No error, only second argument works
// Strict mode: Throws a SyntaxError
function sum (num, num){
 // do something
}

In nonstrict mode, this function declaration doesn’t throw an error. You’ll be able to access the second
num argument only by name while the first is accessible only through arguments.

The arguments object also has a slight behavior change in strict mode. In nonstrict mode, changes to
a named argument are also reflected in the arguments object, whereas strict mode ensures that each
are completely separate. For example:

// Change to named argument value
// Non-strict mode: Change is reflected in arguments
// Strict mode: Change is not reflected in arguments
function showValue(value){
 value = "Foo";
 alert(value); // "Foo"
 alert(arguments[0]); // Non-strict mode: "Foo"
 // Strict mode: "Hi"
}
showValue("Hi");

In this code, the function showValue() has a single named argument called value. The function is
called with an argument of "Hi", which is assigned to value. Inside the function, value is changed
to "Foo". In nonstrict mode, this also changes the value in arguments[0], but in strict mode they are
kept separate.

Another change is the elimination of arguments.callee and arguments.caller. In nonstrict mode,
these refer to the function itself and the calling function, respectively. In strict mode, attempting to
access either property throws a TypeError. For example:

// Attempt to access arguments.callee
// Non-strict mode: Works as expected
// Strict mode: Throws a TypeError
function factorial(num){
 if (num <= 1) {

1090 ❘ APPENDIX B Strict Mode

 return 1;
 } else {
 return num * arguments.callee(num-1)
 }
}
let result = factorial(5);

Similarly, the caller and arguments properties of a function now throw a TypeError when an
attempt is made to read or write them. So in this example, attempts to access factorial.caller and
factorial.callee would also throw an error.

Also, as with variables, strict mode imposes restrictions on function names, disallowing functions
named implements, interface, let, package, private, protected, public, static, and yield.

The last change to functions is disallowing function declarations unless they are at the top level
of a script or function. That means functions declared, for instance, in an if statement are now a
syntax error:

// Function declaration in an if statement
// Non-strict mode: Function hoisted outside of if statement
// Strict mode: Throws a syntax error
if (true){
 function doSomething(){
 // ...
 }
}

This syntax is tolerated on all browsers in nonstrict mode but will now throw a syntax error in
strict mode.

Function Parameters
ES6 introduced the rest operator, destructured parameters, and default parameters—a robust collec-
tion of new abilities for functions to organize, structure, and define their parameters. A small change
introduced in ECMAScript 7 dictates that functions that use any of these advanced parameter fea-
tures cannot use strict mode inside its function body without throwing an error. Use of global strict
mode is still allowed.

// ok
function foo(a, b, c) {
 "use strict";
}

// bad
function bar(a, b, c='d') {
 "use strict";
}

// bad
function baz({a, b, c}) {
 "use strict";
}

eval and Arguments ❘ 1091

// bad
function qux(a, b, ...c) {
 "use strict";
}

The new features introduced in ES6 expect that the parameters will be parsed in the same mode as
the function body. Because the "use strict" pragma is encountered inside the function body, the
JavaScript parser would need to check for a pragma inside the function body before ingesting the
function parameters, introducing a great deal of messiness. Therefore, the ES7 specification intro-
duced this convention in order to allow the parser to definitively know what mode it is operating in
before it begins to parse the function.

eval()

The much-maligned eval() function receives an upgrade in strict mode. The biggest change to
eval() is that it will no longer create variables or functions in the containing context. For example:

// eval() used to create a variable
// Non-strict mode: Alert displays 10
// Strict mode: Throws an ReferenceError when alert(x) is called
function doSomething(){
 eval("let x = 10");
 alert(x);
}

When run in nonstrict mode, this code creates a local variable x in the function doSomething() and
that value is then displayed using alert(). In strict mode, the call to eval() does not create the vari-
able x inside of doSomething() and so the call to alert() throws a ReferenceError because x is
undeclared.

Variables and functions can be declared inside of eval(), but they remain inside a special scope
that is used while code is being evaluated and then destroyed once completed. So the following code
works without any errors:

"use strict";
let result = eval("let x = 10, y = 11; x + y");
alert(result); // 21

The variables x and y are declared inside of eval() and are added together before returning their
value. The result variable then contains 21, the result of adding x and y, even though x and y no
longer exist by the time alert() is called.

eval AND ARGUMENTS

Strict mode now explicitly disallows using eval and arguments as identifiers and manipulating their
values. For example:

// Redefining eval and arguments as variables
// Non-strict mode: Okay, no error.
// Strict-mode: Throws syntax error
let eval = 10;
let arguments = "Hello world!";

1092 ❘ APPENDIX B Strict Mode

In nonstrict mode, you can overwrite eval and assign arguments to a value. In strict mode, this
causes a syntax error. You can’t use either as an identifier, which means all of the following use cases
throw a syntax error:

➤➤ Declaration using let

➤➤ Assignment to another value

➤➤ Attempts to change the contained value, such as using ++

➤➤ Used as function names

➤➤ Used as named function arguments

➤➤ Used as exception name in try-catch statement

COERCION OF THIS

One of the biggest security issues, and indeed one of the most confusing aspects of JavaScript, is how
the value of this is coerced in certain situations. When using the apply() or call() methods of a
function, a null or undefined value is coerced to the global object in nonstrict mode. In strict mode,
the this value for a function is always used as specified, regardless of the value. For example:

// Access a property
// Non-strict mode: Accesses the global property
// Strict mode: Throws an error because this is null
let color = "red";
function displayColor() {
 alert(this.color);
}
displayColor.call(null);

This code passes null to displayColor.call(), which in nonstrict mode means the this value of
the function is the global object. The result is an alert displaying "red". In strict mode, the this value
of the function is null, so it throws an error when attempting to access a property of a null object.

Typically, functions will coerce their this value into an object type, a behavior colloquially referred
to as “boxing.” Primitives will be coerced into their object wrapper equivalents.

function foo() {
 console.log(this);
}

foo.call(); // Window {}
foo.call(2); // Number {2}

When executed in strict mode, the this value will no longer undergo this boxing:

function foo() {
 "use strict";
 console.log(this);
}

foo.call(); // undefined
foo.call(2); // 2

Other Changes ❘ 1093

CLASSES AND MODULES

Classes and modules are two mediums of code containers introduced in ECMAScript 6. There is no
concept of an ECMAScript predecessor for either of these, and therefore there is no need to support
syntactical compatibility with legacy ECMAScript versions. Therefore, TC-39 decided that all code
defined inside ES6 classes and modules by default is in strict mode.

For classes, this includes both class declarations and class expressions; the constructor, instance meth-
ods, static methods, getters, and setters are all in strict mode. For modules, all code defined inside
them will be in strict mode.

OTHER CHANGES

There are several other changes to strict mode of which you need to be aware. The first is the elimi-
nation of the with statement. The with statement changes how identifiers are resolved and has been
removed from strict mode as a simplification. An attempt to use with in strict mode results in a
syntax error.

// Use of the with statement
// Non-strict mode: Allowed
// Strict mode: Throws a syntax error
with(location) {
 alert(href);
}

Strict mode also eliminates the octal literal from JavaScript. Octal literals begin with a zero and have
traditionally been the source of many errors. An octal literal is now considered invalid syntax in
strict mode.

// Use of octal literal
// Non-strict mode: value is 8.
// Strict mode: throws a syntax error.
let value = 010;

ECMAScript 5 changed parseInt() for nonstrict mode, where octal literals are now considered
decimal literals with a leading zero. For example:

// Use of octal literal in parseInt()
// Non-strict mode: value is 8
// Strict mode: value is 10
let value = parseInt("010");

C
JavaScript Libraries
and Frameworks

JavaScript libraries help to bridge the gap between browser differences and provide easier access
to complex browser features. Libraries come in two forms: general and specialty. General
JavaScript libraries provide access to common browser functionality and can be used as the
basis for a website or web application. Specialty libraries do only specific things and are
intended to be used for only parts of a website or web application. This appendix provides an
overview of these libraries and some of their functionality, along with websites that you can use
as additional resources.

FRAMEWORKS

The “framework” designation covers a spectrum of different patterns, but in some form they
all provide an opinionated organizational structure within which complex applications can
take shape. Using a framework allows for applications to maintain consistent code conventions
while elegantly scaling in size and complexity. They offer robust mechanisms for common tasks
such as component definition and reuse, controlling data flow, routing, and many others.

Increasingly, JavaScript frameworks take the form of a single page application (SPA). Single
page applications use the HTML5 browser history API to offer an entire application user
interface, complete with URL routing, with only a single initial page load. The framework man-
ages the application state as well as all the user interface components during the application’s
execution. Most popular SPA frameworks have strong developer communities as well as an
abundance of third-party extensions.

React
Created by Facebook, the React framework covers the “view” component in the Model-View-
Controller model. Its limited purview means it can be used in conjunction with other frame-
works or React extensions to attain full MVC coverage. React uses unidirectional data flow,
is declarative and component-based, uses a virtual DOM to efficiently rerender the page, and

Professional JavaScript® for Web Developers, Fourth Edition. Matt Frisbie.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

1096 ❘ APPENDIX C JavaScript LibrarieS and FrameworkS

offers a JSX syntax, which allows you to write markup inside JavaScript. Facebook also maintains a
complementary framework to React, named “Flux.”

License: MIT License

Website: https://reactjs.org/

Angular
First released in 2010 by Google, the Angular project is a full-featured web application framework
for Model-View-Viewmodel architectures. In 2016, the project forked into two branches: Angular
1.x, which is a continuation of the original AngularJS project, and Angular 2, which is a wholly
redesigned framework that is built around ES6 constructs and TypeScript. The latest releases of both
versions are directive and component-based implementations, and both projects enjoy robust devel-
oper communities and third-party add-ons.

License: MIT License

Websites: https://angularjs.org/ and https://angular.io/

Vue
Vue is a full-featured web application framework designed to be less opinionated than frameworks
like Angular. Since its release in 2014, its developer community has grown mightily, and many devel-
opers reach for Vue because of its ability to offer performance and organizational gains while allow-
ing for less rigorous adhesion to its tenets.

License: MIT License

Website: https://vuejs.org/

Ember
Ember is very similar to Angular in that it is also a Model-View-Viewmodel architecture and uses pre-
ferred conventions to fill out a web application. The 2.0 release in 2015 introduced many behavioral
characteristics used by the React framework.

License: MIT License

Website: https://emberjs.com/

Meteor
Meteor is wholly unlike any other framework in this list because it is an isomorphic JavaScript frame-
work, meaning that client and server share a codebase. It also uses a real-time data updating protocol,
which continually pushes fresh data changes from DB to client. Meteor is an extremely opinionated
framework; however, the benefit of this is that application features can be developed quickly using its
robust out-of-the-box featureset.

License: MIT License

Website: http://meteor.com/

General Libraries ❘ 1097

Backbone.js
A minimal Model-View-Controller (MVC) open-source library built on top of Underscore.js,
Backbone.js is optimized for single-page applications, enabling you to easily update parts of the page
as application state changes.

License: MIT License

Website: http://backbonejs.org/

GENERAL LIBRARIES

General JavaScript libraries provide functionality that spans across topics. All general libraries seek
to equalize browser interface and implementation differences by wrapping common functionality
with new APIs. Some of the APIs look similar to native functionality, whereas others look completely
different. General libraries typically provide interaction with the DOM, support for Ajax, and utility
methods that aid in common tasks.

jQuery
jQuery is an open-source library that provides a functional programming interface to JavaScript. It
is a complete library whose core is built around using CSS selectors to work with DOM elements.
Through call chaining, jQuery code looks more like a narrative description of what should happen
rather than JavaScript code. This style of code has become popular among designers and prototypers.

License: MIT License or General Public License (GPL)

Website: http://jquery.com/

Google Closure Library
The Google Closure Library is an all-purpose JavaScript toolkit, similar in many ways to jQuery.
It consists of an extremely broad set of modules covering both low-level operations and high-level
components and widgets. The Closure Library is designed so that modules can be included as neces-
sary, and the library is built to work alongside the Google Closure Compiler (covered in Appendix D,
“JavaScript Tools”).

License: Apache 2.0

Website: https://developers.google.com/closure/library/

Underscore.js
While not strictly a general library, Underscore.js does provide some additional functionality for func-
tional programming in JavaScript. The documentation talks about Underscore.js as a complement to
jQuery, providing additional low-level functionality for working with objects, arrays, functions, and
other JavaScript data types.

License: MIT License

Website: http://documentcloud.github.com/underscore/

1098 ❘ APPENDIX C JavaScript LibrarieS and FrameworkS

Lodash
In the same category as Underscore.js, Lodash is also a utility library that provides you with a supple-
mentary JavaScript toolkit. It introduces enhanced methods for native types, such as arrays, objects,
functions, and primitives.

License: MIT License

Website: https://lodash.com/

Prototype
Prototype is an open-source library that provides simple APIs for common web tasks. Originally
developed for use in Ruby on Rails, Prototype is class-driven, aiming to provide class definition and
inheritance for JavaScript. To that end, Prototype provides a number of classes that encapsulate com-
mon and complex functionality into simple API calls. As a single file, Prototype can be dropped into
any page with ease.

License: MIT License and Creative Commons Attribution-Share Alike 3.0 Unported

Website: www.prototypejs.org/

The Dojo Toolkit
In the Dojo Toolkit, an open-source library modeled on a package system, groups of functionality are
organized into packages that can be loaded on demand. Dojo provides a wide range of options and
configurations, covering almost anything you want to do with JavaScript.

License: “New” BSD License or Academic Free License version 2.1

Website: www.dojotoolkit.org/

MooTools
An open-source library designed to be compact and optimized, MooTools adds methods to native
JavaScript objects to provide new functionality on familiar interfaces and to provide new objects. Its
small size and simple API make MooTools a favorite among web developers.

License: MIT License

Website: www.mootools.net/

qooxdoo
qooxdoo is an open-source library that aims to help with the entire web-application development
cycle. qooxdoo implements its own versions of classes and interfaces to create a programming model
similar to traditional object-oriented (OO) languages. The library includes a full GUI toolkit and
compilers for simplifying the front-end build process. qooxdoo began as an internal library for the
1&1 web-hosting company (www.1and1.com) and later was released under an open-source license.

License: GNU Lesser General Public License (LGPL) or Eclipse Public License (EPL)

Website: www.qooxdoo.org/

Animation and Effects ❘ 1099

ANIMATION AND EFFECTS

Animation and other visual effects have become a big part of web development. Getting smooth
animation out of web pages can be a difficult task, and several library developers have stepped up
to provide easy-to-use and smooth animation and effects. Many of the general JavaScript libraries
mentioned previously also feature animation.

D3
Easily the most popular animation library, D3 (for “Data Driven Documents”) is the most robust and
powerful JavaScript data visualization tool in use today. It has an intensely deep featureset, covering
canvas, SVG, CSS, and HTML5 visualizations. The library gives you the capability to control the final
rendering with extreme precision.

License: BSD

Website: www.d3js.org/

three.js
three.js is one of the most popular WebGL libraries available. It offers a lightweight API that allows
you to perform complex 3D renderings and animations.

License: MIT License

Website: https://threejs.org

moo.fx
The moo.fx open-source animation library is designed to work on top of either Prototype or
MooTools. Its goal is to be as small as possible (the latest version is 3 KB) and to allow developers
to create animations while writing as little code as necessary. moo.fx is included with MooTools by
default; it can also be downloaded separately for use with Prototype.

License: MIT License

Website: http://moofx.mad4milk.net/

Lightbox
Lightbox, a JavaScript library for creating simple image overlays on any page, requires both Proto-
type and script.aculo.us to create its visual effects. The basic idea is to allow users to view an image or
a series of images in an overlay without leaving the current page. The “lightbox” overlay is customiz-
able in both appearance and transitions.

