

React:	Up	&	Running
Building	Web	Applications

SECOND	EDITION

With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the
author’s	raw	and	unedited	content	as	they	write—so	you	can	take	advantage
of	these	technologies	long	before	the	official	release	of	these	titles.

Stoyan	Stefanov

React:	Up	&	Running

by	Stoyan	Stefanov

Copyright	©	2021	Stoyan	Stefanov.	All	rights	reserved.

Printed	in	the	United	States	of	America.

Published	by	O’Reilly	Media,	Inc.,	1005	Gravenstein	Highway	North,
Sebastopol,	CA	95472.

O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional
use.	Online	editions	are	also	available	for	most	titles	(http://oreilly.com).	For
more	information,	contact	our	corporate/institutional	sales	department:	800-998-
9938	or	corporate@oreilly.com.

Acquisitions	Editor:	Jennifer	Pollock

Development	Editor:	Angela	Rufino

Production	Editor:	Kate	Galloway

Interior	Designer:	David	Futato

Cover	Designer:	Karen	Montgomery

Illustrator:	Kate	Dullea

July	2021:	Second	Edition

Revision	History	for	the	Early	Release

2020-04-23:	First	Release

2021-02-03:	Second	Release

See	http://oreilly.com/catalog/errata.csp?isbn=9781492051466	for	release
details.

The	O’Reilly	logo	is	a	registered	trademark	of	O’Reilly	Media,	Inc.	React:	Up	&
Running,	the	cover	image,	and	related	trade	dress	are	trademarks	of	O’Reilly
Media,	Inc.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492051466

While	the	publisher	and	the	author	have	used	good	faith	efforts	to	ensure	that	the
information	and	instructions	contained	in	this	work	are	accurate,	the	publisher
and	the	author	disclaim	all	responsibility	for	errors	or	omissions,	including
without	limitation	responsibility	for	damages	resulting	from	the	use	of	or
reliance	on	this	work.	Use	of	the	information	and	instructions	contained	in	this
work	is	at	your	own	risk.	If	any	code	samples	or	other	technology	this	work
contains	or	describes	is	subject	to	open	source	licenses	or	the	intellectual
property	rights	of	others,	it	is	your	responsibility	to	ensure	that	your	use	thereof
complies	with	such	licenses	and/or	rights.

978-1-492-05139-8

To	Eva,	Zlatina,	and	Nathalie

Chapter	1.	Hello	World

A	NOTE	FOR	EARLY	RELEASE	READERS

With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the
author’s	raw	and	unedited	content	as	they	write—so	you	can	take	advantage
of	these	technologies	long	before	the	official	release	of	these	titles.

This	will	be	the	1st	chapter	of	the	final	book.	Please	note	that	the	GitHub
repo	will	be	made	active	later	on.

If	you	have	comments	about	how	we	might	improve	the	content	and/or
examples	in	this	book,	or	if	you	notice	missing	material	within	this	chapter,
please	reach	out	to	the	author	at	sstoo@ymail.com.

Let’s	get	started	on	the	journey	to	mastering	application	development	using
React.	In	this	chapter,	you	will	learn	how	to	set	up	React	and	write	your	first
“Hello	World”	web	app.

Setup
First	things	first:	you	need	to	get	a	copy	of	the	React	library.	There	are	various
ways	to	go	about	it.	Let’s	go	with	the	simplest	one	that	doesn’t	require	any
special	tools	and	can	get	you	learning	and	hacking	away	in	no	time.

Create	a	folder	for	all	the	code	in	the	book	in	a	location	where	you’ll	be	able	to
find	it.

For	example:

mkdir	~/reactbook

Create	a	react	folder	to	keep	the	React	library	code	separate.

mkdir	~/reactbook/react

Next,	you	need	to	add	two	files:	one	is	React	itself,	the	other	is	the	ReactDOM

mailto:sstoo@ymail.com

Next,	you	need	to	add	two	files:	one	is	React	itself,	the	other	is	the	ReactDOM
add-on.	You	can	grab	the	latest	16.*	versions	of	the	two	from	the	unpkg.com
host,	like	so:

curl	-L	https://unpkg.com/react@16/umd/react.development.js	>

~/reactbook/react/react.js

curl	-L	https://unpkg.com/react-dom@16/umd/react-dom.development.js	>

~/reactbook/react/react-dom.js

Note	that	React	doesn’t	impose	any	directory	structure;	you’re	free	to	move	to	a
different	directory	or	rename	react.js	however	you	see	fit.

You	don’t	have	to	download	the	libraries,	you	can	use	them	directly	from
unpkg.com	but	having	them	locally	makes	it	possible	to	learn	anywhere	and
without	an	internet	connection.

NOTE
The	@16	in	the	URLs	above	gets	you	a	copy	of	the	latest	React	16,	which	is	current	at	the	time
of	writing	this	book.	Omit	@16	to	get	the	latest	available	React	version.	Alternatively,	you	can
explicitly	specify	the	version	you	require,	for	example	@16.13.0.

Hello	React	World
Let’s	start	with	a	simple	page	in	your	working	directory
(~/reactbook/01.01.hello.html):

<!DOCTYPE	html>

<html>

		<head>

				<title>Hello	React</title>

				<meta	charset="utf-8">

		</head>

		<body>

				<div	id="app">

						<!--	my	app	renders	here	-->

				</div>

				<script	src="react/react.js"></script>

				<script	src="react/react-dom.js"></script>

				<script>

						//	my	app's	code

				</script>

		</body>

</html>

NOTE
You	can	find	all	the	code	from	this	book	in	the	accompanying	repository.

Only	two	notable	things	are	happening	in	this	file:

You	include	the	React	library	and	its	DOM	add-on	(via	<script
src>	tags)

You	define	where	your	application	should	be	placed	on	the	page	(<div
id="app">)

NOTE
You	can	always	mix	regular	HTML	content	as	well	as	other	JavaScript	libraries	with	a	React
app.	You	can	also	have	several	React	apps	on	the	same	page.	All	you	need	is	a	place	in	the
DOM	where	you	can	point	React	to	and	say	“do	your	magic	right	here.”

Now	let’s	add	the	code	that	says	“hello”	-	update	01.01.hello.html	and	replace
//	my	app's	code	with:

ReactDOM.render(

		React.createElement('h1',	null,	'Hello	world!'),

		document.getElementById('app')

);

Load	01.01.hello.html	in	your	browser	and	you’ll	see	your	new	app	in	action
(Figure	1-1).

https://github.com/stoyan/reactbook2/

Figure	1-1.	Hello	World	in	action

Congratulations,	you’ve	just	built	your	first	React	application!

Figure	1-1	also	shows	the	generated	code	in	Chrome	Developer	Tools	where
you	can	see	that	the	contents	of	the	<div	id="app">	placeholder	was
replaced	with	the	contents	generated	by	your	React	app.

What	Just	Happened?
There	are	a	few	things	of	interest	in	the	code	that	made	your	first	app	work.

First,	you	see	the	use	of	the	React	object.	All	of	the	APIs	available	to	you	are
accessible	via	this	object.	The	API	is	intentionally	minimal,	so	there	are	not	a	lot
of	method	names	to	remember.

You	can	also	see	the	ReactDOM	object.	It	has	only	a	handful	of	methods,
render()	being	the	most	useful.	ReactDOM	is	responsible	for	rendering	the
app	in	the	browser.	You	can,	in	fact,	create	React	apps	and	render	them	in
different	environments	outside	the	browser—for	example	in	canvas,	or	natively
in	Android	or	iOS.

Next,	there	is	the	concept	of	components.	You	build	your	UI	using	components
and	you	combine	these	components	in	any	way	you	see	fit.	In	your	applications,
you’ll	end	up	creating	your	custom	components,	but	to	get	you	off	the	ground,
React	provides	wrappers	around	HTML	DOM	elements.	You	use	the	wrappers
via	the	React.createElement	function.	In	this	first	example,	you	can	see
the	use	of	the	h1	element.	It	corresponds	to	the	<h1>	in	HTML	and	is	available
to	you	using	a	call	to	React.createElement('h1').

Finally,	you	see	the	good	old	document.getElementById('app')	DOM
access.	You	use	this	to	tell	React	where	the	application	should	be	located	on	the
page.	This	is	the	bridge	crossing	over	from	the	DOM	manipulation	as	you	know
it	to	React-land.

Once	you	cross	the	bridge	from	DOM	to	React,	you	don’t	have	to	worry	about
DOM	manipulation	anymore,	because	React	does	the	translation	from
components	to	the	underlying	platform	(browser	DOM,	canvas,	native	app).	In
fact,	not	worrying	about	the	DOM	is	one	of	the	great	things	about	React.	You

worry	about	composing	the	components	and	their	data—the	meat	of	the
application—and	let	React	take	care	of	updating	the	DOM	most	efficiently.	No
more	hunting	for	DOM	nodes,	firstChild,	appendChild()	and	so	on.

NOTE
You	don’t	have	to	worry	about	DOM,	but	that	doesn’t	mean	you	cannot.	React	gives	you
“escape	latches”	if	you	want	to	go	back	to	DOM-land	for	any	reason	you	may	need.

Now	that	you	know	what	each	line	does,	let’s	take	a	look	at	the	big	picture.
What	happened	is	this:	you	rendered	one	React	component	in	a	DOM	location	of
your	choice.	You	always	render	one	top-level	component	and	it	can	have	as
many	children	(and	grandchildren,	etc.)	components	as	you	need.	Even	in	this
simple	example,	the	h1	component	has	a	child—the	“Hello	World!”	text.

