

Mastering JavaScript
Functional Programming
Second Edition

Write clean, robust, and maintainable web and server code
using functional JavaScript

Federico Kereki

BIRMINGHAM - MUMBAI

Mastering JavaScript Functional
Programming
Second Edition
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Wilson D'souza
Acquisition Editor: Shweta Bairoliya
Content Development Editor: Aamir Ahmed
Senior Editor: Hayden Edwards
Technical Editor: Jane Dsouza
Copy Editor: Safis Editing
Project Coordinator: Manthan Patel
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Joshua Misquitta

First published: November 2017
Second edition: January 2020

Production reference: 1240120

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83921-306-9

www.packt.com

http://www.packt.com

Writing a book involves many people, and even if I cannot mention and name all of them, there
are some who really deserve to be highlighted.

At Packt Publishing, I want to thank Larissa Pinto, Senior Acquisition Editor, for proposing
the theme for this book and helping me get started with it. Thanks must also go to Mohammed

Yusuf Imaratwale, Content Development Editor, and Ralph Rosario, Technical Editor, for their
help in giving shape to the book and making it clearer and better structured. I also want to send

my appreciation to the reviewers, Gerónimo García Sgritta and Steve Perkins, who went
through the initial draft, enhancing it with their comments.

There are some other people who deserve extra consideration. This book was written under
unusual circumstances, around 10,000 miles away from home! I had gone from Uruguay,

where I live, to work on a project in India, and that's where I wrote every single page of the text.
This would not have been possible if I hadn't had complete support from my family, who stayed

in Montevideo, but who were constantly nearby, thanks to the internet and modern
communications. In particular, I must single out my wife, Sylvia Tosar, not only for

supporting and aiding me both with the project and the book, but also for dealing with
everything, and the rest of the family on her own in Uruguay—this book wouldn't have been

possible otherwise, and she is the greatest reason the book could be written!

For the second edition

Revisiting and expanding a book for a second edition is a challenging, interesting task. I had
great support from Packt, and I must now thank Aamir Ahmed, Content Development Editor;

Jane D'souza, Technical Editor; and Crystian Bietti and (again, for double merit!) Steve
Perkins, reviewers—both of whom helped produce a much better text.

– Federico Kereki

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Federico Kereki is an Uruguayan systems engineer, with a master's degree in education,
and more than 30 years of experience as a consultant, system developer, university
professor, and writer.

He is currently a subject matter expert at Globant, where he gets to use a good mixture of
development frameworks, programming tools, and operating systems, such as JavaScript,
Node.js, React and Redux, SOA, Containers, and PHP, with both Windows and Linux.

He has taught several computer science courses at Universidad de la República,
Universidad ORT Uruguay, and Universidad de la Empresa. He has also written texts for
these courses.

He has written several articles—on JavaScript, web development, and open source
topics—for magazines such as Linux Journal and LinuxPro Magazine in the United States,
Linux+ and Mundo Linux in Europe, and for websites such as Linux.com and IBM Developer
Works. He has also written booklets on computer security (Linux in the Time of
Malware and SSH: A Modern Lock for Your Server), a book on GWT programming (Essential
GWT: Building for the Web with Google Web Toolkit), and another one on JavaScript
development (Modern JavaScript Web Development Cookbook).

Federico has given talks on functional programming with JavaScript at public conferences
(such as JSCONF 2016 and Development Week Santiago 2019) and has used these
techniques to develop internet systems for businesses in Uruguay and abroad.

His current interests tend toward software quality and software engineering—with agile
methodologies topmost—while on the practical side, he works with diverse languages,
tools, and frameworks, and open source software (FLOSS) wherever possible!

He usually resides, works, and teaches in Uruguay, but this book was fully written while
on a project in India, and the revisions for the second edition were finished during a
sojourn in Mexico.

About the reviewers
Steve Perkins is the author of Hibernate Search by Example. He has been working with Java
and JavaScript since the late-1990's, with forays into Scala, Groovy, and Go. Steve lives in
Atlanta, GA, with his wife and two children, and is currently a software architect at Banyan
Hills Technologies, where he works on a platform for IoT device management and
analytics.

When he is not writing code or spending time with family, Steve plays guitar and loses
games at bridge and backgammon. You can visit his technical blog at steveperkins.com,
and follow him on Twitter at @stevedperkins.

Cristian "Pusher" Bietti is an entrepreneur who is proactive and has a creative attitude to
facing challenges in new technologies, with a great hunger to learn more! A senior
developer with more than 18 years of experience in software development and software
design and trained in a wide variety of technologies, he has participated in big banking
projects and small applications for mobile and social networks, including video games.

He has focused on frontend and user experience (UI/UX). He is a subject matter expert at
Globant, and he works in the Fintech industry as a technical leader and developer because
he loves coding.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

https://steveperkins.com/
http://authors.packtpub.com

Table of Contents
Preface 1

Technical Requirements 7

Chapter 1: Becoming Functional - Several Questions 8
What is functional programming? 8

Theory versus practice 9
A different way of thinking 10
What FP is not 10

Why use FP? 11
What we need 11
What we get 12
Not all is gold 13

Is JavaScript functional? 13
JavaScript as a tool 14
Going functional with JavaScript 15
Key features of JavaScript 16

Functions as first-class objects 16
Recursion 17
Closures 18
Arrow functions 19
Spread 20

How do we work with JavaScript? 22
Using transpilers 23
Working online 25
Testing 26

Summary 27
Questions 27

Chapter 2: Thinking Functionally - A First Example 29
Our problem – doing something only once 29

Solution 1 – hoping for the best! 30
Solution 2 – using a global flag 31
Solution 3 – removing the handler 32
Solution 4 – changing the handler 33
Solution 5 – disabling the button 33
Solution 6 – redefining the handler 34
Solution 7 – using a local flag 34

A functional solution to our problem 35
A higher-order solution 36
Testing the solution manually 37

Table of Contents

[ii]

Testing the solution automatically 39
Producing an even better solution 41

Summary 42
Questions 43

Chapter 3: Starting Out with Functions - A Core Concept 44
All about functions 44

Of lambdas and functions 45
Arrow functions – the modern way 48

Returning values 49
Handling the this value 49
Working with arguments 51
One argument or many? 53

Functions as objects 54
A React-Redux reducer 55
An unnecessary mistake 57
Working with methods 58

Using functions in FP ways 59
Injection – sorting it out 59
Callbacks, promises, and continuations 62
Continuation passing style 62
Polyfills 64

Detecting Ajax 64
Adding missing functions 66

Stubbing 67
Immediate invocation 68

Summary 71
Questions 71

Chapter 4: Behaving Properly - Pure Functions 73
Pure functions 73

Referential transparency 74
Side effects 76

Usual side effects 76
Global state 77
Inner state 78
Argument mutation 80
Troublesome functions 81

Advantages of pure functions 83
Order of execution 83
Memoization 84
Self-documentation 88
Testing 88

Impure functions 89
Avoiding impure functions 89

Avoiding the usage of state 89
Injecting impure functions 91

Is your function pure? 93

Table of Contents

[iii]

Testing – pure versus impure 94
Testing pure functions 95
Testing purified functions 96
Testing impure functions 99

Summary 102
Questions 102

Chapter 5: Programming Declaratively - A Better Style 104
Transformations 105

Reducing an array to a value 105
Summing an array 107
Calculating an average 108
Calculating several values at once 110
Folding left and right 111

Applying an operation – map 113
Extracting data from objects 115
Parsing numbers tacitly 116
Working with ranges 117
Emulating map() with reduce() 119

Dealing with arrays of arrays 120
Flattening an array 120
Mapping and flattening – flatMap() 123
Emulating flat() and flatMap() 125

More general looping 127
Logical higher-order functions 129

Filtering an array 130
A reduce() example 131
Emulating filter() with reduce() 132

Searching an array 133
A special search case 134
Emulating find() and findIndex() with reduce() 134

Higher-level predicates – some, every 135
Checking negatives – none 136

Working with async functions 137
Some strange behaviors 138
Async-ready looping 140

Looping over async calls 140
Mapping async calls 141
Filtering with async calls 142
Reducing async calls 143

Summary 144
Questions 144

Chapter 6: Producing Functions - Higher-Order Functions 147
Wrapping functions – keeping behavior 148

Logging 149
Logging in a functional way 149
Taking exceptions into account 151

Table of Contents

[iv]

Working in a purer way 152
Timing functions 155
Memoizing functions 157

Simple memoization 158
More complex memoization 160
Memoization testing 162

Altering a function's behavior 165
Doing things once, revisited 165
Logically negating a function 168
Inverting the results 169
Arity changing 171

Changing functions in other ways 172
Turning operations into functions 172

Implementing operations 173
A handier implementation 174

Turning functions into promises 175
Getting a property from an object 176
Demethodizing – turning methods into functions 178
Finding the optimum 180

Summary 182
Questions 182

Chapter 7: Transforming Functions - Currying and Partial Application 184
A bit of theory 185
Currying 186

Dealing with many parameters 186
Currying by hand 189
Currying with bind() 191
Currying with eval() 194

Partial application 196
Partial application with arrow functions 197
Partial application with eval() 198
Partial application with closures 202

Partial currying 205
Partial currying with bind() 206
Partial currying with closures 209

Final thoughts 210
Parameter order 210
Being functional 212

Summary 213
Questions 214

Chapter 8: Connecting Functions - Pipelining and Composition 216
Pipelining 217

Piping in Unix/Linux 217
Revisiting an example 219

Table of Contents

[v]

Creating pipelines 220
Building pipelines by hand 220
Using other constructs 222

Debugging pipelines 224
Using tee 224
Tapping into a flow 226
Using a logging wrapper 227

Pointfree style 228
Defining pointfree functions 228
Converting to pointfree style 229

Chaining and fluent interfaces 231
An example of fluent APIs 231
Chaining method calls 232

Composing 235
Some examples of composition 235

Unary operators 236
Counting files 237
Finding unique words 237

Composing with higher-order functions 239
Testing composed functions 243

Transducing 248
Composing reducers 251
Generalizing for all reducers 252

Summary 253
Questions 254

Chapter 9: Designing Functions - Recursion 256
Using recursion 257

Thinking recursively 258
Decrease and conquer – searching 259
Decrease and conquer – doing powers 260
Divide and conquer – the Towers of Hanoi 261
Divide and conquer – sorting 264
Dynamic programming – making change 265

Higher-order functions revisited 267
Mapping and filtering 268
Other higher-order functions 271

Searching and backtracking 274
The eight queens puzzle 274
Traversing a tree structure 278

Recursion techniques 281
Tail call optimization 282
Continuation passing style 285
Trampolines and thunks 289
Recursion elimination 292

Summary 292
Questions 293

Table of Contents

[vi]

Chapter 10: Ensuring Purity - Immutability 296
Going the straightforward JavaScript way 297

Mutator functions 297
Constants 298
Freezing 299
Cloning and mutating 301
Getters and setters 305

Getting a property 305
Setting a property by path 306

Lenses 308
Working with lenses 308
Implementing lenses with objects 311
Implementing lenses with functions 314

Prisms 317
Working with prisms 317
Implementing prisms 320

Creating persistent data structures 320
Working with lists 321
Updating objects 323
A final caveat 328

Summary 328
Questions 329

Chapter 11: Implementing Design Patterns - The Functional Way 331
Understanding design patterns 332

Design pattern categories 333
Do we need design patterns? 334

Object-oriented design patterns 335
Facade and adapter 336
Decorator or wrapper 338
Strategy, Template, and Command 344
Observer and reactive programming 346

Basic concepts and terms 347
Operators for observables 349
Detecting multi-clicks 352
Providing typeahead searches 354

Other patterns 358
Functional design patterns 359
Summary 361
Questions 361

Chapter 12: Building Better Containers - Functional Data Types 364
Specifying data types 364

Signatures for functions 365
Other data type options 367

Building containers 369

Table of Contents

[vii]

Extending current data types 370
Containers and functors 372

Wrapping a value – a basic container 372
Enhancing our container – functors 374
Dealing with missing values with Maybe 376

Dealing with varying API results 378
Implementing Prisms 382

Monads 384
Adding operations 385
Handling alternatives – the Either monad 388
Calling a function – the Try monad 391
Unexpected monads – promises 392

Functions as data structures 393
Binary trees in Haskell 393
Functions as binary trees 395

Summary 401
Questions 401

Bibliography 403

Answers to Questions 405

Other Books You May Enjoy 433

Index 436

Preface
In computer programming, paradigms abound. Some examples include imperative
programming, structured (goto-less) programming, object-oriented programming (OOP),
aspect-oriented programming, and declarative programming. Lately, there has been
renewed interest in a particular paradigm that can arguably be considered to be older than
most (if not all) of the cited ones—Functional Programming (FP). FP emphasizes writing
functions and connecting them in simple ways to produce a more understandable and more
easily tested code. Thus, given the increased complexity of today's web applications, it's
logical that a safer, cleaner way of programming would be of interest.

This interest in FP comes hand in hand with the evolution of JavaScript. Despite its
somewhat hasty creation (reportedly managed in only 10 days, in 1995, by Brendan Eich at
Netscape), today it's a standardized and quickly growing language, with features more
advanced than most other similarly popular languages. The ubiquity of the language,
which can now be found in browsers, servers, mobile phones, and whatnot, has also
impelled interest in better development strategies. Also, even if JavaScript wasn't conceived
as a functional language by itself, the fact is that it provides all the features you'd require to
work in that fashion, which is another plus.

It must also be said that FP hasn't been generally applied in industry, possibly because it
has a certain aura of difficulty, and it is thought to be theoretical rather than practical,
even mathematical, and possibly uses vocabulary and concepts that are foreign to
developers—for example, functors? Monads? Folding? Category theory? While learning all
this theory will certainly be of help, it can also be argued that even with zero knowledge of
the previous terms, you can understand the tenets of FP, and see how to apply it in your
own programming.

FP is not something that you have to do on your own, without any help. There are many
libraries and frameworks that incorporate, in greater or lesser degrees, the concepts of FP.
Starting with jQuery (which does include some FP concepts), passing through Underscore
and its close relative, Lodash, or other libraries such as Ramda, and getting to more
complete web development tools such as React and Redux, Angular, or Elm (a 100%
functional language, which compiles into JavaScript), the list of functional aids for your
coding is ever growing.

Preface

[2]

Learning how to use FP can be a worthwhile investment, and even though you may not get
to use all of its methods and techniques, just starting to apply some of them will pay
dividends in better code. You need not try to apply all of FP from the start, and you need
not try to abandon every non-functional feature in the language either. JavaScript assuredly
has some bad features, but it also has several very good and powerful ones. The idea is not
to throw away everything you've learned and use and adopt a 100% functional way; rather,
the guiding idea is evolution, not revolution. In that sense, it can be said that what we'll be
doing is not FP, but rather Sorta Functional Programming (SFP), aiming for a fusion of
paradigms.

A final comment about the style of the code in this book—it is quite true that there are
several very good libraries that provide you with FP tools: Underscore, Lodash, Ramda,
and more are counted among them. However, I preferred to eschew their usage, because I
wanted to show how things really work. It's easy to apply a given function from some
package or other, but by coding everything out (a vanilla FP, if you wish), it's my belief that
you get to understand things more deeply. Also, as I will comment in some places, because
of the power and clarity of arrow functions and other features, the pure JavaScript versions
can be even simpler to understand!

Who this book is for
This book is geared toward programmers with a good working knowledge of JavaScript,
working either on the client side (browsers) or the server side (Node.js), who are interested
in applying techniques to be able to write better, testable, understandable, and
maintainable code. Some background in computer science (including, for example, data
structures) and good programming practices will also come in handy.

What this book covers
In this book, we'll cover FP in a practical way; though, at times, we will mention some
theoretical points:

Chapter 1, Becoming Functional – Several Questions, discusses FP, gives reasons for its usage,
and lists the tools that you'll need to take advantage of the rest of the book.

Chapter 2, Thinking Functionally – A First Example, will provide the first example of FP by
considering a common web-related problem and going over several solutions, to finally
center on a functional solution.

Chapter 3, Starting Out with Functions – A Core Concept, will go over the central concept of
FP, that is, functions, and the different options available in JavaScript.

Preface

[3]

Chapter 4, Behaving Properly – Pure Functions, will consider the concept of purity and pure
functions, and demonstrate how it leads to simpler coding and easier testing.

Chapter 5, Programming Declaratively – A Better Style, will use simple data structures to
show how to produce results that work not in an imperative way, but in a declarative
fashion.

Chapter 6, Producing Functions – Higher-Order Functions, will deal with higher-order
functions, which receive other functions as parameters and produce new functions as
results.

Chapter 7, Transforming Functions – Currying and Partial Application, will explore some
methods for producing new and specialized functions from earlier ones.

Chapter 8, Connecting Functions – Pipelining and Composition, will show the key concepts
regarding how to build new functions by joining previously defined ones.

Chapter 9, Designing Functions – Recursion, will look at how a key concept in FP, recursion,
can be applied to designing algorithms and functions.

Chapter 10, Ensuring Purity – Immutability, will present some tools that can help you to
work in a pure fashion by providing immutable objects and data structures.

Chapter 11, Implementing Design Patterns – The Functional Way, will show how several
popular OOP design patterns are implemented (or not needed!) when you program in FP
ways.

Chapter 12, Building Better Containers – Functional Data Types, will explore some more high-
level functional patterns, introducing types, containers, functors, monads, and several other
more advanced FP concepts.

I have tried to keep the examples in this book simple and down to earth because I want to
focus on the functional aspects and not on the intricacies of this or that problem. Some
programming texts are geared toward learning, say, a given framework, and then work on
a given problem, showing how to fully work it out with the chosen tools. (In fact, at the
very beginning of planning for this book, I entertained the idea of developing an
application that would use all the FP things I had in mind, but there was no way to fit all of
that within a single project. Exaggerating a bit, I felt like an MD trying to find a patient on
whom to apply all of his medical knowledge and treatments!) So, I have opted to show
plenty of individual techniques, which can be used in multiple situations. Rather than
building a house, I want to show you how to put the bricks together, how to wire things up,
and so on, so that you will be able to apply whatever you need, as you see fit.

Preface

[4]

To get the most out of this book
To understand the concepts and code in this book, you don't need much more than a
JavaScript environment and a text editor. To be honest, I even developed some of the
examples working fully online, with tools such as JSFiddle (at https:/ ​/​jsfiddle. ​net/ ​) and
the like, and absolutely nothing else.

In this book, we'll be using ES2019, Node 13, and the code will run on any OS such as
Linux, Mac OSX, or Windows; please do check the Technical Requirements section, for some
other tools we'll also work with.

Finally, you will need some experience with the latest version of JavaScript, because it
includes several features that can help you write more concise and compact code. We will
frequently include pointers to online documentation, such as the documentation available
on the Mozilla Development Network (MDM) at https:/ ​/ ​developer. ​mozilla. ​org/ ​, to
help you get more in-depth knowledge.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Mastering- ​JavaScript- ​Functional- ​Programming- ​2nd- ​Edition- ​. In case
there's an update to the code, it will be updated on the existing GitHub repository.

https://jsfiddle.net/
https://jsfiddle.net/
https://jsfiddle.net/
https://jsfiddle.net/
https://jsfiddle.net/
https://jsfiddle.net/
https://jsfiddle.net/
https://jsfiddle.net/
https://developer.mozilla.org/
https://developer.mozilla.org/
https://developer.mozilla.org/
https://developer.mozilla.org/
https://developer.mozilla.org/
https://developer.mozilla.org/
https://developer.mozilla.org/
https://developer.mozilla.org/
https://developer.mozilla.org/
https://developer.mozilla.org/
http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/Mastering-JavaScript-Functional-Programming-2nd-Edition-
https://github.com/PacktPublishing/Mastering-JavaScript-Functional-Programming-2nd-Edition-
https://github.com/PacktPublishing/Mastering-JavaScript-Functional-Programming-2nd-Edition-
https://github.com/PacktPublishing/Mastering-JavaScript-Functional-Programming-2nd-Edition-
https://github.com/PacktPublishing/Mastering-JavaScript-Functional-Programming-2nd-Edition-
https://github.com/PacktPublishing/Mastering-JavaScript-Functional-Programming-2nd-Edition-
https://github.com/PacktPublishing/Mastering-JavaScript-Functional-Programming-2nd-Edition-
https://github.com/PacktPublishing/Mastering-JavaScript-Functional-Programming-2nd-Edition-
https://github.com/PacktPublishing/Mastering-JavaScript-Functional-Programming-2nd-Edition-
https://github.com/PacktPublishing/Mastering-JavaScript-Functional-Programming-2nd-Edition-
https://github.com/PacktPublishing/Mastering-JavaScript-Functional-Programming-2nd-Edition-
https://github.com/PacktPublishing/Mastering-JavaScript-Functional-Programming-2nd-Edition-
https://github.com/PacktPublishing/Mastering-JavaScript-Functional-Programming-2nd-Edition-
https://github.com/PacktPublishing/Mastering-JavaScript-Functional-Programming-2nd-Edition-
https://github.com/PacktPublishing/Mastering-JavaScript-Functional-Programming-2nd-Edition-
https://github.com/PacktPublishing/Mastering-JavaScript-Functional-Programming-2nd-Edition-
https://github.com/PacktPublishing/Mastering-JavaScript-Functional-Programming-2nd-Edition-
https://github.com/PacktPublishing/Mastering-JavaScript-Functional-Programming-2nd-Edition-
https://github.com/PacktPublishing/Mastering-JavaScript-Functional-Programming-2nd-Edition-
https://github.com/PacktPublishing/Mastering-JavaScript-Functional-Programming-2nd-Edition-
https://github.com/PacktPublishing/Mastering-JavaScript-Functional-Programming-2nd-Edition-

Preface

[5]

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Let's review our once() function."

A block of code is set as follows:

function newCounter() {
 let count = 0;
 return function() {
 count++;
 return count;
 };
}

const nc = newCounter();
console.log(nc()); // 1
console.log(nc()); // 2
console.log(nc()); // 3

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

function fact(n) {
 if (n === 0) {
 return 1;

 } else {
 return n * fact(n - 1);
 }
}

console.log(fact(5)); // 120

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select the EXPERIMENTAL option to fully enable ES10 support."

https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[6]

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

Technical Requirements
To develop and test the code in this book, I used several versions of commonly available
software, including browsers and Node.js, as well as some other packages.

For this second edition, my main machine runs the Tumbleweed rolling release of OpenSUSE
Linux, from https:/ ​/​www. ​opensuse. ​org/ ​#Tumbleweed, currently including kernel 5.3.5.
(The rolling term implies that the software is updated on a continuous basis, to keep getting
the latest versions of all packages.) I've also tested portions of the code of this book on
different Windows 7 and Windows 10 machines.

As to browsers, I usually work with Chrome, from https:/ ​/​www. ​google. ​com/ ​chrome/
browser/​, and at the current time, I'm up to version 78. I also use Firefox, from https:/ ​/
www.​mozilla.​org/ ​en- ​US/ ​firefox/ ​, and I got version 72 in my machine. I have also run
code using the online JSFiddle environment, at https:/ ​/​jsfiddle. ​net/​.

On the server side, I use Node.js, from https:/ ​/​nodejs. ​org/ ​, currently at version 13.6.

For transpilation, I used Babel, from https:/ ​/​babeljs. ​io/​: the current version of the
babel-cli package is 7.7.7.

For testing, I went with Jasmine, from https:/ ​/ ​jasmine. ​github. ​io/​, and the latest version
in my machine is 3.5.0.

Finally, for code formatting, I used Prettier, from https:/ ​/ ​prettier. ​io/ ​. You can either
install it locally, or run it online at https:/ ​/​prettier. ​io/ ​playground/ ​; the version I have is
1.19.1.

The JavaScript world is quite dynamic, and it's a safe bet that by the time you get to read
this book, all the software listed above will have been updated several times. Every single
piece of software I used when I wrote the 1st edition of this book, received several updates
over time. However, given the standardization of JavaScript, and the high importance of
back compatibility, you shouldn't have problems with other versions.

https://www.opensuse.org/#Tumbleweed
https://www.opensuse.org/#Tumbleweed
https://www.opensuse.org/#Tumbleweed
https://www.opensuse.org/#Tumbleweed
https://www.opensuse.org/#Tumbleweed
https://www.opensuse.org/#Tumbleweed
https://www.opensuse.org/#Tumbleweed
https://www.opensuse.org/#Tumbleweed
https://www.opensuse.org/#Tumbleweed
https://www.opensuse.org/#Tumbleweed
https://www.opensuse.org/#Tumbleweed
https://www.google.com/chrome/browser/
https://www.google.com/chrome/browser/
https://www.google.com/chrome/browser/
https://www.google.com/chrome/browser/
https://www.google.com/chrome/browser/
https://www.google.com/chrome/browser/
https://www.google.com/chrome/browser/
https://www.google.com/chrome/browser/
https://www.google.com/chrome/browser/
https://www.google.com/chrome/browser/
https://www.google.com/chrome/browser/
https://www.google.com/chrome/browser/
https://www.google.com/chrome/browser/
https://www.mozilla.org/en-US/firefox/
https://www.mozilla.org/en-US/firefox/
https://www.mozilla.org/en-US/firefox/
https://www.mozilla.org/en-US/firefox/
https://www.mozilla.org/en-US/firefox/
https://www.mozilla.org/en-US/firefox/
https://www.mozilla.org/en-US/firefox/
https://www.mozilla.org/en-US/firefox/
https://www.mozilla.org/en-US/firefox/
https://www.mozilla.org/en-US/firefox/
https://www.mozilla.org/en-US/firefox/
https://www.mozilla.org/en-US/firefox/
https://www.mozilla.org/en-US/firefox/
https://www.mozilla.org/en-US/firefox/
https://www.mozilla.org/en-US/firefox/
https://jsfiddle.net/
https://jsfiddle.net/
https://jsfiddle.net/
https://jsfiddle.net/
https://jsfiddle.net/
https://jsfiddle.net/
https://jsfiddle.net/
https://jsfiddle.net/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://jasmine.github.io/
https://jasmine.github.io/
https://jasmine.github.io/
https://jasmine.github.io/
https://jasmine.github.io/
https://jasmine.github.io/
https://jasmine.github.io/
https://jasmine.github.io/
https://jasmine.github.io/
https://jasmine.github.io/
https://prettier.io/
https://prettier.io/
https://prettier.io/
https://prettier.io/
https://prettier.io/
https://prettier.io/
https://prettier.io/
https://prettier.io/
https://prettier.io/playground/
https://prettier.io/playground/
https://prettier.io/playground/
https://prettier.io/playground/
https://prettier.io/playground/
https://prettier.io/playground/
https://prettier.io/playground/
https://prettier.io/playground/
https://prettier.io/playground/
https://prettier.io/playground/

1
Becoming Functional - Several

Questions
Functional programming (or FP) has been around since the earliest days of computing, and
is going through a sort of revival because of its increased use with several frameworks and
libraries, most particularly in JavaScript (JS). In this chapter, we shall do the following:

Introduce some concepts of FP to give a small taste of what it means.
Show the benefits (and problems) implied by the usage of FP and why we should
use it.
Start thinking about why JavaScript can be considered an appropriate language
for FP.
Go over the language features and tools that you should be aware of in order to
fully take advantage of everything in this book.

By the end of this chapter, you'll have the basic tools that we'll be using in the rest of the
book, so let's get started by learning about functional programming.

What is functional programming?
If you go back in computer history, you'll find that the second oldest programming
language still in use, Lisp, is based on FP. Since then, there have been many more
functional languages, and FP has been applied more widely. But even so, if you ask people
what FP is, you'll probably get two widely dissimilar answers.

Becoming Functional - Several Questions Chapter 1

[9]

For trivia or history buffs, the oldest language still in use is Fortran, which
appeared in 1957, a year before Lisp. Quite shortly after Lisp came another
long-lived language, COBOL, for business-oriented programming.

Depending on whom you ask, you'll either learn that it's a modern, advanced, enlightened
approach to programming that leaves every other paradigm behind or that it's mainly a
theoretical thing, with more complications than benefits, practically impossible to
implement in the real world. And, as usual, the real answer is not in the extremes, but
somewhere in between. Let's start by looking at the theory versus practice and see how we
plan to use FP.

Theory versus practice
In this book, we won't be going about FP in a theoretical way. Instead, our point is to show
you how some of its techniques and tenets can be successfully applied for common,
everyday JavaScript programming. But—and this is important—we won't be going about
this in a dogmatic fashion, but in a very practical way. We won't dismiss useful JavaScript
constructs simply because they don't happen to fulfill the academic expectations of FP.
Similarly, we won't avoid practical JavaScript features just to fit the FP paradigm. In fact,
we could almost say that we'll be doing Sorta Functional Programming (SFP) because our
code will be a mixture of FP features, more classical imperative ones, and object-oriented
programming (OOP).

Be careful, though: what we just said doesn't mean that we'll be leaving all the theory by
the side. We'll be picky, and just touch the main theoretical points, learn some vocabulary
and definitions, and explain core FP concepts, but we'll always be keeping in sight the idea
of producing actual, useful JavaScript code, rather than trying to meet some mystical,
dogmatic FP criteria.

OOP has been a way to solve the inherent complexity of writing large programs and
systems, and developing clean, extensible, scalable application architectures; however,
because of the scale of today's web applications, the complexity of all codebases is
continuously growing. Also, the newer features of JavaScript make it possible to develop
applications that wouldn't even have been possible just a few years ago; think of mobile
(hybrid) apps that are made with Ionic, Apache Cordova, or React Native or desktop apps
that are made with Electron or NW.js, for example. JavaScript has also migrated to the
backend with Node.js, so today, the scope of usage for the language has grown in a serious
way that deals with all the added complexity of modern designs.

Becoming Functional - Several Questions Chapter 1

[10]

A different way of thinking
FP is a different way of writing programs, and can sometimes be difficult to learn. In most
languages, programming is done in an imperative fashion: a program is a sequence of
statements, executed in a prescribed fashion, and the desired result is achieved by creating
objects and manipulating them, which usually means modifying the objects themselves. FP
is based on producing the desired result by evaluating expressions built out of functions
that are composed together. In FP, it's common to pass functions around (such as passing
parameters to other functions or returning functions as the result of a calculation), to not
use loops (opting for recursion instead), and to skip side effects (such as modifying objects
or global variables).

In other words, FP focuses on what should be done, rather than on how. Instead of worrying
about loops or arrays, you work at a higher level, considering what you need to be done.
After becoming accustomed to this style, you'll find that your code becomes simpler,
shorter, and more elegant, and can be easily tested and debugged. However, don't fall into
the trap of considering FP as the goal! Think of FP only as a means to an end, as with all
software tools. Functional code isn't good just for being functional, and writing bad code is
just as possible with FP as with any other technique!

What FP is not
Since we have been saying some things about what FP is, let's also clear up some common
misconceptions, and look at what FP is not:

FP isn't just an academic ivory tower thing: It is true that the lambda
calculus upon which it is based was developed by Alonzo Church in 1936 as a
tool to prove an important result in theoretical computer science (which
preceded modern computer languages by more than 20 years!); however, FP
languages are being used today for all kinds of systems.
FP isn't the opposite of object-oriented programming (OOP): It isn't a case of
choosing declarative or imperative ways of programming. You can mix and
match as best suits you, and we'll be doing this throughout this book, bringing
together the best of all worlds.
FP isn't overly complex to learn: Some of the FP languages are rather different
from JavaScript, but the differences are mostly syntactic. Once you learn the basic
concepts, you'll see that you can get the same results in JavaScript as with FP
languages.

It may also be relevant to mention that several modern frameworks, such as the React and
Redux combination, include FP ideas.

Becoming Functional - Several Questions Chapter 1

[11]

For example, in React, it's said that the view (whatever the user gets to see at a given
moment) is a function of the current state. You use a function to compute what HTML and
CSS must be produced at each moment, thinking in a black-box fashion.

Similarly, in Redux you have the concept of actions that are processed by reducers. An
action provides some data, and a reducer is a function that produces the new state for the
application in a functional way out of the current state and the provided data.

So, both because of the theoretical advantages (we'll be getting to those in the following
section) and the practical ones (such as getting to use the latest frameworks and libraries), it
makes sense to consider FP coding. Let's get on with it.

Why use FP?
Throughout the years, there have been many programming styles and fads. However, FP
has proven quite resilient and is of great interest today. Why would you want to use FP?
The question should rather first be, what do you want to get? and only then, does FP get you
that? Let's answer these important questions in the following sections.

What we need
We can certainly agree that the following list of concerns is universal. Our code should
have the following qualities:

Modular: The functionality of your program should be divided into independent
modules, each of which contains what it needs to perform one aspect of the
program's functionality. Changes in a module or function shouldn't affect the rest
of the code.
Understandable: A reader of your program should be able to discern its
components, their functions, and their relationships without undue effort. This is
closely linked with the maintainability of the code; your code will have to be
maintained at some time in the future, whether to be changed or to have new
functionality added.
Testable: Unit tests try out small parts of your program, verifying their behavior
independently of the rest of the code. Your programming style should favor
writing code that simplifies the job of writing unit tests. Unit tests are also like
documentation in that they can help readers understand what the code is
supposed to do.

Becoming Functional - Several Questions Chapter 1

[12]

Extensible: It's a fact that your program will someday require maintenance,
possibly to add new functionality. Those changes should impact the structure
and data flow of the original code only minimally (if at all). Small changes
shouldn't imply large, serious refactoring of your code.
Reusable: Code reuse has the goal of saving resources, time, and money, and
reducing redundancy by taking advantage of previously written code. There are
some characteristics that help this goal, such as modularity (which we already
mentioned), high cohesion (all the pieces in a module belong together), low
coupling (modules are independent of each other), separation of concerns (the
parts of a program should overlap in functionality as little as possible), and
information hiding (internal changes in a module shouldn't affect the rest of the
system).

What we get
So does FP give you the five characteristics we just listed in the previous section?

In FP, the goal is to write separate independent functions that are joined together
to produce the final results.
Programs that are written in a functional style usually tend to be cleaner, shorter,
and easier to understand.
Functions can be tested on their own, and FP code has advantages in achieving
this.
You can reuse functions in other programs because they stand on their own, not
depending on the rest of the system. Most functional programs share common
functions, several of which we'll be considering in this book.
Functional code is free from side effects, which means you can understand the
objective of a function by studying it without having to consider the rest of the
program.

Finally, once you get used to the FP style of programming, code becomes more
understandable and easier to extend. So it seems that all five characteristics can be achieved
with FP!

For a well-balanced look at the reasons to use FP, I'd suggest reading Why
Functional Programming Matters, by John Hughes; it's available online at
www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf. It's not
geared towards JavaScript, but the arguments are easily understandable,
anyway.

http://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf

Becoming Functional - Several Questions Chapter 1

[13]

Not all is gold
However, let's strive for a bit of balance. Using FP isn't a silver bullet that will
automagically make your code better. Some FP solutions are actually tricky, and there are
developers who greatly enjoy writing code and then asking, what does this do? If you aren't
careful, your code may become write-only and practically impossible to maintain; there
goes understandable, extensible, and reusable out the door!

Another disadvantage is that you may find it harder to find FP-savvy developers. (Quick
question: how many functional programmers sought job ads have you ever seen?) The vast
majority of today's web code is written in imperative, non-functional ways, and most
coders are used to that way of working. For some, having to switch gears and start writing
programs in a different way may prove an unpassable barrier.

Finally, if you try to go fully functional, you may find yourself at odds with JavaScript, and
simple tasks may become hard to do. As we said at the beginning, we'll opt for sorta FP, so
we won't be drastically rejecting any language features that aren't 100% functional. After
all, we want to use FP to simplify our coding, not to make it more complex!

So, while I'll strive to show you the advantages of going functional in your code, as with
any change, there will always be some difficulties. However, I'm fully convinced that you'll
be able to surmount them and that your organization will develop better code by applying
FP. Dare to change! So, given that you accept that FP may apply to your own problems, let's
now consider the other question, can we use JavaScript in a functional way and is it
appropriate?

Is JavaScript functional?
At about this time, there is another important question that you should be asking: Is
JavaScript a functional language? Usually, when thinking about FP, the list of languages that
are mentioned does not include JavaScript, but does include less common options, such as
Clojure, Erlang, Haskell, and Scala; however, there is no precise definition for FP languages
or a precise set of features that such languages should include. The main point is that you
can consider a language to be functional if it supports the common programming style
associated with FP. Let's start by learning about why we would want to use JavaScript at all
and how the language has evolved to its current version, and then see some of the key
features that we'll be using to work in a functional way.

Becoming Functional - Several Questions Chapter 1

[14]

JavaScript as a tool
What is JavaScript? If you consider popularity indices, such as the ones at
www.tiobe.com/tiobe-index/ or http:/ ​/​pypl. ​github. ​io/ ​PYPL. ​html, you'll find
that JavaScript is consistently in the top ten most popular languages. From a more academic
point of view, the language is sort of a mixture, borrowing features from several different
languages. Several libraries helped the growth of the language by providing features that
weren't so easily available, such as classes and inheritance (today's version of the language
does support classes, but that was not the case not too long ago), that otherwise had to be
achieved by doing some prototype tricks.

The name JavaScript was chosen to take advantage of the popularity of
Java—just as a marketing ploy! Its first name was Mocha, then, LiveScript,
and only then, JavaScript.

JavaScript has grown to be incredibly powerful. But, as with all power tools, it gives you a
way to not only produce great solutions, but also to do great harm. FP could be considered
as a way to reduce or leave aside some of the worst parts of the language and focus on
working in a safer, better way; however, due to the immense amount of existing JavaScript
code, you cannot expect it to facilitate large reworkings of the language that would cause
most sites to fail. You must learn to live with the good and the bad, and simply avoid the
latter parts.

In addition, the language has a broad variety of available libraries that complete or extend
the language in many ways. In this book, we'll be focusing on using JavaScript on its own,
but we will make references to existing, available code.

If we ask whether JavaScript is actually functional, the answer will be, once again, sorta. It
can be seen as functional because of several features, such as first-class functions,
anonymous functions, recursion, and closures—we'll get back to this later. On the other
hand, it also has plenty of non-FP aspects, such as side effects (impurity), mutable objects,
and practical limits to recursion. So, when programming in a functional way, we'll be
taking advantage of all the relevant, appropriate language features, and we'll try to
minimize the problems caused by the more conventional parts of the language. In this
sense, JavaScript will or won't be functional, depending on your programming style!

http://www.tiobe.com/tiobe-index/
http://pypl.github.io/PYPL.html
http://pypl.github.io/PYPL.html
http://pypl.github.io/PYPL.html
http://pypl.github.io/PYPL.html
http://pypl.github.io/PYPL.html
http://pypl.github.io/PYPL.html
http://pypl.github.io/PYPL.html
http://pypl.github.io/PYPL.html
http://pypl.github.io/PYPL.html
http://pypl.github.io/PYPL.html
http://pypl.github.io/PYPL.html
http://pypl.github.io/PYPL.html
http://pypl.github.io/PYPL.html

Becoming Functional - Several Questions Chapter 1

[15]

If you want to use FP, you should decide which language to use; however, opting for fully
functional languages may not be so wise. Today, developing code isn't as simple as just
using a language; you will surely require frameworks, libraries, and other sundry tools. If
we can take advantage of all the provided tools but at the same time introduce FP ways of
working in our code, we'll be getting the best of both worlds, never mind whether
JavaScript is functional!

Going functional with JavaScript
JavaScript has evolved through the years, and the version we'll be using is (informally)
called JS10, and (formally) ECMAScript 2019, usually shortened to ES2019 or ES10; this
version was finalized in June 2019. The previous versions were as follows:

ECMAScript 1, June 1997
ECMAScript 2, June 1998, which was basically the same as the previous version
ECMAScript 3, December 1999, with several new functionalities
ECMAScript 5, December 2009 (and no, there never was an ECMAScript 4,
because it was abandoned)
ECMAScript 5.1, June 2011
ECMAScript 6 (or ES6; later renamed ES2015), June 2015
ECMAScript 7 (also ES7, or ES2016), June 2016
ECMAScript 8 (ES8 or ES2017), June 2017
ECMAScript 9 (ES9 or ES2018), June 2018

ECMA originally stood for European Computer Manufacturers
Association, but nowadays the name isn't considered an acronym
anymore. The organization is responsible for more standards other than
JavaScript, including JSON, C#, Dart, and others. For more details, go to
its site at www.ecma-international.org/.

You can read the standard language specification at
www.ecma-international.org/ecma-262/7.0/. Whenever we refer to JavaScript in the text
without further specification, ES10 (ES2019) is what is being referred to; however, in terms
of the language features that are used in the book, if you were just to use ES2015, then
you'd mostly have no problems with this book.

http://www.ecma-international.org/
http://www.ecma-international.org/ecma-262/7.0/

Becoming Functional - Several Questions Chapter 1

[16]

No browsers fully implement ES10; most provide an older version, JavaScript 5 (from 2009),
with an (always growing) smattering of features from ES6 up to ES10. This will prove to be
a problem, but fortunately, a solvable one; we'll get to this shortly. We'll be using ES10
throughout the book.

In fact, there are only a few differences between ES2016 and ES2015, such
as the Array.prototype.includes method and the exponentiation
operator, **. There are more differences between ES2017 and
ES2016—such as async and await, some string padding functions, and
more—but they won't impact our code. We will also be looking at
alternatives for even more modern additions, such as flatMap(), in later
chapters.

As we are going to work with JavaScript, let's start by considering its most important
features that pertain to our FP goals.

Key features of JavaScript
JavaScript isn't a purely functional language, but it has all the features that we need for it to
work as if it were. The main features of the language that we will be using are as follows:

Functions as first-class objects
Recursion
Arrow functions
Closures
Spread

Let's see some examples of each one and find out why they will be useful to us. Keep in
mind, though, that there are more features of JavaScript that we will be using; the
upcoming sections just highlight the most important features in terms of what we will be
using for FP.

Functions as first-class objects
Saying that functions are first-class objects (also called first-class citizens) means that you
can do everything with functions that you can do with other objects. For example, you can
store a function in a variable, you can pass it to a function, you can print it out, and so on.
This is really the key to doing FP; we will often be passing functions as parameters (to other
functions) or returning a function as the result of a function call.

Becoming Functional - Several Questions Chapter 1

[17]

If you have been doing async Ajax calls, then you have already been using this feature: a
callback is a function that will be called after the Ajax call finishes and is passed as a
parameter. Using jQuery, you could write something like the following:

$.get("some/url", someData, function(result, status) {
 // check status, and do something
 // with the result
});

The $.get() function receives a callback function as a parameter and calls it after the
result is obtained.

This is better solved, in a more modern way, by using promises or
async/await, but for the sake of our example, the older way is enough.
We'll be getting back to promises, though, in the section called Building
better containers in Chapter 12, Building Better Containers – Functional Data
Types, when we discuss monads; in particular, see the section
called Unexpected Monads - Promises.

Since functions can be stored in variables, you could also write something like the
following. Pay attention to how we use the doSomething variable in the $.get(...) call:

var doSomething = function(result, status) {
 // check status, and do something
 // with the result
};

$.get("some/url", someData, doSomething);

We'll be seeing more examples of this in Chapter 6, Producing Functions – Higher-Order
Functions.

Recursion
Recursion is the most potent tool for developing algorithms and a great aid for solving
large classes of problems. The idea is that a function can at a certain point call itself, and
when that call is done, continue working with whatever result it has received. This is
usually quite helpful for certain classes of problems or definitions. The most often quoted
example is the factorial function (the factorial of n is written as n!) as defined for
nonnegative integer values:

If n is 0, then n!=1
If n is greater than 0, then n! = n * (n-1)!

Becoming Functional - Several Questions Chapter 1

[18]

The value of n! is the number of ways that you can order n different
elements in a row. For example, if you want to place five books in line,
you can pick any of the five for the first place, and then order the other
four in every possible way, so 5! = 5*4!. If you continue to work this
example, you'll get 5! = 5*4*3*2*1=120, so n! is the product of all numbers
up to n.

This can be immediately turned into code:

function fact(n) {
 if (n === 0) {
 return 1;

 } else {
 return n * fact(n - 1);
 }
}

console.log(fact(5)); // 120

Recursion will be a great aid for the design of algorithms. By using recursion, you could do
without any while or for loops—not that we want to do that, but it's interesting that we
can! We'll be devoting the entirety of Chapter 9, Designing Functions – Recursion, to
designing algorithms and writing functions recursively.

Closures
Closures are a way to implement data hiding (with private variables), which leads to
modules and other nice features. The key concept of closures is that when you define a
function, it can refer to not only its own local variables but also to everything outside of the
context of the function. We can write a counting function that will keep its own count by
means of a closure:

function newCounter() {
 let count = 0;
 return function() {
 count++;
 return count;
 };
}

const nc = newCounter();
console.log(nc()); // 1
console.log(nc()); // 2
console.log(nc()); // 3

Becoming Functional - Several Questions Chapter 1

[19]

Even after newCounter() exits, the inner function still has access to count, but that
variable is not accessible to any other parts of your code.

This isn't a very good example of FP— a function (nc(), in this case) isn't
expected to return different results when called with the same parameters!

We'll find several uses for closures, such as memoization (see Chapter 4, Behaving
Properly – Pure Functions, and Chapter 6, Producing Functions – Higher-Order Functions) and
the module pattern (see Chapter 3, Starting out with Functions – A Core Concept, and
Chapter 11, Implementing Design Patterns – The Functional Way), among others.

Arrow functions
Arrow functions are just a shorter, more succinct way of creating an (unnamed) function.
Arrow functions can be used almost everywhere a classical function can be used, except
that they cannot be used as constructors. The syntax is either (parameter,
anotherparameter, ...etc) => { statements } or (parameter,
anotherparameter, ...etc) => expression. The first allows you to write as much
code as you want, and the second is short for { return expression }. We could rewrite
our earlier Ajax example as follows:

$.get("some/url", data, (result, status) => {
 // check status, and do something
 // with the result
});

A new version of the factorial code could be like the following code:

const fact2 = n => {
 if (n === 0) {
 return 1;

 } else {
 return n * fact2(n - 1);
 }
};
console.log(fact2(5)); // also 120

Becoming Functional - Several Questions Chapter 1

[20]

Arrow functions are usually called anonymous functions because of their
lack of a name. If you need to refer to an arrow function, you'll have to
assign it to a variable or object attribute, as we did here; otherwise, you
won't be able to use it. We'll learn more about this in the section
called Arrow functions in Chapter 3, Starting out with Functions - A Core
Concept.

You would probably write the latter as a one-liner—can you see the equivalence to our
earlier code? Using a ternary operator in lieu of an if is quite common:

const fact3 = n => (n === 0 ? 1 : n * fact3(n - 1));

console.log(fact3(5)); // again 120

With this shorter form, you don't have to write return—it's implied.

In lambda calculus, a function such as x => 2*x would be represented
as λx.2*x. Although there are syntactical differences, the definitions are
analogous. Functions with more parameters are a bit more
complicated; (x,y)=>x+y would be expressed as λx.λy.x+y. We'll learn more
about this in the section called Lambdas and functions, in Chapter
3, Starting out with Functions - A Core Concept, and in the section
called Currying, in Chapter 7, Transforming Functions - Currying and Partial
Application.

There's one other small thing to bear in mind: when the arrow function has a single
parameter, you can omit the parentheses around it. I usually prefer leaving them, but I've
applied a JS beautifier, Prettier, to the code, which removes them. It's really up to you
whether to include them or not! (For more on this tool, check out https:/ ​/​github. ​com/
prettier/​prettier.) By the way, my options for formatting were --print-width 75 --
tab-width 2 --no-bracket-spacing.

Spread
The spread operator (see https:/ ​/ ​developer. ​mozilla. ​org/ ​en/​docs/ ​Web/ ​JavaScript/
Reference/​Operators/ ​Spread_ ​operator) lets you expand an expression in places where
you would otherwise require multiple arguments, elements, or variables. For example, you
can replace arguments in a function call, as shown in the following code:

const x = [1, 2, 3];

function sum3(a, b, c) {
 return a + b + c;

https://github.com/prettier/prettier
https://github.com/prettier/prettier
https://github.com/prettier/prettier
https://github.com/prettier/prettier
https://github.com/prettier/prettier
https://github.com/prettier/prettier
https://github.com/prettier/prettier
https://github.com/prettier/prettier
https://github.com/prettier/prettier
https://github.com/prettier/prettier
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator

Becoming Functional - Several Questions Chapter 1

[21]

}

const y = sum3(...x); // equivalent to sum3(1,2,3)
console.log(y); // 6

You can also create or join arrays, as shown in the following code:

const f = [1, 2, 3];

const g = [4, ...f, 5]; // [4,1,2,3,5]

const h = [...f, ...g]; // [1,2,3,4,1,2,3,5]

It works with objects too:

const p = { some: 3, data: 5 };

const q = { more: 8, ...p }; // { more:8, some:3, data:5 }

You can also use it to work with functions that expect separate parameters instead of an
array. Common examples of this would be Math.min() and Math.max():

const numbers = [2, 2, 9, 6, 0, 1, 2, 4, 5, 6];
const minA = Math.min(...numbers); // 0

const maxArray = arr => Math.max(...arr);
const maxA = maxArray(numbers); // 9

You can also write the following equality since the .apply() method requires an array of
arguments, but .call() expects individual arguments:

someFn.apply(thisArg, someArray) === someFn.call(thisArg, ...someArray);

If you have problems remembering what arguments are required by
.apply() and .call(), this mnemonic may help: A is for an array, and C
is for a comma. See https:/ ​/​developer. ​mozilla. ​org/ ​en- ​US/​docs/ ​Web/
JavaScript/ ​Reference/ ​Global_ ​Objects/ ​Function/ ​apply and https:/ ​/
developer. ​mozilla. ​org/ ​en-​US/ ​docs/ ​Web/ ​JavaScript/ ​Reference/
Global_ ​Objects/ ​Function/ ​call for more information.

Using the spread operator helps write a shorter, more concise code, and we will be taking
advantage of it. We have seen all of the most important JavaScript features that we will be
using. Let's round off the chapter by looking at some tools that we'll be working with.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call

Becoming Functional - Several Questions Chapter 1

[22]

How do we work with JavaScript?
This is all well and good, but as we mentioned before, it so happens that the JavaScript
version available almost everywhere isn't ES10, but rather the earlier JS5. An exception to
this is Node.js. It is based on Chrome's v8 high-performance JavaScript engine, which
already has several ES10 features available. Nonetheless, as of today, ES10 coverage isn't
100% complete, and there are features that you will miss. (Check out https:/ ​/​nodejs. ​org/
en/​docs/​es6/​ for more on Node.js and v8.) This will surely change in the future, as Internet
Explorer will fade away, and the newest Microsoft's browser will share Chrome's engine,
but for the time being, we must still deal with older, less powerful engines.

So what can you do if you want to code using the latest version, but the available one is an
earlier, poorer one? Or what happens if most of your users are using older browsers, which
don't support the fancy features you're keen on using? Let's see some solutions for this.

If you want to be sure of your choices before using any given new feature,
check out the compatibility table at https:/ ​/​kangax. ​github. ​io/​compat-
table/ ​es6/ ​ (see Figure 1.1). For Node.js specifically, check out http:/ ​/
node. ​green/ ​.

Figure 1.1. - The latest JavaScript features may not be widely and fully supported, so you'll have to check before using them.

https://nodejs.org/en/docs/es6/
https://nodejs.org/en/docs/es6/
https://nodejs.org/en/docs/es6/
https://nodejs.org/en/docs/es6/
https://nodejs.org/en/docs/es6/
https://nodejs.org/en/docs/es6/
https://nodejs.org/en/docs/es6/
https://nodejs.org/en/docs/es6/
https://nodejs.org/en/docs/es6/
https://nodejs.org/en/docs/es6/
https://nodejs.org/en/docs/es6/
https://nodejs.org/en/docs/es6/
https://nodejs.org/en/docs/es6/
https://kangax.github.io/compat-table/es6/
https://kangax.github.io/compat-table/es6/
https://kangax.github.io/compat-table/es6/
https://kangax.github.io/compat-table/es6/
https://kangax.github.io/compat-table/es6/
https://kangax.github.io/compat-table/es6/
https://kangax.github.io/compat-table/es6/
https://kangax.github.io/compat-table/es6/
https://kangax.github.io/compat-table/es6/
https://kangax.github.io/compat-table/es6/
https://kangax.github.io/compat-table/es6/
https://kangax.github.io/compat-table/es6/
https://kangax.github.io/compat-table/es6/
https://kangax.github.io/compat-table/es6/
https://kangax.github.io/compat-table/es6/
http://node.green/
http://node.green/
http://node.green/
http://node.green/
http://node.green/
http://node.green/
http://node.green/

Becoming Functional - Several Questions Chapter 1

[23]

Using transpilers
In order to get out of this availability and compatibility problem, there are a couple of
transpilers that you can use. Transpilers take your original ES10 code, which might use the
most modern JavaScript features, and transforms it into equivalent JS5 code. It's a source-
to-source transformation, instead of a source-to-object code that would be used in
compilation. You can code using advanced ES10 features, but the user's browsers will
receive JS5 code. A transpiler will also let you keep up with upcoming versions of the
language, despite the time needed by browsers to adopt new standards across desktop and
mobile devices.

If you wonder where the word transpiler came from, it is a portmanteau
of translate and compiler. There are many such combinations in
technological speak: email (electronic and mail), emoticon (emotion and icon),
malware (malicious and software), or alphanumeric (alphabetic and numeric),
and many more.

The most common transpilers for JavaScript are Babel (at https:/ ​/​babeljs. ​io/ ​) and
Traceur (at https:/ ​/​github. ​com/ ​google/ ​traceur- ​compiler). With tools such as npm or
webpack, it's fairly easy to configure things so that your code will get automatically
transpiled and provided to end-users. You can also carry out transpilation online; see Figure
1.2 for an example of this using Babel's online environment:

Figure 1.2 - The Babel transpiler converts ES10 code into compatible JS5 code

https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://github.com/google/traceur-compiler
https://github.com/google/traceur-compiler
https://github.com/google/traceur-compiler
https://github.com/google/traceur-compiler
https://github.com/google/traceur-compiler
https://github.com/google/traceur-compiler
https://github.com/google/traceur-compiler
https://github.com/google/traceur-compiler
https://github.com/google/traceur-compiler
https://github.com/google/traceur-compiler
https://github.com/google/traceur-compiler
https://github.com/google/traceur-compiler
https://github.com/google/traceur-compiler

Becoming Functional - Several Questions Chapter 1

[24]

If you prefer Traceur, you can use its tool at https:/ ​/ ​google. ​github. ​io/ ​traceur-
compiler/​demo/​repl. ​html# instead, but you'll have to open a developer console to see the
results of your running code (see Figure 1.3 for an example of transpiled code). Select the
EXPERIMENTAL option to fully enable ES10 support:

Figure 1.3 - The Traceur transpiler is an equally valid alternative for ES10-to-JS5 translation

Using transpilers is also a great way to learn new language features. Just
type in some code on the left and see the equivalent code on the right.
Alternatively, you can use the command-line interface (CLI) tools to
transpile a source file and then inspect the produced output.

There's a final possibility that you may want to consider: instead of JavaScript, opt for
Microsoft's TypeScript (at http:/ ​/​www. ​typescriptlang. ​org/ ​), a superset of the language
that is itself compiled to JS5. The main advantage of TypeScript is the ability to add
(optional) static type checks to JavaScript, which helps detect certain programming errors at
compile time. But beware: as with Babel or Traceur, not all of ES10 will be available.

https://google.github.io/traceur-compiler/demo/repl.html#
https://google.github.io/traceur-compiler/demo/repl.html#
https://google.github.io/traceur-compiler/demo/repl.html#
https://google.github.io/traceur-compiler/demo/repl.html#
https://google.github.io/traceur-compiler/demo/repl.html#
https://google.github.io/traceur-compiler/demo/repl.html#
https://google.github.io/traceur-compiler/demo/repl.html#
https://google.github.io/traceur-compiler/demo/repl.html#
https://google.github.io/traceur-compiler/demo/repl.html#
https://google.github.io/traceur-compiler/demo/repl.html#
https://google.github.io/traceur-compiler/demo/repl.html#
https://google.github.io/traceur-compiler/demo/repl.html#
https://google.github.io/traceur-compiler/demo/repl.html#
https://google.github.io/traceur-compiler/demo/repl.html#
https://google.github.io/traceur-compiler/demo/repl.html#
https://google.github.io/traceur-compiler/demo/repl.html#
https://google.github.io/traceur-compiler/demo/repl.html#
https://google.github.io/traceur-compiler/demo/repl.html#
http://www.typescriptlang.org/
http://www.typescriptlang.org/
http://www.typescriptlang.org/
http://www.typescriptlang.org/
http://www.typescriptlang.org/
http://www.typescriptlang.org/
http://www.typescriptlang.org/
http://www.typescriptlang.org/
http://www.typescriptlang.org/
http://www.typescriptlang.org/

Becoming Functional - Several Questions Chapter 1

[25]

You can also perform type checks without using TypeScript by using
Facebook's Flow (see https:/ ​/​flow. ​org/ ​).

If you opt to go with TypeScript, you can also test it online at their playground (see http:/
/​www.​typescriptlang. ​org/ ​play/ ​). You can set options to be more or less strict with data
type checks, and you can also run your code on the spot (see Figure 1.4 for more details):

Figure 1.4 - TypeScript adds type-checking features for safer programming

By using TypeScript, you will be able to avoid common type-related mistakes. A positive
trend is that most tools (frameworks, libraries, and so on) are slowly going in this direction,
so work will be easier.

Working online
There are some more online tools that you can use to test out your JavaScript code. Check
out JSFiddle (at https:/ ​/​jsfiddle. ​net/ ​), CodePen (at https:/ ​/​codepen. ​io/​), and JSBin
(at http:/​/​jsbin.​com/ ​), among others. You may have to specify whether to use Babel or
Traceur; otherwise, newer language features will be rejected. You can see an example of
JSFiddle in Figure 1.5:

https://flow.org/
https://flow.org/
https://flow.org/
https://flow.org/
https://flow.org/
https://flow.org/
https://flow.org/
https://flow.org/
http://www.typescriptlang.org/play/
http://www.typescriptlang.org/play/
http://www.typescriptlang.org/play/
http://www.typescriptlang.org/play/
http://www.typescriptlang.org/play/
http://www.typescriptlang.org/play/
http://www.typescriptlang.org/play/
http://www.typescriptlang.org/play/
http://www.typescriptlang.org/play/
http://www.typescriptlang.org/play/
http://www.typescriptlang.org/play/
https://jsfiddle.net/
https://jsfiddle.net/
https://jsfiddle.net/
https://jsfiddle.net/
https://jsfiddle.net/
https://jsfiddle.net/
https://jsfiddle.net/
https://jsfiddle.net/
https://codepen.io/
https://codepen.io/
https://codepen.io/
https://codepen.io/
https://codepen.io/
https://codepen.io/
https://codepen.io/
https://codepen.io/
http://jsbin.com/
http://jsbin.com/
http://jsbin.com/
http://jsbin.com/
http://jsbin.com/
http://jsbin.com/
http://jsbin.com/
http://jsbin.com/

Becoming Functional - Several Questions Chapter 1

[26]

Figure 1.5 - JSFiddle lets you try out modern JavaScript code (plus HTML and CSS) without requiring any other tools

Using these tools provides a very quick way to try out code or do small experiments—and I
can truly vouch for this since I've tested much of the code in the book in this way!

Testing
We will also touch on testing, which is, after all, one of FP's main advantages. For this, we
will be using Jasmine (https:/ ​/​jasmine. ​github. ​io/ ​), though we could also opt for Mocha
(http:/​/​mochajs.​org/ ​).

You can run Jasmine test suites with a runner, such as Karma (https:/ ​/​karma- ​runner.
github.​io), but I opted for standalone tests; see https:/ ​/​github. ​com/ ​jasmine/
jasmine#installation for details.

https://jasmine.github.io/
https://jasmine.github.io/
https://jasmine.github.io/
https://jasmine.github.io/
https://jasmine.github.io/
https://jasmine.github.io/
https://jasmine.github.io/
https://jasmine.github.io/
https://jasmine.github.io/
https://jasmine.github.io/
http://mochajs.org/
http://mochajs.org/
http://mochajs.org/
http://mochajs.org/
http://mochajs.org/
http://mochajs.org/
http://mochajs.org/
http://mochajs.org/
https://karma-runner.github.io
https://karma-runner.github.io
https://karma-runner.github.io
https://karma-runner.github.io
https://karma-runner.github.io
https://karma-runner.github.io
https://karma-runner.github.io
https://karma-runner.github.io
https://karma-runner.github.io
https://karma-runner.github.io
https://github.com/jasmine/jasmine#installation
https://github.com/jasmine/jasmine#installation
https://github.com/jasmine/jasmine#installation
https://github.com/jasmine/jasmine#installation
https://github.com/jasmine/jasmine#installation
https://github.com/jasmine/jasmine#installation
https://github.com/jasmine/jasmine#installation
https://github.com/jasmine/jasmine#installation
https://github.com/jasmine/jasmine#installation
https://github.com/jasmine/jasmine#installation

Becoming Functional - Several Questions Chapter 1

[27]

Summary
In this chapter, we have seen the basics of FP, a bit of its history, its advantages (and also
some possible disadvantages, to be fair), why we can apply it in JavaScript (which isn't
usually considered a functional language), and what tools we'll need in order to go through
the rest of this book.

In Chapter 2, Thinking Functionally - A First Example, we'll go over an example of a simple
problem, look at it in common ways, and end by solving it in a functional manner and
analyzing the advantages of our method.

Questions
1.1. Classes as first-class objects: We learned that functions are first-class objects, but did
you know that classes also are? (Though, of course, speaking of classes as objects does sound
weird.) Look at the following example and see what makes it tick! Be careful: there's some
purposefully weird code in it:

const makeSaluteClass = term =>
 class {
 constructor(x) {
 this.x = x;
 }

 salute(y) {
 console.log(`${this.x} says "${term}" to ${y}`);
 }
 };

const Spanish = makeSaluteClass("HOLA");
new Spanish("ALFA").salute("BETA");
// ALFA says "HOLA" to BETA

new (makeSaluteClass("HELLO"))("GAMMA").salute("DELTA");
// GAMMA says "HELLO" to DELTA

const fullSalute = (c, x, y) => new c(x).salute(y);
const French = makeSaluteClass("BON JOUR");
fullSalute(French, "EPSILON", "ZETA");
// EPSILON says "BON JOUR" to ZETA

Becoming Functional - Several Questions Chapter 1

[28]

1.2. Factorial errors: Factorials, as we defined them, should only be calculated for non-
negative integers; however, the function that we wrote in the Recursion section doesn't
verify whether its argument is valid. Can you add the necessary checks? Try to avoid
repeated, redundant tests!

1.3. Climbing factorial: Our implementation of a factorial starts by multiplying by n, then
by n-1, then n-2, and so on in what we could call a downward fashion. Can you write a new
version of the factorial function that will loop upwards?

1.4. Code squeezing: Not that it's a goal in itself, but by using arrow functions and some
other JavaScript features, you can shorten newCounter() to half its length. Can you see
how?

2
Thinking Functionally - A First

Example
In Chapter 1, Becoming Functional – Several Questions, we went over what FP is, mentioned
some advantages of applying it, and listed some tools we'd be needing in JavaScript, but
let's now leave theory behind, and start by considering a simple problem and how to solve
it in a functional way.

In this chapter, we will do the following:

Look at a simple, common, e-commerce related problem
Consider several usual ways to solve it, with their associated defects
Find a way to solve the problem by looking at it functionally
Devise a higher-order solution that can be applied to other problems
Work out how to carry out unit testing for functional solutions

In future chapters, we'll be coming back to some of the topics listed here, so we won't be
going into too much detail. We'll just show how FP can give a different outlook for our
problem and leave further details for later. After working through this chapter, you will
have had a first look at a common problem and at a way of solving it by thinking
functionally, as a prelude for the rest of this book.

Our problem – doing something only once
Let's consider a simple but common situation. You have developed an e-commerce site; the
user can fill their shopping cart, and in the end, they must click on a Bill me button so their
credit card will be charged. However, the user shouldn't click twice (or more) or they will
be billed several times.

Thinking Functionally - A First Example Chapter 2

[30]

The HTML part of your application might have something like this somewhere:

<button id="billButton" onclick="billTheUser(some, sales, data)">Bill
me</button>

And, among the scripts, you'd have something similar to the following code:

function billTheUser(some, sales, data) {
 window.alert("Billing the user...");
 // actually bill the user
}

Assigning the events handler directly in HTML, the way I did it, isn't
recommended. Rather, unobtrusively, you should assign the handler
through code. So, do as I say, not as I do!

This is a very bare-bones explanation of the problem and your web page, but it's enough for
our purposes. Let's now get to thinking about ways of avoiding repeated clicks on that
button. How can we manage to avoid the user clicking more than once? That's an interesting
problem, with several possible solutions—let's get started by looking at bad ones!

How many ways can you think of to solve our problem? Let's go over several solutions and
analyze their quality.

Solution 1 – hoping for the best!
How can we solve the problem? The first solution may seem like a joke: do nothing, tell the
user not to click twice, and hope for the best! Your page might look like Figure 2.1:

Figure 2.1: An actual screenshot of a page, just warning you against clicking more than once

This is a way to weasel out of the problem; I've seen several websites that just warn the user
about the risks of clicking more than once (see Figure 2.1) and actually do nothing to
prevent the situation: The user got billed twice? We warned them... it's their fault!

Thinking Functionally - A First Example Chapter 2

[31]

Your solution might simply look like the following code:

<button id="billButton" onclick="billTheUser(some, sales, data)">Bill
me</button>
WARNING: PRESS ONLY ONCE, DO NOT PRESS AGAIN!!

Okay, so this isn't actually a solution; let's move on to more serious proposals.

Solution 2 – using a global flag
The solution most people would probably think of first is using some global variable to
record whether the user has already clicked on the button. You'd define a flag named
something like clicked, initialized with false. When the user clicks on the button, if
clicked was false, you'd change it to true and execute the function; otherwise, you
wouldn't do anything at all. See all of this in the following code:

let clicked = false;
.
.
.
function billTheUser(some, sales, data) {
 if (!clicked) {
 clicked = true;
 window.alert("Billing the user...");
 // actually bill the user
 }
}

For more good reasons not to use global variables, read http:/ ​/ ​wiki. ​c2.
com/​? ​GlobalVariablesAreBad.

This obviously works, but it has several problems that must be addressed:

You are using a global variable, and you could change its value by accident.
Global variables aren't a good idea, neither in JavaScript nor in other languages.
You must also remember to re-initialize it to false when the user starts buying
again. If you don't, the user won't be able to make a second purchase because
paying will have become impossible.
You will have difficulties testing this code because it depends on external things
(that is, the clicked variable).

So, this isn't a very good solution. Let's keep thinking!

http://wiki.c2.com/?GlobalVariablesAreBad
http://wiki.c2.com/?GlobalVariablesAreBad
http://wiki.c2.com/?GlobalVariablesAreBad
http://wiki.c2.com/?GlobalVariablesAreBad
http://wiki.c2.com/?GlobalVariablesAreBad
http://wiki.c2.com/?GlobalVariablesAreBad
http://wiki.c2.com/?GlobalVariablesAreBad
http://wiki.c2.com/?GlobalVariablesAreBad
http://wiki.c2.com/?GlobalVariablesAreBad
http://wiki.c2.com/?GlobalVariablesAreBad
http://wiki.c2.com/?GlobalVariablesAreBad
http://wiki.c2.com/?GlobalVariablesAreBad

Thinking Functionally - A First Example Chapter 2

[32]

Solution 3 – removing the handler
We may go for a lateral kind of solution, and instead of having the function avoid repeated
clicks, we might just remove the possibility of clicking altogether. The following code does
just that; the first thing that billTheUser() does is remove the onclick handler from the
button, so no further calls will be possible:

function billTheUser(some, sales, data) {
 document.getElementById("billButton").onclick = null;
 window.alert("Billing the user...");
 // actually bill the user
}

This solution also has some problems:

The code is tightly coupled to the button, so you won't be able to reuse it
elsewhere.
You must remember to reset the handler, otherwise, the user won't be able to
make a second buy.
Testing will also be harder because you'll have to provide some DOM elements.

We can enhance this solution a bit and avoid coupling the function to the button by
providing the latter's ID as an extra argument in the call. (This idea can also be applied to
some of the following solutions.) The HTML part would be as follows, and note the extra
argument to billTheUser():

<button
 id="billButton"
 onclick="billTheUser('billButton', some, sales, data)"
>
 Bill me
</button>;

We also have to change the called function, so it will use the received buttonId value to
access the corresponding button:

function billTheUser(buttonId, some, sales, data) {
 document.getElementById(buttonId).onclick = null;
 window.alert("Billing the user...");
 // actually bill the user
}

This solution is somewhat better. But, in essence, we are still using a global element—not a
variable, but the onclick value. So, despite the enhancement, this isn't a very good
solution either. Let's move on.

Thinking Functionally - A First Example Chapter 2

[33]

Solution 4 – changing the handler
A variant to the previous solution would be not to remove the click function, but rather
assign a new one instead. We are using functions as first-class objects here when we assign
the alreadyBilled() function to the click event. The function warning the user that they
have already clicked could be something as follows:

function alreadyBilled() {
 window.alert("Your billing process is running; don't click, please.");
}

Our billTheUser() function would then be like the following code—and note how
instead of assigning null to the onclick handler as in the previous section, now the
alreadyBilled() function is assigned:

function billTheUser(some, sales, data) {
 document.getElementById("billButton").onclick = alreadyBilled;
 window.alert("Billing the user...");
 // actually bill the user
}

There's a good point to this solution; if the user clicks a second time, they'll get a warning
not to do that, but they won't be billed again. (From the point of view of the user
experience, it's better.) However, this solution still has the very same objections as the
previous one (code coupled to the button, needing to reset the handler, and harder testing),
so we won't consider it quite good anyway.

Solution 5 – disabling the button
A similar idea here is instead of removing the event handler, we can disable the button so
the user won't be able to click. You might have a function like the following code, which
does exactly that by setting the disabled attribute of the button:

function billTheUser(some, sales, data) {
 document.getElementById("billButton").setAttribute("disabled", "true");
 window.alert("Billing the user...");
 // actually bill the user
}

This also works, but we still have objections as with the previous solutions (coupling the
code to the button, needing to re-enable the button, and harder testing), so we don't like
this solution either.

Thinking Functionally - A First Example Chapter 2

[34]

Solution 6 – redefining the handler
Another idea: instead of changing anything in the button, let's have the event handler
change itself. The trick is in the second line; by assigning a new value to the billTheUser
variable, we are actually dynamically changing what the function does! The first time you
call the function, it will do its thing, but it will also change itself out of existence, by giving
its name to a new function:

function billTheUser(some, sales, data) {
 billTheUser = function() {};
 window.alert("Billing the user...");
 // actually bill the user
}

There's a special trick in the solution. Functions are global, so the
billTheUser=... line actually changes the function's inner workings. From that point on,
billTheUser will be the new (null) function. This solution is still hard to test. Even worse,
how would you restore the functionality of billTheUser, setting it back to its original
objective?

Solution 7 – using a local flag
We can go back to the idea of using a flag, but instead of making it global (which was our
main objection), we can use an Immediately Invoked Function Expression (IIFE), which
we'll see more on in Chapter 3, Starting Out with Functions – A Core Concept, and Chapter
11, Implementing Design Patterns – The Functional Way. With this, we can use a closure, so
clicked will be local to the function, and not visible anywhere else:

var billTheUser = (clicked => {
 return (some, sales, data) => {
 if (!clicked) {
 clicked = true;
 window.alert("Billing the user...");
 // actually bill the user
 }
 };
})(false);

See how clicked gets its initial false value from the call at the end.

Thinking Functionally - A First Example Chapter 2

[35]

This solution is along the lines of the global variable solution but using a private, local
variable is an enhancement. About the only drawback we could find is that you'll have to
rework every function that needs to be called only once to work in this fashion (and, as
we'll see in the following section, our FP solution is similar to it in some ways). Okay, it's
not too hard to do, but don't forget the Don't Repeat Yourself (DRY) advice!

We have now gone through multiple ways of solving our do something only once
problem—but as we've seen, they were not very good! Let's think about the problem in a
functional way, and we'll get a more general solution.

A functional solution to our problem
Let's try to be more general; after all, requiring that some function or other be executed only
once isn't that outlandish, and may be required elsewhere! Let's lay down some principles:

The original function (the one that may be called only once) should do whatever
it is expected to do and nothing else.
We don't want to modify the original function in any way.
We need to have a new function that will call the original one only once.
We want a general solution that we can apply to any number of original
functions.

The first principle listed previously is the single responsibility principle (the
S in S.O.L.I.D.), which states that every function should be responsible for
a single functionality. For more on S.O.L.I.D., check the article by Uncle
Bob (Robert C. Martin, who wrote the five principles) at http:/ ​/
butunclebob. ​com/ ​ArticleS. ​UncleBob. ​PrinciplesOfOod.

Can we do it? Yes, and we'll write a higher-order function, which we'll be able to apply to any
function, to produce a new function that will work only once. Let's see how! We will
introduce higher-order functions (to which we'll later dedicate Chapter 6, Producing
Functions – Higher-Order Functions) and then we'll go about testing our functional solution,
as well as providing some enhancements to it.

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

Thinking Functionally - A First Example Chapter 2

[36]

A higher-order solution
If we don't want to modify the original function, we'll create a higher-order function, which
we'll (inspiredly!) name once(). This function will receive a function as a parameter and
will return a new function, which will work only a single time. (As we mentioned before,
we'll be seeing more of higher-order functions in Chapter 6, Producing Functions – Higher-
Order Functions; in particular, see the Doing things once, revisited section.)

Underscore and Lodash already have a similar function, invoked as
_.once(). Ramda also provides R.once(), and most FP libraries include
similar functionality, so you wouldn't have to program it on your own.

Our once() function may seem imposing at first, but as you get accustomed to working in
FP fashion, you'll get used to this sort of code and find it to be quite understandable:

const once = fn => {
 let done = false;
 return (...args) => {
 if (!done) {
 done = true;
 fn(...args);
 }
 };
};

Let's go over some of the finer points of this function:

The first line shows that once() receives a function (fn) as its parameter.
We are defining an internal, private done variable, by taking advantage of
closure, as in Solution 7, previously. We opted not to call it clicked, as
previously, because you don't necessarily need to click on a button to call the
function, so we went for a more general term. Each time you apply once() to
some function, a new, distinct done variable will be created and will be
accessible only from the returned function.
The return (...args) => ... line says that once() will return a function,
with some (one or more, or possibly zero) parameters. Note that we are using the
spread syntax we saw in Chapter 1, Becoming Functional – Several Questions. With
older versions of JavaScript, you'd have to work with the arguments object; see
https:/​/ ​developer. ​mozilla. ​org/​en/ ​docs/ ​Web/ ​JavaScript/ ​Reference/
Functions/ ​arguments for more on that. The modern JavaScript way is simpler
and shorter!

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments

Thinking Functionally - A First Example Chapter 2

[37]

We assign done = true before calling fn(), just in case that function throws an
exception. Of course, if you don't want to disable the function unless it has
successfully ended, then you could move the assignment just below the fn()
call.
After the setting is done, we finally call the original function. Note the use of the
spread operator to pass along whatever parameters the original fn() had.

So, how would we use it? We don't even need to store the newly generated function in any
place. We can simply write the onclick method, shown as follows:

<button id="billButton" onclick="once(billTheUser)(some, sales, data)">
 Bill me
</button>;

Pay close attention to the syntax! When the user clicks on the button, the function that gets
called with the (some, sales, data) argument isn't billTheUser(), but rather the
result of having called once() with billTheUser as a parameter. That result is the one
that can be called only a single time.

Note that our once() function uses functions as first-class objects, arrow
functions, closures, and the spread operator; back in Chapter 1, Becoming
Functional – Several Questions, we said we'd be needing those, so we're
keeping our word! All we are missing here from that chapter is recursion,
but as the Rolling Stones sang, You Can't Always Get What You Want!

We now have a functional way of getting a function to do its thing only once; how would
we test it? Let's get into that topic now.

Testing the solution manually
We can run a simple test. Let's write a squeak() function that will, appropriately, squeak
when called! The code is simple:

const squeak = a => console.log(a, " squeak!!");

squeak("original"); // "original squeak!!"
squeak("original"); // "original squeak!!"
squeak("original"); // "original squeak!!"

Thinking Functionally - A First Example Chapter 2

[38]

If we apply once() to it, we get a new function that will squeak only once. See the
highlighted line in the following code:

const squeakOnce = once(squeak);

squeakOnce("only once"); // "only once squeak!!"
squeakOnce("only once"); // no output
squeakOnce("only once"); // no output

Check out the results at CodePen or see Figure 2.2:

Figure 2.2: Testing our once() higher-order function

The previous steps showed us how we could test our once() function by hand, but the
method we used is not exactly ideal. Let's see why, and how to do better, in the next
section.

Thinking Functionally - A First Example Chapter 2

[39]

Testing the solution automatically
Running tests by hand is no good: it gets tiresome and boring and that leads, after a while,
to not running the tests any longer. Let's do better and write some automatic tests with
Jasmine. Following the instructions over at https:/ ​/​jasmine. ​github. ​io/ ​pages/ ​getting_
started.​html, I set up a standalone runner; the required HTML code, using Jasmine Spec
Runner 2.6.1, is as follows:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Jasmine Spec Runner v2.6.1</title>

 <link rel="shortcut icon" type="image/png"
 href="lib/jasmine-2.6.1/jasmine_favicon.png">
 <link rel="stylesheet" href="lib/jasmine-2.6.1/jasmine.css">

 <script src="lib/jasmine-2.6.1/jasmine.js"></script>
 <script src="lib/jasmine-2.6.1/jasmine-html.js"></script>
 <script src="lib/jasmine-2.6.1/boot.js"></script>

 <script src="src/once.js"></script>
 <script src="tests/once.test.1.js"></script>
</head>
<body>
</body>
</html>

The src/once.js file has the once() definition that we just saw, and
tests/once.test.js has the actual suite of tests. The code for our tests is the following:

describe("once", () => {
 beforeEach(() => {
 window.myFn = () => {};
 spyOn(window, "myFn");
 });

 it("without 'once', a function always runs", () => {
 myFn();
 myFn();
 myFn();
 expect(myFn).toHaveBeenCalledTimes(3);
 });

 it("with 'once', a function runs one time", () => {
 window.onceFn = once(window.myFn);

https://jasmine.github.io/pages/getting_started.html
https://jasmine.github.io/pages/getting_started.html
https://jasmine.github.io/pages/getting_started.html
https://jasmine.github.io/pages/getting_started.html
https://jasmine.github.io/pages/getting_started.html
https://jasmine.github.io/pages/getting_started.html
https://jasmine.github.io/pages/getting_started.html
https://jasmine.github.io/pages/getting_started.html
https://jasmine.github.io/pages/getting_started.html
https://jasmine.github.io/pages/getting_started.html
https://jasmine.github.io/pages/getting_started.html
https://jasmine.github.io/pages/getting_started.html
https://jasmine.github.io/pages/getting_started.html
https://jasmine.github.io/pages/getting_started.html
https://jasmine.github.io/pages/getting_started.html
https://jasmine.github.io/pages/getting_started.html

Thinking Functionally - A First Example Chapter 2

[40]

 spyOn(window, "onceFn").and.callThrough();
 onceFn();
 onceFn();
 onceFn();
 expect(onceFn).toHaveBeenCalledTimes(3);
 expect(myFn).toHaveBeenCalledTimes(1);
 });
});

There are several points to note here:

To spy on a function, it must be associated with an object. (Alternatively, you can
also directly create a spy using Jasmine's createSpy() method.) Global
functions are associated with the window object, so window.fn is a way of
saying that fn is actually global.
When you spy on a function, Jasmine intercepts your calls and registers that the
function was called, with which arguments, and how many times it was called.
So, for all we care, window.fn could simply be null because it will never be
executed.
The first test only checks that if we call the function several times, it gets called
that number of times. This is trivial, but if that didn't happen, we'd be doing
something really wrong!
In the second group of tests, we want to see that the once() function
(window.onceFn()) gets called, but only once. So, we tell Jasmine to spy on
onceFn but let calls pass through. Any calls to fn() will also get counted. In our
case, as expected, despite calling onceFn() three times, fn() gets called only
once.

We can see the results in Figure 2.3:

Figure 2.3: Running automatic tests on our function with Jasmine

Thinking Functionally - A First Example Chapter 2

[41]

Now we have seen not only how to test our functional solution by hand but also in an
automatic way, so we are done with testing. Let's just finish by considering an even better
solution, also achieved in a functional way.

Producing an even better solution
In one of the previous solutions, we mentioned that it would be a good idea to do
something every time after the first click, and not silently ignore the user's clicks. We'll
write a new higher-order function that takes a second parameter—a function to be called
every time from the second call onward. Our new function will be called
onceAndAfter() and can be written as follows:

const onceAndAfter = (f, g) => {
 let done = false;
 return (...args) => {
 if (!done) {
 done = true;
 f(...args);
 } else {
 g(...args);
 }
 };
};

We have ventured further in higher-order functions; onceAndAfter() takes two functions
as parameters and produces a third one, which includes the other two within.

You could make onceAndAfter() more powerful by giving a default
value for g, along the lines of const onceAndAfter = (f, g = () =>
{}), so if you didn't want to specify the second function, it would still
work fine because it would call a do-nothing function, instead of causing
an error.

We can do a quick-and-dirty test, along the same lines as we did earlier. Let's add a
creak() creaking function to our previous squeak() one, and check out what happens if
we apply onceAndAfter() to them. We can then get a makeSound() function that should
squeak() once and creak() afterward:

const squeak = (x) => console.log(x, "squeak!!");
const creak = (x) => console.log(x, "creak!!");
const makeSound = onceAndAfter(squeak, creak);

makeSound("door"); // "door squeak!!"
makeSound("door"); // "door creak!!"

Thinking Functionally - A First Example Chapter 2

[42]

makeSound("door"); // "door creak!!"
makeSound("door"); // "door creak!!"

Writing a test for this new function isn't hard, only a bit longer. We have to check which
function was called and how many times:

describe("onceAndAfter", () => {
 it("should call the first function once, and the other after", () => {
 func1 = () => {};
 spyOn(window, "func1");
 func2 = () => {};
 spyOn(window, "func2");
 onceFn = onceAndAfter(func1, func2);

 onceFn();
 expect(func1).toHaveBeenCalledTimes(1);
 expect(func2).toHaveBeenCalledTimes(0);

 onceFn();
 expect(func1).toHaveBeenCalledTimes(1);
 expect(func2).toHaveBeenCalledTimes(1);

 onceFn();
 expect(func1).toHaveBeenCalledTimes(1);
 expect(func2).toHaveBeenCalledTimes(2);

 onceFn();
 expect(func1).toHaveBeenCalledTimes(1);
 expect(func2).toHaveBeenCalledTimes(3);
 });
});

Notice that we always check that func1() is called only once. Similarly, we check
func2(); the count of calls starts at zero (the time that func1() is called), and from then
on, it goes up by one on each call.

Summary
In this chapter, we've seen a common, simple problem, based on a real-life situation, and
after analyzing several typical ways of solving that, we went for a functional
thinking solution. We saw how to apply FP to our problem, and we found a more general
higher-order solution that we could apply to similar problems with no further code
changes. We saw how to write unit tests for our code to round out the development job.

Thinking Functionally - A First Example Chapter 2

[43]

Finally, we produced an even better solution (from the point of view of the user experience)
and saw how to code it and how to unit test it. Now, you've started to get a grip on how to
solve a problem functionally; next, in Chapter 3, Starting Out with Functions – a Core
Concept, we'll be delving more deeply into functions, which are at the core of all FP.

Questions
2.1. No extra variables: Our functional implementation required using an extra variable,
done, to mark whether the function had already been called. Not that it matters, but could
you make do without using any extra variables? Note that we aren't telling you not to use
any variables, it's just a matter of not adding any new ones, such as done, and only as an
exercise!

2.2. Alternating functions: In the spirit of our onceAndAfter() function, could you write
an alternator() higher-order function that gets two functions as arguments and on each
call, alternatively calls one and another? The expected behavior should be as in the
following example:

let sayA = () => console.log("A");
let sayB = () => console.log("B");
let alt = alternator(sayA, sayB);

alt(); // A
alt(); // B
alt(); // A
alt(); // B
alt(); // A
alt(); // B

2.3. Everything has a limit! As an extension of once(), could you write a higher-order
function, thisManyTimes(fn,n), that would let you call the fn() function up to n times,
but would afterward do nothing? To give an example, once(fn) and
thisManyTimes(fn,1) would produce functions that behave in exactly the same way.

3
Starting Out with Functions - A

Core Concept
In Chapter 2, Thinking Functionally – A First Example, we went over an example of
Functional Programming (FP) thinking, but let's now look at the basics and
review functions. In Chapter 1, Becoming Functional – Several Questions, we mentioned that
two important JavaScript features were functions: first-class objects and closures.

In this chapter, we'll cover several important topics:

Functions in JavaScript, including how to define them, with a particular focus on
arrow functions
Currying and functions as first-class objects
Several ways of using functions in an FP way

After all this content, you'll be up to date as to the generic and specific concepts relating to
functions, which are, after all, at the core of FP!

All about functions
Let's get started with a short review of functions in JavaScript and their relationship to FP
concepts. We can start something that we mainly mentioned in the Functions as first-class
objects section in Chapter 1, Becoming Functional - Several Questions, and in a couple of
places in Chapter 2, Thinking Functionally - A First Example, about functions as first-class
objects, and then go on to several considerations about their usage in actual coding.

Starting Out with Functions - A Core Concept Chapter 3

[45]

In particular, we'll be looking at the following:

Some basic and very important concepts about lambda calculus, which is the
theoretical basis for FP
Arrow functions, which are the most direct translation of lambda calculus into
JavaScript
Using functions as first-class objects, a key concept in FP

Of lambdas and functions
In lambda calculus terms, a function can look like λx.2*x. The understanding is that the
variable after the λ character is the parameter for the function, and the expression after the
dot is where you would replace whatever value is passed as an argument. Later in this
chapter, we will see that this particular example could be written as x => 2*x in JavaScript
in arrow function form, which, as you can see, is very similar in form.

If you sometimes wonder about the difference between arguments and
parameters, a mnemonic with some alliteration may help: Parameters are
Potential, Arguments are Actual. Parameters are placeholders for potential
values that will be passed, and arguments are the actual values passed to
the function. In other words, when you define the function, you list its
parameters, and when you call it, you provide arguments.

Applying a function means that you provide an actual argument to it, which is
written in the usual way, by using parentheses. For example, (λx.2*x)(3) would be
calculated as 6. What's the equivalent of these lambda functions in JavaScript? That's an
interesting question! There are several ways of defining functions, and not all have the
same meaning.

A good article that shows the many ways of defining functions, methods,
and more is The Many Faces of Functions in JavaScript by Leo Balter and
Rick Waldron, at https:/ ​/​bocoup. ​com/ ​blog/ ​the-​many- ​faces- ​of-
functions- ​in- ​javascript—give it a look!

In how many ways can you define a function in JavaScript? The answer is probably in more
ways than you thought! At the very least, you could write the following:

A named function declaration: function first(...) {...};
An anonymous function expression: var second = function(...) {...};
A named function expression: var third = function someName(...)
{...};

https://bocoup.com/blog/the-many-faces-of-functions-in-javascript
https://bocoup.com/blog/the-many-faces-of-functions-in-javascript
https://bocoup.com/blog/the-many-faces-of-functions-in-javascript
https://bocoup.com/blog/the-many-faces-of-functions-in-javascript
https://bocoup.com/blog/the-many-faces-of-functions-in-javascript
https://bocoup.com/blog/the-many-faces-of-functions-in-javascript
https://bocoup.com/blog/the-many-faces-of-functions-in-javascript
https://bocoup.com/blog/the-many-faces-of-functions-in-javascript
https://bocoup.com/blog/the-many-faces-of-functions-in-javascript
https://bocoup.com/blog/the-many-faces-of-functions-in-javascript
https://bocoup.com/blog/the-many-faces-of-functions-in-javascript
https://bocoup.com/blog/the-many-faces-of-functions-in-javascript
https://bocoup.com/blog/the-many-faces-of-functions-in-javascript
https://bocoup.com/blog/the-many-faces-of-functions-in-javascript
https://bocoup.com/blog/the-many-faces-of-functions-in-javascript
https://bocoup.com/blog/the-many-faces-of-functions-in-javascript
https://bocoup.com/blog/the-many-faces-of-functions-in-javascript
https://bocoup.com/blog/the-many-faces-of-functions-in-javascript
https://bocoup.com/blog/the-many-faces-of-functions-in-javascript
https://bocoup.com/blog/the-many-faces-of-functions-in-javascript
https://bocoup.com/blog/the-many-faces-of-functions-in-javascript
https://bocoup.com/blog/the-many-faces-of-functions-in-javascript

Starting Out with Functions - A Core Concept Chapter 3

[46]

An immediately-invoked expression: var fourth = (function() { ...;
return function(...) {...}; })();
A function constructor: var fifth = new Function(...);
An arrow function: var sixth = (...) => {...};

And, if you wanted, you could add object method declarations, since they actually imply
functions as well, but the preceding list should be enough.

JavaScript also allows us to define generator functions (as in
function*(...) {...}) that actually return a Generator object, and
async functions that are really a mix of generators and promises. We
won't be using these kinds of functions, but you can read more about
them at https:/ ​/​developer. ​mozilla. ​org/ ​en/​docs/ ​Web/ ​JavaScript/
Reference/ ​Statements/ ​function* and https:/ ​/​developer. ​mozilla.
org/​en- ​US/ ​docs/ ​Web/ ​JavaScript/ ​Reference/ ​Statements/ ​async_
function—they can be useful in other contexts.

What's the difference between all these ways of defining functions, and why should we
care? Let's go over them, one by one:

The first definition, a standalone declaration starting with the function
keyword, is probably the most used definition in JavaScript, and defines a
function named first (that is, first.name=="first"). Because of hoisting, this
function will be accessible everywhere in the scope where it's defined.

You can read more about hoisting at https:/ ​/​developer. ​mozilla. ​org/
en-​US/ ​docs/ ​Glossary/ ​Hoisting. Keep in mind that it applies only to
declarations and not to initializations.

The second definition, which assigns a function to a variable, also produces a
function, but an anonymous (that is, not named) one; however, many JavaScript
engines are capable of deducing what the name should be, and will
then set second.name === "second". (Look at the following code, which
shows a case where the anonymous function has no name assigned.) Since the
assignment isn't hoisted, the function will only be accessible after the assignment
has been executed. Also, you'd probably prefer defining the variable with const
rather than var, because you wouldn't (shouldn't) be changing the function:

var second = function() {};
console.log(second.name);
// "second"

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Statements/function*
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Statements/function*
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Statements/function*
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Statements/function*
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Statements/function*
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Statements/function*
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Statements/function*
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Statements/function*
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Statements/function*
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Statements/function*
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Statements/function*
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Statements/function*
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Statements/function*
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Statements/function*
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Statements/function*
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Statements/function*
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Statements/function*
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Statements/function*
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Statements/function*
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Statements/function*
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Statements/function*
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Statements/function*
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting

Starting Out with Functions - A Core Concept Chapter 3

[47]

var myArray = new Array(3);
myArray[1] = function() {};
console.log(myArray[1].name);
// ""

The third definition is the same as the second, except that the function now has
its own name: third.name === "someName".

The name of a function is relevant when you want to call it, and also if
you plan to perform recursive calls; we'll come back to this in Chapter 9,
Designing Functions – Recursion. If you just want a function for, say, a
callback, you can use one without a name; however, note that named
functions are more easily recognized in an error traceback, the kind of
listing you get to use when you are trying to understand what happened,
and which function called what.

The fourth definition, with an immediately invoked expression, lets you use a
closure. An inner function can use variables or other functions, defined in its
outer function, in a totally private, encapsulated, way. Going back to the counter-
making function that we saw in the Closures section of Chapter 1, Becoming
Functional – Several Questions, we could write something like the following:

var myCounter = (function(initialValue = 0) {
 let count = initialValue;
 return function() {
 count++;
 return count;
 };
})(77);

myCounter(); // 78
myCounter(); // 79
myCounter(); // 80

Study the code carefully: the outer function receives an argument (77, in this case)
that is used as the initial value of count (if no initial value is provided, we start at
0). The inner function can access count (because of the closure), but the variable
cannot be accessed anywhere else. In all aspects, the returned function is a
common function—the only difference is its access to private elements. This is
also the basis of the module pattern.

Starting Out with Functions - A Core Concept Chapter 3

[48]

The fifth definition isn't safe, and you shouldn't use it! You pass the names of the
arguments first, then the actual function body as a string, and the equivalent of
eval() is used to create the function, which could allow many dangerous hacks,
so don't do this! Just to whet your curiosity, let's look at an example of rewriting
the very simple sum3() function we saw back in the Spread section of Chapter 1,
Becoming Functional - Several Questions:

var sum3 = new Function("x", "y", "z", "var t = x+y+z; return
t;");
sum3(4, 6, 7); // 17

This sort of definition is not only unsafe, but has some other quirks—they
don't create closures with their creation contexts, and so they are always
global. See https:/ ​/​developer. ​mozilla. ​org/ ​en-​US/ ​docs/ ​Web/
JavaScript/ ​Reference/ ​Global_ ​Objects/ ​Function for more on this, but
remember that using this way of creating functions isn't a good idea!