License: Creative Commons Attribution 2.5 License

Website: www.huddletogether.com/projects/lightbox2/

D
JavaScript Tools

Writing JavaScript is a lot like writing in any other programming language, with tools designed
to make development easier. The number of tools available for JavaScript developers contin-
ues to grow, making it much easier to locate problems, optimize, and deploy JavaScript-based
solutions. Some of the tools are designed to be used from JavaScript, whereas others can be
run outside the browser. This appendix provides an overview of some of these tools, as well as
additional resources for more information.

PACKAGE MANAGERS

JavaScript projects will usually need to leverage third-party libraries and assets to avoid code
duplication and speed development. Third-party libraries, referred to as “packages,” are hosted
on publicly available repositories. Packages can take the form of assets that will be delivered
to the browser, JavaScript libraries that will be compiled as part of your project, or even tools
for your project development pipeline. These packages are almost always actively developed
and undergoing revisions, in addition to having different flavors of releases. JavaScript pack-
age managers allow you to manage what packages your projects depend on, how to access and
install them, and which versions to install.

Package managers offer a command line interface for installing or removing project dependen-
cies. The project’s configuration will usually be stored in a local project manifest file.

npm
npm, which stands for "Node Package Manager," is the default package manager for the
NodeJS runtime. Third-party packages—provided inside the npm registry—can be specified as
project dependencies and installed locally via the command line. npm’s repository contains both
server-side and client-side JavaScript packages.

NOTE You will notice that various tools are included in multiple sections
throughout this appendix. Many JavaScript tools available today are meant to be
all-in-one project management tools, and thus they relate to multiple domains.

Professional JavaScript® for Web Developers, Fourth Edition. Matt Frisbie.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

1102 ❘ APPENDIX D JavaScript toolS

npm is designed for use on a server, where the size of a dependency graph is less critical. When install-
ing packages, npm uses a nested dependency tree to resolve all project dependencies; each project
dependency will install its own version of whatever other packages it depends on. This means that if
your project has three package dependencies—A, B, and C—and each of those depends on a different
version of package D, npm will install three separate versions of package D, one for each dependency.

Website: https://www.npmjs.com/

Bower
Bower features many of the same rhythms as npm, including package installation and management
CLI, but its focus is on managing packages that will be served to a client. One major difference
between Bower and npm is that Bower uses a flat dependency structure. This means that project
dependencies will share packages they depend on, and the user’s job is to resolve these dependen-
cies. For example, if your project has three package dependencies—A, B, and C—and each of those
depends on a different version of package D, you will need to find a single version of package D that
satisfies the requirements of all these packages because the flat dependency structure dictates that you
install a single version of any given package.

Website: https://bower.io/

JSPM
JSPM is a package manager built around using SystemJS for dynamic module loading. The package
manager itself is similar to npm but is registry agnostic; packages from the npm registry, Github, or
even custom registries can all be installed together using its CLI. Instead of bundling and precom-
piling assets on the server, JSPM allows you to dynamically serve packages to the client as needed
through SystemJS. Like Bower, it uses a flat dependency structure.

Website: https://jspm.io/

Yarn
Developed by Facebook, Yarn is a custom package manager that is, in many ways, a souped-up ver-
sion of npm. It can access all the same npm packages through the Yarn registry, and it installs them in
much the same way as npm. The primary differences between Yarn and npm is that the former offers
features that afford you faster installs, package caching, lockfiles, and improved package security
features.

Website: https://yarnpkg.com/

MODULE LOADERS

Module loaders allow you to request modules from the server on demand as opposed to loading
every single JS module or a single bundled JS file all at once. The ECMAScript 6 module specification
outlines an eventual target for browsers to natively support dynamic module loading. Presently, many
browsers still do not support ES6 module loading, and therefore module loaders serve as a sort of
polyfill that allows for packages to dynamically load modules from the client.

Module Bundlers ❘ 1103

SystemJS
The SystemJS module loader is geared for either server or client use. It supports all module formats,
including AMD, CommonJS, UMD, and ES6. It also supports in-browser transpilation (not recom-
mended for large-scale projects because of performance implications).

Website: https://github.com/systemjs/

RequireJS
RequireJS is built atop the AMD module specification and offers exceptional legacy browser sup-
port. Although RequireJS is tried and true, the JavaScript community as a whole is largely leaving the
AMD module format behind, so beginning a large project with RequireJS is not recommended.

Website: http://requirejs.org/

MODULE BUNDLERS

Module bundlers allow you to combine an arbitrary number of modules in various module formats
into bundles that can be loaded on the client. The module bundler will keep track of your applica-
tion’s dependency graph and order the modules as necessary. Frequently, the application can be served
as a single bundle, but multiple bundle configurations are also possible. Module bundlers also often
support bundling raw or compiled CSS assets. Bundles may take the form of a self-executing bundle,
or they may remain as concatenated module assets, which will not execute until necessary.

Webpack
Featuring a broad featureset and excellent extensibility, Webpack is overwhelmingly the most popu-
lar application bundler in use today. It can bundle different module types, supports a wide array of
plugins, and is fully compatible with most templating and transpilation libraries.

Website: https://webpack.js.org/

JSPM
JSPM is a package manager built around SystemJS and the ES6 module loader. One of JSPM’s recom-
mended production workflows is to bundle all your modules into a single file, which will then be
loaded by SystemJS. This is available to you through the JSPM CLI.

Website: https://jspm.io/

Browserify
Browserify is a slightly older but widely used and battle-tested module bundler that supports the
NodeJS-flavored CommonJS require() dependency syntax.

Website: http://browserify.org/

1104 ❘ APPENDIX D JavaScript toolS

Rollup
Rollup is similar in many ways to Browserify in its module bundling abilities, but it also introduces
tree shaking out-of-the-box. Rollup is able to parse your application’s dependency graph and prune
off any modules that are not actually used.

Website: https://rollupjs.org/

COMPILATION/TRANSPILATION TOOLS AND STATIC
TYPE SYSTEMS

Web application code written in the editor is almost never the exact code that will be served to the
client. Developers often want to leverage newer ECMAScript specification features that have yet to
gain universal browser adoption. Furthermore, developers also often want to augment or enhance
their codebase with a static type system or features outside the ECMA specification. There are a range
of tools to address different aspects of these needs.

Babel
Babel is one of the most popular tools used for compiling the latest ECMAScript specification fea-
tures down to a browser-friendly ECMA version. It also features support for React’s JSX, accepts a
wide range of plugins, and is compatible with all major build tools.

Website: https://babeljs.io/

Google Closure Compiler
Google’s Closure Compiler is a powerful JavaScript compiler that is capable of varying levels of
compilation optimization as well as a robust static type checking system. Type annotations are done
in JSDoc-style comments.

Website: https://developers.google.com/closure/

CoffeeScript
CoffeeScript is an augmented ECMAScript syntax that compiles into regular JavaScript; almost
everything in CoffeeScript is an expression. Its syntax enhancements are inspired by Ruby, Python,
and Haskell.

Website: http://coffeescript.org/

TypeScript
Microsoft’s TypeScript is a typed superset of JavaScript that introduces robust static type checking
and major syntax enhancements. Because it is a strict superset of JavaScript, regular JS programs are
valid TypeScript syntax. TypeScript also can use type definition files to specify type information for
existing JavaScript libraries.

Website: http://typescriptlang.org/

High-Performance Script Tools ❘ 1105

Flow
Facebook’s Flow is a simple type annotation system for JavaScript. Its type syntax is very similar to
TypeScript, but it does not add additional language features other than type declarations.

Website: https://flow.org/

HIGH-PERFORMANCE SCRIPT TOOLS

A common criticism of JavaScript is that it is incredibly slow and inappropriate for computing that
requires agility. Whether or not this “slow” designation carries water doesn’t change the fact that the
language was never built to support nimble computation. To address this, there are a number of pro-
jects that attempt to augment code execution paradigms in the browser in order to allow the program
to execute at near native speeds and make use of hardware optimizations.

WebAssembly
The WebAssembly project (or wasm) is working to implement a language that can run in many loca-
tions (portable) and exist as a binary language that can be compiled to from multiple low-level lan-
guages such as C++ and Rust. WebAssembly code runs in a totally separate virtual machine from that
of JavaScript in a browser, and its ability to interact with various browser APIs is extremely limited. It
is possible to interact with JavaScript and the DOM in an indirect and limited fashion, but the bigger
goal of WebAssembly is to create an extremely fast language that can run in web browsers (and else-
where) and offer near-native performance and hardware acceleration. The WebAssembly specification
is still being fleshed out and specified, but it is one of the most promising areas in browser technology.

Website: http://webassembly.org/

asm.js
asm.js is based around the idea that compiled JavaScript can be run much faster than handwrit-
ten JavaScript. asm.js is a subset of JavaScript that low-level language code can be compiled to and
executed in a normal browser or Node engine. Modern JavaScript engines infer types at runtime, and
asm.js code makes these type inferences (and therefore associated operations) much less computation-
ally expensive by coercing types using lexical hints. It also makes extensive use of TypedArrays, which
offer huge performance gains over the traditional associative JS array. asm.js is not as fast as WebAs-
sembly, but it still offers significant performance gains through compilation.

Website: http://asmjs.org/

Emscripten and LLVM
While it never executes in the browser, Emscripten is a critical toolkit for compiling low-level code
to WebAssembly and asm.js. Emscripten uses the LLVM compiler to compile languages such as C,
C++, and Rust into code that can either run directly in the browser (asm.js) or in a virtual machine
(WebAssembly).

Emscripten Website: http://kripken.github.io/emscripten-site/

LLVM Website: http://llvm.org/

1106 ❘ APPENDIX D JavaScript toolS

EDITORS

VIM, Emacs, and their ilk are excellent text editors, but as your build environment and application
scale in complexity it becomes increasingly useful for editors to automate common tasks such as
autocompletion, file formatting, code linting, and project directory comprehension. A broad range of
editors and IDEs that offer these features is available to choose from, both free and paid.

Sublime Text
Sublime Text is a wildly popular closed-source text editor. It can be used for developing in all lan-
guages, but it offers an extremely extensive library of plugins maintained by the community. The
performance of the editor is among the best in its class.

Website: https://sublimetext.com/

Price: Free trial; one-time $80 license

Atom
Github’s Atom is an open-source text editor with many of the same features as Sublime Text, includ-
ing a thriving community and third-party package add-ons. The editor sometimes struggles with
performance, but it is continually making strides in this area.

Website: https://atom.io/

Price: Free

Brackets
Adobe’s Brackets is similar to Atom in that it is open source, but the editor is designed specifically for
web developers and offers a number of very impressive and unique features geared toward frontend
coding. Accompanying it is a healthy library of plugins.

Website: http://brackets.io/

Price: Free

Visual Studio Code
Microsoft’s Visual Studio Code is an open-source code editor based on the Electron framework. Simi-
lar to other major editors, it is highly extensible via its package library.

Website: https://jetbrains.com/webstorm/

Price: Free

WebStorm
JetBrains’s WebStorm is an unapologetically high-octane IDE geared to be the ultimate project devel-
opment toolkit, featuring robust integration with the leading frontend frameworks. It also integrates
with most build tools and version control systems.

Website: https://jetbrains.com/webstorm/

Price: Free trial; monthly/yearly licensing fees

Linters and Formatters ❘ 1107

BUILD TOOLS, AUTOMATION SYSTEMS, AND TASK RUNNERS

The process of transforming a local project directory into an application served in production is
usually bundled into a number of tasks. Each of these tasks is often composed of a pipeline of many
subtasks—for example, building and deploying an application will involve module bundling, com-
pilation, minification, and pushing static assets, among many other tasks. Running a unit or integra-
tion test might involve initialization of test harnesses and spinning up headless browsers. To make
management and utilization of these tasks easier, there are a number of tools that allow you to more
efficiently compose and organize your application’s tasks.

Grunt
Grunt is a NodeJS task runner that uses configuration objects to declaratively define how tasks
should execute. It features a healthy community and a large selection of plugins from which to build
out your project’s tasks.

Website: https://gruntjs.com/

Gulp
Similar to Grunt, Gulp is also a NodeJS task runner, which instead uses a Unix-style pipeline
approach to task definition, where individual tasks are defined as JavaScript functions. Gulp also
features a vibrant community and package library.

Website: https://gulpjs.com/

Brunch
Brunch is another NodeJS build tool that is designed for simplicity and ease of use as opposed
to maximum configurability. It is newer than Gulp or Grunt, but still features a healthy selection
of plugins.

Website: http://brunch.io/

npm
Although not strictly a build tool, npm offers a scripts feature, which many developers have found
works nicely as a task runner that works out-of-the-box with no extra frills. Scripts are defined
directly inside the NodeJS package.json.

Website: https://docs.npmjs.com/misc/scripts/

LINTERS AND FORMATTERS

Part of the problem with JavaScript debugging is that there aren’t many IDEs that automatically indi-
cate syntax errors as you type. Most developers write some code and then load it into a browser to
look for errors. You can significantly reduce the instances of such errors by validating your JavaScript
code before deployment. Linters check basic syntax and provide warnings about style.

Formatters are tools that implicitly understand the syntactical rules of a language and use a collection
of indentation, whitespace, line wrap, and other strategies to give you the capability to automatically

1108 ❘ APPENDIX D JavaScript toolS

neatly organize the content of a file. Formatters will never break or modify the code or semantic
meaning of the code, as they are aware of the kinds of modifications that would serve to alter the
execution.

ESLint
ESLint is an open-source JavaScript linting utility originally developed by none other than the author
of early editions of this very book, Nicholas Zakas. It is designed to be completely “pluggable”: It
comes out of the box with a commonsense set of default rules, but the rules are totally configur-
able, and there is a large library of modifiable and toggle-able rules that can be used to adjust the
linter’s behavior.

Website: www.eslint.org/

Google Closure Compiler
Built into the Closure Compiler is a linting utility that can be activated using command-line flags.
This linter operates on the abstract syntax tree of your code, so it does not perform checks for white-
space, indentation, or other code organization matters that do not affect code execution.

Website: https://developers.google.com/closure/

JSLint
JSLint is a JavaScript validator written by Douglas Crockford. It checks for syntax errors at a core
level, going with the lowest common denominator for cross-browser issues. (It follows the strictest
rules to ensure your code works everywhere.) You can enable Crockford’s warnings about coding
style, including code format, use of undeclared global variables, and more. Even though JSLint is writ-
ten in JavaScript, it can be run on the command line through the Java-based Rhino interpreter, as well
as through WScript and other JavaScript interpreters. The website provides custom versions for each
command-line interpreter

Website: www.jslint.com/

JSHint
JSHint is a fork of JSLint that provides more customization as to the rules that are applied. Like
JSLint, it checks for syntax errors first and then looks for problematic coding patterns. Each JSLint
check is also present in JSHint, but developers have better control over which rules to apply. Also
similar to JSLint, JSHint can be run on the command line using Rhino.

Website: www.jshint.com/

Clang Format
ClangFormat is a set of formatting tools built atop the LibFormat library, based on the Clang project.
It uses Clang formatting rules to automatically spatially reorganize your code (without actually
changing its semantic structure). It works as a standalone tool that can be used from the command
line, but it also features multiple editor integrations.

Website: https://clang.llvm.org/docs/ClangFormat.html

Unit Testing ❘ 1109

MINIFIERS

An important part of the JavaScript build process is crunching the output to remove excess char-
acters. Doing so ensures that only the smallest number of bytes are transmitted to the browser for
parsing and ultimately speeds up the user experience. There are several such minifiers available with
varying compression ratios.