React.createElement()
As	you	know	now,	you	can	use	a	number	of	HTML	elements	as	React
components	via	the	React.createElement()	method.	Let’s	take	a	close
look	at	this	API.

Remember	the	“Hello	World!”	app	looks	like	this:

ReactDOM.render(

		React.createElement('h1',	null,	'Hello	world!'),

		document.getElementById('app')

);

The	first	parameter	to	createElement	is	the	type	of	element	to	be	created.
The	second	(which	is	null	in	this	case)	is	an	object	that	specifies	any	properties
(think	DOM	attributes)	that	you	want	to	pass	to	your	element.	For	example,	you
can	do:

React.createElement(

		'h1',

		{

				id:	'my-heading',

		},

		'Hello	world!'

),

The	HTML	generated	by	this	example	is	shown	in	Figure	1-2.

Figure	1-2.	HTML	generated	by	a	React.createElement()	call

The	third	parameter	("Hello	World!"	in	this	example)	defines	a	child	of	the

component.	The	simplest	case	is	just	a	text	child	(a	Text	node	in	DOM-speak)
as	you	see	in	the	preceding	code.	But	you	can	have	as	many	nested	children	as
you	like	and	you	pass	them	as	additional	parameters.	For	example:

React.createElement(

		'h1',

		{id:	'my-heading'},

		React.createElement('span',	null,	'Hello'),

		'	world!'

),

Another	example,	this	time	with	nested	components	(result	shown	in	Figure	1-3)
is	as	follows:

React.createElement(

		'h1',

		{id:	'my-heading'},

		React.createElement(

				'span',

				null,

				'Hello	',

				React.createElement('em',	null,	'Wonderful'),

),

		'	world!'

),

Figure	1-3.	HTML	generated	by	nesting	React.createElement()	calls

You	can	see	in	Figure	1-3	that	the	DOM	generated	by	React	has	the	
element	as	a	child	of	the		which	is	in	turn	a	child	of	the	<h1>	element

(and	a	sibling	of	the	“world”	text	node).

JSX
When	you	start	nesting	components,	you	quickly	end	up	with	a	lot	of	function
calls	and	parentheses	to	keep	track	of.	To	make	things	easier,	you	can	use	the
JSX	syntax.	JSX	is	a	little	controversial:	people	often	find	it	repulsive	at	first
sight	(ugh,	XML	in	my	JavaScript!),	but	indispensable	after.

Here’s	the	previous	snippet	but	this	time	using	JSX	syntax:

ReactDOM.render(

		<h1	id="my-heading">

				Hello	Wonderful	world!

		</h1>,

		document.getElementById('app')

);

This	is	much	more	readable.	This	syntax	looks	very	much	like	HTML	and	you
already	know	HTML.	However	it’s	not	valid	JavaScript	that	browsers	can
understand.	You	need	to	transpile	this	code	to	make	it	work	in	the	browser.
Again,	for	learning	purposes,	you	can	do	this	without	special	tools.	You	need	the
Babel	library	which	translates	cutting-edge	JavaScript	(and	JSX)	to	old	school
JavaScript	that	works	in	ancient	browsers.

Setup	Babel
Just	like	with	React,	get	a	local	copy	of	Babel:

curl	-L	https://unpkg.com/babel-standalone/babel.min.js	>

~/reactbook/react/babel.js

Then	you	need	to	update	your	learning	template	to	include	Babel.	Create	a	file
01.04.hellojsx.html	like	so:

<!DOCTYPE	html>

<html>

		<head>

				<title>Hello	React+JSX</title>

				<meta	charset="utf-8">

		</head>

		<body>

				<div	id="app">

						<!--	my	app	renders	here	-->

				</div>

				<script	src="react/react.js"></script>

				<script	src="react/react-dom.js"></script>

				<script	src="react/babel.js"></script>

				<script	type="text/babel">

						//	my	app's	code

				</script>

		</body>

</html>

NOTE
Note	how	<script>	becomes	<script	type="text/babel">.	This	is	a	trick	where
by	specifying	an	invalid	type,	the	browser	ignores	the	code.	This	gives	Babel	a	chance	to
parse	and	transform	the	JSX	syntax	into	something	the	browser	can	run.

Hello	JSX	world
With	this	bit	of	setup	out	of	the	way,	let’s	try	JSX.	Replace	the	//	my	app's
code	part	in	the	HTML	above	with:

ReactDOM.render(

		<h1	id="my-heading">

				Hello	JSX	world!

		</h1>,

		document.getElementById('app')

);

The	result	of	running	this	in	the	browser	is	shown	on	Figure	1-4.

Figure	1-4.	Hello	JSX	world

What	just	happened?
It’s	great	that	you	got	the	JSX	and	Babel	to	work,	but	maybe	a	few	more	words
won’t	hurt,	especially	if	you’re	new	to	Babel	and	the	process	of	transpilation.	If
you’re	already	familiar,	feel	free	to	skip	this	part	where	we	familiarize	a	bit	with
the	terms	JSX,	Babel,	and	transpilation.

JSX	is	a	separate	technology	from	React	and	is	completely	optional.	As	you	see,
the	first	examples	in	this	chapter	didn’t	even	use	JSX.	You	can	opt	into	never
coming	anywhere	near	JSX	at	all.	But	it’s	very	likely	that	once	you	try	it,	you
won’t	go	back	to	function	calls.

NOTE
It’s	not	quite	clear	what	the	acronym	JSX	stands	for,	but	it’s	most	likely	JavaScriptXML	or
JavaScript	Syntax	eXtension.	The	official	home	of	the	open-source	project	is
http://facebook.github.io/jsx/.

The	process	of	transpilation	is	a	process	of	taking	source	code	and	rewriting	it	to
accomplish	the	same	results	but	using	syntax	that’s	understood	by	older
browsers.	It’s	different	than	using	polyfills.	An	example	of	a	polyfill	is	adding	a
method	to	Array.prototype	such	as	map(),	which	was	introduced	in
ECMAScript5,	and	making	it	work	in	browsers	that	only	support	ECMAScript3.
A	polyfill	is	a	solution	in	pure	JavaScript-land.	It’s	a	good	solution	when	adding
new	methods	to	existing	objects	or	implementing	new	objects	(such	as	JSON).
But	it’s	not	sufficient	when	new	syntax	is	introduced	into	the	language.	Any	new
syntax	in	the	eyes	of	browser	that	does	not	support	it	is	just	invalid	and	throws	a
parse	error.	There’s	no	way	to	polyfill	it.	New	syntax,	therefore,	requires	a
compilation	(transpilation)	step	so	it’s	transformed	before	it’s	served	to	the
browser.

Transpiling	JavaScript	is	getting	more	and	more	common	as	programmers	want
to	use	the	latest	JavaScript	(ECMAScript)	features	without	waiting	for	browsers
to	implement	them.	If	you	already	have	a	build	process	set	up	(that	does	e.g.,
minification	or	any	other	code	transformation),	you	can	simply	add	the	JSX	step

http://facebook.github.io/jsx/

to	it.	Assuming	you	don’t	have	a	build	process,	you’ll	see	later	in	the	book	the
necessary	steps	of	setting	one	up.

For	now,	let’s	leave	the	JSX	transpilation	on	the	client-side	(in	the	browser)	and
move	on	with	learning	React.	Just	be	aware	that	this	is	only	for	education	and
experimentation	purposes.	Client-side	transforms	are	not	meant	for	live
production	sites	as	they	are	slower	and	more	resource	intensive	that	serving
already	transpiled	code.

Next:	Custom	Components
At	this	point,	you’re	done	with	the	bare-bones	“Hello	World”	app.	Now	you
know	how	to:

Set	up	the	React	library	for	experimentation	and	learning	(it’s	really	just
a	question	of	a	few	<script>	tags)

Render	a	React	component	in	a	DOM	location	of	your	choice	(e.g.,
ReactDOM.render(reactWhat,	domWhere))

Use	built-in	components,	which	are	wrappers	around	regular	DOM
elements	(e.g.,	React.createElement(element,
attributes,	content,	children))

The	real	power	of	React,	though,	comes	when	you	start	using	custom
components	to	build	(and	update!)	the	user	interface	(UI)	of	your	app.	Let’s
learn	how	to	do	just	that	in	the	next	chapter.

Chapter	2.	The	Life	of	a
Component

A	NOTE	FOR	EARLY	RELEASE	READERS

With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the
author’s	raw	and	unedited	content	as	they	write—so	you	can	take	advantage
of	these	technologies	long	before	the	official	release	of	these	titles.

This	will	be	the	2nd	chapter	of	the	final	book.	Please	note	that	the	GitHub
repo	will	be	made	active	later	on.

If	you	have	comments	about	how	we	might	improve	the	content	and/or
examples	in	this	book,	or	if	you	notice	missing	material	within	this	chapter,
please	reach	out	to	the	author	at	sstoo@ymail.com.

Now	that	you	know	how	to	use	the	ready-made	DOM	components,	it’s	time	to
learn	how	to	make	some	of	your	own.