Finally, the last definition, which uses an arrow => definition, is the most
compact way to define a function, and the one we'll try to use whenever possible.

At this point, we have seen several ways of defining a function, but let's now focus on
arrow functions, a style we'll be favoring in our coding for this book.

Arrow functions – the modern way
Even if the arrow functions work pretty much in the same way as the other functions, there
are some important differences between them and the usual functions. Arrow functions can
implicitly return a value even with no return statement present, the value of this is not
bound, and there is no arguments object. Let's go over these three points.

There are some extra differences: arrow functions cannot be used as
constructors, they do not have a prototype property, and they cannot be
used as generators because they don't allow the yield keyword. For more
details on these points, see https:/ ​/ ​developer. ​mozilla. ​org/ ​en- ​US/
docs/ ​Web/ ​JavaScript/ ​Reference/ ​Functions/ ​Arrow_ ​functions#No_
binding_ ​of_ ​this.

In this section, we'll go into several JavaScript function-related topics, including:

How to return different values
How to handle problems with the value of this

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#No_binding_of_this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#No_binding_of_this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#No_binding_of_this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#No_binding_of_this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#No_binding_of_this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#No_binding_of_this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#No_binding_of_this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#No_binding_of_this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#No_binding_of_this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#No_binding_of_this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#No_binding_of_this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#No_binding_of_this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#No_binding_of_this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#No_binding_of_this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#No_binding_of_this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#No_binding_of_this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#No_binding_of_this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#No_binding_of_this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#No_binding_of_this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#No_binding_of_this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#No_binding_of_this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#No_binding_of_this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#No_binding_of_this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#No_binding_of_this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#No_binding_of_this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#No_binding_of_this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#No_binding_of_this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#No_binding_of_this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#No_binding_of_this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#No_binding_of_this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#No_binding_of_this

Starting Out with Functions - A Core Concept Chapter 3

[49]

How to work with varying numbers of arguments
An important concept, currying, for which we'll find many usages in the rest of
the book

Returning values
In the lambda coding style, functions only consist of a result. For the sake of brevity, the
new arrow functions provide a syntax for this. When you write something like (x,y,z)
=> followed by an expression, a return is implied. For instance, the following two
functions actually do the same as the sum3() function that we showed previously:

const f1 = (x, y, z) => x + y + z;

const f2 = (x, y, z) => {
 return x + y + z;
};

If you want to return an object, then you must use parentheses; otherwise, JavaScript will
assume that code follows.

A matter of style: when you define an arrow function with only one
parameter, you can omit the parentheses around it. For consistency, I
prefer to always include them. However, Prettier, the formatting tool I use
(we mentioned it in Chapter 1, Becoming Functional - Several Questions)
doesn't approve. Feel free to choose your style!

And a final note: lest you think this is a wildly improbable case, check out the Questions
section later in this chapter for a very common scenario!

Handling the this value
A classic problem with JavaScript is the handling of this, whose value isn't always what
you expect it to be. ES2015 solved this with arrow functions, which inherit the proper this
value so that problems are avoided. Look at the following code for an example of the
possible problems: by the time the timeout function is called, this will point to the global
(window) variable instead of the new object, so you'll get undefined in the console:

function ShowItself1(identity) {
 this.identity = identity;
 setTimeout(function() {
 console.log(this.identity);
 }, 1000);

Starting Out with Functions - A Core Concept Chapter 3

[50]

}

var x = new ShowItself1("Functional");
// after one second, undefined is displayed

There are two classic ways of solving this with old-fashioned JavaScript and the arrow way
of working:

One solution uses a closure and defines a local variable (usually named that or
sometimes self), which will get the original value of this, so it won't
be undefined.
The second way uses bind(), so the timeout function will be bound to the
correct value of this.
The third, more modern way just uses an arrow function, so this gets the correct
value (pointing to the object) without further ado.

We will also be using bind(). See the Of lambdas and functions section.

Let's see the three solutions in actual code. We use a closure for the first timeout, binding
for the second, and an arrow function for the third:

function ShowItself2(identity) {
 this.identity = identity;
 let that = this;
 setTimeout(function() {
 console.log(that.identity);
 }, 1000);

 setTimeout(
 function() {
 console.log(this.identity);
 }.bind(this),
 2000
);

 setTimeout(() => {
 console.log(this.identity);
 }, 3000);
}

var x = new ShowItself2("JavaScript");
// after one second, "JavaScript"

Starting Out with Functions - A Core Concept Chapter 3

[51]

// after another second, the same
// after yet another second, once again

If you run this code, you'll get JavaScript after one second, then again after another
second, and yet a third time after another second; all three methods worked correctly, so
whichever you pick really depends on which you like better.

Working with arguments
In Chapter 1, Becoming Functional - Several Questions, and Chapter 2, Thinking Functionally -
A First Example, we saw some uses of the spread (...) operator. However, the most
practical usage we'll be making of it has to do with working with arguments; we'll see some
cases of this in Chapter 6, Producing Functions – Higher-Order Functions. Let's review our
once() function:

const once = func => {
 let done = false;
 return (...args) => {
 if (!done) {
 done = true;
 func(...args);
 }
 };
};

Why are we writing return (...args) => and then afterwards func(...args)? The
answer has to do with the more modern way of handling a variable number (possibly zero)
of arguments. How did you manage such kinds of code in older versions of JavaScript? The
answer has to do with the arguments object (not an array!) that lets you access the actual
arguments passed to the function.

For more on this, read https:/ ​/​developer. ​mozilla. ​org/ ​en/​docs/ ​Web/
JavaScript/ ​Reference/ ​Functions/ ​arguments.

In JavaScript 5 and earlier, if we wanted a function to be able to process any number of
arguments, we had to write code as follows:

function somethingElse() {
 // get arguments and do something
}

function listArguments() {

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments

Starting Out with Functions - A Core Concept Chapter 3

[52]

 console.log(arguments);
 var myArray = Array.prototype.slice.call(arguments);
 console.log(myArray);
 somethingElse.apply(null, myArray);
}

listArguments(22, 9, 60);
// (3) [22, 9, 60, callee: function, Symbol(Symbol.iterator): function]
// (3) [22, 9, 60]

The first log shows that arguments is actually an object; the second log corresponds to a
simple array. Also, note the complicated way that is needed to call somethingElse(),
which requires using apply().

What would be the equivalent code in the latest JavaScript version? It is much shorter, and
that's why we'll be seeing several examples of the usage of the spread operator in the book:

function listArguments2(...args) {
 console.log(args);
 somethingElse(...args);
}

listArguments2(12, 4, 56);
// (3) [12, 4, 56]

You should bear in mind the following points when looking at this code:

By writing listArguments2(...args), we immediately and clearly express
that our new function receives several (possibly zero) arguments.
You need not do anything to get an array. The console log shows that args is
really an array.
Writing somethingElse(...args) is much clearer than the alternative way
that we had to use earlier (using apply()).

By the way, the arguments object is still available in the current version of JavaScript. If
you want to create an array from it, you have two alternative ways of doing so, without
having to resort to the Array.prototype.slice.call trick:

Use the from() method and write var myArray=Array.from(arguments).
Write let myArray=[...arguments], which shows yet another type of usage
of the spread operator.

When we get to the topic of higher-order functions, writing functions that deal with other
functions, with a possibly unknown number of parameters, will be commonplace.

Starting Out with Functions - A Core Concept Chapter 3

[53]

JavaScript provides a much shorter way of doing this, and that's why you'll have to get
accustomed to this usage. It's worth it!

One argument or many?
It's also possible to write functions that return functions, and in Chapter 6, Producing
Functions - Higher-Order Functions, we will be seeing more of this. For instance, in lambda
calculus, you don't write functions with several parameters, but only one; you do this by
using a technique called currying (why would you do this? Hold that thought; we'll come
to this later).

Currying gets its name from Haskell Curry, who developed the concept.
Note that there is an FP language that is named after him—Haskell; double
recognition!

For instance, the function that we saw previously that sums three numbers would be
written as follows:

const altSum3 = x => y => z => x + y + z;

Why did I change the function's name? Simply put, because this is not the same function as
the one we saw previously. As is, though, it can be used to produce the very same results as
our earlier function. That said, it differs in an important way. Let's look at how you would
use it, say, to sum the numbers 1, 2, and 3:

altSum3(1)(2)(3); // 6

Test yourself before reading on, and think on this: what would have been
returned if you had written altSum3(1,2,3) instead? Tip: it would not
be a number! For the full answer, keep reading.

How does this work? Separating it into many calls can help; this would be the way the
previous expression is actually calculated by the JavaScript interpreter:

let fn1 = altSum3(1);
let fn2 = fn1(2);
let fn3 = fn2(3);

Think functionally! The result of calling altSum3(1) is, according to the definition, a
function, which, in virtue of a closure, resolves to be equivalent to the following:

let fn1 = y => z => 1 + y + z;

Starting Out with Functions - A Core Concept Chapter 3

[54]

Our altSum3() function is meant to receive a single argument, not three! The result of this
call, fn1, is also a single-argument function. When you use fn1(2), the result is again a
function, also with a single parameter, which is equivalent to the following:

let fn2 = z => 1 + 2 + z;

And when you calculate fn2(3), a value is finally returned—great! As we said, the
function performs the same kind of calculations as we saw earlier, but in an intrinsically
different way.

You might think that currying is just a peculiar trick: who would want to only use single-
argument functions? You'll see the reasons for this when we consider how to join functions
together in Chapter 8, Connecting Functions – Pipelining and Composition, and Chapter 12,
Building Better Containers – Functional Data Types, where it won't be feasible to pass more
than one parameter from one step to the next.

Functions as objects
The concept of first-class objects means that functions can be created, assigned, changed,
passed as parameters, and returned as a result of yet other functions in the very same way
that you can with, say, numbers or strings. Let's start with its definition. Let's look at how
you usually define a function:

function xyzzy(...) { ... }

This is (almost) equivalent to writing the following:

var xyzzy = function(...) { ... }

However, this is not true for hoisting. In this case, JavaScript moves all definitions to the
top of the current scope, but does not move the assignments; so, with the first definition
you can invoke xyzzy(...) from any place in your code, but with the second, you cannot
invoke the function until the assignment has been executed.

See the parallel with the Colossal Cave Adventure game? Invoking
xyzzy(...) anywhere won't always work! And, if you have never
played that famous interactive fiction game, try it online—for example,
at http:/ ​/​www. ​web- ​adventures. ​org/ ​cgi- ​bin/ ​webfrotz? ​s=
Adventure or http:/ ​/​www. ​amc.​com/ ​shows/ ​halt- ​and- ​catch- ​fire/
colossal- ​cave- ​adventure/ ​landing.

http://www.web-adventures.org/cgi-bin/webfrotz?s=Adventure
http://www.web-adventures.org/cgi-bin/webfrotz?s=Adventure
http://www.web-adventures.org/cgi-bin/webfrotz?s=Adventure
http://www.web-adventures.org/cgi-bin/webfrotz?s=Adventure
http://www.web-adventures.org/cgi-bin/webfrotz?s=Adventure
http://www.web-adventures.org/cgi-bin/webfrotz?s=Adventure
http://www.web-adventures.org/cgi-bin/webfrotz?s=Adventure
http://www.web-adventures.org/cgi-bin/webfrotz?s=Adventure
http://www.web-adventures.org/cgi-bin/webfrotz?s=Adventure
http://www.web-adventures.org/cgi-bin/webfrotz?s=Adventure
http://www.web-adventures.org/cgi-bin/webfrotz?s=Adventure
http://www.web-adventures.org/cgi-bin/webfrotz?s=Adventure
http://www.web-adventures.org/cgi-bin/webfrotz?s=Adventure
http://www.web-adventures.org/cgi-bin/webfrotz?s=Adventure
http://www.web-adventures.org/cgi-bin/webfrotz?s=Adventure
http://www.web-adventures.org/cgi-bin/webfrotz?s=Adventure
http://www.web-adventures.org/cgi-bin/webfrotz?s=Adventure
http://www.web-adventures.org/cgi-bin/webfrotz?s=Adventure
http://www.web-adventures.org/cgi-bin/webfrotz?s=Adventure
http://www.web-adventures.org/cgi-bin/webfrotz?s=Adventure
http://www.amc.com/shows/halt-and-catch-fire/colossal-cave-adventure/landing
http://www.amc.com/shows/halt-and-catch-fire/colossal-cave-adventure/landing
http://www.amc.com/shows/halt-and-catch-fire/colossal-cave-adventure/landing
http://www.amc.com/shows/halt-and-catch-fire/colossal-cave-adventure/landing
http://www.amc.com/shows/halt-and-catch-fire/colossal-cave-adventure/landing
http://www.amc.com/shows/halt-and-catch-fire/colossal-cave-adventure/landing
http://www.amc.com/shows/halt-and-catch-fire/colossal-cave-adventure/landing
http://www.amc.com/shows/halt-and-catch-fire/colossal-cave-adventure/landing
http://www.amc.com/shows/halt-and-catch-fire/colossal-cave-adventure/landing
http://www.amc.com/shows/halt-and-catch-fire/colossal-cave-adventure/landing
http://www.amc.com/shows/halt-and-catch-fire/colossal-cave-adventure/landing
http://www.amc.com/shows/halt-and-catch-fire/colossal-cave-adventure/landing
http://www.amc.com/shows/halt-and-catch-fire/colossal-cave-adventure/landing
http://www.amc.com/shows/halt-and-catch-fire/colossal-cave-adventure/landing
http://www.amc.com/shows/halt-and-catch-fire/colossal-cave-adventure/landing
http://www.amc.com/shows/halt-and-catch-fire/colossal-cave-adventure/landing
http://www.amc.com/shows/halt-and-catch-fire/colossal-cave-adventure/landing
http://www.amc.com/shows/halt-and-catch-fire/colossal-cave-adventure/landing
http://www.amc.com/shows/halt-and-catch-fire/colossal-cave-adventure/landing
http://www.amc.com/shows/halt-and-catch-fire/colossal-cave-adventure/landing
http://www.amc.com/shows/halt-and-catch-fire/colossal-cave-adventure/landing
http://www.amc.com/shows/halt-and-catch-fire/colossal-cave-adventure/landing
http://www.amc.com/shows/halt-and-catch-fire/colossal-cave-adventure/landing
http://www.amc.com/shows/halt-and-catch-fire/colossal-cave-adventure/landing
http://www.amc.com/shows/halt-and-catch-fire/colossal-cave-adventure/landing
http://www.amc.com/shows/halt-and-catch-fire/colossal-cave-adventure/landing

Starting Out with Functions - A Core Concept Chapter 3

[55]

The point that we want to make is that a function can be assigned to a variable and can also
be reassigned if desired. In a similar vein, we can define functions on the spot, when they
are needed. We can even do this without naming them: as with common expressions, if
they are used only once, then you don't need to name them or store them in a variable.

A React-Redux reducer
We can see another example that involves assigning functions. As we mentioned earlier in
this chapter, React-Redux works by dispatching actions that are processed by a reducer.
Usually, the reducer includes code with a switch:

function doAction(state = initialState, action) {
 let newState = {};
 switch (action.type) {
 case "CREATE":
 // update state, generating newState,
 // depending on the action data
 // to create a new item
 return newState;

 case "DELETE":
 // update state, generating newState,
 // after deleting an item
 return newState;

 case "UPDATE":
 // update an item,
 // and generate an updated state
 return newState;

 default:
 return state;
 }
}

Providing initialState as a default value for state is a simple way of
initializing the global state the first time around. Pay no attention to that
default; it's not relevant for our example, but I included it just for the sake
of completeness.

By taking advantage of the possibility of storing functions, we can build a dispatch
table and simplify the preceding code. First, we initialize an object with the code for the
functions for each action type.

Starting Out with Functions - A Core Concept Chapter 3

[56]

Basically, we are just taking the preceding code and creating separate functions:

const dispatchTable = {
 CREATE: (state, action) => {
 // update state, generating newState,
 // depending on the action data
 // to create a new item
 return newState;
 },

 DELETE: (state, action) => {
 // update state, generating newState,
 // after deleting an item
 return newState;
 },

 UPDATE: (state, action) => {
 // update an item,
 // and generate an updated state
 return newState;
 }
};

We store the different functions that process each type of action as attributes in an object
that will work as a dispatcher table. This object is created only once and is constant during
the execution of the application. With it, we can now rewrite the action-processing code in a
single line of code:

function doAction2(state = initialState, action) {
 return dispatchTable[action.type]
 ? dispatchTable[action.type](state, action)
 : state;
}

Let's analyze it: given the action, if action.type matches an attribute in the dispatching
object, we execute the corresponding function taken from the object where it was stored. If
there isn't a match, we just return the current state as Redux requires. This kind of code
wouldn't be possible if we couldn't handle functions (storing and recalling them) as first-
class objects.

Starting Out with Functions - A Core Concept Chapter 3

[57]

An unnecessary mistake
There is, however, a common (though in fact, harmless) mistake that is usually made. You
often see code like this:

fetch("some/remote/url").then(function(data) {
 processResult(data);
});

What does this code do? The idea is that a remote URL is fetched, and when the data
arrives, a function is called—and this function itself calls processResult with data as an
argument. That is to say, in the then() part, we want a function that, given data,
calculates processResult(data). But don't we already have such a function?

A small bit of theory: in lambda calculus terms, we are replacing λx.func x
with simply func—this is called an eta conversion, or more specifically, an
eta reduction. (If you were to do it the other way round, it would be an
eta abstraction.) In our case, it could be considered a (very, very small!)
optimization, but its main advantage is shorter, more compact code.

Basically, there is a rule that you can apply whenever you see something like the following:

function someFunction(someData) {
 return someOtherFunction(someData);
}

This rule states that you can replace code resembling the preceding code with just
someOtherFunction. So, in our example, we can directly write what follows:

fetch("some/remote/url").then(processResult);

This code is exactly equivalent to the previous method that we looked at (although it is
infinitesimally quicker, since you avoid one function call), but it is simpler to understand?

This programming style is called pointfree style or tacit style, and its main characteristic is
that you never specify the arguments for each function application. An advantage of this
way of coding is that it helps the writer (and the future readers of the code) think about the
functions themselves and their meanings instead of working at a low level, passing data
around and working with it. In the shorter version of the code, there are no extraneous or
irrelevant details: if you understand what the called function does, then you understand the
meaning of the complete piece of code. In our text, we'll often (but not necessarily always)
work in this way.

Starting Out with Functions - A Core Concept Chapter 3

[58]

Unix/Linux users may already be accustomed to this style, because they
work in a similar way when they use pipes to pass the result of a
command as an input to another. When you write something as ls|grep
doc|sort, the output of ls is the input to grep, and the latter's output is
the input to sort—but input arguments aren't written out anywhere; they
are implied. We'll come back to this in the Pointfree style section of Chapter
8, Connecting Functions - Pipelining and Composition.

Working with methods
There is, however, a case that you should be aware of: what happens if you are calling an
object's method? Look at the following code:

fetch("some/remote/url").then(function(data) {
 myObject.store(data);
});

If your original code had been something along the lines of the preceding code, then the
seemingly obvious transformed code would fail:

fetch("some/remote/url").then(myObject.store);

Why? The reason is that in the original code, the called method is bound to an object
(myObject), but in the modified code, it isn't bound and is just a free function. We can
then fix it in a simple way by using bind(), as follows:

fetch("some/remote/url").then(myObject.store.bind(myObject));

This is a general solution. When dealing with a method, you cannot just assign it; you must
use bind() so that the correct context will be available. Look at the following code:

function doSomeMethod(someData) {
 return someObject.someMethod(someData);
}

Following this rule, code like the preceding code should be converted to the following:

const doSomeMethod = someObject.someMethod.bind(someObject);

Read more on bind() at https:/ ​/ ​developer. ​mozilla. ​org/ ​en/ ​docs/ ​Web/
JavaScript/ ​Reference/ ​Global_ ​objects/ ​Function/ ​bind.

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind

Starting Out with Functions - A Core Concept Chapter 3

[59]

This looks rather awkward, and not too elegant, but it's required so that the method will be
associated with the correct object. We will see one application of this when
we promisify functions in Chapter 6, Producing Functions - Higher-Order Functions. Even
if this code isn't so nice to look at, whenever you have to work with objects (and remember,
we didn't say that we would be trying to aim for fully FP code, and did say that we would
accept other constructs if they made things easier), you'll have to remember to bind
methods before passing them as first-class objects in pointfree style.

Using functions in FP ways
There are several common coding patterns that actually take advantage of FP style, even if
you weren't aware of it. In this section, we will go through them and look at the functional
aspects of the code so that you can get more accustomed to this coding style.

Then, we'll look in detail at using functions in an FP way by considering several FP
techniques, such as the following:

Injection, which is needed for sorting different strategies, as well as other uses
Callbacks and promises, introducing the continuation-passing style
Polyfilling and stubbing
Immediate invocation schemes

Injection – sorting it out
The first example of passing functions as parameters is provided by the
Array.prototype.sort() method. If you have an array of strings and you want to sort it,
you can just use the sort() method. For example, to alphabetically sort an array with the
colors of the rainbow, we would write something like the following:

var colors = [
 "violet",
 "indigo",
 "blue",
 "green",
 "yellow",
 "orange",
 "red"
];
colors.sort();
console.log(colors);
// ["blue", "green", "indigo", "orange", "red", "violet", "yellow"]

Starting Out with Functions - A Core Concept Chapter 3

[60]

Note that we didn't have to provide any parameters to the sort() call, but the array got
sorted perfectly well. By default, this method sorts strings according to their ASCII internal
representation. So, if you use this method to sort an array of numbers, it will fail, since it
will decide that 20 must be between 100 and 3, because 100 precedes 20 (taken as strings!)
and the latter precedes 3, so this needs fixing! The following code shows the problem:

var someNumbers = [3, 20, 100];
someNumbers.sort();

console.log(someNumbers);
// [100, 20, 3]

But let's forget numbers for a while and stick to sorting strings. We want to ask ourselves
what would happen if we wanted to sort some Spanish words (palabras) but following
the appropriate locale rules? We would be sorting strings, but the results wouldn't be
correct:

var palabras = ["ñandú", "oasis", "mano", "natural", "mítico", "musical"];
palabras.sort();

console.log(palabras);
// ["mano", "musical", "mítico", "natural", "oasis", "ñandú"] -- wrong
result!

For language or biology buffs, "ñandú" in English is rhea, a running bird
somewhat similar to ostriches. There aren't many Spanish words
beginning with ñ, and we happen to have these birds in my country,
Uruguay, so that's the reason for the odd word!

Oops! In Spanish, ñ comes between n and o, but "ñandú" got sorted at the end. Also,
"mítico" (in English, mythical; note the accented í) should appear between "mano"
and "musical" because the tilde should be ignored. The appropriate way of solving this is
by providing a comparison function to sort(). In this case, we can use the
localeCompare() method as follows:

palabras.sort((a, b) => a.localeCompare(b, "es"));

console.log(palabras);
// ["mano", "mítico", "musical", "natural", "ñandú", "oasis"]

The a.localeCompare(b,"es") call compares the a and b strings and returns a negative
value should a precede b, a positive value should a follow b, and 0 if a and b are the
same—but according to Spanish ("es") ordering rules.

Starting Out with Functions - A Core Concept Chapter 3

[61]

Now things are right! And the code could be made clearer by introducing a new function,
spanishComparison(), to perform the required strings comparison:

const spanishComparison = (a, b) => a.localeCompare(b, "es");

palabras.sort(spanishComparison);
// sorts the palabras array according to Spanish rules:
// ["mano", "mítico", "musical", "natural", "ñandú", "oasis"]

In upcoming chapters, we will be discussing how FP lets you write code in a more
declarative fashion, producing more understandable code, and this sort of small change
helps: when readers of the code get to the sort, they will immediately deduce what is
being done, even if the comment wasn't present.

This way of changing the way that the sort() function works by injecting
different comparison functions is actually a case of the strategy design
pattern. We'll be learning more about this in Chapter 11, Implementing
Design Patterns – the Functional Way.

Providing a sort function as a parameter (in a very FP way!) can also help with several
other problems, such as the following:

sort() only works with strings. If you want to sort numbers (as we tried to do
previously), you have to provide a function that will compare numerically. For
example, you would write something like myNumbers.sort((a,b) => a-b).
If you want to sort objects by a given attribute, you will use a function that
compares to it. For example, you could sort people by age with something along
the lines of myPeople.sort((a,b) => a.age - b.age).

For more on the localeCompare() possibilities, see https:/ ​/​developer.
mozilla. ​org/ ​en/ ​docs/ ​Web/ ​JavaScript/ ​Reference/ ​Global_ ​Objects/
String/ ​localeCompare. You can specify which locale rules to apply, in
which order to place upper/lowercase letters, whether to ignore
punctuation, and much more. But be careful: not all browsers may
support the required extra parameters.

This is a simple example that you have probably used before, but it's an FP pattern, after all.
Let's move on to an even more common usage of functions as parameters when you
perform Ajax calls.

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/localeCompare
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/localeCompare
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/localeCompare
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/localeCompare
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/localeCompare
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/localeCompare
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/localeCompare
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/localeCompare
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/localeCompare
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/localeCompare
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/localeCompare
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/localeCompare
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/localeCompare
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/localeCompare
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/localeCompare
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/localeCompare
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/localeCompare
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/localeCompare
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/localeCompare
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/localeCompare
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/localeCompare
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/localeCompare
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/localeCompare
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/localeCompare
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/localeCompare

Starting Out with Functions - A Core Concept Chapter 3

[62]

Callbacks, promises, and continuations
Probably the most used example of functions passed as first-class objects has to do with
callbacks and promises. In Node, reading a file is accomplished asynchronously with
something like the following code:

const fs = require("fs");

fs.readFile("someFile.txt", (err, data) => {
 if (err) {
 console.error(err); // or throw an error, or otherwise handle the
problem
 } else {
 console.log(data.toString()); // do something with the data
 }
});

The readFile() function requires a callback—in this example an anonymous
function—that will get called when the file reading operation is finished.

A better way is using promises; read more at https:/ ​/​developer. ​mozilla. ​org/ ​en-​US/
docs/​Web/​JavaScript/ ​Reference/ ​Global_ ​Objects/ ​Promise. With this, when performing
an Ajax web service call using the more modern fetch() function, you could write
something along the lines of the following code:

fetch("some/remote/url")
 .then(data => {
 // Do some work with the returned data
 })
 .catch(error => {
 // Process all errors here
 });

Note that if you had defined appropriate processData(data) and
processError(error) functions, the code could have been shortened to
fetch("some/remote/url").then(processData).catch(processE

rror) along the lines that we saw previously.

Finally, you should also look into using async/await; read more about it at https:/ ​/
developer.​mozilla. ​org/ ​en- ​US/ ​docs/ ​Web/ ​JavaScript/ ​Reference/ ​Statements/ ​async_
function and https:/ ​/​developer. ​mozilla. ​org/ ​en-​US/ ​docs/ ​Web/ ​JavaScript/ ​Reference/
Operators/​await.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await

Starting Out with Functions - A Core Concept Chapter 3

[63]

Continuation passing style
The preceding code, in which you call a function but also pass another function that is to be
executed when the input/output operation is finished, can be considered a case of
continuation passing style (CPS). What is this technique of coding? One way of looking at
it is by thinking about the question: how would you program if using the return statement was
forbidden?

At first glance, this may appear to be an impossible situation. We can get out of our fix,
however, by passing a callback to the called function, so that when that procedure is ready
to return to the caller, instead of actually returning, it invokes the passed callback. By doing
this, the callback provides the called function with the way to continue the process, hence
the word continuation. We won't get into this now, but in Chapter 9, Designing Functions -
Recursion, we will study it in depth. In particular, CPS will help us to avoid an important
recursion restriction, as we'll see.

Working out how to use continuations is sometimes challenging, but always possible. An
interesting advantage of this way of coding is that by specifying yourself how the process is
going to continue, you can go beyond all the usual structures (if, while, return, and so
on) and implement whatever mechanisms you want. This can be very useful in some kinds
of problems where the process isn't necessarily linear. Of course, this can also lead to you
inventing a kind of control structure that is far worse than the possible usage of GOTO
statements that you might imagine! Figure 3.1 shows the dangers of that practice!

Figure 3.1: What's the worse that could happen if you start messing with the program flow?

This XKCD comic is available online at https:/ ​/​xkcd. ​com/ ​292/ ​

https://xkcd.com/292/
https://xkcd.com/292/
https://xkcd.com/292/
https://xkcd.com/292/
https://xkcd.com/292/
https://xkcd.com/292/
https://xkcd.com/292/
https://xkcd.com/292/
https://xkcd.com/292/
https://xkcd.com/292/

Starting Out with Functions - A Core Concept Chapter 3

[64]

You are not limited to passing a single continuation. As with promises, you can provide
two or more alternative callbacks. And this, by the way, can provide a solution to the
problem of how you would work with exceptions. If we simply allowed a function to throw
an error, it would be an implied return to the caller, and we don't want this. The way out of
this is to provide an alternative callback (that is, a different continuation) to be used
whenever an exception is thrown (in Chapter 12, Building Better Containers - Functional Data
Types, we'll find another solution using monads):

function doSomething(a, b, c, normalContinuation, errorContinuation) {
 let r = 0;
 // ... do some calculations involving a, b, and c,
 // and store the result in r
 // if an error happens, invoke:
 // errorContinuation("description of the error")
 // otherwise, invoke:
 // normalContinuation(r)
}

Using CPS can even allow you to go beyond the control structures that JavaScript provides,
but that would be beyond the objectives of this book, so I'll let you research that on your
own!

Polyfills
Being able to assign functions dynamically (in the same way that you can assign different
values to a variable) also allows you to work more efficiently when defining polyfills.

Detecting Ajax
Let's go back a bit in time to when Ajax started to appear. Given that different browsers
implemented Ajax calls in distinct fashions, you would always have to code around these
differences. The following code shows how you would go about implementing an Ajax call
by testing several different conditions:

function getAjax() {
 let ajax = null;
 if (window.XMLHttpRequest) {
 // modern browser? use XMLHttpRequest
 ajax = new XMLHttpRequest();
 } else if (window.ActiveXObject) {
 // otherwise, use ActiveX for IE5 and IE6
 ajax = new ActiveXObject("Microsoft.XMLHTTP");
 } else {

Starting Out with Functions - A Core Concept Chapter 3

[65]

 throw new Error("No Ajax support!");
 }
 return ajax;
}

This worked, but implied that you would redo the Ajax check for each and every call, even
though the results of the test wouldn't ever change. There's a more efficient way to do this,
and it has to do with using functions as first-class objects. We could define two different
functions, test for the condition only once, and then assign the correct function to be used
later; study the following code for such an alternative:

(function initializeGetAjax() {
 let myAjax = null;

 if (window.XMLHttpRequest) {
 // modern browsers? use XMLHttpRequest
 myAjax = function() {
 return new XMLHttpRequest();
 };
 } else if (window.ActiveXObject) {
 // it's ActiveX for IE5 and IE6
 myAjax = function() {
 new ActiveXObject("Microsoft.XMLHTTP");
 };
 } else {
 myAjax = function() {
 throw new Error("No Ajax support!");
 };
 }
 window.getAjax = myAjax;
})();

This piece of code shows two important concepts. First, we can dynamically assign a
function: when this code runs, window.getAjax (that is, the global getAjax variable) will
get one of three possible values according to the current browser. When you later call
getAjax() in your code, the right function will execute without you needing to do any
further browser-detection tests.

The second interesting idea is that we define the initializeGetAjax function, and
immediately run it—this pattern is called the immediately invoked function expression
(IIFE). The function runs, but cleans up after itself, because all its variables are local and
won't even exist after the function runs. We'll learn more about this later.

Starting Out with Functions - A Core Concept Chapter 3

[66]

Adding missing functions
This idea of defining a function on the run also allows us to write polyfills that provide
otherwise missing functions. For example, let's say that we had some code such as the
following:

if (currentName.indexOf("Mr.") !== -1) {
 // it's a man
 ...
}

Instead of this, you might very much prefer using the newer, clearer way of, and just write
the following:

if (currentName.includes("Mr.")) {
 // it's a man
 ...
}

What happens if your browser doesn't provide .includes()? Once again, we can define
the appropriate function on the fly, but only if needed. If .includes() is available, you
need to do nothing, but if it is missing, you need to define a polyfill that will provide the
very same workings. The following code shows an example of such a polyfill:

You can find polyfills for many modern JavaScript features at Mozilla's
developer site. For example, the polyfill we used for includes was taken
directly from https:/ ​/​developer. ​mozilla. ​org/ ​en/​docs/ ​Web/
JavaScript/ ​Reference/ ​Global_ ​Objects/ ​String/ ​includes.

if (!String.prototype.includes) {
 String.prototype.includes = function(search, start) {
 "use strict";
 if (typeof start !== "number") {
 start = 0;
 }

 if (start + search.length > this.length) {
 return false;
 } else {
 return this.indexOf(search, start) !== -1;
 }
 };
}

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/includes

Starting Out with Functions - A Core Concept Chapter 3

[67]

When this code runs, it checks whether the String prototype already has the includes
method. If not, it assigns a function to it that does the same job, so from that point onward,
you'll be able to use .includes() without further worries. By the way, there are other
ways of defining a polyfill: check the answer to question 3.5 for an alternative.

Directly modifying a standard type's prototype object is usually frowned
upon, because in essence, it's equivalent to using a global variable, and
thus it's prone to errors; however, this case (writing a polyfill for a well
established and known function) is quite unlikely to provoke any
conflicts.

Finally, if you happened to think that the Ajax example shown previously was old hat,
consider this: if you want to use the more modern fetch() way of calling services, you
will also find that not all modern browsers support it (check http:/ ​/​caniuse. ​com/
#search=​fetch to verify this), and so you'll have to use a polyfill, such as the one
at https:/​/​github. ​com/ ​github/ ​fetch. Study the code and you'll see that it basically uses
the same method as described previously to see whether a polyfill is needed and to create
it.

Stubbing
Here, we will look at a use case that is similar in some aspects to using a polyfill: having a
function do different work depending on the environment. The idea is to
perform stubbing, an idea that comes from testing that involves replacing a function with
another that does a simpler job, instead of doing the actual work.

Stubbing is commonly used with logging functions. You may want the application to
perform detailed logging when in development, but not to say a peep when in
production. A common solution would be to write something along the lines of the
following:

let myLog = someText => {
 if (DEVELOPMENT) {
 console.log(someText); // or some other way of logging
 } else {
 // do nothing
 }
}

This works, but as in the example of Ajax detection, it does more work than it needs to
because it checks whether the application is in development every time.

http://caniuse.com/#search=fetch
http://caniuse.com/#search=fetch
http://caniuse.com/#search=fetch
http://caniuse.com/#search=fetch
http://caniuse.com/#search=fetch
http://caniuse.com/#search=fetch
http://caniuse.com/#search=fetch
http://caniuse.com/#search=fetch
http://caniuse.com/#search=fetch
http://caniuse.com/#search=fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch

Starting Out with Functions - A Core Concept Chapter 3

[68]

We could simplify the code (and get a really, really tiny performance gain!) if we stub out
the logging function so that it won't actually log anything; an easy implementation is as
follows:

let myLog;
if (DEVELOPMENT) {
 myLog = someText => console.log(someText);
} else {
 myLog = someText => {};
}

We can even do better with the ternary operator:

const myLog = DEVELOPMENT
 ? someText => console.log(someText)
 : someText => {};

This is a bit more cryptic, but I prefer it because it uses a const, which cannot be modified.

Given that JavaScript allows us to call functions with more parameters
than arguments, and given that we aren't doing anything in
myLog() when we are not in development, we could also have written ()
=> {} and it would have worked fine. However, I do prefer keeping the
same signature, and that's why I specified the someText argument, even
if it wouldn't be used. It's your call!

You'll notice that we are using the concept of functions as first-class objects over and over
again; look through all the code samples and you'll see!

Immediate invocation
There's yet another common usage of functions, usually seen in popular libraries and
frameworks, that lets you bring some modularity advantages from other languages into
JavaScript (even the older versions!). The usual way of writing this is something like the
following:

(function() {
 // do something...
})();

Another equivalent style is (function(){ ... }())—note the different
placement of the parentheses for the function call. Both styles have their
fans; pick whichever suits you, but just follow it consistently.

Starting Out with Functions - A Core Concept Chapter 3

[69]

You can also have the same style, but pass some arguments to the function that will be used
as the initial values for its parameters:

(function(a, b) {
 // do something, using the
 // received arguments for a and b...
})(some, values);

Finally, you could also return something from the function:

let x = (function(a, b) {
 // ...return an object or function
})(some, values);

As we mentioned previously, the pattern itself is called the IIFE (pronounced iffy). The
name is easy to understand: you are defining a function and calling it right away, so it gets
executed on the spot. Why would you do this, instead of simply writing the code inline?
The reason has to do with scopes.

Note the parentheses around the function. These help the parser
understand that we are writing an expression. If you were to omit the first
set of parentheses, JavaScript would think you were writing a function
declaration instead of an invocation. The parentheses also serve as a visual
note, so readers of your code will immediately recognize the IIFE.

If you define any variables or functions within the IIFE, then because of how JavaScript
defines the scope of functions, those definitions will be internal, and no other part of your
code will be able to access them. Imagine that you wanted to write some complicated
initialization, like the following:

function ready() { ... }

function set() { ... }

function go() { ... }

// initialize things calling ready(),
// set() and go() appropriately

What could go wrong? The problem hinges on the fact that you could (by accident) have a
function with the same name of any of the three here, and hoisting would imply that the
last function would be called:

function ready() {
 console.log("ready");
}

Starting Out with Functions - A Core Concept Chapter 3

[70]

function set() {
 console.log("set");
}

function go() {
 console.log("go");
}

ready();
set();
go();

function set() {
 console.log("UNEXPECTED...");
}
// "ready"
// "UNEXPECTED"
// "go"

Oops! If you had used an IIFE, the problem wouldn't have happened. Also, the three inner
functions wouldn't even be visible to the rest of the code, which helps to keep the global
namespace less polluted. The following code shows a very common pattern for this:

(function() {
 function ready() {
 console.log("ready");
 }

 function set() {
 console.log("set");
 }

 function go() {
 console.log("go");
 }

 ready();
 set();
 go();
})();

function set() {
 console.log("UNEXPECTED...");
}
// "ready"
// "set"
// "go"

Starting Out with Functions - A Core Concept Chapter 3

[71]

To see an example involving returned values, we could revisit the example from Chapter 1,
Becoming Functional - Several Questions, and write the following, which would create a single
counter:

const myCounter = (function() {
 let count = 0;
 return function() {
 count++;
 return count;
 };
})();

Then, every call to myCounter() would return an incremented count, but there is no
chance that any other part of your code will overwrite the inner count variable because it's
only accessible within the returned function.

Summary
In this chapter, we went over several ways of defining functions in JavaScript, focusing
mainly on arrow functions, which have several advantages over standard functions,
including being terser. We learned about the concept of currying (which we'll be revisiting
later), considered some aspects of functions as first-class objects, and lastly, we considered
several techniques that happen to be fully FP in concept. Rest assured that we'll be using
everything in this chapter as the building blocks for more advanced techniques in the rest
of the book; just wait and see!

In Chapter 4, Behaving Properly – Pure Functions, we will delve even more deeply into
functions and learn about the concept of pure functions, which will lead us to an even better
style of programming.

Questions
3.1 Uninitialized object? React-Redux programmers usually code action creators to
simplify the creation of actions that will later be processed by a reducer. Actions are objects,
which must include a type attribute that is used to determine what kind of action you are
dispatching. The following code supposedly does this, but can you explain the unexpected
results?

const simpleAction = t => {
 type: t;
};

Starting Out with Functions - A Core Concept Chapter 3

[72]

console.log(simpleAction("INITIALIZE"));
// undefined

3.2. Are arrows allowed? Would everything be the same if you
defined listArguments() and listArguments2() from the Working with arguments
section by using arrow functions instead of the way we did, with the function keyword?

3.3. One liner: Some programmer, particularly thrifty with lines of code, suggested
rewriting doAction2() as a one-liner, even though you can't tell this from the formatting!
What do you think: is it correct or isn't it?

const doAction3 = (state = initialState, action) =>
 (dispatchTable[action.type] &&
 dispatchTable[action.type](state, action)) ||
 state;

3.4. Spot the bug! A programmer, working with a global store for state (similar in concept
to those of Redux, Mobx, Vuex, and others used by different web frameworks) wanted to
log (for debugging purposes) all calls to the store's set() method. After creating the new
store object, he wrote the following so that the arguments to store.set() would be
logged before actually being processed. Unfortunately, the code didn't work as expected.
What's the problem? Can you spot the mistake?

window.store = new Store();
const oldSet = window.store.set;
window.store.set = (...data) => (console.log(...data), oldSet(...data));

3.5. Bindless binding: Suppose that bind() was not available; how could you do a polyfill
for it?

4
Behaving Properly - Pure

Functions
In Chapter 3, Starting Out with Functions – A Core Concept, we considered functions as the
key elements in Functional Programming (FP), went into detail about arrow functions, and
introduced some concepts, such as injection, callbacks, polyfilling, and stubbing. In this
chapter, we'll have the opportunity to revisit or apply some of those ideas. We will also do
the following:

Consider the notion of purity, and why we should care about pure functions—and
impure functions as well!
Examine the concept of referential transparency.
Recognize the problems implied by side effects.
Show some advantages of pure functions.
Describe the main reasons behind impure functions.
Find ways to minimize the number of impure functions.
Focus on ways of testing both pure and impure functions.

Pure functions
Pure functions behave in the same way as mathematical functions and provide diverse
benefits. A function is pure if it satisfies two conditions:

Given the same arguments, the function always calculates and returns the
same result: This should be true no matter how many times it's invoked or under
which conditions you call it. This result cannot depend on any
outside information or state, which could change during the program execution
and cause it to return a different value. Nor can the function result depend on I/O
results, random numbers, some other external variable, or a value that is not
directly controllable.

Behaving Properly - Pure Functions Chapter 4

[74]

When calculating its result, the function doesn't cause any observable side
effects: This includes output to I/O devices, the mutation of objects, changes to a
program's state outside of the function, and so on.

If you want, you can simply say that pure functions don't depend on (and don't modify)
anything outside their scope and always return the same result for the same input
arguments.

Another word used in this context is idempotency, but it's not exactly the same. An
idempotent function can be called as many times as desired, and will always produce the
same result; however, this doesn't imply that the function is free from side effects.
Idempotency is usually mentioned in the context of RESTful services. Let's look at a simple
example showing the difference between purity and idempotency. A PUT call would cause
a database record to be updated (a side effect), but if you repeat the call, the element will
not be further modified, so the global state of the database won't change any further.

We might also invoke a software design principle and remind ourselves that a function
should do one thing, only one thing, and nothing but that thing. If a function does anything else
and has some hidden functionality, then that dependency on the state will mean that we
won't be able to predict the function's output and make things harder for us as developers.

Let's look into these conditions in more detail.

Referential transparency
In mathematics, referential transparency is the property that lets you replace an expression
with its value without changing the results of whatever you were doing.

The counterpart of referential transparency is, appropriately enough,
referential opacity. A referentially opaque function cannot guarantee that
it will always produce the same result, even when called with the same
arguments.

To give a simple example, let's consider what happens with an optimizing compiler that
performs constant folding. Suppose you have a sentence like this:

const x = 1 + 2 * 3;

The compiler might optimize the code to the following by noting that 2 * 3 is a constant
value:

const x = 1 + 6;

Behaving Properly - Pure Functions Chapter 4

[75]

Even better, a new round of optimization could avoid the sum altogether:

const x = 7;

To save execution time, the compiler is taking advantage of the fact that all mathematical
expressions and functions are (by definition) referentially transparent. On the other hand, if
the compiler cannot predict the output of a given expression, it won't be able to optimize
the code in any fashion, and the calculation will have to be done at runtime.

In lambda calculus, if you replace the value of an expression involving a
function with the calculated value for the function, then that operation is
called a β (beta) reduction. Note that you can only do this safely with
referentially transparent functions.

All arithmetical expressions (involving both mathematical operators and functions) are
referentially transparent: 22*9 can always be replaced by 198. Expressions involving I/O
are not transparent, given that their results cannot be known until they are executed. For
the same reason, expressions involving date- and time-related functions or random
numbers are also not transparent.

With regard to JavaScript functions that you can produce yourself, it's quite easy to write
some that won't fulfill the referential transparency condition. In fact, a function is not even
required to return a value, though the JavaScript interpreter will return an undefined value
in that situation.

Some languages distinguish between functions, which are expected to
return a value, and procedures, which do not return anything, but that's
not the case with JavaScript. There are also some languages that provide
the means to ensure that functions are referentially transparent.

If you wanted to, you could classify functions as the following:

Pure functions: These return a value that depends only on its arguments and
have no side effects whatsoever.
Side effects: These don't return anything (actually, in JavaScript, these functions
return an undefined value, but that's not relevant here), but do produce some
kind of side effects.
Functions with side effects: This means that they return a value that may not
only depend on the function arguments, but also involve side effects.

Behaving Properly - Pure Functions Chapter 4

[76]

In FP, much emphasis is put on the first group, referentially transparent pure functions.
Not only can a compiler reason about the program behavior (and thus be able to optimize
the generated code), but also the programmer can more easily reason about the program
and the relationship between its components. This in turn can help prove the correctness of
an algorithm or optimize the code by replacing a function with an equivalent one.

Side effects
What are side effects? We can define these as a change in state or an interaction with
outside elements (the user, a web service, another computer, whatever) that occurs during
the execution of some calculations or a process.

There's a possible misunderstanding as to the scope of this meaning. In common daily
speech, when you speak of side effects, it's a bit like talking about collateral damage—some
unintended consequences for a given action; however, in computing, we include every
possible effect or change outside the function. If you write a function that is meant to
perform a console.log() call to display a result, then that would be considered a side
effect, even if it's exactly what you intended the function to do in the first place!

In this section, we will look at the following:

Common side effects in JavaScript programming
The problems that global and inner states cause
The possibility of functions mutating their arguments
Some functions that are always troublesome

Usual side effects
In programming, there are (too many!) things that are considered side effects. In JavaScript
programming, including both frontend and backend coding, the more common ones you
may find include the following:

Changing global variables.
Mutating objects received as arguments.
Performing any kind of I/O, such as showing an alert message or logging some
text.
Working with, and changing, the filesystem.
Updating a database.
Calling a web service.

Behaving Properly - Pure Functions Chapter 4

[77]

Querying or modifying the DOM.
Triggering any external process.
Just calling another function that happens to produce a side effect of its own. You
could say that impurity is contagious: a function that calls an impure function
automatically becomes impure on its own!

With this definition, let's start looking at what can cause functional impurity (or referential
opaqueness).

Global state
Of all the preceding points, the most common reason for side effects is the usage of
nonlocal variables that share a global state with other parts of the program. Since pure
functions, by definition, always return the same output value given the same input
arguments, if a function refers to anything outside its internal state, it automatically
becomes impure. Furthermore, and this is a hindrance to debugging, to understand what a
function has done, you must understand how the state got its current values, and that
means understanding all of the past history from your program: not easy!

Let's write a function to detect whether a person is a legal adult by checking whether they
were born at least 18 years ago. (Okay, that's not precise enough, because we are not
considering the day and month of birth, but bear with me; the problem is elsewhere.) A
version of an isOldEnough() function could be as follows:

let limitYear = 1999;

const isOldEnough = birthYear => birthYear <= limitYear;

console.log(isOldEnough(1960)); // true
console.log(isOldEnough(2001)); // false

The isOldEnough() function correctly detects whether a person is at least 18 years old, but
it depends on an external variable for that (the variable is good for 2017 only). You cannot
tell what the function does unless you know about the external variable and how it got its
value. Testing would also be hard; you'd have to remember creating the global limitYear
variable or all your tests would fail to run. Even though the function works, the
implementation isn't the best that it could possibly be.

Behaving Properly - Pure Functions Chapter 4

[78]

There is an exception to this rule. Check out the following case: is the
following circleArea() function, which calculates the area of a circle given its radius,
pure or not?

const PI = 3.14159265358979;
const circleArea = r => PI * Math.pow(r, 2); // or PI * r ** 2

Even though the function is accessing an external state, the fact that PI is a constant (and
thus cannot be modified) would allow us to substitute it inside circleArea with no
functional change, and so we should accept that the function is pure. The function will
always return the same value for the same argument, and thus fulfills our purity
requirements.

Even if you were to use Math.PI instead of a constant as we defined in
the code (a better idea, by the way), the argument would still be the same;
the constant cannot be changed, so the function remains pure.

Here, we have dealt with problems caused by the global state; let's now move on to the
inner state.

Inner state
The notion is also extended to internal variables, in which a local state is stored and then
used for future calls. In this case, the external state is unchanged, but there are side effects
that imply future differences as to the returned values from the function. Let's imagine a
roundFix() rounding function that takes into account whether it has been rounding up or
down too much so that the next time, it will round the other way, bringing the accumulated
difference closer to zero. Our function will have to accumulate the effects of previous
roundings to decide how to proceed next. The implementation could be as follows:

const roundFix = (function() {
 let accum = 0;
 return n => {
 // reals get rounded up or down
 // depending on the sign of accum
 let nRounded = accum > 0 ? Math.ceil(n) : Math.floor(n);
 console.log("accum", accum.toFixed(5), " result", nRounded);
 accum += n - nRounded;
 return nRounded;
 };
})();

Behaving Properly - Pure Functions Chapter 4

[79]

Some comments regarding this function:

The console.log() line is just for the sake of this example; it wouldn't be
included in the real-world function. It lists the accumulated difference up to the
point and the result it will return: the given number rounded up or down.
We are using the IIFE pattern that we saw in the myCounter() example in
the Immediate Invocation section of Chapter 3, Starting Out with Functions – A Core
Concept, in order to get a hidden internal variable.
The nRounded calculation could also be written as Math[accum > 0 ?
"ceil": "floor"](n)—we test accum to see what method to invoke ("ceil"
or "floor") and then use the Object["method"] notation to indirectly invoke
Object.method(). The way we used it, I think, is more clear, but I just wanted
to give you a heads up in case you happen to find this other coding style.

Running this function with just two values (recognize them?) shows that results are not
always the same for a given input. The result part of the console log shows how the value
got rounded, up or down:

roundFix(3.14159); // accum 0.00000 result 3
roundFix(2.71828); // accum 0.14159 result 3
roundFix(2.71828); // accum -0.14013 result 2
roundFix(3.14159); // accum 0.57815 result 4
roundFix(2.71828); // accum -0.28026 result 2
roundFix(2.71828); // accum 0.43802 result 3
roundFix(2.71828); // accum 0.15630 result 3

The first time around, accum is zero, so 3.14159 gets rounded down and accum becomes
0.14159 in our favor. The second time, since accum is positive (meaning that we have been
rounding in our favor), then 2.71828 gets rounded up to 3, and now accum becomes
negative. The third time, the same 2.71828 value gets rounded down to 2, because
then the accumulated difference was negative—we got different values for the same input!
The rest of the example is similar; you can get the same value rounded up or down,
depending on the accumulated differences, because the function's result depends on its
inner state.

This usage of the internal state is the reason why many FP programmers
think that using objects is potentially bad. In OOP, we developers are used
to storing information (attributes) and using them for future calculations;
however, this usage is considered impure, insofar as repeated method
calls may return different values, despite the fact that the same arguments
are being passed.

Behaving Properly - Pure Functions Chapter 4

[80]

We have now dealt with the problems caused by both global and inner states, but
there are still more possible side effects. For example, what happens if a function changes
the values of its arguments? Let's consider this next.

Argument mutation
You also need to be aware of the possibility that an impure function will modify its
arguments. In JavaScript, arguments are passed by value, except in the case of arrays and
objects, which are passed by reference. This implies that any modification to the parameters
of the function will affect an actual modification of the original object or array. This can be
further obscured by the fact that there are several mutator methods, that change the
underlying objects by definition. For example, say you wanted a function that would find
the maximum element of an array of strings (of course, if it were an array of numbers, you
could simply use Math.max() with no further ado). A short implementation could be as
follows:

const maxStrings = a => a.sort().pop();

let countries = ["Argentina", "Uruguay", "Brasil", "Paraguay"];
console.log(maxStrings(countries)); // "Uruguay"

The function does provide the correct result (and if you worry about foreign languages, we
already saw a way around that in the Injection - sorting it out section of Chapter 3, Starting
Out with Functions – A Core Concept), but it has a defect. Let's see what happened with the
original array:

console.log(countries); // ["Argentina", "Brasil", "Paraguay"]

Oops—the original array was modified; this is a side effect by definition! If you were to call
maxStrings(countries) again, then instead of returning the same result as before, it
would produce another value; clearly, this is not a pure function. In this case, a quick
solution is to work on a copy of the array (and we can use the spread operator to help), but
we'll be dealing with more ways of avoiding these sorts of problems in Chapter 10,
Ensuring Purity – Immutability:

const maxStrings2 = a => [...a].sort().pop();

let countries = ["Argentina", "Uruguay", "Brasil", "Paraguay"];
console.log(maxStrings2(countries)); // "Uruguay"
console.log(countries); // ["Argentina", "Uruguay", "Brasil", "Paraguay"]

So now we have found yet another cause for side effects: functions that modify their own
arguments. There's a final case to consider: functions that just have to be impure!

Behaving Properly - Pure Functions Chapter 4

[81]

Troublesome functions
Finally, some functions also cause problems. For instance, Math.random() is impure: it
doesn't always return the same value, and it would certainly defeat its purpose if it did!
Furthermore, each call to the function modifies a global seed value, from which the next
random value will be calculated.

The fact that random numbers are actually calculated by an internal
function, and are therefore not random at all (if you know the formula
that's used and the initial value of the seed), implies that
pseudorandom would be a better name for them.

For instance, consider the following function that generates random letters ("A" to "Z"):

const getRandomLetter = () => {
 const min = "A".charCodeAt();
 const max = "Z".charCodeAt();
 return String.fromCharCode(
 Math.floor(Math.random() * (1 + max - min)) + min
);
};

The fact that it receives no arguments, but is expected to produce different results upon each
call, clearly points out that this function is impure.

Go to https:/ ​/​developer. ​mozilla. ​org/ ​en-​US/ ​docs/ ​Web/ ​JavaScript/
Reference/ ​Global_ ​Objects/ ​Math/ ​random for the explanation for the
getRandomLetter() function I wrote and https:/ ​/​developer. ​mozilla.
org/​en- ​US/ ​docs/ ​Web/ ​JavaScript/ ​Reference/ ​Global_ ​Objects/ ​String for
the .charCodeAt() method.

Impurity can be inherited by calling functions. If a function uses an impure function, it
immediately becomes impure itself. We might want to use getRandomLetter() in order
to generate random filenames, with an optional given extension; our
getRandomFileName() function could then be as follows:

const getRandomFileName = (fileExtension = "") => {
 const NAME_LENGTH = 12;
 let namePart = new Array(NAME_LENGTH);
 for (let i = 0; i < NAME_LENGTH; i++) {
 namePart[i] = getRandomLetter();
 }
 return namePart.join("") + fileExtension;
};

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

Behaving Properly - Pure Functions Chapter 4

[82]

In Chapter 5, Programming Declaratively – A Better Style, we will see a
more functional way of initializing a namePart array, by using map().

Because of its usage of getRandomLetter(), getRandomFileName() is also impure,
though it performs as expected, correctly producing totally random file names:

console.log(getRandomFileName(".pdf")); // "SVHSSKHXPQKG.pdf"
console.log(getRandomFileName(".pdf")); // "DCHKTMNWFHYZ.pdf"
console.log(getRandomFileName(".pdf")); // "GBTEFTVVHADO.pdf"
console.log(getRandomFileName(".pdf")); // "ATCBVUOSXLXW.pdf"
console.log(getRandomFileName(".pdf")); // "OIFADZKKNVAH.pdf"

Keep this function in mind; we'll see some ways around the unit testing problem later in
this chapter, and we'll rewrite it a bit to help out with that.

The concern about impurity also extends to functions that access the current time or date,
because their results will depend on an outside condition (namely the time of day) that is
part of the global state of the application. We could rewrite our isOldEnough() function to
remove the dependency upon a global variable, but it wouldn't help much. An attempt
could be as follows:

const isOldEnough2 = birthYear =>
 birthYear <= new Date().getFullYear() - 18;

console.log(isOldEnough2(1960)); // true
console.log(isOldEnough2(2001)); // false

A problem has been removed—the new isOldEnough2() function is now safer. Also, as
long as you don't use it near midnight just before new year's day, it will consistently return
the same results, so you could say, paraphrasing the Ivory Soap slogan from the nineteenth
century, that it's about 99.44% pure; however, an inconvenience remains: how would you
test it? If you were to write some tests that worked fine today, then next year they'd start to
fail. We'll have to work a bit to solve this, and we'll see how later on.

Several other functions that are also impure are those that cause I/O. If a function gets input
from a source (a web service, the user himself, a file, or some other source), then obviously
the returned result may vary. You should also consider the possibility of an I/O error, so the
very same function, calling the same service or reading the same file, might at some point
fail for reasons outside its control (you should assume that your filesystem, database,
socket, and so on could be unavailable, and thus a given function call might produce an
error instead of the expected constant, unvarying, answer).

Behaving Properly - Pure Functions Chapter 4

[83]

Even a pure output and a generally safe statement (such as a console.log()) that doesn't
change anything internally (at least in a visible way) causes some side effects because the
user does see a change: the produced output.

Does this imply that we won't ever be able to write a program that requires random
numbers, handles dates, or performs I/O, and also uses pure functions? Not at all—but it
does mean that some functions won't be pure, and they will have some disadvantages that
we will have to consider; we'll return to this in a bit.

Advantages of pure functions
The main advantage of using pure functions comes from the fact that they don't have any
side effects. When you call a pure function, you don't need to worry about anything other
than which arguments you are passing to it. Also, more to the point, you can be sure that
you cannot cause any problems or break anything else because the function will only work
with whatever you give it, and not with outside sources. But this is not their only
advantage. Let's learn more in the following sections.

Order of execution
Another way of looking at what we have been saying in this chapter is to see pure functions
as robust. You know that their execution—in whichever order—won't ever have any sort of
impact on the system. This idea can be extended further: you could evaluate pure functions
in parallel, resting assured that results wouldn't vary from what you would get in a single-
threaded execution.

Unfortunately, JavaScript greatly restricts us in our parallel programming.
We can make do, in very restricted ways, with web workers, but that's
about as far as it goes. For Node developers, the cluster module may
help out, though it isn't actually an alternative to threads, and only lets
you spawn multiple processes, letting you use all available CPU cores. To
sum it up, you don't get facilities such as Java's threads, for example, so
parallelization isn't really an FP advantage in JavaScript terms.

When you work with pure functions, another consideration to keep in mind is that there's
no explicit need to specify the order in which they should be called. If you work with
mathematics, an expression such as f(2) + f(5) is always the same as f(5) + f(2); this
is called the commutative property.

Behaving Properly - Pure Functions Chapter 4

[84]

However, when you deal with impure functions, that can be false, as shown in the
following purposefully written tricky function:

var mult = 1;
const f = x => {
 mult = -mult;
 return x * mult;
};

console.log(f(2) + f(5)); // 3
console.log(f(5) + f(2)); // -3

With impure functions such as the previous one, you cannot assume that
calculating f(3)+f(3) would produce the same result as 2*f(3), or that
f(4)-f(4) would actually be 0; check it out for yourself! More common
mathematical properties down the drain.

Why should you care? When you are writing code, willingly or not, you are always keeping
in mind those properties you learned about, such as the commutative property. So while
you might think that both expressions should produce the same result and code
accordingly, you may be in for a surprise when using impure functions, with hard-to-find
bugs that are difficult to fix.

Memoization
Since the output of a pure function for a given input is always the same, you can cache the
function results and avoid a possibly costly recalculation. This process, which implies
evaluating an expression only the first time and caching the result for later calls, is called
memoization.

We will come back to this idea in Chapter 6, Producing Functions – Higher-Order Functions,
but let's look at an example done by hand. The Fibonacci sequence is always used for this
example because of its simplicity and its hidden calculation costs. This sequence is defined
as follows:

For n=0, fib(n)=0
For n=1, fib(n)=1
For n>1, fib(n)=fib(n-2)+fib(n-1)

Fibonacci's name actually comes from filius Bonacci, or son of Bonacci. He is
best known for having introduced the usage of digits 0-9 as we know
them today, instead of the cumbersome Roman numbers. He derived the
sequence named after him as the answer to a puzzle involving rabbits!

Behaving Properly - Pure Functions Chapter 4

[85]

You can read more about it, and Fibonacci's life in general, at https:/ ​/ ​en.
wikipedia. ​org/ ​wiki/ ​Fibonacci_ ​number#History or https:/ ​/​plus.
maths. ​org/ ​content/ ​life- ​and- ​numbers- ​fibonacci.

If you run the numbers, the sequence starts with 0, then 1, and from that point onwards,
each term is the sum of the two previous ones: 1 again, then 2, 3, 5, 8, 13, 21, and so on.
Programming this series by using recursion is simple; we'll revisit this example in Chapter
9, Designing Functions – Recursion. The following code, a direct translation of the definition,
will do:

const fib = (n) => {
 if (n == 0) {
 return 0;

 } else if (n == 1) {
 return 1;

 } else {
 return fib(n - 2) + fib(n - 1);
 }
}
//
console.log(fib(10)); // 55, a bit slowly

If you really go for one-liners, you could also write const fib = (n)
=> (n<=1) ? n : fib(n-2)+fib(n-1)—do you see why? And more
importantly, is it worth the loss of clarity?

If you try out this function for growing values of n, you'll soon realize that there is a
problem, and computation starts taking too much time. For example, on my machine, I took
some timings, measured in milliseconds and plotted them on the following graph (of
course, your mileage may vary). Since the function is quite speedy, I had to run calculations
100 times for values of n between 0 and 40. Even then, the times for small values of n were
really tiny; it was only from 25 onwards that I got interesting numbers.

https://en.wikipedia.org/wiki/Fibonacci_number#History
https://en.wikipedia.org/wiki/Fibonacci_number#History
https://en.wikipedia.org/wiki/Fibonacci_number#History
https://en.wikipedia.org/wiki/Fibonacci_number#History
https://en.wikipedia.org/wiki/Fibonacci_number#History
https://en.wikipedia.org/wiki/Fibonacci_number#History
https://en.wikipedia.org/wiki/Fibonacci_number#History
https://en.wikipedia.org/wiki/Fibonacci_number#History
https://en.wikipedia.org/wiki/Fibonacci_number#History
https://en.wikipedia.org/wiki/Fibonacci_number#History
https://en.wikipedia.org/wiki/Fibonacci_number#History
https://en.wikipedia.org/wiki/Fibonacci_number#History
https://en.wikipedia.org/wiki/Fibonacci_number#History
https://en.wikipedia.org/wiki/Fibonacci_number#History
https://plus.maths.org/content/life-and-numbers-fibonacci
https://plus.maths.org/content/life-and-numbers-fibonacci
https://plus.maths.org/content/life-and-numbers-fibonacci
https://plus.maths.org/content/life-and-numbers-fibonacci
https://plus.maths.org/content/life-and-numbers-fibonacci
https://plus.maths.org/content/life-and-numbers-fibonacci
https://plus.maths.org/content/life-and-numbers-fibonacci
https://plus.maths.org/content/life-and-numbers-fibonacci
https://plus.maths.org/content/life-and-numbers-fibonacci
https://plus.maths.org/content/life-and-numbers-fibonacci
https://plus.maths.org/content/life-and-numbers-fibonacci
https://plus.maths.org/content/life-and-numbers-fibonacci
https://plus.maths.org/content/life-and-numbers-fibonacci
https://plus.maths.org/content/life-and-numbers-fibonacci
https://plus.maths.org/content/life-and-numbers-fibonacci
https://plus.maths.org/content/life-and-numbers-fibonacci
https://plus.maths.org/content/life-and-numbers-fibonacci
https://plus.maths.org/content/life-and-numbers-fibonacci

Behaving Properly - Pure Functions Chapter 4

[86]

The chart (see Figure 4.1) shows an exponential growth, which bodes ill:

Figure 4.1: Calculation times for the fib() recursive function go up exponentially

If we draw a diagram of all the calls required to calculate fib(6), you'll notice the
problem. Each node represents a call to calculate fib(n): we just note the value of n in the
node. Every call, except those for n=0 or 1, requires further calls, as you can see in Figure 4.2:

Figure 4.2: All the required calculations for fib(6) show lots of duplication

Behaving Properly - Pure Functions Chapter 4

[87]

The reason for the increasing delays becomes obvious: for example, the calculation for
fib(2) was repeated on four different occasions and fib(3) was itself calculated three
times. Given that our function is pure, we could have stored the calculated values to avoid
running the numbers over and over again. A possible version, using a cache array for
previously calculated values, would be as follows:

let cache = [];
const fib2 = (n) => {
 if (cache[n] === undefined) {
 if (n === 0) {
 cache[0] = 0;

 } else if (n === 1) {
 cache[1] = 1;

 } else {
 cache[n] = fib2(n - 2) + fib2(n - 1);
 }
 }

 return cache[n];
}

console.log(fib2(10)); // 55, as before, but more quickly!

Initially, the cache array is empty. Whenever we need to calculate the value of fib2(n),
we check whether it was already calculated beforehand. If that's not true, we do the
calculation, but with a twist: instead of immediately returning the value, first we store it in
the cache and then we return it. This means that no calculation will be done twice: after we
have calculated fib2(n) for a certain n, future calls will not repeat the procedure, and will
simply return the value that was already evaluated before.

A few short notes:

We memoized the function by hand, but we can do it with a higher-order
function. We'll see this later in Chapter 6, Producing Functions – Higher-Order
Functions. It is perfectly possible to memoize a function without having to change
or rewrite it.
Using a global variable for the cache isn't a very good practice; we could have
used an IIFE and a closure to hide the cache from sight—do you see how? See the
myCounter() example in the Immediate invocation section of Chapter 3, Starting
Out with Functions – A Core Concept, to review how we'd do this.

Behaving Properly - Pure Functions Chapter 4

[88]

Of course, you will be constrained by the available cache space, and it's possible
you could eventually crash your application by eating up all available RAM.
Resorting to external memory (a database, a file, or a cloud solution) would
probably eat up all the performance advantages of caching. There are some
standard solutions (involving eventually deleting items from the cache) but they
are beyond the scope of this book.

Of course, you don't need to do this for every pure function in your program. You'd do this
sort of optimization only for frequently called functions that take a certain important
amount of time—if it were otherwise, then the added cache management time would end
up costing more than whatever you expected to save!

Self-documentation
Pure functions have another advantage. Since everything the function needs to work with is
given to it through its parameters, with no kind of hidden dependency whatsoever, when
you read its source code, you have all you need to understand the function's objective.

An extra advantage: knowing that a function doesn't access anything beyond its parameters
makes you more confident in using it, since you won't be accidentally producing a side
effect; the only thing the function will accomplish is what you already learned through its
documentation.

Unit tests (which we'll be covering in the next section) also work as documentation, because
they provide examples of what the function returns when given certain arguments. Most
programmers will agree that the best kind of documentation is full of examples, and each
unit test can be considered such a sample case.

Testing
Yet another advantage of pure functions—and one of the most important ones—has to do
with unit testing. Pure functions have a single responsibility: producing their output in
terms of their input. So when you write tests for pure functions, your work is greatly
simplified because there is no context to consider and no state to simulate.

You can simply focus on providing inputs and checking outputs because all function calls
can be reproduced in isolation, independently from the rest of the world.

We have seen several aspects of pure functions. Let's move on and learn about impure
functions a bit, and finish by testing both pure and impure functions.

Behaving Properly - Pure Functions Chapter 4

[89]

Impure functions
If you decided to completely forego all kinds of side effects, then your programs would
only be able to work with hardcoded inputs, and wouldn't be able to show you the
calculated results! Similarly, most web pages would be useless: you wouldn't be able to
make any web services calls or update the DOM; you'd have static pages only. And your
Node code would be really useless for server-side work, as it wouldn't be able to perform
any I/O.

Reducing side effects is a good goal in FP, but we shouldn't go overboard with it! So let's
think of how to avoid using impure functions, if possible, and how to deal with them if not,
looking for the best possible way to contain or limit their scope.

Avoiding impure functions
Earlier in this chapter, we saw the more common reasons for using impure functions. Let's
now consider how we can reduce the number of impure functions, even if doing away with
all of them isn't really feasible. Basically, we'll have two methods for this:

Avoiding the usage of state
Using a common pattern, injection, to have impurity in a controlled fashion

Avoiding the usage of state
With regard to the usage of the global state—both getting and setting it—the solution is
well known. The key points to this are as follows:

Provide whatever is needed of the global state to the function as arguments.
If the function needs to update the state, it shouldn't do it directly, but rather
produce a new version of the state and return it.
It should be the responsibility of the caller to take the returned state, if any, and
update the global state.

This is the technique that Redux uses for its reducers. The signature for a reducer
is (previousState, action) => newState, meaning that it takes a state and an action
as parameters and returns a new state as the result. Most specifically, the reducer is not
supposed to simply change the previousState argument, which must remain untouched
(we'll learn more about this in Chapter 10, Ensuring Purity – Immutability).

Behaving Properly - Pure Functions Chapter 4

[90]

With regard to our first version of the isOldEnough() function, which used a global
limitYear variable, the change is simple enough: we just have to provide limitYear as a
parameter for the function. With this change, it will become pure, since it will produce its
result by only using its parameters. Even better, we should provide the current year and let
the function do the math instead of forcing the caller to do so. Our newer version of the
adult age test could then be as follows:

const isOldEnough3 = (currentYear, birthYear) => birthYear <=
currentYear-18;

Obviously, we'll have to change all the calls to provide the required limitYear argument
(we could also use currying, as we will see in Chapter 7, Transforming Functions – Currying
and Partial Application). The responsibility of initializing the value of limitYear still
remains outside of the function, as before, but we have managed to avoid a defect.

We can also apply this solution to our peculiar roundFix() function. As you will recall,
the function worked by accumulating the differences caused by rounding, and deciding
whether to round up or down depending on the sign of that accumulator. We cannot avoid
using that state, but we can split off the rounding part from the accumulating part. Our
original code (with fewer comments and logging) looked as follows:

const roundFix1 = (function() {
 let accum = 0;
 return n => {
 let nRounded = accum > 0 ? Math.ceil(n) : Math.floor(n);
 accum += n - nRounded;
 return nRounded;
 };
})();

The newer version would have two parameters:

const roundFix2 = (a, n) => {
 let r = a > 0 ? Math.ceil(n) : Math.floor(n);
 a += n - r;
 return {a, r};
};

How would you use this function? Initializing the accumulator, passing it to the function,
and updating it afterward are now the responsibility of the caller code. You would have
something like the following:

let accum = 0;

// ...some other code...

Behaving Properly - Pure Functions Chapter 4

[91]

let {a, r} = roundFix2(accum, 3.1415);
accum = a;
console.log(accum, r); // 0.1415 3

Note the following:

The accum phrase is now part of the global state of the application.
Since roundFix2() needs it, the current accumulator value is provided in each
call.
The caller is responsible for updating the global state, not roundFix2().

Note the usage of the destructuring assignment in order to allow a
function to return more than a value and easily store each one in a
different variable. For more on this, go to https:/ ​/​developer. ​mozilla.
org/​en/ ​docs/ ​Web/ ​JavaScript/ ​Reference/ ​Operators/ ​Destructuring_
assignment.

This new roundFix2() function is totally pure and can be easily tested. If you want to hide
the accumulator from the rest of the application, you could still use a closure, as we have
seen in other examples, but that would again introduce impurity in your code—your call!

Injecting impure functions
If a function becomes impure because it needs to call another function that is itself impure,
a way around this problem is to inject the required function in the call. This technique
actually provides more flexibility in your code and allows for easier future changes, as well
as less complex unit testing.

Let's consider the random filename generator function that we saw earlier. The problematic
part of this function is its usage of getRandomLetter() to produce the filename:

const getRandomFileName = (fileExtension = "") => {
 ...
 for (let i = 0; i < NAME_LENGTH; i++) {
 namePart[i] = getRandomLetter();
 }
 ...
};

A way to solve this is to replace the impure function with an injected external one; we must
now provide a randomLetterFunc() argument for our random filename function to use:

const getRandomFileName2 = (fileExtension = "", randomLetterFunc) => {
 const NAME_LENGTH = 12;

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment

Behaving Properly - Pure Functions Chapter 4

[92]

 let namePart = new Array(NAME_LENGTH);
 for (let i = 0; i < NAME_LENGTH; i++) {
 namePart[i] = randomLetterFunc();
 }
 return namePart.join("") + fileExtension;
};

Now, we have removed the inherent impurity from this function. If we want to provide a
predefined pseudorandom function that actually returns fixed, known, values, we will be
able to easily unit test this function; we'll be seeing how to do this in the following
examples. The usage of the function will change, and we would have to write the following:

let fn = getRandomFileName2(".pdf", getRandomLetter);

If this bothers you, you may want to provide a default value for the
randomLetterFunc parameter, as follows:

const getRandomFileName2 = (
 fileExtension = "",
 randomLetterFunc = getRandomLetter
) => {
 ...
};

You can also solve this using partial application, as we'll be seeing in Chapter 7,
Transforming Functions – Currying and Partial Application.

This hasn't actually avoided the usage of impure functions. Normally, you'll call
getRandomFileName() by providing it with the random letter generator we wrote, so it
will behave as an impure function; however, for testing purposes, if you provide a function
that returns predefined (that is, not random) letters, you'll be able to test it as if it was pure
much more easily.

But what about the original problem function, getRandomLetter()? We can apply the
same trick and write a new version, like the following, which will have an argument that
will produce random numbers:

const getRandomLetter = (getRandomInt = Math.random) => {
 const min = "A".charCodeAt();
 const max = "Z".charCodeAt();
 return String.fromCharCode(
 Math.floor(getRandomInt() * (1 + max - min)) + min
);
};

Behaving Properly - Pure Functions Chapter 4

[93]

For normal usage, getRandomFileName() would call getRandomLetter() without
providing any parameters, which would imply that the called function would behave in its
expected random ways. But if we want to test whether the function does what we wanted,
we can run it with an injected function that will return whatever we decide, letting us test it
thoroughly.

This idea is actually very important and has a wide spectrum of applications to other
problems. For example, instead of having a function directly access the DOM, we can
provide it with injected functions that would do this. For testing purposes, it would be
simple to verify that the tested function actually does what it needs to do without really
interacting with the DOM (of course, we'd have to find some other way to test those DOM-
related functions). This can also apply to functions that need to update the DOM, generate
new elements, and do all sorts of manipulations—you just use some intermediary
functions.

Is your function pure?
Let's end this section by considering an important question: can you ensure that a function
is actually pure? To show the difficulties of this task, we'll go back to the simple
sum3() function that we saw in the Spread section of Chapter 1, Becoming Functional –
Several Questions, just rewritten to use arrow functions for brevity. Would you say that this
function is pure? It certainly looks like it!

const sum3 = (x, y, z) => x + y + z;

Let's see: the function doesn't access anything but its parameters, doesn't even try to modify
them (not that it could (or could it?)), doesn't perform any I/O, or work with any of the
impure functions or methods that we mentioned earlier. What could go wrong?

The answer has to do with checking your assumptions. For example, who says the
arguments for this function should be numbers? You might say to yourself Okay, they could
be strings, but the function would still be pure, wouldn't it?, but for an (assuredly evil!) answer
to that, see the following code:

let x = {};
x.valueOf = Math.random;

let y = 1;
let z = 2;

console.log(sum3(x, y, z)); // 3.2034400919849431
console.log(sum3(x, y, z)); // 3.8537045249277906
console.log(sum3(x, y, z)); // 3.0833258308458734

Behaving Properly - Pure Functions Chapter 4

[94]

Note the way that we assigned a new function to the x.valueOf method.
We are taking full advantage of the fact that functions are first-class
objects. See the An unnecessary mistake section in Chapter 3, Starting Out
with Functions – A Core Concept, for more on this.

Well, sum3() ought to be pure, but it actually depends on whatever parameters you pass to
it; in JavaScript, you can make a pure function behave in an impure way! You might
console yourself by thinking that surely no one would pass such arguments, but edge cases
are usually where bugs reside. But you need not resign yourself to abandoning the idea of
pure functions. By adding some type checking (TypeScript might come in handy, as
mentioned in the Using transpilers section of Chapter 1, Becoming Functional – Several
Questions), you could at least prevent some cases, though JavaScript won't ever let you be
totally sure that your code is always pure!

Over the course of these sections, we have gone through the characteristics of both pure
and impure functions. Let's finish the chapter by looking at how we can test all these sorts
of functions.

Testing – pure versus impure
We have seen how pure functions are conceptually better than impure ones, but we cannot
set out on a crusade to vanquish all impurity from our code. First, no one can deny that side
effects can be useful, or at least unavoidable: you will need to interact with the DOM or call
a web service, and there are no ways to do this in a pure way. So, rather than bemoaning
the fact that you have to allow for impurity, try to structure your code so that you can
isolate the impure functions and let the rest of your code be the best it can possibly be.

With this in mind, you'll have to be able to write unit tests for all kinds of functions, pure or
impure. Writing unit tests for functions is different, in terms of both their difficulty and
complexity than dealing with pure or impure functions. While coding tests for the former is
usually quite simple and follows a basic pattern, the latter usually requires scaffolding and
complex setups. So let's finish this chapter by seeing how to go about testing both types of
function.

Behaving Properly - Pure Functions Chapter 4

[95]

Testing pure functions
Given the characteristics of pure functions that we have already described, most of your
unit tests could simply be the following:

Call the function with a given set of arguments.
Verify that the results match what you expected.

Let's start with a couple of simple examples. Testing the isOldEnough() function would
have been more complex than we needed for the version that required access to a global
variable. On the other hand, the last version, isOldEnough3(), which didn't require
anything because it received two parameters, is simple to test:

describe("isOldEnough", function() {
 it("is false for people younger than 18", () => {
 expect(isOldEnough3(1978, 1963)).toBe(false);
 });
 it("is true for people older than 18", () => {
 expect(isOldEnough3(1988, 1965)).toBe(true);
 });
 it("is true for people exactly 18", () => {
 expect(isOldEnough3(1998, 1980)).toBe(true);
 });
});

Testing another of the pure functions that we wrote is equally simple, but we must be
careful because of precision considerations. If we test the circleArea function, we must
use the Jasmine toBeCloseTo() matcher, which allows for approximate equality when
dealing with floating-point numbers. Other than this, the tests are just about the same—call
the function with known arguments and check the expected results:

describe("circle area", function() {
 it("is zero for radius 0", () => {
 let area = circleArea(0);
 expect(area).toBe(0);
 });
 it("is PI for radius 1", () => {
 let area = circleArea(1);
 expect(area).toBeCloseTo(Math.PI);
 });
 it("is approximately 12.5664 for radius 2", () => {
 let area = circleArea(2);
 expect(area).toBeCloseTo(12.5664);
 });
});

Behaving Properly - Pure Functions Chapter 4

[96]

No difficulty whatsoever! The test run reports success for both suites (see Figure 4.3):

Figure 4.3: A successful test run for a pair of simple pure functions

Now that we don't have to worry about pure functions, let's move on to the impure ones
that we dealt with by transforming them into pure equivalents.

Testing purified functions
When we considered the following roundFix special function, which required us to use
the state to accumulate the differences due to rounding, we produced a new version by
providing the current state as an added parameter and by having the function return two
values—the rounded one and the updated state:

const roundFix2 = (a, n) => {
 let r = a > 0 ? Math.ceil(n) : Math.floor(n);
 a += n - r;
 return {a, r};
};

Behaving Properly - Pure Functions Chapter 4

[97]

This function is now pure, but testing it requires validating not only the returned values but
also the updated states. We can base our tests on the experiments we did previously. Once
again, we have to use toBeCloseTo() for dealing with floating-point numbers, but we can
use toBe() with integers, which produces no rounding errors. We could write our tests as
follows:

describe("roundFix2", function() {
 it("should round 3.14159 to 3 if differences are 0", () => {
 const {a, r} = roundFix2(0.0, 3.14159);
 expect(a).toBeCloseTo(0.14159);
 expect(r).toBe(3);
 });
 it("should round 2.71828 to 3 if differences are 0.14159", () => {
 const {a, r} = roundFix2(0.14159, 2.71828);
 expect(a).toBeCloseTo(-0.14013);
 expect(r).toBe(3);
 });
 it("should round 2.71828 to 2 if differences are -0.14013", () => {
 const {a, r} = roundFix2(-0.14013, 2.71828);
 expect(a).toBeCloseTo(0.57815);
 expect(r).toBe(2);
 });
 it("should round 3.14159 to 4 if differences are 0.57815", () => {
 const {a, r} = roundFix2(0.57815, 3.14159);
 expect(a).toBeCloseTo(-0.28026);
 expect(r).toBe(4);
 });
});

We took care to include several cases, with positive, zero, or negative accumulated
differences, and checking whether it rounded up or down on each occasion. We could
certainly go further by rounding negative numbers, but the idea is clear: if your function
takes the current state as a parameter and updates it, the only difference with the pure
functions tests are that you will also have to test whether the returned state matches your
expectations.

Let's now consider the alternative way of testing for our pure
getRandomLetter() variant; let's call it getRandomLetter2(). This is simple: you just
have to provide a function that will itself produce random numbers. (This kind of function,
in testing parlance, is called a stub). There's no limit to the complexity of a stub, but you'll
want to keep it simple.

Behaving Properly - Pure Functions Chapter 4

[98]

We can then do some tests, based on our knowledge of the workings of the function, to
verify that low values produce an A and values close to 1 produce a Z, so we can have a
little confidence that no extra values are produced. We should also test that a middle value
(around 0.5) should produce a letter around the middle of the alphabet; however, keep in
mind that this kind of test is not very good—if we substituted an equally
valid getRandomLetter() variant, it might be the case that the new function could work
perfectly well, but not pass this test, because of a different internal implementation! Our
tests could be written as follows:

describe("getRandomLetter2", function() {
 it("returns A for values close to 0", () => {
 const letterSmall = getRandomLetter2(() => 0.0001);
 expect(letterSmall).toBe("A");
 });
 it("returns Z for values close to 1", () => {
 const letterBig = getRandomLetter2(() => 0.99999);
 expect(letterBig).toBe("Z");
 });
 it("returns a middle letter for values around 0.5", () => {
 const letterMiddle = getRandomLetter2(() => 0.49384712);
 expect(letterMiddle).toBeGreaterThan("G");
 expect(letterMiddle).toBeLessThan("S");
 });
 it("returns an ascending sequence of letters for ascending values", () =>
{
 const a = [0.09, 0.22, 0.6];
 const f = () => a.shift(); // impure!!
 const letter1 = getRandomLetter2(f);
 const letter2 = getRandomLetter2(f);
 const letter3 = getRandomLetter2(f);
 expect(letter1).toBeLessThan(letter2);
 expect(letter2).toBeLessThan(letter3);
 });
});

Testing our filename generator can be done in a similar way, by using stubs. We can
provide a simple stub that will return the letters of "SORTOFRANDOM" in sequence (this
function is quite impure; can you see why?). So we can verify that the returned filename
matches the expected name and a couple more properties of the returned filename, such as
its length and its extension. Our test could then be written as follows:

describe("getRandomFileName", function() {
 let a = [];
 const f = () => a.shift();
 beforeEach(() => {
 a = "SORTOFRANDOM".split("");

Behaving Properly - Pure Functions Chapter 4

[99]

 });
 it("uses the given letters for the file name", () => {
 const fileName = getRandomFileName("", f);
 expect(fileName.startsWith("SORTOFRANDOM")).toBe(true);
 });
 it("includes the right extension, and has the right length", () => {
 const fileName = getRandomFileName(".pdf", f);
 expect(fileName.endsWith(".pdf")).toBe(true);
 expect(fileName.length).toBe(16);
 });
});

Testing purified impure functions is very much the same as testing originally pure
functions. Now we need to consider some cases of truly impure functions, because, as we
said, it's quite certain that at some time or another you'll have to use such functions.

Testing impure functions
For starters, we'll go back to our getRandomLetter() function. With insider knowledge
about its implementation (this is called white-box testing, as opposed to black-box testing,
where we know nothing about the function code itself), we can spy (a Jasmine term) on the
Math.random() method and set a mock function that will return whatever values we
desire.

We can revisit some of the test cases that we went through in the previous section. In the
first case, we set Math.random() to return 0.0001 (and test that it was actually called) and
we also test that the final return was A. In the second case, just for variety, we set things up
so that Math.random() can be called twice, returning two different values. We also verify
that there were two calls to the function and that both results were Z. The third case shows
yet another way of checking how many times Math.random() (or rather, our mocked
function) was called. Our revisited tests could look as follows:

describe("getRandomLetter", function() {
 it("returns A for values close to 0", () => {
 spyOn(Math, "random").and.returnValue(0.0001);
 const letterSmall = getRandomLetter();
 expect(Math.random).toHaveBeenCalled();
 expect(letterSmall).toBe("A");
 });
 it("returns Z for values close to 1", () => {
 spyOn(Math, "random").and.returnValues(0.98, 0.999);
 const letterBig1 = getRandomLetter();
 const letterBig2 = getRandomLetter();
 expect(Math.random).toHaveBeenCalledTimes(2);

Behaving Properly - Pure Functions Chapter 4

[100]

 expect(letterBig1).toBe("Z");
 expect(letterBig2).toBe("Z");
 });
 it("returns a middle letter for values around 0.5", () => {
 spyOn(Math, "random").and.returnValue(0.49384712);
 const letterMiddle = getRandomLetter();
 expect(Math.random.calls.count()).toEqual(1);
 expect(letterMiddle).toBeGreaterThan("G");
 expect(letterMiddle).toBeLessThan("S");
 });
});

Of course, you wouldn't go around inventing whatever tests came into
your head. In all likelihood, you'll work from the description of the
desired getRandomLetter() function, which was written before you
started to code or test it. In our case, I'm making do as if that specification
did exist, and it pointedly said, for example, that values close to 0 should
produce an A, values close to 1 should return Z, and the function should
return ascending letters for ascending random values.

Now, how would you test the original getRandomFileName() function, the one that called
the impure getRandomLetter() function? That's a much more complicated problem.
What kind of expectations do you have? You cannot know the results it will give, so you
won't be able to write any .toBe() type of tests. What you can do is to test for some
properties of the expected results, and also, if your function implies randomness of some
kind, you can repeat the tests as many times as you want so that you have a bigger chance
of catching a bug. We could do some tests along the lines of the following code:

describe("getRandomFileName, with an impure getRandomLetter function",
function() {
 it("generates 12 letter long names", () => {
 for (let i = 0; i < 100; i++) {
 expect(getRandomFileName().length).toBe(12);
 }
 });
 it("generates names with letters A to Z, only", () => {
 for (let i = 0; i < 100; i++) {
 let n = getRandomFileName();
 for (j = 0; j < n.length; n++) {
 expect(n[j] >= "A" && n[j] <= "Z").toBe(true);
 }
 }
 });
 it("includes the right extension if provided", () => {
 const fileName1 = getRandomFileName(".pdf");
 expect(fileName1.length).toBe(16);

Behaving Properly - Pure Functions Chapter 4

[101]

 expect(fileName1.endsWith(".pdf")).toBe(true);
 });
 it("doesn't include any extension if not provided", () => {
 const fileName2 = getRandomFileName();
 expect(fileName2.length).toBe(12);
 expect(fileName2.includes(".")).toBe(false);
 });
});

We are not passing any random letter generator function to getFileName(), so it will use
the original, impure one. We ran some of the tests a hundred times, as extra insurance.

When testing code, always remember that absence of evidence isn't evidence
of absence. Even if our repeated tests succeed, there is no guarantee that,
with some other random input, they won't produce an unexpected, and
hitherto undetected, error.

Let's do another property test. Suppose we want to test a shuffling algorithm; we might
decide to implement the Fisher-Yates version along the lines of the following code. As
implemented, the algorithm is doubly impure: it doesn't always produce the same result
(obviously!) and it modifies its input parameter:

const shuffle = arr => {
 const len = arr.length;
 for (let i = 0; i < len - 1; i++) {
 let r = Math.floor(Math.random() * (len - i));
 [arr[i], arr[i + r]] = [arr[i + r], arr[i]];
 }
 return arr;
};

var xxx = [11, 22, 33, 44, 55, 66, 77, 88];
console.log(shuffle(xxx));
// [55, 77, 88, 44, 33, 11, 66, 22]

For more on this algorithm—including some pitfalls for the unwary
programmer—see https:/ ​/​en.​wikipedia. ​org/ ​wiki/ ​Fisher- ​Yates_
shuffle.

How could you test this algorithm? Given that the result won't be predictable, we can check
for the properties of its output. We can call it with a known array and then test some
properties of it:

describe("shuffleTest", function() {
 it("shouldn't change the array length", () => {

https://en.wikipedia.org/wiki/Fisher-Yates_shuffle
https://en.wikipedia.org/wiki/Fisher-Yates_shuffle
https://en.wikipedia.org/wiki/Fisher-Yates_shuffle
https://en.wikipedia.org/wiki/Fisher-Yates_shuffle
https://en.wikipedia.org/wiki/Fisher-Yates_shuffle
https://en.wikipedia.org/wiki/Fisher-Yates_shuffle
https://en.wikipedia.org/wiki/Fisher-Yates_shuffle
https://en.wikipedia.org/wiki/Fisher-Yates_shuffle
https://en.wikipedia.org/wiki/Fisher-Yates_shuffle
https://en.wikipedia.org/wiki/Fisher-Yates_shuffle
https://en.wikipedia.org/wiki/Fisher-Yates_shuffle
https://en.wikipedia.org/wiki/Fisher-Yates_shuffle
https://en.wikipedia.org/wiki/Fisher-Yates_shuffle
https://en.wikipedia.org/wiki/Fisher-Yates_shuffle
https://en.wikipedia.org/wiki/Fisher-Yates_shuffle
https://en.wikipedia.org/wiki/Fisher-Yates_shuffle

Behaving Properly - Pure Functions Chapter 4

[102]

 let a = [22, 9, 60, 12, 4, 56];
 shuffle(a);
 expect(a.length).toBe(6);
 });
 it("shouldn't change the values", () => {
 let a = [22, 9, 60, 12, 4, 56];
 shuffle(a);
 expect(a.includes(22)).toBe(true);
 expect(a.includes(9)).toBe(true);
 expect(a.includes(60)).toBe(true);
 expect(a.includes(12)).toBe(true);
 expect(a.includes(4)).toBe(true);
 expect(a.includes(56)).toBe(true);
 });
});

We had to write the second part of the unit tests in that way because, as we saw,
shuffle() modifies the input parameter.

Summary
In this chapter, we introduced the concept of pure functions and studied why they matter.
We also saw the problems caused by side effects, one of the causes of impure
functions, looked at some ways of purifying such impure functions, and finally, we saw
several ways of performing unit tests, for both pure and impure functions. With these
techniques, you'll be able to favor using pure functions in your programming, and when
impure functions are needed, you'll have some ways of using them in a controlled way.

In Chapter 5, Programming Declaratively – A Better Style, we'll show other advantages of FP:
how you can program in a declarative fashion at a higher level for simpler and more
powerful code.

Questions
4.1. Minimalistic function: Functional programmers sometimes tend to write code in a
minimalistic way. Can you examine the following version of the Fibonacci function and
explain whether it works, and if so, how?

const fib2 = n => (n < 2 ? n : fib2(n - 2) + fib2(n - 1));

Behaving Properly - Pure Functions Chapter 4

[103]

4.2. A cheap way: The following version of the Fibonacci function is quite efficient and
doesn't do any unnecessary or repeated computations. Can you see how? Here's a
suggestion: try to calculate fib4(6) by hand and compare it with the example given earlier
in the book:

const fib4 = (n, a = 0, b = 1) => (n === 0 ? a : fib4(n - 1, b, a + b));

4.3. A shuffle test: How would you write unit tests for shuffle() to test whether it works
correctly with arrays with repeated values?

4.4. Breaking laws: Using toBeCloseTo() is very practical, but it can cause some
problems. Some basic mathematics properties are as follows:

A number should equal itself: for any number a, a should equal a.
If a number a equals number b, then b should equal a.
If a equals b, and b equals c, then a should equal c.
If a equals b, and c equals d, then a+c should equal b+d.
If a equals b, and c equals d, then a-c should equal b-d.
If a equals b, and c equals d, then a*c should equal b*d.
If a equals b, and c equals d, then a/c should equal b/d.

Does toBeCloseTo() also satisfy all these properties?

4.5. Must return? A simple, almost philosophical question: must pure functions always
return something? Could you have a pure function that didn't include a return?