Uglify
Uglify, currently in its third release, is a toolkit that allows you to minify, beautify, and compress your
JavaScript code. It can be run on the command line, and it offers an extremely wide range of com-
pression options that you can tweak to customize your minification.

Website: https://github.com/mishoo/UglifyJS2/

Google Closure Compiler
Although not strictly a minifier, Closure offers a number of optimization levels that will, as part of
their optimization routines, minify your code.

Website: https://developers.google.com/closure/

JSMin
JSMin is a C-based cruncher written by Douglas Crockford that does basic JavaScript compression.
It primarily removes white space and comments to ensure that the resulting code can still be executed
without issues. JSMin is available as a Windows executable with source code available in C and many
other languages.

Website: www.crockford.com/javascript/jsmin.html

Dojo ShrinkSafe
The same people responsible for the Dojo Toolkit have a tool called ShrinkSafe, which uses the Rhino
JavaScript interpreter to first parse JavaScript code into a token stream and then use that to safely
crunch the code. As with JSMin, ShrinkSafe removes extra white space (but not line breaks) and
comments but also goes one step further and replaces the names of local variables with two-character
variable names instead. The result is smaller output than with JSMin without any risk of introducing
syntax errors.

Website: http://shrinksafe.dojotoolkit.org/

UNIT TESTING

Most JavaScript libraries use some form of unit testing on their own code, and some publish the
unit-testing framework for others to use. Test-driven development (TDD) is a software-development
process built around the use of unit testing.

1110 ❘ APPENDIX D JavaScript toolS

Mocha
One of the most popular unit test frameworks available, Mocha offers excellent configurability and
extensibility when developing your unit tests. Tests are quite flexible, and their serial execution means
accurate reporting and easier debugging.

Website: https://mochajs.org/

Jasmine
Although it is on the older side of the spectrum of unit test frameworks, Jasmine is still extremely
popular. It comes with everything you need out of the box—meaning no external dependencies—and
its syntax is simple and easy to read.

Website: https://jasmine.github.io/

qUnit
qUnit is the unit-testing framework designed for use with jQuery. Indeed, jQuery itself uses qUnit
for all of its testing. Despite this, qUnit has no dependency on jQuery and can be used to test any
JavaScript code. qUnit is known for being a very simple unit-testing framework that lets people get up
and running easily.

Website: https://github.com/jquery/qunit

JsUnit
The original JavaScript unit-testing library is not tied to any particular JavaScript library. JsUnit is
a port of the popular JUnit testing framework for Java. Tests are run in the page and may be set up
for automatic testing and submission of results to a server. The website contains examples and basic
documentation.

Website: www.jsunit.net/

Dojo Object Harness
The Dojo Object Harness (DOH) began as the internal unit-testing tool for Dojo before being
released for everyone to use. As with the other frameworks, unit tests are run inside the browser.

Website: www.dojotoolkit.org/

DOCUMENTATION GENERATORS

Most IDEs include documentation generators for the primary language. Because JavaScript has no
official IDE, documentation has traditionally been done by hand or through repurposing documen-
tation generators for other languages. However, there are a number of documentation generators
specifically targeted at JavaScript.

Documentation Generators ❘ 1111

ESDoc
ESDoc is capable of generating very advanced documentation pages for your code, including the
ability to feature links to source code from the documentation page itself. It also features a library
of plugins to extend its features. However, ESDoc requires your codebase to consist exclusively of
ES6 modules.

Website: https://esdoc.org/

documentation.js
documentation.js processes JSDoc comments inside your code to auto-generate documentation in
HTML, Markdown, or JSON. It is compatible with the latest versions of ECMAScript and all major
build tools, and also can work with Flow annotations.

Website: https://documentation.js.org/

Docco
Per the website, Docco is a “quick and dirty” documentation generator. The motivation behind the
tool is that it is a very simple way of generating HTML pages which describe your codebase. Docco is
brittle in a few ways, but it offers the fewest barriers to generating documentation from your code.

Website: http://ashkenas.com/docco/

JsDoc Toolkit
The JsDoc Toolkit was one of the first JavaScript documentation generators. It requires you to enter
Javadoc-like comments into the source code, which are then processed and output as HTML files.
You can customize the format of the HTML using one of the prebuilt JsDoc templates or you can cre-
ate your own. The JsDoc Toolkit is available as a Java package.

Website: https://github.com/jsdoc3/jsdoc/

YUI Doc
YUI Doc is YUI’s documentation generator. The generator is written in Python, so it requires a
Python runtime environment to be installed. YUI Doc outputs HTML files with integrated prop-
erty and method searches implemented using the YUI’s Autocomplete widget. As with JsDoc, YUI
Doc requires Javadoc-like comments to be inserted into the source code. The default HTML can be
changed through the modification of the default HTML template file and associated style sheet.

Website: www.yuilibrary.com/projects/yuidoc/

AjaxDoc
The goal of AjaxDoc is slightly different from that of the previous generators. Instead of creat-
ing HTML files for JavaScript documentation, it creates XML files in the same format as those
created for .NET languages, such as C# and Visual Basic .NET. Doing so allows standard .NET

1112 ❘ APPENDIX D JavaScript toolS

documentation generators to create documentation as HTML files. AjaxDoc requires a format of
documentation comments that is similar to the documentation comments for all .NET languages.
AjaxDoc was created for use with ASP.NET Ajax solutions, but it can be used in standalone pro-
jects as well.

Website: www.codeplex.com/ajaxdoc/

1113

INDEX

Symbols
+ (add) operator, 83–84
& (AND) operator (bitwise), 74
&& (AND) operator (logical), 78–79
* (asterisk), 26
` (backticks), 46, 47
{} (curly braces), 27–28, 111
$ (dollar sign), 26
/ (divide) operator, 81
** (exponentiation operator), 82
== (equal) operator, 86–87, 833–835
/ (forward slash), 26
> (greater-than) operator, 85–86
>= (greater-than-or-equal-to) operator, 85–86
=== (identically equal to) operator, 87–88
<< (left shift), 76
< (less-than) operator, 19, 85–86
<= (less-than-or-equal-to) operator, 85–86
-- (minus signs), 69
& (modulus) operator, 82
* (multiply) operator, 80–81
! (NOT) operator, 73–74, 77–78
!= (not-equal) operator, 86–87, 833–835
!== (not identically equal to) operator, 88
| (OR) operator (bitwise), 74–75
|| (OR) operator (logical), 79–80
++ (plus signs), 68
>> (signed right shift), 76
+ (single plus sign), 70–72
- (subtract) operator, 84–85
_ (underscore), 26
>>> (unsigned right shift), 76–77
^ (XOR) operator, 75

A
abort() method, 767, 874
aborting requests, 894–895
absolute property, 649
abstract base classes, 316–317
acceleration property, 650

accelerationIncludingGravity property, 650
acceptCharset property, 707
acceptNode() method, 587
accessibility issues, 634
accessing element styles, 572–576
accessors

properties of, 254–255
prototype, 308–309
static class, 309–310

action property, 708
activate property, 1009
activated state, 1023
activating state, 1022–1023
activation object, 107
active property, 1007
activeVrDisplays property, 454
add() method, 110, 212–213, 218, 219, 549, 726,

730, 935, 936, 1015
add (+) operator, 83–84
addAll() method, 1015
addElement() method, 774
addEventListener() method, 607–608, 611–615
addHandler() method, 610–611
adding

options, 730
web component content, 804–805

additive operators, 82–85
addRange() method, 739
addSomeNumber() function, 356
addTen() function, 104
advance() method, 938, 940
Advanced Encryption Standard (AES), 813
AES-CBC, 813
AES-CTR, 813
AES-GCM, 814
AES-KW, 814
AjaxDoc, 1111–1112
alert() method, 448
algorithms
CryptoKey class and, 812–814
structured clone, 987–988

almost standards mode, 22–23

Professional JavaScript® for Web Developers, Fourth Edition. Matt Frisbie.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

1114

alpha property – Atomics API

alpha property, 649, 693
anchor() method, 157
anchorNode property, 738
anchorOffset property, 738
AND argument, 1091–1092
AND (&) operator (bitwise), 74
AND (&&) operator (logical), 78–79
Android, 478
Angular framework, 1096
animation, 1099. See also <canvas> element
anonymous functions. See closures
anotherFactorial() function, 372
anotherSum() function, 352
antialias property, 693
APIs. See specific APIs
appCodeName property, 454
append() method, 878, 896
appendChild() method, 495–496, 497, 499, 513,

519–520, 595, 731, 1057
application logic, decoupling, 1041–1042
apply() method, 295, 368–369
apply() trap, 342–343
appName property, 454
appVersion property, 455
arguments

about, 353–355
passing, 103–105, 295
spread, 359–360

arguments object, 364
arithmetic methods, 745–747
array flattening methods, 1082–1084
array holes, 172–174
array literal notation, 171
Array property, 160
Array type

about, 170
array holes, 172–174
conversion methods, 179–180
copy and fill methods, 176–178
creating arrays, 170–172
detecting arrays, 175
indexing into arrays, 174–175
iterative methods, 188–189
iterator methods, 176
manipulation methods, 184–186
queue methods, 181–182
reduction methods, 189–190
reordering methods, 182–184
search and location methods, 186–188
stack methods, 180–181

ArrayBuffers, 191–192
Array.from() method, 171–172, 221–222

Array.isArray() method, 175
Array.of() method, 221–222
Array.prototype.flat() method, 1083
Array.prototype.flatMap() method, 1084
Array.prototype.flatten() method, 1082–1084
arrays. See also typed arrays

creating, 170–172
detecting, 175
indexing into, 174–175
JSON, 863–864
using, 1055–1056

arrow functions, 350–351, 355
asm.js, 1105
assert() function, 844
assign() method, 452–453
assignHandler() function, 381
assignment operators, 88–89
asterisk (*), 26
astral plane, 145
asymmetric keys, signing and verifying messages

with, 819–820
async attribute, 13, 16, 17–18, 422–424
async callbacks, 540–541
async functions

about, 421
basics of, 422–427
halting, 427–430
resuming, 427–430
strategies for, 430–435

async iterator
creating, 1068–1070
implementing observables, 1073–1076
queue, 1070–1072
reject() handling, 1072
top-level Async loops, 1073
using next(), 1072–1073

async loops, 1073
asynchronous programming

about, 392
dependencies, 948
legacy patterns, 393–395
modules, 956
nesting callbacks, 394–395
scripts, 17–18
synchronous versus, 392–393
tasks, 411

atob() method, 972
Atomics API

about, 744, 1106
basics of, 745–751
reads, 747–748
writes, 747–748

1115

attachEvent() method – browsers

attachEvent() method, 608–610, 615
Attr type, 520–521
attributeFilter property, 534
attributeOldValue property, 535
attributes

custom data, 551–552
custom element, 806–807
defined, 698
getting, 510–511
observing mutations of, 535–536
property, 256–257
setting, 511

attributes property, 511–513, 534
Audio type, 770
automatic tab forward, 721–723
automation systems, 1107
autoplay property, 765
availHeight property, 459
availLeft property, 459
availTop property, 460
availWidth property, 460
await keyword, 424–427

B
Babel, 1104
back() method, 461
Backbone.js framework, 1097
back-forward cache, 645
background scripts, 973
backpressure, 778–779
backticks (`), 46, 47
backwards compatibility, 966
Basic Multilingual Plane (BML), 145
battery property, 455
Battery Status API, 487–488
Beacon API, 914–915
beforeunload event, 643
begin() method, 931
behaviors, for typed arrays, 197–198
best practices

about, 1036
deployment, 1059–1064
maintainability, 1035–1047
performance, 1047–1059

beta property, 649
big() method, 157
bind() method, 352, 369
bitwise methods, 745–747
bitwise operators, 72–77
Blob(s)

about, 758–764
loading files as, 894
Object URLs and, 762–763
partial reads and, 761–762

block body, 351
block comment, 26
blocking characters, 719–720
blue event, 624
blur() method, 713–714
<body> element, 16, 526
Body.arrayBuffer() method, 907–908
Body.blob() method, 908
Body.formData() method, 907
Body.json() method, 906–907
Body.text() method, 906
bold() method, 157
BOM (Browser Object Model)

about, 10–11, 437
history object, 460–462
location object, 450–454
navigator object, 454–459
objects in, 68, 116
screen object, 459–460
window object, 438–450

Boolean() function, 78
Boolean operators, 77–80
Boolean type, 40, 141, 160
bound() method, 939–940
Bower, 1102
Bowser (website), 480
bracket notation, 168
Brackets, 1106
break statement, 94–95
BroadcastChannel, 986–987
Browser Object Model (BOM)

about, 10–11, 437
history object, 460–462
location object, 450–454
navigator object, 454–459
objects in, 68, 116
screen object, 459–460
window object, 438–450

Browserify, 1103
browsers. See also specific browsers

analysis, using capability detection for, 468–470
analysis, using user-agent detection for, 478–480
current-device, 480
error reporting, 824
Google Chrome, 480
identifying, 481–482
metadata, 482–488
Mootools, 480

1116

Brunch – clear() method

support for Document Object Model (DOM)
in, 9–10

support for ECMAScript in, 5–7
XML DOM support in, 849–852
XPath support in, 852–857
XSLT support in, 857–859

Brunch, 1107
btoa() method, 972
bubbles property, 612
buffered property, 765
bufferedBytes property, 765
bufferingRate property, 765
bufferingThrottled property, 765
buffers, WebGL, 696–697
build tools, 1107
buildID property, 455
buildUrl() function, 109
bulk decoding, 755–756
bulk encoding, 753–754
buttons, 631–632
Bynen, Mathias (blogger), 144

C
cache, service workers, 1012–1017
Cache object, 1014–1017
cacheName property, 1016
caches property, 972, 1008
CacheStorage object, 1013–1014
caching external files and, 21
call() method, 295, 368–369
callbacks, 530–532
caller object, 366–367
callSomeFunction() function, 362–363
callSum() method, 368–369
cancelable property, 612
cancelAnimationFrame, 674
cancelBubble property, 615
canplay event, 767
canplaythrough event, 767
canPlayType() method, 769
canshowcurrentframe event, 767
<canvas> element

about, 671
basic use of, 676–677
2D, 677–692
using requestAnimationFrame, 672–675
WebGL, 692–705

capability detection
about, 466–467

safety and, 467
using for browser analysis, 468–470

case-sensitivity, 26
casting, with Promise.resolve() method, 398–399
catch() method, 407, 410–411, 412
catch statement, 109
CDATASection type, 518
changeColor() function, 107–108
character codes, 636–637
character data, observing mutations of, 536–537
character literals, 47–48
character set properties, 551
characterData property, 535
characterDataOldValue property, 535
characters, blocking, 719–720
charAt() method, 144, 146
charCodeAt() method, 145
charging property, 487
chargingTime property, 488
charset attribute, 13
checking validity, 725–726
checkValidity() method, 725–726
childElementCount property, 546
childList property, 535
childNodes property, 495
children
Element type, 513–514
observing mutations, 537–539

children property, 557
chunks, 778–779
circular dependencies, 949–950
circular reference, 115
claim() method, 1018
Clang Format, 1108
classes

about, 302
abstract base, 316–317
constructor keyword, 303–307
definition basics, 302–303
hidden, 118–119
inheritance, 312–320
instance members, 307–308
iterator and generator methods, 311–312
non-function prototype and class members, 310
prototype methods and accessors, 308–309
as special functions, 306–307
static methods and accessors, 309–310
strict mode, 1093

classList property, 548–549
class-related additions, 547–549
clear() method, 201–202, 929, 932, 935