There	are	two	ways	to	define	a	custom	component,	both	accomplishing	the	same
result	but	using	different	syntax:

Using	a	function	(components	created	this	way	are	referred	to	as
functional	components)

Using	a	class	that	extends	React.Component	(commonly	referred	to
as	class	components)

A	Custom	Functional	Component
Here’s	an	example	of	a	functional	component:

const	MyComponent	=	function()	{

		return	'I	am	so	custom';

};

mailto:sstoo@ymail.com

But	wait,	this	is	just	a	function!	Yes,	this	is	it,	the	custom	component	is	just	a
function	that	returns	the	UI	that	you	want.	In	this	case,	the	UI	is	only	text	but
often	you’ll	need	a	little	bit	more,	most	likely	a	composition	of	other
components.	Here’s	an	example	of	using	a	span	to	wrap	the	text:

const	MyComponent	=	function()	{

		return	React.createElement('span',	null,	'I	am	so	custom');

};

Using	your	new	shiny	component	in	an	application	is	similar	to	using	the	DOM
components	from	Chapter	1,	except	you	call	the	function	that	defines	the
component:

ReactDOM.render(

		MyComponent(),

		document.getElementById('app')

);

The	result	of	rendering	your	custom	component	is	shown	in	Figure	2-1.

Figure	2-1.	Your	first	custom	component	(02.01.custom-functional.html	in	the	book’s
repository)

A	JSX	Version
The	same	example	using	JSX	would	look	a	little	easier	to	read.	Defining	the
component	looks	like	this:

const	MyComponent	=	function()	{

		return	I	am	so	custom;

};

Using	the	component	the	JSX	way	looks	like	the	following,	regardless	of	how
the	component	itself	was	defined	(with	JSX	or	not).

ReactDOM.render(

		<MyComponent	/>,

		document.getElementById('app')

);

NOTE
Notice	that	in	the	self-closing	tag	<MyComponent	/>	the	slash	is	not	optional.	That	applies
to	HTML	elements	used	in	JSX	too.	
	and		are	not	going	to	work,	you	need	to
close	them	like	
	and	.

A	Custom	Class	Component
The	second	way	to	create	a	component	is	to	define	a	class	that	extends
React.Component	and	implements	a	render()	function:

class	MyComponent	extends	React.Component	{

		render()	{

				return	React.createElement('span',	null,	'I	am	so	custom');

				//	or	with	JSX:

				//	return	I	am	so	custom;

		}

}

Rendering	the	component	on	the	page:

ReactDOM.render(

		React.createElement(MyComponent),

		document.getElementById('app')

);

If	you	use	JSX,	you	don’t	need	to	know	how	the	component	was	defined	(using
a	class	or	a	function),	in	both	cases	using	the	component	is	the	same:

ReactDOM.render(

		<MyComponent	/>,

		document.getElementById('app')

);

Which	Syntax	to	Use?
You	may	be	wondering:	with	all	these	options	(JSX	vs.	pure	JavaScript,	a	class
component	vs.	a	functional	one),	which	one	to	use?	JSX	is	the	most	common.
And,	unless	you	dislike	the	XML	syntax	in	your	JavaScript,	the	path	of	least
resistance	and	of	less	typing	is	to	go	with	JSX.	This	book	uses	JSX	from	now	on,
unless	to	illustrate	a	concept.	Why	then	even	talk	about	a	no-JSX	way?	Well,
you	should	know	that	there	is	another	way	and	also	that	JSX	is	not	some	special
voodoo	but	rather	a	thin	syntax	layer	that	transforms	XML	into	plain	JavaScript
function	calls	such	as	React.createElement()	before	sending	the	code	to
the	browser.

What	about	class	vs	functional	components?	This	is	a	question	of	preference.	If
you’re	comfortable	with	object-oriented	programming	(OOP)	and	you	like	how
classes	are	laid	out,	then	by	all	means,	go	for	it.	Functional	components	are	a
little	lighter	on	the	computer’s	CPU	and	a	little	less	typing	usually.	They	also
feel	more	native	to	JavaScript.	Actually	classes	in	JavaScript	were	an
afterthought	and	merely	syntax	sugar,	classes	didn’t	exist	in	early	versions	of	the
language.	Historically,	functional	components	were	not	able	to	accomplish
everything	that	classes	could.	Until	the	invention	of	hooks,	which	we’ll	get	to	in
due	time.	This	book	teaches	you	both	ways	and	doesn’t	decide	for	you.	OK,
maybe	there’s	a	slight	preference	towards	functional	components.

Properties

Rendering	hard-coded	UI	in	your	custom	components	is	perfectly	fine	and	has
its	uses.	But	the	components	can	also	take	properties	and	render	or	behave
differently,	depending	on	the	values	of	the	properties.	Think	about	the	<a>
element	in	HTML	and	how	it	acts	differently	based	on	the	value	of	the	href
attribute.	The	idea	of	properties	in	React	is	similar	(and	so	is	the	JSX	syntax).

In	class	components	all	properties	are	available	via	the	this.props	object.
Let’s	see	an	example:

class	MyComponent	extends	React.Component	{

		render()	{

				return	My	name	is	{this.props.name};

		}

}

NOTE
As	demonstrated	in	this	example,	you	can	open	curly	braces	and	sprinkle	JavaScript	values
(and	expressions	too)	within	your	JSX.	You’ll	learn	more	about	this	behavior	as	you	progress
with	the	book.

Passing	a	value	for	the	name	property	when	rendering	the	component	looks	like
this:

ReactDOM.render(

		<MyComponent	name="Bob"	/>,

		document.getElementById('app')

);

The	result	is	shown	in	Figure	2-2.

Figure	2-2.	Using	component	properties	(02.05.this.props.html)

It’s	important	to	remember	that	this.props	is	read-only.	It’s	meant	to	carry
on	configuration	from	parent	components	to	children,	it’s	not	a	general-purpose
storage	of	values.	If	you	feel	tempted	to	set	a	property	of	this.props,	just	use
additional	local	variables	or	properties	of	your	component’s	class	instead
(meaning	use	this.thing	as	opposed	to	this.props.thing).

Properties	in	Functional	Components
In	functional	components,	there’s	no	this	(in	JavaScript’s	strict	mode)	or	it
refers	to	the	global	object	(in	non-strict,	dare	we	say	sloppy,	mode).	So	instead
of	this.props,	you	get	a	props	object	passed	to	your	function	as	the	first
argument.

const	MyComponent	=	function(props)	{

		return	My	name	is	{props.name};

};

A	common	pattern	is	to	use	JavaScript’s	destructuring	assignment	and	assign	the
property	values	to	local	variables.	In	other	words	the	example	above	becomes:

//	02.07.props.destructuring.html

const	MyComponent	=	function({name})	{

		return	My	name	is	{name};

};

You	can	have	as	many	properties	as	you	want.	If,	for	example,	you	need	two
properties	name	and	job	you	can	use	them	like:

//	02.08.props.destruct.multi.html

const	MyComponent	=	function({name,	job})	{

		return	My	name	is	{name},	the	{job};

};

ReactDOM.render(

		<MyComponent	name="Bob"	job="engineer"/>,

		document.getElementById('app')

);

Default	Properties

Your	component	may	offer	a	number	of	properties,	but	sometimes	a	few	of	the
properties	may	have	default	values	that	work	well	for	the	most	common	cases.
You	can	specify	default	property	values	using	defaultProps	property	for
both	functional	and	class	components.

Functional:

const	MyComponent	=	function({name,	job})	{

		return	My	name	is	{name},	the	{job};

};

MyComponent.defaultProps	=	{

		job:	'engineer',

};

ReactDOM.render(

		<MyComponent	name="Bob"	/>,

		document.getElementById('app')

);

Class	components:

class	MyComponent	extends	React.Component	{

		render()	{

				return	(

						My	name	is	{this.props.name},

						the	{this.props.job}

);

		}

}

MyComponent.defaultProps	=	{

		job:	'engineer',

};

ReactDOM.render(

		<MyComponent	name="Bob"	/>,

		document.getElementById('app')

);

In	both	cases,	the	result	is	the	output:	“My	name	is	Bob,	the	engineer”

TIP
Notice	how	the	render()	method’s	return	statement	wraps	the	returned	value	in
parentheses.	This	is	just	because	of	JavaScript’s	automatic	semi-colon	insertion	(ASI)
mechanism.	A	return	statement	followed	by	a	new	line	is	the	same	as	return;	which	is
the	same	as	return	undefined;	which	is	the	definitely	not	what	you	want.	Wrapping	the

returned	expression	in	parentheses	allows	for	better	code	formatting	while	retaining	the
correctness.

State
The	examples	so	far	were	pretty	static	(or	“stateless”).	The	goal	was	just	to	give
you	an	idea	of	the	building	blocks	of	composing	your	UI.	But	where	React	really
shines	(and	where	old-school	browser	DOM	manipulation	and	maintenance	gets
complicated)	is	when	the	data	in	your	application	changes.	React	has	the	concept
of	state,	which	is	any	data	that	components	want	to	use	to	render	themselves.
When	state	changes,	React	rebuilds	the	UI	without	you	having	to	do	anything.
After	you	build	your	UI	initially	in	your	render()	method	(or	in	the	rendering
function	in	case	of	a	functional	component)	all	you	care	about	is	updating	the
data.	You	don’t	need	to	worry	about	UI	changes	at	all.	After	all,	your	render
method/function	has	already	provided	the	blueprint	of	what	the	component
should	look	like.

NOTE
“Stateless”	is	not	a	bad	word,	not	at	all.	Stateless	components	are	much	easier	to	manage	and
think	about.	In	fact,	whenever	you	can,	prefer	to	go	stateless.	But	applications	are	complicated
and	you	do	need	state.	So	let’s	proceed.