4.6. JavaScript does math? In the Testing purified functions section, we mentioned the need
for toBeCloseTo() because of precision problems. A related question, often asked in job
interviews, is: what will the following code output, and why?

const a = 0.1;
const b = 0.2;
const c = 0.3;

if (a + b === c) {
 console.log("Math works!");
} else {
 console.log("Math failure?");
}

5
Programming Declaratively - A

Better Style
Up to now, we haven't really been able to appreciate the possibilities of Functional
Programming (FP) as it pertains to working in a higher-level, declarative fashion. In this
chapter, we will correct this, and start getting shorter, more concise, and easier to
understand code, by using some higher-order functions (HOF); that is, functions that take
functions as parameters, such as the following:

reduce() and reduceRight() to apply an operation to a whole array, reducing
it to a single result
map() to transform one array into another by applying a function to each of its
elements
flat() to make a single array out of an array of arrays
flatMap() to mix together mapping and flattening
forEach() to simplify writing loops by abstracting the necessary looping code

We'll also be able to perform searches and selections with the following:

filter() to pick some elements from an array
find() and findIndex() to search for elements that satisfy a condition
A pair of predicates, every() and some(), to check an array for a Boolean test

Using these functions lets you work more declaratively, and you'll see that your focus will
shift to what you need to do and not so much how it's going to be done; the dirty details are
hidden inside our functions. Instead of writing a series of possibly nested for loops, we'll
focus on using functions as building blocks to specify our desired result.

Programming Declaratively - A Better Style Chapter 5

[105]

We will also be using these functions to work with events in a declarative
style, as we'll see in Chapter 11, Implementing Design Patterns – The
Functional Way, when we use the observer pattern.

We will also be able to work in a fluent fashion, in which the output of a function becomes
the input of the next one, a style we will look at later.

Transformations
The first set of operations that we are going to consider work on an array and process it in
the base of a function to produce some results. There are several possible results: a single
value with the reduce() operation; a new array with map(); or just about any kind of
result with forEach().

If you Google around, you will find some articles that declare that these
functions are not efficient because a loop done by hand can be faster. This,
while possibly true, is practically irrelevant. Unless your code really
suffers from speed problems and you are able to measure that the
slowness derives from the use of these higher-order functions, trying to
avoid them using longer code, with a higher probability of bugs, simply
doesn't make much sense.

Let's start by considering the preceding list of functions in order, starting with the most
general of all, which, as we'll see, can even be used to emulate the rest of the
transformations in this chapter!

Reducing an array to a value
Answer this question: how many times have you had to loop through an array, performing
an operation (say, summing) to produce a single value (maybe the sum of all the array
values) as a result? Probably many, many, many times. This kind of operation can
usually be implemented functionally by applying reduce() and reduceRight(). Let's
start with the former!

Programming Declaratively - A Better Style Chapter 5

[106]

Time for some terminology! In usual FP parlance, we speak of folding
operations: reduce() is foldl (for fold left) or just plain fold, and
reduceRight() is correspondingly known as foldr. In category theory
terms, both operations are catamorphisms: the reduction of all the values
in a container down to a single result.

The inner workings of the reduce() function are illustrated in Figure 5.1. See how it
traverses the array, applying a reducing function to each element and to the accumulated
value:

Figure 5.1: The workings of the reduce operation

Why should you always try to use reduce() or reduceRight() instead of hand-coded
loops? The following points might answer this question:

All the aspects of loop control are automatically taken care of, so you don't even
have the possibility of, say, an off-by-one mistake.
The initialization and handling of the result values are also done implicitly.
Unless you work really hard at being impure and modifying the original array,
your code will be side effect free.

Now that we can reduce() an array, let's see some of its practical use cases.

Programming Declaratively - A Better Style Chapter 5

[107]

Summing an array
The most common example of the application of reduce(), usually seen in all textbooks
and on all web pages, is the summing of all of the elements of an array. So, in order to keep
with tradition, let's start with precisely this example!

Basically, to reduce an array, you must provide a dyadic function (that is, a function with
two parameters; binary would be another name for that) and an initial value. In our case,
the function will sum its two arguments. Initially, the function will be applied to the
provided initial value and the first element of the array, so for us, the first result we have to
provide is a zero, and the first result will be the first element itself. Then, the function will
be applied again, this time to the result of the previous operation, and the second element
of the array, and so the second result will be the sum of the first two elements of the array.
Progressing in this fashion along the whole array, the final result will be the sum of all its
elements:

const myArray = [22, 9, 60, 12, 4, 56];
const sum = (x, y) => x + y;
const mySum = myArray.reduce(sum, 0); // 163

You don't actually need the sum definition—you could have just written
myArray.reduce((x,y) => x+y, 0)—however, when written in this fashion, the
meaning of the code is clearer: you want to reduce the array to a single value by sum-ming
all its elements. Instead of having to write out the loop, initializing a variable to hold the
result of the calculations, and going through the array doing the sums, you just declare
what operation should be performed. This is what I meant when I said that programming
with functions such as those that we'll see in this chapter allows you to work more
declaratively, focusing on what rather than how.

You can also even do this without providing the initial value: if you skip
it, the first value of the array will be used, and the internal loop will start
with the second element of the array; however, be careful if the array is
empty, and if you skipped providing an initial value, as you'll get a
runtime error! See https:/ ​/ ​developer. ​mozilla. ​org/​en- ​US/ ​docs/ ​Web/
JavaScript/ ​Reference/ ​Global_ ​Objects/ ​Array/ ​Reduce for more details.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce

Programming Declaratively - A Better Style Chapter 5

[108]

We can change the reducing function to see how it progresses through its calculations by
just including a little bit of impurity!

const sumAndLog = (x, y) => {
 console.log(`${x}+${y}=${x + y}`);
 return x + y;
};

myArray.reduce(sumAndLog, 0);

The output would be as follows:

0+22=22
22+9=31
31+60=91
91+12=103
103+4=107
107+56=163

You can see how the first sum was done by adding the initial value (0) and the first element
of the array, how that result was used in the second addition, and so on.

Part of the reason for the foldl name seen previously (at least, its ending l)
should now be clear: the reducing operation proceeds from left to right,
from the first element to the last. You may wonder, however, how it
would have been named if it had been defined by a right-to-left language
(such as Arabic, Hebrew, Farsi, or Urdu) speaker!

This example is common and well-known; let's now do something a bit more complicated.
As we'll find out, reduce() will be quite useful for many different objectives!

Calculating an average
Let's work a bit more. How do you calculate the average of a list of numbers? If you were
explaining this to someone, your answer would surely be something like sum all the elements
in the list and divide that by the number of elements. This, in programming terms, is not a
procedural description (you don't explain how to sum elements, or how to traverse the
array), but rather a declarative one, since you say what to do, not how to do it.

We can transform that description of the calculation into an almost self-explanatory
function:

const average = arr => arr.reduce(sum, 0) / arr.length;

console.log(average(myArray)); // 27.166667

Programming Declaratively - A Better Style Chapter 5

[109]

The definition of average() follows what would be a verbal explanation: sum the
elements of the array, starting from 0, and divide by the array's length—simpler:
impossible!

As we mentioned in the previous section, you could also have written
arr.reduce(sum) without specifying the initial value (0) for the
reduction; it's even shorter and closer to the verbal description of the
required calculation. This, however, is less safe, because it would fail
(producing a runtime error) should the array be empty. So it's better to
always provide the starting value.

This isn't, however, the only way of calculating the average. The reducing function also gets
passed the index of the current position of the array as well as the array itself, so you could
do something different than last time:

const average2 = (sum, val, ind, arr) => {
 sum += val;
 return ind === arr.length - 1 ? sum / arr.length : sum;
};

console.log(myArray.reduce(average2, 0)); // 27.166667

Given the current index (and, obviously, having access to the array's length), we can do
some trickery: in this case, we always sum values, but if we are at the end of the array, we
also throw in a division so that the average value of the array will be returned. This is slick,
but from the point of view of legibility, I'm certain we can agree that the first version we
saw was more declarative and closer to the mathematical definition than this second
version.

Getting the array and the index means that you could also turn the
function into an impure one. Avoid this! Everybody who sees a reduce()
call will automatically assume it's a pure function, and will surely
introduce bugs when using it.

It would also be possible to modify Array.prototype to add the new function. Modifying
prototypes is usually frowned upon because of the possibility of clashes with different
libraries, at the very least. However, if you accept this idea, you could then write the
following code:

Array.prototype.average = function() {
 return this.reduce((x, y) => x + y, 0) / this.length;
};

let myAvg = [22, 9, 60, 12, 4, 56].average(); // 27.166667

Programming Declaratively - A Better Style Chapter 5

[110]

Do take note of the need for the outer function() (instead of an arrow function) because
of the implicit handling of this, which wouldn't be bound otherwise. We have now
extended the Array.prototype so that average() becomes globally available as a
method.

Both this example and the previous one required calculating a single result, but it's possible
to go beyond this and calculate several values in a single pass. Let's see how.

Calculating several values at once
What would you do if, instead of a single value, you needed to calculate two or more
results? This would seem to be a case for providing a clear advantage for common loops,
but there's a trick that you can use. Let's yet again revisit the average calculation. We might
want to do it the old-fashioned way, by looping and at the same time summing and
counting all numbers. Well, reduce() only lets you produce a single result, but there's no
reason you can't return an object with as many fields as desired:

const average3 = arr => {
 const sumCount = arr.reduce(
 (accum, value) => ({sum: value + accum.sum, count: accum.count + 1}),
 {sum: 0, count: 0}
);

 return sumCount.sum / sumCount.count;
};

console.log(average3(myArray)); // 27.166667

Examine the code carefully. We need two variables: one for the sum and one for the count
of all numbers. We provide an object as the initial value for the accumulator, with two
properties set to 0, and our reducing function updates those two properties.

By the way, using an object isn't the only option. You could also produce any other data
structure; let's see an example with an array. The resemblance is pretty obvious:

const average4 = arr => {
 const sumCount = arr.reduce(
 (accum, value) => [accum[0] + value, accum[1] + 1],
 [0, 0]
);
 return sumCount[0] / sumCount[1];
};

console.log(average4(myArray)); // 27.166667

Programming Declaratively - A Better Style Chapter 5

[111]

To be frank, I think it's way more obscure than the solution with the object. Just consider
this an alternative (not very recommendable) way of calculating many values at once!

We have now seen several examples of the use of reduce(), so it's high time to meet a
variant of it, reduceRight(), which works in a very similar fashion.

Folding left and right
The complementary reduceRight() method works just as reduce() does, only starting at
the end and looping until the beginning of the array. For many operations (such as the
calculation of averages that we saw previously), this makes no difference, but there are
some cases in which it will.

We shall be seeing a clear case of this in Chapter 8, Connecting Functions – Pipelining and
Composition, when we compare pipelining and composition: let's go with a simpler example
here:

Figure 5.2: The reduceRight() operation works the same way as reduce(), but in reverse order

You can read more about reduceRight() at https:/ ​/​developer.
mozilla. ​org/ ​en- ​US/ ​docs/ ​Web/ ​JavaScript/ ​Reference/ ​Global_ ​Objects/
Array/ ​ReduceRight.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight

Programming Declaratively - A Better Style Chapter 5

[112]

Suppose that we want to implement a function to reverse a string. A solution could be to
transform the string into an array by using split(), then reversing that array, and finally
using join() to make it whole again:

const reverseString = str => {
 let arr = str.split("");
 arr.reverse();
 return arr.join("");
};

console.log(reverseString("MONTEVIDEO")); // OEDIVETNOM

This solution works (and yes, it can be shortened, but that's not the point here), but let's do
it in another way, just to experiment with reduceRight():

const reverseString2 = str =>
 str.split("").reduceRight((x, y) => x + y, "");

console.log(reverseString2("OEDIVETNOM")); // MONTEVIDEO

Given that the addition operator also works with strings, we could
also have written reduceRight(sum,""). And, if instead of the function
we used, we had written (x,y) => y+x, the result would have been our
original string; can you see why?

From the previous examples, you can also get an idea: if you first apply reverse() to an
array and then use reduce(), the effect will be the same as if you had just applied
reduceRight() to the original array. There is only one point to take into account:
reverse() alters the given array, so you would be causing an unintended side effect by
reversing the original array! The only way out would be first generating a copy of the array
and only then doing the rest. Too much work; best to keep using reduceRight()!

However, we can draw another conclusion, showing a result we had foretold: it is possible,
albeit more cumbersome, to use reduce() to simulate the same result as
reduceRight()—and in later sections, we'll also use it to emulate the other functions in
the chapter. Let's now move on to another common and powerful operation: mapping.

Programming Declaratively - A Better Style Chapter 5

[113]

Applying an operation – map
Processing lists of elements and applying some kind of operation to each of them is a quite
common pattern in computer programming. Writing loops that systematically go through
all the elements of an array or collection, starting at the first and looping until finishing
with the last, and performing some kind of process on each of them is a basic coding
exercise, usually learned in the first days of all programming courses. We already saw one
such kind of operation in the previous section with reduce() and reduceRight(); let's
now turn to a new one, called map().

In mathematics, a map is a transformation of elements from a domain into elements of a
codomain. For example, you might transform numbers into strings or strings into numbers,
but also numbers to numbers, or strings to strings: the important point is that you have a
way to transform an element of the first kind or domain (think type, if it helps) into an
element of the second kind, or codomain. In our case, this will mean taking the elements of
an array and applying a function to each of them to produce a new array. In more
computer-like terms, the map function transforms an array of inputs into an array of
outputs.

Some more terminology: We would say that an array is a functor because
it provides a mapping operation with some prespecified properties, which
we shall see later. And, in category theory, which we'll talk about a little in
Chapter 12, Building Better Containers – Functional Data Types, the
mapping operation itself would be called a morphism.

The inner workings of the map() operation can be seen in Figure 5.3:

Figure 5.3: The map() operation transforms each element of the input array by applying a mapping function

Programming Declaratively - A Better Style Chapter 5

[114]

The jQuery library provides a function, $.map(array, callback), that
is similar to the map() method. Be careful, though, for there are important
differences. The jQuery function processes the undefined values of the
array, while map() skips them. Also, if the applied function produces an
array as its result, jQuery flattens it and adds each of its individual
elements separately, while map() just includes those arrays in the result.

What are the advantages of using map() over using a straightforward loop?

First, you don't have to write any loops, so that's one less possible source of bugs.
Second, you don't even have to access the original array or the index position,
even though they are there for you to use if you really need them.
Lastly, a new array is produced, so your code is pure (though, of course, if you
really want to produce side effects, you can!).

In JavaScript, map() is basically available only for arrays (you can read
more about this at https:/ ​/ ​developer. ​mozilla. ​org/​en- ​US/ ​docs/ ​Web/
JavaScript/ ​Reference/ ​Global_ ​Objects/ ​Array/ ​map); however, in the
Extending current data types section in Chapter 12, Building Better
Containers – Functional Data Types, we will learn how to make it available
for other basic types, such as numbers, Booleans, strings, and even
functions. Also, libraries, such as LoDash, Underscore, and Ramda,
provide similar functionalities.

There are only two caveats when using this:

Always return something from your mapping function. If you forget this, then
you'll just produce an undefined-filled array, because JavaScript always
provides a default return undefined for all functions.
If the input array elements are objects or arrays, and you include them in the
output array, then JavaScript will still allow the original elements to be accessed.

There's an alternative way of doing map(): check the Array.from()
method at https:/ ​/ ​developer. ​mozilla. ​org/ ​en- ​US/​docs/ ​Web/
JavaScript/ ​Reference/ ​Global_ ​Objects/ ​Array/ ​from and pay special
attention to its second argument!

As we did earlier with reduce(), let's now look at some examples of the use of map() for
common processes so that you'll better appreciate its power and convenience.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from

Programming Declaratively - A Better Style Chapter 5

[115]

Extracting data from objects
Let's start with a simple example. Suppose that we have some geographic data (as shown in
the following snippet) related to some South American countries and the coordinates
(latitude and longitude) of their capitals. Let's say that we want to calculate the average
position of those cities. (No, I don't have a clue why we'd want to do that.) How would we
go about it?

const markers = [
 {name: "AR", lat: -34.6, lon: -58.4},
 {name: "BO", lat: -16.5, lon: -68.1},
 {name: "BR", lat: -15.8, lon: -47.9},
 {name: "CL", lat: -33.4, lon: -70.7},
 {name: "CO", lat: 4.6, lon: -74.0},
 {name: "EC", lat: -0.3, lon: -78.6},
 {name: "PE", lat: -12.0, lon: -77.0},
 {name: "PY", lat: -25.2, lon: -57.5},
 {name: "UY", lat: -34.9, lon: -56.2},
 {name: "VE", lat: 10.5, lon: -66.9},
];

In case you are wondering if and why all the data are negative, it's just
because the countries shown here are all south of the Equator and west of
the Greenwich Meridian; however, there are some South American
countries with positive latitudes, such as Colombia or Venezuela, so not
all have negative data. We'll come back to this question a little later when
we study the some() and every() methods.

We would want to use our average() function (which we developed earlier in this
chapter), but there is a problem: that function can only be applied to an array of numbers,
and what we have here is an array of objects. We can, however, do a trick: we can focus on
calculating the average latitude (we can deal with the longitude later, in a similar fashion).
We can map each element of the array to just its latitude, and we would then have an
appropriate input for average(). The solution would be something like the following:

let averageLat = average(markers.map(x => x.lat)); // -15.76
let averageLon = average(markers.map(x => x.lon)); // -65.53

If you had extended Array.prototype, you could then have written an equivalent
version, in a different style, using average() as a method instead of a function:

let averageLat2 = markers.map(x => x.lat).average();
let averageLon2 = markers.map(x => x.lon).average();

Programming Declaratively - A Better Style Chapter 5

[116]

We will be learning more about these styles in Chapter 8, Connecting
Functions – Pipelining and Composition.

Mapping an array to extract data is powerful, but you must be careful. Let's now look at a
case that seems right, but produces incorrect results!

Parsing numbers tacitly
Working with the map is usually far safer and simpler than looping by hand, but some
edge cases may trip you up. Say you received an array of strings representing numeric
values, and you wanted to parse them into actual numbers. Can you explain the following
results?

["123.45", "67.8", "90"].map(parseFloat);
// [123.45, 67.8, 90]

["123.45", "-67.8", "90"].map(parseInt);
// [123, NaN, NaN]

Let's analyze the results. When we used parseFloat() to get floating-point results,
everything was okay; however, when we wanted to truncate the results to integer values,
then the output was really awry, and weird NaN values appeared. What happened?

The answer lies in a problem with tacit programming. (We have already seen some uses of
tacit programming in the An unnecessary mistake section of Chapter 3, Starting Out with
Functions – A Core Concept, and we'll be seeing more in Chapter 8, Connecting Functions –
Pipelining and Composition.) When you don't explicitly show the parameters to a function,
it's easy to have some oversights. Look at the following code, which will lead us to the
solution:

["123.45", "-67.8", "90"].map(x => parseFloat(x));
// [123.45, -67.8, 90]

["123.45", "-67.8", "90"].map(x => parseInt(x));
// [123, -67, 90]

The reason for the unexpected behavior with parseInt() is that this function can also
receive a second parameter—namely, the radix to be used when converting the string to a
number. For instance, a call such as parseInt("100010100001", 2) will convert the
binary number 100010100001 to decimal.

Programming Declaratively - A Better Style Chapter 5

[117]

You can read more about parseInt() at https:/ ​/​developer. ​mozilla.
org/​en/ ​docs/ ​Web/ ​JavaScript/ ​Reference/ ​Global_ ​Objects/ ​parseInt,
where the radix parameter is explained in detail. You should always
provide it because some browsers might interpret strings with a leading
zero to be octal, which would once again produce unwanted results.

So what happens when we provide parseInt() to map()? Remember that map() calls
your mapping function with three parameters: the array element value, its index, and the
array itself. When parseInt receives these values, it ignores the array, but assumes that the
provided index is actually a radix and NaN values are produced, since the original strings
are not valid numbers in the given radix.

Okay, we saw that some functions can lead you astray when doing mapping, and you now
know what to look out for. Let's keep enhancing the way we that we work, by using ranges
to help you write code that would usually require a hand-written loop.

Working with ranges
Let's now turn to a helper function, which will come in handy for many uses. We want a
range(start,stop) function that generates an array of numbers, with values ranging
from start (inclusive) to stop (exclusive):

const range = (start, stop) =>
 new Array(stop - start).fill(0).map((v, i) => start + i);

let from2To6 = range(2, 7); // [2, 3, 4, 5, 6]

Why fill(0)? All undefined array elements are skipped by map(), so we need to fill them
with something or our code will have no effect.

Libraries such as Underscore and Lodash provide a more powerful
version of our range function, letting you go in ascending or descending
order and also specifying the step to use—as in _.range(0, -8, -2),
which produces [0, -2, -4, -6]—but for our needs, the version we
wrote is enough. Read the Questions section at the end of this chapter.

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/parseInt
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/parseInt
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/parseInt
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/parseInt
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/parseInt
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/parseInt
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/parseInt
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/parseInt
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/parseInt
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/parseInt
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/parseInt
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/parseInt
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/parseInt
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/parseInt
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/parseInt
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/parseInt
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/parseInt
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/parseInt
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/parseInt
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/parseInt
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/parseInt
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/parseInt
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/parseInt
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/parseInt

Programming Declaratively - A Better Style Chapter 5

[118]

How can we use it? In the following section, we'll see some uses for controlled looping with
forEach(), but we can redo our factorial function by applying range() and then
reduce(). The idea of this is to simply generate all the numbers from 1 to n and then
multiply them together:

const factorialByRange = n => range(1, n + 1).reduce((x, y) => x * y, 1);

factorialByRange(5); // 120
factorialByRange(3); // 6

It's important to check the border cases, but the function also works for zero; can you see
why? The reason for this is that the produced range is empty (the call is range(1,1),
which returns an empty array) and then reduce() doesn't do any calculations, and simply
returns the initial value (one), which is correct.

In Chapter 7, Transforming Functions - Currying and Partial Application,
we'll have the opportunity to use range() to generate source code; check
out the Currying with eval() and Partial application with eval() sections.

You could use these numeric ranges to produce other kinds of ranges. For example, should
you need an array with the alphabet, you could certainly (and tediously) write ["A", "B",
"C"... up to ..."X", "Y", "Z"]. A simpler solution would be to generate a range with
the ASCII codes for the alphabet and map those into letters:

const ALPHABET = range("A".charCodeAt(), "Z".charCodeAt() + 1).map(x =>
 String.fromCharCode(x)
);

// ["A", "B", "C", ... "X", "Y", "Z"]

Note the use of charCodeAt() to get the ASCII codes for the letters and
String.fromCharCode(x) to transform the ASCII code back into a character.

Mapping is very important and quite often used, so let's now analyze how you could
implement it on your own, which could help you develop code of your own for more
complex cases.

Programming Declaratively - A Better Style Chapter 5

[119]

Emulating map() with reduce()
Earlier in this chapter, we saw how reduce() could be used to implement
reduceRight(). Now let's see how reduce() can also be used to provide a polyfill for
map() (not that you will need it, because browsers usually provide both methods, but just
to get more of an idea of what you can achieve with these tools).

Our own myMap() is a one-liner, but it can be hard to understand. The idea is that we apply
the function to each element of the array and we concat() the result to (an initially empty)
result array. When the loop finishes working with the input array, the result array will have
the desired output values:

const myMap = (arr, fn) => arr.reduce((x, y) => x.concat(fn(y)), []);

Let's test this with an array and a simple function. We will use both the original map()
method and our myMap(), and obviously the results should match!

const myArray = [22, 9, 60, 12, 4, 56];
const dup = x => 2 * x;

console.log(myArray.map(dup)); // [44, 18, 120, 24, 8, 112]
console.log(myMap(myArray, dup)); // [44, 18, 120, 24, 8, 112]
console.log(myArray); // [22, 9, 60, 12, 4, 56]

The first log shows the expected result, produced by map(). The second output gives the
same result, so it seems that myMap() works! And the final output is just to check that the
original input array wasn't modified in any way; mapping operations should always
produce a new array.

All the previous examples in the chapter focused on simple arrays. But what happens if
things get more complicated, say if you had to deal with an array whose elements were
arrays themselves? Fortunately, there's a way out for that. Let's move on.

Programming Declaratively - A Better Style Chapter 5

[120]

Dealing with arrays of arrays
So far, we have worked with an array of (single) values as an input, but what would
happen if your input happened to be an array of arrays? If you consider this to be a
farfetched case, there are many possible scenarios where this could apply:

For some applications, you could have a table of distances, which in JavaScript
would actually be an array of arrays: distance[i][j] would be the distance
between points i and j. How could you find the maximum distance between any
two points? With a common array, finding a maximum would be simple, but
how do you deal with an array of arrays?
A more complex example, also in a geographical vein: you could query a
geographical API for cities matching a string and the response could be an array
of countries, each with an array of states, each itself with an array of matching
cities: an array of arrays of arrays!

In the first case, you could want to have a single array with all distances, and in the second,
an array with all cities; how can you manage this? A new operation, flattening, is required;
let's take a look.

Flattening an array
In ES2019, two operations were added to JavaScript: flat(), which we'll look at now, and
flatMap(), which we'll look at a bit later. It's easier to show what they do than to
explain—bear with me!

As often happens, not all browsers have been updated to include these
new methods, and Microsoft's Internet Explorer and Edge (among others)
are both deficient in this regard, so for web programming, you'll probably
have to include a polyfill, or use some kind of implementation, which
we'll be learning about soon. As usual, for updated compatibility data,
check out the Can I use? site, in this case, at https:/ ​/​caniuse. ​com/ ​#feat=
array- ​flat.

https://caniuse.com/#feat=array-flat
https://caniuse.com/#feat=array-flat
https://caniuse.com/#feat=array-flat
https://caniuse.com/#feat=array-flat
https://caniuse.com/#feat=array-flat
https://caniuse.com/#feat=array-flat
https://caniuse.com/#feat=array-flat
https://caniuse.com/#feat=array-flat
https://caniuse.com/#feat=array-flat
https://caniuse.com/#feat=array-flat
https://caniuse.com/#feat=array-flat
https://caniuse.com/#feat=array-flat

Programming Declaratively - A Better Style Chapter 5

[121]

The flat() method creates a new array, concatenating all elements of its subarrays to the
desired level, which is, by default, 1:

const a = [[1, 2], [3, 4, [5, 6, 7]], 8, [[[9, 10]]]];

console.log(a.flat()); // or a.flat(1)
// [1, 2, 3, 4, [5, 6, 7], 8, [9, 10]]

console.log(a.flat(2));
// [1, 2, 3, 4, 5, 6, 7, 8, [9, 10]]

console.log(a.flat(Infinity));
// [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

So how could we use this function to solve our problems? Using flat(), spreading, and
Math.max() answers the first question (in a way that we saw back in Chapter 1, Becoming
Functional – Several Questions, in the section called Spread; we could use the maxArray()
function we wrote back then), and we can also use reduce() for variety. Suppose we have
the following table of distances:

const distances = [
 [0, 20, 35, 40],
 [20, 0, 10, 50],
 [35, 10, 0, 30],
 [40, 50, 30, 0],
];

Then, we can find our maximum distance in a couple of ways: we either flatten the array,
spread it, and use Math.max(), or flatten the array and use reducing to explicitly find the
maximum:

const maxDist1 = Math.max(...distances.flat());
// 50

const maxDist2 = distances.flat().reduce((p, d) => Math.max(p, d), 0);
// also 50

Let's go back to the second question. Suppose we queried a geographical API for cities that
have "LINCOLN" in their names and we got the following answer:

const apiAnswer = [
 {
 country: "AR",
 name: "Argentine",
 states: [
 {
 state: "1",

Programming Declaratively - A Better Style Chapter 5

[122]

 name: "Buenos Aires",
 cities: [{city: 3846864, name: "Lincoln"}],
 },
],
 },
 {
 country: "GB",
 name: "Great Britain",
 states: [
 {
 state: "ENG",
 name: "England",
 cities: [{city: 2644487, name: "Lincoln"}],
 },
],
 },
 {
 country: "US",
 name: "United States of America",
 states: [
 {
 state: "CA",
 name: "California",
 cities: [{city: 5072006, name: "Lincoln"}],
 },
 .
 . several lines clipped out
 .
 {
 state: "IL",
 name: "Illinois",
 cities: [
 {city: 4899911, name: "Lincoln Park"},
 {city: 4899966, name: "Lincoln Square"},
],
 },
],
 },
];

Extracting the list of cities can be done by applying flatMap() twice:

console.log(
 apiAnswer
 .map(x => x.states)
 .flat()
 .map(y => y.cities)
 .flat()

Programming Declaratively - A Better Style Chapter 5

[123]

);

/*
[{ city: 3846864, name: 'Lincoln' },
 { city: 2644487, name: 'Lincoln' },
 { city: 5072006, name: 'Lincoln' },
 { city: 8531960, name: 'Lincoln' },
 { city: 4769608, name: 'Lincolnia' },
 { city: 4999311, name: 'Lincoln Park' },
 { city: 5072006, name: 'Lincoln' },
 { city: 4899911, name: 'Lincoln Park' },
 { city: 4899966, name: 'Lincoln Square' }]
*/

We have seen how to use flat() to flatten an array; let's now see how to use flatMap(),
an interesting mixture of flat() and map(), to further streamline our coding, and even
further shorten our preceding second solution!

Think this exercise wasn't hard enough and that its output was sort of
lame? Try out exercise 5.8 for a more challenging version!

Mapping and flattening – flatMap()
Basically, what flatMap() does is first apply a map() function and then apply flat() to
the result of the mapping operation. This is an interesting combination because it lets you
produce a new array with a different number of elements. (With the usual map() operation,
the output array will be exactly the same length as the input array). If your mapping
operation produces an array with two or more elements, then the output array will include
many output values, and if you produce an empty array, the output array will include
fewer values.

Let's look at a (somehow nonsensical) example. Assume that we have a list of names, such
as "Winston Spencer Churchill", "Abraham Lincoln", and "Socrates". Our rule is
that if a name has several words, exclude the initial one (the first name, we assume) and
separate the rest (last names), but if a name is a single word, just drop it (assuming the
person had no last name):

const names = [
 "Winston Spencer Churchill",
 "Plato",
 "Abraham Lincoln",
 "Socrates",

Programming Declaratively - A Better Style Chapter 5

[124]

 "Charles Darwin",
];

const lastNames = names.flatMap(x => {
 const s = x.split(" ");
 return s.length === 1 ? [] : s.splice(1);
}); // ['Spencer', 'Churchill', 'Lincoln', 'Darwin']

As we can see, the output array has a different number of elements than the input one: just
because of this, we could consider flatMap() to be an upgraded version of map(), even
including some aspects of filter(), like when we excluded single names.

Let's now move on to a simple example. Keeping with the Lincolnian theme from the last
section, let's count how many words are in Lincoln's Gettysburg address, given as an array
of sentences.

Usually, this address is considered to be 272 words long, but the version I
found doesn't produce that number! This may be because there are five
manuscript copies of the address written by Lincoln himself, plus another
version transcribed from shorthand notes taken at the event. In any case, I
will leave the discrepancy to historians and stick to coding!

We can use flatMap() to split each sentence into an array of words and then just see the
length of the flattened array:

const gettysburg = [
 "Four score and seven years ago our fathers brought forth, ",
 "on this continent, a new nation, conceived in liberty, and ",
 "dedicated to the proposition that all men are created equal.",
 "Now we are engaged in a great civil war, testing whether that ",
 "nation, or any nation so conceived and so dedicated, can long ",
 "endure.",
 "We are met on a great battle field of that war.",
 "We have come to dedicate a portion of that field, as a final ",
 "resting place for those who here gave their lives, that that ",
 "nation might live.",
 "It is altogether fitting and proper that we should do this.",
 "But, in a larger sense, we cannot dedicate, we cannot consecrate, ",
 "we cannot hallow, this ground.",
 "The brave men, living and dead, who struggled here, have ",
 "consecrated it far above our poor power to add or detract.",
 "The world will little note nor long remember what we say here, ",
 "but it can never forget what they did here.",
 "It is for us the living, rather, to be dedicated here to the ",
 "unfinished work which they who fought here have thus far so nobly ",
 "advanced.",
 "It is rather for us to be here dedicated to the great task ",

Programming Declaratively - A Better Style Chapter 5

[125]

 "remaining before us— that from these honored dead we take increased ",
 "devotion to that cause for which they here gave the last full ",
 "measure of devotion— that we here highly resolve that these dead ",
 "shall not have died in vain— that this nation, under God, shall have ",
 "a new birth of freedom- and that government of the people, by the ",
 "people, for the people, shall not perish from the earth.",
];

console.log(gettysburg.flatMap(s => s.split(" ")).length);

Let's go back to the problem with the cities. If we notice that each map() was followed by a
flat(), an alternative solution is immediately obvious. Compare this solution with the one
we wrote in the Flattening an array section; it's essentially the same, but conflates each
map() with its following flat():

console.log(apiAnswer.flatMap(x => x.states).flatMap(y => y.cities));
/*
[{ city: 3846864, name: 'Lincoln' },
 { city: 2644487, name: 'Lincoln' },
 { city: 5072006, name: 'Lincoln' },
 { city: 8531960, name: 'Lincoln' },
 { city: 4769608, name: 'Lincolnia' },
 { city: 4999311, name: 'Lincoln Park' },
 { city: 5072006, name: 'Lincoln' },
 { city: 4899911, name: 'Lincoln Park' },
 { city: 4899966, name: 'Lincoln Square' }]
*/

We have now seen the new operations. Let's now learn how to emulate them, should you
not have them readily available.

It's perfectly possible to solve the problems in this section without using
any sort of mapping, but that wouldn't do as a proper example for this
section! See exercise 5.9 for an alternative to the word counting problem.

Emulating flat() and flatMap()
We have already seen how reduce() could be used to emulate map(). Let's now see how
to work out equivalents for flat() and flatMap() to get more practice. We'll also throw
in a recursive version, a topic we'll come back to in Chapter 9, Designing Functions –
Recursion. As was mentioned earlier, we are not aiming for the fastest or smallest or any
particular version of the code; rather, we want to focus on using the concepts we've been
looking at in this book.

Programming Declaratively - A Better Style Chapter 5

[126]

Totally flattening an array can be done with a recursive call. We use reduce() to process
the array element by element, and if an element happens to be an array, we recursively
flatten it:

const flatAll = arr =>
 arr.reduce((f, v) => f.concat(Array.isArray(v) ? flatAll(v) : v), []);

Flattening an array to a given level (not infinity; let's leave that for later) is easy if you can
first flatten an array one level. We can do this either by using spreading or with reduce.
Let's write a flatOne() function that flattens just a single level of an array. There are two
versions of this; pick whichever you prefer:

const flatOne1 = arr => [].concat(...arr);

const flatOne2 = arr => arr.reduce((f, v) => f.concat(v), []);

Using either of these two functions, we can manage to flatten an array of several levels, and
we can do this in two different ways. Our two versions of a flat() function use our
previous flatOne() and flatAll() functions, but the first one only uses common
looping, while the second one works in a fully recursive way. Which one do you prefer?

const flat1 = (arr, n = 1) => {
 if (n === Infinity) {
 return flatAll(arr);

 } else {
 let result = arr;
 range(0, n).forEach(() => {
 result = flatOne(result);
 });
 return result;
 }
};

const flat2 = (arr, n = 1) =>
 n === Infinity
 ? flatAll(arr)
 : n === 1
 ? flatOne(arr)
 : flat2(flatOne(arr), n - 1);

Personally, I think the recursive one is nicer, and more aligned with the theme of this book,
but it's up to you, really (though if you don't feel comfortable with the ternary operator,
then the recursive version is definitely not for you!).

Programming Declaratively - A Better Style Chapter 5

[127]

If you wish to polyfill these functions (despite our suggestions not to), it's not complex, and
is similar to what we did some pages back with the average() method. I took care not to
create any extra methods:

if (!Array.prototype.flat) {
 Array.prototype.flat = function(n = 1) {
 this.flatAllX = () =>
 this.reduce(
 (f, v) => f.concat(Array.isArray(v) ? v.flat(Infinity) : v),
 []
);

 this.flatOneX = () => this.reduce((f, v) => f.concat(v), []);

 return n === Infinity
 ? this.flatAllX()
 : n === 1
 ? this.flatOneX()
 : this.flatOneX().flat(n - 1);
 };
}

Our flatOneX() and flatAllX() methods are just copies of what we developed before,
and you'll recognize the code of our previous flat2() function at the end of our
implementation.

Finally, emulating flatMap() is simplicity itself, and we can just skip it because it's just a
matter of applying map() first, and then flat(); no big deal!

We have seen how to work with arrays in several ways, but sometimes what you need isn't
really well served by any of the functions we have seen. Let's move on to more general
ways of doing loops, for greater power.

More general looping
The preceding examples that we've seen simply loop through arrays, doing some work.
However, sometimes you need to do a loop, but the required process doesn't really fit
map() or reduce(). So what can be done in such cases? There is a forEach() method that
can help.

Programming Declaratively - A Better Style Chapter 5

[128]

Read more about the specification of the forEach() method at https:/ ​/
developer. ​mozilla. ​org/ ​en-​US/ ​docs/ ​Web/ ​JavaScript/ ​Reference/
Global_ ​Objects/ ​Array/ ​forEach.

You must provide a callback that will receive the value, the index, and the array on which
you are operating. (The last two arguments are optional.) JavaScript will take care of the
loop control, and you can do whatever you want at each step. For instance, we can program
an object copy method by using some Object methods to copy the source object attributes
one at a time and generate a new object:

const objCopy = obj => {
 let copy = Object.create(Object.getPrototypeOf(obj));
 Object.getOwnPropertyNames(obj).forEach(prop =>
 Object.defineProperty(
 copy,
 prop,
 Object.getOwnPropertyDescriptor(obj, prop)
)
);
 return copy;
};

const myObj = {fk: 22, st: 12, desc: "couple"};
const myCopy = objCopy(myObj);
console.log(myObj, myCopy); // {fk: 22, st: 12, desc: "couple"}, twice

Yes, of course we could have written myCopy={...myObj}, but where's
the fun in that? Okay, it would be better, but I needed a nice example to
use forEach() with. Sorry about that! Also, there are some hidden
inconveniences in that code, which we'll explain in Chapter 10, Ensuring
Purity – Immutability, when we try to get really frozen, unmodifiable
objects. Just a hint: the new object may share values with the old one
because we have a shallow copy, not a deep one. We'll learn more about this
later in the book.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach

Programming Declaratively - A Better Style Chapter 5

[129]

If you use the range() function that we defined previously, you can also perform common
loops of the for(i=0; i<10; i++) variety. We might write yet another version of
factorial (!) using that:

const factorial4 = n => {
 let result = 1;
 range(1, n + 1).forEach(v => (result *= v));
 return result;
};

console.log(factorial4(5)); // 120

This definition of factorial really matches the usual description: it generates all the numbers
from 1 to n inclusive and multiplies them—simple!

For greater generality, you might want to expand range() so it can
generate ascending and descending ranges of values, possibly also
stepping by a number other than 1. This would practically allow you to
replace all the loops in your code with forEach() loops.

At this point, we have seen many ways of processing arrays to generate results, but there
are other objectives that might interest you, so let's now move on to logical functions, which
will also simplify your coding needs.

Logical higher-order functions
Up to now, we have been using higher-order functions to produce new results, but there
are also some other functions that produce logical results by applying a predicate to all the
elements of an array. (By the way, we'll be seeing much more about higher-order functions
in the next chapter.)

A bit of terminology: the word predicate can be used in several senses (as
in predicate logic), but for us, in computer science, it has the meaning of a
function that returns true or false. Okay, this isn't a very formal definition,
but it's enough for our needs. For example, saying that we will filter an
array depending on a predicate just means that we get to decide which
elements are included or excluded depending on the result of the
predicate.

Using these functions implies that your code will become shorter: you can, with a single
line of code, get the results corresponding to the whole set of values.

Programming Declaratively - A Better Style Chapter 5

[130]

Filtering an array
A common need that we will encounter is to filter the elements of an array according to a
certain condition. The filter() method lets you inspect each element of an array in the
same fashion as map(). The difference is that instead of producing a new element, the
result of your function determines whether the input value will be kept in the output (if the
function returned true) or if it will be skipped (if the function returned false). Also
similar to map(), filter() doesn't alter the original array, but rather returns a new array
with the chosen items.

See Figure 5.4 for a diagram showing the input and output:

Figure 5.4: The filter() method picks the elements of an array that satisfy a given predicate

Read more on the filter() function at https:/ ​/ ​developer. ​mozilla.
org/​en/ ​docs/ ​Web/ ​JavaScript/ ​Reference/ ​Global_ ​Objects/ ​Array/
filter.

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/filter

Programming Declaratively - A Better Style Chapter 5

[131]

There are a couple of things to remember when filtering an array:

Always return something from your predicate: If you forget to include a
return, the function will implicitly return undefined, and since that's a falsy
value, the output will be an empty array.
The copy that is made is shallow: If the input array elements are objects or
arrays, then the original elements will still be accessible.

Let's get into more detail by first seeing a practical example of filter() and then moving
on to look at how you could implement that functionality on your own by using reduce().

A reduce() example
Let's look at a practical example. Suppose a service has returned a JSON object, which itself
has an array of objects containing an account id and the account balance. How can we get
the list of IDs that are in the red, with a negative balance? The input data could be as
follows:

const serviceResult = {
 accountsData: [
 {
 id: "F220960K",
 balance: 1024,
 },
 {
 id: "S120456T",
 balance: 2260,
 },
 {
 id: "J140793A",
 balance: -38,
 },
 {
 id: "M120396V",
 balance: -114,
 },
 {
 id: "A120289L",
 balance: 55000,
 },
],
};

Programming Declaratively - A Better Style Chapter 5

[132]

We could get the delinquent accounts with something like the following. You can check
that the value of the delinquent variable correctly includes the two IDs of accounts with a
negative balance:

const delinquent = serviceResult.accountsData.filter(v => v.balance < 0);

console.log(delinquent); // two objects, with id's J140793A and M120396V

By the way, given that the filtering operation produced yet another array, if you just
wanted the accounts IDs, you could get them by mapping the output to just get the ID field:

const delinquentIds = delinquent.map(v => v.id);

And if you didn't care for the intermediate result, a one-liner would have done as well:

const delinquentIds2 = serviceResult.accountsData
 .filter(v => v.balance < 0)
 .map(v => v.id);

Filtering is a very useful function, so now, to get a better handle on it, let's see how you
could emulate it, which you could even use as a basis for more sophisticated, powerful
functions of your own.

Emulating filter() with reduce()
As we did before with map(), we can also create our own version of filter() by using
reduce(). The idea is similar: loop through all the elements of the input array, apply the
predicate to it, and if the result is true, add the original element to the output array. When
the loop is done, the output array will only have those elements for which the predicate
was true:

const myFilter = (arr, fn) =>
 arr.reduce((x, y) => (fn(y) ? x.concat(y) : x), []);

We can quickly see that our function works as expected:

console.log(myFilter(serviceResult.accountsData, v => v.balance < 0));
// two objects, with id's J140793A and M120396V

The output is the same pair of accounts that we saw earlier in this section.

Programming Declaratively - A Better Style Chapter 5

[133]

Searching an array
Sometimes, instead of filtering all the elements of an array, you want to find an element
that satisfies a given predicate. There are a couple of functions that can be used for this,
depending on your specific needs:

find() searches through the array and returns the value of the first element that
satisfies a given condition, or undefined if no such element is found
findIndex() performs a similar task, but instead of returning an element, it
returns the index of the first element in the array that satisfies the condition, or -1
if none were found

The similarity to includes() and indexOf() is clear; these functions search for a specific
value instead of an element that satisfies a more general condition. We can easily write
equivalent one-liners:

arr.includes(value); // arr.find(v => v === value)
arr.indexOf(value); // arr.findIndex(v => v === value)

Going back to the geographic data we used earlier, we could easily find a given country by
using the find() method. For instance, let's get data for Brazil ("BR"); it just takes a single
line of code:

markers = [
 {name: "UY", lat: -34.9, lon: -56.2},
 {name: "AR", lat: -34.6, lon: -58.4},
 {name: "BR", lat: -15.8, lon: -47.9},
 //…
 {name: "BO", lat: -16.5, lon: -68.1}
];

let brazilData = markers.find(v => v.name === "BR");
// {name:"BR", lat:-15.8, lon:-47.9}

We couldn't use the simpler includes() method because we have to delve into the object
to get the field we want. If we wanted the position of the country in the array, we would
have used findIndex():

let brazilIndex = markers.findIndex(v => v.name === "BR"); // 2

let mexicoIndex = markers.findIndex(v => v.name === "MX"); // -1

Okay, this was simple! What about a special case, which could even be a trick interview
question? Read on!

Programming Declaratively - A Better Style Chapter 5

[134]

A special search case
Now, for variety, a little quiz. Suppose you had an array of numbers and wanted to run a
sanity check, studying whether any of them was NaN. How would you do this? A tip: don't
try checking the types of the array elements—even though NaN stands for not a number,
typeof NaN === "number". You'll get a surprising result if you try to do the search in an
obvious way:

[1, 2, NaN, 4].findIndex(x => x === NaN); // -1

What's going on here? It's a bit of interesting JavaScript trivia: NaN is the only value that
isn't equal to itself. Should you need to look for NaN, you'll have to use the new isNaN()
function, as follows:

[1, 2, NaN, 4].findIndex(x => isNaN(x)); // 2

This was a particular case, but worth knowing about; I actually had to deal with this case
once! Now, let's continue as we have done previously, by emulating the searching methods
with reduce() so that we can see more examples of the power of that function.

Emulating find() and findIndex() with reduce()
As with the other methods, let's finish this section by studying how to implement the
methods we showed by using the omnipotent reduce(). This is a good exercise to get
accustomed to working with higher-order functions, even if you are never going to actually
use these polyfills!

The find() function requires a bit of work. We start the search with an undefined value,
and if we find an array element so that the predicate is true, we change the accumulated
value to that of the array:

arr.find(fn);
// arr.reduce((x, y) => (x === undefined && fn(y) ? y : x), undefined);

For findIndex(), we must remember that the callback function receives the accumulated
value, the array's current element, and the index of the current element, but other than that,
the equivalent expression is quite similar to the one for find(); comparing them is worth
the time:

arr.findIndex(fn);
// arr.reduce((x, y, i) => (x == -1 && fn(y) ? i : x), -1);

Programming Declaratively - A Better Style Chapter 5

[135]

The initial accumulated value is -1 here, which will be the returned value if no element
fulfills the predicate. Whenever the accumulated value is still -1, but we find an element
that satisfies the predicate, we change the accumulated value to the array index.

Okay, we are now done with searches: let's move on to consider higher-level predicates that
will simplify testing arrays for a condition, but always in the declarative style we've been
using so far.

Higher-level predicates – some, every
The last functions we are going to consider greatly simplify going through arrays to test for
conditions. These functions are as follows:

every(), which is true if and only if every element in the array satisfies a given
predicate
some(), which is true if at least one element in the array satisfies the predicate

For example, we could easily check our hypothesis about all the countries having negative
coordinates:

markers.every(v => v.lat < 0 && v.lon < 0); // false

markers.some(v => v.lat < 0 && v.lon < 0); // true

If we want to find equivalents to these two functions in terms of reduce(), the two
alternatives show nice symmetry:

arr.every(fn);
// arr.reduce((x, y) => x && fn(y), true);

arr.some(fn);
// arr.reduce((x, y) => x || fn(y), false);

The first folding operation evaluates fn(y), and ANDs the result with the previous tests;
the only way the final result will be true is if every test comes out true. The second
folding operation is similar, but ORs the result with the previous results, and will produce
true, unless every test comes out false.

Programming Declaratively - A Better Style Chapter 5

[136]

In terms of Boolean algebra, we would say that the alternative
formulations for every() and some() exhibit duality. This duality is the
same kind that appears in the expressions x === x && true and x ===
x || false; if x is a Boolean value, and we exchange && and ||, and also
true and false, then we transform one expression into the other, and
both are valid.

In this section, we saw how to check for a given Boolean condition. Let's finish by seeing
how to check a negative condition by inventing a method of our own.

Checking negatives – none
If you wanted, you could also define none() as the complement of every(). This new
function would be true only if none of the elements of the array satisfied the given
predicate. The simplest way of coding this would be by noting that if no elements satisfy
the condition, then all elements satisfy the negation of the condition:

const none = (arr, fn) => arr.every(v => !fn(v));

If you want, you can turn it into a method by modifying the array prototype, as
we saw earlier; it's still a bad practice, but it's what we have until we start looking into
better methods for composing and chaining functions, as we will see in Chapter 8,
Connecting Functions – Pipelining and Composition:

Array.prototype.none = function(fn) {
 return this.every(v => !fn(v));
};

We had to use function() instead of an arrow function for the same reasons we saw
earlier; in this sort of case, we need this to be correctly assigned. Other than that, it's
simple coding, and we now have a none() method available for all arrays.

In Chapter 6, Producing Functions – Higher-Order Functions, we will see
other ways of negating a function by writing an appropriate higher-order
function of our own.

Programming Declaratively - A Better Style Chapter 5

[137]

In this and the preceding section, we worked with everyday problems, and we saw how to
solve them in a declarative way. However, things change a bit when you start working with
async functions. New solutions will be needed, as we will see in the following section.

Working with async functions
All the examples and code that we studied in the previous sections were meant to be used
with common functions, specifically meaning not async ones. When you want to do
mapping, filtering, reducing, and so on, but the function you use is an async one, the results
may surprise you. In order to simplify our work and not have to deal with actual API calls,
let's create a fakeAPI(delay, value) function that will just delay a while and then
return the given value:

const fakeAPI = (delay, value) =>
 new Promise(resolve => setTimeout(() => resolve(value), delay));

Let's also have a function to display what fakeAPI() returns, so we can see that things are
working as expected:

const useResult = x => console.log(new Date(), x);

We are using the modern async/await features to simplify our code:

(async () => {
 console.log("START");
 console.log(new Date());
 const result = await fakeAPI(1000, 229);
 useResult(result);
 console.log("END");
})();
/*
START
2019-10-13T19:11:56.209Z
2019-10-13T19:11:57.214Z 229
END
*/

The results are previsible: we get the START text, then about 1 second (1000 milliseconds)
later, we get the result of the fake API call (229), and finally the END text. What could go
wrong?

Programming Declaratively - A Better Style Chapter 5

[138]

Why are we using the immediate invocation pattern that we saw in Chapter
3, Starting Out with Functions – A Core Concept? The reason is that you can
only use await within an async function. There is a proposal that will
allow the use of await with top-level modules (see https:/ ​/​v8.​dev/
features/ ​top- ​level- ​await for more on this), but it hasn't made its way
into JavaScript yet, and it applies to modules only, not general scripts.

The key problem is that all the functions we saw earlier in this chapter are not async aware,
so they won't really work as you'd expect. Let's start looking at this.

Some strange behaviors
Let's start with a simple quiz: are the results what you expected? Let's look at a couple of
examples of code involving async calls and maybe we'll see some unexpected results. First,
let's look at a common straightforward sequence of async calls:

(async () => {
 console.log("START SEQUENCE");

 const x1 = await fakeAPI(1000, 1);
 useResult(x1);
 const x2 = await fakeAPI(2000, 2);
 useResult(x2);
 const x3 = await fakeAPI(3000, 3);
 useResult(x3);
 const x4 = await fakeAPI(4000, 4);
 useResult(x4);

 console.log("END SEQUENCE");
})();

If you run this code, you'll get the following results, which are surely what you would
expect—a START SEQUENCE text, four individual lines with the results of the fake API calls,
and a final END SEQUENCE text. Nothing special here—everything is fine!

START SEQUENCE
2019-10-12T13:38:42.367Z 1
2019-10-12T13:38:43.375Z 2
2019-10-12T13:38:44.878Z 3
2019-10-12T13:38:46.880Z 4
END SEQUENCE

https://v8.dev/features/top-level-await
https://v8.dev/features/top-level-await
https://v8.dev/features/top-level-await
https://v8.dev/features/top-level-await
https://v8.dev/features/top-level-await
https://v8.dev/features/top-level-await
https://v8.dev/features/top-level-await
https://v8.dev/features/top-level-await
https://v8.dev/features/top-level-await
https://v8.dev/features/top-level-await
https://v8.dev/features/top-level-await
https://v8.dev/features/top-level-await
https://v8.dev/features/top-level-await
https://v8.dev/features/top-level-await

Programming Declaratively - A Better Style Chapter 5

[139]

Now let's go for an alternative second version, which you'd probably expect to be
equivalent to the first one. The only difference here is that here we are using looping to do
the four API calls; it should be the same, shouldn't it? (We could also have used
a forEach loop with the range() function that we saw earlier, but that makes no
difference.) I kept using an IIFE, though in this particular case it wasn't needed; can you see
why?

(() => {
 console.log("START FOREACH");

 [1, 2, 3, 4].forEach(async n => {
 const x = await fakeAPI(n * 1000, n);
 useResult(x);
 });

 console.log("END FOREACH");
})();

This piece of code certainly looks equivalent to the first one, but it produces something
quite different!

START FOREACH
END FOREACH
2019-10-12T13:34:57.876Z 1
2019-10-12T13:34:58.383Z 2
2019-10-12T13:34:58.874Z 3
2019-10-12T13:34:59.374Z 4

The END FOREACH text appears before the results of the API calls. What's happening? The
answer is what we mentioned before: methods similar to forEach and the like are meant to
be used with common, sync function calls, and behave strangely with async function calls.
The key concept is that async functions always return promises, so that after getting the
START FOREACH text, the loop is actually creating four promises (which will get resolved at
some time), but without waiting for them, and our code goes on to print the END FOREACH
text.

You can verify this yourself by looking at the polyfill for reduce() at
https:/ ​/​developer. ​mozilla. ​org/​en- ​US/ ​docs/ ​Web/​JavaScript/
Reference/ ​Global_ ​Objects/ ​Array/ ​Reduce#Polyfill.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce#Polyfill
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce#Polyfill
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce#Polyfill
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce#Polyfill
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce#Polyfill
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce#Polyfill
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce#Polyfill
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce#Polyfill
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce#Polyfill
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce#Polyfill
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce#Polyfill
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce#Polyfill
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce#Polyfill
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce#Polyfill
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce#Polyfill
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce#Polyfill
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce#Polyfill
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce#Polyfill
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce#Polyfill
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce#Polyfill
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce#Polyfill
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce#Polyfill
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce#Polyfill
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce#Polyfill
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce#Polyfill
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce#Polyfill
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce#Polyfill
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce#Polyfill

Programming Declaratively - A Better Style Chapter 5

[140]

The problem is not only with forEach(), but rather affects all similar methods as well.
Let's see how we can work around this situation and write async-aware functions to let us
keep working in a declarative fashion, as we did earlier in the chapter.

Async-ready looping
If we cannot directly use methods such as forEach(), map(), and the like, we'll have to
develop new versions of our own. Let's see how to achieve this.

Looping over async calls
Since async calls return promises, we can emulate forEach() with reduce() by starting
with a resolved promise and chaining to it the promises for each value in the array. The
then() methods will be called in the right order, so the results will be correct. The
following piece of code manages to get the right, expected results:

const forEachAsync = (arr, fn) =>
 arr.reduce(
 (promise, value) => promise.then(() => fn(value)),
 Promise.resolve()
);

(async () => {
 console.log("START FOREACH VIA REDUCE");
 await forEachAsync([1, 2, 3, 4], async n => {
 const x = await fakeAPI(n * 1000, n);
 useResult(x);
 });
 console.log("END FOREACH VIA REDUCE");
})();

/*
START FOREACH VIA REDUCE
2019-10-13T20:02:23.437Z 1
2019-10-13T20:02:24.446Z 2
2019-10-13T20:02:25.949Z 3
2019-10-13T20:02:27.952Z 4
END FOREACH VIA REDUCE
*/

Programming Declaratively - A Better Style Chapter 5

[141]

As forEachAsync() returns a promise, we mustn't forget to await it before showing the
final text message. Other than not forgetting all the await statements, the code is pretty
much similar to what we build using forEach(), with the crucial difference that this does
work as expected!

Mapping async calls
Can we use the other functions? Writing mapAsync(), a version of map that can work with
an async mapping function, is simple because you can take advantage
of Promise.all() to create a promise out of an array of promises:

const mapAsync = (arr, fn) => Promise.all(arr.map(fn));

(async () => {
 console.log("START MAP");

 const mapped = await mapAsync([1, 2, 3, 4], async n => {
 const x = await fakeAPI(n * 1000, n);
 return x;
 });

 useResult(mapped);
 console.log("END MAP");
})();

/*
START MAP
2019-10-13T20:06:21.149Z [1, 2, 3, 4]
END MAP
*/

The structure of the solution is similar to the forEachAsync() code. As before, we must
remember to await the result of mapAsync() before continuing the process. Other than
that, the logic is straightforward, and the results are as expected.

Programming Declaratively - A Better Style Chapter 5

[142]

Filtering with async calls
Filtering with an async function is a tad more complicated. We will have to use
mapAsync() to produce an array of true/false values, and then use the standard
filter() method to pick values out of the original array depending on what the async
filtering function returned. Let's try out a simple example, calling the API and accepting
only even results by means of a fakeFilter() function, which, for our example, accepts
even numbers and rejects odd ones:

const filterAsync = (arr, fn) =>
 mapAsync(arr, fn).then(arr2 => arr.filter((v, i) => Boolean(arr2[i])));

const fakeFilter = (value) =>
 new Promise(resolve =>
 setTimeout(() => resolve(value % 2 === 0), 1000)
);

(async () => {
 console.log("START FILTER");

 const filtered = await filterAsync([1, 2, 3, 4], async n => {
 const x = await fakeFilter(n);
 return x;
 });

 useResult(filtered);
 console.log("END FILTER");
})();
/*
START FILTER
2019-10-13T21:24:36.478Z [2, 4]
END FILTER
*/

Note that the result of the mapping of async calls is a Boolean array (arr2), which we then
use with filter() to select elements from the original array of values (arr); this can be
tricky to understand!

Programming Declaratively - A Better Style Chapter 5

[143]

Reducing async calls
Finally, finding an equivalent for reduce() is a bit more complex, but after the other
functions that we've seen, not so much. The key idea is the same as in forEachAsync: each
function call will return a promise, which must be awaited in order to update the
accumulator in an upcoming then(). To do the reducing, let's have a fakeSum() async
function that will just sum the API-returned values:

const reduceAsync = (arr, fn, init) =>
 Promise.resolve(init).then(accum =>
 forEachAsync(arr, async (v, i) => {
 accum = await fn(accum, v, i);
 }).then(() => accum)
);

const fakeSum = (value1, value2) =>
 new Promise(resolve => setTimeout(() => resolve(value1 + value2), 1000));

(async () => {
 console.log("START REDUCE");

 const summed = await reduceAsync(
 [1, 2, 3, 4],
 async (_accum, n) => {
 const accum = await _accum;
 const x = await fakeSum(accum, n);
 useResult(`accumulator=${accum} value=${x} `);
 return x;
 },
 0
);

 useResult(summed);
 console.log("END REDUCE");
})();
/*
START REDUCE
2019-10-13T21:29:01.841Z 'accumulator=0 value=1 '
2019-10-13T21:29:02.846Z 'accumulator=1 value=3 '
2019-10-13T21:29:03.847Z 'accumulator=3 value=6 '
2019-10-13T21:29:04.849Z 'accumulator=6 value=10 '
2019-10-13T21:29:04.849Z 10
END REDUCE
*/

Programming Declaratively - A Better Style Chapter 5

[144]

Note the important detail: in our reducing function, we must await the value of the
accumulator, and only afterward await the result of our async function. This is an
important point, which you must not miss: since we are reducing in async fashion, getting
the accumulator is also an async matter, so we get to await both the accumulator and the
new API call.

By looking at these equivalents, we have seen that async functions, despite producing
problems with the usual declarative methods that we studied at the beginning of the
chapter, may also be handled by similar new functions of our own, so we can keep the new
style even for these cases. Even if we have to use a somewhat different set of functions,
your code will still be declarative, tighter, and clearer; an all-round win!

Summary
In this chapter, we started working with higher-order functions in order to show a more
declarative way of working, with shorter, more expressive code. We went over several
operations: we used .reduce() and .reduceRight() to get a single result from an
array, .map() to apply a function to each element of an array, .forEach() to simplify
looping, flat() and flatMap() to work with arrays of arrays, .filter() to pick
elements from an array, .find() and .findIndex() to search in the arrays,
and .every() and .some() to verify general logic conditions. Furthermore, we considered
some unexpected situations that happen when you deal with async functions and we
wrote special functions for those cases.

In Chapter 6, Producing Functions – Higher-Order Functions, we will continue working with
higher-order functions, but we will then turn to writing our own ones to gain more
expressive power for our coding.

Questions
5.1. Filtering... but what? Suppose you have an array, called someArray, and you apply the
following .filter() to it, which at first sight doesn't even look like valid JavaScript code.
What will be in the new array and why?

 let newArray = someArray.filter(Boolean);

Programming Declaratively - A Better Style Chapter 5

[145]

5.2. Generating HTML code, with restrictions: Using the filter()...map()...reduce()
sequence is quite common (even allowing that sometimes you won't use all three), and
we'll come back to this in the Functional design patterns section in Chapter 11, Implementing
Design Patterns – The Functional Way. The problem here is how to use those functions (and
no others!) to produce an unordered list of elements (...) that can later be used
onscreen. Your input is an array of objects like the following (does the list of characters date
me?) and you must produce a list of each name that corresponds to chess or checkers
players:

 var characters = [
 {name: "Fred", plays: "bowling"},
 {name: "Barney", plays: "chess"},
 {name: "Wilma", plays: "bridge"},
 {name: "Betty", plays: "checkers"},
 .
 .
 .
 {name: "Pebbles", plays: "chess"}
];

The output would be something like the following (though it doesn't matter if you don't
generate spaces and indentation). It would be easier if you could use, say, .join(), but in
this case, it won't be allowed; only the three mentioned functions can be used:

 <div>

 Barney
 Betty
 .
 .
 .
 Pebbles

 </div>;

5.3. More formal testing: In some of the preceding examples, such as those in the Emulating
map() with reduce() section, we didn't write actual unit tests, but instead were satisfied with
doing some console logging. Can you write appropriate unit tests instead?

5.4. Ranging far and wide: The range() function that we saw here can have many uses,
but lacks a bit in generality. Can you expand it to allow for, say, descending ranges, as in
range(10,1)? (What should the last number in the range be?) And could you also allow
for a step size to be included to specify the difference between successive numbers in the
range? With this, range(1,10,2) would produce [1, 3, 5, 7, 9].

Programming Declaratively - A Better Style Chapter 5

[146]

5.5. Doing the alphabet: What would have happened in the Working with ranges section if
instead of writing map(x => String.fromCharCode(x)), you had simply written
map(String.fromCharCode)? Can you explain the different behavior? Hint: we already
saw a similar problem elsewhere in this chapter.

5.6. Producing a CSV: In a certain application, you want to enable the user to download a
set of data as a comma-separated value (CSV) file by using a data URI. (You can read more
about this at https:/ ​/​developer. ​mozilla. ​org/​en- ​US/ ​docs/ ​Web/​HTTP/ ​Basics_ ​of_​HTTP/
Data_​URIs/​.) Of course, the first problem is producing the CSV itself! Assume that you
have an array of arrays of numeric values, as shown in the following snippet, and write a
function that will transform that structure into a CSV string that you will then be able to
plug into the URI. As usual, \n stands for the newline character:

 let myData = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]];
 let myCSV = dataToCsv(myData); // "1,2,3,4\n5,6,7,8\n9,10,11,12\n"

5.7. An empty question: Check that flat1() and flat2() properly work if applied to
arrays with empty places, such as [22, , 9, , , 60, ,]. Why do they work?

5.8. Producing better output: Modify the cities query to produce a list of strings that
includes not only the name of the city, but the state and country as well.

5.9. Old-style code only! Can you rewrite the word-counting solution without using any
mapping or reducing at all? This is more of a JavaScript problem than a functional
programming one, but why not?

5.10. Async chaining: Our ...Async() functions are not methods; can you modify them
and add them to Array.prototype so that we can write, for example,
[1,2,3,4].mapAsync(…)? And by the way, will chaining work with your solution?

5.11. Missing equivalents: We wrote forEach(), map(), filter(), and reduce() async
equivalents, but we didn't do the same for find(), findIndex(), some(), and every();
can you do that?

https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Data_URIs/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Data_URIs/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Data_URIs/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Data_URIs/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Data_URIs/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Data_URIs/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Data_URIs/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Data_URIs/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Data_URIs/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Data_URIs/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Data_URIs/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Data_URIs/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Data_URIs/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Data_URIs/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Data_URIs/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Data_URIs/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Data_URIs/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Data_URIs/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Data_URIs/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Data_URIs/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Data_URIs/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Data_URIs/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Data_URIs/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Data_URIs/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Data_URIs/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Data_URIs/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Data_URIs/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Data_URIs/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Data_URIs/

6
Producing Functions - Higher-

Order Functions
In Chapter 5, Programming Declaratively – A Better Style, we worked with some predefined
higher-order functions and were able to see how their usage lets us write declarative code
so that we can gain in understandability as well as in compactness. In this chapter, we are
going to go further in the direction of higher-order functions and develop our own. We can
roughly classify the kinds of results that we are going to get into three groups:

Wrapped functions: These keep their original functionality while adding some
kind of new feature. In this group, we can consider logging (adding log
production capacity to any function), timing (producing time and performance
data for a given function), and memoization (this caches results to avoid future
rework).
Altered functions: These differ in some key points from their original versions.
Here, we can include the once() function (we wrote it in Chapter 2, Thinking
Functionally – A First Example), which changes the original function so that it only
runs once, functions such as not() or invert(), which alter what the function
returns, and arity-related conversions, which produce a new function with a
fixed number of parameters.
Other productions: These provide new operations, turn functions into promises,
allow enhanced search functions, or decouple methods from objects so that we
can use them in other contexts as if they were common functions. We shall leave
a special case – transducers – for Chapter 8, Connecting Functions – Pipelining
and Composition.

Producing Functions - Higher-Order Functions Chapter 6

[148]

Wrapping functions – keeping behavior
In this section, we'll consider some higher-order functions that provide a wrapper around
other functions to enhance them in some way but without altering their original objective.
In terms of design patterns (which we'll be revisiting in Chapter 11, Implementing Design
Patterns – The Functional Way), we can also speak of decorators. This pattern is based on the
concept of adding some behavior to an object (in our case, a function) without affecting
other objects. The term decorator is also popular because of its usage in frameworks such as
Angular or (in an experimental mode) for general programming in JavaScript.

Decorators are being considered for general adoption in JavaScript, but
are currently (December 2019) still at Stage 2, Draft level, and it may be a
while until they get to Stage 3 (Candidate) and finally Stage 4 (Finished,
meaning officially adopted). You can read more about the proposal for
decorators at https:/ ​/​tc39. ​github. ​io/ ​proposal- ​decorators/ ​ and about
the JavaScript adoption process itself, called TC39, at https:/ ​/​tc39.
github. ​io/ ​process- ​document/ ​. See the Questions section in Chapter 11,
Implementing Design Patterns – The Functional Way, for more information.

As for the term wrapper, it's more important and pervasive than you might have thought; in
fact, JavaScript uses it widely. Where? You already know that object properties and
methods are accessed through dot notation. However, you also know that you can write
code such as myString.length or 22.9.toPrecision(5)—where are those properties
and methods coming from, given that neither strings nor numbers are objects? JavaScript
actually creates a wrapper object around your primitive value. This object inherits all the
methods that are appropriate to the wrapped value. As soon as the needed evaluation has
been done, JavaScript throws away the just-created wrapper. We cannot do anything about
these transient wrappers, but there is a concept we will come back to regarding a wrapper
that allows methods to be called on things that are not of the appropriate type. This is an
interesting idea; see Chapter 12, Building Better Containers – Functional Data Types, for more
applications of that!

In this section, we'll look at three examples:

Adding logging to a function
Getting timing information from functions
Using caching (memoizing) to improve the performance of functions

Let's get to work!

https://tc39.github.io/proposal-decorators/
https://tc39.github.io/proposal-decorators/
https://tc39.github.io/proposal-decorators/
https://tc39.github.io/proposal-decorators/
https://tc39.github.io/proposal-decorators/
https://tc39.github.io/proposal-decorators/
https://tc39.github.io/proposal-decorators/
https://tc39.github.io/proposal-decorators/
https://tc39.github.io/proposal-decorators/
https://tc39.github.io/proposal-decorators/
https://tc39.github.io/proposal-decorators/
https://tc39.github.io/proposal-decorators/
https://tc39.github.io/proposal-decorators/
https://tc39.github.io/proposal-decorators/
https://tc39.github.io/process-document/
https://tc39.github.io/process-document/
https://tc39.github.io/process-document/
https://tc39.github.io/process-document/
https://tc39.github.io/process-document/
https://tc39.github.io/process-document/
https://tc39.github.io/process-document/
https://tc39.github.io/process-document/
https://tc39.github.io/process-document/
https://tc39.github.io/process-document/
https://tc39.github.io/process-document/
https://tc39.github.io/process-document/
https://tc39.github.io/process-document/

Producing Functions - Higher-Order Functions Chapter 6

[149]

Logging
Let's start with a common problem. When debugging code, you usually need to add some
kind of logging information to see if a function was called, with what arguments, what it
returned, and so on. (Yes, of course, you can simply use a debugger and set breakpoints,
but bear with me for this example!) Working normally, this means that you'll have to
modify the code of the function itself, both at entry and on exit, to produce some logging
output. For example, your original code could be something like the following:

function someFunction(param1, param2, param3) {
 // do something
 // do something else
 // and a bit more,
 // and finally
 return some expression;
}

In this case, you would have to modify so that it looks something like the following. Here,
we need to add an auxValue variable to store the value that we want to log and return:

function someFunction(param1, param2, param3) {
 console.log("entering someFunction: ", param1, param2, param3);
 // do something
 // do something else
 // and a bit more,
 // and finally
 const auxValue = some expression;
 console.log("exiting someFunction: ", auxValue);
 return auxValue;
}

If the function can return at several places, you'll have to modify all the return statements
to log the values that are to be returned. And if you are just calculating the return
expression on the fly, you'll need an auxiliary variable to capture that value.

In the next section, we'll learn about logging and some special cases of it, such as functions
that throw exceptions, as well as working in a purer way.

Logging in a functional way
Doing logging by modifying your functions as we showed isn't difficult, but modifying
code is always dangerous and prone to accidents. So, let's put our FP hats on and think of a
new way of doing this. We have a function that performs some kind of work and we want
to know the arguments it receives and the value it returns.

Producing Functions - Higher-Order Functions Chapter 6

[150]

Here, we can write a higher-order function that will have a single parameter – the original
function – and return a new function that will do the following, in sequence:

Log the received arguments1.
Call the original function, catching its returned value2.
Log that value3.
Return it to the caller4.

A possible solution would be as follows:

const addLogging = fn => (...args) => {
 console.log(`entering ${fn.name}: ${args})`);
 const valueToReturn = fn(...args);
 console.log(`exiting ${fn.name}: ${valueToReturn}`);
 return valueToReturn;
};

The function returned by addLogging() behaves as follows:

The first console.log(...) line shows the original function's name and its list
of arguments.
Then, the original function, fn(), is called and the returned value is stored.
The second console.log(...) line shows the function name (again) and its
returned value.
Finally, the value that fn() calculated is returned.

If you were doing this for a Node application, you would probably opt for
a better way of logging by using libraries such as Winston, Morgan, or
Bunyan, depending on what you wanted to log. However, our focus is on
showing you how to wrap the original function, and the needed changes
for using those libraries would be small.

For example, we can use it with the upcoming functions—which are written, I agree, in an
overly complicated way, just to have an appropriate example! We'll have a function that
accomplishes subtraction by changing the sign of the second number and then adding it to
the first. The following code does this:

function subtract(a, b) {
 b = changeSign(b);
 return a + b;
}

function changeSign(c) {
 return -c;

Producing Functions - Higher-Order Functions Chapter 6

[151]

}

subtract = addLogging(subtract);

changeSign = addLogging(changeSign);

let x = subtract(7, 5);

The result of executing the previous line would be the following lines of logging:

entering subtract: 7, 5
entering changeSign: 5
exiting changeSign: -5
exiting subtract: 2

All the changes we had to do in our code were the reassignments of subtract() and
changeSign(), which essentially replaced them everywhere with their new log-producing
wrapped versions. Any call to those two functions will produce this output.

We'll see a possible error because we're not reassigning the wrapped
logging function while memoizing in the following section.

This works fine for most functions, but what would happen if the wrapped function threw
an exception? Let's take a look.

Taking exceptions into account
Let's enhance our logging function a bit by considering an adjustment. What happens to
your log if the function throws an error? Fortunately, this is easy to solve. We just have to
add a try/catch structure, as shown in the following code:

const addLogging2 = fn => (...args) => {
 console.log(`entering ${fn.name}: ${args}`);
 try {
 const valueToReturn = fn(...args);
 console.log(`exiting ${fn.name}: ${valueToReturn}`);
 return valueToReturn;
 } catch (thrownError) {
 console.log(`exiting ${fn.name}: threw ${thrownError}`);
 throw thrownError;
 }
};

Producing Functions - Higher-Order Functions Chapter 6

[152]

With this change, if the function threw an error, you'd also get an appropriate logging
message, and the exception would be rethrown for processing.

Other changes to get an even better logging output would be up to you – adding date and
time data, enhancing the way parameters are listed, and so on. However, our
implementation still has an important defect; let's make it better and purer.

Working in a purer way
When we wrote the addLogging() function, we looked at some precepts we saw in
Chapter 4, Behaving Properly – Pure Functions, because we included an impure element
(console.log()) in our code. With this, not only did we lose flexibility (would you be
able to select an alternate way of logging?) but we also complicated our testing. We could
manage to test it by spying on the console.log() method, but that isn't very clean: we
depend on knowing the internals of the function we want to test, instead of doing a purely
black-box test. Take a look at the following example for a clearer understanding of this:

describe("a logging function", function() {
 it("should log twice with well behaved functions", () => {
 let something = (a, b) => `result=${a}:${b}`;
 something = addLogging(something);

 spyOn(window.console, "log");
 something(22, 9);
 expect(window.console.log).toHaveBeenCalledTimes(2);
 expect(window.console.log).toHaveBeenCalledWith(
 "entering something: 22,9"
);
 expect(window.console.log).toHaveBeenCalledWith(
 "exiting something: result=22:9"
);
 });

 it("should report a thrown exception", () => {
 let thrower = (a, b, c) => {
 throw "CRASH!";
 };
 spyOn(window.console, "log");
 expect(thrower).toThrow();

 thrower = addLogging(thrower);
 try {
 thrower(1, 2, 3);
 } catch (e) {
 expect(window.console.log).toHaveBeenCalledTimes(2);

Producing Functions - Higher-Order Functions Chapter 6

[153]

 expect(window.console.log).toHaveBeenCalledWith(
 "entering thrower: 1,2,3"
);
 expect(window.console.log).toHaveBeenCalledWith(
 "exiting thrower: threw CRASH!"
);
 }
 });
});

Running this test shows that addLogging() behaves as expected, so this is a solution. Our
first test just does a simple subtraction and verifies that logging was called with
appropriate data, while the second test checks an error-throwing function to also verify that
the correct logs were produced.

Even so, being able to test our function in this way doesn't solve the lack of flexibility we
mentioned. We should pay attention to what we wrote in the Injecting impure
functions section – the logging function should be passed as an argument to the wrapper
function so that we can change it if we need to:

const addLogging3 = (fn, logger = console.log) => (...args) => {
 logger(`entering ${fn.name}: ${args}`);
 try {
 const valueToReturn = fn(...args);
 logger(`exiting ${fn.name}: ${valueToReturn}`);
 return valueToReturn;
 } catch (thrownError) {
 logger(`exiting ${fn.name}: threw ${thrownError}`);
 throw thrownError;
 }
};

If we don't do anything, the logging wrapper will obviously produce the same results as in
the previous section. However, we could provide a different logger – for example, with
Node, we could use winston, a common logging tool, and the results would vary
accordingly:

See https:/ ​/​github. ​com/ ​winstonjs/ ​winston for more on winston.

const winston = require("winston");
const myLogger = t => winston.log("debug", "Logging by winston: %s", t);
winston.level = "debug";

https://github.com/winstonjs/winston
https://github.com/winstonjs/winston
https://github.com/winstonjs/winston
https://github.com/winstonjs/winston
https://github.com/winstonjs/winston
https://github.com/winstonjs/winston
https://github.com/winstonjs/winston
https://github.com/winstonjs/winston
https://github.com/winstonjs/winston
https://github.com/winstonjs/winston
https://github.com/winstonjs/winston

Producing Functions - Higher-Order Functions Chapter 6

[154]

subtract = addLogging3(subtract, myLogger);
changeSign = addLogging3(changeSign, myLogger);
let x = subtract(7, 5);

// debug: Logging by winston: entering subtract: 7,5
// debug: Logging by winston: entering changeSign: 5
// debug: Logging by winston: exiting changeSign: -5
// debug: Logging by winston: exiting subtract: 2

Now that we have followed our own advice, we can take advantage of stubs. The code for
testing is practically the same as before; however, we are using a stub, dummy.logger(),
with no provided functionality or side effects, so it's safer all around. In this case, the real
function that was being invoked originally, console.log(), can't do any harm, but that's
not always the case, so using a stub is recommended:

describe("after addLogging3()", function() {
 let dummy;

 beforeEach(() => {
 dummy = { logger() {} };
 spyOn(dummy, "logger");
 });

 it("should call the provided logger", () => {
 let something = (a, b) => `result=${a}:${b}`;
 something = addLogging3(something, dummy.logger);

 something(22, 9);
 expect(dummy.logger).toHaveBeenCalledTimes(2);
 expect(dummy.logger).toHaveBeenCalledWith("entering something: 22,9");
 expect(dummy.logger).toHaveBeenCalledWith(
 "exiting something: result=22:9"
);
 });

 it("a throwing function should be reported", () => {
 let thrower = (a, b, c) => {
 throw "CRASH!";
 };
 thrower = addLogging3(thrower, dummy.logger);

 try {
 thrower(1, 2, 3);
 } catch (e) {
 expect(dummy.logger).toHaveBeenCalledTimes(2);
 expect(dummy.logger).toHaveBeenCalledWith("entering thrower: 1,2,3");
 expect(dummy.logger).toHaveBeenCalledWith(

Producing Functions - Higher-Order Functions Chapter 6

[155]

 "exiting thrower: threw CRASH!"
);
 }
 });
});

The preceding tests work exactly like the previous ones we wrote earlier, but use and
inspect the dummy logger instead of dealing with the original console.log() calls.
Writing the test in this way avoids all possible problems due to side effects, so it's much
cleaner and safer.

When applying FP techniques, always keep in mind that if you are somehow complicating
your own job – for example, making it difficult to test any of your functions – then you
must be doing something wrong. In our case, the mere fact that the output of
addLogging() was an impure function should have raised an alarm. Of course, given the
simplicity of the code, in this particular case, you might decide that it's not worth a fix, that
you can do without testing, and that you don't need to be able to change the way logging is
produced. However, long experience in software development suggests that, sooner or
later, you'll come to regret that sort of decision, so try to go with the cleaner solution
instead.

Now that we have dealt with logging, we'll look at another need: timing functions for
performance reasons.

Timing functions
Another possible application for wrapped functions is to record and log the timing of each
function invocation in a fully transparent way. Simply put, we want to be able to tell how
long a function call takes, most likely for performance studies. However, in the same way
we dealt with logging, we don't want to have to modify the original function and will use a
higher-order function instead.

If you plan to optimize your code, remember the following three rules:
Don't do it, Don't do it yet, and Don't do it without measuring. It has been
mentioned that much bad code arises from early attempts at optimization,
so don't start by trying to write optimal code, don't try to optimize until
you recognize the need for it, and don't do it haphazardly, without trying
to determine the reasons for the slowdown by measuring all the parts of
your application.

Producing Functions - Higher-Order Functions Chapter 6

[156]

Along the lines of the preceding example, we can write an addTiming() function that,
given any function, will produce a wrapped version that will write out timing data on the
console but will otherwise work in exactly the same way:

const myPut = (text, name, tStart, tEnd) =>
 console.log(`${name} - ${text} ${tEnd - tStart} ms`);

const myGet = () => performance.now();

const addTiming = (fn, getTime = myGet, output = myPut) => (...args) => {
 let tStart = getTime();

 try {
 const valueToReturn = fn(...args);
 output("normal exit", fn.name, tStart, getTime());
 return valueToReturn;

 } catch (thrownError) {
 output("exception thrown", fn.name, tStart, getTime());
 throw thrownError;
 }
};

Note that, along the lines of the enhancement we applied in the previous section to the
logging function, we are providing separate logger and time access functions. Writing tests
for our addTiming() function should prove easy, given that we can inject both impure
functions.

Using performance.now() provides the highest accuracy. If you don't
need such precision as what's provided by that function (and it's arguable
that it is overkill), you could simply substitute Date.now(). For more on
these alternatives, see https:/ ​/​developer. ​mozilla. ​org/ ​en-​US/ ​docs/ ​Web/
API/​Performance/ ​now and https:/ ​/​developer. ​mozilla. ​org/ ​en/ ​docs/
Web/​JavaScript/ ​Reference/ ​Global_ ​Objects/ ​Date/ ​now. You could also
consider using console.time() and console.timeEnd(); see https:/ ​/
developer. ​mozilla. ​org/ ​en-​US/ ​docs/ ​Web/ ​API/ ​Console/ ​time for more
information.

To be able to try out the logging functionality, I've modified the subtract() function so
that it throws an error if you attempt to subtract 0. (Yes, of course, you can subtract 0 from
another number, but I wanted to have some kind error-throwing situation, at any cost!)

https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Date/now
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Date/now
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Date/now
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Date/now
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Date/now
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Date/now
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Date/now
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Date/now
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Date/now
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Date/now
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Date/now
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Date/now
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Date/now
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Date/now
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Date/now
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Date/now
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Date/now
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Date/now
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Date/now
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Date/now
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Date/now
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Date/now
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Date/now
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Date/now
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Date/now
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Date/now
https://developer.mozilla.org/en-US/docs/Web/API/Console/time
https://developer.mozilla.org/en-US/docs/Web/API/Console/time
https://developer.mozilla.org/en-US/docs/Web/API/Console/time
https://developer.mozilla.org/en-US/docs/Web/API/Console/time
https://developer.mozilla.org/en-US/docs/Web/API/Console/time
https://developer.mozilla.org/en-US/docs/Web/API/Console/time
https://developer.mozilla.org/en-US/docs/Web/API/Console/time
https://developer.mozilla.org/en-US/docs/Web/API/Console/time
https://developer.mozilla.org/en-US/docs/Web/API/Console/time
https://developer.mozilla.org/en-US/docs/Web/API/Console/time
https://developer.mozilla.org/en-US/docs/Web/API/Console/time
https://developer.mozilla.org/en-US/docs/Web/API/Console/time
https://developer.mozilla.org/en-US/docs/Web/API/Console/time
https://developer.mozilla.org/en-US/docs/Web/API/Console/time
https://developer.mozilla.org/en-US/docs/Web/API/Console/time
https://developer.mozilla.org/en-US/docs/Web/API/Console/time
https://developer.mozilla.org/en-US/docs/Web/API/Console/time
https://developer.mozilla.org/en-US/docs/Web/API/Console/time
https://developer.mozilla.org/en-US/docs/Web/API/Console/time
https://developer.mozilla.org/en-US/docs/Web/API/Console/time
https://developer.mozilla.org/en-US/docs/Web/API/Console/time
https://developer.mozilla.org/en-US/docs/Web/API/Console/time

Producing Functions - Higher-Order Functions Chapter 6

[157]

You could also list the input parameters, if desired, for more information:

subtract = addTiming(subtract);

let x = subtract(7, 5); // subtract - normal exit 0.10500000000001819 ms

let y = subtract(4, 0); // subtract - exception thrown 0.0949999999999136
 // ms

The preceding code is quite similar to the previous addLogging() function, and that's
reasonable—in both cases, we are adding some code before the actual function call, and
then some new code after the function returns. You might even consider writing a higher-
higher-order function, which would receive three functions and produce a new higher-
order function as output (such as addLogging() or addTiming()) that would call the first
function at the beginning, and then the second function if the wrapped function returned a
value, or the third function if an error had been thrown! What about that?

Memoizing functions
In Chapter 4, Behaving Properly – Pure Functions, we considered the case of the Fibonacci
function and learned how we could transform it, by hand, into a much more efficient
version by means of memoization: caching calculated values to avoid recalculations. A
memoized function is one that will avoid redoing a process if the result was found earlier.
We want to be able to turn any function into a memoized one so that we can get a more
optimized version.

A real-life memoizing solution should also take into account the available
RAM and have some ways of avoiding filling it up; however, this is
beyond the scope of this book. Also, we won't be looking into
performance issues; those optimizations are also beyond the scope of this
book.

For simplicity, let's only consider functions with a single, non-structured parameter and
leave functions with more complex parameters (objects, arrays) or more than one parameter
for later.

The kind of values we can handle with ease are JavaScript's primitive
values: data that aren't objects and have no methods. JavaScript has six of
these: boolean, null, number, string, symbol, and undefined.
Usually, we only see the first four as actual arguments. You can find out
more by going to https:/ ​/ ​developer. ​mozilla. ​org/ ​en- ​US/​docs/
Glossary/ ​Primitive.

https://developer.mozilla.org/en-US/docs/Glossary/Primitive
https://developer.mozilla.org/en-US/docs/Glossary/Primitive
https://developer.mozilla.org/en-US/docs/Glossary/Primitive
https://developer.mozilla.org/en-US/docs/Glossary/Primitive
https://developer.mozilla.org/en-US/docs/Glossary/Primitive
https://developer.mozilla.org/en-US/docs/Glossary/Primitive
https://developer.mozilla.org/en-US/docs/Glossary/Primitive
https://developer.mozilla.org/en-US/docs/Glossary/Primitive
https://developer.mozilla.org/en-US/docs/Glossary/Primitive
https://developer.mozilla.org/en-US/docs/Glossary/Primitive
https://developer.mozilla.org/en-US/docs/Glossary/Primitive
https://developer.mozilla.org/en-US/docs/Glossary/Primitive
https://developer.mozilla.org/en-US/docs/Glossary/Primitive
https://developer.mozilla.org/en-US/docs/Glossary/Primitive
https://developer.mozilla.org/en-US/docs/Glossary/Primitive
https://developer.mozilla.org/en-US/docs/Glossary/Primitive
https://developer.mozilla.org/en-US/docs/Glossary/Primitive
https://developer.mozilla.org/en-US/docs/Glossary/Primitive

Producing Functions - Higher-Order Functions Chapter 6

[158]

We won't be aiming to produce the best-ever memoizing solution, but let's study the
subject a bit and produce several variants of a memoizing higher-order function. First, we'll
deal with functions with a single parameter and then consider functions with several
parameters.

Simple memoization
We will work with the Fibonacci function we mentioned previously, which is a simple case:
it receives a single numeric parameter. This function is as follows:

function fib(n) {
 if (n == 0) {
 return 0;
 } else if (n == 1) {
 return 1;
 } else {
 return fib(n - 2) + fib(n - 1);
 }
}

The solution we created previously was general in concept, but particularly in its
implementation: we had to directly modify the code of the function in order to take
advantage of said memoization. Now, we should look into a way of doing this
automatically, in the same fashion as we do it with other wrapped functions. The solution
would be a memoize() function that wraps any other function in order to apply
memoization:

const memoize = fn => {
 let cache = {};
 return x => (x in cache ? cache[x] : (cache[x] = fn(x)));
};

How does this work? The returned function, for any given argument, checks whether the
argument was already received, that is, whether it can be found as a key in the cache object.
If so, there's no need for calculation, and the cached value is returned. Otherwise, we
calculate the missing value and store it in the cache. (We are using a closure to hide the
cache from external access.) Here, we are assuming that the memoized function receives
only one argument (x) and that it is a primitive value, which can then be directly used as a
key value for the cache object; we'll consider other cases later.

Is this working? We'll have to time it – and we happen to have a useful addTiming()
function for that! First, we take some timings for the original fib() function. We want to
time the complete calculation and not each individual recursive call, so we write an auxiliar
testFib() function and that's the one we'll time.

Producing Functions - Higher-Order Functions Chapter 6

[159]

We should repeat the timing operations and do an average but, since we just want to
confirm that memoizing works, we'll tolerate differences:

const testFib = n => fib(n);

addTiming(testFib)(45); // 15,382.255 ms
addTiming(testFib)(40); // 1,600.600 ms
addTiming(testFib)(35); // 146.900 ms

Your own times will vary, of course, depending on your specific CPU, RAM, and so on.
However, the results seem logical: the exponential growth we mentioned in Chapter 4,
Behaving Properly – Pure Functions, appears to be present, and times grow quickly. Now,
let's memoize fib(). We should get shorter times... shouldn't we?

const testMemoFib = memoize(n => fib(n));

addTiming(testMemoFib)(45); // 15,537.575 ms
addTiming(testMemoFib)(45); // 0.005 ms... good!
addTiming(testMemoFib)(40); // 1,368.880 ms... recalculating?
addTiming(testMemoFib)(35); // 123.970 ms... here too?

Something's wrong! The times should have gone down, but they are just about the same.
This is because of a common error, which I've even seen in some articles and on some web
pages. We are timing testMemoFib(), but nobody calls that function, except for timing,
and that only happens once! Internally, all recursive calls are to fib(), which isn't
memoized. If we called testMemoFib(45) again, that call would be cached, and it would
return almost immediately, but that optimization doesn't apply to the internal fib() calls.
This is the reason why the calls for testMemoFib(40) and testMemoFib(35) weren't
optimized – when we did the calculation for testMemoFib(45), that was the only value
that got cached.

The correct solution is as follows:

fib = memoize(fib);

addTiming(fib)(45); // 0.080 ms
addTiming(fib)(40); // 0.025 ms
addTiming(fib)(35); // 0.009 ms

Now, when calculating fib(45), all the intermediate Fibonacci values (from fib(0) to
fib(45) itself) are stored, so the forthcoming calls have practically no work to do.

Now that we know how to memoize single-argument functions, let's look at functions with
more arguments.

Producing Functions - Higher-Order Functions Chapter 6

[160]

More complex memoization
What can we do if we have to work with a function that receives two or more arguments, or
that can receive arrays or objects as arguments? Of course, like in the problem that we
looked at in Chapter 2, Thinking Functionally – A First Example, about having a function do
its job only once, we could simply ignore the question: if the function to be memoized is
unary, we go through the memoization process; otherwise, if the function has a different
arity, we just don't do anything!

The number of parameters of a function is called the arity of the function,
or its valence. You may speak in three different ways: you can say a
function has arity 1, 2, 3, and so on; you can say that a function is unary,
binary, ternary, and so on; or you can say it's monadic, dyadic, triadic,
and so on. Take your pick!

Our first attempt could be just memoizing unary functions, and leave the rest alone, as in
the following code:

const memoize2 = fn => {
 if (fn.length === 1) {
 let cache = {};
 return x => (x in cache ? cache[x] : (cache[x] = fn(x)));
 } else {
 return fn;
 }
};

Working more seriously, if we want to be able to memoize any function, we must find a
way to generate cache keys. To do this, we have to find a way to convert any kind of
argument into a string. We cannot use a non-primitive as a cache key directly. We could
attempt to convert the value into a string with something like strX = String(x), but
we'll have problems. With arrays, it seems this could work. However, take a look at the
following three cases, involving different arrays but with a twist:

var a = [1, 5, 3, 8, 7, 4, 6];
String(a); // "1,5,3,8,7,4,6"

var b = [[1, 5], [3, 8, 7, 4, 6]];
String(b); // "1,5,3,8,7,4,6"

var c = [[1, 5, 3], [8, 7, 4, 6]];
String(c); // "1,5,3,8,7,4,6"

Producing Functions - Higher-Order Functions Chapter 6

[161]

These three cases produce the same result. If we were only considering a single array
argument, we'd probably be able to make do, but when different arrays produce the same
key, that's a problem. Things become worse if we have to receive objects as arguments,
because the String() representation of any object is, invariably, "[object Object]":

var d = {a: "fk"};
String(d); // "[object Object]"

var e = [{p: 1, q: 3}, {p: 2, q: 6}];
String(e); // "[object Object],[object Object]"

The simplest solution is to use JSON.stringify() to convert whatever arguments we
have received into a useful, distinct string:

var a = [1, 5, 3, 8, 7, 4, 6];
JSON.stringify(a); // "[1,5,3,8,7,4,6]"

var b = [[1, 5], [3, 8, 7, 4, 6]];
JSON.stringify(b); // "[[1,5],[3,8,7,4,6]]"

var c = [[1, 5, 3], [8, 7, 4, 6]];
JSON.stringify(c); // "[[1,5,3],[8,7,4,6]]"

var d = {a: "fk"};
JSON.stringify(d); // "{"a":"fk"}"

var e = [{p: 1, q: 3}, {p: 2, q: 6}];
JSON.stringify(e); // "[{"p":1,"q":3},{"p":2,"q":6}]"

For performance, our logic should be as follows: if the function that we are memoizing
receives a single argument that's a primitive value, we can use that argument directly as a
cache key. In other cases, we would use the result of JSON.stringify() that's applied to
the array of arguments. Our enhanced memoizing higher-order function could be as
follows:

const memoize3 = fn => {
 let cache = {};
 const PRIMITIVES = ["number", "string", "boolean"];
 return (...args) => {
 let strX =
 args.length === 1 && PRIMITIVES.includes(typeof args[0])
 ? args[0]
 : JSON.stringify(args);
 return strX in cache ? cache[strX] : (cache[strX] = fn(...args));
 };
};

Producing Functions - Higher-Order Functions Chapter 6

[162]

In terms of universality, this is the safest version. If you are sure about the type of
parameters in the function you are going to process, it's arguable that our first version was
faster. On the other hand, if you want to have easier-to-understand code, even at the cost of
some wasted CPU cycles, you could go with a simpler version:

const memoize4 = fn => {
 let cache = {};
 return (...args) => {
 let strX = JSON.stringify(args);
 return strX in cache ? cache[strX] : (cache[strX] = fn(...args));
 };
};

If you want to learn about the development of a top-performance
memoizing function, read Caio Gondim's How I wrote the world's fastest
JavaScript memoization library article, available online at https:/ ​/
community. ​risingstack. ​com/ ​the-​worlds- ​fastest- ​javascript-
memoization- ​library/ ​.