1117

clearData() method – constructor property

clearData() method, 720–721, 774
clearInterval() method, 447, 972
clearRect() method, 677–679
clearTimeout() method, 446–447, 972
click event, 625
client coordinates, 627
client detection

about, 465
capability detection, 466–470
hardware detection, 480–489
software detection, 480–489
user-agent detection, 470–480

client domensions, 581–582
clients, service worker, 1017–1018
clients property, 1008
client-side storage

about, 919
cookies, 919–929
IndexedDB, 933–943
Web Storage, 929–933

Clipboard, 720–721
clone() method, 898–900, 905
cloneContents() method, 595
cloneNode() method, 497, 571
cloneRange() method, 598
cloning

DOM ranges, 598
Request objects, 898–900
Response objects, 905

close() method, 444, 504–506, 776, 976,
977, 978, 1000

closePath() method, 680
closures

about, 370, 376–379
memory leaks, 381–382
this object, 379–381

code
consistency in, 1018
conventions for, 1036–1039
maintainable, 1036
minification, 1062–1064

code point, 146
code size, 1062
codec support detection, 769
codePointAt() method, 146
CoffeeScript, 1104
collapse() method, 597, 739
collapseToEnd() method, 739
collapseToStart() method, 739
collection reference types
Array type, 170–190

iteration, 220–222
Map type, 201–206
Object type, 164–170
Set type, 211–217
spread operators, 220–222
typed arrays, 190–200
WeakMap type, 206–211
WeakSet type, 217–220

colorDepth property, 460, 482
combination inheritance, 296–297
comma operators, 89
commands, for rich text, 735–738
Comment type, 517–518
comments, 26
commit() method, 931
commonAncestorContainer property, 591
CommonJS, 953–956
communicating

with dedicated workers, 983–987
errors in, 837–838

compare() function, 377
compareBoundaryPoints() method, 598
compassCalibrated property, 649
compatibility mode, 550–551
compilation, 1063, 1104–1105
compositing, 691–692, 799–801
composition events, 640–641
compositionend event, 640
compositionstart event, 640
compositionupdate event, 640
compound-assignment operators, 89
compression, 1062–1064
computed styles, 575–576
concat() method, 148, 149, 184–186, 198–200
concurrency issues, 943
conditional declarations, 32–33
conditional operators, 88
configuring worker options, 979
confirm() method, 448–449
connection property, 455
connection state, 486–487
consistency, service worker and, 1018–1019
console property, 972
console runtime, 841
const declaration, 34–35, 36, 112–113, 118
constants

using, 1046–1047
WebGL, 694

construct() trap, 343–344
constructor property

about, 67, 303–304

1118

constructor stealing – currentTarget property

classes as special functions, 306–307
instantiation, 304–306

constructor stealing, 294–296
constructors

defined, 126
as functions, 272
problems with, 272–273
properties of, 137–139
validating parameters of, 346

contains() method, 549, 557–558
containsNode() method, 739
contenteditable, 734–735
context, 106–108
contextmenu event, 641–642
continue() method, 938, 940
continue statement, 94–95
controller property, 1006
controlling

memory, 117–122
observer scope with MutationObserverInit,

534–540
state with executor, 397–398

controls property, 765
conversion methods, 179–180
converting

numbers, 44–46
to strings, 48–49

cookieEnabled property, 455
cookies

about, 919–920
components of, 921–922
considerations for, 928–929
JavaScript, 922–924
restrictions, 920–921
subcookies, 925–928

CookieUtil.get() method, 923
CookieUtil.set() method, 924, 927
CookieUtil.unset() method, 928
coordinates, WebGL, 695–696
copy and fill methods, 176–178
copying

typed arrays, 198–200
values, 103

copyWithin() method, 176–178
createAnother() function, 299
createAttribute() method, 521
createAttributeNS() method, 567
createComparisonFunction() method, 372,

377–378
createDocument() method, 570, 850
createDocumentType() method, 570
createElement() method, 513, 1057–1058
createElementNS() method, 567

createEventObject() method, 668–669
createExpression() method, 852
createImageBitmap() method, 972
createIndex() method, 941–943
createLinearGradient() method, 687–688
createNSResolver() method, 852
createPattern() method, 689
createPerson() function, 118, 269, 270
createRectLinearGradient() method, 688
createTextRange() method, 718
creating

arrays, 170–172
Async iterator, 1068–1070
cryptographic digests, 810–812
CryptoKey class, 814–816
dedicated workers, 973–974
elements, 513
passthrough proxies, 324–325
Request objects, 897–898
Response objects, 901–903
rules, 578–579
service workers, 1004–1005
shader programs, 698–699
shadow DOM, 796–797
shared workers, 997–998
text nodes, 515–516
workers from inline JavaScript, 979–980

credentialed requests, 883–884
credentials property, 455, 979
Crockford, Douglas, 297, 387, 861
cross-browser event handlers, 610–611
cross-browser event object, 617–618
cross-context messaging, 751–753
cross-document messaging (XDM), 751
cross-domain techniques, 884–885
crossorigin attribute, 13
cross-origin requests, sending, 894
Cross-Origin Resource Sharing (CORS), 703,

881–884
cross-site request forgery (CSRF) attack, 917
cross-site scripting, considerations for, 556
cryptographically secure pseudorandom number

generator (CSPRNG), 809
CryptoKey class, 812–814, 814–816
CSS rules, 577–578
CSS/JavaScript, decoupling, 1041
cssRules property, 577
cssText property, 573, 577
curly braces ({}), 27–28, 111
current-device (website), 480
currentLoop property, 765
currentSrc property, 765
currentTarget property, 612

1119

currentTime property – define() method

currentTime property, 765
cursors

querying with, 937–939
setting direction, 940

custom data attributes, 551–552
custom DOM events, 667–668
custom element lifecycle hooks, 805–806
custom media players, 768–769
CustomElementRegistry.get() method,

807–808
CustomElementRegistry.whenDefined() method,

807–808
customError property, 725

D
D3, 1099
data

consistency in, 1019
receiving, 916
sending, 916

data binding, 347
data properties, 252–254
data types

about, 36
Boolean, 40
errors, 835–837
Null, 39
Number, 41–46
Object, 67–68
String, 46–53
Symbol, 54–67
typeof operator, 36–37
Undefined, 37–38

databases, IndexedDB, 933–934
dataTransfer object, 772–773
dataunavailable event, 767
DataViews, 192–195
Date property, 160
Date type

about, 126–128
date-formatting methods, 129
date/time component methods, 129–131
inherited methods, 128

date-formatting methods, 129
Date.now() method, 128, 786–787
Date.parse() method, 126–127
date/time component methods, 129–131
Date.UTC() method, 126, 127
dblclick event, 625
debugging

about, 823, 840

browser error reporting, 824
common legacy Internet Explorer errors, 844–846
console runtime, 841
JavaScript Debugger, 842
logging messages to console, 840–841
logging messages to pages, 842–843
programs, 700–701
shaders, 700–701
shimming console methods, 843
throwing errors, 843–844

declarations
conditional, 32–33
const, 34–35
function expressions versus function, 361–362
global, 32
styles, 35–36

decode() method, 756
decodeURI() method, 158–159
decodeURIComponent() method, 158–159,

451–452
decoding

stream, 756–758
text, 755–758

decoupling
application logic, 1041–1042
CSS/JavaScript, 1041
event handlers, 1041–1042
HTML/JavaScript, 1039–1041

decrement operator, 68–70
decrypting symmetric keys, 820
dedicated workers

about, 971, 973–976
communicating with, 983–987
configuring options, 979
creating, 973–974
creating from inline JavaScript, 979–980
delegating tasks to subworkers, 982
dynamic script execution inside, 980–982
handling errors, 983
implicit MessagePorts and, 976–977
lifecycle, 977–979
security restrictions, 974–975
worker data transfer, 987–993
worker pools, 993–997

DedicatedWorkerGlobalScope, 976
default export, 961
default parameter values, 356–358
default type results, 855–856
defaultPlaybackRate property, 765
defaultPrevented property, 612
defer attribute, 14, 16, 17
deferred scripts, 17
define() method, 803

1120

defineProperty() trap – documentation.js

defineProperty() trap, 336–337
delegating

events, 659–661
tasks to subworkers, 982

delete() method, 201–202, 207–209, 213, 895–897,
935, 938, 1013–1014, 1015

delete operation, 118–119
deleteContents() method, 594–595
deleteFromDocument() method, 739
deleteItem() method, 932
deleteProperty() trap, 338–339
deleteRule() method, 577, 579
deleting rules, 579
dependencies

asynchronous, 948
circular, 949–950
module, 946
programmatic, 948

deployment
about, 1059
build process, 1059–1061
compression, 1062–1064
validation, 1061–1062

deprecated syntax, 20–21
depth property, 693
dereferencing values, 117–118
deriveBits() method, 817–818
deriveKey() method, 817–818
desktop consoles, 824
destructuring, 152–153
detach() method, 598–599
detachEvent() method, 608–610
detail property, 612
detecting

arrays, 175
elements, 500–502
plug-ins, 456–459

deviceMemory property, 455
devicemotion event, 650
deviceorientation event, 648–650
devices

events, 647–650
keyboard events on, 639–640
memory, 489

diff() function, 99
disabled property, 576, 711
disabling validation, 726
dischargingTime property, 488
disconnect() method, 532, 533, 541
dispatchEvent() method, 666
dispatching requests, 886
displayInfo() function, 169

displaying notifications, 775–776, 1030–1031
<div> element, 528
divide (/) operator, 81
doAdd() function, 354
Docco, 1111
document children, 498–499
document modes, 22–23
Document Object Model (DOM)

about, 7–8, 9, 491, 563–564
changes in, 564–571
dynamic scripts, 521–523
dynamic styles, 523–525
Element Traversal API, 546–557
event flow, 603–604
event object, 611–615
event simulation, 663–668
events, 9
extensions, 543–560
hierarchy of nodes, 492–521
levels, 8–9, 637–638, 850, 852–854
manipulating tables, 525–527
methods, 573–574
MutationObserver API, 529–542
necessity of, 8
node metadata, 211
NodeList object, 528–529
objects in, 68, 116
optimizing interactions, 1056–1059
properties, 573–574
proprietary extensions, 557–560
ranges, 9, 590–599
Selectors API, 544–545
shadow, 795–802
styles, 9, 572–584
support for in web browsers, 9–10
traversals, 9, 584–590
views, 8
working with, 521–529
XML namespaces, 564–568
XML support in browsers, 849–852

Document type
about, 498
changes to, 568–569
document children, 498–499
document information, 499–500
document writing, 504–506
DOM conformance detection, 503–504
locating elements, 500–502
special collections, 502–503

document writing, 504–506
documentation generators, 1110–1112
documentation.js, 1111

1121

document.createAttribute() method – effectAllowed property

document.createAttribute() method, 521
document.createDocumentFragment() method,

519–520
document.createElement() method, 513, 791–792
document.createNodeIterator() method, 585
document.createTextNode() method, 515–516
document.createTreeWalker() method, 588
document.execCommand() method, 737
DocumentFragment, 792–793
DocumentFragment type, 519–520
document.getElementById() method, 466
document.querySelector() method, 792–793
documents changes, 567, 569–570
DocumentType type, 518–519
Dojo Object Harness, 1110
Dojo ShrinkSafe, 1109
The Dojo Toolkit library, 1098
dollar sign ($), 26
DOM. See Document Object Model (DOM)
DOM (Document Object Model)

about, 7–8, 9, 491, 563–564
changes in, 564–571
dynamic scripts, 521–523
dynamic styles, 523–525
Element Traversal API, 546–557
event flow, 603–604
event object, 611–615
event simulation, 663–668
events, 9
extensions, 543–560
hierarchy of nodes, 492–521
levels, 8–9, 637–638, 850, 852–854
manipulating tables, 525–527
methods, 573–574
MutationObserver API, 529–542
necessity of, 8
node metadata, 211
NodeList object, 528–529
objects in, 68, 116
optimizing interactions, 1056–1059
properties, 573–574
proprietary extensions, 557–560
ranges, 9, 590–599
Selectors API, 544–545
shadow, 795–802
styles, 9, 572–584
support for in web browsers, 9–10
traversals, 9, 584–590
views, 8
working with, 521–529
XML namespaces, 564–568
XML support in browsers, 849–852

domain property, 932
DOMContentLoaded event, 643–644
DOMFocusIn event, 624
DOMFocusOut event, 624
DOMParser type, 850–851
doNotTrack property, 455
dot notation, 168
dotAll, 1080
double interpretation, avoiding, 1053–1054
double-byte characters, 48
Douglas Crockford’s JSLint, 1061
do-while statement, 90–91
downlink property, 486
downlinkMax property, 486
drag and drop

about, 770
additional members, 774–775
custom drop targets, 771–772
dataTransfer object, 772–773
draggability, 774
dropEffect property, 773–774
effectAllowed property, 773–774
events, 770–771
file reading, 763–764

drawImage() method, 686
drawing

images, 686–687
paths, 679–681
rectangles, 677–679
text, 681–683
in WebGL, 695, 701–703

dropEffect property, 773–774
duration property, 765
durationchange event, 767
dynamic properties, 102–103
dynamic scripts, 18, 521–523, 980–982
dynamic styles, 523–525

E
each() method, 1043–1044
ECMA-262, 3, 4–5
ECMAScript

about, 3
conformance, 5
editions, 4–5
reference types (See reference types)
support for in web browsers, 5–7

editions, ECMAScript, 4–5
editors, 1106
effectAllowed property, 773–774

1122

effectiveType property – ESLint

effectiveType property, 486–487
effects, 1099
Eich, Brendan (developer), 2
element dimensions, 579–584
Element Traversal API

about, 546–547
changes to HTMLDocument type, 550–551
character set properties, 551
classList property, 548–549
class-related additions, 547–549
custom data attributes, 551–552
focus management, 549–550
HTML5, 547
markup insertion, 552–556
scrollIntoView() method, 556–557

Element type
about, 506–507
attributes property, 511–513
children, 513–514
creating elements, 513
getting attributes, 510–511
HTML elements, 507–509
setting attributes, 511

elements
accessing styles, 572–576
changes to, 567–568
creating, 513
custom, 802–808
determining dimensions, 584
locating, 500–502

elements property, 708
Elliptic Curve Diffie-Hellman (ECDH), 813
Elliptic Curve Digital Signature Algorithm (ECDSA),

813
Elliptic-Curve Cryptography (ECC), 813
Ember framework, 1096
emptied event, 767
empty event, 767
Emscripten, 1105
enableHighAccuracy property, 485
encode() method, 754
encodeInto() method, 754
encodeURI() method, 158–159
encodeURIComponent() method, 158–159, 837
encoding

stream, 754–755
text, 753–755

Encoding API, 753–758
encrypting symmetric keys, 820
enctype property, 708
endContainer property, 590
ended event, 767

ended property, 765
endianness, 194
endOffset property, 591
endsWith() method, 151
entries() method, 214
entry points, for modules, 947
enumeration order, 283–284
equal (==) operator, 86–87, 833–835
equality operators, 86–88
error event, 767, 831–832
error handling

about, 823, 825
browser error reporting, 824
common legacy Internet Explorer errors,

844–846
error event, 831–832
fatal errors, 838–839
identifying location of errors, 833–838
log errors, 839–840
nonfatal errors, 838–839
rejection, 408–410
strategies for, 832
try-catch statement, 825–829

error() method, 840
Error type, 160, 827
errors

communication, 837–838
data types, 835–837
fatal, 838–839
handling, 983
nonfatal, 838–839
throwing, 829–831, 843–844
type coercion, 833–835
types of, 826–827
WebGL, 697