Similarly	to	how	you	access	properties	via	this.props,	you	read	the	state	via
the	object	this.state.	To	update	the	state,	you	use	this.setState().
When	this.setState()	is	called,	React	calls	the	render	method	of	your
component	(and	all	of	its	children)	and	updates	the	UI.

The	updates	to	the	UI	after	calling	this.setState()	are	done	using	a
queuing	mechanism	that	efficiently	batches	changes.	Updating	this.state
directly	can	have	unexpected	behavior	and	you	shouldn’t	do	it.	Just	like	with
this.props,	consider	the	this.state	object	read-only,	not	only	because
it’s	semantically	a	bad	idea,	but	because	it	can	act	in	ways	you	don’t	expect.
Similarly,	don’t	ever	call	this.render()	yourself—instead,	leave	it	to	React
to	batch	changes,	figure	out	the	least	amount	of	work,	and	call	render()	when

and	if	appropriate.

A	Textarea	Component
Let’s	build	a	new	component—a	textarea	that	keeps	count	of	the	number	of
characters	typed	in	(Figure	2-3).

Figure	2-3.	The	end	result	of	the	custom	textarea	component

You	(as	well	as	other	future	consumers	of	this	amazingly	reusable	component)
can	use	the	new	component	like	so:

ReactDOM.render(

		<TextAreaCounter	text="Bob"	/>,

		document.getElementById('app')

);

Now,	let’s	implement	the	component.	Start	first	by	creating	a	“stateless”	version
that	doesn’t	handle	updates;	this	is	not	too	different	from	all	the	previous
examples:

class	TextAreaCounter	extends	React.Component	{

		render()	{

				const	text	=	this.props.text;

				return	(

						<div>

								<textarea	defaultValue={text}/>

								<h3>{text.length}</h3>

						</div>

);

		}

}

TextAreaCounter.defaultProps	=	{

		text:	'Count	me	as	I	type',

};

NOTE
You	may	have	noticed	that	the	<textarea>	in	the	preceding	snippet	takes	a
defaultValue	property,	as	opposed	to	a	text	child	node,	as	you’re	accustomed	to	in	regular
HTML.	This	is	because	there	are	some	slight	differences	between	React	and	old-school	HTML
when	it	comes	to	form	elements.	These	are	discussed	further	in	the	book,	but	rest	assured,
there	are	not	too	many	of	them.	Additionally	,	you’ll	find	that	these	differences	make	sense	and
make	your	life	as	a	developer	easier.

As	you	can	see,	the	TextAreaCounter	component	takes	an	optional	text
string	property	and	renders	a	textarea	with	the	given	value,	as	well	as	an	<h3>
element	that	displays	the	string’s	length.	If	the	text	property	is	not	supplied,
the	default	“Count	me	as	I	type”	value	is	used.

Make	it	Stateful
The	next	step	is	to	turn	this	stateless	component	into	a	stateful	one.	In	other
words,	let’s	have	the	component	maintain	some	data	(state)	and	use	this	data	to
render	itself	initially	and	later	on	update	itself	(re-render)	when	data	changes.

First,	you	need	to	set	the	initial	state	in	the	class	constructor	using
this.state.	Bear	in	mind	that	the	constructor	is	the	only	place	where	it’s	ok
to	set	the	state	directly	without	calling	this.setState().

Initializing	this.state	is	required,	if	you	don’t	do	it,	consecutive	access	to
this.state	in	the	render()	method	will	fail.

In	this	case	it’s	not	necessary	to	initialize	this.state.text	with	a	value	as
you	can	fallback	to	the	property	this.prop.text	(try
02.12.this.state.html	in	the	book’s	repo):

class	TextAreaCounter	extends	React.Component	{

		constructor()	{

				super();

				this.state	=	{};

		}

		render()	{

				const	text	=	'text'	in	this.state	?	this.state.text	:	

this.props.text;

				return	(

						<div>

								<textarea	defaultValue={text}	/>

								<h3>{text.length}</h3>

						</div>

);

		}

}

NOTE
Calling	super()	in	the	constructor	is	required	before	you	can	use	this.

The	data	this	component	maintains	is	the	contents	of	the	textarea,	so	the	state	has
only	one	property	called	text,	which	is	accessible	via	this.state.text.
Next	you	need	a	way	to	update	the	state.	You	can	use	a	helper	method	for	this
purpose:

onTextChange(event)	{

		this.setState({

				text:	event.target.value,

		});

}

You	always	update	the	state	with	this.setState(),	which	takes	an	object
and	merges	it	with	the	already	existing	data	in	this.state.	As	you	might
guess,	onTextChange()	is	an	event	handler	that	takes	an	event	object	and
reaches	into	it	to	get	the	contents	of	the	textarea	input.

The	last	thing	left	to	do	is	update	the	render()	method	to	set	up	the	event
handler:

render()	{

		const	text	=	'text'	in	this.state	?	this.state.text	:	

this.props.text;

		return	(

				<div>

						<textarea

								value={text}

								onChange={event	=>	this.onTextChange(event)}

						/>

						<h3>{text.length}</h3>

				</div>

);

}

Now	whenever	the	user	types	into	the	textarea,	the	value	of	the	counter	updates
to	reflect	the	contents	(Figure	2-4).

Figure	2-4.	Typing	in	the	textarea	(02.12.this.state.html)

Note	that	<teaxarea	defaultValue...>	in	now	<textarea
value...>.	This	is	because	of	the	way	inputs	work	in	HTML	where	their	state
is	maintained	by	the	browser.	But	React	can	do	better.	In	this	example
implementing	onChange	means	that	the	textarea	is	now	controlled	by	React.
More	on	controlled	components	is	coming	further	in	the	book.

A	Note	on	DOM	Events
To	avoid	any	confusion,	a	few	clarifications	are	in	order	regarding	the	line:

onChange={event	=>	this.onTextChange(event)}

React	uses	its	own	synthetic	events	system	for	performance,	as	well	as
convenience	and	sanity	reasons.	To	help	understand	why,	you	need	to	consider
how	things	are	done	in	the	pure	DOM	world.

Event	Handling	in	the	Olden	Days
It’s	very	convenient	to	use	inline	event	handlers	to	do	things	like	this:

<button	onclick="doStuff">

While	convenient	and	easy	to	read	(the	event	listener	is	right	there	with	the	UI
code),	it’s	inefficient	to	have	too	many	event	listeners	scattered	like	this.	It’s	also
hard	to	have	more	than	one	listener	on	the	same	button,	especially	if	said	button
is	in	somebody	else’s	“component”	or	library	and	you	don’t	want	to	go	in	there
and	“fix”	or	fork	their	code.	That’s	why	in	the	DOM	world	it’s	common	to	use
element.addEventListener	to	set	up	listeners	(which	now	leads	to
having	code	in	two	places	or	more)	and	event	delegation	(to	address	the
performance	issues).	Event	delegation	means	you	listen	to	events	at	some	parent
node,	say	a	<div>	that	contains	many	buttons,	and	you	set	up	one	listener	for
all	the	buttons,	instead	of	one	listener	per	button.	Hence	you	delegate	the	event
handling	to	a	parent	authority.

With	event	delegation	you	do	something	like:

<div	id="parent">

		<button	id="ok">OK</button>

		<button	id="cancel">Cancel</button>

</div>

<script>

document.getElementById('parent').addEventListener('click',	

function(event)	{

		const	button	=	event.target;

		//	do	different	things	based	on	which	button	was	clicked

		switch	(button.id)	{

				case	'ok':

						console.log('OK!');

						break;

				case	'cancel':

						console.log('Cancel');

						break;

				default:

						new	Error('Unexpected	button	ID');

		};

});

</script>

This	works	and	performs	fine,	but	there	are	drawbacks:

Declaring	the	listener	is	further	away	from	the	UI	component,	which
makes	code	harder	to	find	and	debug

Using	delegation	and	always	switch-ing	creates	unnecessary
boilerplate	code	even	before	you	get	to	do	the	actual	work	(responding
to	a	button	click	in	this	case)

Browser	inconsistencies	(omitted	here)	actually	require	this	code	to	be
longer

Unfortunately,	when	it	comes	to	taking	this	code	live	in	front	of	real	users,	you
need	a	few	more	additions	if	you	want	to	support	old	browsers:

You	need	attachEvent	in	addition	to	addEventListener

You	need	const	event	=	event	||	window.event;	at	the
top	of	the	listener

You	need	const	button	=	event.target	||

event.srcElement;

All	of	these	are	necessary	and	annoying	enough	that	you	end	up	using	an	event
library	of	some	sort.	But	why	add	another	library	(and	study	more	APIs)	when
React	comes	bundled	with	a	solution	to	the	event	handling	nightmares?

Event	Handling	in	React
React	uses	synthetic	events	to	wrap	and	normalize	the	browser	events,	which
means	no	more	browser	inconsistencies.	You	can	always	rely	on	the	fact	that
event.target	is	available	to	you	in	all	browsers.	That’s	why	in	the
TextAreaCounter	snippet	you	only	need	event.target.value	and	it
just	works.	It	also	means	the	API	to	cancel	events	is	the	same	in	all	browsers;	in
other	words,	event.stopPropagation()	and
event.preventDefault()	work	even	in	old	versions	of	Internet	Explorer.

The	syntax	makes	it	easy	to	keep	the	UI	and	the	event	listeners	together.	It	looks
like	old-school	inline	event	handlers,	but	behind	the	scenes	it’s	not.	Actually,
React	uses	event	delegation	for	performance	reasons.

