

2nd Edition

© 2019 Alberto Montalesi

All rights reserved

Introduction 8
About Me 9

Get in touch 10
Contributions & Donations 11
License 11

Set up your environment 12
JavaScript Basics 15

Variables 16
Data Types 21
Functions 35
Understanding function scope and the this keyword 39
JavaScript Basics Quiz 47

Chapter 1: Var vs Let vs Const & the temporal
dead zone 49

The temporal dead zone 54
When to use Var, Let and Const 55
End of Chapter 1 Quiz 57

Chapter 2: Arrow functions 60
What is an arrow function? 60
Implicitly return 61
Arrow functions are anonymous 63
Arrow function and the this keyword 63
When you should avoid arrow functions 65
End of Chapter 2 Quiz 70

Chapter 3: Default function arguments 72
Default function arguments 74
End of Chapter 3 Quiz 78

Chapter 4: Template literals 80
Interpolating strings 80
Expression interpolations 81
Create HTML fragments 81
Nesting templates 82
Add a ternary operator 83
Pass a function inside a template literal 85
Tagged template literals 87
End of Chapter 4 Quiz 90

Chapter 5: Additional string methods 92
Additional string methods 93
End of Chapter 5 Quiz 97

Chapter 6: Destructuring 99
Destructuring Objects 99
Destructuring Arrays 102
Swapping variables with destructuring 103
End of Chapter 6 Quiz 104

Chapter 7: Iterables and looping 106
The for of loop 106
The for in loop 108
Difference between for of and for in 109
End of Chapter 7 Quiz 110

Chapter 8: Array improvements 111
Array.from() 111
Array.of() 113
Array.find() 114
Array.findIndex() 114

Array.some() & Array.every() 115
End of Chapter 8 Quiz 117

Chapter 9: Spread operator and rest
parameters 119

The Spread operator 119
The Rest parameter 125
End of Chapter 9 Quiz 126

Chapter 10: Object literal upgrades 128
Deconstructing variables into keys and values 128
Add functions to our Objects 129
Dynamically define properties of an Object 131
End of Chapter 10 Quiz 133

Chapter 11: Symbols 135
The unique property of Symbols 135
Identifiers for object properties 136
End of Chapter 11 Quiz 139

Chapter 12: classes 141
Create a class 142
Static methods 144
set and get 145
Extending our class 146
Extending Arrays 150
End of Chapter 12 Quiz 153

Chapter 13: Promises 156
What is a Promise? 158
Create your own promise 159
End of Chapter 13 Quiz 170

Chapter 14: Generators 172
What is a Generator? 172
Looping over an array with a generator 173
Finish the generator with .return() 174
Catching errors with .throw() 175
Combining Generators with Promises 176
End of Chapter 14 Quiz 179

Chapter 15: Proxies 182
What is a Proxy? 182
How to use a Proxy ? 182
End of Chapter 15 Quiz 190

Chapter 16: Sets, WeakSets, Maps and
WeakMaps 191

What is a Set? 191
What is a WeakSet? 195
What is a Map? 196
What is a WeakMap? 197
End of Chapter 16 Quiz 199

Chapter 17: Everything new in ES2016 200
Array.prototype.includes() 200
The exponential operator 202
End of Chapter 17 Quiz 203

Chapter 18: ES2017 string padding,
Object.entries(), Object.values() and more 205

String padding (.padStart() and .padEnd()) 205
Object.entries() and Object.values() 207
Object.getOwnPropertyDescriptors() 208
Trailing commas 209

Shared memory and Atomics 211
End of Chapter 18 Quiz 215

Chapter 19: ES2017 Async and Await 218
Promise review 218
Async and Await 220
Error handling 223
End of Chapter 19 Quiz 225

Chapter 20: ES2018 Async Iteration and
more? 227

Rest / Spread for Objects 227
Asynchronous Iteration 229
Promise.prototype.finally() 230
RegExp features 232
Lifting template literals restriction 235
End of Chapter 20 Quiz 236

Chapter 21: What's new in ES2019? 238
Array.prototype.flat() / Array.prototype.flatMap() 238
Object.fromEntries() 240
String.prototype.trimStart() / .trimEnd() 241
Optional Catch Binding 242
Function.prototype.toString() 243
Symbol.prototype.description 244
End of Chapter 21 Quiz 245

An Intro To TypeScript 248
What is TypeScript? 249
How to use TypeScript 250
TypeScript basic types 251
Interfaces, Classes and more 259

Intersection Types and Union Types 266
TypeScript Quiz 271

Conclusion 273
Quiz Solutions 274

Introduction to JavaScript solutions 274
End of Chapter 19 Quiz 290
Introduction to TypeScript solutions 293

Introduction

This book was first published in 2018 as a result of
months of self-study of JavaScript, and it was aimed
to JavaScript developers who wanted to update
their skills to the newest version of the ECMAScript
specification.

I was really proud of the result, but at the same time, I
felt this book was missing something. It was not
suitable for newcomers to the language.

This 2019 edition addresses the problems of the first
one and expands on it, targeting both JavaScript
developers and complete beginners.

That is why I have added a new section entirely
dedicated to introducing JavaScript to beginners.

Another addition is the TypeScript section. After a
year of working with TypeScript, I can comfortably
say that it is a must-know for any JavaScript
developer and I think that even beginners should try
to adopt it in their workflow.

A free version of this book can be found on Github at
https://github.com/AlbertoMontalesi/The-complete-
guide-to-modern-JavaScript
where you can find the core chapters of the book that
will be updated with each new version of ECMAScript.

8

About Me

My name is Alberto Montalesi, I
am from Italy and I am working in
Vietnam as a Software Developer
creating enterprise software.

My passion for programming
started late in life, in 2016, at the
age of 24 after a bachelor’s degree
in Law.

My path to becoming a self-taught software developer
has not been easy, but it's definitely something I
would do again.

You can read my story on DevTo at this link: https://
dev.to/albertomontalesi/my-journey-from-esl-
teacher-to-software-developer-5h30.

Writing a book that can help other aspiring
developers fills me with pride as I know very well how
hard it can be to find the motivation and the
resources to continue studying and improving your
skill.

Apart from programming, my other passions include
photography, traveling, and gaming.

9

Get in touch

If you want to get in touch for any type of
collaboration or discussion you can find me on:

• Twitter

• DevTo at https://dev.to/albertomontalesi

• Github at https://github.com/AlbertoMontalesi

• InspiredWebDev my personal blog https://
inspiredwebdev.com

10

https://twitter.com/montalesi
https://dev.to/albertomontalesi
https://github.com/AlbertoMontalesi
https://inspiredwebdev.com

Contributions & Donations

Any contributions you make are of course greatly
appreciated.

If you enjoy my content and you want to donate a cup
of coffee to me, you can do so at https://
www.paypal.me/albertomontalesi.

License

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivs 4.0 Unported
License.

11

https://www.paypal.me/albertomontalesi
https://www.paypal.me/albertomontalesi
https://www.paypal.me/albertomontalesi

Set up your environment

If you already have a code editor installed on your
computer and you already know how to use the
chrome developer tools or similar tools, then you
can skip this chapter and move on.

In order for you to play around with the code we are
going to use in this book I suggest you download a
code editor that you will use to write and run the
JavaScript code we will talk about.

My personal choice is Visual Studio Code, made by
Microsoft and available for free here: https://
code.visualstudio.com/

Other alternatives are:

• Atom: https://atom.io/

• Sublime Text: https://www.sublimetext.com/

Whatever is your choice, they will all be enough for
your needs.

After installing it you just have to open the software
and create a new file and save it as .js and you will
have your first JavaScript file.

The second thing we will look at are the developer
tools.

12

Open your browser to any page and right click
somewhere. You will see a set of options, one of which
being inspect or inspect element. If you click it it
will open the developer tools that you can use to
look at web pages code, play around with JavaScript
or debug your application.

This is how the Chrome Developer Tools will look
like.

The first tab Elements will let you look at the code of
the page you are inspecting, the second tab Console
is where you can write your JavaScript and
experiment.

What I did here was defining a variable and calling it.
You will learn about variables and much more in the
next chapter where I will introduce you to the basics
of JavaScript.

13

14

JavaScript Basics

JavaScript is a programming language created by
Brendan Eich in 1995 that enables interactive web
pages and is an essential part of web applications.

If you want to learn more about the history of the
language and its name, I suggest that you read this
brief article on Medium.com https://medium.com/
@benastontweet/lesson-1a-the-history-of-
javascript-8c1ce3bffb17 .

If you have ever opened the Chrome developer tools
or a similar tool you may have already seen how
JavaScript is inserted into an HTML page.

We do that by using the script tag and either
inserting our JavaScript code directly inside of it or
by referencing an external file.

Code inside of the script tag:

<script type="text/javascript">

[YOUR_SCRIPT_HERE] </script>

Reference an external file:

<script src="/home/script.js"></script>

Of course you can add as many scripts as you want
and also use both relative, absolute and full path such
as:

15

mailto:https%253A//medium.com/@benastontweet/lesson-1a-the-history-of-javascript-8c1ce3bffb17
mailto:https%253A//medium.com/@benastontweet/lesson-1a-the-history-of-javascript-8c1ce3bffb17
mailto:https%253A//medium.com/@benastontweet/lesson-1a-the-history-of-javascript-8c1ce3bffb17
mailto:https%253A//medium.com/@benastontweet/lesson-1a-the-history-of-javascript-8c1ce3bffb17

<!-- absolute path from the root of our

project -->  

<script src="/home/script.js"></script>  

<!-- relative path to our current folder --

>  

<script src="script.js"></script>  

<!-- full url to the jquery library -->  

<script src="https://cdnjs.cloudflare.com/

ajax/libs/jquery/3.3.1/core.js"></script>

It's better to not write your code inside of the script
tag but instead put it in its own file so that it can be
cached by the browser and downloaded only once,
regardless of how many files import it. Those files will
use the cached version of the file, improving
performance.

Variables

We use variables to store values, which can be
anything from a username, an address or an item
from our e-commerce site, for example.

Prior to ES6 (ES2015) the way we would declare a
variable was:

var username = "Alberto Montalesi"

16

Now we have 2 more options when it comes to
declaring variables:

let username = "Alberto Montalesi"  

const username = "Alberto Montalesi"

We will go deeper into the differences between these
three keywords in the Chapter 1 but let me give you a
quick explanation.

Variables created with the keyword const are, as the
name implies, constant, meaning that they cannot be
overwritten.

Open your Chrome Developer Tools and try typing
the following:

const age = 26;  

age = 27;  

// Uncaught TypeError: Assignment to

constant variable

As you can see we are not allowed to assign a new
value to our constant.

On the other hand if we were to do this:

let height = 190;  

 height = 189

We get no complaint this time, let can be reassigned,
similarly to the old var keyboard.

17

If both var and let can be reassigned, then why
should we use let instead of var? The answer for that
requires a bit more explanation of how JavaScript
works and it will be discussed later in the Chapter 1.

Many people argue what the best practice is when it
comes to let and const. Here is my take: se const
all the time unless you know in advance that you will
need to reassign its value.

 If later on you need to reassign one of your const,
simply make it a let and it will be enough. I find that
for myself, it’s better to make them const by default.
Then I see errors if I accidentally try to reassign them
rather than having to debug the code later just to find
out that I was referencing the wrong variable.

A note about naming variables

There are certain rules to respect when it comes to
naming variables. But don't worry, most of them are
very easy to remember.

The following are all forbidden:

// variables name cannot start with a

number  

let 1apple = "one apple";  

// variables name cannot include any

character such as spaces, symbols and

18

punctuation marks  

let hello! = "hello!";

There are also certain words that are reserved and
cannot be used as names for variables and functions.

abstract arguments await boolean

break byte case catch

char class const continue

debugger default delete do

double else enum eval

export extends false final

finally float for function

goto if implements import

in instanceof int interface

let long native new

null package private protected

public return short static

super switch synchroniz
ed

this

throw throws transient true

try typeof var void

volatile while with yield

19

The rule of thumb when it comes to choosing the
name for your variable is to make them descriptive.
Avoid using acronyms, abbreviations and meaningless
names.

// BAD  

let cid = 12; // what is a `cid`  

// GOOD  

let clientID = 12; // oh, a `client id`  

 

// BAD  

let id = 12 // what id? userID? dogID?

catID?  

// GOOD  

let userID = 12 // be specific

If you want your variable names to be as descriptive
as possible, chances are they are going to be multi-
words.
In that case, the two most common ways of writing
variable names are camelCase and snake_case.

// BAD  

let lastloggedin = '' // hard to read  

// GOOD  

let lastLoggedIn = '' // camelCase  

let last_logged_in = '' // snake_case

20

Whether you choose to use camelCase and capitalize
each word of the name after the first one, or you
choose to use snake_case and put an underscore
between each word, remember to be consistent and
stick to your choice.

Data Types

JavaScript is a dynamic language, meaning that on
the contrary to a static language, you don't have to
define the type of your variables when you define
them.

// is this a string or a number ?  

var userID;  

 

userID = 12; // now it's a number  

console.log(typeof userID); // number  

userID = 'user1' // now it's a string  

console.log(typeof userID); // string

This may seem convenient at first, but it can be a
cause of problems when working on bigger projects.
At the end of this book, after you have mastered the
basics of JavaScript I will introduce you to
TypeScript, which adds strong typing to
JavaScript.

21

In JavaScript, there are 7 data types: 6 primitives
and the Object.

Primitives

A primitive is a value is simply data that is not an
Object and does not have methods.

They are:

• string

• number

• boolean

• null

• undefined

• symbol (the latest addition)

Let's have a quick look at all of them, some of which
you may already know if you have prior experience in
programming.

string is used to represent text data, whether it is a
name, an address or a chapter of a book.

let userName = "Alberto";  

console.log(userName) // Alberto

22

number is used to represent numerical values.
In JavaScript there is no specific type for Integers.

let age = 25;

boolean is used to represent a value that is either
true or false.

let married = false;

null represents absence of value, while undefined
represent an undefined value.

symbol represents a value that is unique and
immutable. It was added in ES2015, making it the
most recent addition to this list.
We will have a better look at it in Chapter 11.

Objects

While the previous 6 primitives that we discussed can
hold only a single thing, whether it’s a null value, true,
false, etc., Objects are used to store the collection of
properties

Let's first look at a simple Object

const car = {  

 wheels: 4,  

 color: "red",  

}

23

This is a simple Object that i use to store properties of
my car.

Each property has a key, in the case of the first line
it's wheels, and a value, in this case 4.

Key is of type string but the value can be of any type,
they can also be functions and in that case we call
them methods.

const car = {  

 wheels: 4,  

 color: "red",  

 drive: function(){  

 console.log("wroom wroom")  

 }  

}  

console.log(Object.keys(car)[0]) // wheels  

console.log(typeof Object.keys(car)[0]) //

string  

car.drive();  

// wroom wroom

As you can see now, we can call the function drive on
the object car.

Don't worry, we will look at functions more in the
next chapter.

24

Create an empty Object

We don't have to declare properties when we create
an Object.

Here are two ways of creating an empty Object:

const car = new Object()  

const car = {}

The more commonly used syntax is the second one,
which is called object literal

Now that you have a new empty car object, to add
new properties to it, you can simply do this:

car.color = 'red';  

console.log(car)  

// {color: "red"}

As you can see, we use the dot notation to add a new
property to the car Object.

How about accessing properties on the Object?
It's very simple and we have two choices:

const car = {  

 wheels: 4,  

 color: "red",  

}  

 

25

console.log(car.wheels);  

// 4  

console.log(car['color']);  

// 'red'

We have two different way of doing the same thing?
Why?

Well, they are not completely the same.
In case of multi-word properties we cannot use the dot
notation.

const car = {  

 wheels: 4,  

 color: "red",  

 "goes fast": true  

}  

console.log(car.goes fast);  

// syntax error  

console.log(car['goes fast'])  

// true

When you want to use multi-word properties, you need
to remember to wrap their name in quotation marks
and you are able to access them only with bracket
notation.

Another use for the bracket notation is to use it to
access properties of an Object by its key.

26

Let’s say that our application receives an input from a
user, which is then saved into a variable that will be
used to access our object.

The user is looking for cars and he/she has been
asked to tell us the brand that he/she likes. That
brand is a key that we will use to display back only the
appropriate models.

For simplicity, in the example each brand will have
only one model.

const cars = {  

 ferrari: "california",  

 porsche: "911",  

 bugatti: "veyron",  

}  

 

// user input  

const key = "ferrari"  

console.log(cars.key);  

// undefined  

console.log(cars['key']);  

// undefined  

console.log(cars[key]);  

// california

27

As you can see, we need to use bracket notation to
access the property of the Object via its key, stored in
our variable.

Be careful, no strings are around key as it is a variable
name and not a string.

Copying Objects

In contrast to primitives, objects are copied by
reference, meaning that if we write:

let car = {  

 color: 'red'  

}  

let secondCar = car;

Our secondCar will simply store a reference, an
"address", to the car and not the Object itself.

It's easier to understand if you look at this:

let car = {  

 color: 'red'  

}  

let secondCar = car;  

 

car.wheels = 4  

console.log(car);  

28

// {color: 'red', wheels: 4}  

console.log(secondCar);  

// {color: 'red', wheels: 4}

As you can see, the secondCar simply stored a
reference to car, therefore when we modified car,
secondCar also changed.

If we compare the two objects, we can see something
interesting:

console.log(car == secondCar);  

// true  

console.log(car === secondCar);  

// true

Whether we use equality (==) or strict equality (===)
we get true meaning that the two objects are the
same.

Only a comparison between the same Object will
return true.

Look at this comparison between empty objects and
objects with the same properties.

const emptyObj1 = {};  

const emptyObj2 = {};  

 

emptyObj1 == emptyObj2;  

29

// false  

emptyObj1 === emptyObj2;  

// false  

 

const obj1 = {a: 1};  

const obj2 = {a: 1};  

 

obj1 == obj2;  

// false  

obj1 === obj2;  

// false

As you can see, only a comparison between the same
object returns true.

A quick way of making a clone of an Object in
JavaScript is to use Object.assign.

const car = {  

 color:'red'  

}  

 

const secondCar = Object.assign({}, car)  

car.wheels = 4;  

console.log(car);  

// {color: 'red', wheels: 4}  

30

console.log(secondCar);  

// {color: 'red'}

Updating car did not affect secondCar.
Object.assign takes a target object as the first
argument, and a source as the second one.
In our example, we used an empty Object as our
target and our car as the source.

If you are ready for a more in-depth look at copying
Objects in JavaScript, I suggest you this article on
Scotch.io at https://scotch.io/bar-talk/copying-
objects-in-javascript

Arrays

As we have seen, Objects store data in a key value
pair. Now we will have a look at what an Array is.

An Array is an Object that stores values in order.
In the example above we used an Object to store our
car because it had specific properties that we wanted
to be able to access easily via a key.
If we just want to store a list of items, then there is no
need to create an Object. Instead, we can use an
Array.

For example:

31

https://scotch.io/bar-talk/copying-objects-in-javascript
https://scotch.io/bar-talk/copying-objects-in-javascript
https://scotch.io/bar-talk/copying-objects-in-javascript
https://scotch.io/bar-talk/copying-objects-in-javascript

const fruitBasket =

['apple','banana','orange']

We access values of an array via their index.
Remember that arrays start at position 0.

const fruitBasket =

['apple','banana','orange']  

console.log(fruitBasket[0])  

// apple  

console.log(fruitBasket[1])  

// banana  

console.log(fruitBasket[2])  

// orange

There are many methods that we can call on an
Array. Let's have a look at some of the most useful.

const fruitBasket =

['apple','banana','orange'];  

// get the length of the Array  

console.log(fruitBasket.length);  

// 3  

 

// add a new value at the end of the array 

fruitBasket.push('pear')  

console.log(fruitBasket);  

// ["apple", "banana", "orange", "pear"]  

32

 

// add a new value at the beginning of the

array  

fruitBasket.unshift('melon')  

console.log(fruitBasket);  

// ["melon", "apple", "banana", "orange",

"pear"]  

 

// remove a value from the end of the array 

fruitBasket.pop()  

console.log(fruitBasket);  

// ["melon", "apple", "banana", "orange"] 

 

// remove a value from the beginning of the

array  

fruitBasket.shift()  

console.log(fruitBasket);  

// ["apple", "banana", "orange"]

As we can see we can easily add and remove elements
from the beginning or the end of an Array with these
methods.

You can find a longer list of methods on MDN at this
link https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Global_Objects/Array .

33

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

Determining types using typeof

We can use typeof to determine the value of our
variables. For example:

const str = "hello"  

typeof(str);  

// string  

 

const num = 12  

typeof(num)  

// number  

 

const arr = [1,2,3]  

typeof(arr)  

// object  

 

const obj = {prop: 'value'}  

typeof(obj)  

// object

Remember that 'Array' is not a type, Arrays are
Objects!.