ES6 modules, 958–966
ES2018/ES2019

about, 1068–1069
array flattening methods, 1082–1084
asynchronous iteration, 1068–1076
creating Async interator, 1068–1070
finally() handler, 1078–1079
miscellaneous enhancements, 1086
Object.fromEntries(), 1084–1085
optional catch binding, 1086
regular expression enhancements, 1079–1082
rest operator, 1076–1077
spread operator, 1077–1078
string trimming methods, 1085
Symbol.prototype.description, 1085

ESDoc, 1111
ESLint, 1061, 1108

1123

eval() function – file structure

eval() function, 108, 159–160, 828, 865,
1053–1054, 1091

EvalError property, 160
EvalError type, 827
evaluate() method, 852, 853, 854, 856–857
event bubbling, 602
event capturing, 603
event delegation, 1058
event handlers

about, 604
cross-browser, 610–611
decoupling, 1041–1042
DOM level 0, 606–607
DOM level 2, 607–608
HTML, 604–606
Internet Explorer, 608–610
removing, 661–662

event object
about, 611
cross-browser, 617–618
DOM, 611–615
Internet Explorer, 615–617

eventPhase property, 612
event.preventDefault() method, 641–642
events

about, 601, 619
composition, 640–641
custom DOM, 667–668
delegating, 659–661
device, 647–650
drag and drop, 770–771
event handlers, 604–611
event object, 611–618
flow of, 602–604, 603–604
focus, 624–625
form field, 714–715
gesture, 653–654
HTML5, 641–647
keyboard, 634–640, 664–667
media elements, 767–768
memory and, 659–662
mouse, 625–634, 663–664
mutation, 641
performance and, 659–662
progress, 880–881
references, 654–659
retargeting, 801–802
simulating, 662–669
simulating in Internet Explorer, 668–669
text, 634–640
touch, 651–653
types, 619–659

UI, 619–624
Web Sockets, 916–917
wheel, 625–634

EventUtil.getEvent() method, 618
every() method, 188–189
exchange() method, 748–749
exchanges, 748–749
exec() method, 135–136, 137–138, 153
execution context. See context
exponentiation operator (**), 82
exporting keys, 816–817
exportKey() method, 816
expression context, 168
expressions, function, 370–372
extend() method, 739
ExtendableEvent.waitUntil() method, 1021
Extensible HyperText Markup Language (XHTML),

19–20
extensions

Document Object Model (DOM), 543–560
promises, 418–421

external files, inline code versus, 21–22
extractContents() method, 595

F
factorial() function, 364, 372
factory pattern, 269
failures, handling, 394
fast user-space mutex, 749
fatal errors, 838–839
“Feature Detection: State of the Art Browser

Scripting” (Michaux), 467
Fetch API

about, 777, 885, 1009
basic utilization of, 886–892
common fetch patterns, 893–895
Headers object, 895–897
Request object, 897–900
requests, 906–914
Response object, 901–905
responses, 906–914

fetch() method, 886, 887–888, 888–892, 893–894,
894–895, 898, 900, 972, 1009, 1028–1030

File API
drag-and-drop file reading, 763–764
File type, 758–759
FileReader type, 759–761
FileReaderSync type, 761
partial reads, 761–762

file structure, 1060

1124

File type – functions

File type, 758–759
FileReader type, 759–761
FileReaderSync type, 761
files

loading as Blobs, 894
sending, 893–894

fill() method, 176–178
fillRect() method, 677–679
fills, 677
fillText() method, 681–683
filter() method, 188–189
filtering results, 866–867
finally() method, 407, 410–411, 412, 826,

1078–1079
find() method, 187–188
findIndex() method, 187–188
Firebig Lite, 824
firstChild() method, 588
firstElementChild property, 546
first-in-first-out (FIFO) structure, 181
fixed() method, 157
flags property, 134
floating-point values, 41–42
Flow, 1105
focus events, 624–625
focus management, 549–550
focus() method, 549–550, 713–714
focusin event, 624
focusNode property, 738
focusOffset property, 738
focusout event, 624
font property, 681
fontcolor() method, 157
fontsize() method, 157
foo() function, 786–787
for loops, 34
for statement, 91–92
for-await-of loop, 58–59, 1073
forEach() method, 188–189
for-in statement, 92–93
form property, 711
formatters, 1107–1108
FormData type, 878–879
forms

about, 707
basics of, 707–715
fields in, 710–715
resetting, 709–710
rich text editing, 734–740
scripting select boxes, 726–731
scripting text boxes, 715–726
serialization, 732–733

submitting, 708–709
for-of statement, 93
forward() method, 461
forward slash (/), 26
fragment shaders, 697
frameworks

about, 1095
Angular, 1096
Backbone.js, 1097
Ember, 1096
Meteor, 1096
React, 1095–1096
Vue, 1096

Friedman, Daniel
The Impact of Applicative Programming on

Multiprocessing, 395
from() method, 171
fromCharCode() method, 145, 146
fulfilled state, 396, 397
function constructor pattern, 269–273
function declaration hoisting, 361, 370–371
function expressions

about, 370–372
function arguments versus, 361–362
immediately invoked function expression (IIFE),

382–384
Function property, 160
functions, See also spefific functions

about, 98–100, 349–350
arguments, 353–355
arrow, 350–351, 355
async, 421–435
classes as special, 306–307
closures, 376–382
composition of, 416–417
constructors as, 272
declarations versus expressions, 361–362
declarations versus function expressions, 361–362
default parameter values, 356–358
immediately invoked expression (IIFE), 382–384
immediately invoked function expression (IIFE),

382–384
internals, 364–367
lambda, 370
language, 98–100
methods, 367–370
names for, 351–352
names of, 351–352
naming, 1037–1038
overloading, 355–356
parameters, 1090–1091
private variables, 384–389

1125

Futex operations and locks – getSubValue() method

properties, 367–370
properties and methods, 367–370
recursion, 372–373
recursive, 372–373
replacer, 869
rest parameters, 360–361
reviver, 869
spread arguments, 359–360
strict mode, 1089–1092
tag, 51–53
tail call optimization, 373–376
validating parameters of, 346
as values, 362–363

Futex operations and locks, 749–751
future-proof, external files and, 21

G
gamma property, 649
garbage collection

about, 114
managing memory, 117–122
mark-and-sweep, 115
MutationObserver, 541–542
performance, 116–117
reference counting, 115–116

Garrett, Jesse James, 871
Gecko, 473–475
generateKey() method, 816
generating

arrays, 170–172
Async iterator, 1068–1070
cryptographic digests, 810–812
CryptoKey class, 814–816
dedicated workers, 973–974
elements, 513
passthrough proxies, 324–325
Request objects, 897–898
Response objects, 901–903
rules, 578–579
service workers, 1004–1005
shader programs, 698–699
shadow DOM, 796–797
shared workers, 997–998
text nodes, 515–516
workers from inline JavaScript, 979–980

generator methods, 311–312
generator object, 236–237
generators

about, 236–238
early termination of, 247–249

interrupting execution with yield, 238–246
using as default, 246–247
using as the default iterator, 246–247

GeoLocation API, 483–485
geolocation property, 455
gesture events, 653–654
get() method, 201–202, 207–209, 325–326,

326–328, 895–897, 926, 935, 942–943
GET requests, 876–877
get() trap, 333–334
getAll() method, 926, 927
getAllResponseHeaders() method, 876
getAttribute() method, 510–511, 512, 520–521
getAttributeNode() method, 521
getAttributeNS() method, 567
getClipboardText() function, 721
getColor() function, 113–114
getComputedStyle() method, 575
getContext() method, 676
getCurrentPosition() method, 483, 484
getData() method, 720–721, 772–773
getElement() function, 466
getElementById() method, 708
getElementsByClassName() method, 547–548,

1043–1044
getElementsById() method, 500
getElementsByName() method, 502
getElementsByTagName() method, 500–501, 514
getElementsByTagNameNS() method, 567
getEvent() method, 617–618
getIdentityFunc() method, 380–381
getImageData() method, 689
getItem() method, 929
getKey() method, 942–943
getModifierState() method, 638
getName() method, 386
getNamedItemNS() method, 568
getNameFunc() method, 380
getNotifications() method, 1007
getOwnPropertyDescriptor() trap, 337–338
getParameter() method, 858–859
getPropertyCSSValue() method, 573, 574
getPropertyPriority() method, 573
getPropertyValue() method, 573, 574
getPrototypeOf() trap, 339–340
getRangeAt() method, 739
getReader() method, 780, 910
getRegistration() method, 1006
getResponseHeader() method, 876
getSelectedOptions() function, 729
getSelection() method, 738, 740
getSubValue() method, 293

1126

getSuperValue() method – identifier lookup

getSuperValue() method, 293
getTarget() method, 618
getUserMedia() method, 455
getVRDisplays() method, 455
getWindowWidth() function, 466
getWriter() method, 781
GitHub respository, 1068
gl.createShader() method, 699
gl.createTexture() method, 703
gl.drawArrays() method, 702–703
gl.getProgramParameter() method, 700
gl.getShaderParameter() method, 700
gl.getUniformLocation() method, 700
global declarations, 32
global lookups, avoiding, 1047–1048
Global object

about, 157
eval() method, 159–160
properties, 160
URI-encoding methods, 158–159
window object, 160

global property, 134
global variables, avoiding, 1044–1045
gl.pixelStorei() method, 703
gl.useProgram() method, 699
Gmail, 838
go() method, 460–461
Google Chrome

about, 476
error messages in, 830
V8 engine, 113
website, 480

Google Closure Compiler, 1104, 1108, 1109
Google Closure Library library, 1097
gradients, 687–689
graphics. See <canvas> element
greater-than (>) operator, 85–86
greater-than-or-equal-to (>=) operator, 85–86
Grunt, 1060, 1107
Gulp, 1060, 1107

H
handleKeyPress() function, 1042
handleResponse() method, 885
handlers, registering, 459
handling

errors, 983
failures, 394
notification events, 1031
push events, 1032–1033
request failures, 887–888
status codes, 887–888

hardware detection, 480–489
hardwareConcurrency property, 455
has() method, 201–202, 207–209, 212, 218,

335–336, 895–897, 1013–1014
hasAttributeNS() method, 567
hasChildNodes() method, 495
hasFeature() method, 503–504
hasFlash() function, 459
Hash-Based Message Authentication Code (HMAC),

814
hashchange event, 647
hasIEPlugin() function, 458
hasOwnProperty() method, 67, 279–280, 281–283
hasPlug() method, 459
hasQuickTime() function, 459
head property, 551
<head> element, 16
Headers object, 895–897
headers property, 903
height property, 460
hidden classes, 118–119
hidden properties, 345
hiding notifications, 775–776
High Resolution Time API, 786–787
high-performance script tools, 1105
history object

about, 460
navigation, 460–461
state management, 461–462

HMAC-Based Key Derivation Function (HKDF), 814
hoisting var declaration, 30–31
host environment, 3
href property, 576
HTML

elements, 507–509
event handlers, 604–606
JavaScript in, 13–24
methods, 157
templates, 791–794

HTML5, 547
HTML5 Constraint Validation API, 723–726
HTML5 events, 641–647
HTMLCollections, 1058–1059
HTMLDocument type, 550–551
HTML/JavaScript, decoupling, 1039–1041
HTTP compression, 1064
HTTP headers, 875–876

I
id property, 1018
identically equal to (===) operator, 87–88
identifier lookup, 113–114

1127

identifiers – Internet Explorer

identifiers, 26, 946
identifying

browser, 481–482
operating system, 481–482

if statement, 90
iframes, 571
ignoreCase property, 134
ignoreMethod properties, 1016–1017
ignoreSearch property, 1016
ignoreVary property, 1017
image pings, 884
images

drawing, 686–687
working with data in, 689–691

immediately invoked function expression (IIFE),
382–384

The Impact of Applicative Programming on
Multiprocessing (Friedman and Wise), 395

implementing
observables, 1073–1076
Thenable interface, 400

importing keys, 816–817
importKey() method, 816
importNode() method, 794
importScripts() method, 976, 980–982, 997, 999
importStylesheet() method, 859
in operator, prototypes and, 281–283
includes() method, 151, 186–187
includeUncontrolled property, 1018
increment operator, 68–70
index() method, 941–943
IndexedDB

about, 933
concurrency issues, 943
databases, 933–934
indexes, 941–943
insertion, 936
key ranges, 939–940
limits, 943
object stores, 934–935
querying with cursors, 937–939
restrictions, 943
setting cursor direction, 940
transactions, 935–936

indexedDB property, 972
indexedDB.open() method, 933
indexes, 941–943
indexing, into arrays, 174–175
indexOf() method, 150, 186–187, 459, 835, 923
Infinity property, 160
info() method, 840
inheritance

about, 289

combination, 296–297
constructor stealing, 294–296
parasitic, 298–299
parasitic combination, 299–301
prototypal, 297–298
prototype chaining, 289–294

inherited methods, 128
inheritPrototype() function, 301
init() method, 838–839
initCustomEvent() method, 667–668
initKeyEvent() method, 665
inline code, external files versus, 21–22
inner() function, 366–367
innerHTML property, 552–554, 1057–1058
innerText property, 558–559
input filtering, 718–721
input patterns, 724–725
input property, 137, 138
insertAdjacentHTML() method, 555
insertAdjacentText() method, 555
insertBefore() method, 496, 497, 513, 519–520,

731
insertCell() method, 527
inserting

DOM range content, 596–597
iterative values, 1055

insertion, 936
insertNode() method, 596–597
insertRow() method, 527
insertRule() method, 577, 578
install property, 1009
installed state, 1021–1022
installing property, 1007
installing state, 1020–1021
instances

defined, 126
members, 307–308
methods, 135–137, 400–410
properties, 134
prototypes and relationships between, 291–292

instantiation, 304–306
integers, 72, 143
integrity attribute, 14, 16
interacting, with rich text, 735–738
internal queues, 778–779
internal slots, proxies and, 333
InternalError type, 827
internals, function, 364–367
Internet Explorer

common legacy errors, 844–846
error messages in, 830
event handlers, 608–610
event object, 615–617

1128

interpolation – JSON

event simulation, 668–669
legacy plugin detection, 457–459
using innerHTML in legacy, 553–554
versions, 471–472, 472–473

interpolation, 50–51
interval property, 650
intervals

problems with, 673
window object, 446–448

Invalid Character error, 844–845
invariants, 328–329
inversion of control, 1024–1025
iOS, 478
isCollapsed property, 738
isDefaultNamespace() method, 566
isEqualNode() method, 570–571
isExtensible() trap, 341–342
isInteger() method, 143
isNaN() function, 43–44
isPrototypeOf() method, 67, 291
isSameNode() method, 570–571
isSecureContext property, 972
italics() method, 157
item() method, 494, 501, 549, 573, 574
Iterable protocol, 227–229
iteration

about, 225–226
iterator pattern, 226–235
spread operators and, 220–222
using generators as default iterators, 246–247

iterative methods, 188–189
iterative values, 1055
iterator methods, 176, 311–312
iterator pattern

about, 226–227
custom definition, 231–233
early termination of iterators, 233–235
Iterable protocol, 227–229
protocol, 229–231

J
Jasmine, 1110
javaEnabled property, 455
JavaScript

about, 1–2
characters, 144–146
compilation, 1063
cookies, 922–924
frameworks (See frameworks)
history of, 2–3

in HTML, 13–24
implementations of, 3
libraries (See libraries)
transpilation, 1063
versions, 11–12