React	uses	camelCase	syntax	for	the	event	handlers,	so	you	use	onClick
instead	of	onclick.

If	you	need	the	original	browser	event	for	whatever	reason,	it’s	available	to	you
as	event.nativeEvent,	but	it’s	unlikely	that	you’ll	ever	need	to	go	there.

And	one	more	thing:	the	onChange	event	(as	used	in	the	textarea	example)
behaves	as	you’d	expect:	it	fires	when	the	user	types,	as	opposed	to	after	they’ve
finished	typing	and	have	navigated	away	from	the	field,	which	is	the	behavior	in
plain	DOM.

Event-Handling	Syntax
The	example	above	used	an	arrow	function	to	call	the	helper	onTextChange
event:

onChange={event	=>	this.onTextChange(event)}

This	is	because	the	shorter	onChange={this.onTextChange}	wouldn’t

have	worked.

Another	option	is	to	bind	the	method,	like	so:

onChange={this.onTextChange.bind(this)}

And	yet	another	option,	and	a	common	pattern,	is	to	bind	all	the	event	handling
methods	in	the	constructor:

constructor()	{

		super();

		this.state	=	{};

		this.onTextChange	=	this.onTextChange.bind(this);

}

//

<textarea

		value={text}

		onChange={this.onTextChange}

/>

It’s	a	bit	of	necessary	boilerplate,	but	this	way	the	event	handler	is	bound	only
once,	as	opposed	to	every	time	the	render()	method	is	called,	which	helps
reduce	the	memory	footprint	of	your	app.

Props	Versus	State
Now	you	know	that	you	have	access	to	this.props	and	this.state	when
it	comes	to	displaying	your	component	in	your	render()	method.	You	may	be
wondering	when	you	should	use	versus	the	other.

Properties	are	a	mechanism	for	the	outside	world	(users	of	the	component)	to
configure	your	component.	State	is	your	internal	data	maintenance.	So	if	you
consider	an	analogy	with	object-oriented	programming,	this.props	is	like	a
collection	of	all	the	arguments	passed	to	a	class	constructor,	while
this.state	is	a	bag	of	your	private	properties.

In	general,	prefer	to	split	your	application	in	a	way	that	you	have	fewer	stateful
components	and	more	stateless	ones.

Props	in	Initial	State:	An	Anti-Pattern

Props	in	Initial	State:	An	Anti-Pattern
In	the	textarea	example	above	it’s	tempting	to	use	this.props	to	set	the
initial	this.state:

//	Warning:	Anti-pattern

this.state	=	{

		text:	props.text,

};

This	is	considered	an	anti-pattern.	Ideally,	you	use	any	combination	of
this.state	and	this.props	as	you	see	fit	to	build	your	UI	in	your
render()	method.	But	sometimes	you	want	to	take	a	value	passed	to	your
component	and	use	it	to	construct	the	initial	state.	There’s	nothing	wrong	with
this,	except	that	the	callers	of	your	component	may	expect	the	property	(text	in
the	preceding	example)	to	always	have	the	latest	value	and	the	code	above
would	violate	this	expectation.	To	set	expectation	straight,	a	simple	naming
change	is	sufficient—for	example,	calling	the	property	something	like
defaultText	or	initialValue	instead	of	just	text:

NOTE
Chapter	4	illustrates	how	React	solves	this	for	its	implementation	of	inputs	and	textareas	where
people	may	have	expectations	coming	from	their	prior	HTML	knowledge.

Accessing	the	Component	from	the	Outside
You	don’t	always	have	the	luxury	of	starting	a	brand-new	React	app	from
scratch.	Sometimes	you	need	to	hook	into	an	existing	application	or	a	website
and	migrate	to	React	one	piece	at	a	time.	Luckily,	React	was	designed	to	work
with	any	pre-existing	codebase	you	might	have.	After	all,	the	original	creators	of
React	couldn’t	stop	the	world	and	rewrite	an	entire	huge	application
(Facebook.com)	completely	from	scratch,	especially	in	the	early	days	when
React	was	young.

One	way	to	have	your	React	app	communicate	with	the	outside	world	is	to	get	a
reference	to	a	component	you	render	with	ReactDOM.render()	and	use	it

from	outside	of	the	component:

const	myTextAreaCounter	=	ReactDOM.render(

		<TextAreaCounter	text="Bob"	/>,

		document.getElementById('app')

);

Now	you	can	use	myTextAreaCounter	to	access	the	same	methods	and
properties	you	normally	access	with	this	when	inside	the	component.	You	can
even	play	with	the	component	using	your	JavaScript	console	(Figure	2-5).

Figure	2-5.	Accessing	the	rendered	component	by	keeping	a	reference

In	this	example,	myTextAreaCounter.state	checks	the	current	state
(empty	initially),	myTextAreaCounter.props	checks	the	properties	and
this	line	sets	a	new	state:

myTextAreaCounter.setState({text:	"Hello	outside	world!"});

This	line	gets	a	reference	to	the	main	parent	DOM	node	that	React	created:

const	reactAppNode	=	ReactDOM.findDOMNode(myTextAreaCounter);

This	is	the	first	child	of	the	<div	id="app">,	which	is	where	you	told	React
to	do	its	magic.

NOTE
You	have	access	to	the	entire	component	API	from	outside	of	your	component.	But	you	should
use	your	new	superpowers	sparingly,	if	at	all.	It	may	be	tempting	to	fiddle	with	the	state	of
components	you	don’t	own	and	“fix”	them,	but	you’d	be	violating	expectations	and	cause	bugs
down	the	road	because	the	component	doesn’t	anticipate	such	intrusions.

Lifecycle	Methods
React	offers	several	so-called	lifecycle	methods.	You	can	use	the	lifecycle
methods	to	listen	to	changes	in	your	component	as	far	as	the	DOM	manipulation
is	concerned.	The	life	of	a	component	goes	through	three	steps:

Mounting	-	the	component	is	added	to	the	DOM	initially

Updating	-	the	component	is	updated	as	a	result	of	calling
setState()

Unmounting	-	the	component	is	removed	from	the	DOM

React	does	part	of	its	work	before	updating	the	DOM,	this	is	also	called
rendering	phase.	Then	it	updates	the	DOM	and	this	phase	is	called	a	commit
phase.	With	this	background	let’s	consider	some	lifecycle	methods:

After	the	initial	mounting	and	after	the	commit	to	the	DOM,	the	method
componentDidMount()	of	your	component	is	called,	if	it	exists.
This	is	the	place	to	do	any	initialization	work	that	requires	the	DOM.
Any	initialization	work	that	does	not	require	the	DOM	should	be	in	the
constructor.	And	most	of	your	initialization	shouldn’t	require	the	DOM.

But	in	this	method	you	can,	for	example,	measure	the	height	of	the
component	that	was	just	rendered,	add	any	event	listeners	(e.g.
addEventListener('resize')),	or	fetch	data	from	the	server.

Right	before	the	component	is	removed	from	the	DOM,	the	method
componentWillUnmount()	is	called.	This	is	the	place	to	do	any
cleanup	work	you	may	need.	Any	event	handlers,	or	anything	else	that
may	leak	memory,	should	be	cleaned	up	here.	After	this,	the	component
is	gone	forever.

Before	the	component	is	updated,	e.g.	as	a	result	of	setState(),	you
can	use	getSnapshotBeforeUpdate().	This	method	receives	the
previous	properties	and	state	as	arguments.	And	it	can	return	a
“snapshot”	value,	which	is	any	value	you	want	to	pass	over	to	the	next
lifecycle	method,	which	is…

componentDidUpdate(previousProps,	previousState,

snapshot).	This	is	called	whenever	the	component	was	updated.
Since	at	this	point	this.props	and	this.state	have	updated
values,	you	get	a	copy	of	the	previous	ones.	You	can	use	this
information	to	compare	the	old	and	the	new	state	and	potentially	make
more	network	requests	if	necessary.

And	then	there’s	shouldComponentUpdate(newProps,
newState)	which	is	an	opportunity	for	an	optimization.	You’re	given
the	state-to-be	which	you	can	compare	with	the	current	state	and	decide
not	to	update	the	component,	so	its	render()	method	is	not	called.

Of	these,	componentDidMount()	and	componentDidUpdate()	are	the
most	common	ones.

Lifecycle	Example:	Log	It	All
To	better	understand	the	life	of	a	component,	let’s	add	some	logging	in	the
TextAreaCounter	component.	Simply	implement	all	of	the	lifecycle
methods	to	log	to	the	console	when	they	are	invoked,	together	with	any
arguments:

componentDidMount()	{

		console.log('componentDidMount');

}

componentWillUnmount()	{

		console.log('componentWillUnmount');

}

componentDidUpdate(prevProps,	prevState,	snapshot)	{

		console.log('componentDidUpdate					',	prevProps,	prevState,	

snapshot);

}

getSnapshotBeforeUpdate(prevProps,	prevState)	{

		console.log('getSnapshotBeforeUpdate',	prevProps,	prevState);

		return	'hello';

}

shouldComponentUpdate(newProps,	newState)	{

		console.log('shouldComponentUpdate		',	newProps,	newState);

		return	true;

}

After	loading	the	page,	the	only	message	in	the	console	is
“componentDidMount”.