So far, we have achieved several interesting memoizing functions, but how will we manage
to write tests for them? Let's analyze this problem now.

Memoization testing
Testing the memoization higher-order function poses an interesting problem – just how
would you go about it? The first idea would be to look into the cache – but that's private
and not visible. Of course, we could change memoize() so that it uses a global cache or
somehow allows external access to the cache, but doing that sort of internal exam is
frowned upon: you should try to do your tests based on external properties only.

Accepting that we shouldn't try to examine the cache, we could go for a time control:
calling a function such as fib(), for a large value of n, should take longer if the function
isn't memoized. This is certainly possible, but it's also prone to possible failures: something
external to your tests could run at just the wrong time and it could be possible that your
memoized run would take longer than the original one. Okay, it's possible, but not
probable – but your test isn't fully reliable.

So, let's go for a more direct analysis of the number of actual calls to the memoized
function. Working with a non-memoized, original fib(), we could test whether the
function works normally and check how many calls it makes:

var fib = null;
beforeEach(() => {

https://community.risingstack.com/the-worlds-fastest-javascript-memoization-library/
https://community.risingstack.com/the-worlds-fastest-javascript-memoization-library/
https://community.risingstack.com/the-worlds-fastest-javascript-memoization-library/
https://community.risingstack.com/the-worlds-fastest-javascript-memoization-library/
https://community.risingstack.com/the-worlds-fastest-javascript-memoization-library/
https://community.risingstack.com/the-worlds-fastest-javascript-memoization-library/
https://community.risingstack.com/the-worlds-fastest-javascript-memoization-library/
https://community.risingstack.com/the-worlds-fastest-javascript-memoization-library/
https://community.risingstack.com/the-worlds-fastest-javascript-memoization-library/
https://community.risingstack.com/the-worlds-fastest-javascript-memoization-library/
https://community.risingstack.com/the-worlds-fastest-javascript-memoization-library/
https://community.risingstack.com/the-worlds-fastest-javascript-memoization-library/
https://community.risingstack.com/the-worlds-fastest-javascript-memoization-library/
https://community.risingstack.com/the-worlds-fastest-javascript-memoization-library/
https://community.risingstack.com/the-worlds-fastest-javascript-memoization-library/
https://community.risingstack.com/the-worlds-fastest-javascript-memoization-library/
https://community.risingstack.com/the-worlds-fastest-javascript-memoization-library/
https://community.risingstack.com/the-worlds-fastest-javascript-memoization-library/
https://community.risingstack.com/the-worlds-fastest-javascript-memoization-library/
https://community.risingstack.com/the-worlds-fastest-javascript-memoization-library/

Producing Functions - Higher-Order Functions Chapter 6

[163]

 fib = n => {
 if (n == 0) {
 return 0;
 } else if (n == 1) {
 return 1;
 } else {
 return fib(n - 2) + fib(n - 1);
 }
 };
});

describe("the original fib", function() {
 it("should produce correct results", () => {
 expect(fib(0)).toBe(0);
 expect(fib(1)).toBe(1);
 expect(fib(5)).toBe(5);
 expect(fib(8)).toBe(21);
 expect(fib(10)).toBe(55);
 });

 it("should repeat calculations", () => {
 spyOn(window,"fib").and.callThrough();
 expect(fib(6)).toBe(8);
 expect(fib).toHaveBeenCalledTimes(25);
 });
});

The preceding code is fairly straightforward: we are using the Fibonacci function we
developed earlier and testing that it produces correct values. For instance, the fact that
fib(6) equals 8 is easy to verify, but where do you find out that the function is called 25
times? For the answer to this, let's revisit the diagram we looked at in Chapter 4, Behaving
Properly – Pure Functions:

Figure 6.1: All the recursive calls needed for calculating fib(6)

Producing Functions - Higher-Order Functions Chapter 6

[164]

Each node is a call; just by counting, we can see that in order to calculate fib(6), 25 calls
are actually made to fib(). Now, let's turn to the memoized version of the function.
Testing that it still produces the same results is easy:

describe("the memoized fib", function() {
 beforeEach(() => {
 fib = memoize(fib);
 });

 it("should produce same results", () => {
 expect(fib(0)).toBe(0);
 expect(fib(1)).toBe(1);
 expect(fib(5)).toBe(5);
 expect(fib(8)).toBe(21);
 expect(fib(10)).toBe(55);
 });

 it("shouldn't repeat calculations", () => {
 spyOn(window, "fib").and.callThrough();

 expect(fib(6)).toBe(8); // 11 calls
 expect(fib).toHaveBeenCalledTimes(11);

 expect(fib(5)).toBe(5); // 1 call
 expect(fib(4)).toBe(3); // 1 call
 expect(fib(3)).toBe(2); // 1 call
 expect(fib).toHaveBeenCalledTimes(14);
 });
});

But why is it called 11 times for calculating fib(6), and then three times more after
calculating fib(5), fib(4), and fib(3)? To answer the first part of this question, let's
analyze the diagram we looked at earlier:

First, we call fib(6), which calls fib(4) and fib(5). This is three calls.
When calculating fib(4), fib(2) and fib(3) are called; the count is up to five.
When calculating fib(5), fib(3) and fib(4) are called; the count climbs to 11.
Finally, fib(6) is calculated and cached.
fib(3) and fib(4) are both cached, so no more calls are made.
fib(5) is calculated and cached.
When calculating fib(2), fib(0) and fib(1) are called; now, we have seven
calls.
When calculating fib(3), fib(1) and fib(2) are called; the count is up to nine.

Producing Functions - Higher-Order Functions Chapter 6

[165]

fib(4) is calculated and cached.
fib(1) and fib(2) are both already cached, so no further calls are made.
fib(3) is calculated and cached.
When calculating fib(0) and fib(1), no extra calls are made and both are
cached.
fib(2) is calculated and cached.

Whew! So, the count of calls for fib(6) is 11. Given that all the values of fib(n) have
been cached, for n from 0 to 6, it's easy to see why calculating fib(5), fib(4), and fib(3)
only adds three calls: all the other required values are already cached.

In this section, we've dealt with several examples that implied wrapping functions so that
they keep working, but with some kind of extra feature added in. Now, let's look at a
different case where we want to change the way a function actually works.

Altering a function's behavior
In the previous section, we considered some ways of wrapping functions so that they
maintain their original functionality, even though they've been enhanced in some way.
Now, we'll turn to modify what the functions do so that the new results will differ from the
original function's ones.

We'll be covering the following topics:

Revisiting the problem of having a function work, but just once
Negating or inverting a function's result
Changing the arity of a function

Let's get started!

Doing things once, revisited
Back in Chapter 2, Thinking Functionally – A First Example, we went through an example of
developing an FP-style solution for a simple problem: fixing things so that a given function
works only once. The following code is what we wrote back then:

const once = func => {
 let done = false;
 return (...args) => {
 if (!done) {

Producing Functions - Higher-Order Functions Chapter 6

[166]

 done = true;
 func(...args);
 }
 };
};

This is a perfectly fine solution; it works well and we have nothing to object to. We can,
however, think of a variation. We could observe that the given function gets called once,
but its return value gets lost. This is easy to fix: all we need to do is add a return
statement. However, that wouldn't be enough; what would the function return if it's called
more? We can take a page out of the memoizing solution and store the function's return
value for future calls.

Let's store the function's value in a variable (result) so that we can return it later:

const once2 = func => {
 let done = false;
 let result;
 return (...args) => {
 if (!done) {
 done = true;
 result = func(...args);
 }
 return result;
 };
};

The first time the function gets called, its value is stored in result; further calls just return
that value with no further process. You could also think of making the function work only
once, but for each set of arguments. You wouldn't have to do any work for
that – memoize() would be enough!

Back in Chapter 2, Thinking Functionally – A First Example, in the An even better
solution section, we considered a possible alternative to once(): another higher-order
function that took two functions as parameters and allowed the first function to be called
only once, calling the second function from that point on. Adding a return statement to
the code from before, it would have been as follows:

const onceAndAfter = (f, g) => {
 let done = false;
 return (...args) => {
 if (!done) {
 done = true;
 return f(...args);
 } else {
 return g(...args);

Producing Functions - Higher-Order Functions Chapter 6

[167]

 }
 };
};

We can rewrite this if we remember that functions are first-order objects. Instead of using a
flag to remember which function to call, we can use a variable (toCall) to directly store
whichever function needs to be called. Logically, that variable will be initialized to the first
function, but will then change to the second one. The following code implements that
change:

const onceAndAfter2 = (f, g) => {
 let toCall = f;
 return (...args) => {
 let result = toCall(...args);
 toCall = g;
 return result;
 };
};

The toCall variable is initialized with f, so f() will get called the first time, but then
toCall gets the g value, implying that all future calls will execute g() instead. The very
same example we looked at earlier in this book would still work:

const squeak = (x) => console.log(x, "squeak!!");

const creak = (x) => console.log(x, "creak!!");

const makeSound = onceAndAfter2(squeak, creak);

makeSound("door"); // "door squeak!!"
makeSound("door"); // "door creak!!"
makeSound("door"); // "door creak!!"
makeSound("door"); // "door creak!!"

In terms of performance, the difference may be negligible. The reason for showing this
further variation is to show that you should keep in mind that, by storing functions, you
can often produce results in a simpler way. Using flags to store state is a common technique
that's used everywhere in procedural programming. However, here, we manage to skip
that usage and produce the same result. Now, let's look at some new examples of wrapping
functions to change their behaviors.

Producing Functions - Higher-Order Functions Chapter 6

[168]

Logically negating a function
Let's consider the filter() method from Chapter 5, Programming Declaratively – A Better
Style. Given a predicate, we can filter the array to only include those elements for which the
predicate is true. But how would you do a reverse filter and exclude the elements for which
the predicate is true?

The first solution should be pretty obvious: rework the predicate so that it returns the
opposite of whatever it originally returned. In Chapter 5, Programming Declaratively – A
Better Style, we looked at the following example:

const delinquent = serviceResult.accountsData.filter(v => v.balance < 0);

So, we could just write it the other way round, in either of these two equivalent fashions.
Note the different ways of writing the same predicate to test for non-negative values:

const notDelinquent = serviceResult.accountsData.filter(
 v => v.balance >= 0
);

const notDelinquent2 = serviceResult.accountsData.filter(
 v => !(v.balance < 0)
);

That's perfectly fine, but we could also have had something like the following in our code:

const isNegativeBalance = v => v.balance < 0;

// ...many lines later...

const delinquent2 = serviceResult.accountsData.filter(isNegativeBalance);

In this case, rewriting the original function isn't possible. However, working in a functional
way, we can just write a higher-order function that will take any predicate, evaluate it, and
then negate its result. A possible implementation would be quite simple, thanks to modern
JavaScript syntax:

const not = fn => (...args) => !fn(...args);

Working in this way, we could have rewritten the preceding filter as follows; to test for
non-negative balances, we use the original isNegativeBalance() function, which is
negated via our not() higher-order function:

const isNegativeBalance = v => v.balance < 0;

// ...many lines later...

Producing Functions - Higher-Order Functions Chapter 6

[169]

const notDelinquent3 = serviceResult.accountsData.filter(
 not(isNegativeBalance)
);

There is an additional solution we might want to try out – instead of reversing the
condition (as we did), we could write a new filtering method (possibly filterNot()?) that
would work in the opposite way to filter(). The following code shows how this new
function would be written:

const filterNot = arr => fn => arr.filter(not(fn));

This solution doesn't fully match filter() since you cannot use it as a method, but we
could either add it to Array.prototype or apply some methods. We'll look at these
methods in Chapter 8, Connecting Functions – Pipelining and Composition. However, it's
more interesting to note that we used the negated function, so not() is actually necessary
for both solutions to the reverse filtering problem. In the upcoming Demethodizing – turning
methods into functions section, we will see that we have yet another solution since we will be
able to decouple methods such as filter() from the objects they apply to, thereby
changing them into common functions.

As for negating the function versus using a new filterNot(), even though both
possibilities are equally valid, I think using not() is clearer; if you already understand how
filtering works, then you can practically read it aloud and it will be understandable: we
want those that don't have a negative balance, right? Now, let's consider a related problem:
inverting the results of a function.

Inverting the results
In the same vein as the preceding filtering problem, let's revisit the sorting problem from
the Injection – sorting it out section of Chapter 3, Starting Out with Functions – A Core
Concept. Here, we wanted to sort an array with a specific method. Therefore, we used
.sort(), providing it with a comparison function that basically pointed out which of the
two strings should go first. To refresh your memory, given two strings, the function should
do the following:

Return a negative number if the first string should precede the second one
Return 0 if the strings are the same
Return a positive number if the first string should follow the second one

Producing Functions - Higher-Order Functions Chapter 6

[170]

Let's go back to the code we looked at for sorting in Spanish. We had to write a special
comparison function so that sorting would take into account the special character order
rules from Spanish, such as including the letter ñ between n and o, and more. The code for
this was as follows:

const spanishComparison = (a, b) => a.localeCompare(b, "es");

palabras.sort(spanishComparison); // sorts the palabras array according to
Spanish rules

We are facing a similar problem: how can we manage to sort in descending order? Given
what we saw in the previous section, two alternatives should immediately come to mind:

Write a function that will invert the result from the comparing function. This will
invert the result of all the decisions as to which string should precede, and the
final result will be an array sorted in exactly the opposite way.
Write a sortDescending() function or method that does its work in the
opposite fashion to sort().

Let's write an invert() function that will change the result of a comparison. The code
itself is quite similar to that of not():

const invert = fn => (...args) => -fn(...args);

Given this higher-order function, we can sort in descending order by providing a suitably
inverted comparison function. Take a look at the last few lines, where we use invert() to
change the result of the sorting comparison:

const spanishComparison = (a, b) => a.localeCompare(b, "es");

var palabras = ["ñandú", "oasis", "mano", "natural", "mítico", "musical"];

palabras.sort(spanishComparison);
// ["mano", "mítico", "musical", "natural", "ñandú", "oasis"]

palabras.sort(invert(spanishComparison));
// ["oasis", "ñandú", "natural", "musical", "mítico", "mano"]

The output is as expected: when we invert() the comparison function, the results are in
the opposite order. Writing unit tests would be quite easy, given that we already have some
test cases with their expected results, wouldn't it?

Producing Functions - Higher-Order Functions Chapter 6

[171]

Arity changing
Back in the Parsing numbers tacitly section of Chapter 5, Programming Declaratively – A Better
Style, we saw that using parseInt() with reduce() would produce problems because of
the unexpected arity of that function, which took more than one argument—remember the
example from earlier?

["123.45", "-67.8", "90"].map(parseInt); // problem: parseInt isn't
 // monadic!
 // [123, NaN, NaN]

We have more than one way to solve this. In Chapter 5, Programming Declaratively – A
Better Style, we went with an arrow function. This was a simple solution, with the added
advantage of being clear to understand. In Chapter 7, Transforming Functions – Currying and
Partial Application, we will look at yet another, based on partial application. For now, let's
go with a higher-order function. What we need is a function that will take another function
as a parameter and turn it into a unary function. Using JavaScript's spread operator and an
arrow function, this is easy to manage:

const unary = fn => (...args) => fn(args[0]);

Using this function, our number parsing problem goes away:

["123.45", "-67.8", "90"].map(unary(parseInt)); // [123, -67, 90]

It goes without saying that it would be equally simple to define further binary(),
ternary(), and other functions that would turn any function into an equivalent,
restricted-arity, version. Let's not go overboard and just look at a couple of all the possible
functions:

const binary = fn => (...args) => fn(args[0], args[1]);
const ternary = fn => (...args) => fn(args[0], args[1], args[2]);

This works, but spelling out all the parameters can become tiresome. We can even go one
better by using array operations and spreading and make a generic function to deal with all
of these cases, as follows:

const arity = (fn, n) => (...args) => fn(...args.slice(0, n));

With this generic arity() function, we can give alternative definitions for unary(),
binary(), and so on. We could even rewrite the earlier functions as follows:

const unary = fn => arity(fn, 1);
const binary = fn => arity(fn, 2);
const ternary = fn => arity(fn, 3);

Producing Functions - Higher-Order Functions Chapter 6

[172]

You may be thinking that there aren't many cases in which you would want to apply this
kind of solution, but in fact, there are many more than you would expect. Going through all
of JavaScript's functions and methods, you can easily produce a list starting with apply(),
assign(), bind(), concat(), copyWithin(), and many more! If you wanted to use any
of those in a tacit way, you would probably need to fix its arity so that it would work with a
fixed, non-variable number of parameters.

If you want a nice list of JavaScript functions and methods, check out
https:/ ​/​developer. ​mozilla. ​org/​en/ ​docs/ ​Web/ ​JavaScript/ ​Guide/
Functions and https:/ ​/ ​developer. ​mozilla. ​org/ ​en- ​US/​docs/ ​Web/
JavaScript/ ​Reference/ ​Methods_ ​Index. As for tacit programming (or
pointfree style), we'll be coming back to it in Chapter 8, Connecting
Functions – Pipelining and Composition.

So far, we have learned how to wrap functions while keeping their original behavior or by
changing it in some fashion. Now, let's consider some other ways of modifying functions.

Changing functions in other ways
Let's end this chapter by considering some other sundry functions that provide results such
as new finders, decoupling methods from objects, and more. Our examples will include the
following:

Turning operations (such as adding with the + operator) into functions
Turning functions into promises
Accessing objects to get the value of a property
Turning methods into functions
A better way of finding optimum values

Turning operations into functions
We have already seen several cases in which we needed to write a function just to add or
multiply a pair of numbers. For example, in the Summing an array section of Chapter 5,
Programming Declaratively – A Better Style, we had to write code equivalent to the following:

const mySum = myArray.reduce((x, y) => x + y, 0);

https://developer.mozilla.org/en/docs/Web/JavaScript/Guide/Functions
https://developer.mozilla.org/en/docs/Web/JavaScript/Guide/Functions
https://developer.mozilla.org/en/docs/Web/JavaScript/Guide/Functions
https://developer.mozilla.org/en/docs/Web/JavaScript/Guide/Functions
https://developer.mozilla.org/en/docs/Web/JavaScript/Guide/Functions
https://developer.mozilla.org/en/docs/Web/JavaScript/Guide/Functions
https://developer.mozilla.org/en/docs/Web/JavaScript/Guide/Functions
https://developer.mozilla.org/en/docs/Web/JavaScript/Guide/Functions
https://developer.mozilla.org/en/docs/Web/JavaScript/Guide/Functions
https://developer.mozilla.org/en/docs/Web/JavaScript/Guide/Functions
https://developer.mozilla.org/en/docs/Web/JavaScript/Guide/Functions
https://developer.mozilla.org/en/docs/Web/JavaScript/Guide/Functions
https://developer.mozilla.org/en/docs/Web/JavaScript/Guide/Functions
https://developer.mozilla.org/en/docs/Web/JavaScript/Guide/Functions
https://developer.mozilla.org/en/docs/Web/JavaScript/Guide/Functions
https://developer.mozilla.org/en/docs/Web/JavaScript/Guide/Functions
https://developer.mozilla.org/en/docs/Web/JavaScript/Guide/Functions
https://developer.mozilla.org/en/docs/Web/JavaScript/Guide/Functions
https://developer.mozilla.org/en/docs/Web/JavaScript/Guide/Functions
https://developer.mozilla.org/en/docs/Web/JavaScript/Guide/Functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Methods_Index
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Methods_Index
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Methods_Index
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Methods_Index
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Methods_Index
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Methods_Index
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Methods_Index
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Methods_Index
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Methods_Index
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Methods_Index
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Methods_Index
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Methods_Index
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Methods_Index
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Methods_Index
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Methods_Index
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Methods_Index
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Methods_Index
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Methods_Index
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Methods_Index
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Methods_Index
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Methods_Index
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Methods_Index
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Methods_Index
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Methods_Index

Producing Functions - Higher-Order Functions Chapter 6

[173]

In the Working with ranges section of Chapter 5, Programming Declaratively – A Better Style, to
calculate a factorial, we wrote this:

const factorialByRange = n => range(1, n + 1).reduce((x, y) => x * y, 1);

It would have been easier if we could just turn a binary operator into a function that
calculates the same result. The preceding two examples could have been written more
succinctly, as follows. Can you understand the change we made?

const mySum = myArray.reduce(binaryOp("+"), 0);

const factorialByRange = n => range(1, n + 1).reduce(binaryOp("*"), 1);

We haven't looked at how binaryOp() is implemented yet, but the key notion is that
instead of an infix operator (like we use when we write 22+9), we now have a function (as
if we could write our sum like +(22,9), which certainly isn't valid JavaScript). Let's see
how we can make this work.

Implementing operations
How would we write this binaryOp() function? There are at least two ways of doing so: a
safe but long one and a riskier and shorter alternative. The first would require listing each
possible operator. The following code does this by using a longish switch:

const binaryOp1 = op => {
 switch (op) {
 case "+":
 return (x, y) => x + y;
 case "-":
 return (x, y) => x - y;
 case "*":
 return (x, y) => x * y;
 //
 // etc.
 //
 }
};

This solution is perfectly fine but requires too much work. The second is more dangerous,
but shorter. Please consider this just as an example, for learning purposes; using eval()
isn't recommended, for security reasons! Our second version would simply use
Function() to create a new function that uses the desired operator, as follows:

const binaryOp2 = op => new Function("x", "y", `return x ${op} y;`);

Producing Functions - Higher-Order Functions Chapter 6

[174]

If you follow this trail of thought, you may also define a unaryOp() function, even though
there are fewer applications for it. (I leave this implementation to you; it's quite similar to
what we already wrote.) In Chapter 7, Transforming Functions – Currying and Partial
Application, we will look at an alternative way of creating this unary function by using
partial application.

A handier implementation
Let's get ahead of ourselves. Doing FP doesn't mean always getting down to the very basic,
simplest possible functions. For example, in an upcoming section of this book, we will need
a function to check whether a number is negative, and we'll consider (see the Converting
into pointfree style section of Chapter 8, Connecting Functions – Pipelining and
Composition) using binaryOp2() to write it:

const isNegative = curry(binaryOp2(">"))(0);

Don't worry about the curry() function now (we'll get to it soon, in Chapter 7,
Transforming Functions – Currying and Partial Application) – the idea is that it fixes the first
argument to 0 so that our function will check for a given number, n, if 0>n. The point here is
that the function we just wrote isn't very clear. We could do better if we defined a binary
operation function that also lets us specify one of its parameters – the left one or the right
one – in addition to the operator to be used. Here, we can write the following couple of
functions, which define the functions where the left or right operators are missing:

const binaryLeftOp = (x, op) => y => binaryOp2(op)(x,y);

const binaryOpRight = (op, y) => x => binaryOp2(op)(x,y);

With these new functions, we could simply write either of the following two definitions,
though I think the second is clearer. I'd rather test whether a number is less than 0 than
whether 0 is greater than the number:

const isNegative1 = binaryLeftOp(0, ">");

const isNegative2 = binaryOpRight("<", 0);

What is the point of this? Don't strive for some kind of basic simplicity or going down to basics
code. We can transform an operator into a function, but if you can do better and simplify
your coding by also specifying one of the two parameters for the operation, just do it! The
idea of FP is to help write better code, and creating artificial limitations won't help
anybody.

Producing Functions - Higher-Order Functions Chapter 6

[175]

Of course, for a simple function such as checking whether a number is negative, I would
never want to complicate things with currying, binary operators, pointfree style, or
anything else, and I'd just write the following with no further ado:

const isNegative3 = x => x < 0;

So far, we have seen several ways of solving the same problem. Keep in mind that FP
doesn't force you to pick one single way of doing things; instead, it allows you a lot of
freedom in deciding on which way to go!

Turning functions into promises
In Node, most asynchronous functions require a callback such as (err,data)=>{...}: if
err is null, the function was successful and data is its result, while if err has some value,
the function failed and err gives the cause. (See https:/ ​/​nodejs. ​org/ ​api/​errors.
html#errors_​node_ ​js_ ​style_ ​callbacks for more on this.)

However, you might prefer to work with promises instead. So, we can think of writing a
higher-order function that will transform a function that requires a callback into a promise
that lets you use the .then() and .catch() methods. (In Chapter 12, Building Better
Containers – Functional Data Types, we will see that promises are actually monads, so this
transformation is interesting in yet another way.)

Node, since version 8, already provides the util.promisify() function,
which turns an async function into a promise. See https:/ ​/​nodejs. ​org/
dist/ ​latest- ​v8. ​x/ ​docs/ ​api/ ​util. ​html#util_ ​util_ ​promisify_ ​original
for more on that.

How can we manage this? The transformation is rather simple. Given a function, we
produce a new one: this will return a promise that, upon calling the original function with
some parameters, will either reject() or resolve() the promise appropriately.
The promisify() function does exactly that:

const promisify = fn => (...args) =>
 new Promise((resolve, reject) =>
 fn(...args, (err, data) => (err ? reject(err) : resolve(data)))
);

When working in Node, the following style is fairly common:

const fs = require("fs");

const cb = (err, data) =>

https://nodejs.org/api/errors.html#errors_node_js_style_callbacks
https://nodejs.org/api/errors.html#errors_node_js_style_callbacks
https://nodejs.org/api/errors.html#errors_node_js_style_callbacks
https://nodejs.org/api/errors.html#errors_node_js_style_callbacks
https://nodejs.org/api/errors.html#errors_node_js_style_callbacks
https://nodejs.org/api/errors.html#errors_node_js_style_callbacks
https://nodejs.org/api/errors.html#errors_node_js_style_callbacks
https://nodejs.org/api/errors.html#errors_node_js_style_callbacks
https://nodejs.org/api/errors.html#errors_node_js_style_callbacks
https://nodejs.org/api/errors.html#errors_node_js_style_callbacks
https://nodejs.org/api/errors.html#errors_node_js_style_callbacks
https://nodejs.org/api/errors.html#errors_node_js_style_callbacks
https://nodejs.org/api/errors.html#errors_node_js_style_callbacks
https://nodejs.org/api/errors.html#errors_node_js_style_callbacks
https://nodejs.org/api/errors.html#errors_node_js_style_callbacks
https://nodejs.org/api/errors.html#errors_node_js_style_callbacks
https://nodejs.org/api/errors.html#errors_node_js_style_callbacks
https://nodejs.org/api/errors.html#errors_node_js_style_callbacks
https://nodejs.org/api/errors.html#errors_node_js_style_callbacks
https://nodejs.org/api/errors.html#errors_node_js_style_callbacks
https://nodejs.org/dist/latest-v8.x/docs/api/util.html#util_util_promisify_original
https://nodejs.org/dist/latest-v8.x/docs/api/util.html#util_util_promisify_original
https://nodejs.org/dist/latest-v8.x/docs/api/util.html#util_util_promisify_original
https://nodejs.org/dist/latest-v8.x/docs/api/util.html#util_util_promisify_original
https://nodejs.org/dist/latest-v8.x/docs/api/util.html#util_util_promisify_original
https://nodejs.org/dist/latest-v8.x/docs/api/util.html#util_util_promisify_original
https://nodejs.org/dist/latest-v8.x/docs/api/util.html#util_util_promisify_original
https://nodejs.org/dist/latest-v8.x/docs/api/util.html#util_util_promisify_original
https://nodejs.org/dist/latest-v8.x/docs/api/util.html#util_util_promisify_original
https://nodejs.org/dist/latest-v8.x/docs/api/util.html#util_util_promisify_original
https://nodejs.org/dist/latest-v8.x/docs/api/util.html#util_util_promisify_original
https://nodejs.org/dist/latest-v8.x/docs/api/util.html#util_util_promisify_original
https://nodejs.org/dist/latest-v8.x/docs/api/util.html#util_util_promisify_original
https://nodejs.org/dist/latest-v8.x/docs/api/util.html#util_util_promisify_original
https://nodejs.org/dist/latest-v8.x/docs/api/util.html#util_util_promisify_original
https://nodejs.org/dist/latest-v8.x/docs/api/util.html#util_util_promisify_original
https://nodejs.org/dist/latest-v8.x/docs/api/util.html#util_util_promisify_original
https://nodejs.org/dist/latest-v8.x/docs/api/util.html#util_util_promisify_original
https://nodejs.org/dist/latest-v8.x/docs/api/util.html#util_util_promisify_original
https://nodejs.org/dist/latest-v8.x/docs/api/util.html#util_util_promisify_original
https://nodejs.org/dist/latest-v8.x/docs/api/util.html#util_util_promisify_original
https://nodejs.org/dist/latest-v8.x/docs/api/util.html#util_util_promisify_original
https://nodejs.org/dist/latest-v8.x/docs/api/util.html#util_util_promisify_original
https://nodejs.org/dist/latest-v8.x/docs/api/util.html#util_util_promisify_original
https://nodejs.org/dist/latest-v8.x/docs/api/util.html#util_util_promisify_original
https://nodejs.org/dist/latest-v8.x/docs/api/util.html#util_util_promisify_original
https://nodejs.org/dist/latest-v8.x/docs/api/util.html#util_util_promisify_original
https://nodejs.org/dist/latest-v8.x/docs/api/util.html#util_util_promisify_original

Producing Functions - Higher-Order Functions Chapter 6

[176]

 err ? console.log("ERROR", err) : console.log("SUCCESS", data);

fs.readFile("./exists.txt", cb); // success, list the data
fs.readFile("./doesnt_exist.txt", cb); // failure, show exception

However, you can use promises instead by using the promisify() function. However, in
current versions of Node, you would use util.promisify():

const fspromise = promisify(fs.readFile.bind(fs));

const goodRead = data => console.log("SUCCESSFUL PROMISE", data);
const badRead = err => console.log("UNSUCCESSFUL PROMISE", err);

fspromise("./readme.txt") // success
 .then(goodRead)
 .catch(badRead);

fspromise("./readmenot.txt") // failure
 .then(goodRead)
 .catch(badRead);

Now, you can use fspromise() instead of the original method. To do so, we had to bind
fs.readFile, as we mentioned in the An unnecessary mistake section of Chapter 3, Starting
Out with Functions – A Core Concept.

Getting a property from an object
There is a simple function that we could also produce. Extracting an attribute from an
object is a commonly required operation. For example, in Chapter 5, Programming
Declaratively – A Better Style, we had to get latitudes and longitudes to be able to calculate
an average. The code for this was as follows:

markers = [
 {name: "UY", lat: -34.9, lon: -56.2},
 {name: "AR", lat: -34.6, lon: -58.4},
 {name: "BR", lat: -15.8, lon: -47.9},
 ...
 {name: "BO", lat: -16.5, lon: -68.1}
];

let averageLat = average(markers.map(x => x.lat));
let averageLon = average(markers.map(x => x.lon));

Producing Functions - Higher-Order Functions Chapter 6

[177]

We saw another example of this when we learned how to filter an array; in our example,
we wanted to get the IDs for all the accounts with a negative balance. After filtering out all
other accounts, we still needed to extract the ID field:

const delinquent = serviceResult.accountsData.filter(v => v.balance < 0);
const delinquentIds = delinquent.map(v => v.id);

We could have joined those two lines and produced the desired result
with a one-liner, but that's not relevant here. In fact, unless the
delinquent intermediate result was needed for some reason, most FP
programmers would go for the one-line solution.

What do we need? We need a higher-order function that will receive the name of an
attribute and produce a new function that will be able to extract an attribute from an object.
Using the arrow function syntax, this function is easy to write:

const getField = attr => obj => obj[attr];

In the Getters and setters section of Chapter 10, Ensuring Purity –
Immutability, we'll write an even more general version of this function
that's able to "go deep" into an object to get an attribute of it, regardless of
its location within the object.

With this function, the coordinates extraction process could have been written as follows:

let averageLat = average(markers.map(getField("lat")));
let averageLon = average(markers.map(getField("lon")));

For variety, we could have used an auxiliary variable to get the delinquent IDs, as follows:

const getId = getField("id");
const delinquent = serviceResult.accountsData.filter(v => v.balance < 0);
const delinquentIds = delinquent.map(getId);

Make sure that you fully understand what's going on here. The result of the getField()
call is a function, which will be used in further expressions. The map() method requires a
mapping function and is what getField() produces.

Producing Functions - Higher-Order Functions Chapter 6

[178]

Demethodizing – turning methods into functions
Methods such as filter() and map() are only available for arrays; however, you
may want to apply them to, say, a NodeList or a String, and you'd be out of luck. Also,
we are focusing on strings, so having to use these functions as methods is not exactly what
we had in mind. Finally, whenever we create a new function (such as none(), which we
saw in the Checking negatives section of Chapter 5, Programming Declaratively – A Better
Style), it cannot be applied in the same way as its peers (some() and every(), in this case)
unless you do some prototype trickery. This is rightly frowned upon and not
recommended.

Read the Extending current data types section of Chapter 12, Building Better
Containers – Functional Data Types, where we will make map() available
for most basic types.

So... what can we do? We can apply the old saying If the mountain won't come to Muhammad,
then Muhammad must go to the mountain and, instead of worrying about not being able to
create new methods, we will turn the existing methods into functions. We can do this if we
convert each method into a function that will receive, as its first parameter, the object it will
work on.

Decoupling methods from objects can help you because once you achieve this separation,
everything turns out to be a function and your code will be simpler. (Remember what we
wrote in the Logically negating a function section, regarding a possible filterNot()
function in comparison to the filter() method?) A decoupled method works similarly to
how generic functions do in other languages since they can be applied to diverse data types.

Take a look at https:/ ​/​developer. ​mozilla. ​org/​en- ​US/ ​docs/ ​Web/
JavaScript/ ​Reference/ ​Global_ ​Objects/ ​Function for explanations
on apply(), call(), and bind(). We are going to use these for our
implementation. Back in Chapter 1, Becoming Functional – Several
Questions, we saw the equivalence between apply() and call() when
we used the spread operator.

There are three distinct, but similar, ways to implement this in JavaScript. The first
argument in the list (arg0) will correspond to the object, the other arguments (args) to the
actual ones for the called method. The three equivalent versions would be as follows. Note
that any of them could be used as a demethodize() function; pick whichever you prefer!

const demethodize1 = fn => (arg0, ...args) => fn.apply(arg0, args);
const demethodize2 = fn => (arg0, ...args) => fn.call(arg0, ...args);
const demethodize3 = fn => (...args) => fn.bind(...args)();

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function

Producing Functions - Higher-Order Functions Chapter 6

[179]

There's yet another way of doing this: const demethodize =
Function.prototype.bind.bind(Function.prototype.call). If
you want to understand how this works, read Leland Richardson's Clever
Way to Demethodize Native JS Methods, at http:/ ​/​www.
intelligiblebabble. ​com/ ​clever- ​way- ​to- ​demethodize- ​native- ​js-
methods.

Let's look at some applications of these! Starting with a simple example, we can use map()
to loop over a string without converting it into an array of characters first. Say you wanted
to separate a string into individual letters and make them uppercase; we could this by
using split() and toUpperCase():

const name = "FUNCTIONAL";
const result = name.split("").map(x => x.toUpperCase());
/*
 ["F", "U", "N", "C", "T", "I", "O", "N", "A", "L"]
*/

However, if we demethodize map() and toUpperCase(), we can simply write the
following:

const map = demethodize(Array.prototype.map);
const toUpperCase = demethodize(String.prototype.toUpperCase);

const result2 = map(name, toUpperCase);
/*
 ["F", "U", "N", "C", "T", "I", "O", "N", "A", "L"]
*/

For this particular case, we could have turned the string into uppercase
and then split it into separate letters, as in
name.toUpperCase().split(""), but it wouldn't have been such a nice
example, with two usages of demethodizing being used.

In a similar way, we could convert an array of decimal amounts into properly formatted
strings, with thousands of separators and decimal points:

const toLocaleString = demethodize(Number.prototype.toLocaleString);

const numbers = [2209.6, 124.56, 1048576];
const strings = numbers.map(toLocaleString);
/*
 ["2,209.6", "124.56", "1,048,576"]
*/

http://www.intelligiblebabble.com/clever-way-to-demethodize-native-js-methods
http://www.intelligiblebabble.com/clever-way-to-demethodize-native-js-methods
http://www.intelligiblebabble.com/clever-way-to-demethodize-native-js-methods
http://www.intelligiblebabble.com/clever-way-to-demethodize-native-js-methods
http://www.intelligiblebabble.com/clever-way-to-demethodize-native-js-methods
http://www.intelligiblebabble.com/clever-way-to-demethodize-native-js-methods
http://www.intelligiblebabble.com/clever-way-to-demethodize-native-js-methods
http://www.intelligiblebabble.com/clever-way-to-demethodize-native-js-methods
http://www.intelligiblebabble.com/clever-way-to-demethodize-native-js-methods
http://www.intelligiblebabble.com/clever-way-to-demethodize-native-js-methods
http://www.intelligiblebabble.com/clever-way-to-demethodize-native-js-methods
http://www.intelligiblebabble.com/clever-way-to-demethodize-native-js-methods
http://www.intelligiblebabble.com/clever-way-to-demethodize-native-js-methods
http://www.intelligiblebabble.com/clever-way-to-demethodize-native-js-methods
http://www.intelligiblebabble.com/clever-way-to-demethodize-native-js-methods
http://www.intelligiblebabble.com/clever-way-to-demethodize-native-js-methods
http://www.intelligiblebabble.com/clever-way-to-demethodize-native-js-methods
http://www.intelligiblebabble.com/clever-way-to-demethodize-native-js-methods
http://www.intelligiblebabble.com/clever-way-to-demethodize-native-js-methods
http://www.intelligiblebabble.com/clever-way-to-demethodize-native-js-methods
http://www.intelligiblebabble.com/clever-way-to-demethodize-native-js-methods

Producing Functions - Higher-Order Functions Chapter 6

[180]

Alternatively, given the preceding demethodized map() function, this would have also
worked:

const strings2 = map(numbers, toLocaleString);

The idea of demethodizing a method to turn it into a function will prove to be quite useful
in diverse situations. We have already seen some examples where we could have applied it,
and there will be more such cases in the rest of this book.

Finding the optimum
Let's end this section by creating an extension of the find() method. Suppose we want to
find the optimum value—let's suppose it's the maximum—of an array of numbers. We
could make do with this:

const findOptimum = arr => Math.max(...arr);

const myArray = [22, 9, 60, 12, 4, 56];
findOptimum(myArray); // 60

Now, is this sufficiently general? There are at least a pair of problems with this approach.
First, are you sure that the optimum of a set will always be the maximum? If you were
considering several mortgages, the one with the lowest interest rate could be the best,
couldn't it? That is, assuming that always wanting the maximum of a set is too constrictive.

You could do a roundabout trick: if you change the signs of all the
numbers in an array, find its maximum, and change its sign, then you
actually get the minimum of the array. In our case,
-findOptimum(myArray.map((x) => -x)) would correctly produce
4—but it's not easily understandable code, is it?

Second, this way of finding the maximum depends on each option having a numeric value.
But how would you find the optimum if such a value didn't exist? The usual way depends
on comparing elements with each another and picking the one that comes on top of the
comparison: compare the first element with the second and keep the best of those two; then,
compare that value with the third element and keep the best; and then keep at it until you
have finished going through all the elements.

The way to solve this problem with more generality is to assume the existence of a
comparator() function, which takes two elements as arguments and returns the best of
those. If you could associate a numeric value with each element, then the comparator
function could simply compare those values. In other cases, it could do whatever logic is
needed in order to decide what element comes out on top.

Producing Functions - Higher-Order Functions Chapter 6

[181]

Let's try to create an appropriate higher-order function; our newer version will use
reduce(), as follows:

const findOptimum2 = fn => arr => arr.reduce(fn);

With this, we can easily replicate the maximum- and minimum-finding functions – we just
have to provide the appropriate reducing functions:

const findMaximum = findOptimum2((x, y) => (x > y ? x : y));
const findMinimum = findOptimum2((x, y) => (x < y ? x : y));

findMaximum(myArray); // 60
findMinimum(myArray); // 4

Let's go one better and compare non-numeric values. Let's imagine a superhero card game:
each card represents a hero and has several numeric attributes, such as Strength, Powers,
and Tech. When two heroes fight each other, the one with more categories with higher
values than the other is the winner. Let's implement a comparator for this; a suitable
compareHeroes() function could be as follows:

const compareHeroes = (card1, card2) => {
 const oneIfBigger = (x, y) => (x > y ? 1 : 0);
 const wins1 =
 oneIfBigger(card1.strength, card2.strength) +
 oneIfBigger(card1.powers, card2.powers) +
 oneIfBigger(card1.tech, card2.tech);
 const wins2 =
 oneIfBigger(card2.strength, card1.strength) +
 oneIfBigger(card2.powers, card1.powers) +
 oneIfBigger(card2.tech, card1.tech);
 return wins1 > wins2 ? card1 : card2;
};

Then, we can apply this to our tournament of heroes. Let's create a constructor to build the
heroes:

function Hero(n, s, p, t) {
 this.name = n;
 this.strength = s;
 this.powers = p;
 this.tech = t;
}

Now, let's create our own league of heroes:

const codingLeagueOfAmerica = [
 new Hero("Forceful", 20, 15, 2),

Producing Functions - Higher-Order Functions Chapter 6

[182]

 new Hero("Electrico", 12, 21, 8),
 new Hero("Speediest", 8, 11, 4),
 new Hero("TechWiz", 6, 16, 30)
];

With these definitions, we can write a findBestHero() function to get the top hero:

const findBestHero = findOptimum2(compareHeroes);

findBestHero(codingLeagueOfAmerica); // Electrico is the top hero!

When you rank elements according to one-to-one comparisons,
unexpected results may be produced. For instance, with our superheroes
comparison rules, you could find three heroes where the results show that
the first beats the second, the second beats the third, but the third beats
the first! In mathematical terms, this means that the comparison function
is not transitive and that you don't have a total ordering for the set.

With this, we have seen several ways of modifying functions in order to produce newer
variants with enhanced processing; think of particular cases you might be facing and
consider whether a higher-order function might help you out.

Summary
In this chapter, we learned how to write higher-order functions of our own that can either
wrap another function to provide some new feature, alter a function's objective so that it
does something else, or even provide totally new features, such as decoupling methods
from objects or creating better finders. The main takeaway from this chapter is that you
have a way of modifying the behavior of a function without actually having to modify its
own code; higher-order functions can manage this in an orderly way.

In Chapter 7, Transforming Functions – Currying and Partial Application, we'll keep working
with higher-order functions and learn how to produce specialized versions of existing
functions with predefined arguments by using currying and partial application.

Questions
6.1. A border case: What happens with our getField() function if we apply it to a null
object? What should its behavior be? If necessary, modify the function.

Producing Functions - Higher-Order Functions Chapter 6

[183]

6.2. How many? How many calls would be needed to calculate fib(50) without
memoizing? For example, to calculate fib(0) or fib(1), one call is enough with no
further recursion needed, and for fib(6), we saw that 25 calls were required. Can you find
a formula to do this calculation?

6.3. A randomizing balancer: Write a higher-order function, that is, randomizer(fn1,
fn2, ...), that will receive a variable number of functions as arguments and return a new
function that will, on each call, randomly call one of fn1, fn2, and so on. You could
possibly use this to balance calls to different services on a server if each function was able to
do an Ajax call. For bonus points, ensure that no function will be called twice in a row.

6.4. Just say no! In this chapter, we wrote a not() function that worked with Boolean
functions and a negate() function that worked with numerical ones. Can you go one
better and write a single opposite() function that will behave as not() or negate() as
needed?

6.5. Missing companion: If we have a getField() function, we should also have a
setField() one, so can you define it? We'll be needing both getField() and
setField() in Chapter 10, Ensuring Purity – Immutability, when we work with getters,
setters, and lenses. Note that setField() shouldn't directly modify an object; instead, it
should return a new object with a changed value – it should be a pure function!

6.6. Wrong function length: Our arity() function works well, but the produced functions
don't have the correct length attribute. Can you write a different arity-changing function
without this defect?

const f1 = arity(parseInt,1);
const f2 = arity(parseInt,2);
/*
 f1.length === 0
 f2.length === 0
*/

6.7. Not reinventing the wheel: When we wrote findMaximum() and findMinimum(), we
wrote our own functions to compare two values – but JavaScript already provides
appropriate functions for that! Can you figure out alternative versions of our code based on
that hint?

7
Transforming Functions -

Currying and Partial Application
In Chapter 6, Producing Functions – Higher-Order Functions, we saw several ways of
manipulating functions, to get new versions with some change in their functionality. In this
chapter, we will go into a particular kind of transformation, a sort of factory method, that
lets you produce new versions of any given function, with some fixed arguments.

We will be considering the following:

Currying: A classic FP theoretical function that transforms a function with many
parameters into a sequence of unary functions.
Partial application: Another time-honored FP transformation, which produces
new versions of functions by fixing some of their arguments.
Partial currying (a name of my own): Can be seen as a mixture of the two
previous transformations.

To be fair, we'll also see that some of these techniques can be emulated, possibly with
greater clarity, by simple arrow functions. However, since you are quite liable to find
currying and partial application in all sorts of texts and web pages on FP, it is quite
important that you are aware of their meaning and usage, even if you opt for a simpler way
out. Using the techniques in this chapter will provide you with a different way of
producing functions out of other functions, and we'll look at several applications of the
ideas in the following sections.

Transforming Functions - Currying and Partial Application Chapter 7

[185]

A bit of theory
The concepts that we are going to discuss in this chapter are in some ways very similar, and
in other ways quite different. It's common to find some confusion as to their real meanings
and there are plenty of web pages that misuse terms. You could even say that all the
transformations in this chapter are roughly equivalent since they let you transform a
function into another one that fixes some parameters, leaving others free and eventually
leading to the same result. Okay, I agree, this isn't very clear! So, let's start by clearing the
air, and providing some short definitions, which we will expand on later. (If you feel that
your eyes are glazing over, please just skip this section and come back to it later!) Yes, you
may find the following descriptions a bit perplexing, but bear with us—we'll go into more
detail in just a bit:

Currying is the process of transforming an m-ary function (that is, a function of
arity m) into a sequence of m unary functions, each of which receives one
argument of the original function, from left to right. (The first function receives
the first argument of the original function, and returns a second function that
receives the second argument, and returns a third function that receives the third
argument, and so on.) Upon being called with an argument, each function
produces the next one in the sequence, and the last one does the actual
calculations.
Partial application is the idea of providing n arguments to an m-ary function, being
n less than or equal to m, to transform it into a function with (m-n) parameters.
Each time you provide some arguments, a new function is produced, with
smaller arity. When you provide the last arguments, the actual calculations are
performed.
Partial currying is a mixture of both of the preceding ideas: you provide n
arguments (from left to right) to an m-ary function and you produce a new
function of arity (m-n). When this new function receives some other arguments,
also from left to right, it will produce yet another function. When the last
parameters are provided, the function produces the correct calculations.

In this chapter, we are going to see these three transformations, what they require, and
ways of implementing them. With respect to this, we will go into more than one way of
coding each higher-order function and that will give us several insights into interesting
ways of coding JavaScript, which you might find interesting for other applications.

Transforming Functions - Currying and Partial Application Chapter 7

[186]

Currying
We already mentioned currying back in the Arrow functions section of Chapter 1, Becoming
Functional – Several Questions, and in the One argument or many? section of Chapter 3,
Starting Out with Functions – A Core Concept, but let's be more thorough here. Currying is a
technique that enables you to only work with single-variable functions, even if you need a
multiple-variable one.

The idea of converting a multi-variable function into a series of single-
variable functions (or, more rigorously, reducing operators with several
operands, to a sequence of applications of a single operand operator) was
worked on by Moses Schönfinkel, and there have been some authors who
suggest, not necessarily tongue-in-cheek, that currying would be more
correctly named Schönfinkeling!

In the next sections, we will first see how to deal with functions that have many
parameters, and then we'll move on to see how to do currying by hand, or by using bind()
or eval().

Dealing with many parameters
The idea of currying, by itself, is simple. If you need a function with, say, three parameters,
you could write something like the following by using arrow functions:

const make3 = (a, b, c) => String(100 * a + 10 * b + c);

Alternatively, you can have a sequence of functions, each with a single parameter, as
shown here:

const make3curried = a => b => c => String(100 * a + 10 * b + c);

Alternatively, you might want to consider them as nested functions, like the following code
snippet:

const make3curried2 = function(a) {
 return function(b) {
 return function(c) {
 return String(100 * a + 10 * b + c);
 };
 };
};

Transforming Functions - Currying and Partial Application Chapter 7

[187]

In terms of usage, there's an important difference in how you'd use each function. While
you would call the first in the usual fashion, such as make3(1,2,4), that wouldn't work
with the second definition. Let's work out why: make3curried() is a unary (single
parameter), so we should write make3curried(1). But what does this return? According
to the preceding definition, this also returns a unary function—and that function also
returns a unary function! So, the correct call to get the same result as with the ternary
function would be make3curried(1)(2)(4)! See Figure 7.1:

Figure 7.1: The difference between a common function and a curried equivalent.

Study this carefully—we have the first function, and when we apply an argument to it, we
get a second function. Applying an argument to it produces a third function and a final
application produces the desired result. This can be seen as a needless exercise in
theoretical computing, but it actually brings some advantages, because you can then always
work with unary functions, even if you need functions with more parameters.

Since there is a currying transformation, there is also an uncurrying one!
In our case, we would write make3uncurried = (a, b, c) =>
make3curried(a)(b)(c) to revert the currying process and make it
usable, once again, to provide all parameters in one sitting.

In some languages, such as Haskell, functions are only allowed to take a single
parameter—but then again, the syntax of the language allows you to invoke functions as if
multiple parameters were permitted. For our example, in Haskell, writing make3curried
1 2 4 would have produced the result 124, without anybody even needing to be aware
that it involved three function calls, each with one of our arguments. Since you don't write
parentheses around parameters, and you don't separate them with commas, you cannot tell
that you are not providing a triplet of values instead of three singular ones.

Transforming Functions - Currying and Partial Application Chapter 7

[188]

Currying is basic in Scala or Haskell, which are fully functional languages, but JavaScript
has enough features to allow us to define and use currying in our work. It won't be as easy
since, after all, it's not built-in—but we'll be able to manage.

So, to review the basic concepts, the key differences between our original make3() and
make3curried() are as follows:

make3() is a ternary function, but make3curried() is unary.
make3() returns a string; make3curried() returns another function—which,
itself, returns a second function, which returns yet a third function, which finally
does return a string!
You can produce a string by writing something like make3(1,2,4), which
returns 124, but you'll have to write make3curried(1)(2)(4) to get the same
result.

Why would you go to all this bother? Let's just look at a simple example, and further on we
will look at more examples. Suppose you had a function that calculated the Value-added
Tax (VAT) for an amount, as shown here:

const addVAT = (rate, amount) => amount * (1 + rate / 100);

addVAT(20, 500); // 600 -- that is, 500 + 20%
addVAT(15, 200); // 230 -- 200 +15%

If you had to apply a single, constant rate, you could then curry the addVAT() function, to
produce a more specialized version that is always applied your given rate. For example, if
your national rate was 6%, you could then have something like the following:

const addVATcurried = rate => amount => amount * (1 + rate / 100);

const addNationalVAT = addVATcurried(6);

addNationalVAT(1500); // 1590 -- 1500 + 6%

The first line defines a curried version of our VAT-calculating function. Given a tax rate,
addVATcurried() returns a new function, which when given an amount of money, finally
adds the original tax rate to it. So, if the national tax rate were 6%, then
addNationalVAT() would be a function that added 6% to any amount given to it. For
example, if we were to calculate addNationalVAT(1500), as in the preceding code, the
result would be 1590: $1500, plus 6% tax.

Transforming Functions - Currying and Partial Application Chapter 7

[189]

Of course, you would probably be justified in saying that this currying thing is a bit too
much just to add 6% tax, but the simplification is what counts. Let's look at one more
example. In your application, you may want to include some logging, with a function such
as the following:

let myLog = (severity, logText) => {
 // display logText in an appropriate way,
 // according to its severity ("NORMAL", "WARNING", or "ERROR")
};

However, with this approach, every time you wanted to display a normal log message, you
would write myLog ("NORMAL", some normal text), and for warnings, you'd write
myLog ("WARNING", some warning)—but you could simplify this a bit with currying, by
fixing the first parameter of myLog() as follows, with a curry() function that we'll look at
later. Our code could then be as follows:

myLog = curry(myLog);
// replace myLog by a curried version of itself

const myNormalLog = myLog("NORMAL");
const myWarningLog = myLog("WARNING");
const myErrorLog = myLog("ERROR");

What do you gain? Now you can just write myNormalLog("some normal text") or
myWarningLog("some warning"), because you have curried myLog() and then fixed its
argument—this makes for simpler, easier-to-read code!

By the way, if you prefer, you could have also achieved the same result in a single step,
with the original uncurried myLog() function, by currying it case by case:

const myNormalLog2 = curry(myLog)("NORMAL");
const myWarningLog2 = curry(myLog)("WARNING");
const myErrorLog2 = curry(myLog)("ERROR");

So, having a curry() function lets you fix some arguments while leaving others still open;
let's see how to do this in three different ways.

Currying by hand
Before trying more complex things, we could curry a function by hand, without any special
auxiliary functions or anything else. And, in fact, if we just want to implement currying for
a special case, there's no need to do anything complex, because we can manage with simple
arrow functions: we saw that for both make3curried() and addVATcurried(), so there's
no need to revisit that idea.

Transforming Functions - Currying and Partial Application Chapter 7

[190]

Instead, let's look into some ways of doing that automatically, so we will be able to produce
an equivalent curried version of any function, even without knowing its arity beforehand.
Going further, we might want to code a more intelligent version of a function that could
work differently depending on the number of received arguments. For example, we could
have a sum(x,y) function that behaved as in the following examples:

sum(3, 5); // 8; did you expect otherwise?

const add3 = sum(3);

add3(5); // 8

sum(3)(5); // 8 -- as if it were curried

We can achieve that behavior by hand. Our function would be something like the
following:

const sum = (x, y) => {
 if (x !== undefined && y !== undefined) {
 return x + y;

 } else if (x !== undefined && y == undefined) {
 return z => sum(x, z);

 } else {
 return sum;
 }
};

Let's recap what we did here. Our curried-by-hand function has this behavior:

If we call it with two arguments, it adds them, and returns the sum; this provides
our first use case, as in sum(3,5)==8.
If only one argument is provided, it returns a new function. This new function
expects a single argument, and will return the sum of that argument and the
original one: this behavior is what we expected in the other two use cases, such
as add2(3)==5 or sum(2)(7)==9.
Finally, if no arguments are provided, it returns itself. This means that we would
be able to write sum()(1)(2) if we desired. (No, I cannot think of a reason for
wanting to write that.)

So, if we want, we can incorporate currying in the definition itself of a function. However,
you'll have to agree that having to deal with all the special cases in each function could
easily become troublesome, as well as error-prone. So, let's try to work out some more
generic ways of accomplishing the same result, without any kind of particular coding.

Transforming Functions - Currying and Partial Application Chapter 7

[191]

Currying with bind()
We can find a solution to currying by using the bind() method. This allows us to fix one
argument (or more, if need be; we won't be needing to do that here, but later on we will use
it) and provide a function with that fixed argument. Of course, many libraries (such as
Lodash, Underscore, Ramda, and others) provide this functionality, but we want to see
how to implement that by ourselves.

Read more on .bind() at https:/ ​/ ​developer. ​mozilla. ​org/ ​en/ ​docs/
Web/​JavaScript/ ​Reference/ ​Global_ ​objects/ ​Function/ ​bind—it will be
useful since we'll take advantage of this method at other points in this
chapter.

Our implementation is quite short but will require some explanation:

const curryByBind = fn =>
 fn.length === 0 ? fn() : p => curryByBind(fn.bind(null, p));

Start by noticing that curryByBind() always returns a new function, which depends on
the fn function given as its parameter. If the function has no (more) parameters left (when
fn.length===0) because all parameters have already been fixed, we can simply evaluate it
by using fn(). Otherwise, the result of currying the function will be a new function that
receives a single argument, and itself produces a newly curried function, with another fixed
argument. Let's see this in action, with a detailed example, using the make3() function we
saw at the beginning of this chapter once again:

const make3 = (a, b, c) => String(100 * a + 10 * b + c);

// f1 is a function that will fix make3's 1st parameter
const f1 = curryByBind(make3);

 // f2 is a function that will fix make3's 2nd parameter
const f2 = f1(6);

// f3 is a function that will fix make3's last parameter
const f3 = f2(5);

// "658" will be now calculated, since there are
// no more parameters to fix
const f4 = f3(8);

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind

Transforming Functions - Currying and Partial Application Chapter 7

[192]

The explanation of this code is as follows:

The first function, f1(), has not received any arguments yet. Its result is a
function of a single parameter, which will itself produce a curried version of
make3(), with its first argument fixed to whatever it's given.
Calling f1(6) produces a new unary function, f2(), which will itself produce a
curried version of make3()—but with its first argument set to 6, so actually the
new function will end up fixing the second parameter of make3().
Similarly, calling f2(5) produces yet a third unary function, f3(), which will
produce a version of make3(), but fixing its third argument, since the first two
have already been fixed.
Finally, when we calculate f3(8), this fixes the last parameter of make3() to 8,
and since there are no more arguments left, the thrice-bound make3() function is
called and the result "658" is produced.

If you wanted to curry the function by hand, you could use JavaScript's .bind() method.
The sequence would be as follows:

const step1 = make3.bind(null, 6);
const step2 = step1.bind(null, 5);
const step3 = step2.bind(null, 8);

step3(); // "658"

In each step, we provide a further parameter. (The null value is required, to provide
context. If it were a method attached to an object, we would provide that object as the first
parameter to .bind(). Since that's not the case, null is expected.) This is equivalent to
what our code does, with the exception that the last time, curryByBind() does the actual
calculation, instead of making you do it, as in step3().

Testing this transformation is rather simple—because there are not many possible ways of
currying:

const make3 = (a, b, c) => String(100 * a + 10 * b + c);

describe("with curryByBind", function() {
 it("you fix arguments one by one", () => {
 const make3a = curryByBind(make3);
 const make3b = make3a(1)(2);
 const make3c = make3b(3);
 expect(make3c).toBe(make3(1, 2, 3));
 });
});

Transforming Functions - Currying and Partial Application Chapter 7

[193]

What else could you test? Maybe functions with just one parameter could be added, but
there are no more to try.

If we wanted to curry a function with a variable number of parameters, then using
fn.length wouldn't work; it only has a value for functions with a fixed number of
parameters. We can solve this simply, by providing the desired number of arguments:

const curryByBind2 = (fn, len = fn.length) =>
 len === 0 ? fn() : p => curryByBind2(fn.bind(null, p), len - 1);

const sum2 = (...args) => args.reduce((x, y) => x + y, 0);
sum2.length; // 0; curryByBind() wouldn't work

sum2(1, 5, 3); // 9
sum2(1, 5, 3, 7); // 16
sum2(1, 5, 3, 7, 4); // 20

curriedSum5 = curryByBind2(sum2, 5); // curriedSum5 will expect 5
parameters
curriedSum5(1)(5)(3)(7)(4); // 20

The new curryByBind2() function works as before, but instead of depending on
fn.length, it works with the len parameter, which defaults to fn.length, for standard
functions with a constant number of parameters. Notice that when len isn't 0, the returned
function calls curryByBind2() with len-1 as its last argument—this makes sense,
because if one argument has just been fixed, then there is one fewer parameter left to fix.

In our example, the sum() function can work with any number of parameters, and
JavaScript informs us that sum.length is zero. However, when currying the function, if we
set len to 5, currying will be done as if sum() was a five-parameter function—and the last
line in the preceding code shows that this is really the case.

As before, testing is rather simple, given that we have no variants to try:

const sum2 = (...args) => args.reduce((x, y) => x + y, 0);

describe("with curryByBind2", function() {
 it("you fix arguments one by one", () => {
 const suma = curryByBind2(sum2, 5);
 const sumb = suma(1)(2)(3)(4)(5);
 expect(sumb).toBe(sum2(1, 2, 3, 4, 5));
 });
 it("you can also work with arity 1", () => {
 const suma = curryByBind2(sum2, 1);
 const sumb = suma(111);
 expect(sumb).toBe(sum2(111));

Transforming Functions - Currying and Partial Application Chapter 7

[194]

 });
});

We tested setting the arity of the curried function to 1, as a border case, but there are no
more possibilities.

Currying with eval()
There's another interesting way of currying a function—by creating a new one by means of
eval(). Yes—that unsafe, dangerous eval()! (Remember what we said earlier: this is for
learning purposes, but you'll be better off avoiding the potential security headaches that
eval() can bring!) We will also be using the range() function that we wrote in the
Working with ranges section of Chapter 5, Programming Declaratively – A Better Style.

Languages such as LISP have always had the possibility of generating and
executing LISP code. JavaScript shares that functionality, but it's not often
used—mainly because of the dangers it may entail! However, in our case,
since we want to generate new functions, it seems logical to take
advantage of this neglected capability.

The idea is simple: in the A bit of theory section (earlier in this chapter), we saw that we
could easily curry a function by using arrow functions, as shown here:

const make3 = (a, b, c) => String(100 * a + 10 * b + c);

const make3curried = a => b => c => String(100 * a + 10 * b + c);

Let's apply a couple of changes to the second version, to rewrite it in a way that will help
us, as you'll see. First, we can just change the names of the parameters, and directly call the
original make3() function:

const make3curried = x1 => x2 => x3 => make3(x1, x2, x3);

Why are we doing this? The answer is short: to help generate the required code
automatically. We will be using the range() function we wrote back in the Working with
ranges section of Chapter 5, Programming Declaratively – A Better Style, to avoid needing to
write an explicit loop:

const range = (start, stop) =>
 new Array(stop - start).fill(0).map((v, i) => start + i);

const curryByEval = (fn, len = fn.length) =>
 eval(`${range(0, len).map(i => `x${i}`).join("=>")} =>
 ${fn.name}(${range(0, len).map(i => `x${i}`).join(",")})`);

Transforming Functions - Currying and Partial Application Chapter 7

[195]

This is quite a chunk of code to digest and, in fact, it should instead be coded in several
separate lines to make it more understandable. Let's see how this works when applied
to the make3() function as input:

The range() function produces an array with the values [0,1,2]. If we don't1.
provide a len argument, make3.length (that is, 3) will be used.
We use map() to generate a new array with the values ["x0","x1","x2"].2.
We join() the values in that array to produce x0=>x1=>x2, which will be the3.
beginning of the code that we will eval().
We then add an arrow, the name of the function, and an opening parenthesis, to4.
make the middle part of our newly generated code: => make3(.
We use range(), map(), and join() again, but this time to generate a list of5.
arguments: x0,x1,x2.
We finally add a closing parenthesis, and after applying eval(), we get the6.
curried version of make3().

After following all these steps, in our case, the resulting function would be as follows:

curryByEval(make3); // x0=>x1=>x2=> make3(x0,x1,x2)

There's only one problem: if the original function didn't have a name, the transformation
wouldn't work. (For more about that, check out the Of lambdas and functions section of
Chapter 3, Starting Out with Functions – A Core Concept.) We could work around the
function name problem by including the actual code of the function to be curried:

const curryByEval2 = (fn, len = fn.length) =>
 eval(`${range(0, len).map(i => `x${i}`).join("=>")} =>
 (${fn.toString()})(${range(0, len).map(i => `x${i}`).join(",")})`);

The only change is that instead of including the original function name, we substitute its
actual code:

curryByEval2(make3); // x0=>x1=>x2=> ((a,b,c) => 100*a+10*b+c)(x0,x1,x2)

The produced function is surprising, having a full function followed by its parameters—but
that's actually valid JavaScript! In fact, instead of the add() function, as follows, you could
also write the function definition followed by its arguments, as in the last line in the
following code:

const add = (x, y) => x + y;
add(2, 5); // 7

((x, y) => x + y)(2, 5); // 7

Transforming Functions - Currying and Partial Application Chapter 7

[196]

When you want to call a function, you write it, and follow with its arguments within
parentheses—so that's all we are doing, even if it looks weird! We are now done with
currying, possibly the best known FP technique, so let's move on to partial application, so
you'll have even more flexibility for your own coding.

Partial application
The second transformation that we will be considering lets you fix some of the parameters
of the function, creating a new function that will receive the rest of them. Let's make this
clear with a nonsense example. Imagine you have a function with five parameters. You
might want to fix the second and fifth parameters, and partial application would then
produce a new version of the function that fixed those two parameters but left the other
three open for new calls. If you called the resulting function with the three required
arguments, it would produce the correct answer, by using the original two fixed
parameters plus the newly provided three.

The idea of specifying only some of the parameters in function
application, producing a function of the remaining parameters, is called
projection: you are said to be projecting the function onto the remaining
arguments. We will not use this term, but I wanted to cite it, just in case
you happen to find it somewhere else.

Let's consider an example, using the fetch() API, which is widely considered to be the
modern way to go for Ajax calls. You might want to fetch several resources, always
specifying the same parameters for the call (for example, request headers) and only
changing the URL to search. So, by using partial application, you could create a new
myFetch() function that would always provide fixed parameters.

You can read more on fetch() at https:/ ​/​developer. ​mozilla. ​org/ ​en-
US/​docs/ ​Web/ ​API/ ​Fetch_ ​API/ ​Using_ ​Fetch. According to http:/ ​/
caniuse. ​com/ ​#search= ​fetch, you can use it in most browsers, except for
(oh, surprise!) Internet Explorer, but you can get around this limitation
with a polyfill, such as the one found at https:/ ​/​github. ​com/ ​github/
fetch. ​

Let's assume we have a partial() function that implements this kind of application and
see how we'd use that to produce our new version of fetch():

const myParameters = {
 method: "GET",
 headers: new Headers(),
 cache: "default"

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
http://caniuse.com/#search=fetch
http://caniuse.com/#search=fetch
http://caniuse.com/#search=fetch
http://caniuse.com/#search=fetch
http://caniuse.com/#search=fetch
http://caniuse.com/#search=fetch
http://caniuse.com/#search=fetch
http://caniuse.com/#search=fetch
http://caniuse.com/#search=fetch
http://caniuse.com/#search=fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch

Transforming Functions - Currying and Partial Application Chapter 7

[197]

};

const myFetch = partial(fetch, undefined, myParameters);
// undefined means the first argument for fetch is not yet defined
// the second argument for fetch() is set to myParameters

myFetch("a/first/url")
 .then(/* do something */)
 .catch(/* on error */);

myFetch("a/second/url")
 .then(/* do something else */)
 .catch(/* on error */);

If the request parameters had been the first argument for fetch(), currying would have
worked. (We'll have more to say about the order of parameters later.) With partial
application, you can replace any arguments, no matter which, so in this case, myFetch()
ends up as a unary function. This new function will get data from any URL you wish,
always passing the same set of parameters for the GET operation.

Partial application with arrow functions
Trying to do partial application by hand, as we did with currying, is too complicated. For
instance, for a function with five parameters, you would have to write code that would
allow the user to provide any of the 32 possible combinations of fixed and unfixed
parameters, 32 being equal to 2 raised to the fifth power. And, even if you could simplify
the problem, it would still remain hard to write and maintain. See Figure 7.2 for one of
many possible combinations:

Figure 7.2: Partial application may let you first provide some parameters, and then provide the rest, to finally get the result.

Transforming Functions - Currying and Partial Application Chapter 7

[198]

Doing partial application with arrow functions, however, is much simpler. With the
example we mentioned previously, we would have something like the following code. In
this case, we will assume we want to fix the second parameter to 22, and the fifth
parameter to 1960:

const nonsense = (a, b, c, d, e) => `${a}/${b}/${c}/${d}/${e}`;

const fix2and5 = (a, c, d) => nonsense(a, 22, c, d, 1960);

Doing partial application in this way is quite simple, though we may want to find a more
general solution. You can set any number of parameters, by creating a new function out of
the previous one but fixing some more parameters. (Wrappers as in the previous Chapter
6, Producing Functions - Higher Order Functions, could be used.) For instance, you might now
want to also fix the last parameter of the new fix2and5() function to 9, as shown in the
following code; there's nothing easier:

const fixLast = (a, c) => fix2and5(a, c, 9);

You might also have written nonsense(a, 22, c, 9, 1960), if you wished to, but the
fact remains that fixing parameters by using arrow functions is simple. Let's now consider,
as we said, a more general solution.

Partial application with eval()
If we want to be able to do partial application fixing of any combination of parameters, we
must have a way to specify which arguments are to be left free and which will be fixed
from that point on. Some libraries, such as Underscore or Lodash, use a special object, _ , to
signify an omitted parameter. In this fashion, still using the same nonsense() function, we
would write the following:

const fix2and5 = _.partial(nonsense, _, 22, _, _, 1960);

We could do the same sort of thing by having a global variable that would represent a
pending, not yet fixed argument, but let's make it simpler, and just write undefined to
represent a missing parameter.

When checking for undefined, remember to always use the === operator;
with ==, it happens that null==undefined, and you don't want that. See
https:/ ​/​developer. ​mozilla. ​org/​en/ ​docs/ ​Web/ ​JavaScript/ ​Reference/
Global_ ​Objects/ ​undefined for more on this.

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/undefined

Transforming Functions - Currying and Partial Application Chapter 7

[199]

We want to write a function that will partially apply some arguments and leave the rest
open for the future. We want to write code similar to the following and produce a new
function in the same fashion as we earlier did with arrow functions:

const nonsense = (a, b, c, d, e) => `${a}/${b}/${c}/${d}/${e}`;

const fix2and5 = partialByEval(
 nonsense,
 undefined,
 22,
 undefined,
 undefined,
 1960
);
// fix2and5 would become (X0, X2, X3) => nonsense(X0, 22, X2, X3, 1960);

We can go back to using eval() and work out something like the following:

const range = (start, stop) =>
 new Array(stop - start).fill(0).map((v, i) => start + i);

const partialByEval = (fn, ...args) => {
 const rangeArgs = range(0, fn.length);

 const leftList = rangeArgs
 .map(v => (args[v] === undefined ? `x${v}` : null))
 .filter(v => !!v)
 .join(",");

 const rightList = rangeArgs
 .map(v => (args[v] === undefined ? `x${v}` : args[v]))
 .join(",");

 return eval(`(${leftList}) => ${fn.name}(${rightList})`);
};

Let's break down this function step by step. Once again, we are using our range()
function:

rangeArgs is an array with numbers from zero up to (but not including) the
number of parameters in the input function.
leftList is a string, representing the list of variables that haven't been applied.
In our example, it would be "X0,X2,X3", since we did provide values for the
second and fifth arguments. This string will be used to generate the left part of
the arrow function.

Transforming Functions - Currying and Partial Application Chapter 7

[200]

rightList is a string, representing the list of the parameters for the call to the
provided function. In our case, it would be "X0,'Z',X2,X3,1960". We will use
this string to generate the right part of the arrow function.

After having generated both lists, the remaining part of the code consists of just producing
the appropriate string and giving it to eval() to get back a function.

If we were doing partial application on a function with a variable number
of arguments, we could have substituted args.length for fn.length, or
provided an extra (optional) parameter with the number to use, as we did
in the Currying section of this chapter.

By the way, I deliberately expressed this function in this long way, to make it more clear.
(We already saw somewhat similar—though shorter—code, when we did currying using
eval().) However, be aware that you might also find a shorter, more intense and obscure
version, and that's the kind of code that gives FP a bad name! Our new version of the code
could be:

const partialByEval2 = (fn, ...args) =>
 eval(
 `(${range(0, fn.length)
 .map(v => (args[v] === undefined ? `x${v}` : null))
 .filter(v => !!v)
 .join(",")}) => ${fn.name}(${range(0, fn.length)
 .map(v => (args[v] == undefined ? `x${v}` : args[v]))
 .join(",")})`
);

Let's finish this section by writing some tests. Here are some things we should consider:

When we do partial application, the arity of the produced function should
decrease.
The original function should be called when arguments are in the correct order.

We could write something like the following, allowing the fixing of arguments in different
places. Instead of using a spy or mock, we can directly work with the nonsense() function
we had because it's quite efficient:

const nonsense = (a, b, c, d, e) => `${a}/${b}/${c}/${d}/${e}`;

describe("with partialByEval()", function() {
 it("you could fix no arguments", () => {
 const nonsensePC0 = partialByEval(nonsense);
 expect(nonsensePC0.length).toBe(5);
 expect(nonsensePC0(0, 1, 2, 3, 4)).toBe(nonsense(0, 1, 2, 3, 4));

Transforming Functions - Currying and Partial Application Chapter 7

[201]

 });
 it("you could fix only some initial arguments", () => {
 const nonsensePC1 = partialByEval(nonsense, 1, 2, 3);
 expect(nonsensePC1.length).toBe(2);
 expect(nonsensePC1(4, 5)).toBe(nonsense(1, 2, 3, 4, 5));
 });
 it("you could skip some arguments", () => {
 const nonsensePC2 = partialByEval(
 nonsense,
 undefined,
 22,
 undefined,
 44
);
 expect(nonsensePC2.length).toBe(3);
 expect(nonsensePC2(11, 33, 55)).toBe(nonsense(11, 22, 33, 44, 55));
 });
 it("you could fix only some last arguments", () => {
 const nonsensePC3 = partialByEval(
 nonsense,
 undefined,
 undefined,
 undefined,
 444,
 555
);
 expect(nonsensePC3.length).toBe(3);
 expect(nonsensePC3(111, 222, 333)).toBe(
 nonsense(111, 222, 333, 444, 555)
);
 });
 it("you could fix ALL the arguments", () => {
 const nonsensePC4 = partialByEval(nonsense, 6, 7, 8, 9, 0);
 expect(nonsensePC4.length).toBe(0);
 expect(nonsensePC4()).toBe(nonsense(6, 7, 8, 9, 0));
 });
});

We wrote a partial application higher-order function, but it's not as flexible as we would
like. For instance, we can fix a few arguments in the first instance, but then we have to
provide all the rest of the arguments in the next call. It would be better if, after calling
partialByEval(), we got a new function, and if we didn't provide all required
arguments, we would get yet another function, and another, and so on, until all parameters
had been provided—somewhat along the lines of what happens with currying. So, let's
change the way we're doing partial application and consider another solution.

Transforming Functions - Currying and Partial Application Chapter 7

[202]

Partial application with closures
Let's examine yet another way of doing partial application, by using closures. (You may
want to go over that topic in Chapter 1, Becoming Functional – Several Questions.) This way
of doing partial application will behave in a fashion somewhat reminiscent of the curry()
functions we wrote earlier in this chapter, and solve the lack of flexibility that we
mentioned at the end of the previous section. Our new implementation would be as
follows:

const partialByClosure = (fn, ...args) => {
 const partialize = (...args1) => (...args2) => {
 for (let i = 0; i < args1.length && args2.length; i++) {
 if (args1[i] === undefined) {
 args1[i] = args2.shift();
 }
 }

 const allParams = [...args1, ...args2];
 return (allParams.includes(undefined) || allParams.length < fn.length
 ? partialize
 : fn)(...allParams);
 };

 return partialize(...args);
};

Wow—a longish bit of code! The key is the inner partialize() function. Given a list of
parameters (args1), it produces a function that receives a second list of parameters
(args2):

First, it replaces all possible undefined values in args1 with values from args2.
Then, if any parameters are left in args2, it also appends them to those of args1,
producing allParams.
Finally, if that list of arguments does not include any more undefined values, and
it is sufficiently long, it calls the original function.
Otherwise, it partializes itself, to wait for more parameters.

An example will make it more clear. Let's go back to our trusty make3() function and
construct a partial version of it:

const make3 = (a, b, c) => String(100 * a + 10 * b + c);
const f1 = partialByClosure(make3, undefined, 4);

Transforming Functions - Currying and Partial Application Chapter 7

[203]

Now let's write a second function:

const f2 = f1(7);

What happens? The original list of parameters ([undefined, 4]) gets merged with the
new list (a single element—in this case, [7]), producing a function that now receives 7 and
4 as its first two arguments. However, this isn't yet ready, because the original function
requires three arguments. We could write the following:

const f3 = f2(9);

Then, the current list of arguments would be merged with the new argument, producing
[7,4,9]. Since the list is now complete, the original function will be evaluated, producing
749 as the final result.

There are important similarities between the structure of this code and the other higher-
order function we wrote earlier, in the Currying with bind() section:

If all the arguments have been provided, the original function is called.

Otherwise, if some arguments are still required (when currying, it's just a matter
of counting arguments; when doing partial application, you must also consider
the possibility of having some undefined parameters), the higher-order function
calls itself to produce a new version of the function that will wait for the missing
arguments.

Let's finish by writing some tests that will show the enhancements in our new way of doing
partial application. Basically, all the tests we did earlier would work, but we must also try
applying arguments in sequence, so we should get the final result after two or more
application steps. However, since we can now call our intermediate functions with any
number of parameters, we cannot test arities: for all those intermediate functions, we get
that function.length===0. Our tests could be as follows:

describe("with partialByClosure()", function() {
 it("you could fix no arguments", () => {
 const nonsensePC0 = partialByClosure(nonsense);
 expect(nonsensePC0(0, 1, 2, 3, 4)).toBe(nonsense(0, 1, 2, 3, 4));
 });

 it("you could fix only some initial arguments, and then some more", () =>
{
 const nonsensePC1 = partialByClosure(nonsense, 1, 2, 3);
 const nonsensePC1b = nonsensePC1(undefined, 5);
 expect(nonsensePC1b(4)).toBe(nonsense(1, 2, 3, 4, 5));

Transforming Functions - Currying and Partial Application Chapter 7

[204]

 });

 it("you could skip some arguments", () => {
 const nonsensePC2 = partialByClosure(
 nonsense,
 undefined,
 22,
 undefined,
 44
);
 expect(nonsensePC2(11, 33, 55)).toBe(nonsense(11, 22, 33, 44, 55));
 });

 it("you could fix only some last arguments", () => {
 const nonsensePC3 = partialByClosure(
 nonsense,
 undefined,
 undefined,
 undefined,
 444,
 555
);
 expect(nonsensePC3(111)(222, 333)).toBe(
 nonsense(111, 222, 333, 444, 555)
);
 });

 it("you could simulate currying", () => {
 const nonsensePC4 = partialByClosure(nonsense);
 expect(nonsensePC4(6)(7)(8)(9)(0)).toBe(nonsense(6, 7, 8, 9, 0));
 });

 it("you could fix ALL the arguments", () => {
 const nonsensePC5 = partialByClosure(nonsense, 16, 17, 18, 19, 20);
 expect(nonsensePC5()).toBe(nonsense(16, 17, 18, 19, 20));
 });
});

The code is longer than before, but the tests themselves are easy to understand. The next-to-
last test should remind you of currying, by the way! We have now seen how to do currying
and partial application. Let's finish the chapter with a hybrid method, partial currying,
which includes aspects of both techniques.

Transforming Functions - Currying and Partial Application Chapter 7

[205]

Partial currying
The last transformation we will look at is a sort of mixture of currying and partial
application. If you google it, in some places you will find it called currying, and in others,
partial application, but as it happens, it fits neither, so I'm sitting on the fence and calling it
partial currying!

The idea of this is, given a function, to fix its first few arguments and produce a new
function that will receive the rest of them. However, if that new function is given fewer
arguments, it will fix whatever it was given and produce a newer function, to receive the
rest of them, until all the arguments are given and the final result can be calculated. See
Figure 7.3:

Figure 7.3: Partial currying is a mixture of currying and partial application. You may provide arguments from the left, in any quantity, until all have been provided, and then the
result is calculated.

To look at an example, let's go back to the nonsense() function we have been using in
previous sections, as follows. Assume we already have a partialCurry() function:

const nonsense = (a, b, c, d, e) => `${a}/${b}/${c}/${d}/${e}`;

const pcNonsense = partialCurry(nonsense);
const fix1And2 = pcNonsense(9, 22); // fix1And2 is now a ternary function
const fix3 = fix1And2(60); // fix3 is a binary function
const fix4and5 = fix3(12, 4); // fix4and5 === nonsense(9,22,60,12,4),
"9/22/60/12/4"

The original function had an arity of 5. When we partial curry that function, and give it
arguments 9 and 22, it becomes a ternary function, because out of the original five
parameters, two have become fixed. If we take that ternary function and give it a single
argument (60), the result is yet another function: in this case, a binary one, because now we
have fixed the first three of the original five parameters. The final call, providing the last
two arguments, then does the job of actually calculating the desired result.

Transforming Functions - Currying and Partial Application Chapter 7

[206]

There are some points in common with currying and partial application, but also some
differences, as follows:

The original function is transformed into a series of functions, each of which
produces the next one until the last in the series actually carries out its
calculations.
You always provide parameters starting from the first one (the leftmost one), as
in currying, but you can provide more than one, as in partial application.
When currying a function, all the intermediate functions are unary, but with
partial currying that need not be so. However, if in each instance we were to
provide a single argument, then the result would require as many steps as plain
currying.

So, we have our definition—let's now see how we can implement our new higher-order
function; we'll probably be reusing a few concepts from the previous sections in this
chapter.

Partial currying with bind()
Similar to what we did with currying, there's a simple way to do partial currying. We will
take advantage of the fact that bind() can actually fix many arguments at once:

const partialCurryingByBind = fn =>
 fn.length === 0
 ? fn()
 : (...pp) => partialCurryingByBind(fn.bind(null, ...pp));

Compare the code to the previous curryByBind() function and you'll see the very small
differences:

const curryByBind = fn =>
 fn.length === 0
 ? fn()
 : p => curryByBind(fn.bind(null, p));

The mechanism is exactly the same. The only difference is that in our new function, we can
bind many arguments at the same time, while in curryByBind() we always bind just one.
We can revisit our earlier example—and the only difference is that we can get the final
result in fewer steps:

const make3 = (a, b, c) => String(100 * a + 10 * b + c);

const f1 = partialCurryingByBind(make3);

Transforming Functions - Currying and Partial Application Chapter 7

[207]

const f2 = f1(6, 5); // f2 is a function, that fixes make3's first two
arguments
const f3 = f2(8); // "658" is calculated, since there are no more
parameters to fix

By the way, and just to be aware of the existing possibilities, you can fix some parameters
when currying as shown here:

const g1 = partialCurryingByBind(make3)(8, 7);
const g2 = g1(6); // "876"

Testing this function is easy and the examples we provided are a very good starting point.
Note, however, that since we allow the fixing of any number of arguments, we cannot test
the arity of the intermediate functions. Our tests could be as follows, then:

const make3 = (a, b, c) => String(100 * a + 10 * b + c);

describe("with partialCurryingByBind", function() {
 it("you could fix arguments in several steps", () => {
 const make3a = partialCurryingByBind(make3);
 const make3b = make3a(1, 2);
 const make3c = make3b(3);
 expect(make3c).toBe(make3(1, 2, 3));
 });

 it("you could fix arguments in a single step", () => {
 const make3a = partialCurryingByBind(make3);
 const make3b = make3a(10, 11, 12);
 expect(make3b).toBe(make3(10, 11, 12));
 });

 it("you could fix ALL the arguments", () => {
 const make3all = partialCurryingByBind(make3);
 expect(make3all(20, 21, 22)).toBe(make3(20, 21, 22));
 });

 it("you could fix one argument at a time", () => {
 const make3one = partialCurryingByBind(make3)(30)(31)(32);
 expect(make3one).toBe(make3(30, 31, 32));
 });
});

Transforming Functions - Currying and Partial Application Chapter 7

[208]

Now, let's consider functions with a variable number of parameters. As before, we'll have
to provide an extra value, and we'll get the following implementation:

const partialCurryingByBind2 = (fn, len = fn.length) =>
 len === 0
 ? fn()
 : (...pp) =>
 partialCurryingByBind2(
 fn.bind(null, ...pp),
 len - pp.length
);

We can try this out in a simple way, revisiting our currying example from earlier in the
chapter, but now using partial currying, as shown here:

const sum = (...args) => args.reduce((x, y) => x + y, 0);

pcSum5 = partialCurryingByBind2(sum2, 5);
// curriedSum5 will expect 5 parameters

pcSum5(1, 5)(3)(7, 4); // 20

When we called the new pcSum5() function with arguments (1,5), it produced a new
function that expected three more. Providing it with one single parameter (3), a third
function was created, to wait for the last two. Finally, when we provided the last two
values (7,4) to that last function, the original function was called, to calculate the result (20).

We can also add some tests for this alternate way of doing partial currying:

const sum2 = (...args) => args.reduce((x, y) => x + y, 0);

describe("with partialCurryingByBind2", function() {
 it("you could fix arguments in several steps", () => {
 const suma = partialCurryingByBind2(sum2, 3);
 const sumb = suma(1, 2);
 const sumc = sumb(3);
 expect(sumc).toBe(sum2(1, 2, 3));
 });

 it("you could fix arguments in a single step", () => {
 const suma = partialCurryingByBind2(sum2, 4);
 const sumb = suma(10, 11, 12, 13);
 expect(sumb).toBe(sum(10, 11, 12, 13));
 });

 it("you could fix ALL the arguments", () => {
 const sumall = partialCurryingByBind2(sum2, 5);

Transforming Functions - Currying and Partial Application Chapter 7

[209]

 expect(sumall(20, 21, 22, 23, 24)).toBe(sum2(20, 21, 22, 23, 24));
 });

 it("you could fix one argument at a time", () => {
 const sumone = partialCurryingByBind2(sum2, 6)(30)(31)(32)(33)(34)(35);
 expect(sumone).toBe(sum2(30, 31, 32, 33, 34, 35));
 });
});

Trying out different arities is better than sticking to just one, so we did that for variety.

Partial currying with closures
As with partial application, there's a solution that works with closures. Since we have gone
over many of the required details, let's jump directly into the code:

const partialCurryByClosure = fn => {
 const curryize = (...args1) => (...args2) => {
 const allParams = [...args1, ...args2];
 return (allParams.length < func.length ? curryize : fn)(
 ...allParams
);
 };

 return curryize();
};

If you compare partialCurryByClosure() and partialByClosure(), the main
difference is that with partial currying, since we are always providing arguments from the
left, and there is no way to skip some, you concatenate whatever arguments you had with
the new ones, and check whether you got enough. If the new list of arguments has reached
the expected arity of the original function, you can call it and get the final result. In other
cases, you just use curryize() to get a new intermediate function, which will wait for
more arguments.

As earlier, if you have to deal with functions with a varying number of parameters, you can
provide an extra argument to the partial currying function:

const partialCurryByClosure2 = (fn, len = fn.length) => {
 const curryize = (...args1) => (...args2) => {
 const allParams = [...args1, ...args2];
 return (allParams.length < len ? curryize : fn)(...allParams);
 };
 return curryize();
};

Transforming Functions - Currying and Partial Application Chapter 7

[210]

The results are exactly the same as in the previous section, Partial currying with bind(), so it's
not worth repeating them. You could also easily change the tests we wrote to use
partialCurryByClosure() instead of partialCurryByBind() and they would work.

Final thoughts
Let's finish this chapter with two more philosophical considerations regarding currying and
partial application, which may cause a bit of a discussion:

First, many libraries are just wrong as to the order of their parameters, making
them harder to use.
Second, I don't usually even use the higher-order functions in this chapter, going
for simpler JavaScript code!

That's probably not what you were expecting at this time, so let's go over those two points
in more detail, so you'll see it's not a matter of do as I say, not as I do... or as the libraries do!

Parameter order
There's a problem that's common to not only functions such as Underscore's or LoDash's
_.map(list, mappingFunction) or _.reduce(list, reducingFunction,
initialValue), but also to some that we have produced in this book, such as the result of
demethodize(), for example. (See the Demethodizing - turning methods into functions section
of Chapter 6, Producing Functions – Higher-Order Functions, to review that higher-order
function.) The problem is that the order of their parameters doesn't really help with
currying.

When currying a function, you will probably want to store intermediate results. When we
do something like in the code that follows, we assume that you are going to reuse the
curried function with the fixed argument and that means that the first argument to the
original function is the least likely to change. Let's now consider a specific case. Answer this
question: what's more likely—that you'll use map() to apply the same function to several
different arrays, or that you'll apply several different functions to the same array? With
validations or transformations, the former is more likely, but that's not what we get!

Transforming Functions - Currying and Partial Application Chapter 7

[211]

We can write a simple function to flip the parameters for a binary function, as shown here:

const flipTwo = fn => (p1, p2) => fn(p2, p1);

Note that even if the original fn() function could receive more or fewer
arguments, after applying flipTwo() to it, the arity of the resulting
function will be fixed to 2. We will be taking advantage of this fact in the
following section.

With this, you could then write code as follows:

const myMap = curry(flipTwo(demethodize(map)));
const makeString = v => String(v);

const stringify = myMap(makeString);
let x = stringify(anArray);
let y = stringify(anotherArray);
let z = stringify(yetAnotherArray);

The most common use case is that you'll want to apply the function to several different
lists, and neither the library functions nor our own demethodized ones provide for that.
However, by using flipTwo(), we can work in a fashion we would prefer.

In this particular case, we might have solved our problem by using partial
application instead of currying, because with that we could fix the second
argument to map() without any further bother. However, flipping
arguments to produce new functions that have a different order of
parameters is also an often-used technique, and it's important that you're
aware of it.

For situations such as with reduce(), which usually receives three arguments (the list, the
function, and the initial value), we may opt for this:

const flip3 = fn => (p1, p2, p3) => fn(p2, p3, p1);

const myReduce = partialCurry(flip3(demethodize(Array.prototype.reduce)));

const sum = (x, y) => x + y;
const sumAll = myReduce(sum, 0);
sumAll(anArray);
sumAll(anotherArray);

Here, we used partial currying to simplify the expression for sumAll(). The alternative
would have been using common currying, and then we would have defined sumAll =
myReduce(sum)(0).

Transforming Functions - Currying and Partial Application Chapter 7

[212]

If you want, you can also go for more esoteric parameter rearranging functions, but you
usually won't need more than these two. For really complex situations, you may instead opt
for using arrow functions (as we did when defining flipTwo() and flip3()) and make it
clear what kind of reordering you need.

Being functional
Now that we are nearing the end of this chapter, a confession is in order: I do not always
use currying and partial application as shown above! Don't misunderstand me, I do apply
those techniques—but sometimes it makes for longer, less clear, not necessarily better code.
Let me show you what I'm talking about.

If I'm writing my own function and then I want to curry it in order to fix the first parameter,
currying (or partial application, or partial currying) doesn't really make a difference, in
comparison to arrow functions. I'd have to write the following:

const myFunction = (a, b, c) => { ... };
const myCurriedFunction = curry(myFunction)(fixed_first_argument);

// and later in the code...
myCurriedFunction(second_argument)(third_argument);

Currying the function, and giving it a first parameter, all in the same line, may be
considered not so clear; the alternative calls for an added variable and one more line of
code. Later, the future call isn't so good either; however, partial currying makes it simpler:
myPartiallyCurriedFunction(second_argument, third_argument). In any case,
when I compare the final code with the use of arrow functions, I think the other solutions
aren't really any better; make your own evaluation of the sample that follows:

const myFunction = (a, b, c) => { ... };
const myFixedFirst = (b, c) => myFunction(fixed_first_argument, b, c);

// and later...
myFixedFirst(second_argument, third_argument);

Where I do think that currying and partial application is quite good is in my small library
of demethodized, pre-curried, basic higher-order functions. I have my own set of functions,
such as the following:

const _plainMap = demethodize(Array.prototype.map);
const myMap = curry(_plainMap, 2);
const myMapX = curry(flipTwo(_plainMap));

const _plainReduce = demethodize(Array.prototype.reduce);

Transforming Functions - Currying and Partial Application Chapter 7

[213]

const myReduce = curry(_plainReduce, 3);
const myReduceX = curry(flip3(_plainReduce));

const _plainFilter = demethodize(Array.prototype.filter);
const myFilter = curry(_plainFilter, 2);
const myFilterX = curry(flipTwo(_plainFilter));

// ...and more functions in the same vein

Here are some points to note about the code:

I have these functions in a separate module, and I only export the myXXX()
named ones.
The other functions are private, and I use the leading underscore to remind me of
that.
I use the my... prefix to remember that these are my functions and not the
normal JavaScript ones. Some people would rather keep the standard names
such as map() or filter(), but I prefer distinct names.
Since most of the JavaScript methods have a variable arity, I had to specify it
when currying.
I always provide the third argument (the initial value for reducing) to reduce(),
so the arity I chose for that function is three.
When currying flipped functions, you don't need to specify the number of
parameters, because flipping already does that for you.

In the end, it all comes down to a personal decision; experiment with the techniques that
we've looked at in this chapter and see which ones you prefer!

Summary
In this chapter, we have considered a new way of producing functions, by fixing arguments
to an existing function in several different ways: currying—which originally came from
computer theory; partial application—which is more flexible; and partial currying, which
combines good aspects from both of the previous methods. Using these transformations,
you can simplify your coding, because you can generate more specialized versions of
general functions, without any hassle.