Everything seems pretty straight forward so far but
what if we try something like this:

typeof(null)

34

We know that null is a primitive, so should we expect
to see null as the result?

typeof(null)  

// object

Long story short, it's a bug from the first
implementation of JavaScript. If you want to know
more about it, this article offers a great explanation
(http://2ality.com/2013/10/typeof-null.html)

Functions

Functions are a very important tool we use to perform
tasks and calculations of all kinds.
In JavaScript we can declare a function in different
ways.

Let's have a look at a function definition:

function greet(name){  

 console.log("hello " + name);  

}  

greet("Alberto")  

// hello Alberto

This is a simple function that when called will log a
string.
The variable inside the parenthesis at line 1, is called a

35

http://2ality.com/2013/10/typeof-null.html
http://2ality.com/2013/10/typeof-null.html)

parameter while the code inside of the curly brackets
is a statement, in this case a very simple
console.log().

A very important thing to remember is that primitives
are passed to a function by value meaning that the
changes done to those values are not reflected
globally. On the other hand if the value is not a
primitive, such as an Object or an Array it is then
passed by reference meaning that any modification
done to it will be reflected in the original Object.

let myInt = 1;  

 

function increase(value){  

 return value +=1;  

}  

 

console.log(myInt);  

// 1  

console.log(increase(myInt));  

// 2  

console.log(myInt);  

// 1

As you can see, we increased the value of the integer
but that did not affect the original variable.
Let's see an example with an Object.

36

let myCar = {  

 make: "bmw",  

 color: "red"  

}  

 

console.log(myCar)  

// {make: "bmw", color: "red"}  

 

function changeColor(car){  

 car.color = "blue"  

}  

 

changeColor(myCar)  

console.log(myCar)  

// {make: "bmw", color: "blue"}

As you can see, since the parameter car was just a
reference to the Object myCar, modifying it resulted
in a change in the myCar Object.

Another way of declaring a function is by using a
function expression.

const greeter = function greet(name){  

 console.log("hello " + name);  

}  

37

greeter("Alberto")  

// hello Alberto

Here we assigned our function greet to a const,
called greeter.
We got the same result as in the first example but
with a function expression we can also create
anonymous functions.

const greeter = function(name){  

 console.log("hello " + name);  

}  

greeter("Alberto")  

// hello Alberto

We changed function greet to function and we
got an anonymous function.

We could also tweak it a little bit further by using an
arrow function, introduced by ES2015.

const greeter = (name) => {  

 console.log("hello " + name);  

}  

greeter("Alberto")  

// hello Alberto

The function keyword goes away and we get a nice
fat arrow (=>) after the parameters.

38

We will look at arrow functions in detail in Chapter 2.

Understanding function scope and the
this keyword

One of the most important concepts to understand in
JavaScript is the scope.

What is Scope? \
The scope of a variable controls where that variable
can be accessed from.
We can have a global scope meaning that the variable
can be accessed from anywhere in our code or we can
have a block scope meaning that the variable can be
accessed only from inside of the block where it has
been declared.

A block can be a function, a loop or anything
delimited by curly brackets.

Let's have a look at two examples, first using the
keyword var.

var myInt = 1;  

 

if(myInt === 1){  

 var mySecondInt = 2  

 console.log(mySecondInt);  

 // 2  

39

}  

console.log(mySecondInt);  

// 2

As you can see we were able to access the value of
mySecondInt event outside of the block scope as
variables declared with the keyword var are not
bound to it.

Now let's use the keyword let.

var myInt = 1;  

 

if(myInt === 1){  

 let mySecondInt = 2  

 console.log(mySecondInt);  

 // 2  

}  

console.log(mySecondInt);  

// Uncaught ReferenceError: mySecondInt is

not defined

This time we couldn't access the variable from outside
of the block scope and we got an error mySecondInt
is not defined.

Variable declared with the keywords let or const are
bound to the block scope where they have been
declared.
You will learn more about them in Chapter 1.

40

The this keyword

The second important concept I want to discuss is the
this keyword.

Let's first start with a simple example:

const myCar = {  

 color: 'red',  

 logColor: function(){  

 console.log(this.color)  

 }  

}  

myCar.logColor();  

// red

As you can see in this example, it is self-explanatory
that the this keyword referred to the myCar Object.

The value of this depends by how a function is
called.
In the example above the function was called as a
method of our Object.

Look at this other example:

function logThis(){  

 console.log(this);  

}  

41

logThis();  

// Window {...}

We called this function in the global context,
therefore the value of this referred to the Window
Object.

We can avoid accidentally referring to the Window
Object by turning on strict mode.

You can do that by writing 'use strict'; at the
beginning of your JavaScript file.

By doing so you will enable a stricter set of rules for
JavaScript, among which there is one that sets the
value of the Global Object to undefined instead of
to the Window Object causing our this keyword to
also become undefined.

If we want to manually set the value of this to
something we can use .bind.

const myCar = {  

 color: 'red',  

 logColor: function(){  

 console.log(this.color)  

 }  

}  

 

const unboundGetColor = myCar.logColor;  

42

console.log(unboundGetColor())  

// undefined  

const boundGetColor =

unboundGetColor.bind(myCar)  

console.log(boundGetColor())  

// red

Let's go through what we just did:

• First we created an Object similarly to the previous
example

• We set unboundGetColor equal to the method of
myCar

• When we try to call unboundGetColor, it tries to
look for this.color but since it gets invoked in the
global context, the value of this is the Window
Object and there is no color on it, therefore we get
undefined

• Lastly we use .bind to specifically tell
boundGetColor that the this keyword will refer to
the Object inside of the parenthesis, in this case
myCar

• When we call boundGetColor you can see that this
time we get the result that we were looking for

There are two other methods we can use to set the
value of the this keyword: .call() and .apply().

43

They are both similar in that both methods call a
function with a given this value. The arguments they
accept are a bit different.

.call() accepts a list of arguments while .apply()
accepts a single array of arguments.

Look at this example using .call()

function Car(make,color){  

 this.carMake = make;  

 this.carColor = color;  

}  

 

function MyCar(make,color){  

 Car.call(this,make,color)  

 this.age = 5  

}  

const myNewCar = new MyCar('bmw','red')  

console.log(myNewCar.carMake)  

// bmw  

console.log(myNewCar.carColor)  

// red

We are passing our MyCar Object inside of
the .call() so that this.carMake will get set to the
make that we passed as an argument of MyCar. Same
for the color.

44

Look at this example with .apply() to see the
differences between the two.

function Car(make,color){  

 this.carMake = make;  

 this.carColor = color;  

}  

 

function MyCar(make,color){  

 Car.apply(this,[make,color])  

 this.age = 5  

}  

const myNewCar = new MyCar('bmw','red')  

console.log(myNewCar.carMake)  

// bmw  

console.log(myNewCar.carColor)  

// red

As you can see, the result was the same but in this
case .apply() accepts an array with a list of
arguments.

The major difference between the two comes in play
when you are writing a function that does not need to
know, or doesn't know the number of arguments
required.
In that case, since .call() requires you to pass the
arguments individually, it becomes problematic to do.
The solution is to use .apply(), because you can just

45

pass the array and it will get unpacked inside of the
function no matter how many arguments it contains.

const ourFunction = function(item, method,

args){  

 method.apply(args)  

}  

ourFunction(item,method, ['argument1',

'argument2'])  

ourFunction(item,method, ['argument1',

'argument2', 'argument3'])

No matter how many arguments we pass, they will get
applied individually when .apply() is called.

46

JavaScript Basics Quiz

JS-01 Which of the following ways of naming a
variable is wrong?

var very_important = "very_important"

var important_999 = "important_999"

var important! = "important!"

var VeRY_ImP_orTant =
"VeRY_ImP_orTant"

JS-02 Which one of the following is not a real
Primitive?

symbol

boolean

null

Object

JS-03 What is the correct way of defining an
Object?

const car: { color: "red"}

const car = {color = "red"}

const car = { color: "red" }

const car: {color = "red"}

47

JS-04 What is the correct output of the
following code?

const obj1 = {a: 1};  

const obj2 = {a: 1};  

 

console.log(obj1 === obj2);

true

undefined

false

null

JS-05 What is the correct output of the
following code?

const fruitBasket =

['apple','banana','orange'];  

fruitBasket.unshift('melon')  

console.log(fruitBasket);

["apple", "banana", "orange", "melon"]

["melon"]

["apple", "banana", "orange", "pear",
"melon"]

["melon", "apple", "banana", "orange"]  

48

Chapter 1: Var vs Let vs Const &
the temporal dead zone

With the introduction of let and const in ES6, we
can now better define our variables depending on our
needs. During our JavaScript primer we looked at
the basic differences between these 3 keywords, now
we will go into more detail.

Var

Variables declared with the var keyword are function
scoped, which means that if we declare them inside a
for loop (which is a block scope) they will be
available even outside of it.

for (var i = 0; i < 10; i++) {  

 var leak = "I am available outside of the

loop";  

}  

 

console.log(leak);  

// I am available outside of the loop  

 

function myFunc(){  

 var functionScoped = "I am available

inside this function";  

49

 console.log(functionScoped);  

}  

myFunc();  

// I am available inside this function  

console.log(functionScoped);  

// ReferenceError: functionScoped is not

defined

In the first example the value of the var leaked out of
the block-scope and could be accessed from outside of
it, whereas in the second example var was confined
inside a function-scope and we could not access it
from outside.

Let

Variables declared with the let (and const) keyword
are block scoped, meaning that they will be available
only inside of the block where they are declared and
its sub-blocks.

// using `let`  

let x = "global";  

 

if (x === "global") {  

 let x = "block-scoped";  

 

50

 console.log(x);  

 // expected output: block-scoped  

}  

 

console.log(x);  

// expected output: global  

 

// using `var`  

var y = "global";  

 

if (y === "global") {  

 var y= "block-scoped";  

 

 console.log(y);  

 // expected output: block-scoped  

}  

 

console.log(y);  

// expected output: block-scoped

As you can see, when we assigned a new value to the
variable declared with let inside our block-scope, it
did not change its value in the outer scope. Whereas,
when we did the same with the variable declared with
var, it leaked outside of the block-scope and also
changed it in the outer scope.

51

Const

Similarly to let, variables declared with const are
also block-scoped, but they differ in the fact that their
value can't change through re-assignment or can't be
re-declared.

const constant = 'I am a constant';  

constant = " I can't be reassigned";  

 

// Uncaught TypeError: Assignment to

constant variable

Important:
This does not mean that variables declared with const
are immutable.

The content of a const is an Object

const person = {  

 name: 'Alberto',  

 age: 25,  

}  

 

person.age = 26;  

52

console.log(person.age);  

// 26

In this case we are not reassigning the whole variable
but just one of its properties, which is perfectly fine.

Note: We can still freeze the const object, which will
not change the contents of the object (but trying to
change the values of object JavaScript will not
throw any error)

const person = {  

 name: 'Alberto',  

 age: 25,  

}  

 

person.age = 26;  

console.log(person.age);  

// 26  

 

Object.freeze(person)  

 

person.age = 30;  

 

console.log(person.age);  

// 26

53

The temporal dead zone

Now we will have a look at a very important concept
which may sound complicated from its name, but I
assure you it is not.

First let's have a look at a simple example:

console.log(i);  

var i = "I am a variable";  

 

// expected output: undefined  

 

console.log(j);  

let j = "I am a let";  

 

// expected output: ReferenceError: can't

access lexical declaration `j' before

initialization

var can be accessed before they are defined, but we
can't access their value.
let and const can't be accessed before we define
them.

Despite what you may read on other sources, both
var and let(and const) are subject to hoisting which
means that they are processed before any code is

54

executed and lifted up to the top of their scope
(whether it's global or block).

The main differences lie in the fact that var can still
be accessed before they are defined. This causes the
value to be undefined. While on the other hand, let
lets the variables sit in a temporal dead zone until they
are declared. And this causes an error when accessed
before initialization, which makes it easier to debug
code rather than having an undefined as the result.

When to use Var, Let and Const

There is no rule stating where to use each of them and
people have different opinions. Here I am going to
present to you two opinions from popular developers
in the JavaScript community.

The first opinion comes from Mathias Bynes:

• Use const by default

• Use let only if rebinding is needed.

• var should never be used in ES6.

The second opinion comes from Kyle Simpson:

• Use var for top-level variables that are shared across
many (especially larger) scopes.

• Use let for localized variables in smaller scopes.

55

https://mathiasbynens.be/notes/es6-const
https://me.getify.com/

• Refactor let to const only after some code has to be
written, and you're reasonably sure that you've got a
case where there shouldn't be variable reassignment.

Which opinion to follow is entirely up to you. As
always, do your own research and figure out which
one you think is the best.

My personal opinion is to always use const by default
and then switch to let if you see yourself in need of
rebinding the value.

56

End of Chapter 1 Quiz

1.1 What is the correct output of the following
code?

var greeting = "Hello";  

 

greeting = "Farewell";  

 

for (var i = 0; i < 2; i++) {  

 var greeting = "Good morning";  

}  

 

console.log(greeting);

Hello

Good morning

Farewell;

1.2 What is the correct output of the following
code?

let value = 1;  

 

if(true) {  

 let value = 2;  

 console.log(value);  

}  

57

 

value = 3;

1

2

3

1.3 What is the correct output of the following
code?

let x = 100;  

 

if (x > 50) {  

 let x = 10;  

}  

 

console.log(x);

10

100

50

58

1.4 What is the correct output of the following
code?

console.log(constant);  

 

const constant = 1;

undefined

ReferenceError

1

59

Chapter 2: Arrow functions

What is an arrow function?

ES6 introduced fat arrows (=>) as a way to declare
functions.
This is how we would normally declare a function in
ES5:

const greeting = function(name) {  

 return "hello " + name;  

}

The new syntax with a fat arrow looks like this:

var greeting = (name) => {  

 return `hello ${name}`;  

}

We can go further, if we only have one parameter we
can drop the parenthesis and write:

var greeting = name => {  

 return `hello ${name}`;  

}

If we have no parameter at all we need to write empty
parenthesis like this:

60

var greeting = () => {  

 return "hello";  

}

Implicitly return

With arrow functions we can skip the explicit return
and return like this:

const greeting = name => `hello ${name}`;

Look at a side by side comparison with an old ES5
Function:

const oldFunction = function(name){  

 return `hello ${name}`  

}  

 

const arrowFunction = name => `hello $

{name}`;

Both functions achieve the same result, but the new
syntax allows you to be more concise.
Beware! Readability is more important than
conciseness so you might want to write your function
like this if you are working in a team and not
everybody is totally up-to-date with ES6.

61

const arrowFunction = (name) => {  

 return `hello ${name}`;  

}

Let's say we want to implicitly return an object literal,
we would do it like this:

const race = "100m dash";  

const runners = ["Usain Bolt", "Justin

Gatlin", "Asafa Powell"];  

 

const results = runners.map((runner, i) =>

({ name: runner, race, place: i + 1}));  

 

console.log(results);  

// [{name: "Usain Bolt", race: "100m dash",

place: 1}  

// {name: "Justin Gatlin", race: "100m

dash", place: 2}  

// {name: "Asafa Powell", race: "100m

dash", place: 3}]

In this example, we are using the map function to
iterate over the array runners. The first argument is
the current item in the array and the i is the index of
it. For each item in the array we are then adding into
results an Object containing the properties name,
race, and place.

62

To tell JavaScript what's inside the curly braces is
an object literal we want to implicitly return, we need
to wrap everything inside parenthesis.

Writing race or race: race is the same.

Arrow functions are anonymous

As you can see from the previous examples, arrow
functions are anonymous.

If we want to have a name to reference them we can
bind them to a variable:

const greeting = name => `hello ${name}`;  

 

greeting("Tom");

Arrow function and the this keyword

You need to be careful when using arrow functions in
conjunction with the this keyword, as they behave
differently from normal functions.

When you use an arrow function, the this keyword is
inherited from the parent scope.

This can be useful in cases like this one:

63

<div class="box open">  

This is a box  

</div>

.opening {  

background-color:red;  

}

// grab our div with class box  

const box = document.querySelector(".box");  

// listen for a click event  

box.addEventListener("click", function() {  

 // toggle the class opening on the div  

 this.classList.toggle("opening");  

 setTimeout(function(){  

 // try to toggle again the class  

 this.classList.toggle("opening");  

 },500);  

});

The problem in this case is that the first this is
bound to the const box but the second one, inside the
setTimeout, will be set to the Window object,
throwing this error:

Uncaught TypeError: cannot read property

"toggle" of undefined

64

Since we know that arrow functions inherit the value
of this from the parent scope, we can re-write our
function like this:

const box =

document.querySelector(".box");  

// listen for a click event  

box.addEventListener("click", function() {  

 // toggle the class opening on the div  

 this.classList.toggle("opening");  

 setTimeout(()=>{  

 // try to toggle again the class  

 this.classList.toggle("opening");  

 },500);  

});

Here, the second this will inherit from its parent,
and will be set to the const box.

Running the example code you should see our div
turning red for just half a second.

When you should avoid arrow
functions

Using what we know about the inheritance of the
this keyword we can define some instances where
you should not use arrow functions.

65

The next two examples show when to be careful using
this inside of arrows.

Example 1
const button =

document.querySelector("btn");  

button.addEventListener("click", () => {  

 // error: *this* refers to the `Window`

Object  

 this.classList.toggle("on");  

})

Example 2
const person1 = {  

 age: 10,  

 grow: function() {  

 this.age++;  

 console.log(this.age);  

 }  

}  

 

person1.grow();  

// 11  

 

const person2 = {  

 age: 10,  

66

 grow: () => {  

 // error: *this* refers to the `Window`

Object  

 this.age++;  

 console.log(this.age);  

 }  

}  

 

person2.grow();

Another difference between Arrow functions and
normal functions is the access to the arguments
object.
The arguments object is an array-like object that
we can access from inside functions and contains the
values of the arguments passed to that function.

A quick example:

function example(){  

 console.log(arguments[0])  

}  

 

example(1,2,3);  

// 1

As you can see we accessed the first argument using
an array notation arguments[0].

67

Similarly to what we saw with the this keyword,
Arrow functions inherit the value of the arguments
object from their parent scope.

Let's have a look at this example with our previous list
of runners:

const showWinner = () => {  

 const winner = arguments[0];  

 console.log(`${winner} was the winner`)  

}  

 

showWinner("Usain Bolt", "Justin Gatlin",

"Asafa Powell")

This code will return:

ReferenceError: arguments is not defined

To access all the arguments passed to the function we
can either use the old function notation or the spread
syntax(which we will discuss more in Chapter 9)

Remember that arguments is just a keyword, it's not
a variable name.

Example with arrow function:

const showWinner = (...args) => {  

 const winner = args[0];  

 console.log(`${winner} was the winner`)  

68

}  

showWinner("Usain Bolt", "Justin Gatlin",

"Asafa Powell")  

// "Usain Bolt was the winner"

Example with function:

const showWinner = function() {  

 const winner = arguments[0];  

 console.log(`${winner} was the winner`)  

}  

showWinner("Usain Bolt", "Justin Gatlin",

"Asafa Powell")  

// "Usain Bolt was the winner"

69

End of Chapter 2 Quiz

2.1 What is the correct syntax for an arrow
function?

let arr = [1,2,3];  

 

//a)  

let func = arr.map(n -> n+1);  

 

//b)  

let func = arr.map(n => n+1);  

 

//c)  

let func = arr.map(n ~> n+1);

a

b

c

2.2 What is the correct output of the following
code?

const person = {  

 age: 10,  

 grow: () => {  

 this.age++;  

 },  

70

}  

person.grow();  

 

console.log(person.age);

10

11

undefined

2.3 Refactor the following code to use the
arrow function syntax:

function(arg) {  

 console.log(arg);  

}

71

Chapter 3: Default function
arguments

Prior to ES6, setting default values to function
arguments was not so easy. Let's look at an example:

function

getLocation(city,country,continent){  

 if(typeof country === 'undefined'){  

 country = 'Italy'  

 }  

 if(typeof continent === 'undefined'){  

 continent = 'Europe'  

 }  

 console.log(continent,country,city)  

}  

 

getLocation('Milan')  

// Europe Italy Milan  

 

getLocation('Paris','France')  

// Europe France Paris

As you can see our function takes three arguments, a
city, a country and a continent. In the function body
we are checking if either country or continent are

72

undefined and in that case we are giving them a
default value.

When calling getLocation('Milan') the second
and third parameter (country and continent) are
undefined and get replaced by the default values of
our functions.