Next,	what	happens	when	you	type	“b”	to	make	the	text	“Bobb”?	(See	Figure	2-
6.)	shouldComponentUpdate()	is	called	with	the	new	props	(same	as	the
old)	and	the	new	state.	Since	this	method	returns	true,	React	proceeds	with
calling	getSnapshotBeforeUpdate()	passing	the	old	props	and	state.
This	is	your	chance	to	do	something	with	them	and	with	the	old	DOM	and	pass
any	resulting	information	as	a	snapshot	to	the	next	method.	For	example	this	is
an	opportunity	to	do	some	element	measurements	or	a	scroll	position	and
snapshot	them	to	see	if	they	change	after	the	update.	Finally,
componentDidUpdate()	is	called	with	the	old	info	(you	have	the	new	one
in	this.state	and	this.props)	and	any	snapshot	defined	by	the	previous
method.

Figure	2-6.	Updating	the	component

Let’s	update	the	textarea	one	more	time,	this	time	typing	“y”.	The	result	is
shown	on	Figure	2-7.

Figure	2-7.	One	more	update	to	the	component

Finally,	to	demonstrate	componentWillUnmount()	in	action	(using	the
example	02.14.lifecycle.html	from	this	book’s	GitHub	repo)	you	can
type	in	the	console:

ReactDOM.render(React.createElement('p',	null,	'Enough	counting!'),

app);

This	replaces	the	whole	textarea	component	with	a	new	<p>	component.	Then
you	can	see	the	log	message	“componentWillUnmount”	in	the	console
(Figure	2-8).

Figure	2-8.	Removing	the	component	from	the	DOM

Paranoid	State	Protection
Say	you	want	to	restrict	the	number	of	characters	to	be	typed	in	the	textarea.	You
should	do	this	in	the	event	handler	onTextChange(),	which	is	called	as	the
user	types.	But	what	if	someone	(a	younger,	more	naive	you?)	calls
setState()	from	the	outside	of	the	component?	(Which,	as	mentioned
earlier,	is	a	bad	idea.)	Can	you	still	protect	the	consistency	and	well-being	of

your	component?	Sure.	You	can	do	the	validation	in
componentDidUpdate()	and	if	the	number	of	characters	is	greater	than
allowed,	revert	the	state	back	to	what	it	was.	Something	like:

componentDidUpdate(prevProps,	prevState)	{

		if	(this.state.text.length	>	3)	{

				this.setState({

						text:	prevState.text	||	this.props.text,

				});

		}

}

The	condition	prevState.text	||	this.props.text	is	in	place	for
the	very	first	update	when	there’s	no	previous	state.

This	may	seem	overly	paranoid,	but	it’s	still	possible	to	do.	Another	way	to
accomplish	the	same	protection	is	by	leveraging
shouldComponentUpdate():

shouldComponentUpdate(_,	newState)	{

		return	newState.text.length	>	3	?	false	:	true;

}

See	02.15.paranoid.html	in	the	book’s	repo	to	play	with	these	concepts.

Lifecycle	Example:	Using	a	Child	Component
You	know	you	can	mix	and	nest	React	components	as	you	see	fit.	So	far	you’ve
only	seen	ReactDOM	components	(as	opposed	to	custom	ones)	in	the
render()	methods.	Let’s	take	a	look	at	another	simple	custom	component	to
be	used	as	a	child.

Let’s	isolate	the	counter	part	into	its	own	component.	After	all,	divide	and
conquer	is	what	it’s	all	about!

First,	let’s	isolate	the	lifestyle	logging	into	a	separate	class	and	have	the	two
components	inherit	it.	Inheritance	is	almost	never	warranted	when	it	comes	to
React	because	for	UI	work	composition	is	preferable	and	for	non-UI	work	a
regular	JavaScript	module	would	do.	But	this	is	just	for	education	and	for
demonstration	that	it	is	possible.	And	also	to	avoid	copy-pasting	the	logging
methods.

methods.

This	is	the	parent:

class	LifecycleLoggerComponent	extends	React.Component	{

		static	getName()	{}

		componentDidMount()	{

				console.log(this.constructor.getName()	+	'::componentDidMount');

		}

		componentWillUnmount()	{

				console.log(this.constructor.getName()	+	

'::componentWillUnmount');

		}

		componentDidUpdate(prevProps,	prevState,	snapshot)	{

				console.log(this.constructor.getName()	+	'::componentDidUpdate');

		}

}

The	new	Counter	component	simply	shows	the	count.	It	doesn’t	maintain
state,	but	displays	the	count	property	given	by	the	parent.

class	Counter	extends	LifecycleLoggerComponent	{

		static	getName()	{

				return	'Counter';

		}

		render()	{

				return	<h3>{this.props.count}</h3>;

		}

}

Counter.defaultProps	=	{

		count:	0,

};

The	textarea	component	sets	up	a	static	getName()	method:

class	TextAreaCounter	extends	LifecycleLoggerComponent	{

		static	getName()	{

				return	'TextAreaCounter';

		}

		//

}

And	finally,	the	textarea’s	render()	gets	to	use	<Counter/>	and	use	it
conditionally;	if	the	count	is	0,	nothing	is	displayed.

render()	{

		const	text	=	'text'	in	this.state	?	this.state.text	:	

this.props.text;

		return	(

				<div>

						<textarea

								value={text}

								onChange={this.onTextChange}

						/>

						{text.length	>	0

								?	<Counter	count={text.length}	/>

								:	null

						}

				</div>

);

}

NOTE
Notice	the	conditional	statement	in	JSX.	You	wrap	the	expression	in	{}	and	conditionally
render	either	<Counter/>	or	nothing	(null).	And	just	for	demonstration:	another	option	is
to	move	the	condition	outside	the	return.	Assigning	the	result	of	a	JSX	expression	to	a
variable	is	perfectly	fine.

render()	{
		const	text	=	'text'	in	this.state
				?	this.state.text
				:	this.props.text;
		let	counter	=	null;
		if	(text.length	>	0)	{
				counter	=	<Counter	count={text.length}	/>;
		}
		return	(
				<div>
						<textarea
								value={text}
								onChange={this.onTextChange}
						/>
						{counter}
				</div>
);
}

Now	you	can	observe	the	lifecycle	methods	being	logged	for	both	components.
Open	02.16.child.html	from	the	book’s	repo	in	your	browser	to	see	what
happens	when	you	load	the	page	and	then	change	the	contents	of	the	textarea.

During	initial	load,	the	child	component	is	mounted	and	updated	before	the

During	initial	load,	the	child	component	is	mounted	and	updated	before	the
parent.	You	see	in	the	console	log:

Counter::componentDidMount

TextAreaCounter::componentDidMount

After	deleting	two	characters	you	see	how	the	child	is	updated,	then	the	parent:

Counter::componentDidUpdate

TextAreaCounter::componentDidUpdate

Counter::componentDidUpdate

TextAreaCounter::componentDidUpdate

After	deleting	the	last	character,	the	child	component	is	completely	removed
from	the	DOM:

Counter::componentWillUnmount

TextAreaCounter::componentDidUpdate

Finally,	typing	a	character	brings	back	the	counter	component	to	the	DOM:

Counter::componentDidMount

TextAreaCounter::componentDidUpdate

Performance	Win:	Prevent	Component	Updates
You	already	know	about	shouldComponentUpdate()	and	saw	it	in	action.
It’s	especially	important	when	building	performance-critical	parts	of	your	app.
It’s	invoked	before	componentWillUpdate()	and	gives	you	a	chance	to
cancel	the	update	if	you	decide	it’s	not	necessary.

There	is	a	class	of	components	that	only	use	this.props	and	this.state
in	their	render()	methods	and	no	additional	function	calls.	These	components
are	called	“pure”	components.	They	can	implement
shouldComponentUpdate()	and	compare	the	state	and	the	properties
before	and	after	an	update	and	if	there	aren’t	any	changes,	return	false	and
save	some	processing	power.	Additionally,	there	can	be	pure	static	components
that	use	neither	props	nor	state.	These	can	straight	out	return	false.

React	offers	a	way	to	make	it	easier	to	use	the	common	(and	generic)	case	of
checking	all	props	and	state	in	shouldComponentUpdate().	Instead	of
repeating	this	work	you	can	have	your	components	inherit
React.PureComponent	instead	of	React.Component.	This	way	you
don’t	need	to	implement	shouldComponentUpdate(),	it’s	done	for	you.
Let’s	take	advantage	and	tweak	the	previous	example.

Since	both	components	inherit	the	logger,	all	you	need	is:

class	LifecycleLoggerComponent	extends	React.PureComponent	{

		//	...	no	other	changes

}

Now	both	components	are	pure.	Let’s	also	add	a	log	message	in	the	render()
methods:

render()	{

		console.log(this.constructor.getName()	+	'::render');

		//	...	no	other	changes

}

Now	loading	the	page	(02.17.pure.html	from	the	repo)	prints	out:

TextAreaCounter::render

Counter::render

Counter::componentDidMount

TextAreaCounter::componentDidMount

Changing	“Bob”	to	“Bobb”	gives	us	the	expected	result	of	rendering	and
updating.

TextAreaCounter::render

Counter::render

Counter::componentDidUpdate

TextAreaCounter::componentDidUpdate

Now	if	you	paste	the	string	“LOLz”	replacing	“Bobb”	(or	any	string	with	4
characters),	you	see:

TextAreaCounter::render

TextAreaCounter::componentDidUpdate

As	you	see	there’s	no	reason	to	re-render	<Counter>,	because	its	props	have
not	changed.	The	new	string	has	the	same	number	of	characters.