Transforming Functions - Currying and Partial Application Chapter 7

[214]

In Chapter 8, Connecting Functions – Pipelining and Composition, we will turn back to some
concepts we looked at in the chapter on pure functions, and we will consider ways of
ensuring that functions cannot become impure by accident, by seeking ways to make their
arguments immutable, making them impossible to mutate.

Questions
7.1. Sum as you will: The following exercise will help you understand some of the concepts
we dealt with in this chapter, even if you solve it without using any of the functions we
looked at. Write a sumMany() function that lets you sum an indeterminate quantity of
numbers, in the following fashion. Note that when the function is called with no
arguments, the sum is returned:

let result = sumMany((9)(2)(3)(1)(4)(3)());
 // 22

7.2. Working stylishly: Write an applyStyle() function that will let you apply basic
styling to strings, in the following way. Use either currying or partial application:

const makeBold = applyStyle("b");
document.getElementById("myCity").innerHTML =
makeBold("Montevideo");
// Montevideo, to produce Montevideo

const makeUnderline = applyStyle("u");
document.getElementById("myCountry").innerHTML =
makeUnderline("Uruguay");
// <u>Uruguay</u>, to produce Uruguay

7.3. Currying by prototype: Modify Function.prototype to provide a curry() method
that will work like the curry() function we saw in the chapter. Completing the following
code should produce the following results:

Function.prototype.curry = function() {
 // ...your code goes here...
};

const sum3 = (a, b, c) => 100 * a + 10 * b + c;
sum3.curry()(1)(2)(4); // 124

const sum3C = sum3.curry()(2)(2);
sum3C(9); // 229

Transforming Functions - Currying and Partial Application Chapter 7

[215]

7.4. Uncurrying the curried: Write an unCurry(fn,arity) function that receives as
arguments a (curried) function and its expected arity, and returns an uncurried version of
fn(); that is, a function that will receive n arguments and produce a result (providing the
expected arity is needed because you have no way of determining it on your own):

const make3 = (a, b, c) => String(100 * a + 10 * b + c);

const make3c = curry(make3);
console.log(make3c(1)(2)(3)); // 123

const remake3 = uncurry(make3c, 3);
console.log(remake3(1, 2, 3)); // 123

7.5. Mystery questions function: What does the following function, purposefully written in
an unhelpful way, actually do?

const what = who => (...why) =>
 who.length <= why.length
 ? who(...why)
 : (...when) => what(who)(...why, ...when);

7.6. Yet more curry! Here is another proposal for a curry() function: can you see why it
works? A hint: the code is related to something we saw in the chapter:

const curry = fn => (...args) =>
 args.length >= fn.length ? fn(...args) : curry(fn.bind(null, ...args));

8
Connecting Functions -

Pipelining and Composition
In Chapter 7, Transforming Functions – Currying and Partial Application, we looked at several
ways we can build new functions by applying higher-order functions. In this chapter, we
will go to the core of FP and learn how to create sequences of function calls and how to
combine them to produce a more complex result out of several simpler components. To do
this, we will cover the following topics:

Pipelining: A way to join functions together in a similar way to Unix/Linux
pipes.
Chaining: This may be considered a variant of pipelining, but is restricted to
objects.
Composing: This is a classic operation with its origins in basic computer theory.
Transducing: An optimized way to compose map/filter/reduce operations.

Along the way, we will be touching on related concepts, such as the following:

Pointfree style, which is often used with pipelining and composition
Debugging composed or piped functions, for which we'll whip up some
auxiliary tools
Testing composed or piped functions, which won't prove to be of high
complexity

Armed with these techniques, you'll be able to combine small functions to create larger
ones, which is a characteristic of functional programming and will help you develop better
code.

Connecting Functions - Pipelining and Composition Chapter 8

[217]

Pipelining
Pipelining and composition are techniques that are used to set up functions so that they
work in sequence so that the output from a function becomes the input for the next
function. There are two ways of looking at this: from a computer point of view, and from a
mathematical point of view. We'll look at both in this section. Most FP texts start with the
latter, but since I assume that most of you will prefer computers over math, let's start with
the former instead.

Piping in Unix/Linux
In Unix/Linux, executing a command and passing its output as input to a second command,
whose output will yield the input of a third command, and so on, is called a pipeline. This is
quite a common application of the philosophy of Unix, as explained in a Bell Laboratories
article, written by the creator of the pipelining concept himself, Doug McIlroy:

Make each program do one thing well. To do a new job, build afresh rather than
complicate old programs by adding new features.
Expect the output of every program to become the input to another, so far
unknown, program.

Given the historical importance of Unix, I'd recommend reading some of
the seminal articles describing the (then new) operating system, in the Bell
System Technical Journal, July 1978, at http:/ ​/​emulator. ​pdp- ​11.​org. ​ru/
misc/ ​1978. ​07_ ​-​_ ​Bell_ ​System_ ​Technical_ ​Journal. ​pdf. The two quoted
rules are in the Style section, in the Foreword article.

Let's consider a simple example to get started. Suppose I want to know how many
LibreOffice text documents there are in a directory. There are many ways to do this, but this
will do. We will execute three commands, piping (that's the meaning of the | character)
each command's output as input to the next one. Suppose we go to cd
/home/fkereki/Documents and then do the following (please ignore the dollar sign,
which is just the console prompt):

$ ls -1 | grep "odt$" | wc -l
4

http://emulator.pdp-11.org.ru/misc/1978.07_-_Bell_System_Technical_Journal.pdf
http://emulator.pdp-11.org.ru/misc/1978.07_-_Bell_System_Technical_Journal.pdf
http://emulator.pdp-11.org.ru/misc/1978.07_-_Bell_System_Technical_Journal.pdf
http://emulator.pdp-11.org.ru/misc/1978.07_-_Bell_System_Technical_Journal.pdf
http://emulator.pdp-11.org.ru/misc/1978.07_-_Bell_System_Technical_Journal.pdf
http://emulator.pdp-11.org.ru/misc/1978.07_-_Bell_System_Technical_Journal.pdf
http://emulator.pdp-11.org.ru/misc/1978.07_-_Bell_System_Technical_Journal.pdf
http://emulator.pdp-11.org.ru/misc/1978.07_-_Bell_System_Technical_Journal.pdf
http://emulator.pdp-11.org.ru/misc/1978.07_-_Bell_System_Technical_Journal.pdf
http://emulator.pdp-11.org.ru/misc/1978.07_-_Bell_System_Technical_Journal.pdf
http://emulator.pdp-11.org.ru/misc/1978.07_-_Bell_System_Technical_Journal.pdf
http://emulator.pdp-11.org.ru/misc/1978.07_-_Bell_System_Technical_Journal.pdf
http://emulator.pdp-11.org.ru/misc/1978.07_-_Bell_System_Technical_Journal.pdf
http://emulator.pdp-11.org.ru/misc/1978.07_-_Bell_System_Technical_Journal.pdf
http://emulator.pdp-11.org.ru/misc/1978.07_-_Bell_System_Technical_Journal.pdf
http://emulator.pdp-11.org.ru/misc/1978.07_-_Bell_System_Technical_Journal.pdf
http://emulator.pdp-11.org.ru/misc/1978.07_-_Bell_System_Technical_Journal.pdf
http://emulator.pdp-11.org.ru/misc/1978.07_-_Bell_System_Technical_Journal.pdf
http://emulator.pdp-11.org.ru/misc/1978.07_-_Bell_System_Technical_Journal.pdf
http://emulator.pdp-11.org.ru/misc/1978.07_-_Bell_System_Technical_Journal.pdf
http://emulator.pdp-11.org.ru/misc/1978.07_-_Bell_System_Technical_Journal.pdf
http://emulator.pdp-11.org.ru/misc/1978.07_-_Bell_System_Technical_Journal.pdf
http://emulator.pdp-11.org.ru/misc/1978.07_-_Bell_System_Technical_Journal.pdf
http://emulator.pdp-11.org.ru/misc/1978.07_-_Bell_System_Technical_Journal.pdf
http://emulator.pdp-11.org.ru/misc/1978.07_-_Bell_System_Technical_Journal.pdf
http://emulator.pdp-11.org.ru/misc/1978.07_-_Bell_System_Technical_Journal.pdf
http://emulator.pdp-11.org.ru/misc/1978.07_-_Bell_System_Technical_Journal.pdf
http://emulator.pdp-11.org.ru/misc/1978.07_-_Bell_System_Technical_Journal.pdf
http://emulator.pdp-11.org.ru/misc/1978.07_-_Bell_System_Technical_Journal.pdf
http://emulator.pdp-11.org.ru/misc/1978.07_-_Bell_System_Technical_Journal.pdf
http://emulator.pdp-11.org.ru/misc/1978.07_-_Bell_System_Technical_Journal.pdf
http://emulator.pdp-11.org.ru/misc/1978.07_-_Bell_System_Technical_Journal.pdf

Connecting Functions - Pipelining and Composition Chapter 8

[218]

What does this mean? How does it work? We have to analyze this process step by step:

The first part of the pipeline, ls -1, lists all the files in the directory
(/home/fkereki/Documents, as per our cd command), in a single column, one
filename per line.
The output from the first command is provided as input to grep "odt$", which
filters (lets pass) only those lines that finish with "odt", the standard file
extension for LibreOffice Writer.
The filtered output is provided to the counting command, wc -l, which counts
how many lines there are in its input.

You can find out more about pipelines in Section 6.2, Filters, of the UNIX
Time-Sharing System article by Dennis Ritchie and Ken Thompson, also in
the issue of the Bell Laboratories journal that I mentioned previously.

From the point of view of FP, this is a key concept. We want to build more complex
operations out of simple, single-purpose, shorter functions. Pipelining is what the Unix
shell uses to apply that concept, which it does by simplifying the job of executing a
command, taking its output, and providing it as input to yet another command. We will be
applying similar concepts in our own functional style in JavaScript later:

Figure 8.1: Pipelines in JavaScript are similar to Unix/Linux pipelines. The output of each function becomes the input for the next

By the way (and no—rest assured, this isn't turning into a shell tutorial!), you can also make
pipelines accept parameters. For example, if I happened to want to count how many files I
had with this or that extension, I could create a function such as cfe, standing for count for
extension:

$ function cfe() {
 ls -1 | grep "$1\$"| wc -l
}

Then, I could use cfe as a command, giving it the desired extension as an argument:

$ cfe odt
4
$ cfe pdf
6

Connecting Functions - Pipelining and Composition Chapter 8

[219]

cfe executes my pipeline and tells me I have 4 odt files (LibreOffice) and 6 pdf ones; nice!
We will also want to write similar parametric pipelines: we are not constrained to only have
fixed functions in our flow; we have full liberty as to what we want to include. Having
worked in Linux, we can now go back to coding. Let's see how.

Revisiting an example
We can start tying ends together by revisiting a problem from a previous chapter.
Remember when we had to calculate the average latitude and longitude for some
geographic data that we looked at in the Extracting data from objects section of Chapter 5,
Programming Declaratively – A Better Style? Basically, we started with some data such as the
following and the problem was to calculate the average latitude and longitude of the given
points:

const markers = [
 {name: "AR", lat: -34.6, lon: -58.4},
 {name: "BO", lat: -16.5, lon: -68.1},
 {name: "BR", lat: -15.8, lon: -47.9},
 {name: "CL", lat: -33.4, lon: -70.7},
 {name: "CO", lat: 4.6, lon: -74.0},
 {name: "EC", lat: -0.3, lon: -78.6},
 {name: "PE", lat: -12.0, lon: -77.0},
 {name: "PY", lat: -25.2, lon: -57.5},
 {name: "UY", lat: -34.9, lon: -56.2},
 {name: "VE", lat: 10.5, lon: -66.9},
];

With what we know, we can write a solution in terms of the following:

Being able to extract the latitude (and, afterward, the longitude) from each point
Using that function to create an array of latitudes
Pipelining the resulting array to the average function we wrote in Calculating an
average section of the aforementioned chapter

To do the first task, we can use the myMap() function from the Parameters order section of
Chapter 7, Transforming Functions – Currying and Partial Application. For the second task, we
can make do with the getField() function from the Getting a property from an object section
of Chapter 6, Producing Functions – Higher-Order Functions, plus a bit of currying to fix
some values. Finally, for the third task, we'll just use the (yet unwritten!) pipelining
function we'll be developing soon! In full, our solution could look like this:

const average = arr => arr.reduce(sum, 0) / arr.length;
const getField = attr => obj => obj[attr];

Connecting Functions - Pipelining and Composition Chapter 8

[220]

const myMap = curry(flipTwo(demethodize(array.prototype.map)));

const getLat = curry(getField)("lat");
const getAllLats = curry(myMap)(getLat);

let averageLat = pipeline(getAllLats, average);
// and similar code to average longitudes

Of course, you can always yield to the temptation of going for a couple of one-liners, but
would it be much clearer or better?

let averageLat2 = pipeline(curry(myMap)(curry(getField)("lat")), average);
let averageLon2 = pipeline(curry(myMap)(curry(getField)("lon")), average);

Whether this makes sense to you will depend on your experience with FP. In any case, no
matter which solution you take, the fact remains that adding pipelining (and later on,
composition) to your set of tools can help you write tighter, declarative, simpler-to-
understand code.

Now, let's learn how to pipeline functions in the right way.

Creating pipelines
We want to be able to generate a pipeline of several functions. We can do this in two
different ways: by building the pipeline by hand, in a problem-specific way, or by seeking
to use more generic constructs that can be applied with generality. Let's look at both.

Building pipelines by hand
Let's go with a Node example, similar to the command-line pipeline we built earlier in this
chapter. Here, we'll build the pipeline we need by hand. We need a function to read all the
files in a directory. We can do that (this isn't recommended because of the synchronous call,
which is normally not good in a server environment) with something like this:

function getDir(path) {
 const fs = require("fs");
 const files = fs.readdirSync(path);
 return files;
}

Filtering the odt files is quite simple. We start with the following function:

const filterByText = (text, arr) => arr.filter(v => v.endsWith(text));

Connecting Functions - Pipelining and Composition Chapter 8

[221]

This function takes an array and filters out any elements that do not end with the given
text. So, we can now write the following:

const filterOdt = arr => filterByText(".odt", arr);

Better still, we can apply currying and go for pointfree style, as shown in the An unnecessary
mistake section of Chapter 3, Starting Out with Functions – A Core Concept:

const filterOdt2 = curry(filterByText)(".odt");

Both versions of the filtering function are equivalent; which one you use comes down to
your tastes. Finally, to count elements in an array, we can simply write the following. Since
length is not a function, we cannot apply our demethodizing trick:

const count = arr => arr.length;

With these functions, we could write something like this:

const countOdtFiles = path => {
 const files = getDir(path);
 const filteredFiles = filterOdt(files);
 const countOfFiles = count(filteredFiles);
 return countOfFiles;
};

countOdtFiles("/home/fkereki/Documents"); // 4, as with the command line
solution

We are essentially doing the same process as in Linux: getting the files, keeping only the
odt ones, and counting how many files result from this. If you wanted to get rid of all the
intermediate variables, you could also go for a one-liner definition that does exactly the
same job in the very same way, albeit with fewer lines:

const countOdtFiles2 = path => count(filterOdt(getDir(path)));

countOdtFiles2("/home/fkereki/Documents"); // 4, as before

This gets to the crux of the matter: both implementations of our file-counting function have
disadvantages. The first definition uses several intermediate variables to hold the results
and makes a multiline function out of what was a single line of code in the Linux shell. The
second, much shorter, definition, on the other hand, is quite harder to understand, insofar
as we are writing the steps of the computation in seemingly reverse order! Our pipeline has
to read files first, then filter them, and finally count them, but those functions appear the
other way round in our definition!

Connecting Functions - Pipelining and Composition Chapter 8

[222]

We can certainly implement pipelining by hand, as we have seen, but it would be better if
we could go for a more declarative style.

Let's move on and try to build a better pipeline in a more clear and understandable way by
trying to apply some of the concepts we've already seen.

Using other constructs
If we think in functional terms, what we have is a list of functions and we want to apply
them sequentially, starting with the first, then applying the second to whatever the first
function produced as its result, and then applying the third to the second function's results,
and so on. If we were just fixing a pipeline of two functions, you could use the following
code:

const pipeTwo = (f, g) => (...args) => g(f(...args));

This is the basic definition we provided earlier in this chapter: we evaluate the first
function, and its output becomes the input for the second function; quite straightforward!
You might object, though, that this pipeline, of only two functions, is a bit too limited! This
is not as useless as it may seem because we can compose longer pipelines—though I'll
admit that it requires too much writing! Suppose we wanted to write our three-function
pipeline (from the previous section); we could do so in two different, equivalent ways:

const countOdtFiles3 = path =>
 pipeTwo(pipeTwo(getDir, filterOdt), count)(path);

const countOdtFiles4 = path =>
 pipeTwo(getDir, pipeTwo(filterOdt, count))(path);

We are taking advantage of the fact that piping is an associative operation.
In mathematics, the associative property is the one that says that we can
compute 1+2+3 either by adding 1+2 first and then adding that result to 3,
or by adding 1 to the result of adding 2+3: in other terms, 1+2+3 is the
same as (1+2)+3 or 1+(2+3).

How do they work? How is it that they are equivalent? Following the execution of a given
call will be useful; it's quite easy to get confused with so many calls! The first
implementation can be followed step by step until the final result, which matches what we
already know:

countOdtFiles3("/home/fkereki/Documents") ===
 pipeTwo(pipeTwo(getDir, filterOdt), count)("/home/fkereki/Documents") ===
 count(pipeTwo(getDir, filterOdt)("/home/fkereki/Documents")) ===
 count(filterOdt(getDir("/home/fkereki/Documents"))) // 4

Connecting Functions - Pipelining and Composition Chapter 8

[223]

The second implementation also comes to the same final result:

countOdtFiles4("/home/fkereki/Documents") ===
 pipeTwo(getDir, pipeTwo(filterOdt, count))("/home/fkereki/Documents") ===
 pipeTwo(filterOdt, count)(getDir("/home/fkereki/Documents")) ===
 count(filterOdt(getDir("/home/fkereki/Documents"))) // 4

Both derivations arrived at the same final expression—the same we had written by hand
earlier, in fact—so we now know that we can make do with just a basic pipe of two higher-
order functions, but we'd really like to be able to work in a shorter, more compact way. A
first implementation could be along the lines of the following:

const pipeline = (...fns) => (...args) => {
 let result = fns[0](...args);
 for (let i = 1; i < fns.length; i++) {
 result = fns[i](result);
 }
 return result;
};

pipeline(getDir, filterOdt, count)("/home/fkereki/Documents"); // still 4

This does work—and the way of specifying our file-counting pipeline is much clearer since
the functions are given in their proper order. However, the implementation of the
pipeline() function is not very functional and goes back to old, imperative, loop by hand
methods. We can do better using reduce(), as we did in Chapter 5, Programming
Declaratively – A Better Style.

If you check out some FP libraries, the function that we are calling
pipeline() here may also be known as flow()—because data flows
from left to right – or sequence()—alluding to the fact that operations
are performed in ascending sequence—but the semantics are the same.

The idea is to start the evaluation with the first function, pass the result to the second, then
that result to the third, and so on. By doing this, we can pipeline with shorter code:

const pipeline2 = (...fns) =>
 fns.reduce((result, f) => (...args) => f(result(...args)));

pipeline2(getDir, filterOdt, count)("/home/fkereki/Documents"); // 4

Connecting Functions - Pipelining and Composition Chapter 8

[224]

This code is more declarative. However, you could have gone one better by writing it using
our pipeTwo() function, which does the same thing but in a more concise manner:

const pipeline3 = (...fns) => fns.reduce(pipeTwo);

pipeline3(getDir, filterOdt, count)("/home/fkereki/Documents"); // again 4

You can understand this code by realizing that it uses the associative property that we
mentioned previously and pipes the first function to the second; then, it pipes the result of
this to the third function, and so on.

Which version is better? I would say that the version that refers to the pipeTwo() function
is clearer: if you know how reduce() works, you can readily understand that our pipeline
goes through the functions two at a time, starting from the first—and that matches what
you know about how pipes work. The other versions that we wrote are more or less
declarative, but not as simple to understand.

Before we look at other ways in which we can compose functions, let's consider how we
would go about debugging our pipelines.

Debugging pipelines
Now, let's turn to a practical question: how do you debug your code? With pipelining, you
can't really see what's passing on from function to function, so how do you do it? We have
two answers for that: one (also) comes from the Unix/Linux world, and the other (the most
appropriate for this book) uses wrappers to provide some logs.

Using tee
The first solution we'll use implies adding a function to the pipeline, which will just log its
input. We want to implement something similar to the tee Linux command, which can
intercept the standard data flow in a pipeline and send a copy to an alternate file or device.
Remembering that /dev/tty is the usual console, we could execute something similar to
the following and get an onscreen copy of everything that passes through the tee
command:

$ ls -1 | grep "odt$" | tee /dev/tty | wc -l

...the list of files with names ending in odt...
4

Connecting Functions - Pipelining and Composition Chapter 8

[225]

We could write a similar function with ease:

const tee = arg => {
 console.log(arg);
 return arg;
};

If you are aware of the uses of the comma operator, you can be more
concise and just write const tee = (arg) => (console.log(arg),
arg)—do you see why? Check out https:/ ​/ ​developer. ​mozilla. ​org/ ​en-
US/​docs/ ​Web/ ​JavaScript/ ​Reference/ ​Operators/ ​Comma_ ​Operator for the
answer!

Our logging function is short and to the point: it will receive a single argument, list it, and
pass it on to the next function in the pipe. We can see it working in the following code:

console.log(
 pipeline2(getDir, tee, filterOdt, tee, count)(
 "/home/fkereki/Documents"
)
);

[...the list of all the files in the directory...]
[...the list of files with names ending in odt...]
4

We could do even better if our tee() function could receive a logger function as a
parameter, as we did in the Logging in a functional way section of Chapter 6, Producing
Functions – Higher-Order Functions; it's just a matter of making the same kind of change we
managed there. The same good design concepts are applied again!

const tee2 = (arg, logger = console.log) => {
 logger(arg);
 return args;
};

Be aware that there might be a binding problem when passing
console.log in that way. It would be safer to write
console.log.bind(console) just as a precaution.

This function works exactly in the same way as the previous tee(), though it will allow us
to be flexible when it comes to applying and testing. However, in our case, this would just
be a particular enhancement.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator

Connecting Functions - Pipelining and Composition Chapter 8

[226]

Now, let's consider an even more generic tapping function, with more possibilities than just
doing a bit of logging.

Tapping into a flow
If you wish, you could write an enhanced tee() function that could produce more
debugging information, possibly send the reported data to a file or remote service, and so
on—there are many possibilities you can explore. You could also explore a more general
solution, of which tee() would just be a particular case and which would also allow us to
create personalized tapping functions. This can be seen in the following diagram:

Figure 8.2: Tapping allows you to apply a function so that you can inspect data as it flows through the pipeline

When working with pipelines, you might want to put a logging function in the middle of it,
or you might want some other kind of snooping function—possibly for storing data
somewhere, calling a service, or some other kind of side effect. We could have a generic
tap() function, which would allow us to inspect data as it moves along our pipeline, that
would behave in the following way:

const tap = curry((fn, x) => (fn(x), x));

This is probably a candidate for the trickiest-looking-code-in-the-book award, so let's explain it.
We want to produce a function that, given a function, fn(), and an argument, x, will
evaluate fn(x) (to produce whatever sort of side effect we may be interested in) but return
x (so the pipeline goes on without interference). The comma operator has exactly that
behavior: if you write something similar to (a, b, c), JavaScript will evaluate the three
expressions in order and use the last value as the expression's value.

The comma has several uses in JavaScript and you can read more about its
usage as an operator at https:/ ​/ ​developer. ​mozilla. ​org/ ​en- ​US/​docs/
Web/​JavaScript/ ​Reference/ ​Operators/ ​Comma_ ​Operator.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator

Connecting Functions - Pipelining and Composition Chapter 8

[227]

Now, we can take advantage of currying to produce several different tapping functions.
The one we wrote in the previous section, tee(), could also be written in the following
fashion:

const tee3 = tap(console.log);

By the way, you could have also written tap() without currying, but you'll have to admit
it loses some of its mystery! This is demonstrated here:

const tap2 = fn => x => (fn(x), x);

This does exactly the same job, and you'll recognize this way of currying as what we looked
at in the Currying by hand section of Chapter 7, Transforming Functions – Currying and Partial
Application. Now that we have learned how to tap into a pipeline, let's move on to a
different way of doing logging by revisiting some concepts we looked at in previous
chapters.

Using a logging wrapper
The second idea we mentioned is based on the addLogging() function that we wrote in
the Logging section of Chapter 6, Producing Functions – Higher-Order Functions. The idea
was to wrap a function with some logging functionality so that, on entry, the arguments
would be printed and, on exit, the result of the function would be shown:

pipeline2(
 addLogging(getDir),
 addLogging(filterOdt),
 addLogging(count))("/home/fkereki/Documents"));

entering getDir: /home/fkereki/Documents
exiting getDir: ...the list of all the files in the directory...
entering filterOdt: ...the same list of files...
exiting filterOdt: ...the list of files with names ending in odt...
entering count: ...the list of files with names ending in odt...
exiting count: 4

We can trivially verify that the pipeline() function is doing its thing correctly—whatever
a function produces, as a result, is given as input to the next function in the line and we can
also understand what's happening with each call. Of course, you don't need to add logging
to every function in the pipeline: you would probably do so in the places where you
suspected an error was occurring.

Now that we've looked at how to join functions, let's take a look at a very common way of
defining functions in FP, pointfree style, which you may encounter.

Connecting Functions - Pipelining and Composition Chapter 8

[228]

Pointfree style
When you join functions together, either in pipeline fashion or with composition, as we'll
see later in this chapter, you don't need any intermediate variables to hold the results that
will become arguments to the next function in line: they are implicit. Similarly, you can
write functions without mentioning their parameters; this is called the pointfree style.

Pointfree style is also called tacit programming and pointless programming
by detractors! The term point itself means a function parameter, while
pointfree refers to not naming those parameters.

Defining pointfree functions
You can easily recognize a pointfree function definition because it doesn't need
the function keyword or the => symbol. Let's revisit some of the previous functions we
wrote in this chapter and check them out. For example, the definition of our original file-
counting functions is as follows:

const countOdtFiles3 = path =>
 pipeTwo(pipeTwo(getDir, filterOdt), count)(path);

const countOdtFiles4 = path =>
 pipeTwo(getDir, pipeTwo(filterOdt, count))(path);

The preceding code could be rewritten as follows:

const countOdtFiles3b = pipeTwo(pipeTwo(getDir, filterOdt), count);

const countOdtFiles4b = pipeTwo(getDir, pipeTwo(filterOdt, count));

The new definitions don't make reference to the parameter for the newly defined functions.
You can deduce this by examining the first function in the pipeline (getDir(), in this case)
and seeing what it receives as arguments. (Using type signatures, as we'll see in Chapter
12, Building Better Containers – Functional Data Types, would be of great help in terms of
documentation.) Similarly, the definition for getLat() is pointfree:

const getLat = curry(getField)("lat");

Connecting Functions - Pipelining and Composition Chapter 8

[229]

What should be the equivalent full style definition? You'd have to examine
the getField() function (we looked at this in the Revisiting an example section) to decide
that it expects an object as an argument. However, making that need explicit by writing the
following wouldn't make much sense:

const getLat = obj => curry(getField)("lat")(obj);

If you were willing to write all this, you may wish to stick with the following:

const getLat = obj => obj.lat;

Then, you could simply not care about currying!

Converting to pointfree style
On the other hand, you had better pause for a minute and try not to write everything in
pointfree code, whatever it might cost. For example, consider
the isNegativeBalance() function we wrote back in Chapter 6, Producing Functions –
Higher-Order Functions:

const isNegativeBalance = v => v.balance < 0;

Can we write this in a pointfree style? Yes, we can, and we'll see how—but I'm not sure
we'd want to code this way! We can consider building a pipeline of two functions: one will
extract the balance from the given object, while the other will check whether it's negative.
Due to this, we will write our alternative version of the balance-checking function like so:

const isNegativeBalance2 = pipeline(getBalance, isNegative);

To extract the balance attribute from a given object, we can use getField() and a bit of
currying, and then write the following:

const getBalance = curry(getField)("balance");

For the second function, we could write the following code:

const isNegative = x => x < 0;

There goes our pointfree goal! Instead, we can use the binaryOp() function, also from the
same chapter we mentioned earlier, plus some more currying, to write the following:

const isNegative = curry(binaryOp(">"))(0);

Connecting Functions - Pipelining and Composition Chapter 8

[230]

I wrote the test the other way around (0>x instead of x<0) just for ease of coding. An
alternative would have been to use the enhanced functions I mentioned in the A handier
implementation section of Chapter 6, Producing Functions – Higher-Order Functions, which is
a bit less complex, as follows:

const isNegative = binaryOpRight("<", 0);

So, finally, we could write the following:

const isNegativeBalance2 = pipeline(
 curry(getField)("balance"),
 curry(binaryOp(">"))(0)
);

Alternatively, we could write the following:

const isNegativeBalance3 = pipeline(
 curry(getField)("balance"),
 binaryOpRight("<", 0)
);

Do you really think that's an improvement? Our new versions of isNegativeBalance()
don't make a reference to their argument and are fully pointfree, but the idea of using
pointfree style should be to help improve the clarity and readability of your code, and not
to produce obfuscation and opaqueness! I doubt anybody would look at our new versions
of the function and consider them to be an advantage over the original, for any possible
reason.

If you find that your code is becoming harder to understand, and that's only due to your
intent on using pointfree programming, stop and roll back your changes. Remember our
doctrine for this book: we want to do FP, but we don't want to go overboard with it—and
using the pointfree style is not a requirement!

In this section, we've learned how to build pipelines of functions—this is a powerful
technique. For objects and arrays, however, we have another special technique that you
may have used already: chaining. Let's take a look at this now.

Connecting Functions - Pipelining and Composition Chapter 8

[231]

Chaining and fluent interfaces
When you work with objects or arrays, there is another way of linking the execution of
several calls together: by applying chaining. For example, when you work with arrays, if
you apply a map() or filter() method, the result is a new array, which you can then
apply a new further map() or filter() to, and so forth. We used such methods when we
defined the range() function back in the Working with ranges section of Chapter 5,
Programming Declaratively – A Better Style:

const range = (start, stop) =>
 new Array(stop - start).fill(0).map((v, i) => start + i);

First, we created a new array; then, we applied the fill() method to it, which updated the
array in place (side effect) and returned the updated array, to which we finally applied a
map() method. The latter method generated a new array, to which we could have applied
further mappings, filtering, or any other available method.

Let's take a look at a common example of fluent, chained APIs, and then consider how we
can do this on our own.

An example of fluent APIs
This style of continuous chained operation is also used in fluent APIs or interfaces. To give
just one example, the graphic D3.js library (see https:/ ​/​d3js. ​org/ ​ for more on it)
frequently uses this style. The following example, taken from https:/ ​/​bl. ​ocks. ​org/
mbostock/​4063269, shows it in action:

 var node = svg
 .selectAll(".node")
 .data(pack(root).leaves())
 .enter()
 .append("g")
 .attr("class", "node")
 .attr("transform", function(d) {
 return "translate(" + d.x + "," + d.y + ")";
 });

Each method works on the previous object and provides access to a new object that future
method calls will be applied to (such as the selectAll() or append() methods) or
updates the current one (like the attr() attribute setting calls do). This style is not unique
and several other well-known libraries (jQuery comes to mind) also apply it.

https://d3js.org/
https://d3js.org/
https://d3js.org/
https://d3js.org/
https://d3js.org/
https://d3js.org/
https://d3js.org/
https://d3js.org/
https://bl.ocks.org/mbostock/4063269
https://bl.ocks.org/mbostock/4063269
https://bl.ocks.org/mbostock/4063269
https://bl.ocks.org/mbostock/4063269
https://bl.ocks.org/mbostock/4063269
https://bl.ocks.org/mbostock/4063269
https://bl.ocks.org/mbostock/4063269
https://bl.ocks.org/mbostock/4063269
https://bl.ocks.org/mbostock/4063269
https://bl.ocks.org/mbostock/4063269
https://bl.ocks.org/mbostock/4063269
https://bl.ocks.org/mbostock/4063269

Connecting Functions - Pipelining and Composition Chapter 8

[232]

Can we automate this? In this case, the answer is possibly, but I'd rather not. In my opinion,
using pipeline() or compose() works just as well, and manages the same result. With
object chaining, you are limited to returning new objects or arrays or something that
methods can be applied to. (Remember, if you are working with standard types, such as
strings or numbers, you can't add methods to them unless you mess with their prototype,
which isn't recommended!). With composition, however, you can return any kind of value;
the only restriction is that the next function in line must be expecting the data type that you
are providing.

On the other hand, if you are writing your own API, then you can provide a fluent interface
by just having each method return this—unless, of course, it needs to return something
else! If you were working with someone else's API, you could also do some trickery by
using a proxy, but be aware there could be cases in which your proxied code might fail:
maybe another proxy is being used, or there are some getters or setters that somehow cause
problems, and so on.

You may want to read up on proxy objects at https:/ ​/​developer.
mozilla. ​org/ ​en/ ​docs/ ​Web/ ​JavaScript/ ​Reference/ ​Global_ ​Objects/
Proxy – they are very powerful and allow for interesting
metaprogramming functionalities, but they can also trap you with
technicalities and will also cause an (albeit slight) slowdown in your
proxied code.

Let's now take a look at how to chain calls so that we can apply them to any class.

Chaining method calls
Let's go for a basic example. We could have a City class with name, latitude (lat), and
longitude (long) attributes:

class City {
 constructor(name, lat, long) {
 this.name = name;
 this.lat = lat;
 this.long = long;
 }

 getName() {
 return this.name;
 }

 setName(newName) {
 this.name = newName;

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Proxy

Connecting Functions - Pipelining and Composition Chapter 8

[233]

 }

 setLat(newLat) {
 this.lat = newLat;
 }

 setLong(newLong) {
 this.long = newLong;
 }

 getCoords() {
 return [this.lat, this.long];
 }
}

This is a common class with a few methods; everything's quite normal. We could use this
class as follows and provide details about my native city, Montevideo, Uruguay:

let myCity = new City("Montevideo, Uruguay", -34.9011, -56.1645);
console.log(myCity.getCoords(), myCity.getName());
// [-34.9011, -56.1645] 'Montevideo, Uruguay'

If we wanted to allow the setters to be handled in a fluent manner, we could set up a proxy
to detect such calls and provide the missing return this. How can we do that? If the
original method doesn't return anything, JavaScript will include a return undefined
statement by default so that we can detect whether that's what the method is returning and
substitute return this instead. Of course, this is a problem: what would we do if we had
a method that could legally return an undefined value on its own because of its
semantics? We could have some kind of exceptions list to tell our proxy not to add anything
in those cases, but let's not get into that.

The code for our handler is as follows. Whenever the method of an object is invoked, a get
is implicitly called and we catch it. If we are getting a function, then we wrap it with some
code of our own that will call the original method and then decide whether to return its
value or a reference to the proxied object instead. If we weren't getting a function, then we
would return the requested property's value. Our chainify() function will take care of
assigning the handler to an object and creating the needed proxy:

const getHandler = {
 get(target, property, receiver) {
 if (typeof target[property] === "function") {
 // requesting a method? return a wrapped version
 return (...args) => {
 const result = target[property](...args);
 return result === undefined ? receiver : result;
 };

Connecting Functions - Pipelining and Composition Chapter 8

[234]

 } else {
 // an attribute was requested - just return it
 return target[property];
 }
 },
};
const chainify = obj => new Proxy(obj, getHandler);

We need to check whether the invoked get() was for a function or for an attribute. In the
first case, we wrap the method with extra code so that it will execute it and then return its
results (if any) or a reference to the object itself. In the second case, we just return the
attribute, which is the expected behavior.

With this, we can chainify any object, so we'll get a chance to inspect any called methods. As
I'm writing this, I'm currently living in Pune, India, so let's reflect that change:

myCity = chainify(myCity);

console.log(myCity
 .setName("Pune, India")
 .setLat(18.5626)
 .setLong(73.8087)
 .getCoords(),
 myCity.getName());

// [18.5626, 73.8087] 'Pune, India'

Notice the following:

We changed myCity to be a proxified version of itself.
We are calling several setters in a fluent fashion and they are working fine since
our proxy is taking care of providing the value for the following call.
The calls to getCoords() and getName() are intercepted, but nothing special is
done because they already return a value.

Is working in a chained way worth it? That's up to you—but remember that there may be
cases in which this approach fails, so be wary! Now, let's move on to composing, the other
most common way of joining functions together.

Connecting Functions - Pipelining and Composition Chapter 8

[235]

Composing
Composing is quite similar to pipelining, but has its roots in mathematical theory. The
concept of composition is simply—a sequence of function calls, in which the output of one
function is the input for the next one—but the order is reversed from the one in pipelining.
So, if you have a series of functions, from left to right, when pipelining, the first function of
the series to be applied is the leftmost one, but when you use composition, you start with
the rightmost one.

Let's investigate this a bit more. When you define the composition of, say, three functions as
(f∘ g∘ h), and apply this composition to x, this is equivalent to writing f(g(h(x))). It's
important to note that, as with pipelining, the arity of the first function to be applied
(actually the last one in the list) can be anything, but all the other functions must be unary.
Also, apart from the difference as to the sequence of function evaluations, composing is an
important tool in FP because it also abstracts implementation details (putting your focus on
what you need to accomplish, rather than on the specific details for achieving that), thereby
letting you work in a more declarative fashion.

If it helps, you can read (f ∘ g ∘ h) as f after g after h, so that it becomes clear
that h is the first function to be applied, while f is the last.

Given its similarity to pipelining, it will be no surprise that implementing composition
won't be very hard. However, there will still be some important and interesting details to
go over. Let's take a look at some examples of composition before moving on to using
higher-order functions and finishing with some considerations about testing composed
functions.

Some examples of composition
It may not be a surprise to you, but we have already seen several examples of
composition—or, at the very least, cases in which the solutions we achieved were
functionally equivalent to using composition. Let's review some of these and work with
some new examples too.

Connecting Functions - Pipelining and Composition Chapter 8

[236]

Unary operators
In the Logically negating a function section of Chapter 6, Producing Functions – Higher-Order
Functions, we wrote a not() function that, given another function, would logically invert
its result. We used that function to negate a check for negative balances; the sample code
for this could be as follows:

const not = fn => (...args) => !fn(...args);

const positiveBalance = not(isNegativeBalance);

In another section of that very same chapter, Turning operations into functions, I left you with
the challenge of writing a unaryOp() function that would provide unary functions
equivalent to common JavaScript operators. If you met that challenge, you should be able
to write something like the following:

const logicalNot = unaryOp("!");

Assuming the existence of a compose() function, you could have also written the
following:

const positiveBalance = compose(logicalNot, isNegativeBalance);

Which one do you prefer? It's a matter of taste, really—but I think the second version
makes it clearer what we are trying to do. With the not() function, you have to check what
it does in order to understand the general code. With composition, you still need to know
what logicalNot() is, but the global construct is open to see.

To look at just one more example in the same vein, you could have managed to get the
same results that we got in the Inverting results section, in the same chapter. Recall that we
had a function that could compare strings according to the Spanish language rules, but we
wanted to invert the sense of the comparison so that it was sorted in descending order:

const changeSign = unaryOp("-");

palabras.sort(compose(changeSign, spanishComparison));

This code produces the same result that our previous sorting problem did, but the logic is
expressed more clearly and with less code: a typical FP result! Let's look at some more
examples of composing functions by reviewing another task we went over earlier.

Connecting Functions - Pipelining and Composition Chapter 8

[237]

Counting files
We can also go back to our pipeline. We had written a single-line function to count the odt
files in a given path:

const countOdtFiles2 = path => count(filterOdt(getDir(path)));

Disregarding (at least for the moment) the observation that this code is not as clear as the
pipeline version that we got to develop later, we could have also written this function with
composition:

const countOdtFiles2b = path => compose(count, filterOdt, getDir)(path);

countOdtFiles2b("/home/fkereki/Documents"); // 4, no change here

We could have also written the function in pointfree fashion, without
specifying the path parameter, with const countOdtFiles2 =
compose(count, filterOdt, getDir), but I wanted to parallel the
previous definition.

It would also be possible to see this written in one-liner fashion:

compose(count, filterOdt, getDir)("/home/fkereki/Documents");

Even if it's not as clear as the pipeline version (and that's just my opinion, which may be
biased by my liking of Linux!), this declarative implementation makes it clear that we
depend on combining three distinct functions to get our result—this is easy to see and
applies the idea of building large solutions out of simpler pieces of code.

Let's take a look at another example that's designed to compose as many functions as
possible.

Finding unique words
Finally, let's go for another example, which, I agree, could have also been used for
pipelining. Suppose you have some text and want to extract all the unique words from it:
how would you go about doing this? If you think about it in steps (instead of trying to
create a full solution in a single bit step), you would probably come up with a solution
similar to this:

Ignore all non-alphabetic characters1.
Put everything in uppercase2.

Connecting Functions - Pipelining and Composition Chapter 8

[238]

Split the text into words3.
Create a set of words4.

Why a set? Because it automatically discards repeated values; check out
https:/ ​/​developer. ​mozilla. ​org/​en/ ​docs/ ​Web/ ​JavaScript/ ​Reference/
Global_ ​Objects/ ​Set for more on this. By the way, we will be using the
Array.from() method to produce an array out of our set; see https:/ ​/
developer. ​mozilla. ​org/ ​en-​US/ ​docs/ ​Web/ ​JavaScript/ ​Reference/
Global_ ​Objects/ ​Array/ ​from for more information.

Now, using FP, let's solve each problem:

const removeNonAlpha = str => str.replace(/[^a-z]/gi, " ");
const toUpperCase = demethodize(String.prototype.toUpperCase);
const splitInWords = str => str.trim().split(/\s+/);
const arrayToSet = arr => new Set(arr);
const setToList = set => Array.from(set).sort();

With these functions, the result can be written as follows:

const getUniqueWords = compose(
 setToList,
 arrayToSet,
 splitInWords,
 toUpperCase,
 removeNonAlpha
);

Since you don't get to see the arguments of any of the composed functions, you really don't
need to show the parameter for getUniqueWords() either, so the pointfree style is natural
to use in this case.

Now, let's test our function. To do this, let's apply this function to the first two sentences of
Abraham Lincoln's address at Gettysburg (which we already used in an example back in
the Mapping and flattening – flatMap section of Chapter 5, Programming Declaratively – A
Better Style) and print out the 43 different words (trust me, I counted them!) they
comprised:

const GETTYSBURG_1_2 = `Four score and seven years ago
our fathers brought forth on this continent, a new nation,
conceived in liberty, and dedicated to the proposition
that all men are created equal. Now we are engaged in a
great civil war, testing whether that nation, or any
nation so conceived and so dedicated, can long
endure.`;

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Set
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Set
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Set
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Set
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Set
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Set
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Set
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Set
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Set
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Set
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Set
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Set
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Set
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Set
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Set
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Set
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Set
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Set
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Set
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Set
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Set
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Set
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Set
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Set
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from

Connecting Functions - Pipelining and Composition Chapter 8

[239]

console.log(getUniqueWords(GETTYSBURG_1_2));
['A',
'AGO',
'ALL',
'AND',
'ANY',
'ARE',
'BROUGHT',
'CAN',
'CIVIL',
.
.
.
'TESTING',|
'THAT',
'THE',
'THIS',
'TO',
'WAR',
'WE',
'WHETHER',
'YEARS']

Of course, you could have written getUniqueWords() in a shorter way, but the point I'm
making is that by composing your solution out of several shorter steps, your code is clearer
and easier to grasp. However, if you wish to say that a pipelined solution seems better, then
it's just a matter of opinion!

At this point, we have looked at many examples of function composition, but there's
another way to manage this—by using higher-order functions.

Composing with higher-order functions
It's pretty obvious that composing by hand could easily be done in a similar fashion to
pipelining. For example, the unique word counting function that we wrote previously
could be written in simple JavaScript style:

const getUniqueWords1 = str => {
 const str1 = removeNonAlpha(str);
 const str2 = toUpperCase(str1);
 const arr1 = splitInWords(str2);
 const set1 = arrayToSet(arr1);
 const arr2 = setToList(set1);
 return arr2;
};

Connecting Functions - Pipelining and Composition Chapter 8

[240]

Alternatively, it could be written more concisely (and more obscurely!) in one-liner style:

const getUniqueWords2 = str =>
 setToList(arrayToSet(splitInWords(toUpperCase(removeNonAlpha(str)))));

console.log(getUniqueWords2(GETTYSBURG_1_2));
// ['A', 'AGO', 'ALL', 'AND', ... 'WAR', 'WE', 'WHETHER', 'YEARS']

This works fine, but like we did when we studied pipelining, let's go and look for a more
general solution that won't require writing a special function each time we want to
compose some other functions.

Composing two functions is quite easy and requires making a small change with regard to
our pipeTwo() function, which we looked at earlier in this chapter:

const pipeTwo = (f, g) => (...args) => g(f(...args));
const composeTwo = (f, g) => (...args) => f(g(...args));

The only difference is that, with piping, you apply the leftmost function first, while with
composing, you start with the rightmost function first. This variation suggests that we
could have used the flipTwo() higher-order function from the Parameters order section of
Chapter 7, Transforming Functions – Currying and Partial Application. Is it clearer? Here is the
code:

const composeTwoByFlipping = flipTwo(pipeTwo);

In any case, if we wanted to compose more than two functions, we could have also taken
advantage of the associative property in order to write something like the following:

const getUniqueWords3 = composeTwo(
 setToList,
 composeTwo(
 arrayToSet,
 composeTwo(splitInWords, composeTwo(toUpperCase, removeNonAlpha))
)
);

console.log(getUniqueWords3(GETTYSBURG_1_2));
// ['A', 'AGO', 'ALL', 'AND', ... 'WAR', 'WE', 'WHETHER', 'YEARS'] OK
again

Connecting Functions - Pipelining and Composition Chapter 8

[241]

Even though this works, let's go for a better solution—we can provide at least two. The first
way has to do with the fact that pipelining and composing work in reverse of each other. We
apply functions from left to right when pipelining, and from right to left when composing.
Thus, we can achieve the same result that we achieved with a composition by reversing the
order of the functions and doing pipelining instead; a very functional solution, which I
really like! This is as follows:

const compose = (...fns) => pipeline(...(fns.reverse()));

console.log(
 compose(
 setToList,
 arrayToSet,
 splitInWords,
 toUpperCase,
 removeNonAlpha
)(GETTYSBURG_1_2)
);

/*
 ['A', 'AGO', 'ALL', 'AND', ... 'WAR', 'WE', 'WHETHER', 'YEARS']
 OK once more
*/

The only tricky part is the usage of the spread operator before calling pipeline(). After
reversing the fns array, we must spread its elements in order to call pipeline() correctly.

The other solution, which is less declarative, is to use reduceRight() so that instead of
reversing the list of functions, we reverse the order of processing them:

const compose2 = (...fns) => fns.reduceRight(pipeTwo);

console.log(
 compose2(
 setToList,
 arrayToSet,
 splitInWords,
 toUpperCase,
 removeNonAlpha
)(GETTYSBURG_1_2)
);

/*
 ['A', 'AGO', 'ALL', 'AND', ... 'WAR', 'WE', 'WHETHER', 'YEARS']
 still OK
*/

Connecting Functions - Pipelining and Composition Chapter 8

[242]

Why/how does this work? Let's follow the inner workings of this call. To make this clearer,
we can replace pipeTwo() with its definition:

const compose2b = (...fns) =>
 fns.reduceRight((f,g) => (...args) => g(f(...args)));

Let's take a closer look:

Since no initial value is provided, f() is removeNonAlpha() and g() is
toUpperCase(), so the first intermediate result is a function, (...args) =>
toUpperCase(removeNonAlpha(...args)); let's call it step1().
The second time, f() is step1() from the previous step, while g() is
splitInWords(), so the new result is a function, (...args) =>
splitInWords(step1(...args))), which we can call step2().
The third time around, in the same fashion, we get (...args) =>
arrayToSet(step2(...args)))), which we call step3().
Finally, the result is (...args) => setToList(step3(...args)), a function;
let's call it step4().

The final result turns out to be a function that receives (...args) and starts by applying
removeNonAlpha() to it, then toUpperCase(), and so on, before finishing by applying
setToList().

It may come as a surprise that we can also make this work with reduce()—can you see
why? The reasoning is similar to what we did previously, so we'll leave this as an exercise
to you:

const compose3 = (...fns) => fns.reduce(composeTwo);

After working out how compose3() works, you might want to write a
version of pipeline() that uses reduceRight(), just for symmetry, to
round things out!

We will end this section by mentioning that, in terms of testing and debugging, we can
apply the same ideas that we applied to pipelining; however, remember that composition
goes the other way! We won't gain anything by providing yet more examples of the same
kind, so let's consider a common way of chaining operations when using objects and see
whether it's advantageous or not, given our growing FP knowledge and experience.

Connecting Functions - Pipelining and Composition Chapter 8

[243]

Testing composed functions
Let's finish this chapter by giving some consideration to testing for pipelined or composed
functions. Given that the mechanism for both operations is similar, we will look at
examples of both. They won't differ, other than their logical differences due to the left-to-
right or right-to-left order of function evaluation.

When it comes to pipelining, we can start by looking at how to test the pipeTwo() function
since the setup will be similar to pipeline(). We need to create some spies and check
whether they were called the correct number of times and whether they received the correct
arguments each time. We will set the spies so that they provide a known answer to a call.
By doing this, we can check whether the output of a function becomes the input of the next
in the pipeline:

var fn1, fn2;

describe("pipeTwo", function() {
 beforeEach(() => {
 fn1 = () => {};
 fn2 = () => {};
 });

 it("works with single arguments", () => {
 spyOn(window, "fn1").and.returnValue(1);
 spyOn(window, "fn2").and.returnValue(2);

 const pipe = pipeTwo(fn1, fn2);
 const result = pipe(22);

 expect(fn1).toHaveBeenCalledTimes(1);
 expect(fn2).toHaveBeenCalledTimes(1);
 expect(fn1).toHaveBeenCalledWith(22);
 expect(fn2).toHaveBeenCalledWith(1);
 expect(result).toBe(2);
 });

 it("works with multiple arguments", () => {
 spyOn(window, "fn1").and.returnValue(11);
 spyOn(window, "fn2").and.returnValue(22);

 const pipe = pipeTwo(fn1, fn2);
 const result = pipe(12, 4, 56);

 expect(fn1).toHaveBeenCalledTimes(1);
 expect(fn2).toHaveBeenCalledTimes(1);
 expect(fn1).toHaveBeenCalledWith(12, 4, 56);

Connecting Functions - Pipelining and Composition Chapter 8

[244]

 expect(fn2).toHaveBeenCalledWith(11);
 expect(result).toBe(22);
 });
});

There isn't much to test, given that our function always receives two functions as
parameters. The only difference between the tests is that one shows a pipeline that's been
applied to a single argument, while the other shows it being applied to several arguments.

Moving on to pipeline(), the tests would be quite similar. However, we can add a test for
a single-function pipeline (border case!) and another with four functions:

describe("pipeline", function() {
 beforeEach(() => {
 fn1 = () => {};
 fn2 = () => {};
 fn3 = () => {};
 fn4 = () => {};
 });

 it("works with a single function", () => {
 spyOn(window, "fn1").and.returnValue(11);

 const pipe = pipeline(fn1);
 const result = pipe(60);

 expect(fn1).toHaveBeenCalledTimes(1);
 expect(fn1).toHaveBeenCalledWith(60);
 expect(result).toBe(11);
 });

 // we omit here tests for 2 functions,
 // which are similar to those for pipeTwo()

 it("works with 4 functions, multiple arguments", () => {
 spyOn(window, "fn1").and.returnValue(111);
 spyOn(window, "fn2").and.returnValue(222);
 spyOn(window, "fn3").and.returnValue(333);
 spyOn(window, "fn4").and.returnValue(444);

 const pipe = pipeline(fn1, fn2, fn3, fn4);
 const result = pipe(24, 11, 63);

 expect(fn1).toHaveBeenCalledTimes(1);
 expect(fn2).toHaveBeenCalledTimes(1);
 expect(fn3).toHaveBeenCalledTimes(1);
 expect(fn4).toHaveBeenCalledTimes(1);
 expect(fn1).toHaveBeenCalledWith(24, 11, 63);

Connecting Functions - Pipelining and Composition Chapter 8

[245]

 expect(fn2).toHaveBeenCalledWith(111);
 expect(fn3).toHaveBeenCalledWith(222);
 expect(fn4).toHaveBeenCalledWith(333);
 expect(result).toBe(444);
 });
});

Finally, for composition, the style is the same (except that the order of function evaluation
is reversed), so let's take a look at a single test—here, I simply changed the order of the
functions in the preceding test:

describe("compose", function() {
 beforeEach(() => {
 fn1 = () => {};
 fn2 = () => {};
 fn3 = () => {};
 fn4 = () => {};
 });

 // other tests omitted...

 it("works with 4 functions, multiple arguments", () => {
 spyOn(window, "fn1").and.returnValue(111);
 spyOn(window, "fn2").and.returnValue(222);
 spyOn(window, "fn3").and.returnValue(333);
 spyOn(window, "fn4").and.returnValue(444);

 const pipe = compose(fn4, fn3, fn2, fn1);
 const result = pipe(24, 11, 63);

 expect(fn1).toHaveBeenCalledTimes(1);
 expect(fn2).toHaveBeenCalledTimes(1);
 expect(fn3).toHaveBeenCalledTimes(1);
 expect(fn4).toHaveBeenCalledTimes(1);

 expect(fn1).toHaveBeenCalledWith(24, 11, 63);
 expect(fn2).toHaveBeenCalledWith(111);
 expect(fn3).toHaveBeenCalledWith(222);
 expect(fn4).toHaveBeenCalledWith(333);
 expect(result).toBe(444);
 });
});

Connecting Functions - Pipelining and Composition Chapter 8

[246]

Finally, to test the chainify() function, I opted to use the preceding City object I
created—I didn't want to mess with mocks, stubs, spies, and the like; I wanted to ensure
that the code worked under normal conditions:

class City {
 // as above
}

var myCity;

describe("chainify", function() {
 beforeEach(() => {
 myCity = new City("Montevideo, Uruguay", -34.9011, -56.1645);
 myCity = chainify(myCity);
 });

 it("doesn't affect get functions", () => {
 expect(myCity.getName()).toBe("Montevideo, Uruguay");
 expect(myCity.getCoords()[0]).toBe(-34.9011);
 expect(myCity.getCoords()[1]).toBe(-56.1645);
 });

 it("doesn't affect getting attributes", () => {
 expect(myCity.name).toBe("Montevideo, Uruguay");
 expect(myCity.lat).toBe(-34.9011);
 expect(myCity.long).toBe(-56.1645);
 });

 it("returns itself from setting functions", () => {
 expect(myCity.setName("Other name")).toBe(myCity);
 expect(myCity.setLat(11)).toBe(myCity);
 expect(myCity.setLong(22)).toBe(myCity);
 });

 it("allows chaining", () => {
 const newCoords = myCity
 .setName("Pune, India")
 .setLat(18.5626)
 .setLong(73.8087)
 .getCoords();

 expect(myCity.name).toBe("Pune, India");
 expect(newCoords[0]).toBe(18.5626);
 expect(newCoords[1]).toBe(73.8087);
 });
});

Connecting Functions - Pipelining and Composition Chapter 8

[247]

The final result of all of these tests can be seen in the following screenshot:

Figure 8.3: A successful run of testing for composed functions

As we can see, all our tests passed successfully; good!

Here, we have looked at the important methods we can use to build functions by using
pipelining, chaining, and composition. This works very well, but we'll see that there's a
particular case in which the performance of your code could be affected and that we'll need
a new way to handle composition: transducing.

Connecting Functions - Pipelining and Composition Chapter 8

[248]

Transducing
Now, let's consider a performance problem in JavaScript that happens when we're dealing
with large arrays and applying several map/filter/reduce operations. If you start with an
array and apply such operations (via chaining, as we saw earlier in this chapter), you get
the desired result, but many intermediate arrays are created, processed, and
discarded—and that causes delays. If you are dealing with short arrays, the extra time
won't make an impact, but if you are processing larger arrays (as in a big data process,
maybe in Node, where you're working with the results of a large database query), then you
will have cause to look for some optimization. We'll do this by learning about a new tool for
composing functions: transducing.

First, let's create some functions and data. We'll make do with a basically nonsensical
example since we aren't focusing on the actual operations but on the general process. We'll
start with some filtering functions and some mappings:

const testOdd = x => x % 2 === 1;
const testUnderFifty = x => x < 50;
const duplicate = x => x + x;
const addThree = x => x + 3;

Now, let's apply those maps and filters to an array. First, we drop the even numbers,
duplicate the kept odd numbers, drop results over 50, and end by adding three to all the
results:

const myArray = [22, 9, 60, 24, 11, 63];

const a0 = myArray
 .filter(testOdd)
 .map(duplicate)
 .filter(testUnderFifty)
 .map(addThree);

/*
[21, 25]
*/

Connecting Functions - Pipelining and Composition Chapter 8

[249]

The following diagram shows how this sequence of operations works:

Figure 8.4: Chaining map/filter/reduce operations causes intermediate arrays to be created and later discarded

Here, we can see that chaining together several map/filter/reduce operations causes
intermediate arrays (three, in this case) to be created and later discarded—and for large
arrays, that can become cumbersome.

How can we optimize this? The problem here is that processing applies the first
transformation to the input array; then, the second transformation is applied to the
resulting array; then the third, and so on. The alternative solution would be to take the first
element of the input array and apply all the transformations in sequence to it. Then, you
would need to take the second element of the input array and apply all the transformations
to it, then take the third, and so on. In a sort of pseudocode, the difference is between the
following schemes:

for each transformation to be applied:
 for each element in the input list:
 apply the transformation to the element

Connecting Functions - Pipelining and Composition Chapter 8

[250]

With this logic, we go transformation by transformation, applying it to each list and
generating a new one. This will require several intermediate lists to be produced. The
alternative is as follows:

for each element in the input list:
 for each transformation to be applied:
 apply the transformation to the element

In this variant, we go element by element and apply all the transformations to it in
sequence so that we arrive at the final output list without any intermediate ones.

Now, the problem is being able to transpose the transformations; how can we do this? We
saw this key concept in Chapter 5, Programming Declaratively – A Better Style, and that we
can define map() and filter() in terms of reduce(). By using those definitions, instead
of a sequence of different functions, we will be applying the same operation (reduce) at
each step, and here is the secret! As shown in the following diagram, we change the order
of evaluation by composing all the transformations so that they can be applied in a single
pass, with no intermediate arrays whatsoever:

Figure 8.5: By applying transducers, we will change the order of evaluation but get the same result

Connecting Functions - Pipelining and Composition Chapter 8

[251]

Instead of applying a first reduce operation, passing its result to a second, its result to a
third, and so on, we will compose all the reducing functions into a single one! Let's analyze
this.

Composing reducers
Essentially, what we want is to transform each function (testOdd(), duplicate(), and so
on) into a reducing operation that will call the following reducer. A couple of higher-order
functions will help; one for mapping functions and an other for filtering ones. With this
idea, the result of an operation will be passed to the next one, avoiding intermediate arrays:

const mapTR = fn => reducer => (accum, value) => reducer(accum, fn(value));

const filterTR = fn => reducer => (accum, value) =>
 fn(value) ? reducer(accum, value) : accum;

These two transforming functions are transducers: functions that accept a reducing function
and return a new reducing function.

The word transduce comes from Latin, meaning transform, transport,
convert, change over, and is applied in many different fields, including
biology, psychology, machine learning, physics, electronics, and more.

How do we use these transducers? We can write code such as the following, though we'll
want a more abstract, generic version later:

const testOddR = filterTR(testOdd);
const testUnderFiftyR = filterTR(testUnderFifty);
const duplicateR = mapTR(duplicate);
const addThreeR = mapTR(addThree);

Each of our original four functions is transformed, so they will calculate their result and call
a reducer to deal with this further. As an example, addThreeR() will add three to its input
and pass the incremented value to the next reducer, which in this case is addToArray().
This will build up the final resulting array. Now, we can write our whole transformation in
a single step:

const addToArray = (a, v) => {
 a.push(v);
 return a;
};

const a1 = myArray.reduce(

Connecting Functions - Pipelining and Composition Chapter 8

[252]

 testOddR(duplicateR(testUnderFiftyR(addThreeR(addToArray)))),
 []
);

/*
[21, 25]
*/

This is quite a mouthful, but it works! However, we can simplify our code by using the
compose() function:

const makeReducer1 = (arr, fns) =>
 arr.reduce(compose(...fns)(addToArray), []);

const a2 = makeReducer1(myArray, [
 testOddR,
 duplicateR,
 testUnderFiftyR,
 addThreeR,
]);

/*
[21, 25]
*/

The code is the same, but pay particular attention to the compose(...fns)(addToArray)
expression: we compose all the mapping and filtering functions—with the last one
being addToArray—to build up the output. However, this is not as general as we may
want it to be: why do we have to create an array? Why can't we have a different final
reducing function? We can go one better by generalizing a bit more.

Generalizing for all reducers
To be able to work with all kinds of reducers and produce whatever kind of result they
build, we'll need to make a small change. The idea is simple: let's modify our
makeReducer() function so that it will accept a final reducer and a starting value for the
accumulator:

const makeReducer2 = (arr, fns, reducer = addToArray, initial = []) =>
 arr.reduce(compose(...fns)(reducer), initial);

const a3 = makeReducer2(myArray, [
 testOddR,
 duplicateR,
 testUnderFiftyR,

Connecting Functions - Pipelining and Composition Chapter 8

[253]

 addThreeR,
]);

/*
[21, 25]
*/

To make this function more usable, we specified our array-building function (and [] as a
starting accumulator value) so that if you skip those two parameters, you'll get a reducer
that produces an array. Now, let's look at the other option: instead of an array, let's
calculate the sum of the resulting numbers after all the mapping and filtering:

const sum = makeReducer2(
 myArray,
 [testOddR, duplicateR, testUnderFiftyR, addThreeR],
 (acc, value) => acc + value,
 0
);

/*
46
*/

By using transducers, we have been able to optimize a sequence of map/filter/reduce
operations so that the input array is processed once and directly produces the output result
(whether that be an array or a single value) without creating any intermediate arrays; a
good gain!

Summary
In this chapter, we have learned how to create new functions by joining several other
functions in different ways through pipelining and composition. We also looked at fluent
interfaces, which apply chaining, and transducing, a way to compose reducers in order to
get higher speed sequences of transformations. With these methods, you'll be able to create
new functions out of existing ones and keep programming in the declarative way we've
been favoring.

In Chapter 9, Designing Functions – Recursion, we will move on to function design and
study the usage of recursion, which is a basic tool in functional programming and allows
for very clean algorithm designs.

Connecting Functions - Pipelining and Composition Chapter 8

[254]

Questions
8.1. Headline capitalization: Let's define headline-style capitalization, so ensure that a
sentence is all written in lowercase, except the first letter of each word. (The real definition
of this style is more complicated, so let's simplify it for this question.) Write a
headline(sentence) function that will receive a string as an argument and return an
appropriately capitalized version. Spaces separate words. Build this function by composing
smaller functions:

 console.log(headline("Alice's ADVENTURES in WoNdErLaNd"));
 // Alice's Adventures In Wonderland

8.2. Pending tasks: A web service returns a result such as the following, showing, person
by person, all their assigned tasks. Tasks may be finished (done===true) or pending
(done===false). Your goal is to produce an array with the IDs of the pending tasks for a
given person, identified by name, which should match the responsible field. Solve this
by using composition or pipelining:

const allTasks = {
 date: "2017-09-22",
 byPerson: [
 {
 responsible: "EG",
 tasks: [
 {id: 111, desc: "task 111", done: false},
 {id: 222, desc: "task 222", done: false}
]
 },
 {
 responsible: "FK",
 tasks: [
 {id: 555, desc: "task 555", done: false},
 {id: 777, desc: "task 777", done: true},
 {id: 999, desc: "task 999", done: false}
]
 },
 {
 responsible: "ST",
 tasks: [{id: 444, desc: "task 444", done: true}]
 }
]
 };

Connecting Functions - Pipelining and Composition Chapter 8

[255]

Make sure your code doesn't throw an exception if, for example, the person you are looking
for doesn't appear in the web service result!

In the last chapter of this book, Chapter 12, Building Better Containers –
Functional Data Types, we will look at a different way of solving this by
using Maybe monads. This greatly simplifies the problem of dealing with
possibly missing data.

8.3. Thinking in abstract terms: Suppose you are looking through somewhat old code and
you find a function that looks like the following one. (I'm keeping the names vague and
abstract so that you can focus on the structure and not on the actual functionality). Can you
transform this into pointfree style?

function getSomeResults(things) {
 return sort(group(filter(select(things))));
};

8.4. Undetected impurity? Did you notice that the addToArray() function we wrote is
actually impure? (Check out the Argument mutation section of Chapter 4, Behaving Properly
– Pure Functions, if you aren't convinced!) Would it be better if we wrote it as follows?
Should we go for it?

const addToArray = (a, v) => [...a, v];

8.5. Needless transducing? We used transducers to simplify any sequence of mapping and
filtering operations. Would you have needed this if you only had map() operations? What
if you only had filter() operations?

9
Designing Functions -

Recursion
In Chapter 8, Connecting Functions – Pipelining and Composition, we considered yet more
ways to create new functions out of combining previous existing ones. Here, we are going
to get into a different theme: how to actually design and write functions, in a typically
functional way, by applying recursive techniques.

We will be covering the following topics:

Understanding what recursion is and how to think in order to produce recursive
solutions
Applying recursion to some well-known problems, such as making a change or
the Tower of Hanoi
Using recursion instead of iteration to re-implement some higher-order functions
from earlier chapters
Writing search and backtrack algorithms with ease
Traversing data structures, such as trees, to work with file system directories or
with the browser DOM
Getting around some limitations caused by browser JavaScript engine
considerations

Designing Functions - Recursion Chapter 9

[257]

Using recursion
Recursion is a key technique in FP, to the degree that there are some languages that do not
provide for any kind of iteration or loops and work exclusively with recursion (Haskell,
which we already mentioned, is a prime example of that). A basic fact of computer science
is that whatever you can do with recursion, you can also do with iteration (loops), and vice
versa. The key concept is that there are many algorithms whose definition is far easier if
you work recursively. On the other hand, recursion is not always taught, or many
programmers, even knowing about it, prefer not to use it. Therefore, in this section, we
shall see several examples of recursive thinking, so that you can adapt it for your functional
coding.

A typical, oft-quoted, and very old computer joke!

Dictionary definition:
recursion: (n) see recursion

But what is recursion? There are many ways to define what recursion is, but the simplest
one I've seen runs along the lines of a function calls itself again and again, until it doesn't.
Recursion is a natural technique for several kinds of problems, such as the following:

Mathematical definitions, such as the Fibonacci sequence or the factorial of a
number.
Data-structure-related algorithms, with recursively defined structures, such as
lists (a list is either empty or consists of a head node followed by a list of nodes)
or trees (a tree might be defined as a special node, called the root, linked to zero
or more trees).
Syntax analysis for compilers, based on grammar rules, which themselves
depend on other rules, which also depend on other rules, and so on.
And many more! It even appears in art and humor, as shown in the following
screenshot:

Designing Functions - Recursion Chapter 9

[258]

Google itself jokes about it: if you ask about recursion, it answers "Did you mean: recursion!"

In any case, a recursive function, apart from some easy, base cases, in which no further
computation is required, always needs to call itself one or more times in order to perform
part of the required calculations. This concept may be not very clear at the moment, so, in
the following sections, we will see how we can think in a recursive fashion and then solve
several common problems by applying this technique.

Thinking recursively
The key to solving problems recursively is assuming that you already have a function that
does whatever you need and just calling it normally. (Doesn't this sound weird? Actually, it
is quite appropriate: if you want to solve a problem by using recursion, you must first have
solved it before...) On the other hand, if you try to work out in your head how the recursive
calls work and attempt to follow the flow in your mind, you'll probably just get lost. So
what you need to do is the following:

Assume you already have an appropriate function to solve your problem.1.
See how the big problem can be solved by solving one (or more) smaller2.
problems.
Solve those problems by using the imagined function from step 1.3.
Decide what your base cases are. Make sure that they are simple enough that4.
they are solved directly, without requiring any more calls.

Designing Functions - Recursion Chapter 9

[259]

With these points in mind, you can solve problems by recursion because you'll have the
basic structure for your recursive solution.

There are three usual methods for solving problems by applying recursion:

Decrease and conquer is the simplest case, in which solving a problem directly
depends on solving a single, simpler case of itself.
Divide and conquer is a more general approach. The idea is to try to divide your
problem into two or more smaller versions, solve them recursively, and use these
solutions to solve the original problem. The only difference between this
technique and decrease and conquer is that, here, you have to solve two or more
other problems, instead of only one.
Dynamic programming can be seen as a variant of divide and conquer: basically,
you solve a complex problem by breaking it into a set of somewhat simpler
versions of the same problem and solving each in order; however, a key idea in
this strategy is to store previously found solutions, so that whenever you find
yourself needing the solution to a simpler case again you won't directly apply
recursion, but rather use the stored result and avoid unnecessary repeated
calculations.

In this section, we shall look at a few problems and solve them by thinking in a recursive
way. Of course, we shall see more applications of recursion in the rest of the chapter; here,
we'll focus on the key decisions and questions that are needed to create such an algorithm.

Decrease and conquer – searching
The most usual case of recursion involves just a single, simple case. We have already seen
some examples of this, such as the ubiquitous factorial calculation: to calculate the factorial
of n, you previously needed to calculate the factorial of n-1. (See Chapter 1, Becoming
Functional – Several Questions.) Let's turn now to a nonmathematical example.

To search for an element in an array, you would also use this decrease and conquer
strategy. If the array is empty, then obviously the searched-for value isn't there; otherwise,
the result is in the array if and only if it's the first element in it, or if it's in the rest of the
array. The following code does just that:

const search = (arr, key) => {
 if (arr.length === 0) {
 return false;

 } else if (arr[0] === key) {
 return true;

Designing Functions - Recursion Chapter 9

[260]

 } else {
 return search(arr.slice(1), key);
 }
};

This implementation directly mirrors our explanation, and it's easy to verify its correctness.

By the way, just as a precaution, let's look at two further implementations of the same
concept. You can shorten the search function a bit—is it still clear? We are using a ternary
operator to detect whether the array is empty, and a Boolean || operator to return true if
the first element is the sought one or else return the result of the recursive search:

const search2 = (arr, key) =>
 arr.length === 0 ? false : arr[0] === key || search2(arr.slice(1), key);

Sparseness can go even further! Using && as a shortcut is a common idiom:

const search3 = (arr, key) =>
 arr.length && (arr[0] === key || search3(arr.slice(1), key));

I'm not really suggesting that you code the function in this way—rather, consider it a
warning against the tendency that some FP developers have to try to go for the tightest,
shortest possible solution and never mind clarity!

Decrease and conquer – doing powers
Another classic example has to do with calculating the powers of numbers in an efficient
way. If you want to calculate, say, 2 to the 13th power (213), then you can do this with 12
multiplications; however, you can do much better by writing 213 as the following:

= 2 times 212

= 2 times 46

= 2 times 163

= 2 times 16 times 162

= 2 times 16 times 2561

= 8192

Designing Functions - Recursion Chapter 9

[261]

This reduction in the total number of multiplications may not look very impressive, but, in
terms of algorithmic complexity, it allows us to bring down the order of the calculations
from O(n) to O(lg n). In some cryptographic-related methods, which have to raise numbers
to really high exponents, this makes a very important difference. We can implement this
recursive algorithm in a few lines of code, as shown in the following code:

const powerN = (base, power) => {
 if (power === 0) {
 return 1;

 } else if (power % 2) { // odd power?
 return base * powerN(base, power - 1);

 } else { // even power?
 return powerN(base * base, power / 2);
 }
};

When implemented for production, bit operations are used, instead of
modulus and divisions. Checking whether a number is odd can be written
as power & 1, and division by 2 is achieved with power >> 1. These
alternative calculations are way faster than the replaced operations.

Calculating a power is simple when the base case is reached (raising something to the
zeroth power), or is based upon previously calculating a power for a smaller exponent. (If
you wanted to, you could add another base case for raising something to the power of one.)
These observations show that we are seeing a textbook case for the decrease and conquer
recursive strategy.

Finally, some of our higher-order functions, such as map(), reduce(), and filter(), also
apply this technique; we'll look into this later on in this chapter.

Divide and conquer – the Towers of Hanoi
With the divide and conquer strategy, solving a problem requires two or more recursive
solutions. For starters, let's consider a classic puzzle, invented by a French mathematician,
Édouard Lucas, in the nineteenth century. The puzzle involves a temple in India, with 3
posts a 64 golden disks of decreasing diameter. The priests have to move the disks from the
first post to the last one following two rules: only one disk can be moved at a time, and a
larger disk can never be placed on top of a smaller disk. According to the legend, when the
64 disks are moved, the world will end. This puzzle is usually marketed under the name
Towers of Hanoi (yes, they changed countries!) with fewer than 10 disks. See Figure 9.1:

Designing Functions - Recursion Chapter 9

[262]

Figure 9.1: The classic Towers of Hanoi puzzle has a simple recursive solution.

The solution for n disks requires 2n-1 movements. The original puzzle,
requiring 264-1 movements, at one movement per second, would take
more than 584 billion years to finish, a very long time, considering that the
universe's age is evaluated to only be 13.8 billion years!

Suppose that we already had a function that was able to solve the problem of moving any
number of disks from a source post to a destination post using the remaining post as an
extra aid. Think about solving the general problem if you already had a function to solve
that problem: hanoi(disks, from, to, extra). If you wanted to move several disks
from one post to another, then you could solve it easily using this (still unwritten!) function
by carrying out the following steps:

Moving all of the disks but the last one to the extra post.1.
Moving the last disk to the destination post.2.
Moving all the disks from the extra post (where you had placed them earlier) to3.
the destination.

But what about our base cases? We could decide that, to move a single disk, you needn't
use the function; you just go ahead and move it. When coded, it becomes the following:

const hanoi = (disks, from, to, extra) => {
 if (disks === 1) {
 console.log(`Move disk 1 from post ${from} to post ${to}`);

 } else {
 hanoi(disks - 1, from, extra, to);
 console.log(`Move disk ${disks} from post ${from} to post ${to}`);
 hanoi(disks - 1, extra, to, from);
 }
};

Designing Functions - Recursion Chapter 9

[263]

We can quickly verify that this code works:

hanoi (4, "A", "B", "C"); // we want to move all disks from A to B
Move disk 1 from post A to post C
Move disk 2 from post A to post B
Move disk 1 from post C to post B
Move disk 3 from post A to post C
Move disk 1 from post B to post A
Move disk 2 from post B to post C
Move disk 1 from post A to post C
Move disk 4 from post A to post B
Move disk 1 from post C to post B
Move disk 2 from post C to post A
Move disk 1 from post B to post A
Move disk 3 from post C to post B
Move disk 1 from post A to post C
Move disk 2 from post A to post B
Move disk 1 from post C to post B

There's only a small detail to consider, which can simplify the function even further. In this
code, our base case (the one that needs no further recursion) is when disks equals one. You
could also solve this in a different way by letting the disks go down to zero and simply not
doing anything—after all, moving zero disks from one post to another is achieved by doing
nothing at all! The revised code would be as follows:

const hanoi2 = (disks, from, to, extra) => {
 if (disks > 0) {
 hanoi(disks - 1, from, extra, to);
 console.log(`Move disk ${disks} from post ${from} to post ${to}`);
 hanoi(disks - 1, extra, to, from);
 }
};

Instead of checking whether there are any disks to move before doing the recursive call, we
can just skip the check and have the function test, at the next level, whether there's
something to be done.

If you are doing the puzzle by hand, there's a simple solution for that: on
odd turns, always move the smaller disk to the next post (if the total
number of disks is odd) or to the previous post (if the total number of
disks is even). On even turns, do the only possible move that doesn't
imply the smaller disk.

So, the principle for recursive algorithm design works: assume you already have your
desired function and use it to build it!

Designing Functions - Recursion Chapter 9

[264]

Divide and conquer – sorting
We can see another example of the divide and conquer strategy with sorting. A way to sort
arrays, called quicksort, is based upon the following steps:

If your array has 0 or 1 elements, do nothing; it's already sorted (this is the base1.
case).
Pick an element of the array (called the pivot) and split the rest of the array into2.
two subarrays: the elements smaller than your chosen element and the elements
greater than or equal to your chosen element.
Recursively sort each subarray.3.
Concatenate both sorted results, with the pivot in-between, to produce the sorted4.
version of the original array.

Let's see a simple version of this (there are some better-optimized implementations, but we
are interested in the recursive logic now). Usually, picking a random element of the array is
suggested to avoid some bad performance border cases, but for our example, let's just take
the first one:

const quicksort = arr => {
 if (arr.length < 2) {
 return arr;

 } else {
 const pivot = arr[0];
 const smaller = arr.slice(1).filter(x => x < pivot);
 const greaterEqual = arr.slice(1).filter(x => x >= pivot);
 return [...quicksort(smaller), pivot, ...quicksort(greaterEqual)];
 }
};

console.log(quicksort([22, 9, 60, 12, 4, 56]));
// [4, 9, 12, 22, 56, 60]

Designing Functions - Recursion Chapter 9

[265]

We can see how this works in Figure 9.2: the pivot for each array and subarray is
underlined. Splitting is shown with dotted arrows and is joined with full lines:

Figure 9.2: Quicksort sorts an array recursively, applying the divide and conquer strategy, to reduce the original problem to smaller ones

Writing Quicksort correctly is not trivial; see question 9.8 at the end of this
chapter for an alternative version that happens to be almost right, but not
totally correct!

We have already seen the basic strategies to reduce a problem to simpler versions of itself.
Let's now look at an important optimization that is key for many algorithms.

Dynamic programming – making change
The third general strategy, dynamic programming, assumes that you will have to solve
many smaller problems, but, instead of using recursion each and every time, it depends on
you having stored the previously found solutions... memoization, in other words! In
Chapter 4, Behaving Properly – Pure Functions, and later in a better fashion in Chapter 6,
Producing Functions – Higher-Order Functions, we already saw how to optimize the
calculations of the usual Fibonacci series, avoiding unnecessary repeated calls. Let's now
consider another problem.

Designing Functions - Recursion Chapter 9

[266]

Given a certain number of dollars and the list of existing bill values, calculate in how many
different ways we can pay that amount of dollars with different combinations of bills. It is
assumed that you have access to an unlimited number of each bill. How can we go about
solving this? Let's start by considering the base cases, where no further computation is
needed. They are as follows:

Paying negative values is not possible, so in such cases, we should return zero
Paying zero dollars is only possible in a single way (by giving no bills), so in this
case, we should return 1
Paying any positive amount of dollars isn't possible if no bills are provided, so in
this case, also return 0

Finally, we can answer the question: in how many ways can we pay N dollars with a given
set of bills? We can consider two cases: we do not use the larger bill at all and pay the
amount using only smaller denomination bills, or we can take one bill of the larger amount
and reconsider the question. (Let's forget the avoidance of repeated calculations for now):

In the first case, we should invoke our supposedly existing function with the
same value of N, but prune the largest bill denomination from the list of available
bills.
In the second case, we should invoke our function with N minus the largest bill
denomination, keeping the list of bills the same, as shown in the following code:

const makeChange = (n, bills) => {
 if (n < 0) {
 return 0; // no way of paying negative amounts

 } else if (n == 0) {
 return 1; // one single way of paying $0: with no bills

 } else if (bills.length == 0) {
 // here, n>0
 return 0; // no bills? no way of paying

 } else {
 return makeChange(n, bills.slice(1)) + makeChange(n - bills[0],
bills);
 }
};

console.log(makeChange(64, [100, 50, 20, 10, 5, 2, 1]));
// 969 ways of paying $64

Designing Functions - Recursion Chapter 9

[267]

Now let's do some optimizing. This algorithm often needs to recalculate the same values
over and over. (To verify this, add console.log(n, bills.length) as the first line in
makeChange()—but be ready for plenty of output!) However, we already have a solution
for this: memoization! Since we are applying this technique to a binary function, we'll need
a version of the memoization algorithm that deals with more than one parameter. The
memoizing function and its application would be as follows:

const memoize3 = fn => {
 let cache = {};
 return (...args) => {
 let strX = JSON.stringify(args);
 return strX in cache ? cache[strX] : (cache[strX] = fn(...args));
 };
};

const makeChange = memoize3((n, bills) => {
 // ...same as above
});

The memoized version of makeChange() is far more efficient, and you can verify it with
logging. While it is certainly possible to deal with the repetitions by yourself (for example,
by keeping an array of already computed values), the memoization solution is, in my
opinion, better, because it composes two functions to produce a better solution for the
given problem.

Higher-order functions revisited
Classic FP techniques do not use iteration at all, but work exclusively with recursion as the
only way to do some looping. Let's revisit some of the functions that we have already seen
in Chapter 5, Programming Declaratively – A Better Style, such as map(), reduce(), find(),
and filter(), to see how we can make do with just recursion.

We are not planning to exchange the basic JavaScript functions for ours, though: it's highly
likely that performance will be worse for our recursive polyfills and we won't derive any
advantages just from having the functions use recursion. Rather, we want to study how
iterations are performed in a recursive way so that our efforts are more pedagogical than
practical, OK?

Designing Functions - Recursion Chapter 9

[268]

Mapping and filtering
Mapping and filtering are quite similar insofar as both imply going through all the
elements in an array and applying a callback to each to produce output. Let's first work out
the mapping logic, which will have several points to solve, and then we should see that
filtering has become almost trivially easy, requiring just small changes.

For mapping, given how we are developing recursive functions, we need a base case.
Fortunately, that's easy: mapping an empty array just produces a new empty array.
Mapping a nonempty array can be done by first applying the mapping function to the first
element of the array, then recursively mapping the rest of the array, and finally producing a
single array accumulating both results.

Based on this idea, we can work out a simple initial version: let's call it mapR(), just to
remember that we are dealing with our own, recursive version of map(); however, be
careful: our polyfill has some bugs! We'll deal with them one at a time. Here's our first
attempt at writing our own mapping code:

const mapR = (arr, cb) =>
 arr.length === 0 ? [] : [cb(arr[0])].concat(mapR(arr.slice(1), cb));

Let's test it out:

let aaa = [1, 2, 4, 5, 7];
const timesTen = x => x * 10;

console.log(aaa.map(timesTen)); // [10, 20, 40, 50, 70]
console.log(mapR(aaa, timesTen)); // [10, 20, 40, 50, 70]

Great! Our mapR() function seemingly produces the same results as map(). However,
shouldn't our callback function receive a couple more parameters, specifically the index at
the array and the original array itself?

Check out the definition for the callback function for map() at https:/ ​/
developer. ​mozilla. ​org/ ​en/​docs/ ​Web/ ​JavaScript/ ​Reference/ ​Global_
Objects/ ​Array/ ​map.

Our implementation isn't quite ready yet. Let's first see how it fails by using a simple
example:

const timesTenPlusI = (v, i) => 10 * v + i;

console.log(aaa.map(timesTenPlusI)); // [10, 21, 42, 53, 74]
console.log(mapR2(aaa, timesTenPlusI)); // [NaN, NaN, NaN, NaN, NaN]

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/map

Designing Functions - Recursion Chapter 9

[269]

Generating the appropriate index position will require an extra parameter for the recursion,
but it is basically simple: when we start out, we have index=0, and when we call our
function recursively, it's starting at position index+1. Accessing the original array requires
yet another parameter, which will never change, and now we have a better mapping
function:

const mapR2 = (arr, cb, i = 0, orig = arr) =>
 arr.length == 0
 ? []
 : [cb(arr[0], i, orig)].concat(
 mapR2(arr.slice(1), cb, i + 1, orig)
);

let aaa = [1, 2, 4, 5, 7];
const senseless = (x, i, a) => x * 10 + i + a[i] / 10;
console.log(aaa.map(senseless)); // [10.1, 21.2, 42.4, 53.5, 74.7]
console.log(mapR2(aaa, senseless)); // [10.1, 21.2, 42.4, 53.5, 74.7]

Great! When you do recursion instead of iteration, you don't have access to an index, so, if
you need it (as in our case), you'll have to generate it on your own. This is an often-used
technique, so working out our map() substitute was a good idea.

However, having extra arguments in the function is not so good; a developer might
accidentally provide them and then the results would be unpredictable. So, using another
usual technique, let's define an inner function, mapLoop(), to handle looping. This is, in
fact, the usual way in which looping is achieved when you only use recursion; look at the
following code, in which the extra function just isn't accessible from outside:

const mapR3 = (orig, cb) => {
 const mapLoop = (arr, i) =>
 arr.length == 0
 ? []
 : [cb(arr[0], i, orig)].concat(
 mapR3(arr.slice(1), cb, i + 1, orig)
);
 return mapLoop(orig, 0);
};

There's only one pending issue: if the original array has some missing elements, they
should be skipped during the loop. Let's look at an example:

[1, 2, , , 5].map(tenTimes)
// [10, 20, undefined × 2, 50]

Designing Functions - Recursion Chapter 9

[270]

Fortunately, fixing this is simple—and be glad that all the experience gained here will help
us write the other functions in this section! Can you understand the fix in the
following code?

const mapR4 = (orig, cb) => {
 const mapLoop = (arr, i) => {
 if (arr.length == 0) {
 return [];

 } else {
 const mapRest = mapR4(arr.slice(1), cb, i + 1, orig);
 if (!(0 in arr)) {
 return [,].concat(mapRest);

 } else {
 return [cb(arr[0], i, orig)].concat(mapRest);
 }
 }
 };

 return mapLoop(orig, 0);
};

console.log(mapR4(aaa, timesTen)); // [10, 20, undefined × 2, 50]

Wow! This was more than we bargained for, but we saw several techniques: how to replace
iteration with recursion, how to accumulate a result across iterations, and how to generate
and provide the index value—good tips! Furthermore, writing filtering code will prove
much easier, since we'll be able to apply very much the same logic as we did for mapping.
The main difference is that we use the callback function to decide whether an element goes
into the output array, so the inner loop function is a tad longer:

const filterR = (orig, cb) => {
 const filterLoop = (arr, i) => {
 if (arr.length == 0) {
 return [];

 } else {
 const filterRest = filterR(arr.slice(1), cb, i + 1, orig);
 if (!(0 in arr)) {
 return filterRest;

 } else if (cb(arr[0], i, orig)) {
 return [arr[0]].concat(filterRest);

 } else {
 return filterRest;

Designing Functions - Recursion Chapter 9

[271]

 }
 }
 };

 return filterLoop(orig, 0);
};

let aaa = [1, 12, , , 5, 22, 9, 60];
const isOdd = x => x % 2;
console.log(aaa.filter(isOdd)); // [1, 5, 9]
console.log(filterR(aaa, isOdd)); // [1, 5, 9]

Okay, we managed to implement two of our basic higher-order functions with pretty
similar recursive functions. What about the others?

Other higher-order functions
Programming reduce() is, from the outset, a bit trickier, since you can decide to omit the
initial value for the accumulator. Since we mentioned earlier that providing that value is
generally better, let's work here under the assumption that it will be given; dealing with the
other possibility won't be too hard.

The base case is simple: if the array is empty, the result is the accumulator; otherwise, we
must apply the reduce function to the current element and the accumulator, update the
latter, and then continue working with the rest of the array. This can be a bit confusing
because of the ternary operators, but, after all we've seen, it should be clear enough. Look at
the following code for the details:

const reduceR = (orig, cb, accum) => {
 const reduceLoop = (arr, i) => {
 return arr.length == 0
 ? accum
 : reduceR(
 arr.slice(1),
 cb,
 !(0 in arr) ? accum : cb(accum, arr[0], i, orig),
 i + 1,
 orig
);
 };

 return reduceLoop(orig, 0);
};

Designing Functions - Recursion Chapter 9

[272]

let bbb = [1, 2, , 5, 7, 8, 10, 21, 40];
console.log(bbb.reduce((x, y) => x + y, 0)); // 94
console.log(reduce2(bbb, (x, y) => x + y, 0)); // 94

On the other hand, find() is particularly apt for recursive logic, since the very definition
of how you (attempt to) find something, is recursive in itself:

You look at the first place you think of, and, if you find what you were seeking,
you are done.
Alternatively, you look at the other places to see if what you seek is there.

We are only missing the base case, but that's simple, and we already saw this earlier in the
chapter: if you have no places left to search, then you know you won't be successful in your
search:

const findR = (arr, cb) => {
 if (arr.length === 0) {
 return undefined;

 } else {
 return cb(arr[0]) ? arr[0] : findR(arr.slice(1), cb);
 }
};

If you want to shorten the code a bit, you can do this by using the ternary operator a couple
of times:

const findR2 = (arr, cb) =>
 arr.length === 0
 ? undefined
 : cb(arr[0])
 ? arr[0]
 : findR(arr.slice(1), cb);

We can quickly verify whether this works:

let aaa = [1, 12, , , 5, 22, 9, 60];

const isTwentySomething = x => 20 <= x && x <= 29;
console.log(findR(aaa, isTwentySomething)); // 22

const isThirtySomething = x => 30 <= x && x <= 39;
console.log(findR(aaa, isThirtySomething)); // undefined

Designing Functions - Recursion Chapter 9

[273]

Let's finish with our pipelining function. The definition of a pipeline lends itself to quick
implementation:

If we want to pipeline a single function, then that's the result of the pipeline.
If we want to pipeline several functions, then we must first apply the initial
function, and then pass that result as input to the pipeline of the other functions.

We can directly turn this into code:

const pipelineR = (first, ...rest) =>
 rest.length == 0
 ? first
 : (...args) => pipelineR(...rest)(first(...args));

We can verify its correctness with a simple example. Let's pipeline several calls to a couple
of functions, one of which just adds one to its argument and the other of which multiplies
by ten:

const plus1 = x => x + 1;
const by10 = x => x * 10;

pipelineR(
 by10,
 plus1,
 plus1,
 plus1,
 by10,
 plus1,
 by10,
 by10,
 plus1,
 plus1,
 plus1
)(2);
// 23103

If you follow the math, you'll be able to check that the pipelining is working fine. Doing the
same for composition is easy, except that you cannot use the spread operator to simplify the
function definition, and you'll have to work with array indices—work it out!

Designing Functions - Recursion Chapter 9

[274]

Searching and backtracking
Searching for solutions to problems, especially when there is no direct algorithm and you
must resort to trial and error, is particularly appropriate for recursion. Many of these
algorithms fall into a scheme such as the following:

Out of many choices available, pick one.
If no options are available, you've failed.
If you could pick one, apply the same algorithm, but find a solution to the rest.
If you succeed, you are done.
Otherwise, try another choice.

With small variations, you can also apply similar logic to find a good—or possibly,
optimum—solution to a given problem. Each time you find a possible solution, you match
it with previous ones that you might have found and decide which to keep. This may go on
until all possible solutions have been evaluated, or until a good enough solution has been
found.

There are many problems to which this logic applies. They are as follows:

Finding a way out of mazes—pick any path, mark it as already followed, and try
to find a way out of the maze that won't reuse that path: if you succeed, you are
done, and if you do not, go back to pick a different path.
Filling out sudoku puzzles—if an empty cell can contain only a single number,
then assign it; otherwise, run through all of the possible assignments and, for
each one, recursively try to see if the rest of the puzzle can be filled out.
Playing chess—where you aren't likely to be able to follow through all possible
move sequences and so instead you opt for the best-estimated position.

Let's apply these techniques to two problems: solving the eight queens puzzle and
traversing a complete file directory.

The eight queens puzzle
The eight queens puzzle was invented in the nineteenth century and involves
placing eight chess queens on a standard chessboard. The special condition is
that no queen should be able to attack another—implying that no pair of queens
may share a row, column, or diagonal line. The puzzle may ask for any solution
or for the total number of distinct solutions, which is what we will attempt to
find.

Designing Functions - Recursion Chapter 9

[275]

The puzzle may also be generalized to n queens, by working on an n x n
square board. It is known that there are solutions for all values of n, except
n=2 (pretty simple to see why: after placing one queen, all of the board is
threatened) and n=3 (if you place a queen in the center, all of the board is
threatened, and if you place a queen on a side, only two squares are not
threatened, but they threaten each other, making it impossible to place
queens on them).

Let's start our solution with the top-level logic. Because of the given rules, there will be a
single queen in each column, so we use a places() array to take note of each queen's row
within the given column. The SIZE constant could be modified to solve a more general
problem. We'll count each found distribution of queens in the solutions variable. Finally,
the finder() function will perform the recursive search for solutions. The basic skeleton
for the code would be as follows:

const SIZE = 8;
let places = Array(SIZE);
let solutions = 0;

finder();

console.log(`Solutions found: ${solutions}`);

Let's get into the required logic. When we want to place a queen in a given row within a
certain column, we must check whether any of the previously placed queens were already
placed on the same row or in a diagonal leading from the row. See Figure 9.3:

Figure 9.3: Before placing a queen in a column, we must check the previously placed queens' positions

Designing Functions - Recursion Chapter 9

[276]

Let's write a checkPlace(column, row) function to verify whether a queen can be safely
placed in the given square. The most straightforward way is by using .every(), as shown
in the following code:

const checkPlace = (column, row) =>
 places
 .slice(0, column)
 .every((v, i) => v !== row && Math.abs(v - row) !== column - i);

This declarative fashion seems best: when we place a queen in a position, we want to make
sure that every other previously placed queen is in a different row and diagonal. A
recursive solution would have been possible too, so let's see that. How do we know that a
square is safe?