But what if we want our default value to be at the
beginning and not at the end of our list of arguments?

function

getLocation(continent,country,city){  

 if(typeof country === 'undefined'){  

 country = 'Italy'  

 }  

 if(typeof continent === 'undefined'){  

 continent = 'Europe'  

 }  

 console.log(continent,country,city)  

}  

 

getLocation(undefined, undefined,'Milan')  

// Europe Italy Milan  

 

getLocation(undefined,'Paris','France')  

// Europe Paris France

73

If we want to replace any of the first arguments with
our default we need to pass them as undefined, not
really a nice looking solution. Luckily ES6 came to the
rescue with default function arguments.

Default function arguments

ES6 makes it very easy to set default function
arguments. Let's look at an example:

function calculatePrice(total, tax = 0.1,

tip = 0.05){  

// When no value is given for tax or tip,

the default 0.1 and 0.05 will be used  

return total + (total * tax) + (total *

tip);  

}

What if we don't want to pass the parameter at all,
like this:

// The 0.15 will be bound to the second

argument, tax even if in our intention it

was to set 0.15 as the tip  

calculatePrice(100, 0.15)

We can solve by doing this:

74

// In this case 0.15 will be bound to the

tip  

calculatePrice(100, undefined, 0.15)

It works, but it's not very nice, how to improve it?

With destructuring we can write this:

function calculatePrice({  

 total = 0,  

 tax = 0.1,  

 tip = 0.05} = {}){  

 return total + (total * tax) + (total *

tip);  

}  

 

const bill = calculatePrice({ tip: 0.15,

total:150 });  

// 187.5

We made the argument of our function an Object.
When calling the function, we don’t even have to
worry about the order of the parameters because they
are matched based on their key.

In the example above the default value for tip was
0.05 and we overwrote it with 0.15 but we didn't give
a value to tax which remained the default 0.1.

Notice this detail:

75

{  

 total = 0,  

 tax = 0.1,  

 tip = 0.05  

} = {}

If we don't default our argument Object to an empty
Object, and we were to try and run
calculatePrice() we would get:

Cannot destructure property `total` of

'undefined' or 'null'.

By writing = {} we default our argument to an
Object and no matter what argument we pass in the
function, it will be an Object:

calculatePrice({});  

// 0  

calculatePrice();  

// 0  

calculatePrice(undefined)  

// 0

No matter what we passed, the argument was
defaulted to an Object which had three default
properties of total, tax and tip.

function calculatePrice({  

 total = 0,  

76

 tax = 0.1,  

 tip = 0.05}){  

 return total + (total * tax) + (total *

tip);  

}  

calculatePrice({});  

// cannot read property `total` of

'undefined' or 'null'.  

calculatePrice();  

// cannot read property `total` of

'undefined' or 'null'.  

calculatePrice(undefined)  

// cannot read property `total` of

'undefined' or 'null'.

Don't worry about destructuring, we will talk about it
in Chapter 10.

77

End of Chapter 3 Quiz

3.1 Write the code to accomplish the following
task:

In the following code, change arg1 and arg2 so that
the first one represents the tax and the second one
the tip value.

Give tax a default value of 0.1 and tip a default value
of 0.05.

function calculatePrice(total,arg1,arg2) {  

 return total + (total * tax) + (total *

tip);  

}  

calculatePrice(10);  

// expected result: 11.5

3.2 What is the correct output of the following
code?

var b = 3;  

function multiply(a,b=2){  

 return a * b;  

}  

console.log(multiply(5));

2

78

5

10

15

79

Chapter 4: Template literals

Prior to ES6 they were called template strings, now we
call them template literals. Let's have a look at what
changed in the way we interpolate strings in ES6.

Interpolating strings

In ES5 we used to write this, in order to interpolate
strings:

var name = "Alberto";  

var greeting = 'Hello my name is ' + name;  

 

console.log(greeting);  

// Hello my name is Alberto

In ES6 we can use backticks to make our lives easier.

let name = "Alberto";  

const greeting = `Hello my name is ${name}

`;  

 

console.log(greeting);  

// Hello my name is Alberto

80

Expression interpolations

In ES5 we used to write this:

var a = 1;  

var b = 10;  

console.log('1 * 10 is ' + (a * b));  

// 1 * 10 is 10

In ES6 we can use backticks to reduce our typing:

var a = 1;  

var b = 10;  

console.log(`1 * 10 is ${a * b}`);  

// 1 * 10 is 10

Create HTML fragments

In ES5 we used to do this to write multi-line strings:

// We have to include a backslash on each

line  

var text = "hello, \  

my name is Alberto \  

how are you?\ "

In ES6 we simply have to wrap everything inside
backticks, no more backslashes on each line.

81

const content = `hello,  

my name is Alberto  

how are you?`;

Nesting templates

It's very easy to nest a template inside another one,
like this:

const people = [{  

name: 'Alberto',  

age: 27  

 },{  

name: 'Caroline',  

age: 27  

},{  

name: 'Josh',  

age: 31  

}];  

 

const markup = `  

  

 ${people.map(person => ` $

{person.name}`)}  

  

`;  

82

console.log(markup);  

 

//  

// Alberto, Caroline</

li>, Josh  

//

Here we are using the map function to loop over each
of our people and display a li tag containing the
name of the person.

Add a ternary operator

We can easily add some logic inside our template
string by using a ternary operator.

The syntax for a ternary operator looks like this:

const isDiscounted = false  

 

function getPrice(){  

console.log(isDiscounted ? "$10" :

"$20");  

}  

getPrice();  

// $20

83

If the condition before the ? can be converted to true
then the first value is returned, else it's the value after
the : that gets returned.

// create an artist with name and age  

const artist = {  

 name: "Bon Jovi",  

 age: 56,  

};  

 

// only if the artist object has a song

property we then add it to our paragraph,

otherwise we return nothing  

const text = `  

 <div>  

 <p> ${artist.name} is ${artist.age}

years old ${artist.song ? `and wrote the

song ${artist.song}` : '' }  

 </p>  

 </div>  

`  

// <div>  

// <p> Bon Jovi is 56 years old  

// </p>  

// </div>  

const artist = {  

84

 name: "Trent Reznor",  

 age: 53,  

 song: 'Hurt'  

};  

// <div>  

// <p> Trent Reznor is 53 years old and

wrote the song Hurt  

// </p>  

// </div>

Pass a function inside a template literal

Similarly to the example above (line 10 of the code), if
we want to, we can pass a function inside a template
literal.

const groceries = {  

 meat: "pork chop",  

 veggie: "salad",  

 fruit: "apple",  

 others: ['mushrooms', 'instant noodles',

'instant soup'],  

}  

 

// this function will map each individual

value of our groceries  

85

function groceryList(others) {  

 return `  

 <p>  

 ${others.map(other => ` $

{other}`).join('\n')}  

 </p>  

 `;  

}  

 

// display all our groceries in a p tag,

the last one will include all the one from

the array **others**  

const markup = `  

 <div>  

 <p>${groceries.meat}</p>  

 <p>${groceries.veggie}</p>  

 <p>${groceries.fruit}</p>  

 <p>${groceryList(groceries.others)}</p>  

 <div>  

`  

// <div>  

// <p>pork chop</p>  

// <p>salad</p>  

// <p>apple</p>  

// <p>  

86

// <p>  

// mushrooms  

// instant noodles  

// instant soup  

// </p>  

// </p>  

// <div>

Inside of the last p tag we are calling our function
groceryList passing it all the others groceries as an
argument.
Inside of the function we are returning a p tag and we
are using map to loop over each of our items in the
grocery list returning an Array of span tags
containing each grocery. We are then
using .join('\n') to add a new line after each of
those span.

Tagged template literals

By tagging a function to a template literal we can run
the template literal through the function, providing it
with everything that's inside of the template.

The way it works is very simple: you just take the
name of your function and put it in front of the
template that you want to run it against.

87

let person = "Alberto";  

let age = 25;  

 

function

myTag(strings,personName,personAge){  

 let str = strings[1];  

 let ageStr;  

 

 personAge > 50 ? ageStr = "grandpa" :

ageStr = "youngster";  

 

 return personName + str + ageStr;  

}  

 

let sentence = myTag`${person} is a ${age}

`;  

console.log(sentence);  

// Alberto is a youngster

We captured the value of the variable age and used a
ternary operator to decide what to print.
strings will take all the strings of our let sentence
whilst the other parameters will hold the variables.

In our example our string is divided in 3 pieces: $
{person}, is a and ${age}.
We use array notation to access the string in the
middle like this:

88

let str = strings[1];

To learn more about use cases of template literals
check out this article (https://codeburst.io/
javascript-es6-tagged-template-literals-
a45c26e54761).

89

https://codeburst.io/javascript-es6-tagged-template-literals-a45c26e54761
https://codeburst.io/javascript-es6-tagged-template-literals-a45c26e54761
https://codeburst.io/javascript-es6-tagged-template-literals-a45c26e54761
https://codeburst.io/javascript-es6-tagged-template-literals-a45c26e54761
https://codeburst.io/javascript-es6-tagged-template-literals-a45c26e54761

End of Chapter 4 Quiz

4.1 Write the code to accomplish the following
task:

Utilizing template literals, combine the different
variables to achieve the expected output.

let a = "Hello,";  

let b = "is";  

let c = "my";  

let d = "name";  

let e = "Tom";  

 

// edit result to achieve the expected

output  

let result = '';  

 

console.log(result);  

//expected output  

"Hello, my name is Tom"

4.2 Refactor the following code using template
literals

let a = "1";  

let b = "2";  

let c = "plus";  

90

let d = "3";  

let e = "equals";  

 

// edit result to use template literals  

let result = a + " " + c + " " + b + " " +

e + " " + d;  

 

console.log(result);  

// 1 plus 2 equals 3

4.3 Refactor the following code using template
literals

// edit str to use template literals  

let str = 'this is a very long text\n' +  

'a very long text';  

 

console.log(str);  

 

// this is a very long text  

// a very long text

91

Chapter 5: Additional string
methods

There are many methods that we can use against
strings. Here's a list of a few of them:

indexOf()

Gets the position of the first occurrence of the
specified value in a string.

const str = "this is a short sentence";  

str.indexOf("short");  

// Output: 10

slice()

Pulls a specified part of a string as a new string.

const str = "pizza, orange, cereals"  

str.slice(0, 5);  

// Output: "pizza"

toUpperCase()

Turns all characters of a string to uppercase.

const str = "i ate an apple"  

str.toUpperCase()  

// Output: "I ATE AN APPLE"

92

toLowerCase()

Turns all characters of a string to lowercase.

const str = "I ATE AN APPLE"  

str.toLowerCase()  

// Output: "i ate an apple"

There are many more methods; these were just a few
as a reminder. Check the MDN documentation for a
more in-depth description on the above methods.

Additional string methods

ES6 introduced 4 new string methods:

• startsWith()

• endsWith()

• includes()

• repeat()

startsWith()

This new method will check if the string starts with
the value we pass in:

const code = "ABCDEFG";  

 

93

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String%23

code.startsWith("ABB");  

// false  

code.startsWith("abc");  

// false, startsWith is case sensitive  

code.startsWith("ABC");  

// true

We can pass an additional parameter, which is the
starting point where the method will begin checking.

const code = "ABCDEFGHI"  

 

code.startsWith("DEF",3);  

// true, it will begin checking after 3

characters

endsWith()

Similarly to startsWith() this new method will
check if the string ends with the value we pass in:

const code = "ABCDEF";  

 

code.endsWith("DDD");  

// false  

code.endsWith("def");  

// false, endsWith is case sensitive  

94

code.endsWith("DEF");  

// true

We can pass an additional parameter, which is the
number of digits we want to consider when checking
the ending.

const code = "ABCDEFGHI"  

 

code.endsWith("EF", 6);  

// true, 6 means that we consider only the

first 6 values ABCDEF, and yes this string

ends with EF therefore we get *true*

includes()

This method will check if our string includes the value
we pass in.

const code = "ABCDEF"  

 

code.includes("ABB");  

// false  

code.includes("abc");  

// false, includes is case sensitive  

code.includes("CDE");  

// true

95

repeat()

As the name suggests, this new method will take an
argument that specifies the number of times it needs
to repeat the string.

let hello = "Hi";  

console.log(hello.repeat(10));  

// "HiHiHiHiHiHiHiHiHiHi"

96

End of Chapter 5 Quiz

5.1 What is the correct output of the following
code?

const code = "ABCDEFGHI";  

 

code.startsWith("DEF",3);

true

false

5.2 What is the correct output of the following
code?

const code = "ABCDEF";  

code.endsWith("def");

true

false

5.3 Write the code to accomplish the following
task:

let str = "Na";  

let bat = "BatMan";  

 

let batman = ...  

console.log(batman);  

97

// expected output: "NaNaNaNaNaNaNaNa

Batman"

98

Chapter 6: Destructuring

MDN defines destructuring like this:

The destructuring assignment syntax is a JavaScript
expression that makes it possible to unpack values
from arrays, or properties from objects, into distinct
variables.

Let's start with destructuring objects first.

Destructuring Objects

To create variables from an object, we used to do the
following:

var person = {  

 first: "Alberto",  

 last: "Montalesi"  

}  

 

var first = person.first;  

var last = person.last;

In ES6 we can instead do it as following:

const person = {  

 first: "Alberto",  

 last: "Montalesi"  

99

}  

 

const { first, last } = person;

Since our const variable, person, have the same
name as the properties we want to grab, we don't have
to specify person.first and person.last anymore.

The same applies even when we have nested data,
such as what we could get from an API.

const person = {  

 name: "Alberto",  

 last: "Montalesi",  

 links:{  

 social: {  

 facebook: "https://www.facebook.com/

alberto.montalesi",  

 },  

 website: "http://

albertomontalesi.github.io/"  

 }  

}  

 

const { facebook } = person.links.social;

100

We are not limited to name our variable the same as
the property of the object. We can also rename as the
following:

const { facebook:fb } =

person.links.social;  

// it will look for the property

person.links.social.facebook and name the

variable fb  

console.log(fb); // https://

www.facebook.com/alberto.montalesi  

console.log(facebook); //ReferenceError:

facebook is not defined

We are using the syntax const { facebook:fb } to
specify that we want to target the property facebook
of the Object person.links.social and we want the
const variable to be called fb.
That is why when we try to log facebook we get an
error.

We can also pass in default values like this:

const { facebook:fb = "https://

www.facebook.com"} = person.links.social;  

// we renamed the variable to *fb* and we

also set a default value to it

101

Destructuring Arrays

The first difference we notice when destructuring
arrays is that we are going to use [] and not {}.

const person = ["Alberto","Montalesi",25];  

const [name,surname,age] = person;

What if the number of variables that we create is less
than the elements in the array?

const person = ["Alberto","Montalesi",25];  

// we leave out age, we don't want it  

const [name,surname] = person;  

//the value of age will not be bound to any

variable.  

console.log(name,surname);  

// Alberto Montalesi

Let's say we want to grab all the other values
remaining, we can use the rest operator:

const person = ["Alberto", "Montalesi",

"pizza", "ice cream", "cheese cake"];  

// we use the **rest operator** to grab all

the remaining values  

const [name,surname,...food] = person ;  

console.log(food);  

102

// Array ["pizza", "ice cream", "cheese

cake"]

In the example above the first two values of the array
were bound to name and surname while the rest
(that's why it's called the rest operator) get assigned to
food

The ... is the syntax for the rest operator.

Swapping variables with destructuring

The destructuring assignment makes it extremely easy
to swap variables, just look at this example:

let hungry = "yes";  

let full = "no";  

// after we eat we don't feel hungry

anymore, we feel full, let's swap the

values  

 

[hungry, full] = [full, hungry];  

console.log(hungry,full);  

// no yes

It can't get easier than this to swap values.

103

End of Chapter 6 Quiz

6.1 Write the code to accomplish the following
task:

Use destructuring to swap the value of the two
variables.

let hungry = "yes";  

let full = "no";  

 

// your code goes here  

 

console.log(hungry);  

// no  

console.log(full);  

// yes

6.2 Write the code to accomplish the following
task:

In one line of code, declare one variable to store each
one of the values of the following array.

let arr = ["one", "two", "three"];  

 

//expected output  

console.log(one);  

// "one"  

104

console.log(two);  

// "two"  

console.log(three);  

// "three"

105

Chapter 7: Iterables and looping

The for of loop

ES6 introduced a new type of loop, the for of loop.
Let’s take a look at how it is used

Iterating over an array

Usually, we would iterate using the following method:

var fruits = ['apple','banana','orange'];  

for (var i = 0; i < fruits.length; i++){  

 console.log(fruits[i]);  

}  

// apple  

// banana  

// orange

This is a normal loop where at each iteration we
increase the value of i by 1 as long as it is less than
fruits.length. At that point the loop will stop.

Look at how we can achieve the same with a for of
loop:

const fruits =

['apple','banana','orange'];  

for(const fruit of fruits){  

106

 console.log(fruit);  

}  

// apple  

// banana  

// orange

Iterating over an object

Objects are non iterable so how do we iterate over
them?
We have to first grab all the values of the object using
something like Object.keys() or the new ES6
function: Object.entries().

const car = {  

 maker: "BMW",  

 color: "red",  

 year : "2010",  

}  

 

for (const prop of Object.keys(car)){  

 const value = car[prop];  

 console.log(prop,value);  

}  

// maker BMW  

107

// color red  

// year 2010

The for in loop

Even though it is not a new ES6 loop, let's look at the
for in loop to understand what differentiates it to
the for of loop.

The for in loop is a bit different because it will
iterate over all the enumerable properties of an object
in no particular order.

It is therefore suggested not to add, modify or delete
properties of the object during the iteration. As there
is no guarantee that they will be visited, or if they will
be visited before or after being modified.

const car = {  

 maker: "BMW",  

 color: "red",  

 year : "2010",  

}  

for (const prop in car){  

 console.log(prop, car[prop]);  

}  

// maker BMW  

108

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Enumerability_and_ownership_of_properties

// color red  

// year 2010

Difference between for of and for in

The first difference we can see is by looking at this
example:

let list = [4, 5, 6];  

 

// for...in returns a list of keys  

for (let i in list) {  

 console.log(i); // "0", "1", "2",  

}  

 

 

// for ...of returns the values  

for (let i of list) {  

 console.log(i); // "4", "5", "6"  

}

for in will return a list of keys whereas the for of
will return a list of values of the numeric properties of
the object being iterated.

109

End of Chapter 7 Quiz

7.1 Which one of these loops was introduced
in ES6?

while

for of

for in

What is the correct output of the following
code?

let people = ["Tom", "Jerry", "Mickey"];  

 

for (let person of people){  

 console.log(person);  

}

Tom Jerry

Tom

Tom Jerry Mickey

Mickey

110

Chapter 8: Array improvements

Array.from()

Array.from() is the first of many new array methods
that ES6 introduced.

It will take something arrayish, meaning something
that looks like an array but isn't, and transform it into
a real array.

<div class="fruits">  

 <p> Apple </p>  

 <p> Banana </p>  

 <p> Orange </p>  

</div>

const fruits =

document.querySelectorAll(".fruits p");  

// fruits is a nodelist (an array-like

collection) containng our three p tags  

// now we convert it in an Array  

const fruitArray = Array.from(fruits);  

 

console.log(fruitArray);  

// [p,p,p]  

 

//since now we are dealing with an array we

can use map  

111

const fruitNames = fruitArray.map(fruit =>

fruit.textContent);  

 

console.log(fruitNames);  

// ["Apple", "Banana", "Orange"]

We can also simplify like this:

const fruits =

Array.from(document.querySelectorAll(".frui

ts p"));  

const fruitNames = fruits.map(fruit =>

fruit.textContent);  

 

console.log(fruitNames);  

// ["Apple", "Banana", "Orange"]

Now we transformed fruits into a real array, meaning
that we can use any sort of method such as map on it.

Array.from() also takes a second argument, a map
function so we can write:

const fruits =

document.querySelectorAll(".fruits p");  

const fruitArray = Array.from(fruits, fruit

=> {  

 console.log(fruit);  

112

 // <p> Apple </p>  

 // <p> Banana </p>  

 // <p> Orange </p>  

 return fruit.textContent;  

 // we only want to grab the content not

the whole tag  

});  

console.log(fruitArray);  

// ["Apple", "Banana", "Orange"]

In the example above we passed a map function to
the .from() method to push into our newly formed
array only the textContent of the p tags and not the
whole tag.

Array.of()

Array.of() will create an array with all the
arguments we pass into it.

const digits = Array.of(1,2,3,4,5);  

console.log(digits);  

 

// Array [1, 2, 3, 4, 5];

113

Array.find()

Array.find() returns the value of the first element
in the array that satisfies the provided testing
function. Otherwise undefined is returned.