Whatever	Happened	to	Functional	Components?
You	may	have	noticed	that	functional	components	dropped	out	of	this	chapter	by
the	time	this.state	got	involved.	They	come	back	later	in	the	book,	when
you’ll	also	learn	the	concept	of	hooks.	Since	there’s	no	this	in	functions,	there
needs	to	be	another	way	to	approach	the	management	of	state	in	a	component.
The	good	news	is	that	once	you	understand	the	concepts	of	state	and	props,	the
functional	component	differences	are	just	syntax.

As	much	“fun”	as	it	was	to	spend	all	this	time	on	a	textarea,	let’s	move	on	to
something	more	interesting,	before	introducing	any	new	concepts.	In	the	next
chapter,	you’ll	see	where	React’s	benefits	come	into	play	-	namely	focusing	on
your	data	and	have	the	UI	updates	take	care	of	themselves.

Chapter	3.	Excel:	A	Fancy	Table
Component

A	NOTE	FOR	EARLY	RELEASE	READERS

With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the
author’s	raw	and	unedited	content	as	they	write—so	you	can	take	advantage
of	these	technologies	long	before	the	official	release	of	these	titles.

This	will	be	the	3rd	chapter	of	the	final	book.	Please	note	that	the	GitHub
repo	will	be	made	active	later	on.

If	you	have	comments	about	how	we	might	improve	the	content	and/or
examples	in	this	book,	or	if	you	notice	missing	material	within	this	chapter,
please	reach	out	to	the	author	at	sstoo@ymail.com.

Now	you	know	how	to	create	custom	react	components,	compose	UI	using
generic	DOM	components	as	well	as	your	own	custom	ones,	set	properties,
maintain	state,	hook	into	the	lifecycle	of	a	component,	and	optimize
performance	by	not	rerendering	when	not	necessary.

Let’s	put	all	of	this	together	(and	learn	more	about	React	while	at	it)	by	creating
a	more	interesting	component—a	data	table.	Something	like	an	early	prototype
of	Microsoft	Excel	that	lets	you	edit	the	contents	of	a	data	table,	and	also	sort,
search,	and	export	the	data	as	downloadable	files.

Data	First
Tables	are	all	about	the	data,	so	the	fancy	table	component	(why	not	call	it
Excel?)	should	take	an	array	of	data	and	an	array	of	headers	that	describe	each
column	of	data.	For	testing,	let’s	grab	a	list	of	best-selling	books	from
Wikipedia:

const	headers	=	['Book',	'Author',	'Language',	'Published',	'Sales'];

mailto:sstoo@ymail.com
http://en.wikipedia.org/wiki/List_of_best-selling_books

const	data	=	[

		[

				'A	Tale	of	Two	Cities',	'Charles	Dickens',

						'English',	'1859',	'200	million',

],

		[

				'Le	Petit	Prince	(The	Little	Prince)',	'Antoine	de	Saint-Exupéry',

						'French',	'1943',	'150	million',

],

		[

				"Harry	Potter	and	the	Philosopher's	Stone",	'J.	K.	Rowling',

						'English',	'1997',	'120	million',

],

		[

				'And	Then	There	Were	None',	'Agatha	Christie',

						'English',	'1939',	'100	million',

],

		[

				'Dream	of	the	Red	Chamber',	'Cao	Xueqin',

						'Chinese',	'1791',	'100	million',

],

		[

				'The	Hobbit',	'J.	R.	R.	Tolkien',

						'English',	'1937',	'100	million',

],

];

Table	Headers	Loop
The	first	step,	just	to	get	the	new	component	off	the	ground,	is	to	display	only
the	headers	of	the	table.	Here’s	what	a	bare-bones,	yet	a	bit	verbose,
implementation	might	look	like	(03.01.table-th-loop.html	in	the
book’s	repository):

class	Excel	extends	React.Component	{

		render()	{

				const	headers	=	[];

				for	(const	idx	in	this.props.headers)	{

						const	title	=	this.props.headers[idx];

						headers.push(<th>{title}</th>);

				}

				return	(

						<table>

								<thead>

										<tr>{headers}</tr>

								</thead>

						</table>

);

		}

}

Now	that	you	have	a	working	component,	here’s	how	to	use	it:

ReactDOM.render(

		<Excel	headers={headers}	/>,

		document.getElementById('app'),

);

The	result	of	this	get-off-the-ground	example	is	shown	in	Figure	3-1.	There’s	a
little	bit	of	CSS	used,	which	is	of	no	concern	for	the	purposes	of	this	discussion
but	you	can	find	it	in	03.table.css	in	the	book’s	repo.

Figure	3-1.	Rendering	table	headers

The	return	part	of	the	component	is	fairly	simple.	It	looks	just	like	an	HTML
table	except	for	the	headers	array.

return	(

		<table>

				<thead>

						<tr>{headers}</tr>

				</thead>

		</table>

);

As	you’ve	seen	in	the	previous	chapter	you	can	open	curly	braces	in	your	JSX
and	put	any	JavaScript	value	or	expression	in	there.	If	this	value	happens	to	be
an	array	as	in	the	case	above,	the	JSX	parser	treats	it	as	if	you	passed	each
element	of	the	array	individually,	like	{headers[0]}{headers[1]}....

In	this	example	the	elements	of	the	headers	array	contain	more	JSX	content

and	this	is	perfectly	fine.	The	loop	before	the	return	populates	the	headers
array	with	JSX	values	which,	if	you	were	hardcoding	the	data,	would	look	like
so:

const	headers	=	[

		<th>Book</th>,

		<th>Author</th>,

		//	...

];

You	see	how	you	can	have	JavaScript	in	{}	within	JSX	and	you	can	nest	these
{}-s	as	deep	as	you	need.	This	is	part	of	the	beauty	of	React—you	use
JavaScript	to	create	your	UI	and	all	the	power	of	JavaScript	is	available	to	you.
Loops	and	conditions	all	work	as	usual	and	you	don’t	need	to	learn	another
“templating”	language	or	syntax	to	build	the	UI.

Table	Headers	Loop,	a	terse	version
The	example	above	worked	fine	(let’s	call	it	v1	for	Version	1)	but	let’s	see	how
you	can	accomplish	the	same	with	less	code.	Let’s	move	the	loop	inside	the	JSX
returned	at	the	end.	In	essence	the	whole	render()	method	becomes	a	single
return	(see	03.02.table-th-map.html).

class	Excel	extends	React.Component	{

		render()	{

				return	(

						<table>

								<thead>

										<tr>

												{this.props.headers.map(title	=>	<th>{title}</th>)}

										</tr>

								</thead>

						</table>

);

		}

}

Here	you	see	how	the	array	of	header	content	is	produced	by	calling	map()	on
the	data	passed	via	this.props.headers.	A	map()	call	takes	an	input
array,	executes	a	callback	function	on	each	element	and	creates	a	new	array.

In	the	example	above	the	callback	uses	the	tersest	arrow	functions	syntax.	If	this
is	a	little	too	cryptic	for	your	taste,	let’s	call	it	v2	explore	a	few	other	options.

Here’s	v3:	a	more	verbose	map()	loop	using	generous	indentation	and	a
function	expression	instead	of	an	arrow	function:

{

		this.props.headers.map(

				function(title)	{

						return	<th>{title}</th>;

				}

)

}

Next,	a	version	(v4)	which	is	a	little	less	verbose	version	going	back	to	using	an
arrow	functions:

{

		this.props.headers.map(

				(title)	=>	{

						return	<th>{title}</th>;

				}

)

}

…which	can	be	formatted	with	less	indentation	to	v5:

{this.props.headers.map((title)	=>	{

		return	<th>{title}</th>;

})}

You	can	choose	your	preferred	way	of	iterating	over	arrays	to	produce	JSX
context	based	on	personal	preference	and	complexity	of	the	content	to	be
rendered.	Simple	data	is	conveniently	looped	over	inline	in	the	JSX	(v2	through
v5).	If	the	type	of	data	is	a	little	too	much	for	an	inline	map()	you	may	find	it
more	readable	to	have	the	content	generated	at	the	top	of	the	render	function	and
keep	the	JSX	simple,	in	a	way	separating	data	from	presentation	(v1	is	an
example).	Sometimes	too	many	inline	expressions	can	be	confusing	when
keeping	track	of	all	closing)	and	`}`s.

As	to	v2	vs.	v5,	they	are	the	same	except	v5	has	extra	()	around	the	callback

arguments	and	{}	wrapping	the	callback	function	body.	While	both	of	these	are
optional,	they	make	future	changes	a	little	easier	to	parse	in	a	diff/code	review
context	or	while	debugging.	For	example	adding	a	new	line	to	the	function	body
(maybe	a	temporary	console.log())	in	v5	is	just	that	-	adding	a	new	line.
While	in	v2	a	new	line	also	requires	adding	{}	and	reformatting	and	reindenting
the	code.

Debugging	the	Console	Warning
If	you	look	in	the	the	browser	console	when	loading	the	previous	two	examples
(03.01.table-th-loop.html	and	03.01.table-th-map.html)
you	can	see	a	warning.	The	warning	says:

Warning:	Each	child	in	a	list	should	have	a	unique	"key"	prop.

Check	the	render	method	of	`Excel`.