A base case is that, when there are no more columns to check, the square is safe.
If the square is in the same row or diagonal as any other queen, it's not safe.
If we have checked a column and found no problem, we can now recursively
check the following one.

The required code to check whether a position in a column can be occupied by a queen is
therefore as follows:

const checkPlace2 = (column, row) => {
 const checkColumn = i => {
 if (i == column) {
 return true;

 } else if (
 places[i] == row ||
 Math.abs(places[i] - row) == column - i
) {
 return false;

 } else {
 return checkColumn(i + 1);
 }
 };

 return checkColumn(0);
};

Designing Functions - Recursion Chapter 9

[277]

The code works, but I wouldn't be using it since the declarative version is clearer. Anyway,
having worked out this check, we can pay attention to the main finder() logic, which will
do the recursive search. The process proceeds as we described at the beginning: trying out a
possible placement for a queen, and if that is acceptable, using the same search procedure
to try and place the remaining queens. We start at column 0, and our base case is when we
reach the last column, meaning that all queens have been successfully placed: we can print
out the solution, count it, and go back to search for a new configuration.

Check out how we use map() and a simple arrow function to print the
rows of the queens, column by column, as numbers between 1 and 8,
instead of 0 and 7. In chess, rows are numbered from 1 to 8 (and columns
from a to h, but that doesn't matter here).

Check out the following code, which applies the logic that we described previously:

const finder = (column = 0) => {
 if (column === SIZE) {
 // all columns tried out?
 console.log(places.map(x => x + 1)); // print out solution
 solutions++; // count it

 } else {
 const testRowsInColumn = j => {
 if (j < SIZE) {
 if (checkPlace(column, j)) {
 places[column] = j;
 finder(column + 1);
 }
 testRowsInColumn(j + 1);
 }
 };

 testRowsInColumn(0);
 }
};

The inner testRowsInColumn() function also fulfills an iterative role, but recursively. The
idea is to attempt placing a queen in every possible row, starting at zero: if the square is
safe, finder() is called to start searching from the next column onward. No matter
whether a solution was or wasn't found, all rows in the column are tried out, since we are
interested in the total number of solutions; in other search problems, you might be content
with finding just any solution, and you would stop your search right there.

Designing Functions - Recursion Chapter 9

[278]

We have come this far, so let's find the answer to our problem!

[1, 5, 8, 6, 3, 7, 2, 4]
[1, 6, 8, 3, 7, 4, 2, 5]
[1, 7, 4, 6, 8, 2, 5, 3]
[1, 7, 5, 8, 2, 4, 6, 3]
...
... 84 lines snipped out ...
...
[8, 2, 4, 1, 7, 5, 3, 6]
[8, 2, 5, 3, 1, 7, 4, 6]
[8, 3, 1, 6, 2, 5, 7, 4]
[8, 4, 1, 3, 6, 2, 7, 5]
Solutions found: 92

Each solution is given as the row positions for the queens, column by column, and there are
92 solutions in all.

Traversing a tree structure
Data structures, which include recursion in their definition, are naturally appropriate for
recursive techniques. Let's consider, for example, how to traverse a complete filesystem
directory, listing all of its contents. Where's the recursion? The answer is clear if you
consider that each directory can do either of the following:

Be empty—a base case, in which there's nothing to do
Include one or more entries, each of which is either a file or a directory itself

Let's work out a full recursive directory listing—meaning that when we encounter a
directory, we also list its contents, and if those include more directories, we also list them,
and so on. We'll be using the same node functions as in getDir() (from the Building
pipelines by hand section in Chapter 8, Connecting Functions – Pipelining and Composition),
plus a few more in order to test whether a directory entry is a symbolic link (which we
won't follow to avoid possible infinite loops), a directory (which will require a recursive
listing), or a common file:

const fs = require("fs");

const recursiveDir = path => {
 console.log(path);
 fs.readdirSync(path).forEach(entry => {
 if (entry.startsWith(".")) {
 // skip it!

 } else {

Designing Functions - Recursion Chapter 9

[279]

 const full = path + "/" + entry;
 const stats = fs.lstatSync(full);

 if (stats.isSymbolicLink()) {
 console.log("L ", full); // symlink, don't follow

 } else if (stats.isDirectory()) {
 console.log("D ", full);
 recursiveDir(full);

 } else {
 console.log(" ", full);
 }
 }
 });
};

The listing is long but correct. I opted to list the /boot directory in my own OpenSUSE
Linux laptop, and this was produced:

recursiveDir("/boot");
/boot
 /boot/System.map-4.11.8-1-default
 /boot/boot.readme
 /boot/config-4.11.8-1-default
D /boot/efi
D /boot/efi/EFI
D /boot/efi/EFI/boot
 /boot/efi/EFI/boot/bootx64.efi
 /boot/efi/EFI/boot/fallback.efi
 ...
 ... many omitted lines
 ...
L /boot/initrd
 /boot/initrd-4.11.8-1-default
 /boot/message
 /boot/symtypes-4.11.8-1-default.gz
 /boot/symvers-4.11.8-1-default.gz
 /boot/sysctl.conf-4.11.8-1-default
 /boot/vmlinux-4.11.8-1-default.gz
L /boot/vmlinuz
 /boot/vmlinuz-4.11.8-1-default

Designing Functions - Recursion Chapter 9

[280]

By the way, we can apply the same structure to a similar problem: traversing a DOM
structure. We could list all of the tags, starting from a given element, by using essentially
the same approach: we list a node and (by applying the same algorithm) all of its children.
The base case is also the same as before: when a node has no children, no more recursive
calls are done. You can see this in the following code:

const traverseDom = (node, depth = 0) => {
 console.log(`${"| ".repeat(depth)}<${node.nodeName.toLowerCase()}>`);
 for (let i = 0; i < node.children.length; i++) {
 traverseDom(node.children[i], depth + 1);
 }
};

We are using the depth variable to know how many levels below the original element we
are. We could also use it to make the traversing logic stop at a certain level, of course; in our
case, we are using it only to add some bars and spaces to appropriately indent each element
according to its place in the DOM hierarchy. The result of this function is shown in the
following code. It would be easy to list more information and not just the element tag, but I
wanted to focus on the recursive process:

traverseDom(document.body);
<body>
| <script>
| <div>
| | <div>
| | | <a>
| | | <div>
| | | |
| | | | |
| | | | | | <a>
| | | | | | | <div>
| | | | | | | | <div>
| | | | | | | <div>
| | | | | | | |

| | | | | | | <div>
| | | | | |
| | | | | | |
| | | | | | | | <a>
| | | | | | |
...etc!

Designing Functions - Recursion Chapter 9

[281]

However, there's an ugly point there: why are we doing a loop to go through all of the
children? We should know better! The problem is that the structure we get from the DOM
isn't really an array; however, there's a way out: we can use Array.from() to create a real
array out of it and then write a more declarative solution. The following code solves the
problem in a better way:

const traverseDom2 = (node, depth = 0) => {
 console.log(`${"| ".repeat(depth)}<${node.nodeName.toLowerCase()}>`);
 Array.from(node.children).forEach(child =>
 traverseDom2(child, depth + 1)
);
};

Writing [...node.children].forEach() would have worked as well, but I think using
Array.from() makes it clearer to any reader that we are trying to make an array out of
something that looks like one, but really isn't.

We have now seen many ideas about the usage of recursion, and we've seen many
applications of it; however, there are some cases in which you may run into problems, so
let's now consider some tweaks that may come in handy for specific problems.

Recursion techniques
While recursion is a very good technique, it may face some problems because of the details
the way it is actually implemented. Each function call, recursive or not, requires an entry in
the internal JavaScript stack. When you are working with recursion, each recursive call
itself counts as another call, and you might find that there are some situations in which
your code will crash and throw an error because it ran out of memory, just because of
multiple calls. On the other hand, with most current JavaScript engines, you can probably
have several thousand pending recursive calls without a problem (but with earlier
browsers and smaller machines, the number could drop into the hundreds and could
feasibly go even lower), so it could be argued that at present, you are not likely to suffer
from any particular memory problems.

Designing Functions - Recursion Chapter 9

[282]

In any case, let's review the problem and go over some possible solutions in the following
sections, because even if you don't get to actually apply them, they represent valid FP ideas
for which you may find a place in yet other problems. We will be looking at the following
solutions:

Tail call optimization, a technique that speeds up recursion
Continuation passing style, an important FP technique that can help with
recursion
A couple of interestingly named techniques, trampolines and thunks, which are
also common FP tools
Recursion elimination, a technique that is rather beyond the scope of this book,
but which still may be applied.

Tail call optimization
When is a recursive call not a recursive call? Put this way, the question may make little
sense, but there's a common optimization—for other languages, alas, but not
JavaScript!—that explains the answer. If the recursive call is the very last thing a function
will do, then the call could be transformed to a simple jump to the start of the function
without needing to create a new stack entry. (Why? The stack entry wouldn't be required:
after the recursive call is done, the function would have nothing else to do, so there is no
need to further save any of the elements that have been pushed into the stack upon entering
the function.) The original stack entry would then no longer be needed and could simply be
replaced by a new one, corresponding to the recent call.

The fact that a recursive call, a quintessential FP technique, is being
implemented by a base imperative GO TO statement can be considered an
ultimate irony!

Designing Functions - Recursion Chapter 9

[283]

These calls are known as tail calls (for obvious reasons) and have higher efficiency, not
only because of the saved stack space, but also because a jump is quite a bit faster than any
alternative. If the browser implements this enhancement, then it is using a tail call
optimization (TCO); however, a glance at the compatibility tables at http:/ ​/​kangax.
github.​io/​compat- ​table/ ​es6/ ​ shows that at the time of writing (at the end of 2019), the
only browser that provides TCO is Safari.

Figure 9.4: To understand this joke, you must have previously understood it!

This XKCD comic is available online at https:/ ​/​xkcd. ​com/ ​1270/ ​

There's a simple (though nonstandard) test that lets you verify whether your browser
provides TCO (I found this snippet of code in several places on the web, but I'm sorry to
say I cannot attest to the original author (although I believe it is Csaba Hellinger, from
Hungary)). Calling detectTCO() lets you know whether your browser does or does not
use TCO:

"use strict";

function detectTCO() {
 const outerStackLen = new Error().stack.length;
 return (function inner() {
 const innerStackLen = new Error().stack.length;
 return innerStackLen <= outerStackLen;
 })();
}

http://kangax.github.io/compat-table/es6/
http://kangax.github.io/compat-table/es6/
http://kangax.github.io/compat-table/es6/
http://kangax.github.io/compat-table/es6/
http://kangax.github.io/compat-table/es6/
http://kangax.github.io/compat-table/es6/
http://kangax.github.io/compat-table/es6/
http://kangax.github.io/compat-table/es6/
http://kangax.github.io/compat-table/es6/
http://kangax.github.io/compat-table/es6/
http://kangax.github.io/compat-table/es6/
http://kangax.github.io/compat-table/es6/
http://kangax.github.io/compat-table/es6/
http://kangax.github.io/compat-table/es6/
http://kangax.github.io/compat-table/es6/
https://xkcd.com/1270/
https://xkcd.com/1270/
https://xkcd.com/1270/
https://xkcd.com/1270/
https://xkcd.com/1270/
https://xkcd.com/1270/
https://xkcd.com/1270/
https://xkcd.com/1270/
https://xkcd.com/1270/
https://xkcd.com/1270/

Designing Functions - Recursion Chapter 9

[284]

The Error().stack result is not a JavaScript standard, but modern browsers support it,
albeit in somewhat different ways. In any case, the idea is that, when a function with a long
name calls another function with a shorter name, the stack trace should do the following:

It should get shorter if the browser implements TCO, since the old entry for the
longer-named function would be replaced with the entry for the shorter-named
one.
It should get longer without TCO, since a completely new stack entry would be
created without doing away with the original one.

I'm using Chrome on my Linux laptop, and I added a console.log() statement to show
Error().stack. You can see that both stack entries (for inner() and detectTCO()) are
live, so there's no TCO:

Error
 at inner (<anonymous>:6:13)
 at detectTCO (<anonymous>:9:6)
 at <anonymous>:1:1

Of course, there's also another way of learning whether your environment includes TCO:
just try out the following function, which does nothing, with large enough numbers. If you
manage to run it with numbers like, say, 100,000 or 1,000,000, you can be fairly sure that
your JavaScript engine is doing TCO! A possible such function could be the following:

function justLoop(n) {
 n && justLoop(n - 1); // until n is zero
}

Let's finish this section with a very short quiz to be sure that we understand what tail calls
are. Is the recursive call in the factorial function that we saw in Chapter 1, Becoming
Functional – Several Questions, a tail call?

function fact(n) {
 if (n === 0) {
 return 1;

 } else {
 return n * fact(n - 1);
 }
}

Designing Functions - Recursion Chapter 9

[285]

Think about it, because the answer is important! You might be tempted to answer in the
affirmative, but the correct answer is a no. There's good reason for this, and it's a key point:
after the recursive call is done, and the value for fact(n-1) has been calculated, the
function still has work to do. (So doing the recursive call wasn't actually the last thing the
function would do.) You can see it more clearly if you write the function in this equivalent
way:

function fact2(n) {
 if (n === 0) {
 return 1;

 } else {
 const aux = fact2(n - 1);
 return n * aux;
 }
}

So there should be two takeaways from this section: TCO isn't usually offered by browsers,
and, even if it were, you cannot take advantage of it if your calls aren't actual tail calls. Now
that we know what the problem is, let's see some FP ways of working around it!

Continuation passing style
If we have recursive calls stacked too high, we already know that our logic will fail. On the
other hand, we know that tail calls should alleviate that problem, but don't, because of
browser implementations! However, there's a way out of this. Let's first consider how we
can transform recursive calls into tail calls by using a well-known FP
concept—continuations—and we'll leave the problem of solving TCO limitations for the
next section. (We mentioned continuations in the Callbacks, promises, and continuations
section of Chapter 3, Starting Out with Functions – A Core Concept, but we didn't go into
detail.)

In FP parlance, a continuation is something that represents the state of a process and allows
processing to continue. This may be too abstract, so let's get down to earth for our needs.
The key idea is that, when you call a function, you also provide it with a continuation (in
reality, a simple function) that will be called at return time.

Designing Functions - Recursion Chapter 9

[286]

Let's look at a trivial example. Suppose you have a function that returns the time of the day
and you want to show this on the console. The usual way to do this could be as follows:

function getTime() {
 return new Date().toTimeString();
}

console.log(getTime()); // "21:00:24 GMT+0530 (IST)"

If you were doing continuation passing style (CPS), you would pass a continuation to the
getTime() function. Instead of returning a calculated value, the function would invoke the
continuation, giving it the value as a parameter:

function getTime2(cont) {
 return cont(new Date().toTimeString());
}

getTime2(console.log); // similar result as above

What's the difference? The key is that we can apply this mechanism to make a recursive call
into a tail call because all of the code that comes after will be provided in the recursive call
itself. To make this clear, let's revisit the factorial function in the version that made it
explicit that we weren't doing tail calls. The following code is fully equivalent to the
previous one:

function fact2(n) {
 if (n === 0) {
 return 1;

 } else {
 const aux = fact2(n - 1);
 return n * aux;
 }
}

Designing Functions - Recursion Chapter 9

[287]

We will add a new parameter to the function for the continuation. What do we do with the
result of the fact(n-1) call? We multiply it by n, so let's provide a continuation that will
do just that. I'll rename the factorial function as factC() to make it clear that we are
working with continuations, as shown in the following code:

function factC(n, cont) {
 if (n === 0) {
 return cont(1);

 } else {
 return factC(n - 1, x => cont(n * x));
 }
}

How would we get the final result? Easy: we can call factC() with a continuation that will
just return whatever it's given:

factC(7, x => x); // 5040, correctly

In FP, a function that returns its argument as a result is usually called
identity() for obvious reasons. In combinatory logic (which we won't
be using), we would speak of the I combinator.

Can you understand how it worked? Then let's try out a more complex case with the
Fibonacci function, which has two recursive calls in it, as shown in the
following highlighted code:

const fibC = (n, cont) => {
 if (n <= 1) {
 return cont(n);

 } else {
 return fibC(n - 2, p => fibC(n - 1, q => cont(p + q)));
 }
};

This is trickier: we call fibC() with n-2 and a continuation that says that whatever that
call returned, call fibC() with n-1, and when that call returns, sum the results of both calls
and pass that result to the original continuation.

Let's see just one more example, one that involves a loop with an undefined number of
recursive calls. By then, you should have some idea about how to apply CPS to your
code—though I'll readily admit, it can become really complex!

Designing Functions - Recursion Chapter 9

[288]

We saw this function in the Traversing a tree structure section earlier in this chapter. The idea
was to print out the DOM structure, like this:

<body>
| <script>
| <div>
| | <div>
| | | <a>
| | | <div>
| | | |
| | | | |
| | | | | | <a>
| | | | | | | <div>
| | | | | | | | <div>
| | | | | | | <div>
| | | | | | | |

| | | | | | | <div>
| | | | | |
| | | | | | |
| | | | | | | | <a>
| | | | | | |
...etc!

The function we ended up designing back then was the following:

const traverseDom2 = (node, depth = 0) => {
 console.log(`${"| ".repeat(depth)}<${node.nodeName.toLowerCase()}>`);
 Array.from(node.children).forEach(child =>
 traverseDom2(child, depth + 1)
);
};

Let's start by making this fully recursive, getting rid of the forEach() loop. We have seen
this technique before, so we can just move on to the following result; note how the
following code forms its loops by using recursion:

var traverseDom3 = (node, depth = 0) => {
 console.log(`${"| ".repeat(depth)}<${node.nodeName.toLowerCase()}>`);
 const traverseChildren = (children, i = 0) => {
 if (i < children.length) {
 traverseDom3(children[i], depth + 1);
 return traverseChildren(children, i + 1); // loop
 }
 return;
 };
 return traverseChildren(Array.from(node.children));
};

Designing Functions - Recursion Chapter 9

[289]

Now, we have to add a continuation to traverseDom3(). The only difference from the
previous cases is that the function doesn't return anything, so we won't be passing any
arguments to the continuation. It's also important to remember the implicit return at the
end of the traverseChildren() loop: we must call the continuation:

var traverseDom3C = (node, depth = 0, cont = () => {}) => {
 console.log(`${"| ".repeat(depth)}<${node.nodeName.toLowerCase()}>`);
 const traverseChildren = (children, i = 0) => {
 if (i < children.length) {
 return traverseDom3C(children[i], depth + 1, () =>
 traverseChildren(children, i + 1)
);
 }
 return cont();
 };
 return traverseChildren(Array.from(node.children));
};

We opted to give a default value to cont, so we can simply call
traverseDom3C(document.body) as before. If we try out this logic, it works—but the
problem of the potentially high number of pending calls hasn't been solved; let's look for a
solution to this in the following section.

Trampolines and thunks
For the last solution to our problem, we shall have to think about the cause of the problem.
Each pending recursive call creates a new entry stack. Whenever the stack gets too empty,
the program crashes and our algorithm is history. So, if we can work out a way to avoid the
stack growth, we should be free. The solution, in this case, is quite imposing and requires
thunks and a trampoline—let's see what these are!

First, a thunk is really quite simple: it's just a nullary function (so, with no parameters) that
helps delay a computation, providing a form of lazy evaluation. If you have a thunk, then,
unless you call it, you won't get its value. For example, if you want to get the current date
and time in ISO format, you could get it with new Date().toISOString(); however, if
you provide a thunk that calculates that, you won't get the value until you actually invoke
it:

const getIsoDateAndTime = () => new Date().toISOString(); // a thunk

const isoDateAndTime = getIsoDateAndTime(); // getting the thunk's value

Designing Functions - Recursion Chapter 9

[290]

What's the use of this? The problem with recursion is that a function calls itself, and calls
itself, and calls itself, and so on until the stack blows over. Instead of directly calling itself,
we are going to have the function return a thunk, which, when executed, will actually
recursively call the function. So, instead of having the stack grow more and more, it will
actually be quite flat, since the function will never get to actually call itself; the stack will
grow by one position, when you call the function, and then get back to its size, as soon as
the function returns its thunk.

But who gets to do the recursion? That's where the concept of a trampoline comes in. A
trampoline is just a loop that calls a function, gets its return, and, if it is a thunk, then it calls
it so that recursion will proceed, but in a flat, linear, way! The loop is exited when the thunk
evaluation returns an actual value instead of a new function. Look at the following code:

const trampoline = (fn) => {
 while (typeof fn === 'function') {
 fn = fn();
 }
 return fn;
};

How can we apply this to an actual function? Let's start with a simple one that just sums all
numbers from 1 to n, but in a recursive, guaranteed-to-cause-stack-crash fashion. Our
simple sumAll() function could just be the following:

const sumAll = n => (n == 0 ? 0 : n + sumAll(n - 1));

However, if we start trying this function out, we'll eventually stumble and get a crash, as
you can see in the following examples:

sumAll(10); // 55
sumAll(100); // 5050
sumAll(1000); // 500500
sumAll(10000); // Uncaught RangeError: Maximum call stack size exceeded

The stack problem will come up sooner or later depending on your machine, your memory
size, and so on, but it will come, no doubt about that. Let's rewrite the function in
continuation-passing style so that it will become tail recursive. We will just apply the same
technique that we saw earlier, as shown in the following code:

const sumAllC = (n, cont) =>
 n === 0 ? cont(0) : sumAllC(n - 1, v => cont(v + n));

sumAllC(10000, console.log); // crash as earlier

Designing Functions - Recursion Chapter 9

[291]

Now, let's apply a simple rule: whenever you are going to return from a call, instead return
a thunk that will, when executed, do the call that you actually wanted to do. The following
code implements that change:

const sumAllT = (n, cont) =>
 n === 0 ? () => cont(0) : () => sumAllT(n - 1, v => () => cont(v + n));

Whenever there would have been a call to a function, we now return a thunk. How do we
get to run this function? This is the missing detail. You need an initial call that will invoke
sumAllT() the first time and (unless the function was called with a zero argument) a thunk
will be immediately returned. The trampoline function will call the thunk, and that will
cause a new call, and so on, until we eventually get a thunk that simply returns a value, and
then the calculation will be ended:

const sumAll2 = n => trampoline(sumAllT(n, x => x));

In fact, you probably wouldn't want a separate sumAllT() function, so you'd go for
something like this:

const sumAll3 = n => {
 const sumAllT = (n, cont) =>
 n === 0 ? () => cont(0) : () => sumAllT(n - 1, v => () => cont(v + n));

 return trampoline(sumAllT(n, x => x));
};

There's only one problem left: what would we do if the result of our recursive function
wasn't a value, but rather a function? The problem there would be on the trampoline()
code that, as long as the result of the thunk evaluation is a function, goes back again and
again to evaluate it. The simplest solution would be to return a thunk, but wrapped in an
object, as shown in the following code:

function Thunk(fn) {
 this.fn = fn;
}

var trampoline2 = thk => {
 while (typeof thk === "object" && thk.constructor.name === "Thunk") {
 thk = thk.fn();
 }
 return thk;
};

Designing Functions - Recursion Chapter 9

[292]

The difference now would be that, instead of returning a thunk, you'd write something as
return (v) => new Thunk(() => cont(v+n)), so our new trampolining function can
now distinguish an actual thunk (which is meant to be invoked and executed) from any
other kind of result (which is meant to be returned).

So if you happen to have a recursive algorithm, but it won't run because of stack limits, you
can fix it in a reasonable way by going through the following steps:

Changing all recursive calls to tail recursion using continuations1.
Replacing all return statements so that they'll return thunks2.
Replacing the call to the original function with a trampoline call to start the3.
calculations

Of course, this doesn't come free. You'll notice that, when using this mechanism, there's
extra work involving returning thunks, evaluating them, and so on, so you can expect the
total time to go up. Nonetheless, this is a cheap price to pay if the alternative is having a
nonworking solution to a problem!

Recursion elimination
There's yet one other possibility that you might want to explore, but that falls beyond the
realm of FP and into algorithm design. It's a computer science fact that any algorithm that is
implemented using recursion has an equivalent version that doesn't use recursion at all and
instead depends on a stack. There are ways to systematically transform recursive
algorithms into iterative ones, so, if you run out of all options (that is, if not even
continuations or thunks can help you), then you'd have a final opportunity to achieve your
goals by replacing all recursion with iteration. We won't be getting into this—as I said, this
elimination has little to do with FP—but it's important to know that the tool exists and
that you might be able to use it.

Summary
In this chapter, we saw how we can use recursion, a basic tool in FP, as a powerful
technique to create algorithms for problems that would probably require far more complex
solutions otherwise. We started by considering what recursion is and how to think
recursively in order to solve problems, then moved on to see some recursive solutions to
several problems in different areas, and ended by analyzing potential problems with deep
recursion and how to solve them.

Designing Functions - Recursion Chapter 9

[293]

In Chapter 10, Ensuring Purity – Immutability, we shall get back to a concept we saw earlier
in the book, function purity, and see some techniques that will help us guarantee that a
function won't have any side effects by ensuring the immutability of arguments and data
structures.

Questions
9.1. Into reverse: Can you program a reverse() function, but implement it in a recursive
fashion? Obviously, the best way to go about this would be using the standard string
reverse() method, as detailed in https:/ ​/​developer. ​mozilla. ​org/ ​en- ​US/​docs/ ​Web/
JavaScript/​Reference/ ​Global_ ​Objects/ ​Array/ ​reverse, but that wouldn't do for a
question on recursion, would it?

9.2. Climbing steps: Suppose you want to climb up a ladder with n steps. At each time you
raise your foot, you may opt to climb up one or two rungs. In how many different ways can
you climb up that ladder? For example, you can climb a four-rung ladder in five different
ways:

Always taking one step at a time
Always taking two steps at a time
Taking two steps first, then one, and then one
Taking one step first, then two, and then one
Taking one step first, then another one, and finishing with two

9.3. Longest common subsequence: A classic dynamic programming problem is as follows:
given two strings, find the length of the longest subsequence present in both of them. Be
careful: we define a subsequence as a sequence of characters that appear in the same
relative order, but not necessarily next to each other. For example, the longest common
subsequence of INTERNATIONAL and CONTRACTOR is N...T...R...A...T...O. Try it out
with or without memoizing and see the difference!

9.4. Symmetrical queens: In the eight queens puzzle that we previously solved, there is
only one solution that shows symmetry in the placement of the queens. Can you modify
your algorithm to find it?

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reverse
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reverse
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reverse
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reverse
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reverse
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reverse
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reverse
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reverse
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reverse
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reverse
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reverse
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reverse
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reverse
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reverse
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reverse
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reverse
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reverse
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reverse
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reverse
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reverse
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reverse
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reverse
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reverse
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reverse
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reverse
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reverse
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reverse
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reverse

Designing Functions - Recursion Chapter 9

[294]

9.5. Sorting recursively: There are many sorting algorithms that can be described with
recursion; can you implement them?

Selection sort: Find the maximum element of the array, remove it, recursively
sort the rest, and then push the maximum element to the end of the sorted rest.
Insertion sort: Take the first element of the array, sort the rest, and finish by
inserting the removed element into its correct place in the sorted rest.
Merge sort: Divide the array into two parts, sort each one, and finish by merging
the two sorted parts into a sorted list.

9.6. Completing callbacks: In our findR() function, we did not provide all possible
parameters to the cb() callback. Can you fix that? Your solution should be along the lines
of what we did for map() and other functions.

9.7. Recursive logic: We didn't get to code every() and some() using recursion: can you
do that?

9.8 What could go wrong? A developer decided that he could write a somewhat shorter
version of Quicksort. He reasoned that the pivot didn't need any special handling since it
would be set into its correct place anyway when sorting greaterEqual. Can you foresee
any possible problems with this? The following code highlights the changes that the
developer made with regard to the original version we saw earlier:

const quicksort = arr => {
 if (arr.length < 2) {
 return arr;

 } else {
 const pivot = arr[0];
 const smaller = arr.filter(x => x < pivot);
 const greaterEqual = arr.filter(x => x >= pivot);
 return [...quicksort(smaller), ...quicksort(greaterEqual)];
 }
};

Designing Functions - Recursion Chapter 9

[295]

9.9. More efficiency: Let's try to make quicksort() a bit more efficient by avoiding
having to call filter() twice. Along the lines of what we saw in the Calculating several
values at once section in Chapter 5, Programming Declaratively – A Better Style, write
a partition(arr, pr) function that ,given an array arr and a predicate fn, will return
two arrays: the values of arr for which fn is true in the first one, and the rest of the values
of arr in the second one:

const quicksort = arr => {
 if (arr.length < 2) {
 return arr;

 } else {
 const pivot = arr[0];
 const [smaller, greaterEqual] = partition(arr.slice(1), x => x <
pivot);
 return [...quicksort(smaller), pivot, ...quicksort(greaterEqual)];
 }
};

10
Ensuring Purity - Immutability

In Chapter 4, Behaving Properly – Pure Functions, when we considered pure functions and
their advantages, we saw that side effects such as modifying a received argument or a
global variable were frequent causes of impurity. Now, after several chapters dealing with
many aspects and tools of FP, let's talk about the concept of immutability: how to work with
objects in such a way that accidentally modifying them will become harder or, even better,
impossible.

We cannot force developers to work in a safe, guarded way, but if we find some way to
make data structures immutable (meaning that they cannot be directly changed, except
through some interface that never allows us to modify the original data and produces new
objects instead), then we'll have an enforceable solution. In this chapter, we will look at two
distinct approaches to working with such immutable objects and data structures:

Basic JavaScript ways, such as freezing objects, plus cloning to create new ones
instead of modifying existing objects
Persistent data structures, with methods that allow us to update them without
changing the original and without the need to clone everything either, for higher
performance

A warning: the code in this chapter isn't production-ready; I wanted to
focus on the main points and not on all the myriad details having to do
with properties, getters, setters, lenses, prototypes, and more that you
should take into account for a full, bulletproof, solution. For actual
development, I'd very much recommend going with a third-party library,
but only after checking that it really applies to your situation. We'll be
recommending several such libraries, but of course, there are many more
that you could use.

Ensuring Purity - Immutability Chapter 10

[297]

Going the straightforward JavaScript way
One of the biggest causes of side effects was the possibility of a function modifying global
objects or its arguments. All non-primitive objects are passed as references, so if/when you
modify them, the original objects will be changed. If we want to stop this (without just
depending on the goodwill and clean coding of our developers), we may want to consider
some straightforward JavaScript techniques to disallow those side effects:

Avoiding mutator functions that directly modify the object that they are applied
to
Using const declarations to prevent variables from being changed
Freezing objects so that they can't be modified in any way
Creating (changed) clones of objects to avoid modifying the original
Using getters and setters to control what is changed and how
Using a functional concept—lenses—to access and set attributes

Let's take a look at each technique in more detail.

Mutator functions
A common source of unexpected problems comes from the fact that several JavaScript
methods are actually mutators that modify the underlying object. In this case, by merely
using them, you will be causing a side effect, which you may not even recognize. Arrays
are the most basic sources of problems and the list of troublesome methods isn't short:

copyWithin() lets you copy elements within the array.
fill() fills an array with a given value.
push() and pop() let you add or delete elements at the end of an array.
shift() and unshift() work in the same way as push() and pop(), but at the
beginning of the array.
splice() lets you add or delete elements anywhere within the array.
reverse() and sort() modify the array in place, reversing its elements or
ordering them.

Refer to https:/ ​/​developer. ​mozilla. ​org/ ​en-​US/ ​docs/ ​Web/ ​JavaScript/
Reference/ ​Global_ ​Objects/ ​Array#Mutator_ ​methods for more on each
method.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array#Mutator_methods
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array#Mutator_methods
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array#Mutator_methods
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array#Mutator_methods
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array#Mutator_methods
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array#Mutator_methods
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array#Mutator_methods
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array#Mutator_methods
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array#Mutator_methods
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array#Mutator_methods
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array#Mutator_methods
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array#Mutator_methods
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array#Mutator_methods
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array#Mutator_methods
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array#Mutator_methods
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array#Mutator_methods
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array#Mutator_methods
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array#Mutator_methods
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array#Mutator_methods
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array#Mutator_methods
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array#Mutator_methods
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array#Mutator_methods
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array#Mutator_methods
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array#Mutator_methods
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array#Mutator_methods
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array#Mutator_methods
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array#Mutator_methods
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array#Mutator_methods

Ensuring Purity - Immutability Chapter 10

[298]

Let's take a look at an example we saw in the Argument mutation section of Chapter
4, Behaving Properly – Pure Functions:

const maxStrings = a => a.sort().pop();

let countries = ["Argentina", "Uruguay", "Brasil", "Paraguay"];

console.log(maxStrings(countries)); // "Uruguay"
console.log(countries); // ["Argentina", "Brasil", "Paraguay"]

Our maxStrings() function returns the highest value in the array, but also modifies the
original array; this is a side effect of the sort() and pop() mutator functions. In this case
and others, you might generate a copy of the array and then work with that: both the
spread operator and .slice() are useful:

const maxStrings2 = a => [...a].sort().pop();

const maxStrings3 = a => a.slice().sort().pop();

let countries = ["Argentina", "Uruguay", "Brasil", "Paraguay"];

console.log(maxStrings2(countries)); // "Uruguay"
console.log(maxStrings3(countries)); // "Uruguay"

console.log(countries); // ["Argentina", "Uruguay", "Brasil", "Paraguay"] -
unchanged

Both new versions of our maxStrings() functions are now functional, without side effects,
because the mutator methods have been applied to copies of the original argument.

Of course, setter methods are also mutators and will logically produce side effects because
they can do just about anything. If this is the case, you'll have to go for some of the other
solutions that will be described later in this chapter.

Constants
If the mutations don't happen because of using some JavaScript methods, then we might
want to attempt to use const definitions, but that just won't work. In JavaScript, a const
definition means that the reference to the object or array cannot change (you cannot assign a
different object to it) but you can still modify the properties of the object itself. We can see
this in the following code:

const myObj = {d: 22, m: 9};
console.log(myObj);

Ensuring Purity - Immutability Chapter 10

[299]

// {d: 22, m: 9}

myObj = {d: 12, m: 4};
// Uncaught TypeError: Assignment to constant variable.

myObj.d = 12; // but this is fine!
myObj.m = 4;
console.log(myObj);
// {d: 12, m: 4}

You cannot modify the value of myObj by assigning it a new value, but you can modify the
current value of myObj so that only the reference to an object is constant, and not the
object's values themselves. (By the way, this would have also happened with arrays.) So, if
you decide to use const everywhere, you will only be safe against direct assignments to
objects and arrays. More modest side effects, such as changing an attribute or an array
element, will still be possible, so this is not a solution.

There are two methods that can work: using freezing to provide unmodifiable structures,
and cloning to produce modified new ones. These are probably not the best ways to go
about forbidding objects from being changed but can be used as a makeshift solution. Let's
take a look at them in more detail, starting with freezing.

Freezing
If we want to avoid the possibility of a programmer accidentally or willingly modifying an
object, freezing it is a valid solution. After an object has been frozen, any attempts at
modifying it will silently fail—JavaScript won't report an error or throw an exception, but it
won't alter the object either. In the following example, if we attempt to make the same
changes we made in the previous section, they just won't have any effect, and myObj will be
unchanged:

const myObj = { d: 22, m: 9 };
Object.freeze(myObj);

myObj.d = 12; // won't have effect...
myObj.m = 4;

console.log(myObj);
// Object {d: 22, m: 9}

Ensuring Purity - Immutability Chapter 10

[300]

Don't confuse freezing with sealing: Object.seal(), when applied to an
object, prohibits adding or deleting properties to it. This means that the
structure of the object is immutable, but the attributes themselves can be
changed. Object.freeze() includes not only sealing properties but also
making them unchangeable. See https:/ ​/​developer. ​mozilla. ​org/ ​en/
docs/ ​Web/ ​JavaScript/ ​Reference/ ​Global_ ​Objects/ ​Object/ ​seal and
https:/ ​/​developer. ​mozilla. ​org/​en/ ​docs/ ​Web/ ​JavaScript/ ​Reference/
Global_ ​Objects/ ​Object/ ​freeze for more on this.

There is only one problem with this solution: freezing an object is a shallow operation that
freezes the attributes themselves, similar to what a const declaration does. If any of the
attributes are objects or arrays themselves, with further objects or arrays as properties, and
so on, they can still be modified. We will only be considering data here; you may also want
to freeze, say, functions, but for most use cases, it's data you want to protect:

let myObj3 = {
 d: 22,
 m: 9,
 o: {c: "MVD", i: "UY", f: {a: 56}}
};

Object.freeze(myObj3);
console.log(myObj3); // {d:22, m:9, o:{c:"MVD", i:"UY", f:{ a:56}}}

This is only partially successful, as we can see when we try changing some attributes:

myObj3.d = 8888; // wont' work, as earlier
myObj3.o.f.a = 9999; // oops, does work!!
console.log(myObj3); // {d:22, m:9, o:{c:"MVD", i:"UY", f:{ a:9999 }}}

Modifying myObj3.d didn't work because the object is frozen, but that doesn't extend to
objects within myObj3, so changing myObj3.o.f.a did work.

If we want to achieve real immutability for our object, we need to write a routine that will
freeze all the levels of an object. Fortunately, it's easy to achieve this by applying recursion.
(We saw similar applications of recursion in the Traversing a tree structure section of the
previous Chapter 9, Designing Functions - Recursion.) Mainly, the idea is to freeze the object
itself and then recursively freeze each of its properties. We must ensure that we only freeze
the object's own properties; we shouldn't mess with the prototype of the object, for
example:

const deepFreeze = obj => {
 if (obj && typeof obj === "object" && !Object.isFrozen(obj)) {
 Object.freeze(obj);
 Object.getOwnPropertyNames(obj).forEach(prop => deepFreeze(obj[prop]));

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/seal
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/seal
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/seal
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/seal
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/seal
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/seal
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/seal
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/seal
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/seal
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/seal
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/seal
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/seal
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/seal
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/seal
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/seal
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/seal
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/seal
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/seal
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/seal
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/seal
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/seal
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/seal
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/seal
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/seal
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/seal
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/seal
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze

Ensuring Purity - Immutability Chapter 10

[301]

 }

 return obj;
};

Note that, in the same way as Object.freeze() works, deepFreeze() also freezes the
object in place. I wanted to keep the original semantics of the operation so that the returned
object will always be the original one. If we wanted to work in a purer fashion, we should
make a copy of the original object first (we'll learn how to do this in the next section) and
then freeze that.

A small possible problem remains, but with a very bad result: what would happen if an
object included a reference to itself? We can avoid this if we skip freezing already frozen
objects: backward circular references would be ignored since the objects they refer to would
already be frozen. So, the logic we wrote took care of that problem and there's nothing
more to be done!

If we apply deepFreeze() to an object, we can safely pass it to any function, knowing that
there simply is no way in which it can be modified. You can also use this property to test
whether a function modifies its arguments: deep freeze them, call the function, and if the
function depends on modifying its arguments, it won't work because the changes will be
silently ignored. So, how can we return a result from a function if it involves a received
object? This can be solved in many ways. A simple one uses cloning, as we'll see.

Check the Questions section at the end of this chapter for another way of
freezing an object by means of proxies.

In this section, we dealt with one of the methods we can use to avoid changes in objects.
Now, let's look at an alternative involving cloning.

Cloning and mutating
If mutating an object isn't allowed, then you must create a new object. For example, if you
use Redux, a reducer is a function that receives the current state and an action (essentially,
an object with new data) and produces the new state. Modifying the current state is totally
forbidden and we could avoid this error by always working with frozen objects, as we saw
in the previous section. To fulfill the reducer's requirements, we have to be able to clone the
original state, as well as mutate it according to the received action. The resulting object will
become the new state.

Ensuring Purity - Immutability Chapter 10

[302]

You may want to revisit the More general looping section of Chapter 5,
Programming Declaratively – A Better Style, where we wrote a basic
objCopy() function that provides a different approach from the one
shown here.

To round things off, we should also freeze the returned object, just like we did with the
original state. But let's start at the beginning: how do we clone an object? Of course, you can
always do this by hand, but that's not something you'd really want to consider when
working with large, complex objects. For example, if you wanted to clone oldObject to
produce newObject, doing it by hand would imply a lot of code:

let oldObject = {
 d: 22,
 m: 9,
 o: {c: "MVD", i: "UY", f: {a: 56}}
};

let newObject = {
 d: oldObject.d,
 m: oldObject.m,
 o: {c: oldObject.o.c, i: oldObject.o.i, f: {a: oldObject.o.f.a}}
};

This manual solution is obviously a lot of work, and error-prone as well; you could easily
forget an attribute! Going for more automatic solutions, there are a couple of
straightforward ways of copying arrays or objects in JavaScript, but they have the same
shallowness problem. You can make a (shallow) copy of an object with Object.assign()
or by using spreading:

let newObject1 = Object.assign({}, myObj);
let newObject2 = {...myObj};

To create a (again, shallow) copy of an array, you can either use slice() or spreading, as
we saw in the Mutator functions section earlier in this chapter:

let myArray = [1, 2, 3, 4];
let newArray1 = myArray.slice();
let newArray2 = [...myArray];

What's the problem with these solutions? If an object or array includes objects (which may
themselves include objects), we get the same problem that we had when freezing: objects
are copied by reference, which means that a change in the new object will also imply
changing the old object:

let oldObject = {
 d: 22,

Ensuring Purity - Immutability Chapter 10

[303]

 m: 9,
 o: { c: "MVD", i: "UY", f: { a: 56 } }
};
let newObject = Object.assign({}, oldObject);

newObject.d = 8888;
newObject.o.f.a = 9999;

console.log(newObject);
// {d:8888, m:9, o: {c:"MVD", i:"UY", f: {a:9999}}} -- ok

console.log(oldObject);
// {d:22, m:9, o: {c:"MVD", i:"UY", f: {a:9999}}} -- oops!!

In this case, notice what happened when we changed some properties of newObject.
Changing newObject.d worked fine, but changing newObject.o.f.a also impacted
oldObject since newObject.o and oldObject.o are actually references to the very same
object.

There is a simple solution to this based on JSON. If we stringify() the original object
and then parse() the result, we'll get a new object that's totally separate from the old one:

const jsonCopy = obj => JSON.parse(JSON.stringify(obj));

By using JSON.stringify(), we can convert our object into an string.
Then, JSON.parse() creates a (new) object out of that string; simple! This works with both
arrays and objects, but there's a problem. If any of the properties of the object have a
constructor, they won't be invoked: the result will always be composed of plain JavaScript
objects. We can see this very simply with a Date():

let myDate = new Date();
let newDate = jsonCopy(myDate);
console.log(typeof myDate, typeof newDate); // object string

While myDate is an object, newDate turns out to be a string with a
value, "2019-11-08T01:32:56.365Z", which is the current date and time at the moment
we did the conversion.

We could do a recursive solution, just like we did with deep freezing, and the logic is quite
similar. Whenever we find a property that is really an object, we invoke the appropriate
constructor:

const deepCopy = obj => {
 let aux = obj;
 if (obj && typeof obj === "object") {
 aux = new obj.constructor();

Ensuring Purity - Immutability Chapter 10

[304]

 Object.getOwnPropertyNames(obj).forEach(
 prop => (aux[prop] = deepCopy(obj[prop]))
);
 }

 return aux;
};

Whenever we find that a property of an object is actually another object, we invoke its
constructor before continuing. This solves the problem we found with dates or, in fact, with
any object! If we run the preceding code, but using deepCopy() instead of jsonCopy(),
we'll get object object as output, as it should be. If we check the types and constructors,
everything will match. Furthermore, the data changing experiment will also work fine now:

let oldObject = {
 d: 22,
 m: 9,
 o: { c: "MVD", i: "UY", f: { a: 56 } }
};

let newObject = deepCopy(oldObject);
newObject.d = 8888;
newObject.o.f.a = 9999;

console.log(newObject);
// {d:8888, m:9, o:{c:"MVD", i:"UY", f:{a:9999}}}

console.log(oldObject);
// {d:22, m:9, o:{c:"MVD", i:"UY", f:{a:56}}} -- unchanged!

Let's check out the last few lines. Modifying newObject had absolutely no impact
on oldObject, so both objects are completely separate.

Now that we know how to copy an object, we can follow these steps:

Receive a (frozen) object as an argument1.
Make a copy of it, which won't be frozen2.
Take values from that copy that we can use in our code3.
Modify the copy at will4.
Freeze it5.
Return it as the result of the function6.

All of this is viable, though a bit cumbersome. So, let's add a couple of functions that will
help bring everything together.

Ensuring Purity - Immutability Chapter 10

[305]

Getters and setters
When following the steps provided at the end of the previous section, you'll notice that
every time you want to update a field, things become troublesome and prone to errors.
Let's use a common technique to add a pair of functions, getters, and setters. These are as
follows:

getters can be used to get values from a frozen object by unfreezing them so that
they can be used.
setters allow you to modify any property of an object. You can do this by creating
a new and updated version of it, leaving the original untouched.

Let's build our getters and setters.

Getting a property
Back in the Getting a property from an object section of Chapter 6, Producing Functions
– Higher-Order Functions, we wrote a simple getField() function that could handle getting
a single attribute out of an object. (See question 6.5 in that chapter for the missing
companion setField() function.) Let's take a look at how we can code this. We can have a
straightforward version, as follows:

const getField = attr => obj => obj[attr];

We can even go one better by applying currying so that we have a more general version:

const getField = curry((attr, obj) => obj[attr]);

We could get a deep attribute out of an object by composing a series of applications of
getField() calls, but that would be rather cumbersome. Instead, let's create a function
that will receive a path—an array of field names—and return the corresponding part of the
object or be undefined if the path doesn't exist. Using recursion is appropriate here and
simplifies coding! Observe the following code:

const getByPath = (arr, obj) => {
 if (arr[0] in obj) {
 return arr.length > 1
 ? getByPath(arr.slice(1), obj[arr[0]])
 : deepCopy(obj[arr[0]]);
 } else {
 return undefined;
 }
};

Ensuring Purity - Immutability Chapter 10

[306]

Basically, we look for the first string in the path to see whether it exists in the object. If it
doesn't, the operation fails, so we return undefined. If successful, and we have still more
strings in the path, we use recursion to keep digging into the object; otherwise, we return a
deep copy of the value of the attribute.

Once an object has been frozen, you cannot defrost it, so we must resort to making a new
copy of it; deepCopy() is appropriate for doing this. Let's try out our new function:

let myObj3 = {
 d: 22,
 m: 9,
 o: {c: "MVD", i: "UY", f: {a: 56}}
};
deepFreeze(myObj3);

console.log(getByPath(["d"], myObj3)); // 22
console.log(getByPath(["o"], myObj3)); // {c: "MVD", i: "UY", f: {a: 56}}
console.log(getByPath(["o", "c"], myObj3)); // "MVD"
console.log(getByPath(["o", "f", "a"], myObj3)); // 56

We can also check that returned objects are not frozen:

let fObj = getByPath(["o", "f"], myObj3);
console.log(fObj); // {a: 56}

fObj.a = 9999;
console.log(fObj); // {a: 9999} -- it's not frozen

Here, you can see that we could directly update the fObj object, so that means it wasn't
frozen. Now that we've written our getter, we can move on to creating a setter.

Setting a property by path
Now, we can code a similar setByPath() function that will take a path, a value, and an
object and update an object. This is not a pure function, but we'll use it to write a pure one;
wait and see! Here is the code:

const setByPath = (arr, value, obj) => {
 if (!(arr[0] in obj)) {
 obj[arr[0]] =
 arr.length === 1 ? null : Number.isInteger(arr[1]) ? [] : {};
 }

 if (arr.length > 1) {
 return setByPath(arr.slice(1), value, obj[arr[0]]);

Ensuring Purity - Immutability Chapter 10

[307]

 } else {
 obj[arr[0]] = value;
 return obj;
 }
};

Here, we are using recursion to get into the object, creating new attributes if needed, until
we have traveled the full length of the path. One important detail when creating attributes
is whether we need an array or an object. We can determine that by checking the next
element in the path: if it's a number, then we need an array; otherwise, an object will do.
When we get to the end of the path, we simply assign the new given value.

If you like this way of doing things, you should check out the seamless-
immutable library, which works in this fashion. The seamless part of the
name alludes to the fact that you still work with normal objects—albeit
frozen—which means you can use map(), reduce(), and so on. You can
read more about this at https:/ ​/ ​github. ​com/ ​rtfeldman/ ​seamless-
immutable.

Now, you can write a function that will be able to take a frozen object and update an
attribute within it, returning a new, also frozen, object:

const updateObject = (arr, obj, value) => {
 let newObj = deepCopy(obj);
 setByPath(arr, value, newObj);
 return deepFreeze(newObj);
};

Let's check out how it works. To do this, we'll run several updates on the myObj3 object we
have been using:

let new1 = updateObject(["m"], myObj3, "sep");
// {d: 22, m: "sep", o: {c: "MVD", i: "UY", f: {a: 56}}};

let new2 =updateObject(["b"], myObj3, 220960);
// {d: 22, m: 9, o: {c: "MVD", i: "UY", f: {a: 56}}, b: 220960};

let new3 =updateObject(["o", "f", "a"], myObj3, 9999);
// {d: 22, m: 9, o: {c: "MVD", i: "UY", f: {a: 9999}}};

let new4 =updateObject(["o", "f", "j", "k", "l"], myObj3, "deep");
// {d: 22, m: 9, o: {c: "MVD", i: "UY", f: {a: 56, j: {k: "deep"}}}};

https://github.com/rtfeldman/seamless-immutable
https://github.com/rtfeldman/seamless-immutable
https://github.com/rtfeldman/seamless-immutable
https://github.com/rtfeldman/seamless-immutable
https://github.com/rtfeldman/seamless-immutable
https://github.com/rtfeldman/seamless-immutable
https://github.com/rtfeldman/seamless-immutable
https://github.com/rtfeldman/seamless-immutable
https://github.com/rtfeldman/seamless-immutable
https://github.com/rtfeldman/seamless-immutable
https://github.com/rtfeldman/seamless-immutable
https://github.com/rtfeldman/seamless-immutable

Ensuring Purity - Immutability Chapter 10

[308]

Given this pair of functions, we have finally gotten ourselves a way to keep immutability:

Objects must be frozen from the beginning
Getting data from objects is done with getByPath()
Setting data is done with updateObject(), which internally uses setByPath()

In this section, we learned how to get and set values from an object in a way that keeps
objects immutable. Let's now take a look at a variation of this concept—lenses—that will
allow us to not only get and set values but also apply a function to the data.

Lenses
There's another way to get and set values, which goes by the name of optics, including
lenses and prisms (which we'll look at later in this chapter). What are lenses? They are
functional ways of focusing (another optical term!) on a given spot in an object so that we
can access or modify its value in a non-mutating way. In this section, we'll look at some
examples of usage of lenses and consider two implementations: first, a simple one based on
objects, and then a more complete one that's interesting because of some of the techniques
we will be using.

Several libraries provide full implementations of lenses that are
production-ready and more complete than what we saw in this chapter;
for example, check out Ramda: http:/ ​/​ramdajs. ​com/​docs/ ​#lens

Working with lenses
Both implementations will share basic functionality, so let's start by skipping what lenses
are or how they are built and look at some examples of their usage instead. First, let's create
a sample object that we will work with: some data about a writer (his name sounds
familiar) and his books:

const author = {
 user: "fkereki",
 name: {
 first: "Federico",
 middle: "",
 last: "Kereki",
 },
 books: [
 {name: "Google Web Toolkit", year: 2010},

http://ramdajs.com/docs/#lens.
http://ramdajs.com/docs/#lens.
http://ramdajs.com/docs/#lens.
http://ramdajs.com/docs/#lens.
http://ramdajs.com/docs/#lens.
http://ramdajs.com/docs/#lens.
http://ramdajs.com/docs/#lens.
http://ramdajs.com/docs/#lens.
http://ramdajs.com/docs/#lens.
http://ramdajs.com/docs/#lens.
http://ramdajs.com/docs/#lens.

Ensuring Purity - Immutability Chapter 10

[309]

 {name: "Functional Programming", year: 2017},
 {name: "Javascript Cookbook", year: 2018},
],
};

We shall assume that several functions exist; we'll see how they are implemented in
upcoming sections. A lens depends on having a getter and a setter for a given attribute, and
we can build one by directly using lens() or by means of lensProp() for briefer coding.
Let's create a lens for the user attribute:

const lens1 = lens(getField("user"), setField("user"));

This defines a lens that focuses on the user attribute. Since this is a common operation, it
can also be written more compactly:

const lens1 = lensProp("user");

Both of these lenses allow us to focus on the user attribute of whatever object we use them
with. With lenses, there are three basic operations, and we'll follow tradition by using the
names that most (if not all) libraries follow:

view(): Used to access the value of an attribute
set(): Used to modify the value of an attribute
over(): Used to apply a function to an attribute and change its value

These functions are curried (as we saw in the previous chapter). So, to access the user
attribute, we can write something similar to the following:

console.log(view(lens1, author));
console.log(view(lens1)(author));
/*
 fkereki, in both cases
*/

The view() function takes a lens as its first parameter. When this is applied to an object, it
produces the value of whatever the lens focuses on—in our case, the user attribute. Of
course, you could apply sequences of view() functions to get to deeper parts of the object:

console.log(view(lensProp("last"), view(lensProp("name"), author)));
/*
 Kereki
*/

Ensuring Purity - Immutability Chapter 10

[310]

Instead of writing such a series of view() calls, we'll compose lenses so that we can focus
more deeply on an object. Let's take a look at one final example, which shows how
we access an array:

const lensBooks = lensProp("books");
console.log(
 "The author wrote " + view(lensBooks, author).length + " book(s)"
);
/*
 The author wrote 3 book(s)
*/

In the future, should there be any change in the author structure, a simple change in the
lensBooks definition would be enough to keep the rest of the code unchanged.

You can also use lenses to access other structures: refer to question 10.5 for
a way to use lenses with arrays, and question 10.6 for how to use lenses so
that they work with maps.

Moving on, the set() function allows us to set the value of the focus of the lens:

console.log(set(lens1, "FEFK", author));
/*
 user: "FEFK",
 name: {first: "Federico", middle: "", last: "Kereki"},
 books: [
 {name: "Google Web Toolkit", year: 2010},
 {name: "Functional Programming", year: 2017},
 {name: "Javascript Cookbook", year: 2018},
],
}
*/

The result of set() is a new object with a changed value. Using over() is similar in that a
new object is returned, but in this case, the value is changed by applying a mapping
function to it:

const newAuthor = over(lens1, x => x + x + x, author);
console.log(newAuthor);
/*
 user: "fkerekifkerekifkereki",
 name: {first: "Federico", middle: "", last: "Kereki"},
 books: [
 {name: "GWT", year: 2010},
 {name: "FP", year: 2017},
 {name: "CB", year: 2018},

Ensuring Purity - Immutability Chapter 10

[311]

],
}
*/

There are more functions you can do with lenses, but we'll just go with these three for now.

Take a look at question 10.4 for an interesting idea on how to use lenses to
access virtual attributes that don't actually exist in an object.

To finish this section, I'd recommend looking at some third-party optics libraries to get a
glimpse into all the functionality that's available. Now that we have an idea of what to
expect when using lenses, let's learn how to implement them.

Implementing lenses with objects
The simplest way to implement a lens is by representing it with an object with just two
properties: a getter and a setter. In this case, we'd have something like this:

const lens = (getter, setter) => ({getter, setter});

This is easy to understand: given a getter and a setter, lens() just creates an object with
those two attributes. With this definition, lensProp() would be as follows:

const lensProp = attr => lens(getField(attr), setField(attr));

The first function, lensProp(), creates a getter/setter pair by using getField() and
setField(); very straightforward. Now that we have our lens, how do we implement the
three basic functions that we saw in the previous section? Viewing an attribute just requires
applying the getter:

const view = curry((lens, obj) => lens.getter(obj));

To be consistent with the rest of the functions we've been using, we are going to apply
currying. Similarly, setting an attribute is a matter of applying the setter:

const set = curry((lens, newVal, obj) => lens.setter(newVal, obj));

Ensuring Purity - Immutability Chapter 10

[312]

Finally, applying a mapping function to an attribute is sort of a two-for-one operation: we
use the getter to get the current value of the attribute, we apply the function to it, and we
use the setter to store the calculated result:

const over = curry((lens, mapfn, obj) =>
 lens.setter(mapfn(lens.getter(obj)), obj)
);

Now that we can do all three operations, we have working lenses! What about
composition? Lenses have a peculiar characteristic: they're composed backward, or left-to-
right, so you start with the most generic and end with the most specific. That certainly goes
against intuition: we'll learn about this in more detail in the next section, but for now, we'll
keep with tradition:

const composeTwoLenses = (lens1, lens2) => ({
 getter: obj => lens2.getter(lens1.getter(obj)),
 setter: curry((newVal, obj) =>
 lens1.setter(lens2.setter(newVal, lens1.getter(obj)), obj)
),
});

The code is sort of impressive, but not too hard to understand. The getter for the
composition of two lenses is the result of using the first lens' getter and then applying the
second lens' getter to that result. The setter for the composition is just a tad more complex,
but follows along the same lines; can you see how it works? Now, we can compose lenses
easily; let's start with an invented nonsensical object:

const deepObject = {
 a: 1,
 b: 2,
 c: {
 d: 3,
 e: {
 f: 6,
 g: {i: 9, j: {k: 11}},
 h: 8,
 },
 },
};

Now, we can define a few lenses:

const lC = lensProp("c");
const lE = lensProp("e");
const lG = lensProp("g");
const lJ = lensProp("j");

Ensuring Purity - Immutability Chapter 10

[313]

We can try composing our new lens in a couple of ways, just for variety, and to check that
everything works:

const lJK = composeTwoLenses(lJ, lK);
const lGJK = composeTwoLenses(lG, lJK);
const lEGJK = composeTwoLenses(lE, lGJK);
const lCEGJK1 = composeTwoLenses(lC, lEGJK);
console.log(view(lCEGJK1)(deepObject));

const lCE = composeTwoLenses(lC, lE);
const lCEG = composeTwoLenses(lCE, lG);
const lCEGJ = composeTwoLenses(lCEG, lJ);
const lCEGJK2 = composeTwoLenses(lCEGJ, lK);
console.log(view(lCEGJK2)(deepObject));

/*
 11 both times
*/

With lCEGJ1, we composed some lenses, starting with the latter ones. With lCEGJ2, we
started with the lenses at the beginning, but the results are the same. Now, let's try setting
some values. We want to get down to the k attribute and set it to 60. We can do this by
using the same lens we just applied:

const setTo60 = set(lCEGJ1, 60, deepObject);
/*
 {a: 1, b: 2, c: {d: 3, e: {f: 6, g: {i: 9, j: { k: 60 }}, h: 8}}}
*/

The composed lens worked perfectly, and the value was changed. (Also, a new object was
returned; the original is unmodified, as we wanted.) To finish, let's also verify that we can
do over() with our lens and try to duplicate the k value so that it becomes 22. Just for
variety, let's use the other composed lens, even though we know that it works in the same
way:

const setToDouble = over(lCEGJK2, x => x * 2, deepObject);
/*
 {a: 1, b: 2, c: {d: 3, e: {f: 6, g: {i: 9, j: { k: 22 }}, h: 8}}}
*/

Now, we have learned how to implement lenses in a simple fashion. However, let's
consider a different way of achieving the same objective by using actual functions to
represent a lens. This will allow us to do composition in the standard way, without the
need for any special lens function.

Ensuring Purity - Immutability Chapter 10

[314]

Implementing lenses with functions
The previous implementation of lenses with objects works well, but we want to look at a
different way of doing things that will let us work with more advanced functional ideas.
This will involve some concepts we'll be analyzing in more detail in Chapter 12, Building
Better Containers – Functional Data Types, but here, we'll use just what we need so that you
don't have to go and read that chapter now! Our lenses will work in the same way that the
preceding ones did, except that since they will be functions, we'll be able to compose them
with no special composing code.

What's the key concept here? A lens will be a function, based on a getter and a setter pair,
that will construct a container (actually an object, but let's go with the container name) with
a value attribute and a map method (in Chapter 12, Building Better Containers – Functional
Data Types, we'll see that this is a functor, but you don't need to know that now). By having
specific mapping methods, we'll implement our view(), set(), and over() functions.
Our lens() function is as follows. We'll explain the details of this later:

const lens = (getter, setter) => fn => obj =>
 fn(getter(obj)).map(value => setter(value, obj));

Let's consider its parameters:

The getter and setter parameters are the same as before; we can even use the
very same lensProp() function that we used earlier in this chapter.
The fn function is the magic sauce that makes everything work: depending on
what we want to do with the lens, we'll provide a specific function—more on this
later!
The obj parameter is the object that we want to apply the lens to.

Let's code our view() function. For this, we'll need an auxiliary class, Constant, that,
given a value, v, produces a container with that value, and a map function that returns the
very same container:

class Constant {
 constructor(v) {
 this.value = v;
 this.map = () => this;
 }
}

With this, we can now code view():

const view = curry(
 (lensAttr, obj) => lensAttr(x => new Constant(x))(obj).value

Ensuring Purity - Immutability Chapter 10

[315]

);

const user = view(lensProp("user"), author);
/*
 fkereki
*/

What happens here? Let's follow this step by step; it's a bit tricky!

We use lensProp() to create a lens focusing on the user attribute.1.
Our view() function passes the constant-building function to lens().2.
Our lens() function uses the getter to access the user attribute in the author3.
object.
Then, the value that we received is used to create a constant container.4.
The map() method is invoked—that method returns the very same container.5.
The value attribute of the container is accessed, and that's the value that the6.
getter retrieved in step 3; wow!

With that under our belt, let's move on to set() and over(), which will require a different
auxiliary function, to create a container whose value may vary:

class Variable {
 constructor(v) {
 this.value = v;
 this.map = fn => new Variable(fn(v));
 }
}

In this case (as opposed to Constant objects), the map() method really does something:
when provided with a function, it applies it to the value of the container and returns a new
Variable object with the resulting value. The set() function can be implemented easily:

const set = curry(
 (lensAttr, newVal, obj) =>
 lensAttr(() => new Variable(newVal))(obj).value
);

const changedUser = set(lensProp("user"), "FEFK", author);
/*
{
 user: "FEFK",
 name: {first: "Federico", middle: "", last: "Kereki"},
 books: [
 {name: "GWT", year: 2010},
 {name: "FP", year: 2017},

Ensuring Purity - Immutability Chapter 10

[316]

 {name: "CB", year: 2018},
],
};
*/

In this case, when the lens invokes the container's map() method, it will produce a new
container with a new value, and that makes all the difference. To understand how this
works, follow the same six steps we saw for get()—the only difference will be in step 5,
where a new, different container is produced.

Now that we've survived this (tricky indeed!) code, the over() function is simple, and the
only difference is that instead of mapping to a given value, you use the mapping mapfn
function provided to compute the new value for the container:

const over = curry(
 (lensAttr, mapfn, obj) =>
 lensAttr(x => new Variable(mapfn(x)))(obj).value
);

const newAuthor = over(lensProp("user"), x => x + x + x, author);
/*
 user: "fkerekifkerekifkereki",
 name: {first: "Federico", middle: "", last: "Kereki"},
 books: [
 {name: "GWT", year: 2010},
 {name: "FP", year: 2017},
 {name: "CB", year: 2018},
],
}
*/

As you can see, the difference between set() and over() is that, in the former case, you
provide the value to replace the original one, while in the latter case, you provide a function
to calculate the new value. Other than that, both are similar.

To finish, let's verify that compose() can be applied to our functor-based lenses:

const lastName = view(
 compose(
 lensProp("name"),
 lensProp("last")
)
)(author);
/*
 Kereki
*/

Ensuring Purity - Immutability Chapter 10

[317]

Here, we created two individual lenses for name and last, and we composed them with
the very same compose() function that we developed back in Chapter 8, Connecting
Functions – Pipelining and Composition. Using this composite lens, we focused on the last
name of the author without any problem, so everything worked as expected.

It seems to go against logic that lenses should be composed from left to
right; this appears to be backward. This is something that troubles
developers, and if you Google for an explanation, you'll find many. To
combat this question on your own, I suggest spelling out how compose()
works in full—two functions will be enough—and then substitute the
definitions of lenses; you'll see why and how everything works out.

Now that we've looked at lenses, we can move on and look at prisms, another optics tool.

Prisms
Lenses, as we saw in the previous section, are useful for working with product types.
However, prisms are useful for working with sum types. But what are they? (We'll look at
products and unions in more detail in the Data types section of the next chapter.) The idea is
that a product type is always built out of the same options, such as an object from a
class, while a sum type will likely have different structures—extra or missing attributes, for
example. When you use a lens, you assume that the object that you'll be applying it to has a
known structure with no variations, but what do you use if the object may have different
structures? The answer is prisms. Let's take a look at how they are used first; then, we'll
look at their implementation.

Working with prisms
Working with prisms is similar to using lenses, except for what happens when an attribute
is not present. Let's take a look at an example from the previous section:

const author = {
 user: "fkereki",
 name: {
 first: "Federico",
 middle: "",
 last: "Kereki"
 },
 books: [
 { name: "GWT", year: 2010 },
 { name: "FP", year: 2017 },
 { name: "CB", year: 2018 }

Ensuring Purity - Immutability Chapter 10

[318]

]
};

If we wanted to access the user attribute using prisms, we would write something like the
following—don't worry about the details; we'll look at the actual implementation later:

const pUser = prismProp("user");

console.log(review(pUser, author).toString());

/*
 fkereki
*/

Here, we define a prism using a prismProp() function, which parallels our
previous lensProp() one. Then, we use the prism with the preview() function, which is
analog to get() with lenses, and the result is the same as if we had used lenses; no
surprises there. What would have happened if we asked for a non-existing pseudonym
attribute? Let's see:

const pPseudonym = prismProp("pseudonym");

console.log(preview(pPseudonym, author).toString());
/*
 undefined
*/

So far, we may not be able to see any differences, but let's see what happens if we try to
compose lenses or prisms with several missing attributes. Say you wanted to access a
(missing!) pseudonym.usedSince attribute with lenses, without taking precautions and
checking that the attributes exist. Here, you would get the following output:

const lPseudonym = lensProp("pseudonym");
const lUsedSince = lensProp("usedSince");

console.log(
 "PSEUDONYM, USED SINCE",
 view(compose(lPseudonym, lUsedSince))(author)
);
/*
 TypeError: Cannot read property 'usedSince' of undefined
 .
 . many more error lines, snipped out
 .
*/

Ensuring Purity - Immutability Chapter 10

[319]

On the other hand, since prisms already take missing values into account, this would cause
no problems, and we'd simply get an undefined result:

const pUsedSince = prismProp("usedSince");

console.log(
 "PSEUDONYM, USED SINCE",
 review(compose(pPseudonym, pUsedSince))(author).toString()
);
/*
 undefined
*/

What happens if we want to set a value? The analog function to set() is review(); let's
take a look at how it would work. The idea is that whatever attribute we specify will be set,
if, and only if, the attribute already exists. So, if we attempt to change the user.name
attribute, this will work:

const fullAuthor2 = review(
 compose(prismProp("name"), prismProp("first")),
 "FREDERICK",
 author
);

/*
{ user: 'fkereki',
 name: { first: 'FREDERICK', middle: '', last: 'Kereki' },
 books:
 [{ name: 'GWT', year: 2010 },
 { name: 'FP', year: 2017 },
 { name: 'CB', year: 2018 }] }
*/

However, if we try to modify the (non-existent) pseudonym attribute, the original,
unchanged object will be returned:

const fullAuthor3 = review(pPseudonym, "NEW ALIAS", author);

/*
{ user: 'fkereki',
 name: { first: 'Federico', middle: '', last: 'Kereki' },
 books:
 [{ name: 'GWT', year: 2010 },
 { name: 'FP', year: 2017 },
 { name: 'CB', year: 2018 }] }
*/

Ensuring Purity - Immutability Chapter 10

[320]

So, using prisms takes care of all possible missing or optional fields. How do we implement
this new optic? Let's take a look.

Implementing prisms
How do we implement prisms? We will take our cue from our lenses implementation and
make a few changes. When getting an attribute, we must check whether the object we are
processing is not null or undefined and whether the attribute we want is in the object.
We can make do by making small changes to our original getField() function:

const getFieldP = curry((attr, obj) =>
 obj && attr in obj ? obj[attr] : undefined
);

Here, we're checking for the existence of the object and the attribute: if everything's fine, we
return obj[attr]; otherwise, we return undefined otherwise. The changes for
setField() are very similar:

const setFieldP = curry((attr, value, obj) =>
 obj && attr in obj ? { ...obj, [attr]: value } : { ...obj }
);

If the object and the attribute both exist, we return a new object by changing the attribute's
value; otherwise, we return a copy of the object. That's all there is to it!

Now that we've learned how to access objects in functional ways; let's analyze persistent
data structures that can be modified in very efficient ways, without the need for a full copy
of the original object.

Creating persistent data structures
If you want to change something in a data structure and you just go and change it, your
code will be full of side effects. On the other hand, copying complete structures every time
is a waste of time and space. There's a middle ground to this that has to do with persistent
data structures, which, if handled correctly, let you apply changes while creating new
structures in an efficient way.

Ensuring Purity - Immutability Chapter 10

[321]

Given that there are many possible data structures you could work with, let's just take a
look at a few examples:

Working with lists, one of the simplest data structures
Working with objects, a very common necessity in JavaScript programs
Dealing with arrays, which will prove to be harder to work with

Let's get started!

Working with lists
Let's consider a simple procedure: suppose you have a list and you want to add a new
element to it. How would you do this? Here, we can assume that each node is a NodeList
object:

class ListNode {
 constructor(value, next = null) {
 this.value = value;
 this.next = next;
 }
}

A possible list would be as follows, where a list variable would point to the first element.
Take a look at the following diagram; can you tell what is missing in the list and where?

Figure 10.1: The initial list

If you wanted to add D between B and F (the sample list is something musicians will
understand: the Circle of Thirds, a musical concept, but missing the D note), the simplest
solution would be to add a new node and change an existing one. This would result in the
following:

Figure 10.2: The list now has a new element – we had to modify an existing one to perform the addition

Ensuring Purity - Immutability Chapter 10

[322]

However, working in this way is obviously non-functional and it's clear we are modifying
data. There is a different way of working, and that's by creating a persistent data structure,
in which all the alterations (insertions, deletions, and modifications) are done separately,
being careful not to modify existing data. On the other hand, if some parts of the structure
can be reused, this is done to gain in performance. Doing a persistent update would return
a new list, with some nodes that are duplicates of some previous ones, but with no changes
whatsoever to the original list. This can be seen in the following diagram:

Figure 10.3: The dotted elements show the newly returned list, which shares some elements with the old one

Updating a structure in this way requires duplicating some elements to avoid modifying
the original structure, but part of the list is shared.

Of course, we will also deal with updates or deletions. Starting again with the list shown in
the following diagram, if we wanted to update its fourth element, the solution would imply
creating a new subset of the list, up to and including the fourth element, while keeping the
rest unchanged:

Figure 10.4: Our list, with a changed element

Ensuring Purity - Immutability Chapter 10

[323]

Removing an element would also be similar. Let's do away with the third element, F, in the
original list, as follows:

Figure 10.5: The original list, after removing the third element in a persistent way

Working with lists or other structures can always be solved to provide data persistence. For
now, focus on what will probably be the most important kind of work for us: dealing with
simple JavaScript objects. After all, all data structures are JavaScript objects, so if we can
work with objects, we can work with other structures.

Updating objects
This kind of method can also be applied to more common requirements, such as modifying
an object. This is a very good idea for, say, Redux users: a reducer can be programmed so
that it will receive the old state as a parameter and produce an updated version with the
minimum needed changes, without altering the original state in any way.

Imagine you had the following object:

myObj = {
 a: ...,
 b: ...,
 c: ...,
 d: {
 e: ...,
 f: ...,
 g: {
 h: ...,
 i: ...
 }
 }
};

Ensuring Purity - Immutability Chapter 10

[324]

Let's assume you wanted to modify the value of the myObj.d.f attribute, but working in a
persistent way. Instead of copying the full object (with the deepCopy() function that we
used earlier), we could create a new object that has several attributes in common with the
previous object, but new ones for the modified ones. This can be seen in the following
diagram:

Figure 10.6: A persistent way of editing an object, that is, by sharing some attributes and creating others

The old and new objects share most of the attributes, but there are new d and f attributes,
so you managed to minimize the changes when creating the new object.

If you want to do this by hand, you would have to write, in a very cumbersome way,
something like the following. Most attributes are taken from the original object, but d and
d.f are new:

newObj = {
 a: myObj.a,
 b: myObj.b,
 c: myObj.c,
 d: {
 e: myObj.d.e,
 f: the new value,
 g: myObj.d.g
 }
};

Ensuring Purity - Immutability Chapter 10

[325]

We saw some code similar to this earlier in this chapter when we decided to work on a
cloning function. Here, let's go for a different type of solution. In fact, this kind of update
can be automated:

const setIn = (arr, val, obj) => {
 const newObj = Number.isInteger(arr[0]) ? [] : {};

 Object.keys(obj).forEach(k => {
 newObj[k] = k !== arr[0] ? obj[k] : null;
 });

 newObj[arr[0]] =
 arr.length > 1 ? setIn(arr.slice(1), val, obj[arr[0]]) : val;
 return newObj;
};

The logic is recursive, but not too complex. First, we figure out, at the current level, what
kind of object we need: either an array or an object. Then, we copy all the attributes from
the original object to the new one, except the property we are changing. Finally, we set that
property to the given value (if we have finished with the path of property names) or we use
recursion to go deeper with the copy.

Note the order of the arguments: first the path, then the value, and finally
the object. We are applying the concept of putting the most stable
parameters first and the most variable last. If you curry this function, you
can apply the same path to several different values and objects, and if you
fix the path and the value, you can still use the function with different
objects.

Let's give this logic a try. We'll start with a nonsensical object, but with several levels and
even an array of objects for variety:

let myObj1 = {
 a: 111,
 b: 222,
 c: 333,
 d: {
 e: 444,
 f: 555,
 g: {
 h: 666,
 i: 777
 },
 j: [{k: 100}, {k: 200}, {k: 300}]
 }
};

Ensuring Purity - Immutability Chapter 10

[326]

We can test this by changing myObj.d.f to a new value:

let myObj2 = setIn(["d", "f"], 88888, myObj1);

/*
{
 a: 111,
 b: 222,
 c: 333,
 d: {
 e: 444,
 f: 88888,
 g: {h: 666, i: 777},
 j: [{k: 100}, {k: 200}, {k: 300}]
 }
}
*/

console.log(myObj.d === myObj2.d); // false
console.log(myObj.d.f === myObj2.d.f); // false
console.log(myObj.d.g === myObj2.d.g); // true

The logs at the bottom verify that the algorithm is working correctly: myObj2.d is a new
object, but myObj2.d.g is reusing the value from myObj.

Updating the array in the second object lets us test how the logic works in those cases:

let myObj3 = setIn(["d", "j", 1, "k"], 99999, myObj2);
/*
{
 a: 111,
 b: 222,
 c: 333,
 d: {
 e: 444,
 f: 88888,
 g: {h: 666, i: 777},
 j: [{k: 100}, {k: 99999}, {k: 300}]
 }
}
*/
console.log(myObj.d.j === myObj3.d.j); // false
console.log(myObj.d.j[0] === myObj3.d.j[0]); // true
console.log(myObj.d.j[1] === myObj3.d.j[1]); // false
console.log(myObj.d.j[2] === myObj3.d.j[2]); // true

Ensuring Purity - Immutability Chapter 10

[327]

We can compare the elements in the myObj.d.j array with the ones in the newly created
object. You will see that the array is a new one, but two of the elements (the ones that
weren't updated) are still the same objects that were in myObj.

This obviously isn't enough to get by. Our logic can update an existing field, or even add it
if it wasn't there, but you'd also need to eliminate and attribute. Libraries usually provide
many more functions, but let's work on the deletion of an attribute for now so that we can
look at some of the other important structural changes we can make to an object:

const deleteIn = (arr, obj) => {
 const newObj = Number.isInteger(arr[0]) ? [] : {};

 Object.keys(obj).forEach(k => {
 if (k !== arr[0]) {
 newObj[k] = obj[k];
 }
 });

 if (arr.length > 1) {
 newObj[arr[0]] = deleteIn(arr.slice(1), obj[arr[0]]);
 }
 return newObj;
};

The logic here is similar to that of setIn(). The difference is that we don't always copy all
the attributes from the original object to the new one: we only do that if we haven't arrived
at the end of the array of path properties. Continuing with the series of tests after the
updates, we get the following:

myObj4 = deleteIn(["d", "g"], myObj3);
myObj5 = deleteIn(["d", "j"], myObj4);

// {a: 111, b: 222, c: 333, d: {e: 444, f: 88888}};

With this pair of functions, we can manage to work with persistent objects by making
changes, additions, and deletions in an efficient way that won't create new objects
needlessly.

The most well-known library for working with immutable objects is the
appropriately named immutable.js, which can be found at https:/ ​/
facebook. ​github. ​io/ ​immutable- ​js/ ​. The only weak point about it is its
notoriously obscure documentation. However, there's an easy solution for
that: check out The Missing Immutable.js Manual with all the Examples you'll
ever need at http:/ ​/ ​untangled. ​io/ ​the- ​missing- ​immutable- ​js- ​manual/ ​
and you won't have any trouble!

https://facebook.github.io/immutable-js/
https://facebook.github.io/immutable-js/
https://facebook.github.io/immutable-js/
https://facebook.github.io/immutable-js/
https://facebook.github.io/immutable-js/
https://facebook.github.io/immutable-js/
https://facebook.github.io/immutable-js/
https://facebook.github.io/immutable-js/
https://facebook.github.io/immutable-js/
https://facebook.github.io/immutable-js/
https://facebook.github.io/immutable-js/
https://facebook.github.io/immutable-js/
https://facebook.github.io/immutable-js/
http://untangled.io/the-missing-immutable-js-manual/
http://untangled.io/the-missing-immutable-js-manual/
http://untangled.io/the-missing-immutable-js-manual/
http://untangled.io/the-missing-immutable-js-manual/
http://untangled.io/the-missing-immutable-js-manual/
http://untangled.io/the-missing-immutable-js-manual/
http://untangled.io/the-missing-immutable-js-manual/
http://untangled.io/the-missing-immutable-js-manual/
http://untangled.io/the-missing-immutable-js-manual/
http://untangled.io/the-missing-immutable-js-manual/
http://untangled.io/the-missing-immutable-js-manual/
http://untangled.io/the-missing-immutable-js-manual/
http://untangled.io/the-missing-immutable-js-manual/
http://untangled.io/the-missing-immutable-js-manual/
http://untangled.io/the-missing-immutable-js-manual/
http://untangled.io/the-missing-immutable-js-manual/
http://untangled.io/the-missing-immutable-js-manual/
http://untangled.io/the-missing-immutable-js-manual/

Ensuring Purity - Immutability Chapter 10

[328]

A final caveat
Working with persistent data structures requires some cloning, but how would you
implement a persistent array? If you think about this, you'll realize that, in that case, there
would be no way out apart from cloning the whole array after each operation. This would
mean that an operation such as updating an element in an array, which took a constant
time, would now take a length of time proportional to the size of the array.

In algorithm complexity terms, we would say that updates went from
being an O(1) operation to an O(n) one. Similarly, access to an element
may become an O(log n) operation, and similar slowdowns might be
observed for other operations, such as mapping and reducing.

How do we avoid this? There's no easy solution. For example, you may find that an array is
internally represented as a binary search tree (or even more complex data structures) and
that the persistence library provides the necessary interface so that you'll still able to use it
as an array, not noticing the internal difference.

When using this kind of library, the advantages of having immutable updates without
cloning may be offset in part by some operations that may become slower. If this becomes a
bottleneck in your application, you might have to go so far as changing the way you
implement immutability or even work out how to change your basic data structures to
avoid the time loss, or at least minimize it.

Summary
In this chapter, we looked at two different approaches (used by commonly available
immutability libraries) to avoiding side effects by working with immutable objects and data
structures: one based on using JavaScript's object freezing plus some special logic for cloning,
and the other based on applying the concept of persistent data structures with methods that
allow all kinds of updates without changing the original or requiring full cloning.

In Chapter 11, Implementing Design Patterns – The Functional Way, we will focus on a
question that's often asked by object-oriented programmers: how are design patterns used
in FP? Are they required, available, or usable? Are they still practiced but with a new focus
on functions rather than on objects? We'll answer these questions with several examples,
showing where and how they are equivalent or how they differ from the usual OOP
practices.

Ensuring Purity - Immutability Chapter 10

[329]

Questions
10.1. Freezing by proxying: In the Chaining and fluent interfaces section of Chapter 8,
Connecting Functions – Pipelining and Composition, we used a proxy to get operations in order
to provide automatic chaining. By using a proxy for setting and deleting operations, you
may do your own freezing (if, instead of setting an object's property, you'd rather throw an
exception). Implement a freezeByProxy(obj) function that will apply this idea to forbid
all kinds of updates (adding, modifying, or deleting properties) for an object. Remember to
work recursively in case an object has other objects as properties!

10.2. Inserting into a list, persistently: In the Working with lists section, we described how
an algorithm could add a new node to a list, but in a persistent way, by creating a new list.
Implement an insertAfter(list, newKey, oldKey) function that will create a new list
but add a new node with newKey just after the node with oldKey. Here, you'll need to
assume that the nodes in the list were created by the following logic:

class Node {
 constructor(key, next = null) {
 this.key = key;
 this.next = next;
 }
}

const node = (key, next) => new Node(key, next);

let c3 = node("G", node("B", node("F", node("A", node("C", node("E"))))));

10.3. Composing many lenses: Write a composeLenses() function that will allow you to
compose as many simple lenses as you want, instead of only two as in
composeTwoLenses(), along the same lines as what we did in Chapter 8, Connecting
Functions – Pipelining and Composition, when me moved from composeTwo() to a generic
compose() function.

10.4. Lenses by path: In this chapter, we created lenses using getField() and
setField(). Then, we used composition to access deeper attributes. Can you create a lens
by giving a path and allow shorter code?

Ensuring Purity - Immutability Chapter 10

[330]

10.5. Accessing virtual attributes: By using lenses, you can view (and even set) attributes
that don't actually exist in an object. Here are some tips to let you develop that. First, can
you write a getter that will access an object such as author and return the author's full
name in LAST NAME, FIRST NAME format? Second, can you write a setter that, given a
full name, will split it in half and set its first and last names? With those two functions, you
could write the following:

const fullNameLens = lens(
 ...your getter...,
 ...your setter...
);

console.log(view(fullNameLens, author));
/*
 Kereki, Federico
*/

console.log(set(fullNameLens, "Doe, John", author));
/*
{ user: 'fkereki',
 name: { first: ' John', middle: '', last: 'Doe' },
 books:
 [{ name: 'GWT', year: 2010 },
 { name: 'FP', year: 2017 },
 { name: 'CB', year: 2018 }] }
*/

10.6. Lenses for arrays? What would happen if you created a lens like so and applied it to
an array? If there's a problem, could you fix it?

const getArray = curry((ind, arr) => arr[ind]);

const setArray = curry((ind, value, arr) => {
 arr[ind] = value;
 return arr;
});

const lensArray = ind => lens(getArray(ind), setArray(ind));

10.7. Lenses into maps: Write a lensMap() function that will create a lens that you can use
to access and modify maps. You may want to look into cloning maps at https:/ ​/
developer.​mozilla. ​org/ ​en- ​US/ ​docs/ ​Web/ ​JavaScript/ ​Reference/ ​Global_ ​Objects/ ​Map for
more information. Your function should be declared as follows. You'll have to write a
couple of auxiliary functions as well:

const lensMap = key => lens(getMap(key), setMap(key));

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map

11
Implementing Design Patterns -

The Functional Way
In Chapter 10, Ensuring Purity – Immutability, we saw several functional techniques to solve
different problems. However, programmers who are used to employing OOP may find that
we have missed some well-known formula and solutions that are often used in imperative
coding. Since design patterns are well known, and programmers will likely already be
aware of how they are applied in other languages, it's important to take a look at how a
functional implementation would be done.

In this chapter, we shall consider the solutions implied by design patterns, which are
common in OOP, to see their equivalences in FP. This will help you to transition from OOP
to a more functional approach and to learn more about the power and methods of FP, by
seeing an alternative solution to problems you already knew.

In particular, we will study the following topics:

The concept of design patterns and to what they apply
A few OOP standard patterns and what alternatives we have in FP if we need
one
In particular, the observer pattern, which leads to reactive programming, a
declarative way of dealing with events
A discussion about FP design patterns, not related to the OOP ones

Implementing Design Patterns - The Functional Way Chapter 11

[332]

Understanding design patterns
One of the most relevant books in software engineering was Design Patterns: Elements of
Reusable Object-Oriented Software, 1994, written by the Gang of Four (GOF): Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlissides. This book presented about two dozen
different OOP patterns and has been recognized as a highly important book in computer
science.

Patterns are actually a concept from architectural design, originally
defined by an architect, Christopher Alexander.

In software terms, a design pattern is a generally applicable, reusable solution to a
commonly-seen problem in software design. Rather than a specific finished and coded
design, it's a description of a solution (the word template is also used) that can solve a given
problem that appears in many contexts. Given their advantages, design patterns are on
their own best practices that can be used by developers working with different kinds of
systems, programming languages, and environments.

The GoF book obviously focused on OOP, and some of the patterns within cannot be
recommended for or applied in FP. Other patterns are unnecessary or irrelevant because
functional languages already provide standard solutions to the corresponding object-
oriented problems. Even given this difficulty, since most programmers have been exposed
to OOP design patterns and usually try to apply them even in other contexts such as FP, it
makes sense to consider the original problems and then take a look at how a new solution
can be produced. The standard object-based solutions may not apply, but the problem can
still stand, so seeing how to solve it is still valid.

Patterns are often described in terms of four essential, basic elements:

A simple, short name that is used to describe the problem, its solutions, and its
consequences. The name is useful for talking with colleagues, explaining a design
decision, or describing a specific implementation.
The context to which the pattern applies: specific situations that require a
solution, possibly with some extra conditions that must be met.
A solution that lists the elements (classes, objects, functions, relationships, and so
on) that you'll need to solve the given situation.
The consequences (results and trade-offs) if you apply the pattern. You may derive
some gains from the solution, but it may also imply some losses.

Implementing Design Patterns - The Functional Way Chapter 11

[333]

In this chapter, we will assume that the reader is already aware of the design patterns that
we will be describing and using, so we won't be providing many details about them.
Rather, we will focus on how FP either makes the problem irrelevant (because there is an
obvious way of applying functional techniques to solve it) or solves it in some fashion.
Also, we won't be going over all of the GoF patterns; we'll just focus on those for which
applying FP is more interesting, bringing out more differences to the usual OOP
implementations.

Design pattern categories
Design patterns are usually grouped into several distinct categories, according to their
focus. The first three in the following list are the ones that appeared in the original GoF
book, but more categories have been added. They are as follows:

Behavioral design patterns: These have to do with interactions and
communications between objects. Rather than focusing on how objects are
created or built, the key consideration is how to connect them so that they can
cooperate when performing a complex task, preferably in a way that provides
well-known advantages, such as diminished coupling or enhanced cohesiveness.
Creational design patterns: These deal with ways to create objects in a manner
that is suitable for the current problem. With it, you can decide between several
alternative objects, so the program can work differently depending on
parameters that may be known at compilation time or runtime.
Structural design patterns: These have to do with the composition of objects,
forming larger structures from many individual parts and implementing
relationships between objects. Some of the patterns imply inheritance or
implementation of interfaces, whereas others use different mechanisms, all
geared toward being able to dynamically change the way objects are composed at
runtime.
Concurrency patterns: These are related to dealing with multithreaded
programming. Although FP is generally quite appropriate for this (given, for
example, the lack of assignments and side effects), since we are working with
JavaScript, these patterns are not very relevant to us.
Architectural patterns: These are more high-level oriented, with a broader scope
than the previous patterns we've listed, and provide general solutions to
software architecture problems. As is, we aren't considering such problems in
this book, so we won't deal with these either.

Implementing Design Patterns - The Functional Way Chapter 11

[334]

Coupling and cohesiveness are terms that were in use even before OOP
came into vogue; they date back to the late '60s when Structured Design by
Larry Constantine came out. The former measures the interdependence
between any two modules, and the latter has to do with the degree to
which all components of a module really belong together. Low coupling
and high cohesiveness are good goals for software design because they
imply that related things are close by and unrelated ones are separate.

Following along these lines, you could also classify design patterns as object patterns (which
concern the dynamic relationships between objects) and class patterns that deal with the
relationships between classes and subclasses (which are defined statically at compile time).
We won't be worrying much about this classification because our point of view has more to
do with behaviors and functions rather than classes and objects.

As we mentioned earlier, we can now readily observe that these categories are heavily
oriented toward OOP, and the first three directly mention objects. However, without the
loss of generality, we will look beyond the definitions, remember what problem we were
trying to solve, and then look into analogous solutions with FP, which, if not 100%
equivalent to the OOP ones, will in spirit be solving the same problem in a parallel way.
Let's move on and start by considering why we want to deal with patterns at all!

Do we need design patterns?
There is an interesting point of view that says that design patterns are only needed to patch
shortcomings of a programming language. The rationale is that if you can solve a problem
with a given programming language in a simple, direct, and straightforward way, then you
may not need a design pattern at all. (An example: if your language doesn't provide
recursion, we would have to implement it on our own, but otherwise, you can just use it
without further ado.) However, studying patterns lets you think about different ways of
solving problems, so that's a point in their favor.

In any case, it's interesting for OOP developers to really understand why FP helps to solve
some problems without the need for further tools. In the next section, we shall consider
several well-known design patterns and take a look at why we don't need them or how we
can easily implement them. It's also a fact that we have already applied several patterns
earlier in the text, so we'll point out those examples as well.

Implementing Design Patterns - The Functional Way Chapter 11

[335]

We won't try, however, to express or convert all design patterns into FP terms. For
example, the Singleton pattern basically requires a single, global, object, which is sort of
opposed to everything that functional programmers are used to. Given our approach to FP
(remember Sorta Functional Programming (SPF), from the initial part of the first chapter of
this book?), we won't mind either, and if a Singleton is required, we may consider using it,
even though FP doesn't have an appropriate equivalent.

Finally, it must be said that our point of view may affect what is considered a pattern and
what isn't. What may be a pattern to some may be considered a trivial detail for others. We
will find some such situations, given that FP lets us solve some particular problems in easy
ways, and we have already seen examples of that in previous chapters.

Object-oriented design patterns
In this section, we'll go over some of the GoF design patterns, check whether they are
pertinent to FP, and study how to implement them. Of course, some design patterns don't
get an FP solution. As we said, for example, there's no equivalent for a Singleton, which
implies the foreign concept of a globally accessed object. Additionally, while it's true that
you may no longer need OOP-specific patterns, developers will still think in terms of those.
Also, finally, since we're not going fully functional if an OOP pattern fits, why not use it?

We will be considering the following:

Façade and Adapter, to provide new interfaces to other code
Decorator (also known as Wrapper) to add new functionality to existing code
Strategy, Template, and Command, to let you fine-tune algorithms by passing
functions as parameters
Observer, which leads to reactive programming, a declarative way of dealing with
events
Other patterns that do not so fully match the corresponding OOP ones

Now, let's begin our study by analyzing a couple of similar patterns that let you use your
code in somewhat different ways.

Implementing Design Patterns - The Functional Way Chapter 11

[336]

Facade and adapter
Out of these two patterns, let's start with the Facade or, more correctly, Façade. This is meant
to solve the problem of providing a different interface to the methods of a class or to a
library. The idea is to provide a new interface to a system that makes it easier to use. You
might say that a Façade provides a better control panel to access certain functionalities,
removing difficulties for the user.

Façade or facade? The original word is an architectural term meaning the
front of a building and comes from the French language. According to this
source and the usual sound of the cedilla (ç) character, its pronunciation is
something like fuh-sahd. The other spelling probably has to do with the
lack of international characters in keyboards and poses the following
problem: shouldn't you read it as faKade? You may see this problem as the
reverse of celtic, which is pronounced as Keltic, changing the s sound for a
k sound.

The main problem that we want to solve is being able to use external code more easily (of
course, if it were your code, you could handle such problems directly; we must assume you
cannot—or shouldn't—try to modify that other code. This would be the case when you use
any library that's available over the web, for example). The key to this is to implement a
module of your own that will provide an interface that better suits your needs. Your code
will use your module and won't directly interact with the original code.