Let's looks at a simple example to see how
Array.find() works.

const array = [1,2,3,4,5];  

 

// this will return the first element in

the array with a value higher than 3  

let found = array.find(e => e > 3);  

console.log(found);  

// 4

As we mentioned, it will return the first element that
matches our condition, that's why we only got 4 and
not 5.

Array.findIndex()

Array.findIndex() will return the index of the first
element that matches our condition.

const greetings =

["hello","hi","byebye","goodbye","hi"];  

 

114

let foundIndex = greetings.findIndex(e => e

=== "hi");  

console.log(foundIndex);  

// 1

Again, only the index of the first element that matches
our condition is returned.

Array.some() & Array.every()

I'm grouping these two together because their use is
self-explanatory: .some() will search if there are some
items matching the condition and stop once it finds
the first one. Whereas, .every() will check if all items
match the given condition or not.

const array = [1,2,3,4,5,6,1,2,3,1];  

 

let arraySome = array.some(e => e > 2);  

console.log(arraySome);  

// true  

 

let arrayEvery = array.every(e => e > 2);  

console.log(arrayEvery);  

// false

115

Simply put, the first condition is true, because there
are some elements greater than 2, but the second is
false because not every element is greater than 2.

116

End of Chapter 8 Quiz

8.1 Write the code to accomplish the following
task:

Given the following code, create a new array starting
from the following string where each letter of the
string becomes an item in the array.

const apple = "Apple";  

 

const myArr = // add your code here  

console.log(myArry);  

// expected output = ["A", "p", "p", "l",

"e"]

8.2 What is the correct output of the following
code?

const array = [1,2,3,4,5];  

let found = array.find(e => e > 3);  

 

console.log(found);

3

5

4,5

4

117

8.3 What is the correct output of the following
code?

const array = [1,2,3,4,5,6,1,2,3,1];  

let arraySome = array.some(e => e > 2);  

 

console.log(arraySome);

2

false

3

true

8.4 What is the correct output of the following
code:

Array.from([1, 2, 3], x => x * x);

[1,2,3]

[1,4,9]

[1,3,5]

118

Chapter 9: Spread operator and
rest parameters

The Spread operator

According to MDN:

Spread syntax allows an iterable such as an array
expression or string to be expanded in places where
zero or more arguments (for function calls) or
elements (for array literals) are expected, or an object
expression to be expanded in places where zero or
more key-value pairs (for object literals) are expected.

Combine arrays

const veggie =

["tomato","cucumber","beans"];  

const meat = ["pork","beef","chicken"];  

 

const menu = [...veggie, "pasta", ...meat];  

console.log(menu);  

// Array ["tomato", "cucumber", "beans",

"pasta", "pork", "beef", "chicken"]

The ... is the spread syntax, and it allowed us to grab
all the individual values of the arrays veggie and meat

119

and put them inside the array menu and at the same
time add a new item in between them.

Copy arrays

The spread syntax is very helpful if we want to create
a copy of an array.

const veggie =

["tomato","cucumber","beans"];  

const newVeggie = veggie;  

 

// this may seem like we created a copy of

the veggie array but look now  

 

veggie.push("peas");  

console.log(veggie);  

// Array ["tomato", "cucumber", "beans",

"peas"]  

 

console.log(newVeggie);  

// Array ["tomato", "cucumber", "beans",

"peas"]

Our new array also changed, but why? Because we did
not actually create a copy but we just referenced our
old array in the new one.

120

The following is how we would usually make a copy of
an array in ES5 and earlier

const veggie =

["tomato","cucumber","beans"];  

// we created an empty array and put the

values of the old array inside of it  

const newVeggie = [].concat(veggie);  

veggie.push("peas");  

console.log(veggie);  

// Array ["tomato", "cucumber", "beans",

"peas"]  

console.log(newVeggie);  

// Array ["tomato", "cucumber", "beans"]

And this is how we would do the same using the
spread syntax:

const veggie =

["tomato","cucumber","beans"];  

const newVeggie = [...veggie];  

veggie.push("peas");  

console.log(veggie);  

// Array ["tomato", "cucumber", "beans",

"peas"]  

console.log(newVeggie);  

// Array ["tomato", "cucumber", "beans"]

121

The syntax for the Spread operator is the
following ...YourArray. Since we wanted the
variable newVeggie to be a copy of the array veggie
we assigned it to an Array and inside of it we spread
all the values from the variable veggie like so:
[...veggie].

Spread into a function

Thanks to the Spread operator we have an easier way
of calling a function with an Array of arguments.

// OLD WAY  

function doStuff (x, y, z) {  

 console.log(x + y + z);  

 }  

var args = [0, 1, 2];  

 

// Call the function, passing args  

doStuff.apply(null, args);  

 

// USE THE SPREAD SYNTAX  

 

doStuff(...args);  

// 3 (0+1+2);  

console.log(args);  

// Array [0, 1, 2]

122

As you can see, in the example, our doStuff function
accepts 3 parameters and we are passing them by
spreading the array args into the function like
so: ...args replacing the need of resorting to
use .apply().

Let's look at another example:

const name = ["Alberto", "Montalesi"];  

 

function greet(first, last) {  

 console.log(`Hello ${first} ${last}`);  

}  

 

greet(...name);  

// Hello Alberto Montalesi

The two values of the array are automatically assigned
to the two arguments of our function.

What if we provide more values than arguments?

const name = ["Jon", "Paul", "Jones"];  

 

function greet(first, last) {  

 console.log(`Hello ${first} ${last}`);  

}  

greet(...name);  

// Hello Jon Paul

123

In the example given above, we provided three values
inside the array but we only have two arguments in
our function therefore the last one is left out.

Spread in Object Literals (ES 2018 / ES9)

This feature is not part of ES6, but as we are already
discussing this topic, it is worth mentioning that
ES2018 introduced the Spread operator for Objects.
Let's look at an example:

let person = {  

 name : "Alberto",  

 surname: "Montalesi",  

 age: 25,  

}  

 

let clone = {...person};  

console.log(clone);  

// Object { name: "Alberto", surname:

"Montalesi", age: 25 }

You can read more about ES2018 in Chapter 20.

124

The Rest parameter

The rest syntax looks exactly the same as the spread, 3
dots ... but it is quite the opposite of it. Spread
expands an array, while rest condenses multiple
elements into a single one.

 

const runners = ["Tom", "Paul", "Mark",

"Luke"];  

const [first,second,...losers] = runners;  

 

console.log(...losers);  

// Mark Luke

We stored the first two values inside the const first
and second and whatever was left we put it inside
losers using the rest parameter.

125

End of Chapter 9 Quiz

9.1 What is the correct syntax to spread the
values of an array?

[.]

(...)

[...]

{...}

9.2 Write the code to accomplish the following
task:

Given the const veggie and meat. Create a new array
called menu containing:

• all the values of veggie

• a new string of value 'pasta'

• all the values of meat

const veggie =

["tomato","cucumber","beans"];  

const meat = ["pork","beef","chicken"];

126

9.3 Write the code to achieve the following
task:

Given the following Array runners, create a new
Array called losers that will contain all the values
after the first two:

const runners = ["Tom", "Paul", "Mark",

"Luke"];

9.4 What is the correct output of the following
code?

let arr = [1, 2, 3, 4];  

 

let arr2 = arr;  

 

arr2.push(5);  

console.log(arr);

[1, 2, 3, 4]

[1, 2, 4, 5]

[1, 2, 3, 4, 5]

"1, 2, 3, 4, 5"

127

Chapter 10: Object literal
upgrades

In this article we will look at the many upgrades
brought by ES6 to the Object literal notation.

Deconstructing variables into keys and
values

This is our initial situation:

const name = "Alberto";  

const surname = "Montalesi";  

const age = 25;  

const nationality = "Italian";

Now if we wanted to create an object literal this is
what we would usually do:

const person = {  

 name: name,  

 surname: surname,  

 age: age,  

 nationality: nationality,  

}  

 

console.log(person);  

128

// { name: 'Alberto',  

// surname: 'Montalesi',  

// age: 25,  

// nationality: 'Italian' }

In ES6 we can simplify like this:

const person = {  

 name,  

 surname,  

 age,  

 nationality,  

}  

console.log(person);  

// {name: "Alberto", surname: "Montalesi",

age: 25, nationality: "Italian"}

As our const are named the same way as the
properties we are using, we can reduce our typing.

Add functions to our Objects

Let's looks at an example from ES5:

const person = {  

 name: "Alberto",  

 greet: function(){  

129

 console.log("Hello");  

 },  

}  

 

person.greet();  

// Hello

If we wanted to add a function to our Object we had to
use the the function keyword. In ES6 it got easier,
look here:

const person = {  

 name: "Alberto",  

 greet(){  

 console.log("Hello");  

 },  

}  

 

person.greet();  

// Hello;

No more function, it’s shorter and it behaves the
same way.

Remember that arrow functions are anonymous, look
at this example:

// this won't work, you need a key to

access the function  

130

const person1 = {  

 () => console.log("Hello"),  

};  

 

const person2 = {  

 greet: () => console.log("Hello"),  

}  

person2.greet()  

// Hello

Dynamically define properties of an
Object

This is how we would dynamically define properties
of an Object in ES5:

var name = "myname";  

// create empty object  

var person = {}  

// update the object  

person[name] = "Alberto";  

console.log(person.myname);  

// Alberto

In the example given above, first we created the
Object and then we modified it. However, in ES6 we

131

can do both things at the same time. Take a look at
the following example:

const name = "myname";  

const person = {  

 [name]:"Alberto",  

};  

console.log(person.myname);  

// Alberto

132

End of Chapter 10 Quiz

10.1 Refactor the code to make it more
concise:

const animal = {  

 name: name,  

 age: age,  

 breed: breed,  

}

10.2 What is the correct output of this code:

const name = "myname";  

const person = {  

 [name]:"Alberto",  

};  

console.log(person.myname);

name

"Alberto"

myname

"name"

10.3 What is the correct output of this code:

const name = "myname";  

const age = 27;  

const favoriteColor = "Green";  

133

const person = {  

 name,  

 age,  

 color  

};  

console.log(person.color);

"Green"

color

color is not defined

favoriteColor

134

Chapter 11: Symbols

ES6 added a new type of primitive called Symbols.
What are they? And what do they do?

The unique property of Symbols

Symbols are always unique and we can use them as
identifiers for object properties.

Let's create a Symbol together:

const me = Symbol("Alberto");  

console.log(me);  

// Symbol(Alberto)

We said that they are always unique, let's try to create
a new symbol with the same value and see what
happens:

const me = Symbol("Alberto");  

console.log(me);  

// Symbol(Alberto)  

 

const clone = Symbol("Alberto");  

console.log(clone);  

// Symbol(Alberto)  

 

135

console.log(me == clone);  

// false  

console.log(me === clone);  

// false

They both have the same value, but we will never have
naming collisions with Symbols as they are always
unique.

Identifiers for object properties

As we mentioned earlier we can use them to create
identifiers for object properties, so let's see an
example:

const office = {  

 "Tom" : "CEO",  

 "Mark": "CTO",  

 "Mark": "CIO",  

}  

 

for (person in office){  

 console.log(person);  

}  

// Tom  

// Mark

136

Here we have our office object with 3 people, two of
which share the same name.
To avoid naming collisions we can use symbols.

const office = {  

 [Symbol("Tom")] : "CEO",  

 [Symbol("Mark")] : "CTO",  

 [Symbol("Mark")] : "CIO",  

}  

 

for(person in office) {  

 console.log(person);  

}  

// undefined

We got undefined when we tried to loop over the
symbols because they are not enumerable, so we can’t
loop over them with a for in.

If we want to retrieve their object properties we can
use Object.getOwnPropertySymbols().

const office = {  

 [Symbol("Tom")] : "CEO",  

 [Symbol("Mark")] : "CTO",  

 [Symbol("Mark")] : "CIO",  

};  

 

137

const symbols =

Object.getOwnPropertySymbols(office);  

console.log(symbols);  

// 0: Symbol(Tom)  

// 1: Symbol(Mark)  

// 2: Symbol(Mark)  

// length: 3

We retrieved the array but to be able to access the
properties we have to use map.

const symbols =

Object.getOwnPropertySymbols(office);  

const value = symbols.map(symbol =>

office[symbol]);  

console.log(value);  

// 0: "CEO"  

// 1: "CTO"  

// 2: "CIO"  

// length: 3

Now we finally got the array containing all the values
of our symbols.

138

End of Chapter 11 Quiz

11.1 What is a symbol?

a caveman

a property

a primitive

a type of function

11.2 What is the main characteristic of a
symbol?

they will throw an error when trying
to re-assign their value

they don't work inside a for loop

they are unique

they can only hold strings and not
integers

11.3 What is the correct output of the
following code?

const friends = {  

 "Tom" : "bff",  

 "Jim" : "brother",  

 "Tom" : "cousin",  

}  

139

for (friend in friends){  

 console.log(friend);  

}

Jim Tom

Error

Tom Jim Tom

Tom Jim

11.4 What is the correct output of the
following code?

const family = {  

 [Symbol("Tom")] : "father",  

 [Symbol("Jane")] : "mother",  

 [Symbol("Tom")] : "brother",  

};  

 

const symbols =

Object.getOwnPropertySymbols(family);  

console.log(symbols);

Symbol(Tom) Symbol(Jane) Symbol(Tom)

Symbol(Tom) Symbol(Jane)

undefined

Symbol(Jane) Symbol(Tom)  

140

Chapter 12: classes

Quoting MDN:

classes are primarily syntactic sugar over
JavaScript's existing prototype-based inheritance.
The class syntax does not introduce a new object-
oriented inheritance model to JavaScript.

That being said, let's review prototypal inheritance
before we jump into classes.

function Person(name,age) {  

 this.name = name;  

 this.age = age;  

}  

 

Person.prototype.greet = function(){  

 console.log("Hello, my name is " +

this.name);  

}  

 

const alberto = new Person("Alberto", 26);  

const caroline = new Person("Caroline",26);  

 

alberto.greet();  

// Hello, my name is Alberto  

141

caroline.greet();  

// Hello, my name is Caroline

We added a new method to the prototype in order to
make it accessible to all the new instances of Person
that we created.

Ok, now that I refreshed your knowledge of
prototypal inheritance, let's have a look at classes.

Create a class

There are two ways of creating a class:

• class declaration

• class expression

// class declaration  

class Person {  

 

}  

 

// class expression  

const person = class Person {  

}

Remember: class declaration (and expression) are
not hoisted which means that unless you want to get a

142

ReferenceError you need to declare your class before
you access it.

Let's start creating our first class.

We only need a method called constructor
(remember to add only one constructor, a
SyntaxError will be thrown if the class contains
more than one constructor method).

class Person {  

 constructor(name,age){  

 this.name = name;  

 this.age = age;  

 }  

 greet(){  

 console.log(`Hello, my name is $

{this.name} and I am ${this.age} years old`

);  

 } // no commas in between methods  

 farewell(){  

 console.log("goodbye friend");  

 }  

}  

 

const alberto = new Person("Alberto",26);  

 

alberto.greet();  

143

// Hello, my name is Alberto and I am 26

years old  

alberto.farewell();  

// goodbye friend

As you can see everything works just like before. As
we mentioned at the beginning, classes are just a
syntactic sugar, a nicer way of doing inheritance.

Static methods

Right now the two new methods that we created,
greet() and farewell() can be accessed by every
new instance of Person, but what if we want a
method that can only be accessed by the class itself,
similarly to Array.of() for arrays?

class Person {  

 constructor(name,age){  

 this.name = name;  

 this.age = age;  

 }  

 static info(){  

 console.log("I am a Person class, nice

to meet you");  

 }  

}  

144

const alberto = new Person("Alberto",26);  

 

alberto.info();  

// TypeError: alberto.info is not a

function  

 

Person.info();  

// I am a Person class, nice to meet you

set and get

We can use setter and getter methods to set and get
values inside our class.

class Person {  

 constructor(name,surname) {  

 this.name = name;  

 this.surname = surname;  

 this.nickname = "";  

 }  

 set nicknames(value){  

 this.nickname = value;  

 console.log(this.nickname);  

 }  

 get nicknames(){  

 console.log(`Your nickname is $

145

{this.nickname}`);  

 }  

}  

 

const alberto = new

Person("Alberto","Montalesi");  

 

// first we call the setter  

alberto.nicknames = "Albi";  

// "Albi"  

 

// then we call the getter  

alberto.nicknames;  

// "Your nickname is Albi"

Extending our class

What if we want to have a new class that inherits
from our previous one? We use extends keyword for
this purpose. Take a look at the following example:

// our initial class  

class Person {  

 constructor(name,age){  

 this.name = name;  

 this.age = age;  

146

 }  

 greet(){  

 console.log(`Hello, my name is $

{this.name} and I am ${this.age} years old`

);  

 }  

}  

 

 

// our new class  

class Adult extends Person {  

 constructor(name,age,work){  

 this.name = name;  

 this.age = age;  

 this.work = work;  

 }  

}  

 

const alberto = new

Adult("Alberto",26,"software developer");

We created a new `class Adult that inherits
fromPerson` but if you try to run this code you will
get an error:

147

ReferenceError: must call super

constructor before using |this| in Adult

class constructor

The error message tells us to call super() before
using this in our new class.
What it means is that we basically have to create a
new Person before we create a new Adult and the
super() constructor will do exactly that.

class Adult extends Person {  

 constructor(name,age,work){  

 super(name,age);  

 this.work = work;  

 }  

}

Why did we set super(name,age) ? Because our
Adult class inherits name and age from the Person
therefore we don't need to redeclare them.
Super will simply create a new Person for us.

If we now run the code again we will get this:

// our initial class  

class Person {  

 constructor(name,age){  

 this.name = name;  

 this.age = age;  

148

 }  

 greet(){  

 console.log(`Hello, my name is $

{this.name} and I am ${this.age} years old`

);  

 }  

}  

 

 

// our new class  

class Adult extends Person {  

 constructor(name,age,work){  

 super(name,age);  

 this.work = work;  

 }  

}  

 

const alberto = new

Adult("Alberto",26,"software developer");  

 

console.log(alberto.age);  

// 26  

console.log(alberto.work);  

// "software developer"  

alberto.greet();  

149

// Hello, my name is Alberto and I am 26

years old

As you can see our Adult inherited all the properties
and methods from the Person class.

Extending Arrays

We want to create something like this, something
similar to an array where the first value is a property
to define our classroom and the rest are our
students and their marks.

// we create a new `class`room  

const my`class` = new `class`room('1A',[ 

 {name: "Tim", mark: 6},  

 {name: "Tom", mark: 3},  

 {name: "Jim", mark: 8},  

 {name: "Jon", mark: 10},]  

);

What we can do is create a new class that extends
the array.

class `class`room extends Array {  

 // we use rest operator to grab all the

students  

 constructor(name, ...students){  

150

 // we use spread to place all the

students in the array individually

otherwise we would push an array into an

array  

 super(...students);  

 this.name = name;  

 // we create a new method to add

students  

 }  

 add(student){  

 this.push(student);  

 }  

}  

const my`class` = new `class`room('1A',  

 {name: "Tim", mark: 6},  

 {name: "Tom", mark: 3},  

 {name: "Jim", mark: 8},  

 {name: "Jon", mark: 10},  

);  

 

// now we can call  

my`class`.add({name: "Timmy", mark:7});  

my`class`[4];  

// Object { name: "Timmy", mark: 7 }  

 

151

// we can also loop over with for of  

for(const student of my`class`) {  

 console.log(student);  

 }  

// Object { name: "Tim", grade: 6 }  

// Object { name: "Tom", grade: 3 }  

// Object { name: "Jim", grade: 8 }  

// Object { name: "Jon", grade: 10 }  

// Object { name: "Timmy", grade: 7 }

152

End of Chapter 12 Quiz

12.1 What is a class?

a new primitive

just syntactic sugar to perform
prototypal inheritance

a new type of array

12.2 How can you declare a class?

const person = class Person {...}

const person = new class Person {...}

class Person {...}

12.3 What is a static method?

A method that can't change

A method that can be accessed by every
instance of a class

A method that can be accessed only by
the class itself

153

12.4 What is the correct output of the
following code?

class Person {  

 constructor(name,age){  

 this.name = name;  

 this.age = age;  

 }  

}  

class Adult extends Person {  

 constructor(work){  

 this.work = work;  

 }  

}  

 

const my = new Adult('software developer');  

console.log(my.work);

"software developer"

'Error: age is not defined'

ReferenceError: Must call super
constructor in derived class before
accessing 'this'

154

12.5 Write the code to accomplish the
following task:

Given the following class, create a new one called
Adult that extends the previous one and adds new
property to it called work.