JavaScript APIs
about, 743–744, 791
Atomics API, 744–751
Blob, 758–764
cross-context messaging, 751–753
drag and drop, 770–775
Encoding API, 753–758
File API, 758–764
HTML templates, 791–794
media elements, 764–770
Notifications API, 775–776
Page Visiblity API, 776–777
SharedArrayBuffer, 744–751
Streams API, 777–785
Timing APIs, 785–791
web components, 791–808
Web Cryptography API, 808–821

JavaScript Debugger, 842
JavaScript Object Notation. See JSON
JavaScript tools

about, 1101
automation systems, 1107
build tools, 1107
compilation/transpilation tools and static type

systems, 1104–1105
documentation generators, 1110–1112
editors, 1106
formatters, 1107–1108
high-performance script tools, 1105
linters, 1107–1108
minifiers, 1109
module bundlers, 1103–1104
module loaders, 1102–1103
package managers, 1101–1102
task runners, 1107
unit testing, 1109–1110

join() method, 180
jQuery, 544, 1097
.js extension, 15
JsDoc Toolkit, 1111
JSHint, 1108
JSLint, 1108
JSMin, 1109
JSON

about, 861
arrays, 863–864

1129

JSON object – localStorage object

JSON object, 865–866
objects, 862–863
parsing, 864–870
parsing options, 869–870
sending data, 893
serialization, 864–870, 866–869
syntax, 862–864

JSON object, 865–866
JSONP, 884–885
JSPM, 1102, 1103
JsUnit, 1110

K
key codes, 635–636
Key Derivation Functions (KDF), 814
key() method, 930, 931
key property, 932
key ranges, 939–940
keyboard events, 634–640, 664–667
keydown event, 634
keyPath property, 942
keypress event, 634
keys

deriving from master keys, 817–818
exporting, 816–817
importing, 816–817

keys() method, 214, 1013–1014, 1015
keyup event, 634
keywords, 28
Konqueror, 476

L
labeled statement, 93
lambda functions, 370
language

about, 25
data types, 36–68
functions, 98–100
keywords and reserved words, 28
operators, 68–89
statements, 90–98
syntax, 25–28
variables, 29–36

language property, 14, 455
languages property, 455
lastChild() method, 588
lastElementChild property, 546
lastIndex property, 134

lastIndexOf() method, 150, 186–187
last-in-first-out (LIFO) structure, 180
lastMatch property, 137, 138
lastModifiedDate property, 759
lastParen property, 137, 138
left property, 460
left shift (<<), 76
leftContext property, 137, 138
length property, 573, 708
less-than (<) operator, 19, 85–86
less-than-or-equal-to (<=) operator, 85–86
let declaration, 31–34, 36, 111–112
level property, 488
libraries

about, 1095, 1097
The Dojo Toolkit, 1098
Google Closure Library, 1097
jQuery, 1097
Lodash, 1098
MooTools, 1098
Prorotype, 1098
qooxdoo, 1098
Underscore.js, 1097

lifecycles
custom element hooks, 805–806
dedicated workers, 977–979
notification of callbacks, 776
service worker, 1019–1024
shared workers, 1000–1001

Lightbox, 1099
limits

IndexedDB, 943
Web Sockets, 933

<link> element, 523–525
link(url) method, 157
linters, 1107–1108
Liskov, Barbara

Promises: Linguistic Support for Efficient
Asynchronous Procedure Calls in Distributed
Systems, 395

listeners, 601
literals, template, 49–50
LLVM, 1105
load event, 620–622, 767, 880–881
load() method, 748
loadeddata event, 767
loadedmetadata event, 767
loading files as Blobs, 894
loadstart event, 767
localeCompare() method, 156
localStorage object, 932

1130

location object – methods

location object
about, 450–451
manipulating, 452–454
query string arguments, 451–452

location property, 972
locks property, 455
Lodash library, 1098
log errors, 839–840
log() method, 840, 842–843
logError() function, 839
logging

messages to console, 840–841
messages to pages, 842–843

lookbehinds, 1080–1081
lookupNamespaceURI() method, 566
lookupPrefix() method, 566
loop property, 765
loops

optimizing, 1050–1051
unrolling, 1051–1053

loose coupling, 1039–1042

M
main() method, 697–698
maintainability

about, 1035–1036
code conventions, 1036–1039
external files and, 21
loose coupling, 1039–1042
maintainable code, 1036
programming practices, 1043–1047

malloc(), 191–192
managing

memory, 117–122
observer scope with MutationObserverInit,

534–540
state with executor, 397–398

manipulating
location object, 452–454
methods for, 184–186
nodes, 495–497
tables, 525–527

map() method, 188–189
Map type

about, 201
basic API, 201–203
choosing between objects and maps, 206
order and iteration, 203–205

maps, choosing between objects and, 206
mark-and-sweep, 115
markup insertion, 552–556, 558–560

master keys, deriving keys from, 817–818
match() method, 153, 1015
matchAll() method, 1015
matches() method, 545
Math object

about, 161
max() method, 162
min() method, 162
other methods, 164–165
properties, 162
random() method, 163–164
rounding methods, 163

Math.ceil() method, 163
Math.floor() method, 163
Math.fround() method, 163
max() method, 162
maximizing parallelization, 431–434
maximum cache storage, 1017
maximum touch points, 489
maximumAge property, 485
maxTouchPoints property, 455
measureText() method, 682
media elements

about, 764
Audio type, 770
codec support detection, 769
custom media players, 768–769
events, 767–768
properties, 765–766

media property, 576
mediaCapabilities property, 455
mediaDevices property, 455
Member Not Found error, 845
memory

events and, 659–662
issues with, 555–556
managing, 117–122, 434–435
MutationObserver, 541–542

memory leaks, 119–120, 381–382
merging

objects, 257–260
typed arrays, 198–200

Message API, 1009–1010
MessageChannel, 984–986
MessagePorts, dedicated workers and implicit,

976–977
metadata, browser, 482–488
Meteor framework, 1096
method property, 708
methods. See also specific methods

arithmetic, 745–747
array flattening, 1082–1084
bitwise, 745–747

1131

Michaux, Peter – MutationObserver API

conversion, 179–180
copy and fill, 176–178
date-formatting, 129
date/time component, 129–131
Document Object Model (DOM), 573–574
form field, 713–714
function, 367–370
generator, 311–312
HTML, 157
inherited, 128
instances, 135–137, 400–410
iterative, 188–189
iterator, 176, 311–312
manipulation, 184–186
naming in WebGL, 695
privileged, 384
prototype, 308–309
queue, 181–182
reduction, 189–190
reordering, 182–184
rounding, 163
search and location, 186–188
stack, 180–181
static class, 309–310
string case, 153
string inclusion, 151
string location, 150
string pattern-matching, 153–156
string trimming, 1085
string-manipulation, 148–149
URI-encoding, 158–159
working with, 292–294

Michaux, Peter
“Feature Detection: State of the Art Browser

Scripting,” 467
MIME type, 20–21
mimeTypes property, 455
min() method, 162
minification, 1062–1064
minifiers, 1109
minimizing

live updates, 1056–1057
statement count, 1054–1056

minus signs (--), 69
mobile consoles, 824
Mocha, 1110
modes, document, 22–23
modifier keys, 629–630
module behavior, 959–960
module bundlers, 1061, 1103–1104
module dependencies, 946
module exports, 960–963
module identifiers, 946

module imports, 963–965
module loaders/loading, 946–947, 957, 959,

1102–1103
module passthrough exports, 965
module pattern, 387–388, 946–950
module systems, 950–952
module-augmentation pattern, 388–389
modules

about, 945
asynchronous dependencies, 948
circular dependencies, 949–950
entry points, 947
ES6 modules, 958–966
module pattern, 946–950
module systems, 950–952
pre-ES6 module loaders, 953–957
programmatic dependencies, 948
static analysis, 948–949
strict mode, 1093
tagging, 958–959
worker, 965–966

modulus (%) operator, 82
moo.fx, 1099
Mootools (website), 480
MooTools library, 1098
Mosaic browser, 470
mouse events, 625–634, 663–664
mousedown event, 625
mouseenter event, 625
mouseleave event, 625
mousemove event, 625
mouseout event, 625
mouseover event, 626
mouseup event, 626
mousewheel event, 633
moveEnd() method, 718
moveStart() method, 718
moving options, 731
Mozilla Firefox, error messages in, 830
Mozilla Project, 11–12, 471
mozRequestAnimationFrame() method, 672
multiline property, 134
multiple property, 727
multiple variable declarations, 1054–1055
multiplexing MutationObserver, 532–533
multiplicative operators, 80–82
multiply (*) operator, 80–81
mutation events, 641
MutationObserver API

about, 529
async callbacks, 540–541
basic usage, 529–534
callbacks, 530–532

1132

MutationRecords – nvaigator.getBattery() method

controlling observer scope with
MutationObserverInit object, 534–540

garbage collection, 541–542
memory, 541–542
multiplexing, 532–533
MutationRecords, 530–532
performance, 541–542
record queue, 540–541
references, 541
reusing, 533–534

MutationRecords, 530–532, 542
muted property, 765

N
name property, 708, 711, 758, 942, 976, 979, 999
named capture groups, 1081
named export, 961
named slots, 801
namedItem() method, 501
NamedNodeMap, 568
names, for functions, 351–352
namespace support, 856–857
NaN (Not a Number), 43–44, 160
National Center for Supercomputing Applications

(NCSA), 470
navigating
history object, 460–461
windows, 442–446

Navigation Timing API, 789–790
navigationPreload property, 1007
navigator object

about, 454–456
detecting plug-ins, 456–459
registering handlers, 459

navigator property, 972
navigator.connection property, 486
navigator.deviceMemory property, 489
navigator.geolocation property, 483
navigator.hardwareConcurrency property, 489
navigator.maxTouchPoints property, 489
navigator.onLine property, 486
navigator.oscpu property, 481
navigator.platform property, 481–482
navigator.vendor property, 481
nested destructuring, 266–267
nesting asynchronous callbacks, 394–395
Netscape, 2
Netscape Communications, 471
Netscape Communicator 4, 472–473
Netscape Navigator, 471–472
network requests, 871–918
NetworkInformation API, 486–487

networkState property, 765
new.target object, 367
newValue property, 932
next() method, 58, 61, 229–231, 237–238,

238–246, 247–249, 1072–1073
nextElementSibling property, 546
nextNode() method, 587–588
nextSibling() method, 588
NodeIterator type, 585–588
NodeList object, 528–529
nodeName property, 493
nodes

about, 492
Attr type, 520–521
CDATASection type, 518
changes to, 566, 570–571
Comment type, 517–518
Document type, 498–506
DocumentFragment type, 519–520
DocumentType type, 518–519
Element type, 506–514
hierarchy of, 492–521
manipulating, 495–497
relationships, 494–495
Text type, 514–517
types, 492–497

nodeValue property, 493
nonfatal errors, 838–839
non-function prototype/class members, 310
non-reentrant promise methods, 405–407
normalize() method, 147–148, 497, 516, 517
normalizing text nodes, 516
<noscript> element, 23–24
Not a Number (NaN), 43–44
not equal (!=) operator, 833–835
not indentically equal to (!==) operator, 88
NOT (!) operator (logical), 77–78
NOT (~) operator (bitwise), 73–74
not-equal (!=) operator, 86–87
notifications

displaying, 1030–1031
push, 1030–1033

Notifications API, 775–776
notify() method, 419–421
npm, 1101–1102, 1107
null comparisons, avoiding, 1045–1046
Null type, 39
number conversions, 44–46
Number() function, 44–45, 71, 80, 84
Number property, 160
Number type, 41–46, 141–143
numeric ranges, 724
nvaigator.getBattery() method, 487

1133

Object API – overloading

O
Object API, Reflect API versus, 330
object definitions. See reference types
object() function, 297, 299
object literals

notation for, 168
using, 1055–1056

object pools, 120–122
Object property, 160
Object type, 67–68
Object URLs, Blobs and, 762–763
Object.assign() method, 258–260, 318
Object.defineProperties() method, 255
Object.defineProperty() method, 286
Object.entries() method, 284
Object.fromEntries(), 1084–1085
Object.getOwnPropertyDescriptior() method,

256–257
Object.getOwnPropertyNames() method, 283
objects. See also specific objects

about, 251–252
choosing between maps and, 206
creating, 268–289
destructuring, 264–268
enhanced syntax, 261–264
factory pattern, 269
function constructor pattern, 269–273
identity and equality, 260–261
iteration, 284–289
JSON, 862–863
merging, 257–260
ownership of, 1043–1044
prototype pattern, 273–284
strict mode, 1088–1089
transferable, 988–990

objectSayColor() function, 370
objectStore() method, 935
objectStore property, 942
Object.values() method, 284
observables, 347, 1073–1076
observe() method, 529–530, 535
observing

attribute mutations, 535–536
character data mutations, 536–537
child mutations, 537–539
subtree mutations, 539–540

O’Callahan, Robert, 673
octal literal, 1093
offset dimensions, 579–581
offsetHeight property, 579
offsetLeft property, 579
offsetTop property, 579
offsetWidth property, 579

ok property, 903
oldValue property, 932
onchange property, 487
onconnect property, 1000
onerror property, 975, 999
onLine property, 455
only() method, 939–940
onmessage property, 975
onmessageerror property, 975
open() method, 504–506, 846, 872–875, 875–876,

876–877, 877–878, 882
openCursor() method, 937, 941–943
opening windows, 442–446
openKeyCursor() method, 941–943
openWindow() method, 1018
Opera, 476–478, 830
operating systems, identifying, 481–482
operators

about, 68
additive, 82–85
assignment, 88–89
bitwise, 72–77
Boolean, 77–80
comma, 89
conditional, 88
equality, 86–88
exponentiation, 82
multiplicative, 80–82
relational, 85–86
unary, 68–72

optimizing
DOM interactions, 1056–1059
loops, 1050–1051

opting-in, 1087
optional catch binding, 1086
options

adding, 730
moving, 731
removing, 730–731
reordering, 731
selecting, 728–729

options property, 727
OR (|) operator (bitwise), 74–75
OR (||) operator (logical), 79–80
order of execution, sibling, 407
orientation property, 460, 482
orientationchange event, 647–648
origin property, 972
oscpu property, 455, 481
outer() function, 366–367
outerHTML property, 554–555
outerText property, 560
overflow, of values, 200
overloading, 355–356

1134

overrideMimeType() method – preventDefault() method

overrideMimeType() method, 879–880
ownerDocument property, 495
ownerNode property, 576
ownerRule property, 577
ownKeys() trap, 339

P
package managers, 1101–1102
padEnd() method, 152
padStart() method, 152
page coordinates, 628
Page Visiblity API, 776–777
pagehide event, 645–646
pageshow event, 645–646
parallel composition, of promises, 414–416
parallelization, maximizing, 431–434
parameter context matching, 268
parameters

default scope of, 358
default values for, 356–358
functions, 1090–1091
sending in a request body, 893
traps, 326–328
using, 858–859

parasitic combination inheritance,
299–301

parasitic inheritance, 298–299
parentNode() method, 588
parentRule property, 573, 577
parentStyleSheet property, 576, 577
parse() method, 865, 869–870
parsed state, 1020
parseFloat() function, 44, 46
parseFromString() method, 850–851
parseInt() function, 44–46, 1093
parsing

JSON, 864–870
options for, 869–870

partial reads, Blobs and, 761–762
partial text selection, 717–718
passing arguments, 295
passthrough proxies, creating, 324–325
Password-Based Key Derivation Function 2