Suppose that you want to do Ajax calls, and your only possibility is using some hard
library with a really complex interface. With modules, you might write something like the
following, working with an imagined, hard-to-use Ajax library:

// simpleAjax.js

import * as hard from "hardajaxlibrary";
// import the other library that does Ajax calls
// but in a hard, difficult way, requiring complex code

const convertParamsToHardStyle = params => {
 // do some internal steps to convert params
 // into whatever the hard library may require
};

const makeStandardUrl = url => {
 // make sure the url is in the standard
 // way for the hard library
};

Implementing Design Patterns - The Functional Way Chapter 11

[337]

const getUrl = (url, params, callback) => {
 const xhr = hard.createAnXmlHttpRequestObject();
 hard.initializeAjaxCall(xhr);
 const standardUrl = makeStandardUrl(url);
 hard.setUrl(xhr, standardUrl);
 const convertedParams = convertParamsToHardStyle(params);
 hard.setAdditionalParameters(params);
 hard.setCallback(callback);
 if (hard.everythingOk(xhr)) {
 hard.doAjaxCall(xhr);
 } else {
 throw new Error("ajax failure");
 }
};

const postUrl = (url, params, callback) => {
 // some similarly complex code
 // to do a POST using the hard library
};

export {getUrl, postUrl}; // the only methods that will be seen

Now, if you need to do GET or POST, instead of having to go through all of the
complications of the provided hard Ajax library, you can use the new façade that provides
a simpler way of working. Developers would just do import {getUrl, postUrl} from
"simpleAjax" and could then work more reasonably.

However, why are we showing this code that, though interesting, doesn't show any
particular FP aspects? The key is that, at least until modules are fully implemented in
browsers, the internal implicit way to do this is with the usage of an IIFE (Immediately
Invoked Function Expression) as we saw in the Immediate invocation section of Chapter 3,
Starting Out with Functions – A Core Concept, using a revealing module pattern. The way to
implement this would then be as follows:

const simpleAjax = (function() {
 const hard = require("hardajaxlibrary");

 const convertParamsToHardStyle = params => {
 // ...
 };

 const makeStandardUrl = url => {
 // ...
 };

 const getUrl = (url, params, callback) => {

Implementing Design Patterns - The Functional Way Chapter 11

[338]

 // ...
 };

 const postUrl = (url, params, callback) => {
 // ...
 };

 return {
 getUrl,
 postUrl
 };
})();

The reason for the revealing module name should be now obvious. With the preceding code,
because of the JavaScript scope rules, the only visible attributes of simpleAjax will be
simpleAjax.getUrl and simpleAjax.postUrl; using an IIFE lets us implement the
module (and hence, the façade) safely, making implementation details private.

Now, the Adapter pattern is similar, insofar it is also meant to define a new interface.
However, while Façade defines a new interface to old code, Adapter is used when you need
to implement an old interface for a new code, so it will match what you already had. If you
are working with modules, it's clear that the same type of solution that worked for Façade
will work here, so we don't have to study it in detail. Now, let's continue with a well-
known pattern, which you'll recognize we've already seen earlier in this book!

Decorator or wrapper
The Decorator pattern (also known as wrapper) is useful when you want to add additional
responsibilities or functionalities to an object in a dynamic way. Let's consider a simple
example, which we will illustrate with some React code. (Don't worry if you do not know
this framework; the example will be easy to understand. The idea of going with React is
because it can very well take advantage of this pattern. Also, we have already seen pure
JavaScript higher-order function examples, so it's good to see something new.) Suppose we
want to show some elements on the screen, and for debugging purposes, we want to show
a thin red border around the object. How can you do it?

If you were using OOP, you would probably have to create a new subclass with the
extended functionality. For this particular example, you might just provide some attribute
with the name of some CSS class that would provide the required style, but let's keep
our focus on OOP; using CSS won't always solve this software design problem, so we want
a more general solution. The new subclass would know how to show itself with a border,
and you'd use this subclass whenever you wanted an object's border to be visible.

Implementing Design Patterns - The Functional Way Chapter 11

[339]

With our experience of higher-order functions, we can solve this in a different way
using wrapping; wrap the original function within another one, which would provide the
extra functionality.

Note that we have already seen some examples of wrapping in the Wrapping functions –
keeping behavior section of Chapter 6, Producing Functions – Higher-Order Functions. For
example, in that section, we saw how to wrap functions to produce new versions that could
log their input and output, provide timing information, or even memorize calls to avoid
future delays. On this occasion, for variety, we are applying the concept to decorate a visual
component, but the principle remains the same.

Let's define a simple React component, ListOfNames, that can display a heading and a list
of people, and for the latter, it will use a FullNameDisplay component. The code for those
elements would be as seen in the following fragment:

class FullNameDisplay extends React.Component {
 render() {
 return (
 <div>
 First Name: {this.props.first}

 Last Name: {this.props.last}
 </div>
);
 }
}

class ListOfNames extends React.Component {
 render() {
 return (
 <div>
 <h1>
 {this.props.heading}
 </h1>

 {this.props.people.map(v =>
 <FullNameDisplay first={v.first} last={v.last} />
)}

 </div>
);
 }
}

Implementing Design Patterns - The Functional Way Chapter 11

[340]

The ListOfNames component uses mapping to create a FullNameDisplay component to
show data for each person. The full logic for our application could then be the following:

import React from "react";
import ReactDOM from "react-dom";

class FullNameDisplay extends React.Component {
 // ...as above...
}

class ListOfNames extends React.Component {
 // ...as above...
}

const GANG_OF_FOUR = [
 {first: "Erich", last: "Gamma"},
 {first: "Richard", last: "Helm"},
 {first: "Ralph", last: "Johnson"},
 {first: "John", last: "Vlissides"}
];

ReactDOM.render(
 <ListOfNames heading="GoF" people={GANG_OF_FOUR} />,
 document.body
);

In real life, you wouldn't put all of the code for every component in the
same single source code file—and you would probably have a few CSS
files. However, for our example, having everything in one place, and
going with inline styles is enough, so bear with me and keep in mind the
following saying: Do as I say, not as I do.

We can quickly test the result in the online React sandbox at https:/ ​/​codesandbox. ​io/​;
Google react online sandbox if you want some other options. The interface design isn't
much to talk about (so please don't criticize my poor web page!) because we are interested
in design patterns right now; refer to Figure 11.1, given as follows:

https://codesandbox.io/
https://codesandbox.io/
https://codesandbox.io/
https://codesandbox.io/
https://codesandbox.io/
https://codesandbox.io/
https://codesandbox.io/
https://codesandbox.io/

Implementing Design Patterns - The Functional Way Chapter 11

[341]

Figure 11.1: The original version of our components shows a (not much to speak about) list of names

In React, inline components are written in JSX (inline HTML style) and are actually
compiled into objects, which are later transformed into HTML code to be displayed.
Whenever the render() method is called, it returns a structure of objects. So, we will write
a function that will take a component as a parameter and return a new JSX, a wrapped
object. In our case, we'd like to wrap the original component within <div> with the
required border:

const makeVisible = component => {
 return (
 <div style={{border: "1px solid red"}}>
 {component}
 </div>
);
};

Implementing Design Patterns - The Functional Way Chapter 11

[342]

If you wish, you could make this function aware of whether it's executing in development
mode or production; in the latter case, it would simply return the original component
argument without any change, but let's not worry about that now.

We now have to change ListOfNames to use wrapped components; the new version would
be as follows:

class ListOfNames extends React.Component {
 render() {
 return (
 <div>
 <h1>
 {this.props.title}
 </h1>

 {this.props.people.map(v =>
 makeVisible(
 <FullNameDisplay
 first={v.first}
 last={v.last}
 />
)
)}

 </div>
);
 }
}

The decorated version of the code works as expected: each of the ListOfNames
components is now wrapped in another component that adds the desired border to them;
refer to Figure 11.2, given as follows:

Implementing Design Patterns - The Functional Way Chapter 11

[343]

Figure 11.2: The decorated ListOfNames component is still nothing much to look at, but now it shows an added border

In earlier chapters, we saw how to decorate a function, wrapping it inside of another
function, so it would perform extra code and add a few functionalities. Now, here, we saw
how to apply the same style of the solution to provide a higher-order component (as it's called
in React parlance) wrapped in an extra <div> to provide some visually distinctive details.

If you have used Redux and the react-redux package, you may note that
the latter's connect() method is also a decorator in the same sense; it
receives a component class, and returns a new component class,
connected to the store, for usage in your forms; refer to https:/ ​/ ​github.
com/​reactjs/ ​react- ​redux for more details.

Let's move to a different set of patterns that will let us change how functions perform.

https://github.com/reactjs/react-redux
https://github.com/reactjs/react-redux
https://github.com/reactjs/react-redux
https://github.com/reactjs/react-redux
https://github.com/reactjs/react-redux
https://github.com/reactjs/react-redux
https://github.com/reactjs/react-redux
https://github.com/reactjs/react-redux
https://github.com/reactjs/react-redux
https://github.com/reactjs/react-redux
https://github.com/reactjs/react-redux
https://github.com/reactjs/react-redux

Implementing Design Patterns - The Functional Way Chapter 11

[344]

Strategy, Template, and Command
The Strategy pattern applies whenever you want to have the ability to change a class,
method, or function, possibly in a dynamic way, by changing the way it actually does
whatever it's expected to do. For example, a GPS application might want to find a route
between two places by applying different strategies if the person is on foot, rides a bicycle,
or goes by car. In that case, the fastest or the shortest routes might be desired. The problem
is the same, but different algorithms must be applied, depending on the given condition.

By the way, does this sound familiar? If so, it is because we have already met a similar
problem. When we wanted to sort a set of strings in different ways, in Chapter 3, Starting
Out with Functions – A Core Concept, we needed a way to specify how the ordering was to be
applied or, equivalently, how to compare two given strings and determine which had to go
first. Depending on the language, we had to sort applying different comparison methods.

Before trying an FP solution, let's consider more ways of implementing our routing
function. You could make do by having a big enough piece of code, which would receive an
argument declaring which algorithm to use, plus the starting and ending points. With these
arguments, the function could do a switch or something similar to apply the correct path-
finding logic. The code would be roughly equivalent to the following fragment:

function findRoute(byMeans, fromPoint, toPoint) {
 switch (byMeans) {
 case "foot":
 /*
 find the shortest road
 for a walking person
 */

 case "bicycle":
 /*
 find a route apt
 for a cyclist
 */

 case "car-fastest":
 /*
 find the fastest route
 for a car driver
 */

 case "car-shortest":
 /*
 find the shortest route
 for a car driver

Implementing Design Patterns - The Functional Way Chapter 11

[345]

 */

 default:
 /*
 plot a straight line,
 or throw an error,
 or whatever suits you
 */
 }
}

This kind of solution is really not desirable, and your function is really the sum of a lot of
distinct other functions, which doesn't offer a high level of cohesion. If your language
doesn't support lambda functions (as was the case with Java, for example, until Java 8 came
out in 2014), the OOP solution for this requires defining classes that implement the different
strategies you may want, creating an appropriate object, and passing it around.

With FP in JavaScript, implementing strategies is trivial: instead of using a variable such as
byMeans to switch, you provide a route-finding function (routeAlgorithm() in the
following code) that will implement the desired path logic:

function findRoute(routeAlgorithm, fromPoint, toPoint) {
 return routeAlgorithm(fromPoint, toPoint);
}

You would still have to implement all of the desired strategies (there's no way around that)
and decide which function to pass to findRoute(), but now that function is independent
of the routing logic, and if you wanted to add new routing algorithms, you wouldn't touch
findRoute().

If you consider the Template pattern, the difference is that Strategy allows you to use
completely different ways of achieving an outcome, while Template provides an
overarching algorithm (or template) in which some implementation details are left to
methods to be specified. In the same way, you can provide functions to implement the
Strategy pattern; you can also provide them for a Template pattern.

Finally, the Command pattern also benefits from the ability to be able to pass functions as
arguments. This pattern is meant to be enabled to encapsulate a request as an object, so for
different requests, you have differently parameterized objects. Given that we can simply
pass functions as arguments to other functions, there's no need for the enclosing object.

Implementing Design Patterns - The Functional Way Chapter 11

[346]

We also saw a similar use of this pattern back in the A React-Redux reducer section of
Chapter 3, Starting Out with Functions – A Core Concept. There, we defined a table, each of
whose entries was a callback that was called whenever needed. We could directly say that
the Command pattern is just an object-oriented (OO) replacement for plain functions
working as callbacks.

Let's now move on to a classic pattern that implies a new term, reactive programming, that's
being thrown around a lot these days.

Observer and reactive programming
The idea of the observer pattern is to define a link between entities, so when one changes, all
of the dependent entities are updated automatically. The observable can publish changes to
its state, and its observer (which subscribed to the observable) will be notified of such
changes.

There is a proposal for adding observables to JavaScript (see https:/ ​/
github. ​com/ ​tc39/ ​proposal- ​observable) but as of December 2019, it's
still stuck at stage 1; check https:/ ​/​github. ​com/ ​tc39/ ​proposal-
observable/ ​issues/ ​191. Hence, for the time being, it seems that using a
library will still be mandatory.

There's an extension to this concept called reactive programming, which involves
asynchronous streams of events (such as mouse clicks or keypresses) or data (from APIs or
web sockets), and different parts of the application subscribing to observe such streams by
passing callbacks that will get called whenever something new appears.

We won't be implementing reactive programming on our own; instead,
we'll use RxJS, a JavaScript implementation of Reactive Extensions
(ReactiveX) originally developed by Microsoft. RxJS is widely used in the
Angular framework and can also be used in other frontend frameworks,
such as React or Vue, or in the backend with Node. Learn more about
RxJS at https:/ ​/​rxjs- ​dev. ​firebaseapp. ​com/ ​ and https:/ ​/​www.
learnrxjs. ​io/ ​.

https://github.com/tc39/proposal-observable
https://github.com/tc39/proposal-observable
https://github.com/tc39/proposal-observable
https://github.com/tc39/proposal-observable
https://github.com/tc39/proposal-observable
https://github.com/tc39/proposal-observable
https://github.com/tc39/proposal-observable
https://github.com/tc39/proposal-observable
https://github.com/tc39/proposal-observable
https://github.com/tc39/proposal-observable
https://github.com/tc39/proposal-observable
https://github.com/tc39/proposal-observable
https://github.com/tc39/proposal-observable/issues/191
https://github.com/tc39/proposal-observable/issues/191
https://github.com/tc39/proposal-observable/issues/191
https://github.com/tc39/proposal-observable/issues/191
https://github.com/tc39/proposal-observable/issues/191
https://github.com/tc39/proposal-observable/issues/191
https://github.com/tc39/proposal-observable/issues/191
https://github.com/tc39/proposal-observable/issues/191
https://github.com/tc39/proposal-observable/issues/191
https://github.com/tc39/proposal-observable/issues/191
https://github.com/tc39/proposal-observable/issues/191
https://github.com/tc39/proposal-observable/issues/191
https://github.com/tc39/proposal-observable/issues/191
https://github.com/tc39/proposal-observable/issues/191
https://github.com/tc39/proposal-observable/issues/191
https://github.com/tc39/proposal-observable/issues/191
https://rxjs-dev.firebaseapp.com/
https://rxjs-dev.firebaseapp.com/
https://rxjs-dev.firebaseapp.com/
https://rxjs-dev.firebaseapp.com/
https://rxjs-dev.firebaseapp.com/
https://rxjs-dev.firebaseapp.com/
https://rxjs-dev.firebaseapp.com/
https://rxjs-dev.firebaseapp.com/
https://rxjs-dev.firebaseapp.com/
https://rxjs-dev.firebaseapp.com/
https://rxjs-dev.firebaseapp.com/
https://rxjs-dev.firebaseapp.com/
https://www.learnrxjs.io/
https://www.learnrxjs.io/
https://www.learnrxjs.io/
https://www.learnrxjs.io/
https://www.learnrxjs.io/
https://www.learnrxjs.io/
https://www.learnrxjs.io/
https://www.learnrxjs.io/
https://www.learnrxjs.io/

Implementing Design Patterns - The Functional Way Chapter 11

[347]

The techniques we will be showing in these sections are, confusingly, called both
Functional Reactive Programming (FRP) and Reactive Functional Programming (RFP);
pick whichever you want! There is also a suggestion that FRP shouldn't be applied to
discrete streams (so the name is wrong) but the expression is seen all over the web, which
gives it some standing. But...what makes this functional, and why should we be interested
in it? The key is that we will be using similar methods to map(), filter(), and reduce()
to process those streams, and pick which events to process and how. OK, this may be
confusing now, so bear with me and let's see some concepts first, and after that, some
examples of FRP—or whatever you want to call it! We will be seeing the following:

Several basic concepts and terms you'll need to work with FRP
Some of the many available operators you'll use
A couple of examples: detecting multi-clicks, and providing typeahead searches

Let's move on to analyze each item, starting with the basic ideas you need to know.

Basic concepts and terms
Using FRP requires getting used to several new terms, so let's begin with a short glossary:

Observable: This represents a stream of (present or future) values and can be
connected to an observer. You can create observables from practically anything,
but the most common case is from events. By convention, observable variable
names end with $; see https:/ ​/​angular. ​io/ ​guide/ ​rx- ​library#naming-
conventions.
Observer: This is either a callback that is executed whenever the observable it's
subscribed to produce a new value or an object with three methods: next(),
error(), and complete(), which will be called by the observable when a value
is available, when there's an error, and when the stream is ended respectively.
Operators: These are pure functions (similar to map(), filter(), and so on,
from Chapter 5, Programming Declaratively – A Better Style) that let you apply
transformations to a stream in a declarative way.
Pipe: This is a way to define a pipeline of operators that will be applied to a
stream. This is very similar to the pipeline() function we developed back in
Chapter 8, Connecting Functions – Pipelining and Composition.
Subscription: This is the connection to an observable. An observable doesn't do
anything until you call the subscribe() method, providing an observer.

https://angular.io/guide/rx-library#naming-conventions
https://angular.io/guide/rx-library#naming-conventions
https://angular.io/guide/rx-library#naming-conventions
https://angular.io/guide/rx-library#naming-conventions
https://angular.io/guide/rx-library#naming-conventions
https://angular.io/guide/rx-library#naming-conventions
https://angular.io/guide/rx-library#naming-conventions
https://angular.io/guide/rx-library#naming-conventions
https://angular.io/guide/rx-library#naming-conventions
https://angular.io/guide/rx-library#naming-conventions
https://angular.io/guide/rx-library#naming-conventions
https://angular.io/guide/rx-library#naming-conventions
https://angular.io/guide/rx-library#naming-conventions
https://angular.io/guide/rx-library#naming-conventions

Implementing Design Patterns - The Functional Way Chapter 11

[348]

An interesting way of looking at observables is that they complete the lower row of this
table; check it out. You will probably be quite familiar with the Single column, but maybe
not with the Multiple one:

Single Multiple
Pull Function Iterator

Push Promise Observable

How do we interpret this table? The rows distinguish between pull (you call something)
and push (you get called), and the columns represent how many values you get: one or
many. With these descriptions, we can see the following:

function is called and returns a single value.
promise calls your code (a callback in the then() method) also with a single
value.
iterator returns a new value each time it's called—at least until the sequence is
over.
observable calls your code (provided you subscribe() to the observable) for
each value in the stream.

Observables and promises can be compared a bit more:

They are both mostly async in nature, and your callback will be called at an
indefinite future time.
Promises cannot be canceled, but you can unsubscribe() from an observable.
Promises start executing the moment you create them; observables are lazy, and
nothing happens until an observer does subscribe() to them.

The real power of observables derives from the variety of operators you can use; let's see
some of them.

Implementing Design Patterns - The Functional Way Chapter 11

[349]

Operators for observables
Basically, operators are just functions: creation operators can be used to create observables
out of many different sources, and pipeable operators can be applied to modify a stream,
producing a new observable: we'll see many families of these, but for complete lists and
descriptions, you should access https:/ ​/​www.​learnrxjs. ​io/ ​operators/ ​ and https:/ ​/
rxjs.​dev/​guide/​operators.

We won't be covering how to install RxJS; see https:/ ​/​rxjs. ​dev/ ​guide/
installation for all of the possibilities. In particular, in our examples,
meant for a browser, we'll be installing version 6 of RxJS from a CDN,
which creates a global rxjs variable, similar to jQuery's $ or LoDash's
_ variables.

Let's begin by creating observables, and then move on to transforming them. For creation,
some of the several operators you can use are explained in the following table:

Operator Usage

ajax Creates an observable for an Ajax request, for which we'll emit the response that is
returned

from Produces an observable out of an array, an iterable, or a promise
fromEvent Turns events (for example, mouse clicks) into an observable sequence
interval Emits values at periodic intervals

of Generates a sequence out of a given set of value
range Produces a sequence of values in a range
timer After an initial delay, emits values periodically

To give a very basic example, the following three observables will all produce a sequence of
values from 1 to 10, and we'll be seeing more practical examples a bit later in this chapter:

 const obs1$ = from([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
 const obs2$ = of(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
 const obs3$ = range(1, 10);

https://www.learnrxjs.io/operators/
https://www.learnrxjs.io/operators/
https://www.learnrxjs.io/operators/
https://www.learnrxjs.io/operators/
https://www.learnrxjs.io/operators/
https://www.learnrxjs.io/operators/
https://www.learnrxjs.io/operators/
https://www.learnrxjs.io/operators/
https://www.learnrxjs.io/operators/
https://www.learnrxjs.io/operators/
https://www.learnrxjs.io/operators/
https://www.learnrxjs.io/operators/
https://rxjs.dev/guide/operators
https://rxjs.dev/guide/operators
https://rxjs.dev/guide/operators
https://rxjs.dev/guide/operators
https://rxjs.dev/guide/operators
https://rxjs.dev/guide/operators
https://rxjs.dev/guide/operators
https://rxjs.dev/guide/operators
https://rxjs.dev/guide/operators
https://rxjs.dev/guide/operators
https://rxjs.dev/guide/installation
https://rxjs.dev/guide/installation
https://rxjs.dev/guide/installation
https://rxjs.dev/guide/installation
https://rxjs.dev/guide/installation
https://rxjs.dev/guide/installation
https://rxjs.dev/guide/installation
https://rxjs.dev/guide/installation
https://rxjs.dev/guide/installation
https://rxjs.dev/guide/installation

Implementing Design Patterns - The Functional Way Chapter 11

[350]

The available pipeable operators are way too many for this section, so we'll just go over
some families and describe their basic idea with one or two particular mentions. The
following table lists the most common families, with their most often used operators:

Family Description

Combination

These operators allow joining information from several distinct
observables, including the following:
• concat() to put observables in a queue one after the other.
• merge() to create a single observable out of many.
• pairWise() to emit the previous value and the current one as an array.
• startWith() to inject value in an observable.

Conditional

These produce values depending on conditions, and include the following:
• defaultIfEmpty() emits a value if an observable doesn't emit anything before
completing.
• every() emits true if all values satisfy a predicate and emits false instead.
• iif() subscribes to one of two observables depending on a condition, like the ternary ?
operator.

Error handling

These (obviously!) apply to error conditions, and include the following:
• catchError() to gracefully process an error from an observable.
• retry() and retryWhen() to retry an observable sequence (most likely, one linked to
HTTP requests.)

Filtering

Probably the most important family, providing many operators to process
sequences, by selecting which elements will get processed or dismissed, by
applying different types of conditions for your selection. Some of the more
common ones include the following:
• debounce() and debounceTime() to deal with values too close together in time.
• distinctUntilChanged() to only emit when the new value is different from the last.
• filter() to only emit values that satisfy a given predicate.
• find() to emit only the first value that satisfies a condition.
• first() and last() to pick only the first or last values of a sequence.
• skip() plus skipUntil() and skipWhile() to discard values.
• take() and takeLast() to pick a given number of values from the beginning or end of a
sequence.
• takeUntil() and takeWhile() to pick values and more.

Implementing Design Patterns - The Functional Way Chapter 11

[351]

Transforming

The other very commonly used family, which includes operators to
transform the values in the sequence. Some of the many possibilities
include these:
• buffer() and bufferTime() to collect values and emit them as an array.
• groupBy() to group values together based on some property.
• map() to apply a given mapping function to every element in the sequence.
• partition() to split an observable into two, based on a given predicate.
• pluck() to pick only some attributes from each element.
• reduce() to reduce a sequence of values to a single one.
• scan() works like reduce(), but emits all intermediate values.
• toArray() collects all values and emits them as a single array.

Utilities

A sundry collection of operators with different functions, including the
following:
• tap() to perform a side effect, similar to what we saw in the Tapping into a flow section in
Chapter 8, Connecting Functions – Pipelining and Composition
• delay() to delay sequence values some time.
• finalize() to call a function when an observable completes or produces an error.
• repeat() is just like retry() but for normal (that is, non-error) cases.
• timeout() to produce an error if no value is produced before a given duration.

Wow, that's a lot of operators! We have excluded many, and you could even write your
own, so be sure to look at the documentation.

Understanding operators is made easier with marbles diagrams; we won't
be using them here, but read http:/ ​/​reactivex. ​io/ ​documentation/
observable. ​html for a basic explanation, and then check out https:/ ​/
rxmarbles. ​com/ ​ for many interactive examples of operators and how they
function.

Let's finish this section with a couple of examples of the real possibility of application for
your own coding.

http://reactivex.io/documentation/observable.html
http://reactivex.io/documentation/observable.html
http://reactivex.io/documentation/observable.html
http://reactivex.io/documentation/observable.html
http://reactivex.io/documentation/observable.html
http://reactivex.io/documentation/observable.html
http://reactivex.io/documentation/observable.html
http://reactivex.io/documentation/observable.html
http://reactivex.io/documentation/observable.html
http://reactivex.io/documentation/observable.html
http://reactivex.io/documentation/observable.html
http://reactivex.io/documentation/observable.html
https://rxmarbles.com/
https://rxmarbles.com/
https://rxmarbles.com/
https://rxmarbles.com/
https://rxmarbles.com/
https://rxmarbles.com/
https://rxmarbles.com/

Implementing Design Patterns - The Functional Way Chapter 11

[352]

Detecting multi-clicks
Suppose you decided, for some reason or another, that users should be able to triple-click
or four-click on something, and the number of clicks would somehow be meaningful and
produce some kind of special result. Browsers do very well detecting single- or double-
clicks and let you respond to them, but triple- (or more) clicks aren't available so easily.
However, we can make do with a bit of FRP. Let's start with a really basic layout, including
a text span that the user should click. The code is given here:

<html>
 <head>
 <title>Multiple click example</title>
 <script type="text/javascript" src="rxjs.umd.js"></script>
 </head>
 <body>
 Click this text many times (quickly)
 <script>
 // our code goes here...
 </script>
 </body>
</html>

This is as plain as can be; you just get a text onscreen, urging you to multi-click it. See Figure
11.3:

Figure 11.3: A very plain screen, to test detecting triple-clicks

To detect these multi-clicks, we'll need some RxJS functions, so let's start with those:

const { fromEvent, pipe } = rxjs;
const { buffer, filter } = rxjs.operators;

We will use these functions soon enough. How do we detect triple- (or more) clicks? Let's
go straight on to the code given here:

 const spanClick$ = fromEvent(
 document.getElementById("mySpan"),
 "click"
);

Implementing Design Patterns - The Functional Way Chapter 11

[353]

spanClick$
 .pipe(
 buffer(spanClick$.pipe(debounceTime(250))),
 map(list => list.length),
 filter(x => x >= 3)
)
 .subscribe(e => {
 console.log(`${e} clicks at ${new Date()}`);
 });

/*
 4 clicks at Mon Nov 11 2019 20:19:29 GMT-0300 (Uruguay Standard Time)
 3 clicks at Mon Nov 11 2019 20:19:29 GMT-0300 (Uruguay Standard Time)
 4 clicks at Mon Nov 11 2019 20:19:31 GMT-0300 (Uruguay Standard Time)
*/

The logic is simple:

We create an observable with fromEvent() listening to mouse clicks on our1.
span.
Now, a tricky point: we use buffer() to join together many events, which come2.
from applying debounceTime() to the sequence of clicks—so all clicks that
happen within an interval of 250 milliseconds will get grouped into a single
array.
We then apply map() to transform each array of clicks into just its length—after3.
all, we care about how many clicks there were, and not their specific details.
We finish by filtering out values under 3, so only longer sequences of clicks will4.
be processed.
The subscription, in this case, just logs the clicks, but in your application, it5.
should do something more relevant.

If you wanted, you could detect multi-clicks by hand, writing your own code; see question
11.3 in the Questions section. To finish, let's go with an even longer example and do some
typeahead searches invoking some external API.

Implementing Design Patterns - The Functional Way Chapter 11

[354]

Providing typeahead searches
Let's do another web example: typeahead searches. The usual setup is that there is some
textbox, the user types in it, and the web page queries some API to provide ways of
completing the search. The important thing is when and how to do the search and trying to
avoid unnecessary calls to the backend server whenever possible. A (totally basic) HTML
page could be as follows, and see Figure 11.4 later in this section:

<html>
 <head>
 <title>Cities search</title>
 <script type="text/javascript" src="rxjs.umd.js"></script>
 </head>
 <body>
 Find cities:
 <input type="text" id="myText" />

 <h4>Some cities...</h4>
 <div id="myResults"></div>
 <script>
 // typeahead code goes here...
 </script>
 </body>
</html>

We have a single textbox in which the user will type and an area below that in which we'll
show whatever the API provides. We'll be using the GeoDB Cities API (see http:/ ​/ ​geodb-
cities-​api.​wirefreethought. ​com/ ​), which provides many search options, but we'll just
use it to search for cities starting with whatever the user has typed. Just to get it out of our
way, let's see the getCitiesOrNull() function, which will return a promise for search
results (if something was typed in) or a promise that resolves to null (no cities, if nothing
was typed in). The results of this promise will be used to fill the myResults division on the
page. Let's see how this works out in code:

const getCitiesOrNull = text => {
 if (text) {
 const citySearchUrl =
 `http://geodb-free-service.wirefreethought.com/v1/geo/cities?` +
 `hateoasMode=false&` +
 `sort=-population&` +
 `namePrefix=${encodeURIComponent(text)}`;
 return fetch(citySearchUrl);
 } else {
 return Promise.resolve(null);
 }
};

http://geodb-cities-api.wirefreethought.com/
http://geodb-cities-api.wirefreethought.com/
http://geodb-cities-api.wirefreethought.com/
http://geodb-cities-api.wirefreethought.com/
http://geodb-cities-api.wirefreethought.com/
http://geodb-cities-api.wirefreethought.com/
http://geodb-cities-api.wirefreethought.com/
http://geodb-cities-api.wirefreethought.com/
http://geodb-cities-api.wirefreethought.com/
http://geodb-cities-api.wirefreethought.com/
http://geodb-cities-api.wirefreethought.com/
http://geodb-cities-api.wirefreethought.com/
http://geodb-cities-api.wirefreethought.com/

Implementing Design Patterns - The Functional Way Chapter 11

[355]

The code is simple: if some text was provided, we generate the URL for the cities' search
and use fetch() to get the API data. With this done, let's see how to generate the needed
observable. We will need some RxJS functions, so first, let's have some definitions:

const { fromEvent, pipe } = rxjs;
const {
 debounceTime,
 distinctUntilChanged,
 filter,
 map,
 reduce,
 switchMap
} = rxjs.operators;

We will be using all of these functions later. Now, we can write the code to do the
typeahead:

const textInput$ = fromEvent(
 document.getElementById("myText"),
 "input"
).pipe(
 map(e => e.target.value),
 debounceTime(200),
 filter(w => w.length === 0 || w.length > 3),
 distinctUntilChanged(),
 switchMap(w => getCitiesOrNull(w))
);

This requires going step by step:

We use the fromEvent() constructor to observe input events (every time the1.
user types something) from the myText input field.
We use map() to get the event's target value, the complete text of the input field.2.
We use debounceTime(200) so the observable won't emit until the user has3.
been 0.2 seconds (200 milliseconds) without typing—what's the use of calling the
API if the user isn't done with their query?
We then use filter() to discard the input if it was only one, two, or three4.
characters long because that's not good enough for our search. We accept empty
strings (so we'll empty the results area) and strings four or more characters long.
Then, we use distinctUntilChanged() so if the search string is the same as5.
before (the user possibly added a character but quickly backspaced, deleting it),
nothing will be emitted.
We finally change use switchMap() to cancel the previous subscription to the6.
observable and create a new one using getCitiesOrNull().

Implementing Design Patterns - The Functional Way Chapter 11

[356]

How do we use this? We subscribe to the observable and when we get results, we use them
to display values. A possible sample code follows:

textInput$.subscribe(async fetchResult => {
 domElem = document.getElementById("myResults");

 if (fetchResult !== null) {
 result = await fetchResult.json();
 domElem.innerHTML = result.data
 .map(x => `${x.city}, ${x.region}, ${x.country}`)
 .join("
");

 } else {
 domElem.innerHTML = "";
 }
});

An important point: the promise is resolved, and the final value of the sequence is hence
whatever the promise produced. If the result wasn't null, we get an array of cities, and we
use map() and join() to produce the (very basic!) HTML output; otherwise, we just
empty the results area.

Let's try it out. If you start typing, nothing will happen while you haven't reached four
characters and pause a bit; see Figure 11.4, as follows:

Figure 11.4: Our search for cities doesn't trigger for less than four characters

When you reach four characters and pause a bit, the observable will emit an event, and
we'll do a first search: in this case, for cities with names starting with MONT. See Figure 11.5,
as follows:

Implementing Design Patterns - The Functional Way Chapter 11

[357]

Figure 11.5: After reaching four characters, searches will be fired

Finally, as you add more characters, new API calls will be done, refining the search; see
Figure 11.6, as follows:

Figure 11.6: Further characters are used to refine the search

What can we learn from these examples? Using observables for events lets us achieve a
good separation of concerns as to event production and event consumption, and the
declarative style of the stream process makes the data flow clearer. You could even note
that the HTML code itself has no reference to click methods or anything like that; the
complete code is separate from that.

Implementing Design Patterns - The Functional Way Chapter 11

[358]

We have now seen most of the interesting patterns; let's finish with some other ones, which
may or may not be exactly equivalent to their classic OOP partners.

Other patterns
Let's end this section by glancing at some other patterns, where the equivalence may or
may not be so good:

Currying and Partial Application (which we saw in Chapter 7, Transforming
Functions – Currying and Partial Application): This can be seen as approximately
equivalent to a Factory for functions. Given a general function, you can produce
specialized cases by fixing one or more arguments, and this is, in essence, what a
Factory does, of course, speaking about functions and not objects.
Declarative functions (such as map() or reduce()): They can be considered an
application of the Iterator pattern. The traversal of the container's elements is
decoupled from the container itself. You might also provide different map()
methods for different objects, so you could traverse all kinds of data structures.
Persistent data structures: As mentioned in Chapter 10, Ensuring Purity –
Immutability, they allow for the implementation of the Memento pattern. The
central idea is, given an object, to be able to go back to a previous state. As we
saw, each updated version of a data structure doesn't impact on the previous
one(s), so you could easily add a mechanism to provide an earlier state and roll
back to it.
A Chain of Responsibility pattern: In this pattern, there is a potentially variable
number of request processors and a stream of requests to be handled, which may
be implemented using find() to determine which is the processor that will
handle the request (the desired one is the first in the list that accepts the request)
and then simply doing the required process.

Remember the warning at the beginning: with these patterns, the match with FP techniques
may not be so perfect as with others that we have previously seen, but the idea was to show
that there are some common FP patterns that can be applied, and it will produce the same
results as the OOP solutions, despite having different implementations.

Now, after having seen several OOP equivalent patterns, let's move on to more specific FP
ones.

Implementing Design Patterns - The Functional Way Chapter 11

[359]

Functional design patterns
After having seen several OOP design patterns, it may seem a cheat to say that there's no
approved, official, or even remotely generally accepted similar list of patterns for FP. There
are, however, several problems for which there are standard FP solutions, which can be
considered design patterns on their own, and we have already covered most of them in this
book.

What are candidates for a possible list of patterns? Let's attempt to prepare one—but
remember, it's just a personal view. Also, I'll admit that I'm not trying to mimic the usual
style of pattern definition; I'll just be mentioning a general problem and refer to the way FP
in JS can solve it, and I won't be aiming for nice, short, memorable names for the patterns
either:

Processing collections using filter/map/reduce: Whenever you have to process a
data collection, using declarative higher-order functions, such as filter(),
map(), and reduce(), as we saw in this chapter and previously in Chapter
5, Programming Declaratively – A Better Style, is a way to remove complexity from
the problem (the usual MapReduce web framework is an extension of this
concept, which allows for distributed processing among several servers, even if
the implementation and details aren't exactly the same). Instead of performing
looping and processing as a single step, you should think about the problem as a
sequence of steps, applied in order, doing transformations until obtaining the
final, desired result.

JS also includes iterators, that is, another way of looping through a
collection. Using iterators isn't particularly functional, but you may want
to look at them since they may be able to simplify some situations. Read
more at https:/ ​/ ​developer. ​mozilla. ​org/ ​en- ​US/​docs/ ​Web/ ​JavaScript/
Reference/ ​Iteration_ ​protocols.

Lazy evaluation with thunks: The idea of lazy evaluation is not doing any
calculations until they are actually needed. In some programming languages, this
is built in. However, in JavaScript (and in most imperative languages as
well), eager evaluation is applied, in which an expression is evaluated as soon as it
is bound to some variable. (Another way of saying this is that JavaScript is a strict
programming language, with a strict paradigm, which only allows calling a function
if all of its parameters have been completely evaluated.) This sort of evaluation is
required when you need to specify the order of evaluation with precision, mainly
because such evaluations may have side effects.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols

Implementing Design Patterns - The Functional Way Chapter 11

[360]

In FP, which is rather more declarative and pure, you can delay such evaluation
with thunks (which we used in the Trampolines and thunks section of Chapter 9,
Designing Functions – Recursion) by passing a thunk that will calculate the needed
value only when it's needed, but not earlier.

You may also want to look at JavaScript generators, which is another way
of delaying evaluation, though not particularly related to FP at all. Read
more about them at https:/ ​/​developer. ​mozilla. ​org/​en- ​US/ ​docs/ ​Web/
JavaScript/ ​Reference/ ​Global_ ​Objects/ ​Generator. The combination of
generators and promises is called an async function, which may be of
interest to you; refer to https:/ ​/​developer. ​mozilla. ​org/ ​en-​US/ ​docs/
Web/​JavaScript/ ​Reference/ ​Statements/ ​async_ ​function.

Persistent data structures for immutability: Having immutable data structures,
as we saw in Chapter 10, Ensuring Purity – Immutability, is mandatory when
working with certain frameworks, and in general, it is recommended because it
helps to reason about a program or debugging it. (Earlier in this chapter, we also
mentioned how the Memento OOP pattern can be implemented in this fashion).
Whenever you have to represent structured data, the FP solution of using a
persistent data structure helps in many ways.
Wrapped values for checks and operations: If you directly work with variables
or data structures, you may modify them at will (possibly violating any
restrictions) or you may need to do many checks before using them (such as
verifying that a value is not null before trying to access the corresponding object).
The idea of this pattern is to wrap a value within an object or function, so direct
manipulation won't be possible, and checks can be managed more functionally.
We'll be referring to more of this in Chapter 12, Building Better Containers
– Functional Data Types.

As we have said, the power of FP is such that, instead of having a couple of dozen standard
design patterns (and that's only in the GoF book; if you read other texts, the list grows!),
there isn't yet a standard or acknowledged list of functional patterns.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function

Implementing Design Patterns - The Functional Way Chapter 11

[361]

Summary
In this chapter, we have made a bridge from the OO way of thinking and the usual patterns
that we use when coding that way, to the FP style, by showing how we can solve the same
basic problems (but rather more easily) than with classes and objects. We have seen several
common design patterns, and we've seen that the same concepts apply in FP, even if
implementations may vary, so now you have a way to apply those well-known solution
structures to your JavaScript coding.

In Chapter 12, Building Better Containers – Functional Data Types, we will be working with
a potpourri of functional programming concepts, which will give you even more ideas about
tools you can use. I promised that this book wouldn't become deeply theoretical, but rather
more practical, and we'll try to keep it this way, even if some of the presented concepts may
seem abstruse or remote.

Questions
11.1. Decorating methods, the future way: In Chapter 6, Producing Functions – Higher-
Order Functions, we wrote a decorator to enable logging for any function. Currently,
method decorators are being considered for upcoming versions of JavaScript: refer
to https:/​/​tc39.​github. ​io/ ​proposal- ​decorators/ ​ for that (Draft 2 means that inclusion
of this feature in the standard is likely, although there may be some additions or small
changes). Study the following draft and take a look at what makes the next code tick:

const logging = (target, name, descriptor) => {
 const savedMethod = descriptor.value;
 descriptor.value = function(...args) {
 console.log(`entering ${name}: ${args}`);
 try {
 const valueToReturn = savedMethod.bind(this)(...args);
 console.log(`exiting ${name}: ${valueToReturn}`);
 return valueToReturn;
 } catch (thrownError) {
 console.log(`exiting ${name}: threw ${thrownError}`);
 throw thrownError;
 }
 };
 return descriptor;
};

https://tc39.github.io/proposal-decorators/
https://tc39.github.io/proposal-decorators/
https://tc39.github.io/proposal-decorators/
https://tc39.github.io/proposal-decorators/
https://tc39.github.io/proposal-decorators/
https://tc39.github.io/proposal-decorators/
https://tc39.github.io/proposal-decorators/
https://tc39.github.io/proposal-decorators/
https://tc39.github.io/proposal-decorators/
https://tc39.github.io/proposal-decorators/
https://tc39.github.io/proposal-decorators/
https://tc39.github.io/proposal-decorators/
https://tc39.github.io/proposal-decorators/
https://tc39.github.io/proposal-decorators/

Implementing Design Patterns - The Functional Way Chapter 11

[362]

A working example would be as follows:

class SumThree {
 constructor(z) {
 this.z = z;
 }
 @logging
 sum(x, y) {
 return x + y + this.z;
 }
}

new SumThree(100).sum(20, 8);
// entering sum: 20,8
// exiting sum: 128

Following are some questions about the code for the logging() decorator:

Do you see the need for the savedMethod variable?
Why do we use function() when assigning a new descriptor.value, instead
of an arrow function?
Can you understand why .bind() is used?
What is descriptor?

11.2. Decorator with mixins: Back in the Questions section of Chapter 1, Becoming
Functional – Several Questions, we saw that classes are first-class objects. Taking advantage
of this, complete the following addBar() function, which will add some mixins to the Foo
class so that the code will run as shown. The created fooBar object should have two
attributes (fooValue and barValue) and two methods (doSomething() and
doSomethingElse()) that simply show some text and properties, as shown here:

class Foo {
 constructor(fooValue) {
 this.fooValue = fooValue;
 }
 doSomething() {
 console.log("something: foo... ", this.fooValue);
 }
}

var addBar = BaseClass =>
 /*
 your code goes here
 */
 ;

Implementing Design Patterns - The Functional Way Chapter 11

[363]

var fooBar = new (addBar(Foo))(22, 9);
fooBar.doSomething(); // something: foo... 22
fooBar.somethingElse(); // something else: bar... 9
console.log(Object.keys(fooBar)); // ["fooValue", "barValue"]

Could you include a third mixin, addBazAndQux(), so
that addBazAndQux(addBar(Foo)) would add even more attributes and methods to Foo?

11.3. Multi-clicking by hand: Can you write your own multi-click detection code, which
should work exactly as our example?

12
Building Better Containers -

Functional Data Types
In Chapter 11, Implementing Design Patterns – The Functional Way, we went over how to use
functions to achieve different results. In this chapter, we will look at data types from a
functional point of view. We'll be considering how we can implement our own data types,
along with several features that can help us compose operations or ensure their purity so
that our FP coding will become simpler and shorter.

We'll be touching on several themes:

Data types from a functional point of view. Even though JavaScript is not a
typed language, a better understanding of types and functions is needed.
Containers, including functors and the mystifying monads, to structure data flow.
Functions as structures, in which we'll see yet another way of using functions to
represent data types, with immutability thrown in as an extra.

With that, let's get started!

Specifying data types
Even though JavaScript is a dynamic language, without static or explicit typing declarations
and controls, it doesn't mean that you can simply ignore types. Even if the language doesn't
allow you to specify the types of your variables or functions, you still work—even if only in
your head—with types. Now, let's learn how we can specify types. When it comes to
specifying types, we have some advantages, as follows:

Even if you don't have compile-time data type checking, there are several tools,
such as Facebook's flow static type checker or Microsoft's TypeScript language,
that let you deal with it.

Building Better Containers - Functional Data Types Chapter 12

[365]

It will help if you plan to move on from JavaScript to a more functional language
such as Elm.
It serves as documentation that lets future developers understand what type of
arguments they have to pass to the function and what type it will return. All the
functions in the Ramda library are documented in this way.
It will also help with the functional data structures later in this section, where we
will examine a way of dealing with structures, similar in some aspects to what
you do in fully functional languages such as Haskell.

If you want to learn more about the tools that I cited, visit https:/ ​/​flow.
org/​ for Flow, https:/ ​/​www. ​typescriptlang. ​org/ ​ for TypeScript, and
http:/ ​/ ​elm- ​lang. ​org/ ​ for Elm. If you want to know more about type
checks, the corresponding web pages are https:/ ​/​flow. ​org/ ​en/ ​docs/
types/ ​functions/ ​, https:/ ​/​www. ​typescriptlang. ​org/ ​docs/ ​handbook/
functions. ​html, and https:/ ​/​flow. ​org/ ​en/​docs/ ​types/ ​functions/ ​.

Whenever you read or work with a function, you will have to reason about types, think
about the possible operations on this or that variable or attribute, and so on. Having type
declarations will help. Due to this, we will start considering how we can define the types of
functions and their parameters. After that, we will consider other type definitions.

Signatures for functions
The specification of a function's arguments and the result is given by a signature. Type
signatures are based on a type system called Hindley-Milner, which influenced several
(mostly functional) languages, including Haskell, though the notation has changed from
that of the original paper. This system can even deduce types that are not directly given;
tools such as TypeScript or Flow also do this, so developers don't need to specify all types.
Instead of going for a dry, formal explanation about the rules for writing correct signatures,
let's work by examples. We only need to know the following:

We will be writing the type declaration as a comment.
The function name is written first, and then ::, which can be read as is of type or
has type.
Optional constraints may follow, with a double (fat) arrow ⇒ (or => in basic
ASCII fashion, if you cannot key in the arrow) afterward.
The input type of the function follows, with a → (or ->, depending on your
keyboard).
The result type of the function comes last.

https://flow.org/
https://flow.org/
https://flow.org/
https://flow.org/
https://flow.org/
https://flow.org/
https://flow.org/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
http://elm-lang.org/
http://elm-lang.org/
http://elm-lang.org/
http://elm-lang.org/
http://elm-lang.org/
http://elm-lang.org/
http://elm-lang.org/
http://elm-lang.org/
http://elm-lang.org/
http://elm-lang.org/
https://flow.org/en/docs/types/functions/
https://flow.org/en/docs/types/functions/
https://flow.org/en/docs/types/functions/
https://flow.org/en/docs/types/functions/
https://flow.org/en/docs/types/functions/
https://flow.org/en/docs/types/functions/
https://flow.org/en/docs/types/functions/
https://flow.org/en/docs/types/functions/
https://flow.org/en/docs/types/functions/
https://flow.org/en/docs/types/functions/
https://flow.org/en/docs/types/functions/
https://flow.org/en/docs/types/functions/
https://flow.org/en/docs/types/functions/
https://flow.org/en/docs/types/functions/
https://flow.org/en/docs/types/functions/
https://www.typescriptlang.org/docs/handbook/functions.html
https://www.typescriptlang.org/docs/handbook/functions.html
https://www.typescriptlang.org/docs/handbook/functions.html
https://www.typescriptlang.org/docs/handbook/functions.html
https://www.typescriptlang.org/docs/handbook/functions.html
https://www.typescriptlang.org/docs/handbook/functions.html
https://www.typescriptlang.org/docs/handbook/functions.html
https://www.typescriptlang.org/docs/handbook/functions.html
https://www.typescriptlang.org/docs/handbook/functions.html
https://www.typescriptlang.org/docs/handbook/functions.html
https://www.typescriptlang.org/docs/handbook/functions.html
https://www.typescriptlang.org/docs/handbook/functions.html
https://www.typescriptlang.org/docs/handbook/functions.html
https://www.typescriptlang.org/docs/handbook/functions.html
https://www.typescriptlang.org/docs/handbook/functions.html
https://www.typescriptlang.org/docs/handbook/functions.html
https://flow.org/en/docs/types/functions/
https://flow.org/en/docs/types/functions/
https://flow.org/en/docs/types/functions/
https://flow.org/en/docs/types/functions/
https://flow.org/en/docs/types/functions/
https://flow.org/en/docs/types/functions/
https://flow.org/en/docs/types/functions/
https://flow.org/en/docs/types/functions/
https://flow.org/en/docs/types/functions/
https://flow.org/en/docs/types/functions/
https://flow.org/en/docs/types/functions/
https://flow.org/en/docs/types/functions/
https://flow.org/en/docs/types/functions/
https://flow.org/en/docs/types/functions/
https://flow.org/en/docs/types/functions/
https://flow.org/en/docs/types/functions/

Building Better Containers - Functional Data Types Chapter 12

[366]

Note that instead of this vanilla JavaScript style, Flow and TypeScript
have their own syntax for specifying type signatures.

Now, we can begin with some examples. Let's define the type for a simple function that just
capitalizes a word and do the same for the Math.random function:

// firstToUpper :: String → String
const firstToUpper = s => s[0].toUpperCase() + s.substr(1).toLowerCase();

// Math.random :: () → Number

These are simple cases—only take the signatures into account here; we are not interested in
the actual functions. The first function receives a string as an argument and returns a new
string. The second one receives no arguments (the empty parentheses show this) and
returns a floating-point number. The arrows denote functions. So, we can read the first
signature as firstToUpper is a function of the type that receives a string and returns a string
and we can speak similarly about the maligned (impurity-wise) Math.random() function,
with the only difference being that it doesn't receive arguments.

We've already looked at functions with zero or one parameter, but what about functions
with more than one? There are two answers to this. If we are working in a strict functional
style, we would always be doing currying (as we saw in Chapter 7, Transforming Functions
– Currying and Partial Application), so all the functions would be unary. The other solution is
enclosing a list of argument types in parentheses. We can see both of these solutions in the
following code:

// sum3C :: Number → Number → Number → Number
const sum3C = curry((a, b, c) => a + b + c);

// sum3 :: (Number, Number, Number) → Number
const sum3 = (a, b, c) => a + b + c;

Remember that sum3c is actually a => b => c => a + b + c; this explains the first
signature, which can also be read as follows:

// sum3C :: Number → (Number → (Number → (Number)))

After you provide the first argument to the function, you are left with a new function,
which also expects an argument, and returns a third function, which, when given an
argument, will produce the final result. We won't be using parentheses because we'll
always assume this grouping from right to left.

Building Better Containers - Functional Data Types Chapter 12

[367]

Now, what about higher-order functions, which receive functions as arguments? The
map() function poses a problem: it works with arrays of any type. Also, the mapping
function can produce any type of result. For these cases, we can specify generic types, which
are identified by lowercase letters: these generic types can stand for any possible type. For
arrays themselves, we use brackets. So, we would have the following:

// map :: [a] → (a → b) → [b]
const map = curry((arr, fn) => arr.map(fn));

It's perfectly valid to have a and b represent the same type, as in a mapping that's applied
to an array of numbers, which produces another array of numbers. The point is that, in
principle, a and b may stand for different types, and that's what we described previously.
Also, note that if we weren't currying, the signature would have been ([a], (a → b)) →
[b], showing a function that receives two arguments (an array of elements of type a and a
function that maps from type a to type b) and produces an array of elements of type b as
the result. Given this, we can write the following in a similar fashion:

// filter :: [a] → (a → Boolean) → [a]
const filter = curry((arr, fn) => arr.filter(fn));

And now the big one: what's the signature for reduce()? Be sure to read it carefully and
see if you can work out why it's written that way. You may prefer thinking about the
second part of the signature as if it were ((b, a) → b):

// reduce :: [a] → (b → a → b) → b → b
const reduce = curry((arr, fn, acc) => arr.reduce(fn, acc));

Finally, if you are defining a method instead of a function, you use a squiggly arrow such
as ~>:

// String.repeat :: String ⇝ Number → String

So far, we have defined data types for functions, but we aren't done with this subject just
yet. Let's consider some other cases.

Other data type options
What else are we missing? Let's look at some other options that you might use. Product
types are a set of values that are always together and are commonly used with objects. For
tuples (that is, an array with a fixed number of elements of (probably) different types), we
can write something like the following:

// getWeekAndDay :: String → (Number × String)
const getWeekAndDay = yyyy_mm_dd =>

Building Better Containers - Functional Data Types Chapter 12

[368]

 /* ... */
 return [weekNumber, dayOfWeekName];

For objects, we can go with a definition very similar to what JavaScript already uses. Let's
imagine we have a getPerson() function that receives an ID and returns an object with
data about a person:

// getPerson :: Number → { id:Number × name:String }
const getPerson = personId =>
 /* ... */
 return { id:personId, name:personName }

Sum types (also known as union types) are defined as a list of possible values. For example,
our getField() function from Chapter 6, Producing Functions – Higher-Order Functions,
either returns the value of an attribute or it returns undefined. For this, we can write the
following signature:

// getField :: String → attr → a | undefined
const getField = attr => obj => obj[attr];

We could also define a type (union or otherwise) and use it in further definitions. For
instance, the data types that can be directly compared and sorted are numbers, strings, and
Booleans, so we could write the following definitions:

// Sortable :: Number | String | Boolean

Afterward, we could specify that a comparison function can be defined in terms of the
Sortable type, but be careful: there's a hidden problem here!

// compareFunction :: (Sortable, Sortable) → Number

Actually, this definition isn't very precise because you can compare any
type, even if it doesn't make much sense. However, bear with me for the
sake of this example!
If you want to refresh your memory about sorting and comparison
functions, see https:/ ​/​developer. ​mozilla. ​org/ ​en/​docs/ ​Web/
JavaScript/ ​Reference/ ​Global_ ​Objects/ ​Array/ ​sort.

The previous definition would allow us to write a function that received, say, a number and
a Boolean: it doesn't say that both types should be the same. However, there's a way out. If
you have constraints for some data types, you can express them before the actual signature,
using a fat arrow, as shown in the following code:

// compareFunction :: Sortable a ⇒ (a, a) → Number

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/sort

Building Better Containers - Functional Data Types Chapter 12

[369]

Now, the definition is correct because all occurrences of the same type (denoted by the
same letter, in this case, a) must be exactly the same. An alternative, but one that requires
much more typing, would have been writing all three possibilities with a union:

// compareFunction ::
// ((Number, Number) | (String, String) | (Boolean, Boolean)) → Number

So far, we have been using the standard type definitions. However, when we work with
JavaScript, we have to consider some other possibilities, such as functions with optional
parameters, or even with an undetermined number of parameters. We can use ... to stand
for any number of arguments and add ? to represent an optional type, as follows:

// unary :: ((b, ...) → a) → (b → a)
const unary = fn => (...args) => fn(args[0]);

The unary() higher-order function that we defined in the same chapter we cited
previously took any function as a parameter and returned a unary function as its result. We
can show that the original function can receive any number of arguments but that the result
used only the first of them. The data type definition for this would be as follows:

// parseInt :: (String, Number?) -> Number

The standard parseInt() function provides an example of optional arguments: though it's
highly recommended that you don't omit the second parameter (the base radix), you can, in
fact, skip it.

Check out https:/ ​/ ​github. ​com/ ​fantasyland/ ​fantasy- ​land/ ​ and
https:/ ​/​sanctuary. ​js. ​org/​#types for a more formal definition and
description of types, as applied to JavaScript.

From now on, throughout this chapter, we will be adding signatures to methods and
functions. This will not only be so that you can get accustomed to them but because, when
we start delving into more complex containers, it will help you understand what we are
dealing with: some cases can be hard to understand!

Building containers
Back in Chapter 5, Programming Declaratively – A Better Style, and later, in Chapter 8,
Connecting Functions – Pipelining and Composition, we saw that the ability to be able to apply
a mapping to all the elements of an array—and, even better, being able to chain a sequence
of similar operations—was a good way to produce better, more understandable code.

https://github.com/fantasyland/fantasy-land/
https://github.com/fantasyland/fantasy-land/
https://github.com/fantasyland/fantasy-land/
https://github.com/fantasyland/fantasy-land/
https://github.com/fantasyland/fantasy-land/
https://github.com/fantasyland/fantasy-land/
https://github.com/fantasyland/fantasy-land/
https://github.com/fantasyland/fantasy-land/
https://github.com/fantasyland/fantasy-land/
https://github.com/fantasyland/fantasy-land/
https://github.com/fantasyland/fantasy-land/
https://github.com/fantasyland/fantasy-land/
https://github.com/fantasyland/fantasy-land/
https://github.com/fantasyland/fantasy-land/
https://sanctuary.js.org/#types
https://sanctuary.js.org/#types
https://sanctuary.js.org/#types
https://sanctuary.js.org/#types
https://sanctuary.js.org/#types
https://sanctuary.js.org/#types
https://sanctuary.js.org/#types
https://sanctuary.js.org/#types
https://sanctuary.js.org/#types
https://sanctuary.js.org/#types
https://sanctuary.js.org/#types

Building Better Containers - Functional Data Types Chapter 12

[370]

However, there is a problem: the map() method (or the equivalent, demethodized one, which
we looked at in Chapter 6, Producing Functions – Higher-Order Functions), is only available
for arrays, and we might want to be able to apply mappings and chaining to other data
types. So, what can we do?

Let's consider different ways of doing this, which will give us several new tools for better
functional coding. Basically, there are only two possible ways of solving this: we can either
add new methods to existing types (though that will be limited because we can only apply
that to basic JavaScript types) or we can wrap types in some type of container, which will
allow mapping and chaining.

Let's start by extending current types before moving on to using wrappers, which will lead
us into the deep functional territory, with entities such as functors and monads.

Extending current data types
If we want to add mapping to basic JavaScript data types, we need to start by considering
our options:

With null, undefined, and Symbol, applying maps doesn't sound too
interesting.
With the Boolean, Number, and String data types, we have some interesting
possibilities, so we can examine some of those.
Applying mapping to an object would be trivial: we just have to add a map()
method, which must return a new object.
Finally, despite not being basic data types, we could also consider special cases,
such as dates or functions, to which we could also add map() methods.

As in the rest of this book, we are sticking to plain JavaScript, but you
should look into libraries such as Lodash, Underscore, or Ramda, which
already provide functionalities similar to the ones we are developing here.

A key point to consider in all these mapping operations should be that the returned value is
of exactly the same type as the original one: when we use Array.map(), the result is also
an array, and similar considerations must apply to any other map() method
implementations (you could observe that the resulting array may have different element
types to the original one, but it is still an array).

Building Better Containers - Functional Data Types Chapter 12

[371]

What could we do with a Boolean? First, let's accept that Booleans are not containers, so
they don't really behave in the same way as an array: trivially, a Boolean can only have a
Boolean value, while an array may contain any type of element. However, accepting that
difference, we can extend Boolean.prototype (though, as I've already mentioned, that's
not usually recommended) by adding a new map() method to it and making sure that
whatever the mapping function returns is turned into a new Boolean value. For the latter,
the solution will be similar to the following:

// Boolean.map :: Boolean ⇝ (Boolean → a) → Boolean
Boolean.prototype.map = function(fn) {
 return !!fn(this);
};

The !! operator forces the result to be a Boolean: Boolean(fn(this)) could also have
been used. This kind of solution can also be applied to numbers and strings, as shown in
the following code:

// Number.map :: Number ⇝ (Number → a) → Number
Number.prototype.map = function(fn) {
 return Number(fn(this));
};

// String.map :: String ⇝ (String → a) → String
String.prototype.map = function(fn) {
 return String(fn(this));
};

As with Boolean values, we are forcing the results of the mapping operations to the correct
data types.

Finally, if we wanted to apply mappings to a function, what would that mean? Mapping a
function should produce a function. The logical interpretation for f.map(g) would be
applying f(), and then applying g() to the result. So, f.map(g) should be the same as
writing x => g(f(x)) or, equivalently, pipe(f,g). The definition is more complex than it
was for the previous examples, so study it carefully:

// Function.map :: (a → b) ⇝ (b → c) → (a → c)
Function.prototype.map = function(fn) {
 return (...args) => fn(this(...args));
};

Building Better Containers - Functional Data Types Chapter 12

[372]

Verifying that this works is simple, and the following code is an easy example of how to do
this. The by10() mapping function is applied to the result of calculating plus1(3), so the
result is 40:

const plus1 = x => x + 1;
const by10 = y => 10 * y;

console.log(plus1.map(by10)(3));
// 40: first add 1 to 3, then multiply by 10

With this, we are done talking about what we can achieve with basic JavaScript types, but
we need a more general solution if we want to apply this to other data types. We'd like to
be able to apply mapping to any kind of values, and for that, we'll need to create a
container. We'll do this in the next section.

Containers and functors
What we did in the previous section does work and can be used with no problems.
However, we would like to consider a more general solution that we can apply to any data
type. Since not all things in JavaScript provide the desired map() method, we will have to
either extend the type (as we did in the previous section) or apply a design pattern that we
considered in Chapter 11, Implementing Design Patterns – The Functional Way: wrapping our
data types with a wrapper that will provide the required map() operations.

In particular, we will do the following:

Start by seeing how to build a basic container, wrapping a value
Convert the container into something more powerful—a functor
Study how to deal with missing values using a special functor, Maybe

Wrapping a value – a basic container
Let's pause for a minute and consider what we need from this wrapper. There are two basic
requirements:

We must have a map() method.
We need a simple way to wrap a value.

Building Better Containers - Functional Data Types Chapter 12

[373]

To get started, let's create a basic container. Any object containing just a value would do,
but we want some additions, so our object won't be that trivial; we'll explain the differences
after the code:

const VALUE = Symbol("Value");

class Container {
 constructor(x) {
 this[VALUE] = x;
 }

 map(fn) {
 return fn(this[VALUE]);
 }
}

Some basic considerations that we need to keep in mind are as follows:

We want to be able to store some value in a container, so the constructor takes
care of that.
Using a Symbol helps hide the field: the property key won't show up in
Object.keys() or in for...in or for...of loops, making them more
meddle-proof.
We need to be able to map(), so a method is provided for that.

If you haven't worked with JavaScript symbols, possibly the least known
of its primitive data types, you might want to check out https:/ ​/
developer. ​mozilla. ​org/ ​en-​US/ ​docs/ ​Glossary/ ​symbol.

Our basic barebones container is ready, but we can also add some other methods for
convenience, as follows:

To get the value of a container, we could use map(x => x), but that won't work
with more complex containers, so we'll add a valueOf() method to get the
contained value.
Being able to list a container can certainly help with debugging. The toString()
method will come in handy for this.
Because we don't need to write new Container() all the time, we can add a
static of() method to do the same job.

https://developer.mozilla.org/en-US/docs/Glossary/symbol
https://developer.mozilla.org/en-US/docs/Glossary/symbol
https://developer.mozilla.org/en-US/docs/Glossary/symbol
https://developer.mozilla.org/en-US/docs/Glossary/symbol
https://developer.mozilla.org/en-US/docs/Glossary/symbol
https://developer.mozilla.org/en-US/docs/Glossary/symbol
https://developer.mozilla.org/en-US/docs/Glossary/symbol
https://developer.mozilla.org/en-US/docs/Glossary/symbol
https://developer.mozilla.org/en-US/docs/Glossary/symbol
https://developer.mozilla.org/en-US/docs/Glossary/symbol
https://developer.mozilla.org/en-US/docs/Glossary/symbol
https://developer.mozilla.org/en-US/docs/Glossary/symbol
https://developer.mozilla.org/en-US/docs/Glossary/symbol
https://developer.mozilla.org/en-US/docs/Glossary/symbol
https://developer.mozilla.org/en-US/docs/Glossary/symbol
https://developer.mozilla.org/en-US/docs/Glossary/symbol
https://developer.mozilla.org/en-US/docs/Glossary/symbol
https://developer.mozilla.org/en-US/docs/Glossary/symbol

Building Better Containers - Functional Data Types Chapter 12

[374]

Working with classes to represent containers (and later, functors and
monads) when living in a functional programming world may seem like
heresy or sin... but remember that we don't want to be dogmatic, and
class and extends simplify our coding. Similarly, it could be argued
that you must never take a value out of the container—but using
a valueOf() method is sometimes too handy, so we won't be that
restrictive.

By taking all of this into account, our container is as follows:

class Container {
 //
 // everything as above
 //

 static of(x) {
 return new Container(x);
 }

 toString() {
 return `${this.constructor.name}(${this[VALUE]})`;
 }

 valueOf() {
 return this[VALUE];
 }
}

Now, we can use this container to store a value, and we can use map() to apply any
function to that value, but this isn't very different from what we could do with a variable!
Let's enhance this a bit.

Enhancing our container – functors
We want to have wrapped values, so what exactly should return the map() method? If we
want to be able to chain operations, then the only logical answer is that it should return a
new wrapped object. In true functional style, when we apply a mapping to a wrapped
value, the result will be another wrapped value that we can keep working on.

Instead of map(), this operation is sometimes called fmap(), standing for
functorial map. The rationale for the name change was to avoid expanding
the meaning of map(). However, since we are working in a language that
supports reusing the name, we can keep it.

Building Better Containers - Functional Data Types Chapter 12

[375]

We can extend our Container class to implement this change and get ourselves an
enhanced container: a functor. The of() and map() methods will require a small change.
For this, we'll be creating a new class, as shown in the following code:

class Functor extends Container {
 static of(x) {
 return new Functor(x);
 }

 map(fn) {
 return Functor.of(fn(this[VALUE]));
 }
}

Here, the of() method produces a Functor object, and so does the map() method. With
these changes, we have just defined what a Functor is in category theory! (Or, if you want
to get really technical, a Pointed Functor because of the of() method – but let's keep it
simple.) We won't go into the theoretical details, but roughly speaking, a functor is some
kind of container that allows us to apply map() to its contents, producing a new container
of the same type, and if this sounds familiar, it's because you already know a functor:
arrays! When you apply map() to an array, the result is a new array containing
transformed (mapped) values.

There are more requirements for functors. First, the contained values may
be polymorphic (of any type), just like arrays. Second, a function must
exist whose mapping produces the same contained value—x => x does
this for us. Finally, applying two consecutive mappings must produce the
same result as applying their composition. This means
that container.map(f).map(g) must be the same as
container.map(compose(g,f)).

Let's pause for a moment and consider the signatures for our function and methods:

of :: Functor f ⇒ a → f a

Functor.toString :: Functor f ⇒ f a ⇝ String

Functor.valueOf :: Functor f ⇒ f a ⇝ a

Functor.map :: Functor f ⇒ f a ⇝ (a → b) → f a → f b

Building Better Containers - Functional Data Types Chapter 12

[376]

The first function, of(), is the simplest: given a value of any type, it produces a Functor of
that type. The next two are also rather simple to understand: given a Functor,
toString() always returns a string (no surprise there!) and if the functor-contained value
is of a given type, valueOf() produces a result of that same type. The third one, map(), is
more interesting. Given a function that takes an argument of type a and produces a result
of type b, applying it to a functor that contains a value of type a produces a functor
containing a value of type b—this is exactly what we described previously.

As is, functors are not allowed or expected to produce side effects, throw exceptions, or
exhibit any other behavior outside of producing a containered result. Their main usage is to
provide us with a way to manipulate a value, apply operations to it, compose results, and
so on, without changing the original—in this sense, we are once again coming back to
immutability.

You could also compare functors to promises, at least in one aspect. With
functors, instead of acting on its value directly, you have to apply a
function with map(). In promises, you do exactly the same, but using
then() instead! In fact, there are more analogies, as we'll be seeing soon.

However, you could well say that this isn't enough since, in normal programming, it's quite
usual to have to deal with exceptions, undefined or null values, and so on. So, let's start by
looking at more examples of functors. After that, we'll enter the realm of monads so that we
can look at even more sophisticated kinds of processing. Let's experiment a bit!

Dealing with missing values with Maybe
A common problem in programming is dealing with missing values. There are many
possible causes for this situation: a web service Ajax call may have returned an empty
result, a dataset could be empty, an optional attribute might be missing from an object, and
so on. Dealing with this kind of situation, in a normal imperative fashion, requires adding
if statements or ternary operators everywhere to catch the possible missing value in order
to avoid a certain runtime error. We can do a bit better by implementing a Maybe functor to
represent a value that may (or may not) be present! We will use two classes, Just (as in just
some value) and Nothing, both of which are functors themselves. The Nothing functor is
particularly simple, with trivial methods:

class Nothing extends Functor {
 isNothing() {
 return true;
 }

 toString() {

Building Better Containers - Functional Data Types Chapter 12

[377]

 return "Nothing()";
 }

 map(fn) {
 return this;
 }
}

The isNothing() method returns true, toString() returns a constant text, and map()
always returns itself, no matter what function it's given. Moving forward, the Just functor
is also a basic one, with the added isNothing() method (which always returns true, since
a Just object isn't a Nothing), and a map() method that now returns a Maybe:

class Just extends Functor {
 isNothing() {
 return false;
 }

 map(fn) {
 return Maybe.of(fn(this[VALUE]));
 }
}

Finally, our Maybe class packs the logic that's needed to construct either a Nothing or a
Just. If it receives an undefined or null value, a Nothing will be constructed, and in other
cases, a Just will be the result. The of() method has exactly the same behavior:

class Maybe extends Functor {
 constructor(x) {
 return x === undefined || x === null
 ? new Nothing()
 : new Just(x);
 }

 static of(x) {
 return new Maybe(x);
 }
}

We can quickly verify that this works by trying to apply an operation to either a valid value
or a missing one. Let's look at two examples of this:

const plus1 = x => x + 1;

Maybe.of(2209).map(plus1).map(plus1).toString(); // "Just(2211)"

Maybe.of(null).map(plus1).map(plus1).toString(); // "Nothing()"

Building Better Containers - Functional Data Types Chapter 12

[378]

When we applied plus1() to Maybe.of(2209), everything worked fine, and we ended up
with a Just(2011) value. On the other hand, when we applied the same sequence of
operations to a Maybe.of(null) value, the end result was a Nothing, but there were no
errors, even if we tried to do math with a null value. A Maybe functor can deal with
mapping a missing value by just skipping the operation and returning a wrapped null
value instead. This means that this functor is including an abstracted check, which won't let
an error happen.

Later in this chapter, we'll see that Maybe can actually be a monad instead
of a functor, and we'll also examine more examples of monads.

Let's look at a more realistic example of its usage.

Dealing with varying API results
Suppose we are writing a small server-side service in Node to get the alerts for a city and
produce a not-very-fashionable HTML <table> with them, supposedly to be part of some
server side-produced web page. (Yes, I know you should try to avoid tables in your pages,
but what I want here is a short example of HTML generation, and actual results aren't
really important.) If we used the Dark Sky API (see https:/ ​/​darksky. ​net/ ​ for more on this
API and how to register with it) to get the alarms, our code would be something like this;
all quite normal. Note the callback in case of an error; you'll see why in the following code:

const request = require("superagent");

const getAlerts = (lat, long, callback) => {
 const SERVER = "https://api.darksky.net/forecast";
 const UNITS = "units=si";
 const EXCLUSIONS = "exclude=minutely,hourly,daily,flags";
 const API_KEY = "you.need.to.get.your.own.api.key";
 request
 .get(`${SERVER}/${API_KEY}/${lat},${long}?${UNITS}&${EXCLUSIONS}`)
 .end(function(err, res) {
 if (err) {
 callback({});
 } else {
 callback(JSON.parse(res.text));
 }
 });
};

https://darksky.net/
https://darksky.net/
https://darksky.net/
https://darksky.net/
https://darksky.net/
https://darksky.net/
https://darksky.net/
https://darksky.net/

Building Better Containers - Functional Data Types Chapter 12

[379]

The (heavily edited and reduced in size) output of such a call might be something like this:

{
 latitude: 29.76,
 longitude: -95.37,
 timezone: "America/Chicago",
 offset: -5,
 currently: {
 time: 1503660334,
 summary: "Drizzle",
 icon: "rain",
 temperature: 24.97,
 .
 .
 .
 uvIndex: 0
 },
 alerts: [
 {
 title: "Tropical Storm Warning",
 regions: ["Harris"],
 severity: "warning",
 time: 1503653400,
 expires: 1503682200,
 description:
 "TROPICAL STORM WARNING REMAINS IN EFFECT... WIND - LATEST LOCAL
FORECAST: Below tropical storm force wind ... CURRENT THREAT TO LIFE AND
PROPERTY: Moderate ... Locations could realize roofs peeled off buildings,
chimneys toppled, mobile homes pushed off foundations or overturned ...",
 uri:
"https://alerts.weather.gov/cap/wwacapget.php?x=TX125862DD4F88.TropicalStor
mWarning.125862DE8808TX.HGXTCVHGX.73ee697556fc6f3af7649812391a38b3"
 },
 .
 .
 .
 {
 title: "Hurricane Local Statement",
 regions: ["Austin", ... , "Wharton"],
 severity: "advisory",
 time: 1503748800,
 expires: 1503683100,
 description:
 "This product covers Southeast Texas **HURRICANE HARVEY DANGEROUSLY
APPROACHING THE TEXAS COAST** ... The next local statement will be issued
by the National Weather Service in Houston/Galveston TX around 1030 AM CDT,
or sooner if conditions warrant.\n",
 uri: "https://alerts.weather.gov/cap/wwacapget.php?..."

Building Better Containers - Functional Data Types Chapter 12

[380]

 }
]
};

I got this information for Houston, TX, US, on a day when Hurricane Harvey was
approaching the state. If you called the API on a normal day, the data would simply
exclude the alerts:[...] part. Here, we can use a Maybe functor to process the received
data without any problems, with or without any alerts:

const getField = attr => obj => obj[attr];
const os = require("os");

const produceAlertsTable = weatherObj =>
 Maybe.of(weatherObj)
 .map(getField("alerts"))
 .map(a =>
 a.map(
 x =>
 `<tr><td>${x.title}</td>` +
 `<td>${x.description.substr(0, 500)}...</td></tr>`
)
)
 .map(a => a.join(os.EOL))
 .map(s => `<table>${s}</table>`);

getAlerts(29.76, -95.37, x =>
 console.log(produceAlertsTable(x).valueOf())
);

Of course, you would probably do something more interesting than just logging the value
of the contained result of produceAlertsTable()! The most likely option would be to
map() again with a function that would output the table, send it to a client, or do whatever
you needed to do. In any case, the resulting output would look something like this:

<table><tr><td>Tropical Storm Warning</td><td>...TROPICAL STORM WARNING
REMAINS IN EFFECT... ...STORM SURGE WATCH REMAINS IN EFFECT... * WIND -
LATEST LOCAL FORECAST: Below tropical storm force wind - Peak Wind
Forecast: 25-35 mph with gusts to 45 mph - CURRENT THREAT TO LIFE AND
PROPERTY: Moderate - The wind threat has remained nearly steady from the
previous assessment. - Emergency plans should include a reasonable threat
for strong tropical storm force wind of 58 to 73 mph. - To be safe,
earnestly prepare for the potential of significant...</td></tr>
<tr><td>Flash Flood Watch</td><td>...FLASH FLOOD WATCH REMAINS IN EFFECT
THROUGH MONDAY MORNING... The Flash Flood Watch continues for * Portions of
Southeast Texas...including the following
counties...Austin...Brazoria...Brazos...Burleson...
Chambers...Colorado...Fort Bend...Galveston...Grimes...

Building Better Containers - Functional Data Types Chapter 12

[381]

Harris...Jackson...Liberty...Matagorda...Montgomery...Waller... Washington
and Wharton. * Through Monday morning * Rainfall from Harvey will cause
devastating and life threatening flooding as a prolonged heavy rain and
flash flood thre...</td></tr>
<tr><td>Hurricane Local Statement</td><td>This product covers Southeast
Texas **PREPARATIONS FOR HARVEY SHOULD BE RUSHED TO COMPLETION THIS
MORNING** NEW INFORMATION --------------- * CHANGES TO WATCHES AND
WARNINGS: - None * CURRENT WATCHES AND WARNINGS: - A Tropical Storm Warning
and Storm Surge Watch are in effect for Chambers and Harris - A Tropical
Storm Warning is in effect for Austin, Colorado, Fort Bend, Liberty,
Waller, and Wharton - A Storm Surge Warning and Hurricane Warning are in
effect for Jackson and Matagorda - A Storm S...</td></tr></table>

The output of the preceding code can be seen in the following screenshot:

Figure 12.1: The output table is not much to look at, but the logic that produced it didn't require a single if statement

If we had called getAlerts(-34.9, -54.60, ...) with the coordinates for Montevideo,
Uruguay, instead, since there were no alerts for that city,
the getField("alerts") function would have returned undefined—and since that
value is recognized by the Maybe functor, and even though all the
following map() operations would still be executed, no one would actually do anything,
and a null value would be the final result.

We took advantage of this behavior when we coded the error logic. If an error occurs when
calling the service, we would still call the original callback to produce a table but provide
an empty object. Even if this result is unexpected, we would be safe because the same
guards would avoid causing a runtime error.

Building Better Containers - Functional Data Types Chapter 12

[382]

As a final enhancement, we can add an orElse() method to provide a default value when
no one is present. The added method will return the default value if Maybe is a Nothing, or
the Maybe value itself otherwise:

class Maybe extends Functor {
 //
 // everything as before...
 //
 orElse(v) {
 return this.isNothing() ? v : this.valueOf();
 }
}

Using this new method instead of valueOf(), if you're trying to get the alerts for
someplace without them, would just get whatever default value you wanted. In the case we
mentioned previously when we attempted to get the alerts for Montevideo, instead of a
null value, we would get the following appropriate result:

getAlerts(-34.9, -54.6, x =>
 console.log(
 produceAlertsTable(x).orElse("No alerts today.")
)
);

With this, we have looked at an example of dealing with different situations when working
with an API. Let's quickly revisit another topic from the previous chapter and look at a
better implementation of Prisms.

Implementing Prisms
The more common implementations of Prisms (which we first met in the Prisms section of
Chapter 10, Ensuring Purity – Immutability) we came across was that instead of returning
either some value or undefined and leaving it up to the caller to check what happened, we
could opt to return a Maybe, which already provides us with easy ways to deal with
missing values. In our new implementation (which we'll look at soon), our example from
the aforementioned chapter would look like this:

const author = {
 user: "fkereki",
 name: {
 first: "Federico",
 middle: "",
 last: "Kereki"
 },
 books: [

Building Better Containers - Functional Data Types Chapter 12

[383]

 { name: "GWT", year: 2010 },
 { name: "FP", year: 2017 },
 { name: "CB", year: 2018 }
]
};

If we wanted to access the author.user attribute, the result would be different:

const pUser = prismProp("user");

console.log(review(pUser, author).toString());

/*
 Just("fkereki")
*/

Similarly, if we asked for a non-existant pseudonym attribute, instead of undefined (as in
our previous version of Prisms), we would get a Nothing:

const pPseudonym = prismProp("pseudonym");

console.log(review(pPseudonym, author).toString());

/*
 Nothing()
*/

So, this new version of Prisms is better to work with if you are already used to dealing with
Maybe values. What do we need to implement this? We need just a single change; our
Constant class now needs to return a Maybe instead of a value, so we'll have a new
ConstantP (P for Prism) class:

class ConstantP {
 constructor(v) {
 this.value = Maybe.of(v);
 this.map = () => this;
 }
}

We will have to rewrite preview() to use the new class, and that finishes the change:

const preview = curry(
 (prismAttr, obj) => prismAttr(x => new ConstantP(x))(obj).value
);

Building Better Containers - Functional Data Types Chapter 12

[384]

So, getting Prisms to work with Maybes wasn't that hard, and now we have a consistent
way of dealing with possibly missing attributes. Working in this fashion, we can simplify
our coding and avoid many tests for nulls and other similar situations. However, we may
want to go beyond this; for instance, we may want to know why there were no alerts: was it
a service error? Or just a normal situation? Just getting a null at the end isn't enough, and
in order to work with these new requirements, we will need to add some extra
functionality to our functors (as we'll see in the next section) and enter the domain of
monads.

Monads
Monads have weird fame among programmers. Well-known developer Douglas Crockford
has famously spoken of a curse, maintaining that Once you happen to finally understand
monads, you immediately lose the ability to explain them to other people! On a different note, if
you decide to go to the basics and read Categories for the Working Mathematician by Saunders
Mac Lane (one of the creators of category theory), you may find a somewhat disconcerting
explanation - which is not too illuminating!

"A monad in X is just a monoid in the category of endofunctors of X, with product ×
replaced by composition of endofunctors and unit set by the identity endofunctor."

The difference between monads and functors is that the former adds some extra
functionality; we'll see what functionality they add soon. Let's start by looking at the new
requirements before moving on and considering some common, useful monads. As with
functors, we will have a basic monad, which you could consider to be an abstract version,
and specific monadic types, which are concrete implementations, geared to solve specific
cases.

If you want to read a precise and careful description of functors, monads,
and their family (but leaning heavily to the theoretical side, with plenty of
algebraic definitions to go around), you can try the Fantasy Land
Specification at https:/ ​/ ​github. ​com/ ​fantasyland/ ​fantasy- ​land/ ​. Don't
say we didn't warn you: the alternative name for that page is Algebraic
JavaScript Specification!

https://github.com/fantasyland/fantasy-land/
https://github.com/fantasyland/fantasy-land/
https://github.com/fantasyland/fantasy-land/
https://github.com/fantasyland/fantasy-land/
https://github.com/fantasyland/fantasy-land/
https://github.com/fantasyland/fantasy-land/
https://github.com/fantasyland/fantasy-land/
https://github.com/fantasyland/fantasy-land/
https://github.com/fantasyland/fantasy-land/
https://github.com/fantasyland/fantasy-land/
https://github.com/fantasyland/fantasy-land/
https://github.com/fantasyland/fantasy-land/
https://github.com/fantasyland/fantasy-land/
https://github.com/fantasyland/fantasy-land/

Building Better Containers - Functional Data Types Chapter 12

[385]

Adding operations
Let's consider a simple problem. Suppose you have the following pair of functions, working
with Maybe functors: the first function tries to search for something (say, a client or a
product) given its key, and the second attempts to extract some attribute from it (I'm being
purposefully vague because the problem does not have anything to do with whatever
objects or things we may be working with). Both functions produce Maybe results to avoid
possible errors. We are using a mocked search function, just to help us see the problem: for
even keys, it returns fake data, and for odd keys, it throws an exception. The code for this
search is very simple:

const fakeSearchForSomething = key => {
 if (key % 2 === 0) {
 return {key, some: "whatever", other: "more data"};

 } else {
 throw new Error("Not found");
 }
};

Using this search, our findSomething() function will try to do a search, return a
Maybe.of() for a successful call, or a Maybe.of(null) (in other terms, a Nothing) in case
of an error:

const findSomething = key => {
 try {
 const something = fakeSearchForSomething(key);
 return Maybe.of(something);
 } catch (e) {
 return Maybe.of(null);
 }
};

With this, we could think of writing these two functions to do some searching, but not
everything would be fine; can you see what the problem is here?

const getSome = something => Maybe.of(something.map(getField("some")));

const getSomeFromSomething = key => getSome(findSomething(key));

Building Better Containers - Functional Data Types Chapter 12

[386]

The problem in this sequence is that the output from getSome() is a Maybe value, which
itself contains a Maybe value, so the result we want is double wrapped, as we can see by
executing a couple of calls, for an even number (which will return a "whatever") and for
an odd number (which will be an error), as follows:

let xxx = getSomeFromSomething(2222).valueOf().valueOf(); // "whatever"

let yyy = getSomeFromSomething(9999).valueOf().valueOf(); // null

This problem can be easily solved in this toy problem if we just avoid using Maybe.of() in
getSome(), but this kind of result can happen in many more complex ways. For instance,
you could be building a Maybe out of an object, one of whose attributes happened to be a
Maybe, and you'd get the same situation when accessing that attribute: you would end up
with a double wrapped value.

Now, we are going to look into monads. Monads should provide the following operations:

A constructor.
A function that inserts a value into a monad: our of() method.
A function that allows us to chain operations: our map() method.
A function that can remove extra wrappers: we will call it unwrap(). It will solve
our preceding multiple wrapper problems. Sometimes, this function is called
flatten().

We will also have a function to chain calls, just to simplify our coding, and another function
to apply functions, but we'll get to those later. Let's see what a monad looks like in actual
JavaScript code. Data type specifications are very much like those for functors, so we won't
repeat them here:

class Monad extends Functor {
 static of(x) {
 return new Monad(x);
 }

 map(fn) {
 return Monad.of(fn(this[VALUE]));
 }

 unwrap() {
 const myValue = this[VALUE];
 return myValue instanceof Container ? myValue.unwrap() : this;
 }
}

Building Better Containers - Functional Data Types Chapter 12

[387]

We use recursion to successively remove wrappers until the wrapped value isn't a
container anymore. Using this method, we could avoid double wrapping easily, and we
could rewrite our previous troublesome function like this:

const getSomeFromSomething = key => getSome(findSomething(key)).unwrap();

However, this sort of problem could reoccur at different levels. For example, if we were
doing a series of map() operations, any of the intermediate results may end up being
double wrapped. You could easily solve this by remembering to call unwrap() after each
map()—note that you could do this even if it is not actually needed since the result of
unwrap() would be the very same object (can you see why?). But we can do better! Let's
define a chain() operation (sometimes named flatMap() instead, which is a bit
confusing since we already have another meaning for that; see Chapter 5, Programming
Declaratively – A Better Style, for more on this) that will do both things for us:

class Monad extends Functor {
 //
 // everything as before...
 //
 chain(fn) {
 return this.map(fn).unwrap();
 }
}

There's only one operation left. Suppose you have a curried function with two parameters;
nothing outlandish! What would happen if you were to provide that function to a map()
operation?

const add = x => y => x+y; // or curry((x,y) => x+y)

const something = Monad.of(2).map(add);

What would something be? Given that we have only provided one argument to add, the
result of that application will be a function—not just any function, though, but a wrapped
one! (Since functions are first-class objects, there's no logical obstacle to wrapping a
function in a Monad, is there?) What would we want to do with such a function? To be able
to apply this wrapped function to a value, we'll need a new method: ap(). What could its
value be? In this case, it could either be a plain number, or a number wrapped in a Monad as
a result of other operations. Since we can always Map.of() a plain number into a wrapped
one, let's have ap() work with a monad as its parameter; the new method would be as
follows:

class Monad extends Functor {
 //

Building Better Containers - Functional Data Types Chapter 12

[388]

 // everything as earlier...
 //
 ap(m) {
 return m.map(this.valueOf());
 }
}

With this, you could then do the following:

const monad5 = something.ap(Monad.of(3)); // Monad(5)

You can use monads to hold values or functions and to interact with other monads and
chaining operations as you wish. So, as you can see, there's no big trick to monads, which
are just functors with some extra methods. Now, let's look at how we can apply them to our
original problem and handle errors in a better way.

Handling alternatives – the Either monad
Knowing that a value was missing may be enough in some cases, but in others, you'll want
to be able to provide an explanation. We can get such an explanation if we use a different
functor, which will take one of two possible values: one associated with a problem, error, or
failure, and another associated with normal execution, or success:

A left value, which should be null, but if present then it represents some kind of
special value (for example, an error message or a thrown exception) that cannot
be mapped over
A right value, which represents the normal value of the functor and can be
mapped over

We can construct this monad in a similar way to what we did for Maybe (actually, the
added operations make it better for Maybe to extend Monad as well). The constructor will
receive a left and a right value: if the left value is present, it will become the value of the
Either monad; otherwise, the right value will be used. Since we have been providing of()
methods for all our functors, we need one for Either too. The Left monad is very similar
to our previous Nothing:

class Left extends Monad {
 isLeft() {
 return true;
 }
 map(fn) {
 return this;
 }
}

Building Better Containers - Functional Data Types Chapter 12

[389]

Similarly, Right resembles our previous Just:

class Right extends Monad {
 isLeft() {
 return false;
 }

 map(fn) {
 return Either.of(null, fn(this[VALUE]));
 }
}

And with these two monads under our belt, we can write our Either monad. It shouldn't
be a surprise that this resembles our previous Maybe, should it?

class Either extends Monad {
 constructor(left, right) {
 return right === undefined || right === null
 ? new Left(left)
 : new Right(right);
 }

 static of(left, right) {
 return new Either(left, right);
 }
}

The map() method is key. If this functor has got a left value, it won't be processed any
further; in other cases, the mapping will be applied to the right value, and the result will be
wrapped. Now, how can we enhance our code with this? The key idea is for every involved
method to return an Either monad; chain() will be used to execute operations one after
another. Getting the alerts would be the first step—we invoke the callback either with an
AJAX FAILURE message or with the result from the API call, as follows:

const getAlerts2 = (lat, long, callback) => {
 const SERVER = "https://api.darksky.net/forecast";
 const UNITS = "units=si";
 const EXCLUSIONS = "exclude=minutely,hourly,daily,flags";
 const API_KEY = "you.have.to.get.your.own.key";

 request
 .get(`${SERVER}/${API_KEY}/${lat},${long}?${UNITS}&${EXCLUSIONS}`)
 .end((err, res) =>
 callback(
 err
 ? Either.of("AJAX FAILURE", null)
 : Either.of(null, JSON.parse(res.text))

Building Better Containers - Functional Data Types Chapter 12

[390]

)
);
};

Then, the general process would be as follows. We use an Either again: if there are no
alerts, instead of an array, we would return a NO ALERTS message:

const produceAlertsTable2 = weatherObj => {
 return weatherObj
 .chain(obj => {
 const alerts = getField("alerts")(obj);
 return alerts
 ? Either.of(null, alerts)
 : Either.of("NO ALERTS", null);
 })

 .chain(a =>
 a.map(
 x =>
 `<tr><td>${x.title}</td>` +
 `<td>${x.description.substr(0, 500)}...</td></tr>`
)
)

 .chain(a => a.join(os.EOL))

 .chain(s => `<table>${s}</table>`);
};

Note how we used chain() so that multiple wrappers would be no problem. Now, we can
test multiple situations and get appropriate results—or at least, for the current weather
situation around the world!

For Houston, TX, we still get an HTML table.
For Montevideo, UY, we get a text saying there were no alerts.
For a point with wrong coordinates, we learn that the AJAX call failed: nice!

// Houston, TX, US:
getAlerts2(29.76, -95.37, x =>
console.log(produceAlertsTable2(x).toString()));
Right("...a table with alerts: lots of HTML code...");

// Montevideo, UY
getAlerts2(-34.9, -54.6, x =>
console.log(produceAlertsTable2(x).toString()));
Left("NO ALERTS");

Building Better Containers - Functional Data Types Chapter 12

[391]

// A point with wrong coordinates
getAlerts2(444, 555, x => console.log(produceAlertsTable2(x).toString()));
Left("AJAX FAILURE");

We are not done with the Either monad. It's likely that much of your code will involve
calling functions. Let's look at a better way of achieving this by using a variant of this
monad.

Calling a function – the Try monad
If we are calling functions that may throw exceptions and we want to do so in a functional
way, we could use the Try monad to encapsulate the function result or the exception. The
idea is basically the same as the Either monad: the only difference is in the constructor,
which receives a function and calls it:

If there are no problems, the returned value becomes the right value for the
monad.
If there's an exception, it will become the left value.

This can be seen in the following code:

class Try extends Either {
 constructor(fn, msg) {
 try {
 return Either.of(null, fn());
 } catch (e) {
 return Either.of(msg || e, null);
 }
 }

 static of(fn, msg) {
 return new Try(fn, msg);
 }
}

Now, we can invoke any function, catching exceptions in a good way. For example, the
getField() function that we have been using would crash if it were called with a null
argument:

// getField :: String → attr → a | undefined
const getField = attr => obj => obj[attr];

Building Better Containers - Functional Data Types Chapter 12

[392]

In the Implementing Prisms section of Chapter 10, Ensuring Purity – Immutability, we wrote a
getFieldP() function that could deal with null values, but here, we will rewrite it using
the Try monad, so, in addition, it will play nice with other composed functions. The
alternative implementation of our getter would be as follows:

const getField2 = attr => obj => Try.of(() => obj[attr], "NULL OBJECT");

We can check that this works by trying to apply our new function to a null value:

const x = getField2("somefield")(null);

console.log(x.isLeft()); // true

console.log(x.toString()); // Left(NULL OBJECT)

There are many more monads and, of course, you can even define your own, so we couldn't
possibly go over all of them. However, let's visit just one more—one that you have been
using already, without being aware of its monad-ness!

Unexpected monads – promises
Let's finish this section on monads by mentioning yet another one that you may have used,
though under a different name: Promises! Previously, we mentioned that functors (and,
remember, monads are functors) had at least something in common with promises: using a
method in order to access the value. However, the analogy is greater than that!

Promise.resolve() corresponds with Monad.of()—if you pass a value to
.resolve(), you'll get a promise resolved to that value, and if you provide a
promise, you will get a new promise, the value of which will be that of the
original one (see https:/ ​/ ​developer. ​mozilla. ​org/ ​en-​US/ ​docs/ ​Web/
JavaScript/ ​Reference/ ​Global_ ​Objects/ ​Promise/ ​resolve for more on this).
This is an unwrapping behavior!
Promise.then() stands for Monad.map() as well as Monad.chain(), given the
mentioned unwrapping.
We don't have a direct match to Monad.ap(), but we could add something like
the following code:

Promise.prototype.ap = function(promise2) {
 return this.then(x => promise2.map(x));
};

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve

Building Better Containers - Functional Data Types Chapter 12

[393]

Even if you opt for the modern async and await features, internally, they
are based on promises. Furthermore, in some situations, you may still
need Promise.race() and Promise.all(), so it's likely you will keep
using promises, even if you opt for full ES8 coding.