// our initial class  

class Person {  

 constructor(name,age){  

 this.name = name;  

 this.age = age;  

 }  

 greet(){  

 console.log(`Hello, my name is $

{this.name} and I am ${this.age} years old`

);  

 }  

}  

 

// create a new class that extends Person

and adds new property to it  

const me = new Adult('Alberto',27,'software

developer');  

console.log(me.work);  

// software developer

155

Chapter 13: Promises

JavaScript work synchronously which means that
each block of code will be executed after the previous
one.

const data = fetch(‘your-api-url-goes-

here’);

console.log(“Finished”);

console.log(data);  

}

In the example above we are using fetch to retrieve
data from a url (in this example we are only
pretending to be doing so).

In case of synchronous code we would expect the line
subsequent line to be called only after the fetch has
been complete but in reality what is going to happen
is that fetch will be called and straight away the
subsequent two console.log will also be called,
resulting in the last one console.log(data) to
return undefined.

This happens because fetch performs
asynchronously, which means that the code won't stop
running once it hits that line but, instead, will
continue executing.

156

What we need, is a way of waiting until fetch returns
us something before we continue executing our code.

To avoid this we would use callbacks or promises.

Callback hell

You may have heard of something called callback hell,
which is something that happens when we try to write
asynchronous code as if it was synchronous, meaning
that we try to chain each block of code after the other.

In simple words it would something like:

do A, If A do B, if B do C and so on and so forth.

The following is an example just to showcase the
meaning of the callback hell. Imagine each step is
asynchronous meaning that we need to send a request
to our server for each step of preparing the pizza and
we need to wait for the server to respond.

const makePizza = (ingredients, callback)

=> {  

 mixIngredients(ingredients,

function(mixedIngredients)){  

 bakePizza(mixedIngredients,

function(bakedPizza)){  

 console.log('finished!')  

157

 }  

 }  

}

We try to write our code in a way where executions
happens visually from top to bottom, causing
excessive nesting on functions and result in what you
can see above.

To improve your callbacks you can check out http://
callbackhell.com/

Promises will help us escape this "hell" and improve
our code.

What is a Promise?

From MDN:

A Promise is an object representing the eventual
completion or failure of an asynchronous operation.

Have a quick look at the following example:

const data = fetch('your-api-url-goes-

here');  

console.log('Finished');  

console.log(data);

158

http://callbackhell.com/
http://callbackhell.com/

Create your own promise

const myPromise = new Promise((resolve,

reject) => {  

 // your code goes here  

});

This is how you create your own promise, resolve
and reject will be called once the promise is
finished.

We can immediately return it to see what we would
get:

const myPromise = new Promise((resolve,

reject) => {  

 resolve("The value we get from the

promise");  

});  

 

myPromise.then( 

 data => {  

 console.log(data);  

 });  

// The value we get from the promise

We immediately resolved our promise and can see the
result in the console.

159

We can combine a setTimeout() to wait a certain
amount of time before resolving.

const myPromise = new Promise((resolve,

reject) => {  

 setTimeout(() => {  

 resolve("The value we get from the

promise");  

 }, 2000);  

});  

 

myPromise.then( 

 data => {  

 console.log(data);  

 });  

// after 2 seconds ...  

// The value we get from the promise

These two examples are very simple but promises are
very useful when dealing with big requests of data.

In the example above we kept it simple and only
resolved our promise but in reality you will also
encounter errors so let's see how to deal with them:

const myPromise = new Promise((resolve,

reject) => {  

 setTimeout(() => {  

160

 reject(Error("this is our error"));  

 }, 2000);  

});  

 

myPromise  

 .then(data => {  

 console.log(data);  

 })  

 .catch(err => {  

 console.error(err);  

 })  

 // Error: this is our error  

 // Stack trace:  

 // myPromise</<@debugger eval code:3:14

We use .then() to grab the value when the promise
resolves and .catch() when the promise rejects.

Looking at our error log you can see that it tells us
where the error occurred, that is because we wrote
reject(Error("this is our error")); and not
simply reject("this is our error");.

Chaining promises

We can chain promises one after the other, using
what was returned from the previous one as the base

161

for the subsequent one, whether the promise was
resolved or rejected.

You can chain as many promises as you want and the
code will still be more readable and shorter than what
we have seen above in the callback hell.

const myPromise = new Promise((resolve,

reject) => {  

 resolve();  

});  

 

myPromise  

 .then(data => {  

 // return something new  

 return 'working...'  

 })  

 .then(data => {  

 // log the data that we got from the

previous promise  

 console.log(data);  

 throw 'failed!';  

 })  

 .catch(err => {  

 // grab the error from the previous

promise and log it  

 console.error(err);  

162

 // failed!  

 })

As you can see, the first then passed a value down to
the second one where we logged it and we also threw
an error that was caught in the catch clause.

We are not limited to chaining in case of success, we
can also chain when we get a reject.

const myPromise = new Promise((resolve,

reject) => {  

 resolve();  

});  

 

myPromise  

 .then(data => {  

 throw new Error("ooops");  

 console.log("first value");  

 })  

 .catch(() => {  

 console.log("catch an error");  

 })  

 .then(data => {  

 console.log("second value");  

 });  

 // catch an error  

 // second value

163

We did not get "first value" because we threw an error
therefore we only got the first .catch() and the
last .then().

Promise.resolve() & Promise.reject()

Promise.resolve() and Promise.reject() will
create promises that automatically resolve or reject.

//Promise.resolve()  

Promise.resolve('Success').then(function(va

lue) {  

 console.log();  

 // "Success"  

}, function(value) {  

 cnsole.log('fail')  

});  

 

// Promise.reject()  

Promise.reject(new

Error('fail')).then(function() {  

 // not called  

}, function(error) {  

 console.log(error);  

 // Error: fail  

});

164

As you can see in the first example, the Promise
created in the then clause has two arguments, one
function that get's called when the Promise resolves,
and one that gets called when the Promise rejects.
Since Promise.resolve() immediately resolves the
promise, the first functions is being called.

The opposite happens in the second example, where
we use Promise.reject() to immediately reject the
Promise, therefore the second argument of the then
clause gets called.

Promise.all() & Promise.race()

Promise.all() returns a single Promise that
resolves when all promises have resolved.

Let's look at this example where we have two
promises.

const promise1 = new

Promise((resolve,reject) => {  

 setTimeout(resolve, 500, 'first value');  

});  

const promise2 = new

Promise((resolve,reject) => {  

 setTimeout(resolve, 1000, 'second

value');  

});  

165

 

promise1.then(data => {  

 console.log(data);  

});  

// after 500 ms  

// first value  

promise2.then(data => {  

 console.log(data);  

});  

// after 1000 ms  

// second value

They will resolve independently from one another but
look at what happens when we use Promise.all().

const promise1 = new

Promise((resolve,reject) => {  

 setTimeout(resolve, 500, 'first value');  

});  

const promise2 = new

Promise((resolve,reject) => {  

 setTimeout(resolve, 1000, 'second

value');  

});  

 

Promise  

 .all([promise1, promise2])  

166

 .then(data => {  

 const[promise1data, promise2data] =

data;  

 console.log(promise1data,

promise2data);  

 });  

// after 1000 ms  

// first value second value

Our values returned together, after 1000ms (the
timeout of the second promise) meaning that the first
one had to wait for the completion of the second one.

If we were to pass an empty iterable then it will return
an already resolved promise.

If one of the promises was rejected, all of them would
asynchronously reject with the value of that rejection,
even if they resolved.

const promise1 = new

Promise((resolve,reject) => {  

 resolve("my first value");  

});  

const promise2 = new

Promise((resolve,reject) => {  

 reject(Error("oooops error"));  

});  

167

 

// one of the two promises will fail, but

`.all` will return only a rejection.  

Promise  

 .all([promise1, promise2])  

 .then(data => {  

 const[promise1data, promise2data] =

data;  

 console.log(promise1data,

promise2data);  

 })  

 .catch(err => {  

 console.log(err);  

 });  

 // Error: oooops error

Promise.race() on the other hand returns a
promise that resolves or rejects as soon as one of the
promises in the iterable resolves or rejects, with the
value from that promise.

const promise1 = new

Promise((resolve,reject) => {  

 setTimeout(resolve, 500, 'first value');  

});  

const promise2 = new

Promise((resolve,reject) => {  

168

 setTimeout(resolve, 100, 'second value');  

});  

 

Promise.race([promise1,

promise2]).then(function(value) {  

 console.log(value);  

 // Both resolve, but promise2 is faster 

});  

// expected output: "second value"

If we passed an empty iterable, the race would be
pending forever!

169

End of Chapter 13 Quiz

13.1 What is a Promise?

a new primitive

is an object representing the eventual
completion or failure of an
asynchronous operation

a new type of loop

13.2 Write the code to accomplish the
following task:

Write a simple Promise that will immediately resolve
and print something to the console.

13.3 Which of the following promise methods
does not exist?

Promise.race()

Promise.some()

Promise.all()

Promise.reject()

13.4 What is the correct output of the
following code:

function myPromise(){  

 return new Promise((resolve,reject) =>

170

{  

 reject();  

 })  

}  

 

myPromise()  

 .then(() => {  

 console.log('1')  

 })  

 .then(() => {  

 console.log('2')  

 })  

 .catch(() => {  

 console.log('3')  

 })  

 .then(() => {  

 console.log('4')  

 });

1,2,3,4

3,4,1,2

3,4

4

171

Chapter 14: Generators

What is a Generator?

A generator function is a function that we can start
and stop, for an indefinite amount of time. And,
restart with the possibility of passing additional data
at a later point in time.

To create a generator function we write like this:

function* fruitList(){  

 yield 'Banana';  

 yield 'Apple';  

 yield 'Orange';  

}  

 

const fruits = fruitList();  

 

fruits;  

// Generator  

fruits.next();  

// Object { value: "Banana", done: false } 

fruits.next();  

// Object { value: "Apple", done: false } 

fruits.next();  

// Object { value: "Orange", done: false } 

172

fruits.next();  

// Object { value: undefined, done: true }

Let's have a look at the code piece by piece:

• we declared the function using function*

• we used the keyword yield before our content

• we start our function using .next()

• the last time we call .next() we receive and empty
object and we get done: true

Our function is paused between each .next() call.

Looping over an array with a generator

We can use the for of loop to iterate over our
generator and yield the content at each loop.

// create an array of fruits  

const fruitList =

['Banana','Apple','Orange','Melon','Cherry'

,'Mango'];  

 

// create our looping generator  

function* loop(arr) {  

 for (const item of arr) {  

 yield `I like to eat ${item}s`;  

173

 }  

}  

 

 

const fruitGenerator = loop(fruitList);  

fruitGenerator.next();  

// Object { value: "I like to eat Bananas",

done: false }  

fruitGenerator.next();  

// Object { value: "I like to eat Apples",

done: false }  

fruitGenerator.next().value;  

// "I like to eat Oranges"

• Our new generator will loop over the array and print
one value at a time every time we call .next()

• If you are only concerned about getting the value,
then use .next().value and it will not print the
status of the generator

Finish the generator with .return()

Using .return() we can return a given value and
finish the generator.

function* fruitList(){  

 yield 'Banana';  

174

 yield 'Apple';  

 yield 'Orange';  

}  

 

const fruits = fruitList();  

 

fruits.return();  

// Object { value: undefined, done: true }

In this case we got value: undefined because we
did not pass anything in the return().

Catching errors with .throw()

function* gen(){  

 try {  

 yield "Trying...";  

 yield "Trying harder...";  

 yield "Trying even harder..";  

 }  

 catch(err) {  

 console.log("Error: " + err);  

 }  

}  

 

const myGenerator = gen();  

175

myGenerator.next();  

// Object { value: "Trying...", done: false

}  

myGenerator.next();  

// Object { value: "Trying harder...",

done: false }  

myGenerator.throw("ooops");  

// Error: ooops  

// Object { value: undefined, done: true }

As you can see when we called .throw() the
generator returned us the error and finished even
though we still had one more yield to execute.

Combining Generators with Promises

As we have previously seen, Promises are very useful
for asynchronous programming, and by combining
them with generators we have a very powerful tool at
our disposal to avoid problems like the callback hell.

As we are solely discussing ES6, I won't be talking
about async functions as they were introduced in
ES2017, but know that the way they work is based on
what you will see now.

You can read more about async functions in Chapter
19.

176

Using a Generator in combination with a Promise
will allow us to write asynchronous code that feels like
synchronous code.

What we want to do is wait for a promise to resolve
and then pass the resolved value back into our
generator in the .next() call.

const myPromise = () => new

Promise((resolve) => {  

 resolve("our value is...");  

});  

 

function* gen() {  

 let result = "";  

 // returns promise  

 yield myPromise().then(data => { result =

data }) ;  

 // wait for the promise and use its value 

 yield result + ' 2';  

};  

 

// Call the async function and pass params 

const asyncFunc = gen();  

const val1 = asyncFunc.next();  

console.log(val1);  

// call the promise and wait for it to

177

resolve  

// {value: Promise, done: false}  

val1.value.then(() => {  

 console.log(asyncFunc.next());  

})  

// Object { value: "our value is... 2",

done: false }

The first time we call .next() it will call our promise
and wait for it to resolve (in our simple example it
resolves immediately) and when we call .next()
again it will utilize the value returned by the promise
to do something else (in this case just interpolate a
string).

178

End of Chapter 14 Quiz

14.1 What is the correct syntax of a generator
function?

generator function() {...}

new generator(){...}

function*(){...}

14.2 What is the main feature of a generator?

It can't be stopped

It can generate other functions

It can't be overwritten

It can be stopped and restarted

14.3 What is the correct output of the
following code?

function* fruitList(){  

 yield 'Banana';  

 yield 'Apple';  

 yield 'Pomelo';  

 yield 'Mangosteen';  

 yield 'Orange';  

}  

 

179

const fruits = fruitList();  

 

fruits;  

fruits.next();  

fruits.next();  

fruits.next();

What is the last output of fruits.next();?

Object { value: "Banana", done:
false }

Object { value: "Pomelo", done: true }

Object { value: "Mangosteen", done:
false }

Object { value: "Pomelo", done:
false }

14.4 What is the correct output of the
following code?

function* fruitList(){  

 yield 'Banana';  

 yield 'Apple';  

 yield 'Orange';  

}  

 

const fruits = fruitList();  

180

 

fruits.return();

Object { value: "Banana", done: true }

Object { value: undefined, done: false
}

Object { value: "Banana", done:
false }

Object { value: undefined, done:
true }

181

Chapter 15: Proxies

What is a Proxy?

From MDN:

The Proxy object is used to define custom behavior for
fundamental operations (e.g. property lookup,
assignment, enumeration, function invocation, etc).

How to use a Proxy ?

This is how we create a Proxy:

var x = new Proxy(target,handler)

• our target can be anything, from an object, to a
function, to another Proxy

• a handler is an object which will define the behavior
of our Proxy when an operation is performed on it

// our object  

const dog = { breed: "German Shephard",

age: 5}  

 

// our Proxy  

const dogProxy = new Proxy(dog, {  

 get(target,breed){  

 return target[breed].toUpperCase();  

182

 },  

 set(target, breed, value){  

 console.log("changing breed to...");  

 target[breed] = value;  

 }  

});  

 

console.log(dogProxy.breed);  

// "GERMAN SHEPHARD"  

console.log(dogProxy.breed = "Labrador")  

// changing breed to...  

// "Labrador"  

console.log(dogProxy.breed);  

// "LABRADOR"

When we call the get method we step inside the
normal flow and change the value of the breed to
uppercase.

When setting a new value we step in again and log a
short message before setting the value.

Proxies can be very useful. For example, we can use
them to validate data.

const validateAge = {  

 set: function(object,property,value){  

 if(property === 'age'){  

183

 if(value < 18){  

 throw new Error('you are too

young!');  

 } else {  

 // default behaviour  

 object[property] = value;  

 return true  

 }  

 }  

 }  

}  

 

const user = new Proxy({},validateAge)  

 

user.age = 17  

// Uncaught Error: you are too young!  

 

user.age = 21  

// 21

When we set the age property of the user Object we
pass it through our validateAge function which
checks if it is more or less than 18 and throws an error
if it's less than 18.

Proxies can be very useful if we have many properties
that would require a getter and setter each. By using a

184

Proxy we need to define only one getter and one
setter. Let's look at this example:

const dog = {  

 _name: 'pup',  

 _age: 7,  

 

 get name() {  

 console.log(this._name)  

 },  

 get age(){  

 console.log(this._age)  

 },  

 

 set name(newName){  

 this._name = newName;  

 console.log(this._name)  

 },  

 set age(newAge){  

 this._age = newAge;  

 console.log(this._age)  

 }  

}  

 

dog.name;  

// pup  

185

dog.age;  

// 7  

dog.breed;  

// undefined  

dog.name = 'Max';  

// Max  

dog.age = 8;  

// 8

Notice that i'm writing _name instead of name etc..,
the _ symbol is used in JavaScript convention to
define Private properties, meaning properties that are
should not be accessed by instances of the same class.
That is not something that JavaScript enforces, it's
just for developers to quickly identify Private
properties. The reason why i'm using it here is
because if i was to call:

set name(newName){  

 this.name = newName;  

}

This would cause an infinite loop as this.name =
would call the setter again and again. By putting the
underscore in front of it it, I achieve the same result
that I would get by renaming the setter to something
else, such as:

186

set rename(newName){  

 this.name = newName;  

}

As you can see we had two properties: name and
ageand for each of them we had to create a getter and
a setter.
When we try to access a property that does not exist
on the Object, such as breed we get undefined.

With a Proxy we can simplify the code by writing the
following:

const dog = {  

 name: 'pup',  

 age: 7  

}  

const handler = {  

 get: (target, property) => {  

 property in target ?

console.log(target[property]) :

console.log('property not found');  

 },  

 set: (target, property, value) => {  

 target[property] = value;  

 console.log(target[property])  

 }  

}  

187

 

const dogProxy = new Proxy(dog, handler);  

 

dogProxy.name;  

// pup  

dogProxy.age;  

// 7  

dogProxy.name = 'Max';  

// Max  

dogProxy.age = 8;  

// 8  

dogProxy.breed;  

// property not found

First, we created our dog Object but this time we did
not set any getter and setter inside of it.
We created our handler that will handle each
possible property with only one getter and setter.
In the getter what we are doing is check if the
property is available on the target Object. If it is,
we log it, otherwise we log a custom message.
The setter takes three argument, the target object,
the property name and the value, nothing special
happens here, we set the property to the new value
and we log it.

As you can see, by using a Proxy we achieved two
things:

188

• shorter, cleaner code

• we are logging a custom message if we try to access a
property that is not available.

189

End of Chapter 15 Quiz

15.1 What is the use of a Proxy?

to store unique values

to define custom behavior of
fundamental operations

to make a value inaccessible from
other functions

15.2 How many parameters can a Proxy take?

1

2

3

4

15.3 Which of the following is correct:

The target parameter of a Proxy must
be an Array

The target parameter of a Proxy must
not be an Array

The target parameter of a Proxy can be
another Proxy

The target parameter of a Proxy cannot
be another Proxy

190

Chapter 16: Sets, WeakSets, Maps
and WeakMaps

What is a Set?

A Set is an Object where we can store unique values
of any type.

// create our set  

const family = new Set();  

 

// add values to it  

family.add("Dad");  

console.log(family);  

// Set ["Dad"]  

 

family.add("Mom");  

console.log(family);  

// Set ["Dad", "Mom"]  

 

family.add("Son");  

console.log(family);  

// Set ["Dad", "Mom", "Son"]  

 

family.add("Dad");  

console.log(family);  

// Set ["Dad", "Mom", "Son"]

191

As you can see, at the end we tried to add "Dad"
again, but the Set still remained the same because a
Set can only take unique values.

Let's continue using the same Set and see what
methods we can use on it.

family.size;  

// 3  

family.keys();  

// SetIterator {"Dad", "Mom", "Son"}  

family.entries();  

// SetIterator {"Dad", "Mom", "Son"}  

family.values();  

// SetIterator {"Dad", "Mom", "Son"}  

family.delete("Dad");  

family;  

// Set ["Mom", "Son"]  

family.clear();  

family;  

// Set []

As you can see a Set has a size property and we can
delete an item from it or use clear to delete all the
items from it.

We can also notice that a Set does not have keys, so
when we call .keys() we get the same result as
calling .values() or .entries().

192

Loop over a Set

We have two ways of iterating over a Set:
using .next() or using a for of loop.

// using `.next()`  

const iterator = family.values();  

iterator.next();  

// Object { value: "Dad", done: false }  

iterator.next();  

// Object { value: "Mom", done: false }  

 

 

// using a `for of` loop  

for(const person of family) {  

 console.log(person);  

}  

// Dad  

// Mom  

// Son

The method values() will return an Iterator object
on which we can call next() similarly to how we did
when we discussed about generator functions.