(PBKDF2), 814
paths, drawing, 679–681
patternMismatch property, 725
patterns, 139, 689
pause event, 767
pause() method, 768–769
paused property, 766
pending state, 396
performance

about, 1047
choosing an approach, 1049–1054
events and, 659–662
garbage collection and, 116–117
issues with, 555–556
minimizing statement count, 1054–1056
MutationObserver, 541–542
optimizing DOM interactions, 1056–1059
scope-awareness, 1047–1049
throttling, 674–675

performance property, 972
Performance Timeline API, 788–791
performance.now(), 787
PERMISSION_DENIED error, 484
permissions, Notifications API, 775
permissions property, 455
permutation cycle, 809
Person() function, 272
pipeThrough() method, 784–785
piping streams, 784–785
pixel ratio, 439–440
pixelDepth property, 460, 482
pixels, reading, 703–704
platform property, 456, 481–482
Platform.js (website), 480
play event, 767
play() method, 768–769, 770
playbackRate property, 766
played property, 766
playing event, 767
plug-ins, detecting, 456–459
plugins property, 456
plus signs (++), 68
pop() method, 180–181, 198–200
popping up windows, 442–444
pop-up blockers, 445–446
port property, 999
position, for window object, 439–440
POSITION_UNAVAILABLE error, 484
POST requests, 877–878
postfix decrement, 69
postfix increment, 69
postMessage() method, 752–753, 761, 975, 976,

983–984, 1018, 1026
predicate search, 187–188
pre-ES6 module loaders, 953–957
prefix decrement, 69
prefix increment, 68
preflighted requests, 883
premultipliedAlpha property, 694
preserveDrawingBuffer property, 694
preventDefault() method, 612, 614, 616,

618, 709, 719

1135

preventExtensions() trap – prototypes

preventExtensions() trap, 342
previousElementSibling property, 546
previousNode() method, 587–588
previousSibling() method, 588
primitive types, 36
primitive values

about, 101
argument passing, 103–105
copying values, 103
determining type, 105–106
dynamic properties, 102–103

primitive wrapper types
about, 139–140
Boolean type, 141
Number type, 141–143
String type, 144–157

private variables
about, 209–211, 384–385
module pattern, 387–388
module-augmentation pattern, 388–389
static, 385–386

privateFunction() function, 384–385
privileged method, 384
processor

cores, 489
resetting, 859

product property, 456
productSub property, 456
programmatic dependencies, 948
programming, practices for, 1043–1047. See also

asynchronous programming
progress event, 767, 881
progress events

about, 880
load event, 880–881
progress event, 881

progress notifications, for promises, 419–421
promise canceling, 418–419
promise chaining, 410–417
promise graphs, 413
Promise.all() method, 413, 414–415, 416, 421
Promise.prototype.catch() method, 403–404
Promise.prototype.finally() method, 404–405
Promise.prototype.then() method, 400–403
Promise.race() method, 413, 415–416
Promise.reject() method, 399, 403, 409, 426
Promise.resolve() method, 398–399, 401, 402,

403, 422
promises

about, 395
basics of, 395–400
casting with Promise.resolve() method, 398–399
controlling state with executor, 397–398

extensions, 418–421
instance methods, 400–410
non-reentrant promise methods, 405–407
parallel composition, 414–416
progress notifications for, 419–421
Promise.prototype.catch() method, 403–404
Promise.prototype.finally() method, 404–405
Promises/A+ specification, 395
rejecting, 396–397, 408–410
rejection with Promise.reject() method, 399
resolved values, 396–397, 408
serial composition, 416–417
sibling handler order of execution, 407
states, 396
synchronous/asynchronous execution duality,

399–400
utility of, 396–397

Promises: Linguistic Support for Efficient
Asynchronous Procedure Calls in Distributed
Systems (Liskov and Shrira), 395

Promises/A+ specification, 395
prompt() method, 449
properties. See also specific properties

accessor, 254–255
avoiding unnecessary lookups, 1049–1050
of constructors, 137–139
data, 252–254
defining multiple, 255–256
Document Object Model (DOM), 573–574
dynamic, 102–103
form field, 711–713
function, 367–370
hidden, 345
instance, 134
media elements, 765–766
reading attributes, 256–257
tracking access to, 344
types of, 252–255
using symbols as, 56–57
validating, 345–346

propertyIsEnumerable() method, 67
proprietary extensions

about, 557
children property, 557
contains() method, 557–558
markup insertion, 558–560
scrolling, 560

Prorotype library, 1098
prototypal inheritance, 297–298
prototype chaining, 289–294
prototype pattern, 273–284
prototypes

default, 291

1136

proxies – reference types

dynamic nature of, 286–287
hierarchy of, 278–281
how they work, 274–278
instance relationships and, 291–292
methods and accessors, 308–309
native object, 287–288
in operator and, 281–283
problems with, 288–289

proxies
about, 323
considerations and shortcomings, 332–333
creating passthrough, 324–325
defining traps, 325–326
fundamentals of, 324–333
proxy patterns, 344–347
proxy traps, 333–344
proxying, 331
Reflect API, 326–328
reflect methods, 333–344
revocable, 329
trap invariants, 328–329
trap parameters, 326–328
utility of Reflect API, 329–331

pseudorandom number generator (PRNG), 808–809
publicMethod() function, 384–385
Push API, 1010
push events

handling, 1032–1033
subscribing to, 1031–1032

push() method, 180–181, 198–200
pushManager property, 1007
pushState() method, 461–462
put() method, 935, 936, 1014

Q
qooxdoo library, 1098
query string arguments, 451–452
queryCommandState() method, 738
queryCommandValue() method, 738
querying, with cursors, 937–939
querySelector() method, 544
querySelectorAll() method, 544–545
queue

Async iterator, 1070–1072
methods for, 181–182

quirks mode, 22
qUnit, 1110

R
random() method, 163–164
random number generation, 808–810

range of values, 42–43
rangeCount property, 738
RangeError property, 160, 827
rangeOverflow property, 725
ranges

about, 590
cleanup, 598–599
cloning DOM, 598
collapsing DOM, 597
comparing DOM, 597–598
complex selection in DOM, 592–593
in DOM, 590–591
inserting DOM range content, 596–597
interacting with DOM range content, 593–595
numeric, 724
simple selection in DOM, 591–592

rangeUnderflow property, 725
ratechange event, 767
raw strings, 53
React framework, 1095–1096
read() method, 780, 910–911
readability, of code, 1037
readable streams, 778, 779–781
ReadableStream, 909–914
ReadableStreamDefaultController, 779
ReadableStreamDefaultReader, 780–781
readAsArrayBuffer() method, 759
readAsBinaryString() method, 759
readAsDataURL() method, 759
readAsText() method, 759
reading

pixels, 703–704
property attributes, 256–257
response status information, 903–904
responses, 886

readOnly property, 711
reads, Atomic API, 747–748
ready property, 1006
readyState property, 550, 766
readystatechange event, 644–645
receiving data, 916
record queue, 540–541
rectangles, drawing, 677–679
recursive function, 372–373
redirected property, 903
reduce() method, 189–190
reduceRight() method, 189–190
reduction methods, 189–190
redundant state, 1019, 1024
reference counting, 115–116
reference types. See also collection reference types

about, 125–126
Date type, 126–131
primitive wrapper types, 139–157

1137

reference values – reviver function

RegExp type, 131–139
singleton built-in objects, 157–166

reference values
about, 101
argument passing, 103–105
copying values, 103
determining type, 105–106
dynamic properties, 102–103

ReferenceError type, 160, 827
references

events, 654–659
MutationObserver, 541

Reflect API, 326–328, 329–331, 333–344
RegExp property, 160
RegExp type

about, 131–133
constructor properties, 137–139
instance methods, 135–137
instance properties, 134
pattern limitations, 139

register() method, 1004, 1006–1007, 1020
registering handlers, 459
registerProtocolHandler() method, 456, 459
registration property, 1009
regular expressions, enhancements to, 1079–1082
reject() function, 408
reject() handling, 1072
rejected state, 396, 397
rejecting

error handling for, 408–410
promises, 408–410
reasons for, 396–397

relational operators, 85–86
reload() method, 454
remote resources, 871–918
remove() method, 549, 727
removeAllRanges() method, 739
removeAttribute() method, 510–511, 512, 520–

521
removeAttributeNS() method, 567
removeChild() method, 496, 499, 661–662, 730–

731
removeEventListener() method, 607–608,

611–615
removeItem() method, 930, 931, 932
removeNamedItem() method, 512
removeNamedItemNS() method, 568
removeParameter() method, 858–859
removeProperty() method, 573, 574
removeRange() method, 739
removeReference() method, 209, 219
removing

event handlers, 661–662
options, 730–731

reordering
methods for, 182–184
options for, 731

repeat() method, 152
replace() method, 154, 155, 453–454
replaceChild() method, 496, 497, 499, 513,

661–662
replacer function, 869
replaceState() method, 462
request failures, 887–888
Request object, 897–900
requestAnimationFrame, 672–675
requestMediaKeySystemAccess() method, 456
requestPermission() method, 775
requests

aborting, 894–895
dispatching, 886
Fetch API, 906–914

require() method, 953–954
RequireJS, 1103
reserved words, 28
reset() method, 708, 710, 859
resetting

forms, 709–710
processor, 859

resize event, 623
resizeBy() method, 441
resizeTo() method, 441
resolve() method, 406, 408
resolved values, 396–397, 408
Resource Timing API, 790–791
Response object, 901–905
Response.error() method, 902
Response.redirect() method, 902
responses, Fetch API, 906–914
responseText property, 873
responseXML property, 873
rest operator, 1076–1077
rest parameter, 360–361
restore() method, 685, 686
restrictions

cookies, 920–921
IndexedDB, 943
Web Sockets, 933

resuming async functions, 427–430
retrieving selected text, 717
return() method, 233–235, 247–248
return statement, 99, 826
returning asynchronous values, 393–394
returnValue property, 616
reusing MutationObserver, 533–534
reverse() method, 182–184, 836
reverseSort() function, 836
reviver function, 869

1138

revocable() method – serialization

revocable() method, 329
revocable proxies, 329
rich text

editing, 734–740
in forms, 740
selections of, 738–740

rightContext property, 137, 138
Rivest-Shamir-Adleman (RSA), 812
Rollup, 1104
rotate() method, 683, 684–685
rotationRate property, 650
rounding methods, 163
RSA-OAEP, 813
RSA-PSS, 813
RSASSA-PKCS1-v1_5, 812
rtt property, 487
rules, 578–579

S
Safari, error messages in, 830
safe integers, 143
safety, capability detection and, 467
SameValueZero operation, 203
save() method, 685
saveData property, 487
sayAge() method, 297, 438
sayColor() method, 161, 365–366, 369, 370
sayName() method, 252, 272–273, 274, 278, 296,

1044
scale() method, 683
scope

about, 106–108
var declaration, 29–30

scope chain, 107, 108–109
scope property, 1007
scope-awareness, 1047–1049
screen coordinates, 628–629
screen object, 459–460
screen.colorDepth property, 482
screen.orientation property, 482
screen.pixelDepth property, 482
<script> element

about, 13–16, 521–523, 524
asynchronous scripts, 17–18
changes in XHTML, 19–20
deferred scripts, 17
deprecated syntax, 20–21
dynamic script loading, 18
tag placement, 16

scripting
forms (See forms)
select boxes, 726–731

text boxes, 715–726
scripts

asynchronous, 17–18
deferred, 17
dynamic loading, 18, 521–523
template, 794

scriptURL property, 1008
scroll dimensions, 582–583
scroll event, 624
scrollHeight property, 582
scrolling, 560
scrollIntoView() method, 556–557
scrollLeft property, 582
scrollTop property, 582
scrollWidth property, 582
search and location methods, 186–188
search() method, 154
Secure Hash Algorithms, 810
security restrictions

about, 917
dedicated workers, 974–975
service workers, 1008
for windows, 445

seekable property, 766
seeked event, 767
seeking property, 766, 767
select boxes, scripting, 726–731
select event, 716
select() method, 716, 717, 718
selectAllChildren() method, 739
selectedIndex property, 727
selectFrom() function, 164
selecting

options, 728–729
text, 716–718

selectNode() method, 591–592, 592–593
selectNodeContents() method, 591–592, 592–593
Selectors API, 544–545
selectorText property, 577
self property, 972
send() method, 873, 875–876, 916
sendBeacon() method, 456, 914
sending

cross-origin requests, 894
data, 916
files, 893–894
JSON data, 893
parameters in a request body, 893

serial composition, of promises, 416–417
serial promise execution, 434
serialization

of forms, 732–733
JSON, 864–870, 866–869
options for, 866–869

1139

serialize() function – slice() method

serialize() function, 733
serializeToString() method, 852
service workers

about, 971
cache, 1012–1017
clients, 1017–1018
consistency and, 1018–1019
creating, 1004–1005
forced operation, 1025–1026
intercepting fetch events, 1028–1030
lifecycle, 1019–1024
managing file caching with updateViaCache, 1025
messaging, 1026–1028
persistence of, 1024–1025
push notifications, 1030–133
scope limitations, 1010–1012
security restrictions, 1008
state, 1009
updating, 1024

ServiceWorker object, 456, 1007–1008
ServiceWorkerContainer, 1004–1006
ServiceWorkerGlobalScope, 1008–1010
ServiceWorkerRegistration object, 1006–1007
sessionStorage object, 930–932
set() method, 201–202, 207–209, 895–897, 927
set operations, defining formal, 215–217
set() trap, 334–335
Set type

about, 211
basic API, 211–213
defining formal set operations, 215–217
order and iteration, 213–215

setAll() method, 927
setAttribute() method, 510–511, 512, 520–521
setAttributeNode() method, 521
setAttributeNodeNS() method, 568
setAttributeNS() method, 568
setClipboardText() method, 721
setData() method, 720–721, 772–773
setDragImage() method, 774–775
setEnd() method, 592–593
setEndAfter() method, 592
setEndBefore() method, 592
setInterval() method, 447, 672, 673, 972
setItem() method, 930
setName() method, 105, 386
setNamedItemsNS() method, 568
setParameter() method, 858–859
setProperty() method, 573
setPrototypeOf() method, 277–278, 340–341
setRequestHeader() method, 875–876
setSelectionRange() method, 717, 718
setStart() method, 592–593
setStartAfter() method, 592

setStartBefore() method, 592
setTimeout() method, 446–447, 672, 673,

674, 972
setting cursor direction, 940
setTransform() method, 683
setUserData() method, 571
setVersion() method, 934
shaders, WebGL, 697–698
shadow DOM, 795–802
shadow root, 797
shadowBlur property, 687
shadowColor property, 687
shadowOffsetX property, 687
shadowOffsetY property, 687
shadows, 687
share() method, 456
shared web worker, 971
shared workers

about, 997–1000
connecting to, 1001–1002
creating, 997–998
lifecycle, 1000–1001

SharedArrayBuffer, 744–745, 990–993
SharedWorker(), 998–999
SharedWorkerGlobalScope, 999–1000
shift() method, 181–182, 198–200
showMessage() method, 605–606
showNotification() method, 1007, 1032–1033
showValue() function, 1089
Shrira, Liuba

Promises: Linguistic Support for Efficient
Asynchronous Procedure Calls in Distributed
Systems, 395

Siblime Text, 1106
side effect, 69
sign bit, 72
signed right shift (>>), 76
signing messages with asymmetric keys, 819–820
simple type results, 854–855
simulating events, 662–669
single node results, 854
single plus sign (+), 70–72
single quotes (’), 46, 47
single-line comment, 26
singleton built-in objects

about, 157
Global object, 157–161
Math object, 161–165

single-use streams, 908–909
size, of window object, 440–441
size property, 727, 758
skipWaiting() method, 1009
Sleep() function, 430–431
slice() method, 148–149, 184–186, 191, 761–762