This is an appropriate ending for this section. Earlier, you found out that common arrays
were, in fact, functors. Now, in the same way that Monsieur Jourdain (a character in
Molière's play Le Bourgeois Gentilhomme, The Burgeois Gentleman) discovered that all his life
he had been speaking in prose, you now know you had already been using monads,
without even knowing it! So far, we have learned how to build different types of containers.
Now, let's learn how functions can also make do as containers, as well as for all kinds of
data structures!

Functions as data structures
So far, we have learned how to use functions to work with or transform other functions to
process data structures or to create data types. Now, we'll finish this chapter by showing
you how a function can actually implement a data type by itself, becoming a sort of
container of its own. In fact, this is a basic theoretical point of the lambda calculus (and if
you want to learn more, look up Church Encoding and Scott Encoding), so we may very well
say that we have come back to where we began this book, at the origins of FP! We will start
with a detour that considers binary trees in a different functional language, Haskell, and
then move on to implementing trees as functions, but in JavaScript; this experience will
help you work out how to deal with other data structures.

Binary trees in Haskell
Consider a binary tree. Such a tree may either be empty or consist of a node (the tree root)
with two sons: a left binary tree and a right one. A node that has no sons is called a leaf.

In Chapter 9, Designing Functions – Recursion, we worked with more
general tree structures, such as a filesystem or the browser DOM itself,
which allow a node to have any number of sons. In the case of the trees
we are working with in this section, each node always has two sons,
although each of them may be empty. The difference may seem minor, but
allowing for empty subtrees is what lets you define that all nodes are
binary.

Building Better Containers - Functional Data Types Chapter 12

[394]

Let's make a digression with the Haskell language. In it, we might write something like the
following; a would be the type of whatever value we hold in the nodes:

data Tree a = Nil | Node a (Tree a) (Tree a)

In the Haskell language, pattern matching is often used for coding. For example, we could
define an empty function as follows:

empty :: Tree a -> Bool
empty Nil = True
empty (Node root left right) = False

What does this mean? Apart from the data type definition, the logic is simple: if the tree is
Nil (the first possibility in the definition of the type), then the tree is certainly empty;
otherwise, the tree isn't empty. The last line would probably be written as empty _ =
False while using _ as a placeholder, because you don't actually care about the
components of the tree; the mere fact that it's not Nil suffices.

Searching for a value in a binary search tree (in which the root is greater than all the values
of its left subtree and less than all the values of its right subtree) would be written in a
similar fashion, as follows:

contains :: (Ord a) => (Tree a) -> a -> Bool
contains Nil _ = False
contains (Node root left right) x
 | x == root = True
 | x < root = contains left x
 | x > root = contains right x

What patterns are matched here? We have four patterns now, which must be considered in
order:

An empty tree (Nil—it doesn't matter what we are looking for, so just write _)
doesn't contain the searched value.
If the tree isn't empty, and the root matches the searched value (x), we are done.
If the root doesn't match and is greater than the searched value, the answer is
found while searching in the left subtree.
Otherwise, the answer is found by searching in the right subtree.

There's an important point to remember: for this data type, which is a union of two possible
types, we have to provide two conditions, and pattern matching will be used to decide
which one is going to be applied. Keep this in mind!

Building Better Containers - Functional Data Types Chapter 12

[395]

Functions as binary trees
Can we do something similar with functions? The answer is yes: we will represent a tree (or
any other structure) with a function itself—not with a data structure that is processed by a
set of functions, nor with an object with some methods, but by just a function. Furthermore,
we will get a functional data structure that's 100% immutable, which, if updated, produces
a new copy of itself. We will do all this without using objects; here, closures will provide
the desired results.

How can this work? We shall be applying similar concepts to the ones we looked at earlier
in this chapter, so the function will act as a container and it will produce, as its result, a
mapping of its contained values. Let's walk backward and start by looking at how we'll use
the new data type. Then, we'll go to the implementation details.

Creating a tree can be done by using two functions: EmptyTree() and Tree(value,
leftTree, rightTree). For example, let's say we wish to create a tree similar to the one
shown in the following diagram:

Figure 12.2: A binary search tree, created by the following code

We can create this using the following code:

const myTree = Tree(
 22,
 Tree(
 9,
 Tree(4, EmptyTree(), EmptyTree()),
 Tree(12, EmptyTree(), EmptyTree())
),
 Tree(
 60,
 Tree(56, EmptyTree(), EmptyTree()),
 EmptyTree()
)
);

Building Better Containers - Functional Data Types Chapter 12

[396]

How do you work with this structure? According to the data type description, whenever
you work with a tree, you must consider two cases: a non-empty tree or an empty one. In
the preceding code, myTree() is actually a function that receives two functions as
arguments, one for each of the two data type cases. The first function will be called with the
node value and left and right trees as arguments, while the second function will receive
none. So, to get the root, we could write something similar to the following:

const myRoot = myTree((value, left, right) => value, () => null);

If we were dealing with a non-empty tree, we would expect the first function to be called
and produce the value of the root as the result. With an empty tree, the second function
should be called, and then a null value would be returned.

Similarly, if we wanted to count how many nodes there are in a tree, we would write the
following:

const treeCount = aTree => aTree(
 (value, left, right) => 1 + treeCount(left) + treeCount(right),
 () => 0
);

console.log(treeCount(myTree));

For non-empty trees, the first function would return 1 (for the root), plus the node count
from both the root's subtrees. For empty trees, the count is simply 0. Get the idea?

Now, we can show the Tree() and EmptyTree() functions. They are as follows:

const Tree = (value, left, right) => (destructure, __) =>
 destructure(value, left, right);

const EmptyTree = () => (__, destructure) => destructure();

The destructure() function is what you will pass as an argument (the name comes from
the destructuring statement in JavaScript, which lets you separate an object attribute into
distinct variables). You will have to provide two versions of this function. If the tree is non-
empty, the first function will be executed; for an empty tree, the second one will be run (this
mimics the case selection in the Haskell code, except we are placing the non-empty tree case
first and the empty tree last). The __ variable is used as a placeholder that stands for an
otherwise ignored argument but shows that two arguments are assumed.

Building Better Containers - Functional Data Types Chapter 12

[397]

This can be hard to understand, so let's look at some more examples. If we need to access
specific elements of a tree, we have the following three functions, one of which
(treeRoot()) we've already looked at—let's repeat it here for completeness:

const treeRoot = tree => tree((value, left, right) => value, () => null);

const treeLeft = tree => tree((value, left, right) => left, () => null);

const treeRight = tree => tree((value, left, right) => right, () => null);

Functions that access the component values of structures (or constructions,
to use another term) are called projector functions. We won't be using
this term, but you may find it being used elsewhere.

How can we decide if a tree is empty? See if you can figure out why the following short line
of code works:

const treeIsEmpty = tree => tree(() => false, () => true);

Let's go over a few more examples of this. For example, we can build an object out of a tree,
and that would help with debugging. I added logic to avoid including left or right empty
subtrees, so the produced object would be more compact; check out the two if statements
in the following code:

const treeToObject = tree =>
 tree(
 (value, left, right) => {
 const leftBranch = treeToObject(left);
 const rightBranch = treeToObject(right);
 const result = { value };

 if (leftBranch) {
 result.left = leftBranch;
 }

 if (rightBranch) {
 result.right = rightBranch;
 }

 return result;
 },
 () => null
);

Building Better Containers - Functional Data Types Chapter 12

[398]

Note the usage of recursion, as in the Traversing a tree structure section of Chapter 9,
Designing Functions – Recursion, in order to produce the object equivalents of the left and
right subtrees. An example of this function is as follows; I edited the output to make it
clearer:

console.log(treeToObject(myTree));
/*
{
 value: 22,
 left: {
 value: 9,
 left: {
 value: 4
 },
 right: {
 value: 12
 }
 },
 right: {
 value: 60,
 left: {
 value: 56
 }
 }
}
*/

Can we search for a node? Of course, and the logic follows the definition we saw in the
previous section closely. (We could have shortened the code a bit, but I wanted to parallel
the Haskell version.) Our treeSearch() function could be as follows:

const treeSearch = (findValue, tree) =>
 tree(
 (value, left, right) =>
 findValue === value
 ? true
 : findValue < value
 ? treeSearch(findValue, left)
 : treeSearch(findValue, right),
 () => false
);

Building Better Containers - Functional Data Types Chapter 12

[399]

To round off this section, let's also look at how to add new nodes to a tree. Study the code
carefully; you'll notice how the current tree isn't modified and that a new one is produced
instead. Of course, given that we are using functions to represent our tree data type, it
should be obvious that we wouldn't have been able to just modify the old structure: it's
immutable by default. The tree insertion function would be as follows:

const treeInsert = (newValue, tree) =>
 tree(
 (value, left, right) =>
 newValue <= value
 ? Tree(value, treeInsert(newValue, left), right)
 : Tree(value, left, treeInsert(newValue, right)),
 () => Tree(newValue, EmptyTree(), EmptyTree())
);

When trying to insert a new key, if it's less than or equal to the root of the tree, we produce
a new tree that has the current root as its own root, maintains the old right subtree, but
changes its left subtree to incorporate the new value (which will be done in a recursive
way). If the key was greater than the root, the changes wouldn't have been symmetrical;
they would have been analogous. If we try to insert a new key and we find ourselves with
an empty tree, we just replace that empty structure with a new tree where the new value is
its root and it has empty left and right subtrees.

We can test out this logic easily, but the simplest way is to verify that the binary tree that
we showed earlier (Figure 12.2) is generated by the following sequence of operations:

let myTree = EmptyTree();
myTree = treeInsert(22, myTree);
myTree = treeInsert(9, myTree);
myTree = treeInsert(60, myTree);
myTree = treeInsert(12, myTree);
myTree = treeInsert(4, myTree);
myTree = treeInsert(56, myTree);

// The resulting tree is:
{
 value: 22,
 left: { value: 9, left: { value: 4 }, right: { value: 12 } },
 right: { value: 60, left: { value: 56 } }
};

Building Better Containers - Functional Data Types Chapter 12

[400]

We could make this insertion function even more general by providing the comparator
function that would be used to compare values. In this fashion, we could easily adapt a
binary tree to represent a generic map. The value of a node would actually be an object
such as {key:... , data:...} and the provided function would compare
newValue.key and value.key to decide where to add the new node. Of course, if the two
keys were equal, we would change the root of the current tree. The new tree insertion code
would be as follows:

const compare = (obj1, obj2) =>
 obj1.key === obj2.key ? 0 : obj1.key < obj2.key ? -1 : 1;

const treeInsert2 = (comparator, newValue, tree) =>
 tree(
 (value, left, right) =>
 comparator(newValue, value) === 0
 ? Tree(newValue, left, right)
 : comparator(newValue, value) < 0
 ? Tree(value, treeInsert2(comparator, newValue, left), right)
 : Tree(value, left, treeInsert2(comparator, newValue, right)),
 () => Tree(newValue, EmptyTree(), EmptyTree())
);

What else do we need? Of course, we can program diverse functions: deleting a node,
counting nodes, determining a tree's height, comparing two trees, and so on. However, in
order to gain more usability, we should really turn the structure into a functor by
implementing a map() function. Fortunately, using recursion, this proves to be easy—we
apply the mapping function to the tree root and use map() recursively on the left and right
subtrees, as follows:

const treeMap = (fn, tree) =>
 tree(
 (value, left, right) =>
 Tree(fn(value), treeMap(fn, left), treeMap(fn, right)),
 () => EmptyTree()
);

We could go on with more examples, but that wouldn't change the important conclusions
we can derive from this work:

We are handling a data structure (a recursive one, at that) and representing it
with a function.
We aren't using any external variables or objects for the data: closures are used
instead.

Building Better Containers - Functional Data Types Chapter 12

[401]

The data structure itself satisfies all the requirements we analyzed in Chapter 10,
Ensuring Purity – Immutability, insofar that it is immutable and all the changes
always produce new structures.
The tree is a functor, providing all the corresponding advantages.

In this section, we have looked at one more application of functional programming, as well
as how a function can actually become a structure by itself, which isn't what we are usually
accustomed to!

Summary
In this chapter, we looked at the theory of data types and learned how to use and
implement them from a functional point of view. We started with how to define function
signatures to help us understand the transformations that are implied by the multiple
operations we looked at later. Then, we went on to define several containers, including
functors and monads, and saw how they can be used to enhance function composition.
Finally, we learned how functions can be directly used by themselves, with no extra
baggage, to implement functional data structures to simplify dealing with errors.

In this book, we have looked at several features of functional programming for JavaScript.
We started out with some definitions, and a practical example, and then moved on to
important considerations such as pure functions, side effects avoidance, immutability,
testability, building new functions out of other ones, and implementing a data flow based
upon function connections and data containers. We have looked at a lot of concepts, but I'm
confident that you'll be able to put them to practice and start writing even higher-quality
code – give it a try, and thank you very much for reading my book!

Questions
12.1. Maybe tasks? In the Questions section of Chapter 8, Connecting Functions – Pipelining
and Composition, a question (8.2) had to do with getting the pending tasks for a person while
taking errors or border situations into account, such as the possibility that the selected
person might not even exist. Redo that exercise but using Maybe or Either monads to
simplify that code.

Building Better Containers - Functional Data Types Chapter 12

[402]

12.2. Extending your trees: To get a more complete implementation of our functional
binary search trees, implement the following functions:

Calculate the tree's height or, equivalently, the maximum distance from the root
to any other node
List all the tree's keys, in ascending order
Delete a key from a tree

12.3. Functional lists: In the same spirit as binary trees, implement functional lists. Since a
list is defined to be either empty or a node (head), followed by another list (tail), you
might want to start with the following:

 const List = (head, tail) => (destructure, __) =>
 destructure(head, tail);
 const EmptyList = () => (__, destructure) => destructure();

Here are some easy one-line operations to get you started:

 const listHead = list => list((head, __) => head, () => null);
 const listTail = list => list((__, tail) => tail, () => null);
 const listIsEmpty = list => (() => false, () => true);
 const listSize = list => list((head, tail) => 1 + listSize(tail),
 () => 0);

You could consider having these operations:

Transforming a list into an array and vice versa
Reversing a list
Appending one list to the end of another list
Concatenating two lists

Don't forget the listMap() function! Also, the listReduce() and listFilter()
functions will come in handy.

12.4. Code shortening: We mentioned that the treeSearch() function could be
shortened—can you do that? Yes, this is more of a JavaScript problem than a functional
one, and I'm not saying that shorter code is necessarily better, but many programmers act
as if it were, so it's good to be aware of such a style if only because you're likely to find it.

Bibliography
The following texts are freely available online:

ECMA-262: ECMAScript 2019 Language Specification, latest edition (currently the
10th) at http:/ ​/​www. ​ecma- ​international. ​org/ ​ecma- ​262/ ​. This provides the
official standard to the current version of JS.
ELOQUENT JAVASCRIPT, third Edition, by Marijn Haverbeke, at http:/ ​/
eloquentjavascript. ​net/ ​.
EXPLORING ES6, by Dr. Axel Rauschmayer, at http:/ ​/​exploringjs. ​com/ ​es6/ ​.
Exploring ES2016 AND ES2017, by Dr. Axel Rauschmayer, at http:/ ​/​exploringjs.
com/​es2016- ​es2017/ ​.
Exploring ES2018 AND ES2019, by Dr. Axel Rauschmayer, at http:/ ​/​exploringjs.
com/​es2018- ​es2019/ ​. This text will let you get up to date with the latest features
in JS.
Functional-Light JavaScript, by Kyle Simpson, at https:/ ​/​github. ​com/ ​getify/
Functional- ​Light- ​JS.
JavaScript Allongé, by Reginald Braithwaite, at https:/ ​/ ​leanpub. ​com/ ​javascript-
allonge/ ​read.
Professor Frisby's Mostly Adequate Guide to Functional Programming, by Dr Boolean
(Brian Lonsdorf), at https:/ ​/​github. ​com/ ​MostlyAdequate/ ​mostly- ​adequate-
guide

If you prefer printed books, you can go with this list:

Beginning Functional JavaScript, Anto Aravinth, Apress, 2017
Discover Functional JavaScript, Cristian Salcescu, (independently published) 2019
Functional JavaScript, Michael Fogus, O'Reilly Media, 2013
Functional Programming in JavaScript, Dan Mantyla, Packt Publishing, 2015
Functional Programming in JavaScript, Luis Atencio, Manning Publications, 2016
Hands-on Functional Programming with TypeScript, Remo Jansen, Packt Publishing,
2019
Introduction to Functional Programming, Richard Bird & Philip Wadler, Prentice Hall
International, 1988. A more theoretical point of view, not dealing specifically
with JavaScript.
Pro JavaScript Design Patterns, Ross Harmes & Dustin Díaz, Apress, 2008

http://www.ecma-international.org/ecma-262/
http://www.ecma-international.org/ecma-262/
http://www.ecma-international.org/ecma-262/
http://www.ecma-international.org/ecma-262/
http://www.ecma-international.org/ecma-262/
http://www.ecma-international.org/ecma-262/
http://www.ecma-international.org/ecma-262/
http://www.ecma-international.org/ecma-262/
http://www.ecma-international.org/ecma-262/
http://www.ecma-international.org/ecma-262/
http://www.ecma-international.org/ecma-262/
http://www.ecma-international.org/ecma-262/
http://www.ecma-international.org/ecma-262/
http://www.ecma-international.org/ecma-262/
http://www.ecma-international.org/ecma-262/
http://www.ecma-international.org/ecma-262/
http://eloquentjavascript.net/
http://eloquentjavascript.net/
http://eloquentjavascript.net/
http://eloquentjavascript.net/
http://eloquentjavascript.net/
http://eloquentjavascript.net/
http://eloquentjavascript.net/
http://exploringjs.com/es6/
http://exploringjs.com/es6/
http://exploringjs.com/es6/
http://exploringjs.com/es6/
http://exploringjs.com/es6/
http://exploringjs.com/es6/
http://exploringjs.com/es6/
http://exploringjs.com/es6/
http://exploringjs.com/es6/
http://exploringjs.com/es6/
http://exploringjs.com/es2016-es2017/
http://exploringjs.com/es2016-es2017/
http://exploringjs.com/es2016-es2017/
http://exploringjs.com/es2016-es2017/
http://exploringjs.com/es2016-es2017/
http://exploringjs.com/es2016-es2017/
http://exploringjs.com/es2016-es2017/
http://exploringjs.com/es2016-es2017/
http://exploringjs.com/es2016-es2017/
http://exploringjs.com/es2016-es2017/
http://exploringjs.com/es2016-es2017/
http://exploringjs.com/es2018-es2019/
http://exploringjs.com/es2018-es2019/
http://exploringjs.com/es2018-es2019/
http://exploringjs.com/es2018-es2019/
http://exploringjs.com/es2018-es2019/
http://exploringjs.com/es2018-es2019/
http://exploringjs.com/es2018-es2019/
http://exploringjs.com/es2018-es2019/
http://exploringjs.com/es2018-es2019/
http://exploringjs.com/es2018-es2019/
http://exploringjs.com/es2018-es2019/
https://github.com/getify/Functional-Light-JS
https://github.com/getify/Functional-Light-JS
https://github.com/getify/Functional-Light-JS
https://github.com/getify/Functional-Light-JS
https://github.com/getify/Functional-Light-JS
https://github.com/getify/Functional-Light-JS
https://github.com/getify/Functional-Light-JS
https://github.com/getify/Functional-Light-JS
https://github.com/getify/Functional-Light-JS
https://github.com/getify/Functional-Light-JS
https://github.com/getify/Functional-Light-JS
https://github.com/getify/Functional-Light-JS
https://github.com/getify/Functional-Light-JS
https://github.com/getify/Functional-Light-JS
https://leanpub.com/javascript-allonge/read
https://leanpub.com/javascript-allonge/read
https://leanpub.com/javascript-allonge/read
https://leanpub.com/javascript-allonge/read
https://leanpub.com/javascript-allonge/read
https://leanpub.com/javascript-allonge/read
https://leanpub.com/javascript-allonge/read
https://leanpub.com/javascript-allonge/read
https://leanpub.com/javascript-allonge/read
https://leanpub.com/javascript-allonge/read
https://leanpub.com/javascript-allonge/read
https://leanpub.com/javascript-allonge/read
https://github.com/MostlyAdequate/mostly-adequate-guide
https://github.com/MostlyAdequate/mostly-adequate-guide
https://github.com/MostlyAdequate/mostly-adequate-guide
https://github.com/MostlyAdequate/mostly-adequate-guide
https://github.com/MostlyAdequate/mostly-adequate-guide
https://github.com/MostlyAdequate/mostly-adequate-guide
https://github.com/MostlyAdequate/mostly-adequate-guide
https://github.com/MostlyAdequate/mostly-adequate-guide
https://github.com/MostlyAdequate/mostly-adequate-guide
https://github.com/MostlyAdequate/mostly-adequate-guide
https://github.com/MostlyAdequate/mostly-adequate-guide
https://github.com/MostlyAdequate/mostly-adequate-guide
https://github.com/MostlyAdequate/mostly-adequate-guide
https://github.com/MostlyAdequate/mostly-adequate-guide

Bibliography

[404]

Secrets of the JavaScript Ninja, John Resig & Bear Bibeault, Manning Publications,
2012

Also interesting, though with a lesser focus on Functional Programming:

High-Performance JavaScript, Nicholas Zakas, O'Reilly Media, 2010
JavaScript Patterns, Stoyan Stefanov, O'Reilly Media, 2010
JavaScript: The Good Parts, Douglas Crockford, O'Reilly Media, 2008
JavaScript with Promises, Daniel Parker, O'Reilly Media, 2015
Learning JavaScript Design Patterns, Addy Osmani, O'Reilly Media, 2012
Mastering JavaScript Design Patterns, 2nd Edition, Simon Timms, Packt Publishing,
2016
Mastering JavaScript High Performance, Chad Adams, Packt Publishing, 2015
Pro JavaScript Performance, Tom Barker, Apress, 2012

On the subject of Reactive Functional Programming:

Mastering Reactive JavaScript, Erich de Souza Oliveira, Packt Publishing, 2017
Reactive Programming with Node.js, Fernando Doglio, Apress, 2016
Reactive Programming with RxJS, Sergi Mansilla, The Pragmatic Programmers, 2015

Answers to Questions
Here are the solutions (partial, or worked out in full) to the questions that were contained
within the chapters in this book. In many cases, there are extra questions so that you can do
further work if you choose to.

Chapter 1, Becoming Functional – Several
Questions
1.1. Classes as first-class objects: As you may recall, a class is basically a function that can
be used with new. Therefore, it stands to reason that we should be able to pass classes as
parameters to other functions. makeSaluteClass() creates a class (that is, a special
function) that uses a closure to remember the value of term. We'll be looking at more
examples like this throughout this book.

1.2. Factorial errors: The key to avoiding repeating tests is to write a function that will
check the value of the argument to ensure it's valid, and if so call an inner function to do the
factorial itself, without worrying about erroneous arguments:

const carefulFact = n => {
 if (
 typeof n !== "undefined" &&
 Number(n) === n &&
 n >= 0 &&
 n === Math.floor(n)
) {
 const innerFact = n => (n === 0 ? 1 : n * innerFact(n - 1));
 return innerFact(n);
 }
};

console.log(carefulFact(3)); // 6, correct
console.log(carefulFact(3.1)); // undefined
console.log(carefulFact(-3)); // undefined
console.log(carefulFact(-3.1)); // undefined
console.log(carefulFact("3")); // undefined
console.log(carefulFact(false)); // undefined
console.log(carefulFact([])); // undefined
console.log(carefulFact({})); // undefined

Answers to Questions

[406]

You could throw an error when an incorrect argument is recognized, but here, I just
ignored it and let the function return undefined.

1.3. Climbing factorial: The following code does the trick. We add an auxiliary variable, f,
and we make it climb from 1 to n. We must be careful so that factUp(0) === 1:

const factUp = (n, f = 1) => (n <= f ? f : f * factUp(n, f + 1));

1.4. Code squeezing: Using arrow functions, as suggested, as well as the prefix ++ operator
(for more information, see https:/ ​/​developer. ​mozilla. ​org/ ​en- ​US/​docs/ ​Web/ ​JavaScript/
Reference/​Operators/ ​Arithmetic_ ​Operators#Increment), you can
condense newCounter() down to the following:

const shorterCounter = () => {
 let count = 0;
 return () => ++count;
};

Using arrow functions isn't hard to understand, but be aware that many developers may
have questions or doubts about using ++ as a prefix operator, so this version could prove to
be harder to understand.

Chapter 2, Thinking Functionally – a First
Example
2.1. No extra variables: We can make do by using the fn variable itself as a flag. After
calling fn(), we set the variable to null. Before calling fn(), we check that it's not null:

const once = fn => {
 return (...args) => {
 fn && fn(...args);
 fn = null;
 };
};

2.2. Alternating functions: In a manner similar to what we did in the previous question, we
call the first function and then switch functions for the next time. Here, we used a
destructuring assignment to write the swap in a more compact manner. For more
information, refer to https:/ ​/ ​developer. ​mozilla. ​org/ ​en-​US/ ​docs/ ​Web/ ​JavaScript/
Reference/​Operators/ ​Destructuring_ ​assignment#Swapping_ ​variables:

const alternator = (fn1, fn2) => {
 return (...args) => {

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Arithmetic_Operators#Increment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Arithmetic_Operators#Increment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Arithmetic_Operators#Increment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Arithmetic_Operators#Increment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Arithmetic_Operators#Increment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Arithmetic_Operators#Increment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Arithmetic_Operators#Increment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Arithmetic_Operators#Increment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Arithmetic_Operators#Increment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Arithmetic_Operators#Increment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Arithmetic_Operators#Increment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Arithmetic_Operators#Increment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Arithmetic_Operators#Increment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Arithmetic_Operators#Increment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Arithmetic_Operators#Increment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Arithmetic_Operators#Increment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Arithmetic_Operators#Increment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Arithmetic_Operators#Increment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Arithmetic_Operators#Increment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Arithmetic_Operators#Increment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Arithmetic_Operators#Increment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Arithmetic_Operators#Increment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Arithmetic_Operators#Increment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Arithmetic_Operators#Increment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Arithmetic_Operators#Increment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Arithmetic_Operators#Increment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#Swapping_variables
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#Swapping_variables
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#Swapping_variables
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#Swapping_variables
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#Swapping_variables
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#Swapping_variables
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#Swapping_variables
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#Swapping_variables
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#Swapping_variables
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#Swapping_variables
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#Swapping_variables
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#Swapping_variables
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#Swapping_variables
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#Swapping_variables
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#Swapping_variables
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#Swapping_variables
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#Swapping_variables
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#Swapping_variables
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#Swapping_variables
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#Swapping_variables
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#Swapping_variables
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#Swapping_variables
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#Swapping_variables
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#Swapping_variables
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#Swapping_variables
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#Swapping_variables
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#Swapping_variables
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#Swapping_variables

Answers to Questions

[407]

 fn1(...args);
 [fn1, fn2] = [fn2, fn1];
 };
};

2.3. Everything has a limit! We simply check whether the limit variable is greater than 0.
If so, we decrement it by 1 and call the original function; otherwise, we do nothing:

const thisManyTimes = (fn, limit) => {
 return (...args) => {
 if (limit > 0) {
 limit--;
 return fn(...args);
 }
 };
};

Chapter 3, Starting Out with Functions – a
Core Concept
3.1. Uninitialized object? The key is that we didn't wrap the returned object in parentheses,
so JavaScript thinks the braces enclose the code to be executed. In this case, type is
considered to be labeling a statement, which doesn't really do anything: it's an expression
(t) that isn't used. Due to this, the code is considered valid, and since it doesn't have an
explicit return statement, the implicit returned value is undefined. See https:/ ​/
developer.​mozilla. ​org/ ​en- ​US/ ​docs/ ​Web/ ​JavaScript/ ​Reference/ ​Statements/ ​label for
more on labels, and https:/ ​/​developer. ​mozilla. ​org/ ​en-​US/ ​docs/ ​Web/ ​JavaScript/
Reference/​Functions/ ​Arrow_ ​functions#Returning_ ​object_ ​literals for more on
returning objects. The corrected code is as follows:

const simpleAction = t => ({
 type: t;
});

3.2. Are arrows allowed? There would be no problems with listArguments2(), but with
listArguments(), you would get an error since arguments is not defined for arrow
functions:

listArguments(22,9,60);
Uncaught ReferenceError: arguments is not defined

3.3. One-liner: It works! (And yes, a one-line answer is appropriate in this case!).

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#Returning_object_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#Returning_object_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#Returning_object_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#Returning_object_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#Returning_object_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#Returning_object_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#Returning_object_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#Returning_object_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#Returning_object_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#Returning_object_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#Returning_object_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#Returning_object_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#Returning_object_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#Returning_object_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#Returning_object_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#Returning_object_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#Returning_object_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#Returning_object_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#Returning_object_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#Returning_object_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#Returning_object_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#Returning_object_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#Returning_object_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#Returning_object_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#Returning_object_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#Returning_object_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#Returning_object_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#Returning_object_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#Returning_object_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#Returning_object_literals

Answers to Questions

[408]

3.4. Spot the bug! Initially, many people look at the weird (console(...),
window.store.set(...)) code, but the bug isn't there: because of how the comma
operator works, JavaScript does the logging first, and then the setting. The real problem is
that oldSet() is not bound to the window.store object, so the second line should be as
follows instead:

const oldSet = window.store.set.bind(window.store);

Reread the Working with methods section for more on this, as well as question 11.1 for
another way of doing logging, that is, with decorators.

3.5. Bindless binding: If bind() wasn't available, you could use a closure, the that trick
(which we saw in the Handling the this value section), and the apply() method, as follows:

function bind(context) {
 var that = this;
 return function() {
 return that.apply(context, arguments);
 };
}

We could do something similar to what we did in the Adding missing functions section.
Alternatively, just for variety, we could use a common idiom based on the || operator: if
Function.prototype.bind exists, evaluation stops right there, and the existing bind()
method is used; otherwise, our new function is applied:

Function.prototype.bind =
 Function.prototype.bind ||
 function(context) {
 var that = this;
 return function() {
 return that.apply(context, arguments);
 };
 };

Chapter 4, Behaving Properly – Pure
Functions
4.1. Minimalistic function: It works because fib(0)=0 and fib(1)=1, so it's true that for n<2,
fib(n)=n.

Answers to Questions

[409]

4.2. A cheap way: Basically, this algorithm works the same way as you'd calculate a
Fibonacci number by hand. You'd start by writing down fib(0)=0 and fib(1)=1, adding them
to get fib(2)=1, adding the last two to get fib(3)=2, and so on. In this version of the algorithm,
a and b stand for two consecutive Fibonacci numbers. This implementation is quite
efficient!

4.3. A shuffle test: Before shuffling the array, sort a copy of it, JSON.stringify() it, and
save the result. After shuffling, sort a copy of the shuffled array and JSON.stringify() it
as well. Finally, two JSON strings should be produced, which should be equal. This does
away with all the other tests since it ensures that the array doesn't change length, nor its
elements:

describe("shuffleTest", function() {
 it("shouldn't change the array length or its elements", () => {
 let a = [22, 9, 60, 12, 4, 56];
 let old = JSON.stringify([...a].sort());
 shuffle(a);
 let new = JSON.stringify([...a].sort());
 expect(old).toBe(new);
 });
});

4.4. Breaking laws: Some of the properties are no longer always valid. To simplify our
examples, let's assume two numbers are close to each other if they differ by no more than
0.1. If this is the case, then we have the following:

0.5 is close to 0.6, and 0.6 is close to 0.7, but 0.5 is not close to 0.7.
0.5 is close to 0.6, and 0.7 is close to 0.8, but 0.5+0.7=1.2 is not close to 0.6+0.8=1.4;
with the same numbers, 0.5*0.7=0.35 is not close to 0.6*0.8=0.48.
0.5 is close to 0.4, and 0.2 is close to 0.3, but 0.5-0.2=0.3 is not close to 0.4-0.3=0.1.
0.6 is close to 0.5, and 0.9 is close to 1.0, but 0.6/0.9=0.667 is not close to
0.5/1.0=0.5.

The other cited properties are always true.

4.5. Must return? If a pure function doesn't return anything, it means that the function
doesn't do anything since it can't modify its inputs or any other side effect.

4.6. JavaScript does math? If you run the code, you'll (unexpectedly) get the Math
failure? message. The problem has to do with the fact that JavaScript internally uses
binary instead of decimal, and floating-point precision is limited. In decimal, 0.1, 0.2, and
0.3 have a fixed, short representation, but in binary, they have infinite representation, much
like 1/3=0.33333... has in decimal.

Answers to Questions

[410]

If you write out the value of a+b after the test, you'll get 0.30000000000000004 – and that's
why you must be very careful when testing for equality in JavaScript.

Chapter 5, Programming Declaratively – a
Better Style
5.1. Filtering... but what? Boolean(x) is the same as !!x, and it turns an expression from
being truthy or falsy into true or false, respectively. Thus, the .filter() operation removes
all falsy elements from the array.

5.2. Generating HTML code, with restrictions: In real life, you wouldn't limit yourself to
using only filter(), map(), and reduce(), but the objective of this question was to make
you think about how to manage with only those. Using join() or other extra string
functions would make the problem easier. For instance, finding out a way to add the
enclosing <div> ... </div> tags is tricky, so we had to make the first
reduce() operation produce an array so that we could keep on working on it:

var characters = [
 { name: "Fred", plays: "bowling" },
 { name: "Barney", plays: "chess" },
 { name: "Wilma", plays: "bridge" },
 { name: "Betty", plays: "checkers" },
 { name: "Pebbles", plays: "chess" }
];

let list = characters
 .filter(x => x.plays === "chess" || x.plays == "checkers")
 .map(x => `${x.name}`)
 .reduce((a, x) => [a[0] + x], [""])
 .map(x => `<div>${x}</div>`)
 .reduce((a, x) => x);

console.log(list);
// <div>BarneyBettyPebbles</div>

Accessing the array and index arguments for the map() or reduce() callbacks would also
provide solutions:

let list2 = characters
 .filter(x => x.plays === "chess" || x.plays == "checkers")
 .map(
 (x, i, t) =>
 `${i === 0 ? "<div>" : ""}` +
 `${x.name}` +

Answers to Questions

[411]

 `${i == t.length - 1 ? "</div>" : ""}`
)
 .reduce((a, x) => a + x, "");

We could also do the following:

let list3 = characters
 .filter(x => x.plays === "chess" || x.plays == "checkers")
 .map(x => `${x.name}`)
 .reduce(
 (a, x, i, t) => a + x + (i === t.length - 1 ? "</div>" : ""),
 "<div>"
);

Study the three examples: they will help you gain insight into these higher-order functions
and provide you with ideas so that you can do independent work.

5.3. More formal testing: Use an idea from question 4.3: select an array and a function, find
the result of mapping using both the standard map() method and the new myMap()
function, and compare the two JSON.stringify() results: they should match.

5.4. Ranging far and wide: This requires a bit of careful arithmetic, but shouldn't be much
trouble. Here, we need to distinguish two cases: upward and downward ranges. The
default step is 1 for the former and -1 for the latter. We used Math.sign() for this:

const range2 = (start, stop, step = Math.sign(stop - start)) =>
 new Array(Math.ceil((stop - start) / step))
 .fill(0)
 .map((v, i) => start + i * step);

A few examples of calculated ranges show the diversity in terms of the options we have:

console.log(range2(1, 10)); // [1, 2, 3, 4, 5, 6, 7, 8, 9]
console.log(range2(1, 10, 2)); // [1, 3, 5, 7, 9]
console.log(range2(1, 10, 3)); // [1, 4, 7]
console.log(range2(1, 10, 6)); // [1, 7]
console.log(range2(1, 10, 11)); // [1]

console.log(range2(21, 10)); // [21, 20, 19, ... 13, 12, 11]
console.log(range2(21, 10, -3)); // [21, 18, 15, 12]
console.log(range2(21, 10, -4)); // [21, 17, 13]
console.log(range2(21, 10, -7)); // [21, 14]
console.log(range2(21, 10, -12)); // [21]

Using this new range2() function means that you can write a greater variety of loops in a
functional way, with no need for for(...) statements.

Answers to Questions

[412]

5.5. Doing the alphabet: The problem is that String.fromCharCode() is not unary. This
method may receive any number of arguments, and when you write
map(String.fromCharCode), the callback gets called with three parameters (the current
value, the index, and the array) and that causes unexpected results. Using unary() from
the Arity Changing section of Chapter 6, Producing Functions – Higher-Order Functions,
would also work. To find out more, go to https:/ ​/ ​developer. ​mozilla. ​org/ ​en- ​US/​docs/
Web/​JavaScript/​Reference/ ​Global_ ​Objects/ ​String/ ​fromCharCode.

5.6. Producing a CSV: A first solution, along with some auxiliary functions, is as follows;
can you understand what each function does?

const concatNumbers = (a, b) => (a == " " ? b : a + "," + b);
const concatLines = (c, d) => c + "\n" + d;
const makeCSV = t =>
 t.reduce(concatLines, " ", t.map(f => f.reduce(concatNumbers, " ")));

An alternative one-liner is also possible, but not as clear – do you agree?

const makeCSV2 = t =>
 t.reduce(
 (c, d) => c + "\n" + d,
 " ",
 t.map(x => x.reduce((a, b) => (a == " " ? b : a + "," + b), " "))
);

5.7 Producing better output: For this, you'll have to do some extra mapping, as follows:

const better = apiAnswer
 .flatMap(c => c.states.map(s => ({...s, country: c.name})))
 .flatMap(s => s.cities.map(t => ({...t, state: s.name, country:
s.country})))
 .map(t => `${t.name}, ${t.state}, ${t.country}`);

/*
['Lincoln, Buenos Aires, Argentine',
 'Lincoln, England, Great Britain',
 'Lincoln, California, United States of America',
 'Lincoln, Rhode Island, United States of America',
 'Lincolnia, Virginia, United States of America',
 'Lincoln Park, Michigan, United States of America',
 'Lincoln, Nebraska, United States of America',
 'Lincoln Park, Illinois, United States of America',
 'Lincoln Square, Illinois, United States of America']
*/

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/fromCharCode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/fromCharCode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/fromCharCode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/fromCharCode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/fromCharCode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/fromCharCode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/fromCharCode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/fromCharCode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/fromCharCode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/fromCharCode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/fromCharCode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/fromCharCode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/fromCharCode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/fromCharCode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/fromCharCode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/fromCharCode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/fromCharCode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/fromCharCode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/fromCharCode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/fromCharCode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/fromCharCode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/fromCharCode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/fromCharCode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/fromCharCode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/fromCharCode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/fromCharCode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/fromCharCode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/fromCharCode

Answers to Questions

[413]

5.8 Old-style code only! One way of doing this is by using join() to build a single long
string out of the individual sentences, then using split() to split it into words, and finally
looking at the length of the resulting array:

const words = gettysburg.join(" ").split(" ").length;

5.9 Async chaining: An article by Valeri Karpov, which can be found at https:/ ​/
thecodebarbarian.​com/ ​basic- ​functional- ​programming- ​with- ​async- ​await. ​html,
provides polyfills for methods such as forEach(), map(), and so on, and also develops a
class for async arrays that allows chaining.

5.10 Missing equivalents: Start by using mapAsync() to get the async values and apply the
original function to the returned array. An example for some() would be as follows:

const someAsync = (arr, fn) =>
 mapAsync(arr, fn).then(mapped => mapped.some(Boolean));

(async () => {
 const someEven = await someAsync([1, 2, 3, 4], fakeFilter);
 useResult(someEven);

 const someEven2 = await someAsync([1, 3, 5, 7, 9], fakeFilter);
 useResult(someEven2);
})();
/*
2019-10-13T22:05:32.215Z true
2019-10-13T22:05:33.257Z false
*/

Chapter 6, Producing Functions – Higher-
Order Functions
6.1. A border case: Just applying the function to a null object will throw an error:

const getField = attr => obj => obj[attr];

getField("someField")(null);
// Uncaught TypeError: Cannot read property 'a' of null

https://thecodebarbarian.com/basic-functional-programming-with-async-await.html
https://thecodebarbarian.com/basic-functional-programming-with-async-await.html
https://thecodebarbarian.com/basic-functional-programming-with-async-await.html
https://thecodebarbarian.com/basic-functional-programming-with-async-await.html
https://thecodebarbarian.com/basic-functional-programming-with-async-await.html
https://thecodebarbarian.com/basic-functional-programming-with-async-await.html
https://thecodebarbarian.com/basic-functional-programming-with-async-await.html
https://thecodebarbarian.com/basic-functional-programming-with-async-await.html
https://thecodebarbarian.com/basic-functional-programming-with-async-await.html
https://thecodebarbarian.com/basic-functional-programming-with-async-await.html
https://thecodebarbarian.com/basic-functional-programming-with-async-await.html
https://thecodebarbarian.com/basic-functional-programming-with-async-await.html
https://thecodebarbarian.com/basic-functional-programming-with-async-await.html
https://thecodebarbarian.com/basic-functional-programming-with-async-await.html
https://thecodebarbarian.com/basic-functional-programming-with-async-await.html
https://thecodebarbarian.com/basic-functional-programming-with-async-await.html
https://thecodebarbarian.com/basic-functional-programming-with-async-await.html
https://thecodebarbarian.com/basic-functional-programming-with-async-await.html
https://thecodebarbarian.com/basic-functional-programming-with-async-await.html
https://thecodebarbarian.com/basic-functional-programming-with-async-await.html

Answers to Questions

[414]

Having functions throw exceptions isn't usually good in FP. You may opt to produce
undefined instead, or work with monads, just like we did in the last Chapter 12, Building
Better Containers – Functional Data Types of this book. A safe version of getField() is as
follows:

const getField2 = attr => obj => (attr && obj ? obj[attr] : undefined);

6.2. How many? Let's call calc(n) the number of calls that are needed to evaluate fib(n).
Analyzing the tree that shows all the needed calculations, we get the following:

calc(0)=1
calc(1)=1
For n>1, calc(n)=1 + calc(n-1) + calc(n-2)

The last line follows from the fact that when we call fib(n), we have one call, plus calls to
fib(n-1) and fib(n-2). A spreadsheet shows that calc(50) is 40,730,022,147 – rather high!

If you care for some algebra, it can be shown that calc(n)=5fib(n-1)+fib(n-4)-1, or that as n
grows, calc(n) becomes approximately (1+√5)=3.236 times the value of fib(n) – but since this
is not a math book, I won't even mention those results!

6.3. A randomizing balancer: Using our shuffle() function from Chapter 4, Behaving
Properly – Pure Functions, we can write the following code. Here, we remove the first
function from the list before shuffling the rest and we add it back at the end of the array to
avoid repeating any calls:

const randomizer = (...fns) => (...args) => {
 const first = fns.shift();
 fns = shuffle(fns);
 fns.push(first);
 return fns[0](...args);
};

A quick verification shows it fulfills all our requirements:

const say1 = () => console.log(1);
const say22 = () => console.log(22);
const say333 = () => console.log(333);
const say4444 = () => console.log(4444);

const rrr = randomizer(say1, say22, say333, say4444);
rrr(); // 333
rrr(); // 4444
rrr(); // 333
rrr(); // 22

Answers to Questions

[415]

rrr(); // 333
rrr(); // 22
rrr(); // 333
rrr(); // 4444
rrr(); // 1
rrr(); // 4444

A small consideration: the first function in the list can never be called the first time around
because of the way randomizer() is written. Can you provide a better version that won't
have this small defect so that all the functions in the list will have the same chance of being
called the first time?

6.4. Just say no! Call the original function and then use typeof to check whether the
returned value is numeric or Boolean, before deciding what to return.

6.5. Missing companion: A simple one-line version could be as follows. Here, we use
spreading to get a shallow copy of the original object and then set the specified attribute to
its new value by using a computed property name. See https:/ ​/​developer. ​mozilla. ​org/
en-​US/​docs/​Web/​JavaScript/ ​Reference/ ​Operators/ ​Object_ ​initializer for more details:

const setField = (attr, value, obj) => ({...obj, [attr]: value});

In Chapter 10, Ensuring Purity – Immutability, we wrote deepCopy(), which would be
better than spreading when it comes to creating a totally new object instead of a shallow
copy. By using this, we would have the following:

const setField = (attr, value, obj) => ({...deepCopy(obj), [attr]: value});

Finally, you could also look into modifying the updateObject() function, also from
Chapter 10, Ensuring Purity – Immutability, by removing the freezing code; I'll leave it up to
you.

6.6. Wrong function length: We can solve this problem by using eval() – which, in
general, isn't such a good idea! If you persist and insist, though, we can write a
function.length preserving version of arity() as follows; let's call it arityL():

const arityL = (fn, n) => {
 const args1n = range(0, n)
 .map(i => `x${i}`)
 .join(",");
 return eval(`(${args1n}) => ${fn.name}(${args1n})`);
};

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer

Answers to Questions

[416]

If you were to apply arityL() to Number.parseInt, the results would be as follows (note
that the produced functions have the correct length property):

const parseInt1 = arityL(parseInt, 1);
/*
 (x0) => parseInt(x0,x1)
 parseInt1.length === 1
*/

const parseInt2 = arity(Number.parseInt,2)
/*
 (x0,x1) => parseInt(x0,x1)
 parseInt2.length === 2
*/

6.7. Not reinventing the wheel: We can use Math.max() and Math.min() as follows:

const findMaximum2 = findOptimum2((x, y) => Math.max(x, y));

const findMinimum2 = findOptimum2((x, y) => Math.min(x, y));

Another way of writing this could be achieved by defining the following first:

const max = (...args) => Math.max(...arr);

const min = (...args) => Math.min(...arr);

Then, we could write in point-free style:

const findMaximum3 = findOptimum2(max);

const findMinimum3 = findOptimum2(min);

Chapter 7, Transforming Functions –
Currying and Partial Application
7.1. Sum as you will: The following sumMany() function does the job:

const sumMany = total => number =>
 number === undefined ? total : sumMany(total + number);

sumMany(2)(2)(9)(6)(0)(-3)(); // 16

7.2. Working stylishly: We can do currying by hand for applyStyle():

const applyStyle = style => string => `<${style}>${string}</${style}>`;

Answers to Questions

[417]

7.3. Currying by prototype: Basically, we are just transforming the curryByBind() version
so that it uses this:

Function.prototype.curry = function() {
 return this.length === 0 ? this() : p => this.bind(this, p).curry();
};

You could work in a similar fashion and provide a partial() method instead.

7.4. Uncurrying the currying: We can work in a similar fashion to what we did in
curryByEval():

const uncurryByEval = (fn, len) =>
 eval(
 `(${range(0, len)
 .map(i => `x${i}`)
 .join(",")}) => ${fn.name}${range(0, len)
 .map(i => `(x${i})`)
 .join("")}`
);

Earlier, when currying, given an fn() function of arity 3, we would have generated the
following:

x0=>x1=>x2=> make3(x0,x1,x2)

Now, to uncurry a function (say, curriedFn()), we want to do something very similar: the
only difference is the placement of the parentheses:

(x0,x1,x2) => curriedFn(x0)(x1)(x2)

The expected behavior is as follows:

const make3 = (a, b, c) => String(100 * a + 10 * b + c);
const make3c = a => b => c => make3(a, b, c);
console.log(make3c(1)(2)(3)); // 123

const remake3 = uncurryByEval(make3c, 3);
console.log(remake3(4, 5, 6)); // 456

7.5. Mystery questions function: It implements partial currying; the following is an
example of this:

const sum3 = (a, b, c) => 100 * a + 10 * b + c;
const alt3 = what(sum3);

console.log(alt3(1, 2, 4));
console.log(alt3(1, 2)(4));

Answers to Questions

[418]

console.log(alt3(1)(2, 4));
console.log(alt3(1)(2)(4));
/*
 "124", four times
*/

A more understandable and better-named version of the what() function is as follows:

const partial = fn => (...params) =>
 fn.length <= params.length
 ? fn(...params)
 : (...otherParams) => partial(fn)(...params, ...otherParams);

7.6. Yet more curry! This is just an alternative version of our partialCurryingByBind().
The only difference is that if you provide all the arguments to a function, this new curry()
directly calls the curried function, while partialCurryingByBind() would bind the
function to all its arguments first and then recursively call it to return the final result. We
can check that the results are exactly the same by using the following code:

const make3 = (a, b, c) => String(100 * a + 10 * b + c);

const make3curried = curry(make3);

console.log(make3curried(1)(2)(3));
console.log(make3curried(4, 5)(6));
console.log(make3curried(7, 8, 9));

/*
123
456
789
*/

Chapter 8, Connecting Functions –
Pipelining and Composition
8.1. Headline capitalization: We can make use of several functional equivalents of different
methods, such as split(), map(), and join(). Using demethodize() from Chapter 6,
Producing Functions – Higher-Order Functions, and flipTwo() from Chapter 7, Transforming
Functions – Currying and Partial Application, would have also been possible:

const split = str => arr => arr.split(str);
const map = fn => arr => arr.map(fn);
const firstToUpper = word =>

https://cdp.packtpub.com/mastering_functional_javascript_programming/wp-admin/post.php?post=100&action=edit#post_61

Answers to Questions

[419]

 word[0].toUpperCase() + word.substr(1).toLowerCase();
const join = str => arr => arr.join(str);

const headline = pipeline(split(" "), map(firstToUpper), join(" "));

The pipeline works as expected: we split the string into words, we map each word to make
its first letter uppercase, and we join the array elements to form a string again. We could
have used reduce() for the last step, but join() already does what we need, so why
reinvent the wheel?

console.log(headline("Alice's ADVENTURES in WoNdErLaNd"));
// Alice's Adventures In Wonderland

8.2. Pending tasks: The following pipeline does the job:

const getField = attr => obj => obj[attr];
const filter = fn => arr => arr.filter(fn);
const map = fn => arr => arr.map(fn);
const reduce = (fn, init) => arr => arr.reduce(fn, init);

const pending = (listOfTasks, name) =>
 pipeline(
 getField("byPerson"),
 filter(t => t.responsible === name),
 map(t => t.tasks),
 reduce((y, x) => x, []),
 filter(t => t && !t.done),
 map(getField("id"))
)(allTasks || {byPerson: []}); //

The reduce() call may be mystifying. By that time, we are handling an array with a single
element – an object – and we want the object in the pipeline, not the array. This code works
even if the responsible person doesn't exist, or if all the tasks have been completed; can you
see why? Also, note that if allTasks is null, an object must be provided with the
byPerson property so that future functions won't crash! For an even better solution, I think
monads are better: see question 12.1 for more.

8.3. Thinking in abstract terms: The simple solution implies composing. I preferred it to
pipelining in order to keep the list of functions in the same order:

const getSomeResults2 = compose(sort, group, filter, select);

Answers to Questions

[420]

8.4 Undetected impurity? Yes, the function is impure, but using it as-is would fall squarely
under the SFP Sorta Functional Programming (SFP) style we mentioned back in the Theory
versus practice section of Chapter 1, Becoming Functional – Several Questions. The version we
used is not pure, but in the way we use it, the final results are pure: we modify an array in
place, but it's a new array that we are creating. The alternate implementation is pure and
also works, but will be slower since it creates a completely new array every time we call it.
So, accepting this bit of impurity helps us get a function that performs better; we can accept
that!

8.5 Needless transducing? If you only had a sequence of map() operations, you could
apply a single map and pipeline all the mapping functions into a single one. For filter()
operations, it becomes a bit harder, but here's a tip: use reduce() to apply all the filters in
sequence with a carefully thought out accumulating function.

Chapter 9, Designing Functions – Recursion
9.1. Into reverse: An empty string is reversed by simply doing nothing. To reverse a non-
empty string, remove its first character, reverse the rest, and append the removed character
at the end. For example, reverse("MONTEVIDEO") can be found by
using reverse("ONTEVIDEO")+"M". In the same way, reverse("ONTEVIDEO") would be
equal to reverse("NTEVIDEO")+"O", and so on:

const reverse = str =>
 str.length === 0 ? "" : reverse(str.slice(1)) + str[0];

9.2. Climbing steps: Suppose we want to climb a ladder with n steps. We can do this in two
ways:

Climbing one single step and then climbing an (n-1) steps ladder
Climbing two steps at once and then climbing an (n-2) steps ladder

So, if we call ladder(n) the number of ways to climb an steps ladder, we know that ladder(n)
= ladder(n-1) + ladder(n-2). Adding the fact that ladder(0)=1 (there's only one way to climb a
ladder with no steps: do nothing) and ladder(1)=1, the solution is that ladder(n) equals the
(n-1)th Fibonacci number! Check it out: ladder(2)=2, ladder(3)=3, ladder(4)=5, and so on.

Answers to Questions

[421]

9.3. Longest common subsequence: The length of the longest common sequence (LCS) of
two strings, a and b, can be found with recursion, as follows:

If the length of a is zero, or if the length of b is zero, return zero.
If the first characters of a and b match, the answer is 1 plus the LCS of a and b,
both minus their initial characters.
If the first characters of a and b do not match, the answer is the largest of the
following two results:

The LCS of a minus its initial character, and b
The LCS of a, and b minus its initial character

We can implement this as follows. We do memoization "by hand" to avoid repeating
calculations; we could have also used our memoization function:

const LCS = (strA, strB) => {
 let cache = {}; // memoization "by hand"

 const innerLCS = (strA, strB) => {
 const key = strA + "/" + strB;

 if (!(key in cache)) {
 if (strA.length === 0 || strB.length === 0) {
 ret = 0;

 } else if (strA[0] === strB[0]) {
 ret = 1 + innerLCS(strA.substr(1), strB.substr(1));

 } else {
 ret = Math.max(
 innerLCS(strA, strB.substr(1)),
 innerLCS(strA.substr(1), strB)
);
 }

 cache[key] = ret;
 }

 return cache[key];
 };

 return innerLCS(strA, strB);
};

console.log(LCS("INTERNATIONAL", "CONTRACTOR")); // 6, as in the text

Answers to Questions

[422]

As an extra exercise, you could try to produce not only the length of the LCS but also the
characters that are involved.

9.4. Symmetrical queens: The key to finding only symmetric solutions is as follows. After
the first four queens have been (tentatively) placed on the first half of the board, we don't
have to try all the possible positions for the other queens; they are automatically
determined with regard to the first ones:

const SIZE = 8;
let places = Array(SIZE);
const checkPlace = (column, row) =>
 places
 .slice(0, column)
 .every((v, i) => v !== row && Math.abs(v - row) !== column - i);

const symmetricFinder = (column = 0) => {
 if (column === SIZE) {
 console.log(places.map(x => x + 1)); // print out solution

 } else if (column <= SIZE / 2) {
 // first half of the board?
 const testRowsInColumn = j => {
 if (j < SIZE) {
 if (checkPlace(column, j)) {
 places[column] = j;
 symmetricFinder(column + 1);
 }
 testRowsInColumn(j + 1);
 }
 };
 testRowsInColumn(0);

 } else {
 // second half of the board
 let symmetric = SIZE - 1 - places[SIZE - 1 - column];
 if (checkPlace(column, symmetric)) {
 places[column] = symmetric;
 symmetricFinder(column + 1);
 }
 }
};

Answers to Questions

[423]

Calling symmetricFinder() produces four solutions, which are essentially the same.
Make drawings and check it to make sure it's correct!

[3, 5, 2, 8, 1, 7, 4, 6]
[4, 6, 8, 2, 7, 1, 3, 5]
[5, 3, 1, 7, 2, 8, 6, 4]
[6, 4, 7, 1, 8, 2, 5, 3]

9.5. Sorting recursively: Let's look at the first of these algorithms; many of the techniques
here will help you write the other sorts. If the array is empty, sorting it produces a (new)
empty array. Otherwise, we find the maximum value of the array (max), create a new copy
of the array but without that element, sort the copy, and then return the sorted copy with
max added at the end. Take a look at how we dealt with the mutator functions in order to
avoid modifying the original string:

const selectionSort = arr => {
 if (arr.length === 0) {
 return [];
 } else {
 const max = Math.max(...arr);
 const rest = [...arr];
 rest.splice(arr.indexOf(max), 1);
 return [...selectionSort(rest), max];
 }
};

selectionSort([2, 2, 0, 9, 1, 9, 6, 0]);
// [0, 0, 1, 2, 2, 6, 9, 9]

9.6. What could go wrong? This would fail if, at any time, the array (or sub-array) to be
sorted consisted of all equal values. In that case, smaller would be an empty array and
greaterEqual would be equal to the whole array to sort, so the logic would enter an
infinite loop.

9.7. More efficiency: The following code does the work for us. Here, we use a ternary
operator to decide where to push the new item:

const partition = (arr, fn) =>
 arr.reduce(
 (result, elem) => {
 result[fn(elem) ? 0 : 1].push(elem);
 return result;
 },
 [[], []]
);

Answers to Questions

[424]

Chapter 10, Ensuring Purity – Immutability
10.1. Freezing by proxying: As requested, using a proxy allows you to intercept changes on
an object. (See https:/ ​/​developer. ​mozilla. ​org/ ​en- ​US/​docs/ ​Web/ ​JavaScript/ ​Reference/
Global_​Objects/​Proxy for more on this.) We use recursion to apply the proxy all the way
down in case some attributes are objects themselves:

const proxySetAll = obj => {
 Object.keys(obj).forEach(v => {
 if (typeof obj[v] === "object") {
 obj[v] = proxySetAll(obj[v]);
 }
 });

 return new Proxy(obj, {
 set(target, key, value) {
 throw new Error("DON'T MODIFY ANYTHING IN ME");
 },
 deleteProperty(target, key) {
 throw new Error("DON'T DELETE ANYTHING IN ME");
 }
 });
};

The following is the output of the preceding code. You'd probably require something other
than a DON'T MODIFY ANYTHING IN ME message, of course!

let myObj = {a: 5, b: 6, c: {d: 7, e: 8}};
myObj = proxySetAll(myObj);

myObj.a = 777; // Uncaught Error: DON'T MODIFY ANYTHING IN ME
myObj.f = 888; // Uncaught Error: DON'T MODIFY ANYTHING IN ME
delete myObj.b; // Uncaught Error: DON'T DELETE ANYTHING IN ME

10.2. Inserting into a list, persistently: Using recursion helps out:

If the list is empty, we cannot insert the new key.
If we are at a node and its key isn't oldKey, we create a clone of the node and
insert the new key somewhere in the rest of the original node's list.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy

Answers to Questions

[425]

If we are at a node and its key is oldKey, we create a clone of the node that's
pointing at a list that starts with a new node, with newKey as its value, and itself
pointing to the rest of the original node's list:

const insertAfter = (list, newKey, oldKey) => {
 if (list === null) {
 return null;

 } else if (list.key !== oldKey) {
 return node(list.key, insertAfter(list.next, newKey, oldKey));

 } else {
 return node(list.key, node(newKey, list.next));
 }
};

In the following code, we can see this working. The new list is similar to the one shown in
Figure 10.2. However, printing out the lists (c3 and newList) wouldn't be enough; you
wouldn't be able to recognize the new or old nodes from doing this, so I've included several
comparisons. The following last comparison shows that from the "F" node onward, the list
is the same:

class Node {
 constructor(key, next = null) {
 this.key = key;
 this.next = next;
 }
}
const node = (key, next) => new Node(key, next);

let c3 = node("G", node("B", node("F", node("A", node("C", node("E"))))));
let newList = insertAfter(c3, "D", "B");

c3 === newList // false
c3.key === newList.key // true (both are "G")
c3.next === newList.next // false

c3.next.key === newList.next.key // true (both are "B")
c3.next.next === newList.next.next // false

c3.next.next.key === "F" // true
newList.next.next.key === "D" // true
c3.next.next.next === newList.next.next.next.next // true

When we implement this, if oldKey isn't found, nothing is inserted. Could you change the
logic so that the new node would be added at the end of the list?

Answers to Questions

[426]

10.3. Composing many lenses: We want to compose lenses from left to right so that we can
use reduce() in a direct way. Let's write the composeManyLenses() function and apply it
to the same example that was shown in the text:

const composeManyLenses = (...lenses) =>
 lenses.reduce((acc, lens) => composeTwoLenses(acc, lens));

console.log(view(composeManyLenses(lC, lE, lG, lJ, lK), deepObject));
/*
 11, same as earlier
*/

10.4. Lenses by path: Hint: the needed changes would be along the lines of what we did
when we went from getField() to getByPath().

10.5. Accessing virtual attributes: Using a getter is always viable, and for this question,
you'd write something like the following:

const lastNameLens = composeTwoLenses(lensProp("name"), lensProp("last"));

const fullNameGetter = obj => `${view(lastNameLens)(obj)},
${view(firstNameLens)(obj)}`;

Being able to set several attributes based on a single value isn't always possible, but if we
assume the incoming full name is in the right format, we can split it by the comma and
assign the two parts to first and last name, respectively:

const fullNameSetter = (fullName, obj) => {
 const parts = fullName.split(",");
 return set(firstNameLens, parts[1], set(lastNameLens, parts[0], obj));
};

10.6. Lenses for arrays? The view() function would work well, but set() and over()
wouldn't work in a pure way since setArray() doesn't return a new array; instead, it
modifies the current one in place. Take a look at the next question for a related problem.

10.7. Lenses into maps: Getting a value from the map poses no problem, but for setting, we
need to clone the map:

const getMap = curry((key, map) => map.get(key));

const setMap = curry((key, value, map) => new Map(map).set(key, value));

const lensMap = key => lens(getMap(key), setMap(key));

Answers to Questions

[427]

Chapter 11, Implementing Design Patterns –
the Functional Way
11.1. Decorating methods, the future way: As we've already mentioned, decorators aren't a
fixed, definitive feature at the moment. However, by following https:/ ​/​tc39. ​github. ​io/
proposal-​decorators/ ​, we can write the following:

const logging = (target, name, descriptor) => {
 const savedMethod = descriptor.value;
 descriptor.value = function(...args) {
 console.log(`entering ${name}: ${args}`);

 try {
 const valueToReturn = savedMethod.bind(this)(...args);
 console.log(`exiting ${name}: ${valueToReturn}`);
 return valueToReturn;

 } catch (thrownError) {
 console.log(`exiting ${name}: threw ${thrownError}`);
 throw thrownError;
 }
 };

 return descriptor;
};

We want to add a @logging decoration to a method. We save the original method in
savedMethod and substitute a new method that will log the received arguments, call the
original method to save its return value, log that, and finally return it. If the original
method throws an exception, we catch it, report it, and throw it again so that it can be
processed as expected. A simple example of this is as follows:

class SumThree {
 constructor(z) {
 this.z = z;
 }
 @logging
 sum(x, y) {
 return x + y + this.z;
 }
}

new SumThree(100).sum(20, 8);
// entering sum: 20,8
// exiting sum: 128

https://tc39.github.io/proposal-decorators/
https://tc39.github.io/proposal-decorators/
https://tc39.github.io/proposal-decorators/
https://tc39.github.io/proposal-decorators/
https://tc39.github.io/proposal-decorators/
https://tc39.github.io/proposal-decorators/
https://tc39.github.io/proposal-decorators/
https://tc39.github.io/proposal-decorators/
https://tc39.github.io/proposal-decorators/
https://tc39.github.io/proposal-decorators/
https://tc39.github.io/proposal-decorators/
https://tc39.github.io/proposal-decorators/
https://tc39.github.io/proposal-decorators/

Answers to Questions

[428]

11.2. Decorator with mixins: Working along the same lines as in question 1.1, we write an
addBar() function that receives a Base class and extends it. In this case, I decided to add a
new attribute and a new method. The constructor for the extended class calls the original
constructor and creates the .barValue attribute. The new class has both the original's
doSomething() method and the new somethingElse() method:

class Foo {
 constructor(fooValue) {
 this.fooValue = fooValue;
 }

 doSomething() {
 console.log("something: foo...", this.fooValue);
 }
}

var addBar = Base =>
 class extends Base {
 constructor(fooValue, barValue) {
 super(fooValue);
 this.barValue = barValue;
 }

 somethingElse() {
 console.log("something added: bar... ", this.barValue);
 }
 };

var fooBar = new (addBar(Foo))(22, 9);
fooBar.doSomething(); // something: foo... 22
fooBar.somethingElse(); // something added: bar... 9

11.3. Multi-clicking by hand: There are various ways to achieve this with timers and
counting, but make sure that you don't interfere with single- or double-click detection! You
can also use a common listener and look at event.detail; you can find out more
at https:/​/​developer. ​mozilla. ​org/ ​en- ​US/​docs/ ​Web/ ​API/ ​UIEvent/ ​detail.

https://developer.mozilla.org/en-US/docs/Web/API/UIEvent/detail
https://developer.mozilla.org/en-US/docs/Web/API/UIEvent/detail
https://developer.mozilla.org/en-US/docs/Web/API/UIEvent/detail
https://developer.mozilla.org/en-US/docs/Web/API/UIEvent/detail
https://developer.mozilla.org/en-US/docs/Web/API/UIEvent/detail
https://developer.mozilla.org/en-US/docs/Web/API/UIEvent/detail
https://developer.mozilla.org/en-US/docs/Web/API/UIEvent/detail
https://developer.mozilla.org/en-US/docs/Web/API/UIEvent/detail
https://developer.mozilla.org/en-US/docs/Web/API/UIEvent/detail
https://developer.mozilla.org/en-US/docs/Web/API/UIEvent/detail
https://developer.mozilla.org/en-US/docs/Web/API/UIEvent/detail
https://developer.mozilla.org/en-US/docs/Web/API/UIEvent/detail
https://developer.mozilla.org/en-US/docs/Web/API/UIEvent/detail
https://developer.mozilla.org/en-US/docs/Web/API/UIEvent/detail
https://developer.mozilla.org/en-US/docs/Web/API/UIEvent/detail
https://developer.mozilla.org/en-US/docs/Web/API/UIEvent/detail
https://developer.mozilla.org/en-US/docs/Web/API/UIEvent/detail
https://developer.mozilla.org/en-US/docs/Web/API/UIEvent/detail
https://developer.mozilla.org/en-US/docs/Web/API/UIEvent/detail
https://developer.mozilla.org/en-US/docs/Web/API/UIEvent/detail
https://developer.mozilla.org/en-US/docs/Web/API/UIEvent/detail
https://developer.mozilla.org/en-US/docs/Web/API/UIEvent/detail
https://developer.mozilla.org/en-US/docs/Web/API/UIEvent/detail

Answers to Questions

[429]

Chapter 12, Building Better Containers –
Functional Data Types
12.1. Maybe tasks? The following code shows a simpler solution than the one we looked at
in question 8.2:

const pending = Maybe.of(listOfTasks)
 .map(getField("byPerson"))
 .map(filter(t => t.responsible === name))
 .map(t => tasks)
 .map(t => t[0])
 .map(filter(t => !t.done))
 .map(getField("id"))
 .valueOf();

Here, we apply one function after the other, secure in the knowledge that if any of these
functions produces an empty result (or even if the original listOfTasks is null), the
sequence of calls will go on. In the end, you will either get an array of task IDs or a null
value.

12.2. Extending your trees: Calculating the tree's height is simple if you do this in a
recursive fashion. The height of an empty tree is zero, while the height of a non-empty tree
is one (for the root) plus the maximum height of its left and right subtrees:

const treeHeight = tree =>
 tree(
 (val, left, right) =>
 1 + Math.max(treeHeight(left), treeHeight(right)),
 () => 0
);

Listing the keys in order is a well-known requirement. Because of the way that the tree is
built, you list the left subtree's keys first, then the root, and finally the right subtree's keys,
all in a recursive fashion:

const treeList = tree =>
 tree(
 (value, left, right) => {
 treeList(left);
 console.log(value);
 treeList(right);
 },
 () => {
 // nothing
 });

Answers to Questions

[430]

Finally, deleting a key from a binary search tree is a bit more complex. First, you must
locate the node that is going to be removed, and then there are several cases:

If the node has no subtrees, deletion is simple.
If the node has only one subtree, you just replace the node by its subtree.
If the node has two subtrees, then you have to do the following:

Find the minimum key in the tree with a greater key.
Place it in the node's place.

Since this algorithm is well covered in all computer science textbooks, I won't go into more
detail about this here:

const treeRemove = (toRemove, tree) =>
 tree(
 (val, left, right) => {
 const findMinimumAndRemove = (tree /* never empty */) =>
 tree((value, left, right) => {
 if (treeIsEmpty(left)) {
 return { min: value, tree: right };

 } else {
 const result = findMinimumAndRemove(left);
 return {
 min: result.min,
 tree: Tree(value, result.tree, right)
 };
 }
 });

 if (toRemove < val) {
 return Tree(val, treeRemove(toRemove, left), right);

 } else if (toRemove > val) {
 return Tree(val, left, treeRemove(toRemove, right));

 } else if (treeIsEmpty(left) && treeIsEmpty(right)) {
 return EmptyTree();

 } else if (treeIsEmpty(left) !== treeIsEmpty(right)) {
 return tree((val, left, right) => left(() => left, () => right));

 } else {
 const result = findMinimumAndRemove(right);
 return Tree(result.min, left, result.tree);
 }
 },

Answers to Questions

[431]

 () => tree
);

12.3. Functional lists: Let's add to the samples that have already been provided. We can
simplify working with lists if we can transform a list into an array and vice versa:

const listToArray = list =>
 list((head, tail) => [head, ...listToArray(tail)], () => []);

const listFromArray = arr =>
 arr.length
 ? NewList(arr[0], listFromArray(arr.slice(1)))
 : EmptyList();

Concatenating two lists together and appending a value to a list have simple recursive
implementations. We can also reverse a list by using the appending function:

const listConcat = (list1, list2) =>
 list1(
 (head, tail) => NewList(head, listConcat(tail, list2)),
 () => list2
);

const listAppend = value => list =>
 list(
 (head, tail) => NewList(head, listAppend(value)(tail)),
 () => NewList(value, EmptyList)
);

const listReverse = list =>
 list(
 (head, tail) => listAppend(head)(listReverse(tail)),
 () => EmptyList
);

Finally, the basic map(), filter(), and reduce() operations are good to have:

const listMap = fn => list =>
 list(
 (head, tail) => NewList(fn(head), listMap(fn)(tail)),
 () => EmptyList
);

const listFilter = fn => list =>
 list(
 (head, tail) =>
 fn(head)
 ? NewList(head, listFilter(fn)(tail))

Answers to Questions

[432]

 : listFilter(fn)(tail),
 () => EmptyList
);

const listReduce = (fn, accum) => list =>
 list((head, tail) => listReduce(fn, fn(accum, head))(tail), () => accum);

The following are some exercises that have been left for you to tackle:

Generate a printable version of a list.
Compare two lists to see if they have the same values, in the same order.
Search a list for a value.
Get, update, or remove the value at the n-th position of a list.

12.4. Shortening code: The first thing you would do is get rid of the first ternary operator
by taking advantage of the short circuit evaluation of the || operator:

const treeSearch2 = (findValue, tree) =>
 tree(
 (value, left, right) =>
 findValue === value ||
 (findValue < value
 ? treeSearch2(findValue, left)
 : treeSearch2(findValue, right)),
 () => false
);

Also, seeing that both alternatives in the second ternary operator are very similar, you
could also do some shortening there:

const treeSearch3 = (findValue, tree) =>
 tree(
 (value, left, right) =>
 findValue === value ||
 treeSearch3(findValue, findValue < value ? left : right),
 () => false
);

Remember: shorter doesn't imply better! However, I've found many examples of this kind
of code tightening, and it's better if you have been exposed to it, too.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

React Projects
Roy Derks

ISBN: 978-1-78995-493-7

Create a wide range of applications using various modern React tools and
frameworks
Discover how React Hooks modernize state management for React apps
Develop progressive web applications using React components
Build test-driven React applications using the Jest and Enzyme frameworks
Understand full stack development using React, Apollo, and GraphQL
Perform server-side rendering using React and React Router
Design gestures and animations for a cross-platform game using React Native

https://www.packtpub.com/programming/react-js-projects

Other Books You May Enjoy

[434]

Web Development with Angular and Bootstrap - Third Edition
Sridhar Rao Chivukula, Aki Iskandar

ISBN: 978-1-78883-810-8

Develop Angular single-page applications using an ecosystem of helper tools
Get familiar with Bootstrap's new grid and helper classes
Embrace TypeScript and ECMAScript to write more maintainable code
Implement custom directives for Bootstrap 4 with the ng2-bootstrap library
Understand the component-oriented structure of Angular and its router
Use the built-in HTTP library to work with API endpoints
Manage your app's data and state with observables and streams
Combine Angular and Bootstrap 4 with Firebase to develop a solid example

https://www.packtpub.com/web-development/web-development-angular-and-bootstrap-third-edition

Other Books You May Enjoy

[435]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

.

.charCodeAt() method
 reference link 81
.filter() method
 URL 131
.forEach()
 URL 128
.map()
 URL 114, 268

A
Adapter patterns 335, 336, 337, 338
Ajax
 detecting 64, 65
altered functions 147
anonymous 19
arguments
 reference link 51
Array.from()
 reference link 238
Array.prototype.sort()
 URL 368
array
 .reduce(), using 111, 112
 average, calculating 108, 109, 110
 filtering 130, 131
 find(), emulating with reduce() 134
 findIndex(), emulating with reduce() 134
 flattening 120, 121, 122, 123
 reducing, to value 105, 106
 reference link 107
 searching 133
 special search case 134
 summing 107, 108
 values, calculating 110, 111
arrays of arrays

 dealing with 120
arrow functions
 about 19, 20, 48
 multiple arguments 53, 54
 using 198
 values, handling 49, 51
 values, returning 49
 working, with arguments 51, 52
async calls
 filtering with 142
 looping over 140, 141
 mapping 141
 reducing 143, 144
async functions
 strange behaviors 138, 139, 140
 working with 137, 138
async-ready
 looping 140

B
Babel
 URL 23
backtracking 274
basic container 372, 373, 374
Bell System Technical Journal
 URL 217
binary 107
binary trees
 using, in Haskell 393, 394
bind() method
 using, for currying 191, 192, 194
bind()
 reference link 59
black-box testing 99

[437]

C
callback 17, 62
chaining
 about 216, 231
 method calls 232, 233, 234
cloning 301, 302, 303, 304
closures
 about 18, 19
 using, in partial application 202, 203
 using, in partial currying 209
CodePen
 URL 25
Colossal Cave Adventure Game
 reference link 55
comma operator
 URL 225, 226
command line interface (CLI) 24
Command patterns 335, 344, 345
commutative property 84
compatibility table, ES6
 reference link 22
compatibility tables
 URL 283
complex memoization 160, 161, 162
composing
 about 216, 235
 composed function, testing 243, 244, 245, 246,

247

 examples 235
 files, counting 237
 unary operators 236
 unique words, searching 237, 238, 239
 with higher-order functions 239, 240, 241, 242
constants 298, 299
containers
 about 372
 API results, dealing with 378, 380, 381, 382
 building 369, 370
 data types, extending 370, 371, 372
 enhancing 374, 375, 376
 missing values, dealing with 376, 377
 monads 384
 prisms, implementing 382, 384
continuation-passing style (CPS) 63, 64, 285,

286, 287, 288, 289

continuations 62, 285
currying
 about 53, 184, 185, 186
 curried-by-hand function 189, 190
 parameters 186, 187, 188, 189
 with bind() 191, 192, 194
 with eval() 194, 195

D
D3.js library
 URL 231
Dark Sky API
 URL 378
data types
 about 364, 365
 extending 370, 371, 372
 options 367, 369
data
 extracting, from objects 115, 116
debugging 216
decorator patterns 335, 338, 339, 340, 342
decorators
 reference link 148
demethodizing 178, 179, 180
design patterns
 about 332, 333
 architectural patterns 333
 behavioral design patterns 333
 categories 333, 334
 concurrency patterns 333
 creational design patterns 333
 need for 334, 335
 structural design patterns 333
destructuring assignment
 reference link 91
Don't Repeat Yourself (DRY) 35
dyadic function 107

E
e-commerce, related issues 29, 30
eight queens puzzle 274, 275, 276, 277, 278
Either monad 388, 389, 391
ES6
 reference link 22
eta abstraction 57

[438]

eta conversion 57
eta reduction 57
European Computer Manufacturers Association

(ECMA)
 about 15
 URL 15
eval() method
 using 198
 using, for currying 194, 195

F
Facade patterns 335, 336, 337, 338
Facebook's Flow
 URL 25
Fantasy Land
 URL 384
fetch()
 reference link 67
 references 196
Fibonacci
 reference link 85
first-class objects
 about 16, 54
 functions, using as 16
Fisher-Yates shuffle
 algorithm, reference link 101
 reference link 101
flat()
 emulating 125, 126, 127
flatMap()
 emulating 125, 126, 127
 flattening 123, 124, 125
 mapping 123, 124, 125
flattening 120
Flow
 URL 365
fluent APIs
 examples 231, 232
fluent interfaces 231
foldr 106
freezing 299, 301
functional design patterns 359, 360
functional programming (FP)
 about 8, 9, 73, 104
 characteristics 12

 disadvantages 13
 extensible functionality 12
 misconceptions 10, 11
 modular functionality 11
 need for 11
 program, customizing 10
 qualities 11
 reusable functionality 12
 testable functionality 11
 theoretical way, versus practical way 9
 understandable functionality 11
Functional Reactive Programming (FRP)
 about 347
 basic concepts and terms 347, 348
 multi-clicks, detecting 352
 observable 347
 observer 347
 operators 347
 operators, for observables 349, 351
 pipeline 347
 subscription 347
 typeahead searches 354, 355, 356, 357
functional solution, e-commerce related issues
 about 35
 higher-order solution 36, 37
 solution, producing 41, 42
 solution, testing automatically 39, 40, 41
 solution, testing manually 37, 38
functions, using in FP ways
 about 59
 callbacks 62
 continuation-passing style (CPS) 63, 64
 continuations 62
 immediate invocation 68, 69, 70, 71
 injection 59, 60, 61
 polyfills 64
 promises 62
 stubbing 67, 68
functions, with side effects 75
functions
 about 44
 arity changing 171, 172
 arrow functions 48
 behavior, altering 165
 common mistake 57

[439]

 example 165, 167
 lambda function 45, 46, 47, 48
 logging, adding to 149
 methods, turning into 178, 179, 180
 modifying 172
 negating, logically 168, 169
 operations, turning into 172, 173
 optimum value, finding 180, 181, 182
 React-Redux reducer 55, 56
 references 46
 results, inverting 169, 170
 signatures 365, 366, 367
 turning, into promises 175, 176
 types, URL 365
 URL 48
 used, as objects 54, 55
 using 212
 using, as binary trees 395, 396, 397, 398, 399,

400

 using, as data structures 393
 using, as first-class objects 16
 working, with methods 58, 59
functors 372, 374, 375, 376

G
Gang of Four (GoF) 332
getRandomLetter() function
 reference link 81
getters 305
 writing 305, 306

H
Haskell
 binary trees, using 393, 394
higher-order functions (HOF)
 about 104, 267, 271, 272, 273
 composing with 239, 240, 241, 242
Hindley-Milner 365
hoisting
 reference link 46

I
idempotency 74
immediate invocation 68, 69, 70, 71
Immediately Invoked Function Expression (IIFE)

34

immutable objects
 references 327
impure functions
 about 89
 avoiding 89
 injecting 91, 92, 93
 purity, ensuring 93, 94
 state usage, avoiding 89, 91
 testing 99, 100, 101

J
Jasmine
 URL 26
JavaScript (JS)
 about 8, 297
 arrow functions 19, 20
 cloning 301, 302, 303, 304
 closures 18, 19
 constants 298, 299
 features 16
 freezing 299, 301
 functionalities 15, 16
 functions, using as first-class objects 16, 17
 lenses 308
 mutating 301, 302, 303, 304
 mutator functions 297, 298
 prisms 317
 recursion 17, 18
 spread operator 20, 21
 testing 26
 transpilers, using 23, 24, 25
 using, as functional language 13
 using, as tool 14, 15
 working with 22
 working, with online tools 25, 26
JavaScript functions
 reference link 172
JavaScript, getters
 about 305
 writing 305, 306
JavaScript, setters
 about 305
 creating 306, 308
JS prettier

[440]

 reference link 20
JSBin
 URL 25
JSFiddle
 reference link 25

K
Karma
 URL 26

L
lambda function 45, 46, 47, 48
lazy evaluation 289
lenses
 about 308
 implementing, with functions 314, 315, 317
 implementing, with objects 311, 312, 313
 working with 308, 309, 311
Linux
 pipelining, using in 217, 218, 219
lists
 working with 321, 322, 323
localeCompare()
 reference link 61
logging function
 enhancing 151
logging
 adding, to function 149
 in functional way 149, 150
logical higher-order functions
 about 129
 array, filtering 130, 131
 array, searching 133
 filter(), emulating with reduce() 132
 higher-level predicates 135, 136
 negatives, checking 136, 137
 reduce() example 131, 132
looping 127, 129

M
map()
 about 113, 114
 emulating, with reduce() 119
 using, advantages 114
memoization 84

memoization higher-order function
 testing 162, 163, 165
memoizing functions 157
methods
 turning, into functions 178, 179, 180
Mocha
 URL 26
monads
 about 384
 function, calling 391, 392
 operations, adding 385, 386, 387, 388
 promises 392, 393
morphism 113
mutating 301, 302, 303, 304
mutator functions 298
mutator methods
 about 80, 297
 URL 297

N
Node.js
 reference link 22
numbers
 parsing 116, 117

O
Object Oriented Programming (OOP) 9
object-oriented (OO) 346
object-oriented design patterns
 about 335, 358
 Adapter patterns 336, 337, 338
 Chain of Responsibility pattern 358
 Command patterns 344, 345
 currying and partial application 358
 declarative functions 358
 decorator patterns 338, 339, 340, 342
 Facade patterns 336, 337, 338
 observer programming 346
 persistent data structures 358
 reactive programming 346
 Strategy patterns 344, 345
 Template patterns 344, 345
 wrapper patterns 338, 339, 342
Object.freeze()
 URL 300

[441]

Object.seal()
 URL 300
objects
 property, obtaining from 176, 177
 updating 323, 324, 325, 327
observables
 creating, with operators 349
 reference link 346
Observer patterns 335
observer programming 346
operations
 implementing 173, 174
 turning, into functions 172, 173

P
parameter order 210, 211
parseInt()
 URL 117
partial application
 about 184, 185, 196
 with arrow functions 198
 with closures 202, 203
 with eval() 198, 199, 201
partial currying
 about 184, 185, 205, 206
 with bind() 206, 208, 209
 with closures 209
persistent data structures
 creating 320
 limitations 328
 lists, working 321, 322, 323
 objects, updating 323, 324, 325, 327
pipelines
 building 220, 221, 222
 constructs, using 222, 223, 224
 creating 220
 debugging 224
 logging wrapper, using 227
 tapping, into flow 226, 227
 tee function, using 224, 225
pipelining
 about 216, 217
 example 219, 220
 pipelines, creating 220
 pipelines, debugging 224

 point-free style 228
 using, in Linux 217, 218, 219
 using, in Unix 217, 218, 219
pivot 264
point-free style
 about 216, 228
 converting to 229, 230
 functions, defining 228, 229
pointfree 57
polyfills
 about 64
 Ajax, detecting 64, 65
 missing functions, adding 66, 67
 reference link 66
popularity indices
 reference link 14
prisms
 about 317
 implementing 320
 working with 317, 318, 320
product types 367
Promise.resolve()
 URL 392
promises
 about 62
 functions, turning into 175, 176
 reference link 62
property
 obtaining, from object 176, 177
proxy
 URL 232
pure functions, advantages
 about 83
 memoization 84, 85, 86, 87, 88
 order of execution 83, 84
 self-documentation 88
 testing 88
pure functions
 about 73, 75
 conditions 73
 referential transparency 74, 75, 76
 testing 95, 96
 versus impure function 94
 working in 152, 153, 155
purified functions

[442]

 testing 96, 97, 98

R
ranges
 working with 117, 118
React sandbox
 reference link 340
React-Redux package
 reference link 343
React-Redux reducer 55
 working 55, 56
Reactive Functional Programming (RFP) 347
reactive programming 346
recursion techniques
 about 281
 continuation-passing style (CPS) 285, 286, 287,

288, 289
 elimination 292
 tail calls, optimization 282, 283, 284, 285
 thunks 289, 290, 291, 292
 trampolines 289, 290, 291, 292
recursion
 about 17, 18
 applying 258, 259
 applying, methods 259
 backtracking 274
 decrease and conquer strategy 259, 260, 261
 divide and conquer strategy 261, 262, 263, 264,

265

 dynamic programming 265, 267
 eight queens puzzle 274, 275, 276, 277, 278
 filtering 268, 269, 270, 271
 higher-order functions 267, 271, 272, 273
 mapping 268, 269, 270, 271
 searching 274
 tree structure, traversing 278, 280, 281
 using 257, 258
reduce()
 map(), emulating with 119
referential opacity 74
referential transparency 74, 75, 76
RxJS Operators
 reference link 349
RxJS
 about 347

 installation link 349

S
Sanctuary
 URL 369
searching 274
set()
 reference link 238
setters
 about 305
 creating 306, 308
side effects, pure functions
 about 75, 76
 argument mutation 80
 global state 77
 inner state 78, 79
 troublesome functions 81, 82, 83
 usual side effects 76
simple memoization 158, 159
solutions, e-commerce related issues
 about 30, 31
 button, disabling 33
 global flag, using 31
 handler, modifying 33
 handler, redefining 34
 handler, removing 32
 local flag, using 34, 35
Sorta Functional Programming (SFP) 9, 335
spread operator
 about 20, 21
 reference link 20
Strategy patterns 335, 344, 345
stub 97
stubbing 67, 68
sum types 368

T
tacit 57
tail calls
 about 283
 optimization 282, 283, 284, 285
TC39
 reference link 148
Template patterns 335, 344, 345
testing 216

thunks 289, 290, 291, 292
timing functions 155, 156, 157
Traceur
 reference link 23, 24
trampolines 290, 291, 292
transducing
 about 248, 249, 250, 251
 reducers, composing 251, 252
 reducers, generalizing 252, 253
transformations
 about 105
 array, reducing to value 105, 106
 looping 127, 129
 operation, applying 113, 114
transpilers
 using 23, 24, 25
Try monad 391, 392

TypeScript
 reference link 25
 URL 24, 365

U
unary() higher-order function 369
Unix
 pipelining, using in 217, 218, 219

V
Value-added Tax (VAT) 188

W
white-box testing 99
wrapped functions 147
wrapper patterns 335, 338, 339, 340, 342
wrapping functions 148

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Technical Requirements
	Chapter 1: Becoming Functional - Several Questions
	What is functional programming?
	Theory versus practice
	A different way of thinking
	What FP is not

	Why use FP?
	What we need
	What we get
	Not all is gold

	Is JavaScript functional?
	JavaScript as a tool
	Going functional with JavaScript
	Key features of JavaScript
	Functions as first-class objects
	Recursion
	Closures
	Arrow functions
	Spread

	How do we work with JavaScript?
	Using transpilers
	Working online
	Testing

	Summary
	Questions

	Chapter 2: Thinking Functionally - A First Example
	Our problem – doing something only once
	Solution 1 – hoping for the best!
	Solution 2 – using a global flag
	Solution 3 – removing the handler
	Solution 4 – changing the handler
	Solution 5 – disabling the button
	Solution 6 – redefining the handler
	Solution 7 – using a local flag

	A functional solution to our problem
	A higher-order solution
	Testing the solution manually
	Testing the solution automatically
	Producing an even better solution

	Summary
	Questions

	Chapter 3: Starting Out with Functions - A Core Concept
	All about functions
	Of lambdas and functions
	Arrow functions – the modern way
	Returning values
	Handling the this value
	Working with arguments
	One argument or many?

	Functions as objects
	A React-Redux reducer
	An unnecessary mistake
	Working with methods

	Using functions in FP ways
	Injection – sorting it out
	Callbacks, promises, and continuations
	Continuation passing style
	Polyfills
	Detecting Ajax
	Adding missing functions

	Stubbing
	Immediate invocation

	Summary
	Questions

	Chapter 4: Behaving Properly - Pure Functions
	Pure functions
	Referential transparency
	Side effects
	Usual side effects
	Global state
	Inner state
	Argument mutation
	Troublesome functions

	Advantages of pure functions
	Order of execution
	Memoization
	Self-documentation
	Testing

	Impure functions
	Avoiding impure functions
	Avoiding the usage of state
	Injecting impure functions

	Is your function pure?

	Testing – pure versus impure
	Testing pure functions
	Testing purified functions
	Testing impure functions

	Summary
	Questions

	Chapter 5: Programming Declaratively - A Better Style
	Transformations
	Reducing an array to a value
	Summing an array
	Calculating an average
	Calculating several values at once
	Folding left and right

	Applying an operation – map
	Extracting data from objects
	Parsing numbers tacitly
	Working with ranges
	Emulating map() with reduce()

	Dealing with arrays of arrays
	Flattening an array
	Mapping and flattening – flatMap()
	Emulating flat() and flatMap()

	More general looping

	Logical higher-order functions
	Filtering an array
	A reduce() example
	Emulating filter() with reduce()

	Searching an array
	A special search case
	Emulating find() and findIndex() with reduce()

	Higher-level predicates – some, every
	Checking negatives – none

	Working with async functions
	Some strange behaviors
	Async-ready looping
	Looping over async calls
	Mapping async calls
	Filtering with async calls
	Reducing async calls

	Summary
	Questions

	Chapter 6: Producing Functions - Higher-Order Functions
	Wrapping functions – keeping behavior
	Logging
	Logging in a functional way
	Taking exceptions into account
	Working in a purer way

	Timing functions
	Memoizing functions
	Simple memoization
	More complex memoization
	Memoization testing

	Altering a function's behavior
	Doing things once, revisited
	Logically negating a function
	Inverting the results
	Arity changing

	Changing functions in other ways
	Turning operations into functions
	Implementing operations
	A handier implementation

	Turning functions into promises
	Getting a property from an object
	Demethodizing – turning methods into functions
	Finding the optimum

	Summary
	Questions

	Chapter 7: Transforming Functions - Currying and Partial Application
	A bit of theory
	Currying
	Dealing with many parameters
	Currying by hand
	Currying with bind()
	Currying with eval()

	Partial application
	Partial application with arrow functions
	Partial application with eval()
	Partial application with closures

	Partial currying
	Partial currying with bind()
	Partial currying with closures

	Final thoughts
	Parameter order
	Being functional

	Summary
	Questions

	Chapter 8: Connecting Functions - Pipelining and Composition
	Pipelining
	Piping in Unix/Linux
	Revisiting an example
	Creating pipelines
	Building pipelines by hand
	Using other constructs

	Debugging pipelines
	Using tee
	Tapping into a flow
	Using a logging wrapper

	Pointfree style
	Defining pointfree functions
	Converting to pointfree style

	Chaining and fluent interfaces
	An example of fluent APIs
	Chaining method calls

	Composing
	Some examples of composition
	Unary operators
	Counting files
	Finding unique words

	Composing with higher-order functions
	Testing composed functions

	Transducing
	Composing reducers
	Generalizing for all reducers

	Summary
	Questions

	Chapter 9: Designing Functions - Recursion
	Using recursion
	Thinking recursively
	Decrease and conquer – searching
	Decrease and conquer – doing powers
	Divide and conquer – the Towers of Hanoi
	Divide and conquer – sorting
	Dynamic programming – making change

	Higher-order functions revisited
	Mapping and filtering
	Other higher-order functions

	Searching and backtracking
	The eight queens puzzle
	Traversing a tree structure

	Recursion techniques
	Tail call optimization
	Continuation passing style
	Trampolines and thunks
	Recursion elimination

	Summary
	Questions

	Chapter 10: Ensuring Purity - Immutability
	Going the straightforward JavaScript way
	Mutator functions
	Constants
	Freezing
	Cloning and mutating
	Getters and setters
	Getting a property
	Setting a property by path

	Lenses
	Working with lenses
	Implementing lenses with objects
	Implementing lenses with functions

	Prisms
	Working with prisms
	Implementing prisms

	Creating persistent data structures
	Working with lists
	Updating objects
	A final caveat

	Summary
	Questions

	Chapter 11: Implementing Design Patterns - The Functional Way
	Understanding design patterns
	Design pattern categories
	Do we need design patterns?

	Object-oriented design patterns
	Facade and adapter
	Decorator or wrapper
	Strategy, Template, and Command
	Observer and reactive programming
	Basic concepts and terms
	Operators for observables
	Detecting multi-clicks
	Providing typeahead searches

	Other patterns

	Functional design patterns
	Summary
	Questions

	Chapter 12: Building Better Containers - Functional Data Types
	Specifying data types
	Signatures for functions
	Other data type options

	Building containers
	Extending current data types
	Containers and functors
	Wrapping a value – a basic container
	Enhancing our container – functors
	Dealing with missing values with Maybe
	Dealing with varying API results
	Implementing Prisms

	Monads
	Adding operations
	Handling alternatives – the Either monad
	Calling a function – the Try monad
	Unexpected monads – promises

	Functions as data structures
	Binary trees in Haskell
	Functions as binary trees

	Summary
	Questions

	Bibliography
	Answers to Questions
	Other Books You May Enjoy
	Index