193

Remove duplicates from an array

We can use a Set to remove duplicates from an Array
since we know it can only hold unique values.

const myArray = ["dad", "mom", "son",

"dad", "mom", "daughter"];  

 

const set = new Set(myArray);  

console.log(set);  

// Set ["dad", "mom", "son", "daughter"] 

// transform the `Set` into an Array  

const uniqueArray = Array.from(set);  

console.log(uniqueArray);  

// Array ["dad", "mom", "son",

"daughter"]  

 

// write the same but in a single line  

const uniqueArray = Array.from(new

Set(myArray));  

// Array ["dad", "mom", "son",

"daughter"]

As you can see the new array only contains the unique
values from the original array.

194

What is a WeakSet?

A WeakSet is similar to a Set but it can only contain
Objects.

let dad = {name: "Daddy", age: 50};  

let mom = {name: "Mummy", age: 45};  

 

const family = new WeakSet([dad,mom]);  

 

for(const person of family){  

 console.log(person);  

}  

// TypeError: family is not iterable

We created our new WeakSet but when we tried to
use a for of loop it did not work, we can't iterate
over a WeakSet.

A WeakSet cleans itself up after we delete an element
from it.

let dad = {name: "Daddy", age: 50};  

let mom = {name: "Mummy", age: 45};  

 

const family = new WeakSet([dad,mom]);  

 

dad = null;  

console.log(family);  

195

// WeakSet [{…}, {…}]  

 

// wait a few seconds  

console.log(family);  

// WeakSet [{…}]

You can try running the example above in the Dev
Tools of your browser, as you can see after a few
seconds dad was removed and garbage collected. That
happened because the reference to it was lost when
we set the value to null.

What is a Map?

A Map is similar to a Set, but they have key/value
pairs.

const family = new Map();  

 

family.set("Dad", 40);  

family.set("Mom", 50);  

family.set("Son", 20);  

 

family;  

// Map { Dad → 40, Mom → 50, Son → 20 }  

family.size;  

// 3  

196

 

family.forEach((val,key) =>

console.log(key,val));  

// Dad 40  

// Mom 50  

// Son 20  

 

for(const [key,val] of family){  

 console.log(key,val);  

}  

// Dad 40  

// Mom 50  

// Son 20

If you remember, we could iterate over a Set only
with a for of loop, while we can iterate over a Map
with both a for of and a forEach loop.

What is a WeakMap?

A WeakMap is a collection of key/value pairs and
similarly to a WeakSet, even in a WeakMap the keys are
weakly referenced, which means that when the
reference is lost, the value will be removed from the
WeakMap and garbage collected.

197

A WeakMap is not enumerable therefore we cannot
loop over it.

let dad = { name: "Daddy" };  

let mom = { name: "Mommy" };  

 

const myMap = new Map();  

const myWeakMap = new WeakMap();  

 

myMap.set(dad);  

myWeakMap.set(mom);  

 

dad = null;  

mom = null;  

 

console.log(myMap);  

// Map(1) {{…}}  

console.log(myWeakMap);  

// WeakMap {}

As you can see mom was garbage collected after we set
the its value to null whilst dad still remains inside
our Map.

198

End of Chapter 16 Quiz

16.1 Which one of these does not exist?

Set

WeakSet

StrongSet

WeakMap

16.2 Which one of the following definition is
correct?

A Set can only store objects

A WeakSet can only store objects

A WeakSet can be overwritten

Both Set and WeakSet can only store
objects

16.3 Which one of the following definition is
correct?

a Map only stores keys

a Set stores both keys and values, a
Map only values

a Map stores both keys and values, a
Set only values

none, they both stores only values

199

Chapter 17: Everything new in
ES2016

ES2016 introduced only two new features:

• Array.prototype.includes()

• The exponential operator

Array.prototype.includes()

The includes() method will return true if our array
includes a certain element, or false if it doesn't.

let array = [1,2,4,5];  

 

array.includes(2);  

// true  

array.includes(3);  

// false

Combine includes() with fromIndex

We can provide .includes() with an index to begin
searching for an element. Default is 0, but we can also
pass a negative value.

The first value we pass in is the element to search and
the second one is the index:

200

let array = [1,3,5,7,9,11];  

 

array.includes(3,1);  

// find the number 3 starting from array

index 1  

// true  

array.includes(5,4);  

//false  

array.includes(1,-1);  

// find the number 1 starting from the

ending of the array going backwards  

// false  

array.includes(11,-3);  

// true

array.includes(5,4); returned false because,
despite the array actually containing the number 5, it
is found at the index 2 but we started looking at
position 4. That's why we couldn't find it and it
returned false.

array.includes(1,-1); returned false because we
started looking at the index -1 (which is the last
element of the array) and then continued from that
point onward.

array.includes(11,-3); returned true because we
went back to the index -3 and moved up, finding the
value 11 on our path.

201

The exponential operator

Prior to ES2016 we would have done the following:

Math.pow(2,2);  

// 4  

Math.pow(2,3);  

// 8

Now with the new exponential operator, we can do
the following:

2**2;  

// 4  

2**3;  

// 8

It will get pretty useful when combining multiple
operations like in this example:

2**2**2;  

// 16  

Math.pow(Math.pow(2,2),2);  

// 16

Using Math.pow() you need to continuously
concatenate them and it can get pretty long and
messy. The exponential operator provides a faster and
cleaner way of doing the same thing.

202

End of Chapter 17 Quiz

17.1 What new array method was introduced
in ES2016?

Array.prototype.contains()

Array.prototype.has()

Array.prototype.includes()

Array.prototype.find()

17.2 What is the correct output of the
following code?

let array = [1,3,5,7,9,11];  

 

array.includes(5,4);

4

true

5

false

17.3 Write the code code to accomplish the
following task:

Refactor the following code to utilize the new
exponential operator.

203

Math.pow(Math.pow(2,2),2);  

// 16

204

Chapter 18: ES2017 string
padding, Object.entries(),
Object.values() and more

ES2017 introduced many cool new features, which we
are going to see here.

String padding (.padStart()
and .padEnd())

We can now add some padding to our strings, either
at the end (.padEnd()) or at the beginning
(.padStart()) of them.

"hello".padStart(6);  

// " hello"  

"hello".padEnd(6);  

// "hello "

We specified that we want 6 as our padding, so then
why in both cases did we only get 1 space?
It happened because padStart and padEnd will go
and fill the empty spaces. In our example "hello" is 5
letters, and our padding is 6, which leaves only 1
empty space.

Look at this example:

"hi".padStart(10);  

// 10 - 2 = 8 empty spaces  

205

// " hi"  

"welcome".padStart(10);  

// 10 - 6 = 4 empty spaces  

// " welcome"

Right align with padStart

We can use padStart if we want to right align
something.

const strings = ["short", "medium length",

"very long string"];  

 

const longestString = strings.sort(str =>

str.length).map(str => str.length)[0];  

 

strings.forEach(str =>

console.log(str.padStart(longestString)));  

 

// very long string  

// medium length  

// short

First we grabbed the longest of our strings and
measured its length. We then applied a padStart to
all the strings based on the length of the longest so

206

that we now have all of them perfectly aligned to the
right.

Add a custom value to the padding

We are not bound to just add a white space as a
padding, we can pass both strings and numbers.

"hello".padEnd(13," Alberto");  

// "hello Alberto"  

"1".padStart(3,0);  

// "001"  

"99".padStart(3,0);  

// "099"

Object.entries() and Object.values()

Let's first create an Object.

const family = {  

 father: "Jonathan Kent",  

 mother: "Martha Kent",  

 son: "Clark Kent",  

}

In previous versions of JavaScript we would have
accessed the values inside the object like this:

207

Object.keys(family);  

// ["father", "mother", "son"]  

family.father;  

"Jonathan Kent"

Object.keys() returned only the keys of the object
that we then had to use to access the values.

We now have two more ways of accessing our objects:

Object.values(family);  

// ["Jonathan Kent", "Martha Kent", "Clark

Kent"]  

 

Object.entries(family);  

// ["father", "Jonathan Kent"]  

// ["mother", "Martha Kent"]  

// ["son", "Clark Kent"]

Object.values() returns an array of all the values
whilst Object.entries() returns an array of arrays
containing both keys and values.

Object.getOwnPropertyDescriptors()

This method will return all the own property
descriptors of an object.
The attributes it can return are value, writable,
get, set, configurable and enumerable.

208

const myObj = {  

 name: "Alberto",  

 age: 25,  

 greet() {  

 console.log("hello");  

 },  

}  

Object.getOwnPropertyDescriptors(myObj);  

// age:{value: 25, writable: true,

enumerable: true, configurable: true}  

 

// greet:{value: ƒ, writable: true,

enumerable: true, configurable: true}  

 

// name:{value: "Alberto", writable: true,

enumerable: true, configurable: true}

Trailing commas

This is just a minor change to a syntax. Now, when
writing objects we can leave a trailing comma after
each parameter, whether or not it is the last one.

// from this  

const object = {  

 prop1: "prop",  

209

 prop2: "propop"  

}  

 

// to this  

const object = {  

 prop1: "prop",  

 prop2: "propop",  

}

Notice how I wrote a comma at the end of the second
property.
It will not throw any error if you don't put it, but it's a
better practice to follow as it make your colleague’s or
team member’s life easier.

// I write  

const object = {  

 prop1: "prop",  

 prop2: "propop"  

}  

 

// my colleague updates the code, adding a

new property  

const object = {  

 prop1: "prop",  

 prop2: "propop"  

 prop3: "propopop"  

210

}  

// suddenly, he gets an error because he

did not notice that I forgot to leave a

comma at the end of the last parameter.

Shared memory and Atomics

From MDN:

When memory is shared, multiple threads can read
and write the same data in memory. Atomic
operations make sure that predictable values are
written and read, that operations are finished before
the next operation starts and that operations are not
interrupted.

Atomics is not a constructor, all of its properties and
methods are static (just like Math) therefore we
cannot use it with a new operator or invoke the
Atomics object as a function.

Examples of its methods are:

• add / sub

• and / or / xor

• load / store

211

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Atomics

Atomics are used with SharedArrayBuffer (generic
fixed-length binary data buffer) objects which
represent generic, fixed-length raw binary data buffer.

Let's have a look at some examples of Atomics
methods:

Atomics.add(), Atomics.sub(), Atomics.load()
and Atomics.store()

Atomics.add() will take three arguments, an array,
an index and a value and will return the previous
value at that index before performing an addition.

// create a `SharedArrayBuffer`  

const buffer = new SharedArrayBuffer(16);  

const uint8 = new Uint8Array(buffer);  

 

// add a value at the first position  

uint8[0] = 10;  

 

console.log(Atomics.add(uint8, 0, 5));  

// 10  

 

// 10 + 5 = 15  

console.log(uint8[0])  

// 15  

console.log(Atomics.load(uint8,0));  

// 15

212

As you can see, calling Atomics.add() will return the
previous value at the array position we are targeting.
when we call again uint8[0] we see that the addition
was performed and we got 15.

To retrieve a specific value from our array we can use
Atomics.load and pass two argument, an array and
an index.

Atomics.sub() works the same way as
Atomics.add() but it will subtract a value.

// create a `SharedArrayBuffer`  

const buffer = new SharedArrayBuffer(16);  

const uint8 = new Uint8Array(buffer);  

 

// add a value at the first position  

uint8[0] = 10;  

 

console.log(Atomics.sub(uint8, 0, 5));  

// 10  

 

// 10 - 5 = 5  

console.log(uint8[0])  

// 5  

console.log(Atomics.store(uint8,0,3));  

// 3  

213

console.log(Atomics.load(uint8,0));  

// 3

Here we are using Atomics.sub() to substract 5
from the value at position uint8[0] which is
equivalent to 10 - 5.
Same as with Atomics.add(), the method will return
the previous value at that index, in this case 10.

We are then using Atomics.store() to store a
specific value, in this case 3, at a specific index of the
array, in this case 0, the first position.
Atomics.store() will return the value that we just
passed, in this case 3. You can see that when we call
Atomics.load() on that specific index we get 3 and
not 5 anymore.

Atomics.and(), Atomics.or() and
Atomics.xor()

These three methods all perform bitwise AND, OR
and XOR operations at a given position of the array.
You can read more about bitwise operations on
Wikipedia at this link https://en.wikipedia.org/wiki/
Bitwise_operation

214

https://en.wikipedia.org/wiki/Bitwise_operation

End of Chapter 18 Quiz

18.1 What is the correct output of the
following code?

"hello".padStart(6);

" hello"

"hello "

" hello"

"hello"

18.2 Write the code to accomplish the
following task:

Use padStart to right align all three of the following
strings.

const strings = ["short", "medium length",

"very long string"];  

 

//expected output  

// short  

// medium length  

// very long string

215

18.3 Which of the following was not added in
ES2016?

Object.entries()

Object.keys()

Object.values()

18.4 What is the correct output of the
following code:

const buffer = new SharedArrayBuffer(16);  

const uint8 = new Uint8Array(buffer);  

 

uint8[0] = 10;  

 

console.log(Atomics.add(uint8, 0, 5));

0

10

15

5

18.5 What is the correct output of the
following code:

const buffer = new SharedArrayBuffer(16);  

const uint8 = new Uint8Array(buffer);  

 

216

uint8[0] = 10;  

 

Atomics.sub(uint8, 0, 6);  

 

console.log(Atomics.load(uint8,0));

0

10

6

4

217

Chapter 19: ES2017 Async and
Await

ES2017 introduced a new way of working with
promises, called "async/await".

Promise review

Before we dive in this new syntax let's quickly review
how we would usually write a promise:

// fetch a user from github  

fetch('api.github.com/user/

AlbertoMontalesi').then(res => {  

 // return the data in json format  

 return res.json();  

}).then(res => {  

 // if everything went well, print the

data  

 console.log(res);  

}).catch(err => {  

 // or print the error  

 console.log(err);  

})

This is a very simple promise to fetch a user from
GitHub and print it to the console.

218

Let's see a different example:

function walk(amount) {  

 return new Promise((resolve,reject) => {  

 if (amount < 500) {  

 reject ("the value is too small");  

 }  

 setTimeout(() => resolve(`you walked

for ${amount}ms`),amount);  

 });  

}  

 

walk(1000).then(res => {  

 console.log(res);  

 return walk(500);  

}).then(res => {  

 console.log(res);  

 return walk(700);  

}).then(res => {  

 console.log(res);  

 return walk(800);  

}).then(res => {  

 console.log(res);  

 return walk(100);  

}).then(res => {  

 console.log(res);  

219

 return walk(400);  

}).then(res => {  

 console.log(res);  

 return walk(600);  

});  

 

// you walked for 1000ms  

// you walked for 500ms  

// you walked for 700ms  

// you walked for 800ms  

// uncaught exception: the value is too

small

Let's see how we can rewrite this Promise with the
new async/await syntax.

Async and Await

function walk(amount) {  

 return new Promise((resolve,reject) => {  

 if (amount < 500) {  

 reject ("the value is too small");  

 }  

 setTimeout(() => resolve(`you walked

for ${amount}ms`),amount);  

 });  

220

}  

 

// create an async function  

async function go() {  

 // use the keyword `await` to wait for

the response  

 const res = await walk(500);  

 console.log(res);  

 const res2 = await walk(900);  

 console.log(res2);  

 const res3 = await walk(600);  

 console.log(res3);  

 const res4 = await walk(700);  

 console.log(res4);  

 const res5 = await walk(400);  

 console.log(res5);  

 console.log("finished");  

}  

 

go();  

 

// you walked for 500ms  

// you walked for 900ms  

// you walked for 600ms  

// you walked for 700ms  

221

// uncaught exception: the value is too

small

Let's break down what we just did:

• to create an async function we need to put the async
keyword in front of it

• the keyword will tell JavaScript to always return a
promise

• if we specify to return <non-promise> it will
return a value wrapped inside a promise

• the await keyword only works inside an async
function

• as the name implies, await will tell JavaScript to
wait until the promise returns its result

Let's see what happens if we try to use await outside
an async function

// use await inside a normal function  

function func() {  

 let promise = Promise.resolve(1);  

 let result = await promise;  

}  

func();  

// SyntaxError: await is only valid in

async functions and async generators  

 

222

 

// use await in the top-level code  

let response = Promise.resolve("hi");  

let result = await response;  

// SyntaxError: await is only valid in

async functions and async generators

Remember: You can only use await inside an async
function.

Error handling

In a normal promise we would use .catch() to catch
eventual errors returned by the promise.
Here, it is not much different:

async function asyncFunc() {  

 

 try {  

 let response = await fetch('http:your-

url');  

 } catch(err) {  

 console.log(err);  

 }  

}  

 

223

asyncFunc();  

// TypeError: failed to fetch

We use try...catch to grab the error, but in a case
where we do not have them we can still catch the
error like this:

async function asyncFunc(){  

 let response = await fetch('http:your-

url');  

}  

asyncFunc();  

// Uncaught (in promise) TypeError: Failed

to fetch  

 

asyncFunc().catch(console.log);  

// TypeError: Failed to fetch

224

End of Chapter 19 Quiz

19.1 What is the correct output of the
following code?

function func() {  

 let promise = Promise.resolve(1);  

 let result = await promise;  

}  

func();

1

true

undefined

SyntaxError

19.2 What is the last output of the following
code:

function walk(amount) {  

 return new Promise((resolve,reject) => {  

 if (amount > 500) {  

 reject ("the value is too big");  

 }  

 setTimeout(() => resolve(`you walked

for ${amount}ms`),amount);  

 });  

225

}  

 

async function go() {  

 const res = await walk(500);  

 console.log(res);  

 const res2 = await walk(300);  

 console.log(res2);  

 const res3 = await walk(200);  

 console.log(res3);  

 const res4 = await walk(700);  

 console.log(res4);  

 const res5 = await walk(400);  

 console.log(res5);  

 console.log("finished");  

}  

 

go();

"you walked for 700ms"

"you walked for 400ms"

uncaught exception: the value is too
big

"finished"

226

Chapter 20: ES2018 Async
Iteration and more?

In this chapter we will look at what was introduced
with ES2018.

Rest / Spread for Objects

Remember how ES6 (ES2015) allowed us to do this?

const veggie =

["tomato","cucumber","beans"];  

const meat = ["pork","beef","chicken"];  

 

const menu = [...veggie, "pasta", ...meat];  

console.log(menu);  

// Array ["tomato", "cucumber", "beans",

"pasta", "pork", "beef", "chicken"]

Now we can use the rest/spread syntax for objects
too, let's look at how:

let myObj = {  

 a:1,  

 b:3,  

 c:5,  

 d:8,  

227

}  

 

// we use the rest operator to grab

everything else left in the object.  

let { a, b, ...z } = myObj;  

console.log(a); // 1  

console.log(b); // 3  

console.log(z); // {c: 5, d: 8}  

 

// using the spread syntax we cloned our

Object  

let clone = { ...myObj };  

console.log(clone);  

// {a: 1, b: 3, c: 5, d: 8}  

myObj.e = 15;  

console.log(clone)  

// {a: 1, b: 3, c: 5, d: 8}  

console.log(myObj)  

// {a: 1, b: 3, c: 5, d: 8, e: 15}

With the spread operator we can easily create a clone
of our Object so that when we modify the original
Object, the clone does not get modified, similarly to
what we saw when we talked about arrays.

228

Asynchronous Iteration

With Asynchronous Iteration we can iterate
asynchronously over our data.

From the documentation:

An async iterator is much like an iterator, except that
its next() method returns a promise for a { value,
done } pair.

To do so, we will use a for-await-of loop which
works by converting our iterables to a Promise, unless
they already are one.

const iterables = [1,2,3];  

 

async function test() {  

 for await (const value of iterables) {  

 console.log(value);  

 }  

}  

test();  

// 1  

// 2  

// 3

During execution, an async iterator is created from
the data source using the [Symbol.asyncIterator]
() method.

229

https://github.com/tc39/proposal-async-iteration

Each time we access the next value in the sequence,
we implicitly await the promise returned from the
iterator method.

Promise.prototype.finally()

After our promise has finished we can invoke a
callback.

const myPromise = new

Promise((resolve,reject) => {  

 resolve();  

})  

myPromise  

 .then(() => {  

 console.log('still working');  

 })  

 .catch(() => {  

 console.log('there was an error');  

 })  

 .finally(()=> {  

 console.log('Done!');  

 })

.finally() will also return a Promise so we can
chain more then and catch after it but those

230

Promises will fulfill based on the Promise they were
chained onto.

const myPromise = new

Promise((resolve,reject) => {  

 resolve();  

})  

myPromise  

.then(() => {  

 console.log('still working');  

 return 'still working';  

 })  

 .finally(()=> {  

 console.log('Done!');  

 return 'Done!';  

 })  

 .then(res => {  

 console.log(res);  

 })  

// still working  

// Done!  