1140

small() method – String type

small() method, 157
Smith, Kevin, 418
software detection, 480–489
some() method, 188–189
sort() method, 182–184, 363, 467, 836
source property, 134
SPDY/HTTP2, 21–22
Spectre, 787
splice() method, 185–186, 198–200
split() method, 155–156
splitText() method, 517–518
splitting text nodes, 517
Spolsky, Joe (blogger), 144
spoofing user-agents, 479
spread arguments, 359–360
spread operators, 220–222, 1077–1078
src attribute, 14, 15, 766
srcElement property, 616
stack methods, 180–181
stack traces, 434–435
stalled event, 768
standards mode, 22–23
start() method, 779, 977
start property, 766
startContainer property, 590
startMessage() method, 1006
startOffset property, 590, 592
startsWith() method, 151, 288
state property, 1008
statement context, 168
statements
for, 91–92
with, 95–96, 109, 1048–1049, 1093
about, 27–28, 90
break, 94–95
catch, 109
continue, 94–95
do-while, 90–91
for-in, 92–93
for-of, 93
if, 90
labeled, 93
return, 99, 826
switch, 96–98
try/catch, 33, 825–829, 831, 840
while, 91

states, promises, 396
static allocation, 120–122
static analysis, 948–949
static class methods/accessors, 309–310
static code analyzer, 833
static private variables, 385–386
static type systems, 1104–1105
status codes, 887–888

status property, 873, 903
statusText property, 873, 903
stencil property, 693
stepDown() method, 724
stepMisMatch property, 725
stepUp() method, 724
sticky property, 134
stopImmediatePropagation() method, 612
stopping async functions, 427–430
stopPropagation() method, 612, 614, 616, 618
storage property, 456, 932
Storage type, 929–930
store() method, 748
strategies

for async functions, 430–435
for error handling, 832

stream decoding, 756–758
stream encoding, 754–755
Streams API

about, 777–779
piping streams, 784–785
readable streams, 779–781
transform streams, 782–783
writable streams, 781–782

strict equivalence, 186–187
strict mode

about, 27, 1087
classes, 1093
coercion, 1092
functions, 1089–1092
modules, 1093
objects, 1088–1089
opting-in, 1087
variables, 1088

strike() method, 157
string case methods, 153
String() function, 49, 83
string inclusion methods, 151
string indentation, 867–868
string iterators, 152–153
string location methods, 150
string pattern-matching methods, 153–156
String property, 160
string trimming methods, 1085
String type

about, 46–53, 144
destructuring, 152–153
HTML methods, 157
JavaScript character, 144–146
localeCompare() method, 156
normalize() method, 147–148
padEnd() method, 152
padStart() method, 152
repeat() method, 152

1141

String.fromCharCode() method – template scripts

string case methods, 153
string inclusion methods, 151
string iterators, 152–153
string location methods, 150
string pattern-matching methods, 153–156
string-manipulation methods, 148–149
trim() method, 151

String.fromCharCode() method, 637, 719
stringify() method, 865, 866–867
string-manipulation methods, 148–149
strings

converting to, 48–49
raw, 53

strokeRect() method, 677–679
strokes, 677
strokeText() method, 681–683
structured clone algorithm, 987–988
style property, 578
style sheets, 576–579
<style> element, 523–525
styles

computed, 575–576
declarations, 35–36
Document Object Model (DOM), 572–584
dynamic, 523–525

sub() method, 157
subclasses, 972–973
subcookies, 925–928
SubCookieUtil.getAll() method, 926
submit() method, 708, 709, 710, 740
submitting forms, 708–709
subscribing to push events, 1031–1032
substr() method, 149
substring() method, 139, 148–149, 717, 835
SubtleCrypto object, 810–821
SubtleCrypto.decrypt() method, 820
SubtleCrypto.digest() method, 811
SubtleCrypto.encrypt() method, 820
SubtleCrypto.generateKey() method, 814–816
SubtleCrypto.sign() method, 819–820
SubtleCrypto.unwrapKey() method, 821
SubtleCrypto.verify() method, 819–820
SubtleCrypto.wrapKey() method, 821
subtract (-) operator, 84–85
subtree mutations, observing, 539–540
subtree property, 534
sum() function, 99, 352, 841
sup() method, 157
super() method, 314–316, 803
supplementary plane, 145
surrogate pair, 145
surroundContents() method, 596–597, 739
swapColors() function, 108
switch statement, 96–98

Symbol property, 54–55, 160
Symbol type, 54–67
Symbol.asyncIterator function, 58–59
Symbol.for(), 55–56
Symbol.hasInstance function, 59
Symbol.isConcatSpreadable function, 60
Symbol.iterator function, 60–61
Symbol.match function, 61–62
Symbol.prototype.description, 1085
Symbol.replace function, 62–63
symbols

using as properties, 56–57
well-known, 57–67

Symbol.search function, 63–64
Symbol.species function, 64
Symbol.split function, 64–65
Symbol.toPrimitive function, 65–66
Symbol.toStringTag function, 66
Symbol.unscopables function, 66–67
synchronous programming, asynchronous

programming versus, 392–393
synchronous tasks, 411
synchronous/asynchronous execution duality,

399–400
syntax

about, 25
case-sensitivity, 26
comments, 26
deprecated, 20–21
identifiers, 26
statements, 27–28
strict mode, 27

Syntax Error, 845–846
SyntaxError object, 160, 827
system dialogs, 448–450
SystemJS, 1103
The System Cannot Locate the Resource Specified

error, 846

T
tabForward() function, 722
tabIndex property, 711
<table> element, 525–527
tables, manipulating, 525–527
tag functions, 51–53
tagging modules, 958–959
tail call optimization, 373–376
takeRecords() method, 541
target property, 612, 708
task runners, 1060, 1107
template literals, 49–50, 51–53
template scripts, 794

1142

<template> tags – two’s complement

<template> tags, 793–794
templates, HTML, 791–794
temporal dead zone, 32, 112, 358
terminate() method, 975, 1001, 1007–1008
test() function, 29–30, 133, 136, 137–138
test-driven development (TDD), 1109
text

decoding, 755–758
drawing, 681–683
encoding, 753–755
selecting, 716–718

text boxes, scripting, 715–726
text events, 634–640
text() method, 886, 913
text nodes

creating, 515–516
normalizing, 516
splitting, 517

Text type
about, 514–515
creating text nodes, 515–516
normalizing text nodes, 516
splitting text nodes, 517

textAlign property, 681
textBaseline property, 681
textInput event, 638–639
textures, WebGL, 703
then() method, 407, 410–411, 412, 423
Thenable interface, 400
this object

about, 365–366
closures and, 379–381
inside proxies, 332–333

threads, compared with workers, 970–971
three.js, 1099
throttling performance, 674–675
throw() method, 248–249
throwing errors, 829–831, 843–844
TIMEOUT error, 485
timeout property, 485
timeouts, 446–448, 879
timeupdate event, 768
Timing APIs

about, 785–786
High Resolution Time API, 786–787
Performance Timeline API, 788–791

title property, 576
toDataURL() method, 676
toDateString() method, 129
toExponential() method, 142
toFixed() method, 142
toggle() method, 549
toGMTSring() method, 129

toISOString() method, 868–869
toJSON() method, 868–869
toLocaleDateString() method, 129
toLocaleLowerCase() method, 153
toLocaleString() method, 68, 128, 137, 141, 144,

179–180, 370
toLocaleTimeString() method, 129
toLocaleUpperCase() method, 153
toLowerCase() method, 153
ToObject() method, 265–266
tooLong property, 725
top property, 460
toPrecision() method, 142–143
toString() method, 44, 48–49, 51, 68, 71, 83, 84,

128, 137, 141, 144, 179–180, 363, 367–368,
370, 739, 811

totalBytes property, 766
toTimeString() method, 129
touch devices, support for, 633
touch events, 651–653
toUpperCase() method, 153
toUTCString() method, 129
<tr> element, 527
transaction() method, 935–936
transactions, IndexedDB, 935–936
transferable objects, 988–990
transform() method, 683, 782–783
transform streams, 778, 782–783
transformations, 683–686
transformToDocument() method, 857–858,

858–859
transformToFragment() method, 857–858,

858–859
translate() method, 683
transparency, of variables, 1038–1039
transpilation, 1063, 1104–1105
traps

defining, 325–326
invariants, 328–329
parameters, 326–328

traversals
about, 584–585
NodeIterator type, 585–588
TreeWalker, 588–590

tree shaking, 1060–1061
TreeWalker, 588–590
trim() method, 151
trimLeft() method, 151
trimRight() method, 151
trusted property, 612
try/catch statement, 33, 825–829, 831, 840
2D, 677–692
two’s complement, 72

1143

type – variables

type. See also specific types
coercion errors for, 833–835
determining, 105–106

type property, 14, 487, 576, 578, 612, 616, 712,
759, 903, 979, 1018

typed arrays
about, 190, 196–200
ArrayBuffers, 191–192
behaviors, 197–198
changing, 198–200
copying, 198–200
DataViews, 192–195
emergence of, 191
history, 190–191
merging, 198–200

TypeError property, 160, 828
typeMismatch property, 726
typeof operator, 36–37, 106
types method, 775
TypeScript, 1104

U
ua-parser-js (website), 480
Uglify, 1109
UI events, 619–624
unary minus operator, 70–72
unary operators, 68–72
unary plus operator, 45, 70–72
undefined property, 160
Undefined type, 37–38
underflow, of values, 200
underscore (_), 26
Underscore.js library, 1097
unicode property, 134, 1081–1082
uniforms, 698
unique property, 942
unit testing, 1109–1110
universal modules, 957
Unkown Runtime Error, 845
unload event, 622–623
unregister() method, 1007
unrolling loops, 1051–1053
unset() method, 928
unsetAll() method, 928
unshift() method, 181–182, 198–200
unsigned right shift (>>>), 76–77
unwrapping keys, 821
update() method, 937–938, 1007
updateAnimations() method, 672
updateViaCache, managing service workers file

caching with, 1025

updating service workers, 1024
upgrading

custom elements, 807–808
from GLSL 100 to GLSL 300, 701

URI-encoding methods, 158–159
URIError property, 160, 828
url property, 903, 1018
URLSearchParams, 452
User Timing API, 788–789
user-agent detection

about, 470
history of composition of, 470–478
using for browser analysis, 478–480

user-agent parsers, 480
userAgent property, 456

V
valid property, 726
validating

parameters of constructors, 346
parameters of functions, 346
properties, 345–346

validation, 725–726, 1061–1062
value property, 712
valueMissing property, 726
valueOf() method, 44, 68, 71, 84, 86, 128, 141,

144, 179–180, 367–368
values

copying, 103
floating-point, 41–42
functions as, 362–363
JSON, 862
passing to shaders, 700
range of, 42–43

values() method, 214
var declaration, 29–31, 109–111
variable declaration

about, 109
block scope declaration using let, 111–112
constant declaration using const, 112–113
function scope declaration using var, 109–111
identifier lookup, 113–114

variables
about, 29
const declaration, 34–35
declaration styles, 35–36
let declaration, 31–34
naming, 1037–1038
private, 209–211
strict mode, 1088
types of transparency, 1038–1039

1144

vendor property – websites

var declaration, 29–31
vendor property, 456, 481
vendorSub property, 456
verifying messages with asymmetric keys, 819–820
versions, JavaScript, 11–12
vertex shaders, 697
vibrate() method, 456
videoHeight property, 766
videoWidth property, 766
View property, 612
viewports, WebGL, 695–696
Visual Studio Code, 1106
volume property, 766
volumechange event, 768
Vue framework, 1096

W
wait queue, 751
waiting property, 768, 1007
waitUntil() method, 1032–1033
warn() method, 840
WeakMap type

about, 206
basic API, 207–208
non-iterable keys, 209
utility, 209–211
weak keys, 208–209

WeakSet type
about, 217
basic API, 217–218
non-iterable keys, 219
utility, 219–220
weak keys, 219

web browsers. See also specific web browsers
analysis, using capability detection for, 468–470
analysis, using user-agent detection for, 478–480
current-device, 480
error reporting, 824
Google Chrome, 480
identifying, 481–482
metadata, 482–488
Mootools, 480
support for Document Object Model (DOM) in,

9–10
support for ECMAScript in, 5–7
XML DOM support in, 849–852
XPath support in, 852–857
XSLT support in, 857–859

web components
adding content, 804–805
custom elements, 802–808

shadow DOM, 795–802
Web Cryptography API

about, 808
random number generation, 808–810
SubtleCrypto object, 810–821

Web Sockets
events, 916–917
limits, 933
localStorage object, 932
restrictions, 933
sessionStorage object, 930–932
storage event, 932

Web Storage, 929–930
WebAssembly, 1105
webdriver property, 456
WebGL

about, 190–191, 692–693
basics of, 693–704
context, 693
WebGL1 versus WebGL2, 704–705

WebKit, 475–476
Webpack, 1103
websites

animations, 1099
automation systems, 1107
Bowser, 480
build tools, 1107
compilation/transpilation tools and static type

systems, 1104–1105
documentation generators, 1110–1112
Douglas Crockford’s JSLint, 1061
editors, 1106
effects, 1099
Element Traversal API, 546
ESLint, 1061
Firebig Lite, 824
formatters, 1107–1108
frameworks, 1095–1097
GitHub respository, 1068
Grunt, 1060
Gulp, 1060
high-performance script tools, 1105
jQuery, 544
libraries, 1097–1098
linters, 1107–1108
minifiers, 1109
module bundlers, 1103–1104
module loaders, 1101–1102, 1102–1103
package managers, 1101–1102
Platform.js, 480
Selectors API, 544
task runners, 1107
ua-parser-js, 480

1145

WebStorm – YUI Doc

unit testing, 1109–1110
user-agent parsers, 480
Web Cryptography API, 808
wrox.com downloads, 1

WebStorm, 1106
wheel events, 625–634
while statement, 91
width property, 460
window object

about, 160, 438
global scope of, 438–439
intervals, 446–448
navigating windows, 442–446
opening windows, 442–446
pixel ratio, 439–440
position, 439–440
relationships, 439
size, 440–441
system dialogs, 448–450
timeouts, 446–448
viewport position, 441–442

window.CollectGarbage() method, 117
window.open() method, 443–444, 445–446
window.opera.collect() method, 117
windows. See window object
window.URL.createObjectURL() method, 762–763
wire weight, 1062
Wise, David

The Impact of Applicative Programming on
Multiprocessing, 395

with statement, 95–96, 109, 1048–1049, 1093
worker data transfer, 987–993
worker modules, 965–966
Worker object, 975
worker pools, 993–997
WorkerGlobalScope, 971–973, 972–973
workers

about, 969–970
compared with threads, 970–971
dedicated, 973–977
service, 1003–1033
shared, 997–1002

types of, 971
WorkerGlobalScope, 971–973

wrapping keys, 821
writable streams, 778, 781–782
write() method, 504–506, 781–782
WriteableStream, 781
WriteableStreamDefaultWriter, 781
writeIn() method, 504–506
writes, in Atomics API, 747–748
writing shaders, 697–698
wrox.com downloads, 1

X
XHR usage, 872–875
XHTML (Extensible HyperText Markup Language),

19–20
XML

about, 849
DOM support in browsers, 849–852
namespaces, 564–568
XPath support in browsers, 852–857
XSLT support in browsers, 857–859

XMLHttpRequest object
about, 872
GET requests, 876–877
HTTP headers, 875–876
Level 3, 878–880
POST requests, 877–878
XHR usage, 872–875

XMLSerializer type, 851–852
XOR (^) operator, 75
Xpath support in browsers, 852–857
XSLT support in browsers, 857–859
XSLTProcessor type, 857–858

Y
Yarn, 1102
yield, interrupting execution with, 238–246
YUI Doc, 1111