// still working

As you can see the then chained after finally
returned the value that was returned by the Promise
created not by finally but by the first then.

231

RegExp features

Four new RegExp related features made it to the new
version of ECMAScript. They are:

• s(dotAll) flag for regular expressions

• RegExp named capture groups

• RegExp Lookbehind Assertions

• RegExp Unicode Property Escapes

s (dotAll) flag for regular expression

This introduces a new s flag for ECMAScript regular
expressions that makes . match any character,
including line terminators.

/foo.bar/s.test('foo\nbar');  

// true

RegExp named capture groups

From the documentation:

Numbered capture groups allow one to refer to
certain portions of a string that a regular expression
matches. Each capture group is assigned a unique
number and can be referenced using that number, but
this can make a regular expression hard to grasp and

232

https://github.com/tc39/proposal-regexp-dotall-flag
https://github.com/tc39/proposal-regexp-named-groups
https://github.com/tc39/proposal-regexp-lookbehind
https://github.com/tc39/proposal-regexp-lookbehind
https://github.com/tc39/proposal-regexp-named-groups

refactor. For example, given/(\d{4})-(\d{2})-
(\d{2})/ that matches a date, one cannot be sure
which group corresponds to the month and which one
is the day without examining the surrounding code.
Also, if one wants to swap the order of the month and
the day, the group references should also be updated.
A capture group can be given a name using the (?
<name>...) syntax, for any identifier name. The
regular expression for a date then can be written as /
(?<year>\d{4})-(?<month>\d{2})-(?
<day>\d{2})/u. Each name should be unique and
follow the grammar for ECMAScript IdentifierName.
Named groups can be accessed from properties of a
groups property of the regular expression result.
Numbered references to the groups are also created,
just as for non-named groups. For example:

let re = /(?<year>\d{4})-(?<month>\d{2})-

(?<day>\d{2})/u;  

let result = re.exec('2015-01-02');  

// result.groups.year === '2015';  

// result.groups.month === '01';  

// result.groups.day === '02';  

 

// result[0] === '2015-01-02';  

// result[1] === '2015';  

// result[2] === '01';  

// result[3] === '02';  

233

 

let {groups: {one, two}} = /^(?<one>.*):(?

<two>.*)$/u.exec('foo:bar');  

console.log(`one: ${one}, two: ${two}`);  

// one: foo, two: bar

RegExp Lookbehind Assertions

From the documentation:

With lookbehind assertions, one can make sure that a
pattern is or isn't preceded by another, e.g. matching
a dollar amount without capturing the dollar sign.
Positive lookbehind assertions are denoted as (?
<=...) and they ensure that the pattern contained
within precedes the pattern following the assertion.
For example, if one wants to match a dollar amount
without capturing the dollar sign, /(?<=\$)\d+(\.
\d*)?/ can be used, matching '$10.53' and
returning '10.53'. This, however, wouldn't match
€10.53. Negative lookbehind assertions are denoted
as (?<!...)and, on the other hand, make sure that
the pattern within doesn't precede the pattern
following the assertion. For example, /(?<!\$)\d+
(?:\.\d*)/ wouldn't match '$10.53', but would
'€10.53'.

234

https://github.com/tc39/proposal-regexp-lookbehind

RegExp Unicode Property Escapes

From the documentation:

This brings the addition of Unicode property escapes
of the form \p{…} and\P{…}. Unicode property
escapes are a new type of escape sequence available in
regular expressions that have the u flag set. With this
feature, we could write:

const regexGreekSymbol = /

\p{Script=Greek}/u;  

regexGreekSymbol.test('π');  

// true

Lifting template literals restriction

When using tagged template literals the restriction on
escape sequences are removed.

You can read more here(https://tc39.github.io/
proposal-template-literal-revision/#sec-template-
literals).

235

https://github.com/tc39/proposal-regexp-unicode-property-escapes
https://tc39.github.io/proposal-template-literal-revision/#sec-template-literals
https://tc39.github.io/proposal-template-literal-revision/#sec-template-literals
https://tc39.github.io/proposal-template-literal-revision/#sec-template-literals
https://tc39.github.io/proposal-template-literal-revision/#sec-template-literals

End of Chapter 20 Quiz

20.1 What is the correct syntax for the spread
operator for objects?

[...]

(...)

{...}

=>

20.2 What is the correct output of the
following code:

let myObj = {  

 a:1,  

 b:2,  

 c:3,  

 d:4,  

}  

 

let { a, b, ...z } = myObj;  

console.log(z);

[3,4]

{c:3, d:4}

undefined

[c,d]

236

20.3 What is the correct output of the
following code:

const myPromise = new

Promise((resolve,reject) => {  

 resolve();  

})  

myPromise  

.then(() => {  

 return '1';  

 })  

 .finally(()=> {  

 return '2!';  

 })  

 .then(res => {  

 console.log(res);  

 })

1

2

1,2

237

Chapter 21: What's new in
ES2019?

In this chapter we will look at what is included in the
latest version of ECMAScript: ES2019.

Array.prototype.flat() /
Array.prototype.flatMap()

Array.prototype.flat() will flatten the array
recursively up to the depth that we specify. If no
depth argument is specified, 1 is the default value. We
can use Infinity to flatten all nested arrays.

const letters = ['a', 'b', ['c', 'd',

['e', 'f']]];  

// default depth of 1  

letters.flat();  

// ['a', 'b', 'c', 'd', ['e', 'f']]  

 

// depth of 2  

letters.flat(2);  

// ['a', 'b', 'c', 'd', 'e', 'f']  

 

// which is the same as executing flat with

depth of 1 twice  

letters.flat().flat();  

238

// ['a', 'b', 'c', 'd', 'e', 'f']  

 

// Flattens recursively until the array

contains no nested arrays  

letters.flat(Infinity)  

// ['a', 'b', 'c', 'd', 'e', 'f']

Array.prototype.flatMap() is identical to the
previous one with regards to the way it handles the
'depth' argument but instead of simply flattening an
array, with flatMap() we can also map over it and
return the result in the new array.

let greeting = ["Greetings from", " ",

"Vietnam"];  

 

// let's first try using a normal `map()`

function  

greeting.map(x => x.split(" "));  

// ["Greetings", "from"]  

// ["", ""]  

// ["Vietnam"]  

 

 

greeting.flatMap(x => x.split(" "))  

// ["Greetings", "from", "", "", "Vietnam"]

239

As you can see, if we use .map() we will get a multi
level array, a problem that we can solve by
using .flatMap() which will also flatten our array.

Object.fromEntries()

Object.fromEntries() transforms a list of key-
value pairs into an object.

const keyValueArray = [ 

 ['key1', 'value1'],  

 ['key2', 'value2']  

]  

 

const obj =

Object.fromEntries(keyValueArray)  

// {key1: "value1", key2: "value2"}

We can pass any iterable as argument of
Object.fromEntries(), whether it's an Array, a
Map or other objects implementing the iterable
protocol.

You can read more about the iterable protocol here:
https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/
Iterationprotocols#Theiterable_protocol

240

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols%23The_iterable_protocol
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols%23The_iterable_protocol
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols%23The_iterable_protocol

String.prototype.trimStart() / .trimEnd()

String.prototype.trimStart() removes white
space from the beginning of a string while
String.prototype.trimEnd() removes them from
the end.

let str = " this string has a lot of

whitespace ";  

 

str.length;  

// 42  

 

str = str.trimStart();  

// "this string has a lot of whitespace " 

str.length;  

// 38  

 

str = str.trimEnd();  

// "this string has a lot of whitespace"  

str.length;  

// 35

We can also use .trimLeft() as an alias
of .trimStart() and .trimRight() as an alias
of .trimEnd().

241

Optional Catch Binding

Prior to ES2019 you had to always include an
exception variable in your catch clause. E2019 allows
you to omit it.

// Before  

try {  

 ...  

} catch(error) {  

 ...  

}  

 

// ES2019  

try {  

 ...  

} catch {  

 ...  

}

This is useful when you want to ignore the error. For a
more detailed list of use cases for this I highly
recommend this article: http://2ality.com/2017/08/
optional-catch-binding.html

242

http://2ality.com/2017/08/optional-catch-binding.html
http://2ality.com/2017/08/optional-catch-binding.html
http://2ality.com/2017/08/optional-catch-binding.html

Function.prototype.toString()

The .toString() method returns a string
representing the source code of the function.

function sum(a, b) {  

 return a + b;  

}  

 

console.log(sum.toString());  

// function sum(a, b) {  

// return a + b;  

// }

It also includes comments.

function sum(a, b) {  

 // perform a sum  

 return a + b;  

}  

 

console.log(sum.toString());  

// function sum(a, b) {  

// // perform a sum  

// return a + b;  

// }

243

Symbol.prototype.description

.description returns the optional description of a
Symbol Object.

const me = Symbol("Alberto");  

me.description;  

// "Alberto"  

 

me.toString()  

// "Symbol(Alberto)"

244

End of Chapter 21 Quiz

21.1 Transform the following
multidimensional array into a single
dimensional array in one line of code using
the new Array method introduced in ES2019

const letters = ['a', 'b', ['c', 'd',

['e', 'f']]];  

// expected : ['a', 'b', 'c', 'd', 'e',

'f']

21.2 Starting from the given array, create an
Object using ES2019 new features

const keyValueArray = [ 

 ['key1', 'value1'],  

 ['key2', 'value2']  

]  

 

// expected: {key1: "value1", key2:

"value2"}

21.3 What is the correct output of the
following code?

const me = Symbol("Alberto");  

console.log(me.description);

245

Symbol

Symbol(Alberto)

"Alberto"

undefined

21.4 What is the correct output of the
following code?

const letters = ['a', 'b', ['c', 'd',

['e', 'f']]];  

console.log(letters.flat())

['a', 'b', ['c', 'd', ['e', 'f']]]

['a', 'b', 'c', 'd', 'e', 'f']

['a', 'b', 'c', 'd', ['e', 'f']]

['a', 'b', ['c', 'd', 'e', 'f']]

21.5 What is the correct output of the
following code?

function sum(a, b) { return a + b }  

 

console.log(sum.toString());

Function

"a + b"

246

sum

function sum(a, b) { return a + b; }

247

An Intro To TypeScript

Now that you have a clear idea of how JavaScript
looks like in 2019, I think it's a good moment to
introduce you TypeScript.

Albeit not necessary as a skill for a JavaScript
developer, I believe it to be extremely useful,
especially when working in team on bigger projects.

As you already know, JavaScript is not a strongly
typed language meaning that you do not have to
define the type of your variables upon declaration.

That means that they can be more flexible and accept
different values but at the same time it can make the
code more confusing and prone to have bugs.

Look at this example:

function getUserByID(userID){  

 // perform an api call to your server to

retrieve a user by its id  

}

What is userID ? Is it an integer or a string? We
can assume it's an integer, but maybe it's an
alphanumeric string (e.g.: 'A123').

Unless we wrote that piece of code, we have no way of
knowing what is the type of the argument.

248

That is where TypeScript comes to help. This is how
the same code would look like:

function getUserByID(userID:number){  

 // perform an api call to your server to

retrieve a user by its id  

}

Perfect! Now we know for sure that if we pass a string
to the function that will cause an error.

A simple addition made the code easier to use.

What is TypeScript?

Created just a few year ago by Microsoft, TypeScript
is a typed superset of JavaScript that compiles to
plain JavaScript.

Being a superset means that you can write plain
JavaScript in a TypeScript file and that will cause
no error.

Browsers do not understand TypeScript, which
means it has to be transpiled to plain JavaScript.

We will now look at how to set up our environment to
write TypeScript.

249

How to use TypeScript

Getting started with TypeScript takes literally 5
minutes.

The first thing to do is to install it. Run this command
in your terminal:

npm install -g TypeScript

Next you can open your code editor and create a file
called greeter.ts (NOT .js).

const greeter = (name:string) => {  

 console.log(`hello ${name}`)  

}  

greeter('Alberto');  

// hello Alberto

Now what we have to do to generate the JavaScript
file is run this command in the terminal in the same
directory as our file:

tsc greeter.ts

Now you should have a greeter.js file with this
code inside:

var greeter = function (name) {  

 console.log("hello " + name);  

};  

250

greeter('Alberto');  

// hello Alberto

Where did name:string go? As we know JavaScript
is not strongly typed therefore the type declaration
get removed when the code is transpiled.

Typing your code will help YOU to debug it and to
cause less errors but it won't create a different
JavaScript output than what you would have gotten
if you didn't use types.

TypeScript basic types

In this section we will go over the basic types
supported by TypeScript. You should already know
the meaning of most of them from the Introduction to
JavaScript section.

The basic types supported by TypeScript are:

• boolean

• number

• string

• Array

• object

• Tuple

• enum

251

• any

• void

• null and undefined

• never

boolean

Defines a value that can be true or false:

const active: boolean = true;

number

The type number supports hexadecimal, decimal,
binary and octal literals:

const decimal: number = 9;  

const hex: number = 0xf00d;  

const binary: number = 0b1010;  

const octal: number = 0o744;

string

The type string is used to store textual data:

const message: string = 'Welcome";

252

Array

There are two ways of defining Array types:

// first way -> type[]  

const firstArray: number[] = [1,2,3];  

 

// second way -> Array<type>  

const secondArray: Array<number> = [4,5,6];

In simple cases like this one there is no difference
between them but if we are working with something
more complex than a type of number then we won't
be able to use the first notation.

Look at this example:

// our function accepts an array of

objects with a label and a value as its

properties  

function example(arg:

Array<{label:string,value:string}>){  

 // do something  

}

Array<{label:string,value:string}> simply
means that the argument is an Array of objects with
properties of label and value, both of type string.

253

object

object represents a value that is not one of the
primitives;

Let's say our function takes an argument of type
object:

function greetUser(user: object){  

 // property name does not exist on type

object  

 console.log(`hello ${user.name}`)  

}  

greetUser({name: 'Alberto', age:27});  

// hello Alberto

The Typescript compiler will complain that the
property name does not exist on the type object.
Let's define better the properties of that Object.

function greetUser(user:

{name:string,age:number}){  

 console.log(`hello ${user.name}`)  

}  

greetUser({name: 'Alberto', age:27});  

// hello Alberto

Now we specified all the properties of the user
object, making it easier for us and for anybody who

254

looks at the code to know what they can and what
they cannot do with that object.

Tuple

A Tuple allows you to define the type of the known
elements of an Array.

let myTuple: [string,number,string];  

myTuple = ['hi',5,'hello'];  

 

console.log(myTuple);  

// ['hi', 5, 'hello']

TypeScript will know the type of the elements of the
know indexes that we define in the tuple but it won't
be able to know the type of additional elements added
to the array.

enum

An enum is a way of giving names to a set of numeric
values:

enum Status {deleted, pending, active}  

 

const blogPostStatus: Status =

Status.active;  

255

 

console.log(blogPostStatus);  

// 2

The values inside of an enum start from 0 so in our
example before active corresponds to 2, pending to
1 and deleted to 0.

It is much more meaningful to say that the status of a
blog post is active rather than 2.

If you want, you can override the starting point of an
enum by specifying it like this:

enum Status {deleted = -1, pending,

active}  

 

const blogPostStatus: Status =

Status.active;  

 

console.log(blogPostStatus);  

// 1

Now deleted corresponds to -1, pending to 0 and
active to 1, much better than before.

We can also access values of an enum based on their
value:

256

enum Status {deleted = -1, pending,

active}  

console.log(Status[0]);  

// pending

any

As the name implies, any means that the value of a
certain variable can be anything.
We may use it when dealing with 3rd party libraries
that do not support TypeScript or when upgrading
our existing code from plain JavaScript.

any allows us to access properties and methods that
may not exist.

We can also use any when we only know part of our
types:

let firstUser: Object<any> = {  

 name: 'Alberto',  

 age: 27  

}  

 

let secondUser: Object<any> = {  

 name: 'Caroline'  

}

257

We expect both variable to be of type object but we
are not sure of their properties, therefore we use any.

void

void, as the name implies, defines the absence of
type.
It is often used in scenarios like this:

function

storeValueInDatabase(objectToStore): void {  

 // store your value in the database  

}

This function takes an object and stores it in our
database but does not return anything, that's why we
gave it a return value of void.

When declaring variables of type void you will only
be able to assign values of null and undefined to
them.

null and undefined

Similarly to void, it is not very useful to create
variables of type null or undefined because we
would only be able to assign them null and
undefined as values.

258

When talking about union types you will see the use of
these two types.

never

never is a value that never occur, for example we can
use it for a function that never returns or that always
throws an error.

function throwError(error:string): never{  

 throw new Error(error)  

}

This function only throws an error, it will never return
any value.

Interfaces, Classes and more

Interfaces

In one of the prior examples I set the type of our
variable like this:
Array<{label:string,value:string}>

But what if the shape of our variable is much more
complicated and we need to reuse it in multiple
places?
We can use an interface to define the shape that
that variable should have.

259

interface Car {  

 wheels: number;  

 color: string;  

 brand: string;  

}

Be careful, an interface is not an object, we use ;
and not ,.

We can also set optional properties like this:

interface Car {  

 wheels: number;  

 color: string;  

 brand: string;  

 coupe?: boolean;  

}

The ? defines the property as optional, even if we
create a new car object without it, TypeScript won't
raise any error.

Maybe we don't want certain properties to be editable
after the creation of the object, in that case we can
mark them as readonly.

interface Car {  

 readonly wheels: number;  

 color: string;  

260

 brand: string;  

 coupe?: boolean;  

}

Upon creation of our car object we will be able to set
the number of wheels but we won't be able to change
it afterwards.

With interfaces we can also create the shape for
functions, not justs objects.

interface Greet {  

 (greeting: string, name: string): string  

}  

 

let greetingFunction: Greet;  

 

greetingFunction = (greeting: string, name:

string): string => {  

 console.log(`${greeting} ${name}`);  

 return `${greeting} ${name}`;  

}  

greetingFunction('Bye','Alberto');

We create the shape that the function should have
and then we assign the variable to a function of that
said shape.
If we assigned the variable to a function with a
different shape that would have thrown an error.

261

Extending Interfaces

An interface can extend another interface and inherit
the members of the previous one:

interface Vehicle {  

 wheels: number;  

 color: string;  

}  

 

interface Airplane extends Vehicle {  

 wings: number;  

 rotors: number;  

}

As you can see an object of type airplane will expect
to have all four properties, not just the two defined in
the interface Airplane.

Classes

TypeScript classes are very similar to ES6 classes
and allow us to perform prototypal inheritance to
build reusable components for our applications.

Just as a reminder of how they look:

262

class Animal {  

 eat = ()=> {  

 console.log('gnam gnam');  

 }  

 sleep = () => {  

 console.log('zzzz');  

 }  

}  

 

class Human extends Animal {  

 work = ()=> {  

 console.log('zzzzzzz');  

 }  

}  

const me = new Human();  

me.work();  

// zzzzzzz  

me.eat();  

// gnam gnam  

me.sleep()  

// zzzz

We have created two classes, the second one inherits
two methods from the first one.

263

A difference with ES6 classes is that TypeScript
allows us to define the way that class members will be
accessed from our application.

If we want them to be accessible anywhere we need to
use the keyword public.

class Animal {  

 public eat = ()=> {  

 console.log('gnam gnam')  

 }  

 public sleep = () => {  

 console.log('zzzz')  

 }  

}  

 

const dog = new Animal();  

dog.eat();  

// gnam gnam

In JavaScript all class members are public, we
cannot restrict access to them.

TypeScript also offers us to mark a member as
private which means that it will not be accessible
from outside of the class.

class Animal {  

 public eat = ()=> {  

264

 console.log('gnam gnam')  

 }  

 public sleep = () => {  

 console.log('zzzz')  

 }  

}  

 

class Human extends Animal {  

 private work = ()=> {  

 console.log('zzzzzzz')  

 }  

}  

 

const me = new Human();  

me.work();  

// Property 'work' is private and only

accessible within class 'Human'

We can also mark a member as protected which
means that it will be accessible only inside the class
where it's declared and the classes extending it.

class Human {  

 protected work = ()=> {  

 console.log('zzzzzzz')  

 }  

}  

265

 

class Adult extends Human {  

 public doWork = () => {  

 console.log(this.work)  

 }  

}

The class Adult extends the class Human, therefore it
can access the same protected methods.

Intersection Types and Union Types

We have seen how we can define basic types with
TypeScript, now let's dive into more advances types.

Intersection Types

As the name implies, Intersection Types allow us to
join togther multiple types. Let's look at how to use
them:

interface Person {  

 sex: 'male' | 'female' | 'N/A'  

 age:number,  

}  

 

interface Worker {  

266

 job: string  

}  

 

type Adult = Person & Worker;  

 

const me: Adult = {  

 sex: 'male',  

 age: 27,  

 job: 'software developer'  

}  

console.log(me);  

// { sex: 'male', age: 27, job: 'software

developer' }

As you can see, we have two distinct types, Person
and Worker and we combined them together to create
the type Adult which is a combination of the two.

Be careful when combining types that have two
properties of the same but of different types because
that will cause an error in the compiler.

Union Types

const attendee = string | string[];

The variable can be either a string or an array of
strings.

267

Another example may be:

const identifier = string | number |

string[];

We use the pipe (|) symbol to separate each type.

Remember that we can only access common members
of all types of the union.

interface Kid {  

 age:number  

}  

interface Adult {  

 age: number,  

 job: string  

}  

 

function person(): Kid | Adult {  

 return { age: 27 }  

 }  

 

const me = person();  

me.age // ok  

me.job // error

The property job exists only on the interface Adult
and not on the Kid one therefore we cannot access it
in our Union Type.

268

269

Conclusion

This section showed you why TypeScript can be a
useful tool when working with JavaScript, especially
when working together with other people.

What is left to do now is to start working on a simple
project and get familiar with it.

At first it may seems like a chore to have to type your
variables but once the project grows and it gets more
complicated, you will start noticing how beneficial it
is, especially when coming back to a project after
months spent working on something else.

For every further query you have regarding
TypeScript, the best resource I would suggest is the
official documentation that can be found at this link:
https://www.TypeScriptlang.org/docs/ .

270

TypeScript Quiz

TS-01 Which one of these is not a real basic
type of TypeScript?

Tuple

void

enum

every

TS-02 What is the correct type of the following
variable?

const x = 0xf00d;

string

void

hex

number

TS-03 Which of the following type definition is
wrong?

const firstArray: number[] = [1,2,3]

const firstArray: Array<number> =
[1,2,3]

const firstArray: number<Array> =
[1,2,3]

271

TS-04 What is the correct output of the
following code?

enum Rank {first, second, third}  

 

const myRank: Rank = Rank.second;  

console.log(myRank);

"second"

{second:1}

true

2

1

TS-05 What is the correct way of defining an
Interface?

interface Car = { wheels: number }

interface Car { wheels = number }

interface Car { wheels: number }

interface Car = { wheels = number }

272

Conclusion

I sincerely thank you for making it this far. This is my
first book and knowing that somebody read it all fills
me with joy.

I hope that you found it useful and if that is the case I
suggest you to follow my new website
(inspiredwebdev.com) and my DevTo (https://dev.to/
albertomontalesi) where I write articles about Web
Development.

Thank you very much for your time and your support.

A special thanks to all the users on GitHub that made
pull requests and opened issues to help fix mistakes
and improve the quality of the book.

273

https://www.inspiredwebdev.com/
http://inspiredwebdev.com
https://dev.to/albertomontalesi

Quiz Solutions

Introduction to JavaScript solutions

JS-01

• var important! = "important!"

Variable names cannot contain punctuation marks

JS-02

• Object

JS-03

• const car = { color: "red" }

JS-04

• false

JS-05

• ["melon", "apple", "banana", “orange"]

274

End of Chapter 1 Quiz Solutions

1.1

• Good morning

1.2

• 2

1.3

• 100

1.4

• ReferenceError

End of Chapter 2 Quiz

2.1

• B

The correct syntax for an arrow function is the so
called fat arrow =>

275

2.2

• 10

Inside an arrow function, the this keyword inherits
from its parent scope which in this case it's the
window, therefore the age remains 10.

2.3

(arg) => {  

 console.log(arg);  

}

End of Chapter 3 Quiz

3.1

function calculatePrice(total, tax = 0.1,

tip = 0.05){  

 // When no value is given for tax or tip,

the default 0.1 and 0.05 will be used  

 return total + (total * tax) + (total *

tip);,  

}

276

3.2

• 10

End of Chapter 4 Quiz

4.1

let result = `${a} ${c} ${d} ${b} ${e}`;

4.2

let result = `${a} ${c} ${b} ${e} ${d}`;  

 

console.log(result);  

// 1 plus 2 equals 3

4.3

console.log(`this is a very long text  

a very long text`);  

 

// this is a very long text  

// a very long text

277

End of Chapter 5 Quiz

5.1

• true

it will begin checking after 3 characters

5.2

• false

endsWith is case sensitive

5.3

let batman = `${str.repeat(8)} ${bat}`;  

console.log(batman);  

// "NaNaNaNaNaNaNaNa BatMan"

End of Chapter 6 Quiz

6.1

let hungry = "yes";  

let full = "no";  

 

[hungry, full] = [full, hungry];  

console.log(hungry);  

278

// no  

console.log(full);  

// yes

6.2

let arr = ["one", "two", "three"];  

// solution:  

let [one,two,three] = arr;  

 

console.log(one);  

// "one"  

console.log(two);  

// "two"  

console.log(three);  

// "three"

End of Chapter 7 Quiz

7.1

• for of

7.2

• Tom Jerry Mickey

279

End of Chapter 8 Quiz

8.1

Array.from(apple);

8.2

• 4

Array.find() will return the first element that
matches our condition.

8.3

• true

Array.some() will return true if one element
matches the give condition

8.4

• [1,4,9]

The map function we passed will return "x * x" for
each of the values in the array

280

End of Chapter 9 Quiz

9.1

• [...]

9.2

const menu = [...veggie,

"pasta", ...meat];

9.3

const [first,second,...losers] = runners;  

console.log(...losers)

We use the rest operator to grab all the values
remaining after the first two

9.4

• [1, 2, 3, 4, 5]

281

End of Chapter 10 Quiz

10.1

const animal = {  

 name,  

 age,  

 breed,  

}

10.2

• "Alberto"

10.3

• color is not defined

since the variable name and the property name don't
match we needed to write: color: favoriteColor
instead of just color

End of Chapter 11 Quiz

11.1

• a primitive

Symbols are a new type of primitive introduced in
ES6

282

11.2

• they are unique

Symbols are always unique

11.3

• Tom Jim

The second time we assigned "Tom" we overwrote the
first "Tom" because we did not use a symbol.

11.4

• Symbol(Tom) Symbol(Jane) Symbol(Tom)

This time we see all three of them because we stored
them in a symbol, keeping them unique and avoiding
naming collisions.

End of Chapter 12 Quiz

12.1

• just syntactic sugar

classes are primarily syntactic sugar over JavaScript’s
existing prototype-based inheritance. The class syntax
does not introduce a new object-oriented inheritance
model to JavaScript.

283

12.2

• const person = class Person {...}

• class Person {...}

both answer 1 and 3 are correct. The first one is called
class expression while the second one is called class
declaration.

12.3

• A method that can be accessed only by the class
itself

A static method is A method that can only be
accessed by the class itself.

12.4

• ReferenceError: Must call super constructor in
derived class before accessing 'this'

12.5

class Adult extends Person {  

 constructor(name,age,work){  

 super(name,age);  

284

 this.work = work;  

 }  

}

Remember to add the keyword super to create the
original class before you extend it.

End of Chapter 13 Quiz

13.1

• is an object representing the eventual completion or
failure of an asynchronous operation

13.2

const myPromise = new Promise((resolve,

reject) => {  

 resolve();  

 console.log("Good job!");  

});

13.3

• Promise.some()

285

13.4

• 3,4

For the first two .then we did only passed one
argument, meaning that we were calling
console.log only if the promise resolved, but in our
example it was being rejected. In the case of .catch
the first argument is the callback for when a promise
is being rejected and that is why we can see 3 being
logged in the console. The latest .then is chained off
of the promise created by .catch which resolved and
therefore we also see 4 being logged.

End of Chapter 14 Quiz

14.1

• function*(){...}

14.2

• It can be stopped and restarted

14.3

• Object { value: "Pomelo", done: false }

286

The last output of fruits.next(); is Object
{ value: "Pomelo", done: false }. Be careful
that done is set to false and not true.

14.4

• Object { value: undefined, done: true }

The correct output is Object { value: undefined,
done: true } because .return() will end the
generator and return the value that we passed in. In
this case we got undefined because we did not pass
anything inside .return().

End of Chapter 15 Quiz

15.1

• to define custom behavior of fundamental operations

From MDN:

the Proxy object is used to define custom behavior for
fundamental operations (e.g. property lookup,
assignment, enumeration, function invocation, etc).

15.2

• 2

287

A Proxy can take a handler and a target

15.3

• the target parameter of a Proxy can be another
Proxy

 It can be any sort of object, including a native array, a
function or even another proxy.

End of Chapter 16 Quiz

16.1

• StrongSet

16.2

• A WeakSet can only store objects

16.3

• a Map stores both keys and values, a Set only values

288

End of Chapter 17 Quiz

17.1

• Array.prototype.includes()

17.2

• false

The solution is false because we start looking for the
value 5 from index 4, but the value 5 is present only
that index 2.

17.3

2**2**2;  

// 16

End of Chapter 18 Quiz

18.1

• " hello"

padStart(6) will add only 1 space to our string
because it has length of 5 (6-5=1).

289

18.2

strings.forEach(str =>

console.log(str.padStart(16)));

18.3

• Object.keys()

18.4

• 10

Atomics.add() will return the previous value of that
index.

18.5

• 4

Atomics.load() will return the value of that index

End of Chapter 19 Quiz

19.1

• SyntaxError

290

Remember: await is only valid in async functions
and async generators

19.2

• uncaught exception: the value is too big

End of Chapter 20 Quiz

20.1

• {...}

20.2

• {c:3, d:4}

20.3

• 1

Remember that the Promise created after finally
will returned the value of the Promise onto which
finally was chained.

291

End of Chapter 21 Quiz

21.1

// many options  

letters.flat(2);  

// or  

letters.flat().flat()  

// or  

letters.flat(Infinity)

21.2

Object.fromEntries(keyValueArray)

21.3

• "Alberto"

21.4

• ['a', 'b', 'c', 'd', ['e', 'f']]

21.5

• function sum(a, b) { return a + b; }

•

292

Introduction to TypeScript solutions

TS-01

• every

TS-02

• number

TS-03

• const firstArray: number<Array> =
[1,2,3]

TS-04

• 1

TS-05

• interface Car { wheels: number }

293

	Introduction
	About Me
	Get in touch
	Contributions & Donations
	License

	Set up your environment
	JavaScript Basics
	Variables
	A note about naming variables

	Data Types
	Primitives
	Objects
	Create an empty Object
	Copying Objects
	Arrays
	Determining types using typeof

	Functions
	Understanding function scope and the this keyword
	The this keyword

	JavaScript Basics Quiz
	JS-01 Which of the following ways of naming a variable is wrong?
	JS-02 Which one of the following is not a real Primitive?
	JS-03 What is the correct way of defining an Object?
	JS-04 What is the correct output of the following code?
	JS-05 What is the correct output of the following code?

	Chapter 1: Var vs Let vs Const & the temporal dead zone
	Var
	Let
	Const
	The content of a const is an Object
	The temporal dead zone
	When to use Var, Let and Const
	End of Chapter 1 Quiz
	1.1 What is the correct output of the following code?
	1.2 What is the correct output of the following code?
	1.3 What is the correct output of the following code?
	1.4 What is the correct output of the following code?

	Chapter 2: Arrow functions
	What is an arrow function?
	Implicitly return
	Arrow functions are anonymous
	Arrow function and the this keyword
	When you should avoid arrow functions
	Example 1
	Example 2

	End of Chapter 2 Quiz
	2.1 What is the correct syntax for an arrow function?
	2.2 What is the correct output of the following code?
	2.3 Refactor the following code to use the arrow function syntax:

	Chapter 3: Default function arguments
	Default function arguments
	End of Chapter 3 Quiz
	3.1 Write the code to accomplish the following task:
	3.2 What is the correct output of the following code?

	Chapter 4: Template literals
	Interpolating strings
	Expression interpolations
	Create HTML fragments
	Nesting templates
	Add a ternary operator
	Pass a function inside a template literal
	Tagged template literals
	End of Chapter 4 Quiz
	4.1 Write the code to accomplish the following task:
	4.2 Refactor the following code using template literals
	4.3 Refactor the following code using template literals

	Chapter 5: Additional string methods
	Additional string methods
	startsWith()
	endsWith()
	includes()
	repeat()

	End of Chapter 5 Quiz
	5.1 What is the correct output of the following code?
	5.2 What is the correct output of the following code?
	5.3 Write the code to accomplish the following task:

	Chapter 6: Destructuring
	Destructuring Objects
	Destructuring Arrays
	Swapping variables with destructuring
	End of Chapter 6 Quiz
	6.1 Write the code to accomplish the following task:
	6.2 Write the code to accomplish the following task:

	Chapter 7: Iterables and looping
	The for of loop
	Iterating over an array
	Iterating over an object

	The for in loop
	Difference between for of and for in
	End of Chapter 7 Quiz
	7.1 Which one of these loops was introduced in ES6?
	What is the correct output of the following code?

	Chapter 8: Array improvements
	Array.from()
	Array.of()
	Array.find()
	Array.findIndex()
	Array.some() & Array.every()
	End of Chapter 8 Quiz
	8.1 Write the code to accomplish the following task:
	8.2 What is the correct output of the following code?
	8.3 What is the correct output of the following code?
	8.4 What is the correct output of the following code:

	Chapter 9: Spread operator and rest parameters
	The Spread operator
	Combine arrays
	Copy arrays
	Spread into a function
	Spread in Object Literals (ES 2018 / ES9)

	The Rest parameter
	End of Chapter 9 Quiz
	9.1 What is the correct syntax to spread the values of an array?
	9.2 Write the code to accomplish the following task:
	9.3 Write the code to achieve the following task:
	9.4 What is the correct output of the following code?

	Chapter 10: Object literal upgrades
	Deconstructing variables into keys and values
	Add functions to our Objects
	Dynamically define properties of an Object
	End of Chapter 10 Quiz
	10.1 Refactor the code to make it more concise:
	10.2 What is the correct output of this code:
	10.3 What is the correct output of this code:

	Chapter 11: Symbols
	The unique property of Symbols
	Identifiers for object properties
	End of Chapter 11 Quiz
	11.1 What is a symbol?
	11.2 What is the main characteristic of a symbol?
	11.3 What is the correct output of the following code?
	11.4 What is the correct output of the following code?

	Chapter 12: classes
	Create a class
	Static methods
	set and get
	Extending our class
	Extending Arrays
	End of Chapter 12 Quiz
	12.1 What is a class?
	12.2 How can you declare a class?
	12.3 What is a static method?
	12.4 What is the correct output of the following code?
	12.5 Write the code to accomplish the following task:

	Chapter 13: Promises
	Callback hell
	What is a Promise?
	Create your own promise
	Chaining promises
	Promise.resolve() & Promise.reject()
	Promise.all() & Promise.race()

	End of Chapter 13 Quiz
	13.1 What is a Promise?
	13.2 Write the code to accomplish the following task:
	13.3 Which of the following promise methods does not exist?
	13.4 What is the correct output of the following code:

	Chapter 14: Generators
	What is a Generator?
	Looping over an array with a generator
	Finish the generator with .return()
	Catching errors with .throw()
	Combining Generators with Promises
	End of Chapter 14 Quiz
	14.1 What is the correct syntax of a generator function?
	14.2 What is the main feature of a generator?
	14.3 What is the correct output of the following code?
	14.4 What is the correct output of the following code?

	Chapter 15: Proxies
	What is a Proxy?
	How to use a Proxy ?
	End of Chapter 15 Quiz
	15.1 What is the use of a Proxy?
	15.2 How many parameters can a Proxy take?
	15.3 Which of the following is correct:

	Chapter 16: Sets, WeakSets, Maps and WeakMaps
	What is a Set?
	Loop over a Set
	Remove duplicates from an array

	What is a WeakSet?
	What is a Map?
	What is a WeakMap?
	End of Chapter 16 Quiz
	16.1 Which one of these does not exist?
	16.2 Which one of the following definition is correct?
	16.3 Which one of the following definition is correct?

	Chapter 17: Everything new in ES2016
	Array.prototype.includes()
	Combine includes() with fromIndex

	The exponential operator
	End of Chapter 17 Quiz
	17.1 What new array method was introduced in ES2016?
	17.2 What is the correct output of the following code?
	17.3 Write the code code to accomplish the following task:

	Chapter 18: ES2017 string padding, Object.entries(), Object.values() and more
	String padding (.padStart() and .padEnd())
	Right align with padStart
	Add a custom value to the padding

	Object.entries() and Object.values()
	Object.getOwnPropertyDescriptors()
	Trailing commas
	Shared memory and Atomics
	Atomics.add(), Atomics.sub(), Atomics.load() and Atomics.store()
	Atomics.and(), Atomics.or() and Atomics.xor()

	End of Chapter 18 Quiz
	18.1 What is the correct output of the following code?
	18.2 Write the code to accomplish the following task:
	18.3 Which of the following was not added in ES2016?
	18.4 What is the correct output of the following code:
	18.5 What is the correct output of the following code:

	Chapter 19: ES2017 Async and Await
	Promise review
	Async and Await
	Error handling
	End of Chapter 19 Quiz
	19.1 What is the correct output of the following code?
	19.2 What is the last output of the following code:

	Chapter 20: ES2018 Async Iteration and more?
	Rest / Spread for Objects
	Asynchronous Iteration
	Promise.prototype.finally()
	RegExp features
	s (dotAll) flag for regular expression
	RegExp named capture groups
	RegExp Lookbehind Assertions
	RegExp Unicode Property Escapes

	Lifting template literals restriction
	End of Chapter 20 Quiz
	20.1 What is the correct syntax for the spread operator for objects?
	20.2 What is the correct output of the following code:
	20.3 What is the correct output of the following code:

	Chapter 21: What's new in ES2019?
	Array.prototype.flat() / Array.prototype.flatMap()
	Object.fromEntries()
	String.prototype.trimStart() / .trimEnd()
	Optional Catch Binding
	Function.prototype.toString()
	Symbol.prototype.description
	End of Chapter 21 Quiz
	21.1 Transform the following multidimensional array into a single dimensional array in one line of code using the new Array method introduced in ES2019
	21.2 Starting from the given array, create an Object using ES2019 new features
	21.3 What is the correct output of the following code?
	21.4 What is the correct output of the following code?
	21.5 What is the correct output of the following code?

	An Intro To TypeScript
	What is TypeScript?
	How to use TypeScript
	TypeScript basic types
	boolean
	number
	string
	Array
	object
	Tuple
	enum
	any
	void
	null and undefined
	never

	Interfaces, Classes and more
	Interfaces
	Extending Interfaces
	Classes

	Intersection Types and Union Types
	Intersection Types
	Union Types
	Conclusion

	TypeScript Quiz
	TS-01 Which one of these is not a real basic type of TypeScript?
	TS-02 What is the correct type of the following variable?
	TS-03 Which of the following type definition is wrong?
	TS-04 What is the correct output of the following code?
	TS-05 What is the correct way of defining an Interface?

	Conclusion
	Quiz Solutions
	Introduction to JavaScript solutions
	JS-01
	JS-02
	JS-03
	JS-04
	JS-05
	End of Chapter 1 Quiz Solutions
	1.1
	1.2
	1.3
	1.4
	End of Chapter 2 Quiz
	2.1
	2.2
	2.3
	End of Chapter 3 Quiz
	3.1
	3.2
	End of Chapter 4 Quiz
	4.1
	4.2
	4.3
	End of Chapter 5 Quiz
	5.1
	5.2
	5.3
	End of Chapter 6 Quiz
	6.1
	6.2
	End of Chapter 7 Quiz
	7.1
	7.2
	End of Chapter 8 Quiz
	8.1
	8.2
	8.3
	8.4
	End of Chapter 9 Quiz
	9.1
	9.2
	9.3
	9.4
	End of Chapter 10 Quiz
	10.1
	10.2
	10.3
	End of Chapter 11 Quiz
	11.1
	11.2
	11.3
	11.4
	End of Chapter 12 Quiz
	12.1
	12.2
	12.3
	12.4
	12.5
	End of Chapter 13 Quiz
	13.1
	13.2
	13.3
	13.4
	End of Chapter 14 Quiz
	14.1
	14.2
	14.3
	14.4
	End of Chapter 15 Quiz
	15.1
	15.2
	15.3
	End of Chapter 16 Quiz
	16.1
	16.2
	16.3
	End of Chapter 17 Quiz
	17.1
	17.2
	17.3
	End of Chapter 18 Quiz
	18.1
	18.2
	18.3
	18.4
	18.5

	End of Chapter 19 Quiz
	19.1
	19.2
	End of Chapter 20 Quiz
	20.1
	20.2
	20.3
	End of Chapter 21 Quiz
	21.1
	21.2
	21.3
	21.4
	21.5

	Introduction to TypeScript solutions
	TS-01
	TS-02
	TS-03
	TS-04
	TS-05