What	is	it	about	and	how	do	you	fix	it?	As	the	warning	message	says,	React
wants	you	to	provide	a	unique	ID	for	the	array	elements	so	it	can	update	them
more	efficiently	later	on.	To	fix	the	warning,	you	add	a	key	property	to	each
header.	The	values	of	this	new	property	can	be	anything	as	long	they	are	unique
for	each	element.	Here	you	can	use	the	index	of	the	array	element	(0,	1,	2…):

//	before

for	(const	idx	in	this.props.headers)	{

		const	title	=	this.props.headers[idx];

		headers.push(<th>{title}</th>);

}

//	after	-	03.03.table-th-loop-key.html

for	(const	idx	in	this.props.headers)	{

		const	title	=	this.props.headers[idx];

		headers.push(<th	key={idx}>{title}</th>);

}

The	keys	only	need	to	be	unique	inside	each	array	loop,	not	unique	in	the	whole
React	application,	so	values	of	0,	1	and	so	on	are	perfectly	acceptable.

The	same	fix	for	the	inline	version	(v5)	takes	the	element	index	from	the	second
argument	passed	to	the	callback	function:

//	before

<tr>

		{this.props.headers.map((title)	=>	{

				return	<th>{title}</th>;

		})}

</tr>

//	after	-	03.04.table-th-map-key.html

<tr>

		{this.props.headers.map((title,	idx)	=>	{

				return	<th	key={idx}>{title}</th>;

		})}

</tr>

Adding	<td>	Content
Now	that	you	have	a	pretty	table	head,	it’s	time	to	add	the	body.	The	data	to	be
rendered	is	a	two-dimentional	array	(rows	and	columns)	that	looks	like:

const	data	=	[

		[

				'A	Tale	of	Two	Cities',	'Charles	Dickens',

						'English',	'1859',	'200	million',

],

	

];

To	pass	the	data	to	the	<Excel>,	let’s	use	a	new	prop	called	initialData.
Why	“initial”	and	not	just	“data”?	As	touched	briefly	in	the	previous	chapter,	it’s
about	managing	expectations.	The	caller	of	your	Excel	component	should	be
able	to	pass	data	to	initialize	the	table.	But	later,	as	the	table	lives	on,	the	data
will	change,	because	the	user	is	able	to	sort,	edit,	and	so	on.	In	other	words,	the
state	of	the	component	will	change.	So	let’s	use	this.state.data	to	keep
track	of	the	changes	and	use	this.props.initialData	to	let	the	caller
initialize	the	component.

Rendering	a	new	Excel	component	would	look	like	so:

ReactDOM.render(

		<Excel	headers={headers}	initialData={data}	/>,

		document.getElementById('app'),

);

Next	you	need	to	add	a	constructor	to	set	the	initial	state	from	the	given	data.
The	constructor	receives	props	as	an	argument	and	also	needs	to	call	its
parent’s	constructor	via	super():

constructor(props)	{

		super();

		this.state	=	{data:	props.initialData};

}

On	to	rendering	this.state.data.	The	data	is	two-dimensional,	so	you
need	two	loops:	one	that	goes	through	rows	and	one	that	goes	through	the	data
(cells)	for	each	row.	This	can	be	accomplished	using	two	of	the	same	.map()
loops	you	already	know	how	to	use:

{this.state.data.map((row,	idx)	=>	(

		<tr	key={idx}>

				{row.map((cell,	idx)	=>	(

						<td	key={idx}>{cell}</td>

))}

		</tr>

))}

As	you	can	see	both	loops	need	key={idx}	and	in	this	case	the	name	idx	was
recycled	for	use	as	local	variables	within	each	loop.

A	complete	implementation	could	look	like	this	(result	shown	in	Figure	3-2):

class	Excel	extends	React.Component	{

		constructor(props)	{

				super();

				this.state	=	{data:	props.initialData};

		}

		render()	{

				return	(

						<table>

								<thead>

										<tr>

												{this.props.headers.map((title,	idx)	=>	(

														<th	key={idx}>{title}</th>

))}

										</tr>

								</thead>

								<tbody>

										{this.state.data.map((row,	idx)	=>	(

												<tr	key={idx}>

														{row.map((cell,	idx)	=>	(

																<td	key={idx}>{cell}</td>

))}

												</tr>

))}

								</tbody>

						</table>

);

		}

}

Figure	3-2.	Rendering	the	whole	table	(03.05.table-th-td.html)

Prop	types
The	ability	to	specify	the	types	of	variables	you	work	with	-	string,	number,
boolean,	etc.	-	doesn’t	exist	in	the	JavaScript	language.	But	developers	coming
from	other	languages,	and	those	working	on	larger	projects	with	many	other
developers,	do	miss	it.	Two	popular	options	exist	that	offer	you	to	write

JavaScript	with	types	-	Flow	and	TypeScript.	You	can	certainly	use	these	to
write	React	applications.	But	another	option	exist,	which	is	limitted	to	only
specifying	the	types	of	props	your	component	expects:	prop	types.	They	were	a
part	of	React	itself	initially	but	at	a	point	have	been	moved	to	a	separate	library.

Prop	types	allow	you	to	be	more	specific	as	to	what	data	Excel	takes	and	as	a
result	surface	an	error	to	the	developer	early	on.	You	can	setup	the	prop	types
like	so	(03.06.table-th-td-prop-types.html):

Excel.propTypes	=	{

		headers:	PropTypes.arrayOf(PropTypes.string),

		initialData:	PropTypes.arrayOf(PropTypes.arrayOf(PropTypes.string)),

};

This	means	that	headers	prop	is	expected	to	be	an	array	of	strings	and
initialData	is	expected	to	be	an	array	where	each	element	is	another	array
of	string	elements.

To	make	this	code	work	you	need	to	grab	the	library	which	exposes	the
PropTypes	global	variable,	just	like	you	did	in	the	beginning	of	Chapter	1:

curl	-L	https://unpkg.com/browse/prop-types@15.7.2/prop-types.js	>

~/reactbook/react/prop-types.js

Then	in	the	HTML	you	include	the	new	library	together	with	the	other	ones:

<script	src="react/react.js"></script>

<script	src="react/react-dom.js"></script>

<script	src="react/babel.js"></script>

<script	src="react/prop-types.js"></script>

<script	type="text/babel">

		class	Excel	extends	React.Component	{

				/*	...	*/

		}

</script>

Now	you	can	test	how	it	all	works	by	changing	headers,	for	example:

//	before

const	headers	=	['Book',	'Author',	'Language',	'Published',	'Sales'];

//	after

const	headers	=	[0,	'Author',	'Language',	'Published',	'Sales'];

Now	when	you	load	the	page	(03.06.table-th-td-prop-types.html
in	the	repo)	you	can	see	in	the	console:

Warning:	Failed	prop	type:	Invalid	prop	`headers[0]`	of	type	`number`

supplied	to	`Excel`,	expected	`string`.

Now	that’s	strict!

To	explore	what	other	PropTypes	exist	just	type	PropTypes	in	the	console
(Figure	3-3).

Figure	3-3.	Exploring	PropTypes

Can	You	Improve	the	Component?
Allowing	only	string	data	is	a	bit	too	restrictive	for	a	generic	Excel	spreadsheet.
As	an	exercise	for	your	own	amusement,	you	can	change	this	example	to	allow
more	data	types	(PropTypes.any)	and	then	render	differently	depending	on
the	type	(e.g.,	align	numbers	to	the	right).

Sorting
How	many	times	have	you	seen	a	table	on	a	web	page	that	you	wished	was
sorted	differently?	Luckily,	it’s	trivial	to	do	this	with	React.	Actually,	this	is	an
example	where	React	shines,	because	all	you	need	to	do	is	sort	the	data	array
and	all	the	UI	updates	are	handled	for	you.

For	convenience	and	readability,	all	the	sorting	logic	is	in	a	sort()	method	in
the	Excel	class.	Once	you	create	it,	two	bits	of	plumbing	are	necessary.	First,
add	a	click	handler	to	the	header	row:

<thead	onClick={this.sort}>

And	then	bind	this.sort	in	the	constructor	as	you	did	in	Chapter	2:

class	Excel	extends	React.Component	{

		constructor(props)	{

				super();

				this.state	=	{data:	props.initialData};

				this.sort	=	this.sort.bind(this);

		}

		sort(e)	{

				//	TODO:	implement	me

		}

		render()	{	/*	...*/}

}

Now	let’s	implement	the	sort()	method.	You	need	to	know	which	column	to
sort	by,	which	can	conveniently	be	retrieved	by	using	the	cellIndex	DOM
property	of	the	event	target	(the	event	target	is	a	table	header	<th>):

const	column	=	e.target.cellIndex;

NOTE
You	may	have	rarely	seen	cellIndex	used	in	app	development.	It’s	a	property	defined	as
early	as	DOM	Level	1	(circa	1998)	as	“The	index	of	this	cell	in	the	row”	and	later	on	made
read-only	in	DOM	Level	2.

You	also	need	a	copy	of	the	data	to	be	sorted.	Otherwise,	if	you	use	the	array’s
sort()	method	directly,	it	modifies	the	array.	Meaning	that	calling
this.state.data.sort()	will	modify	this.state.	As	you	know
already,	this.state	should	not	be	modified	directly,	but	only	through
setState().

Various	ways	exist	in	JavaScript	to	make	a	shallow	copy	of	an	object	or	an	array
(arrays	are	obects	in	JavaScript),	e.g.	Object.assign()	or	using	the	spread
operator	{...state}.	However	there	in	no	built-in	way	to	do	a	deep	copy	of
an	object.	A	quick	way	to	implement	a	soution	is	to	encode	an	object	to	a	JSON
string	and	then	decode	is	back	to	an	object.	Let’s	use	this	approach	for	brevity,
though	be	aware	that	it	fails	if	your	object/array	contains	Date	objects.

function	clone(o)	{

		return	JSON.parse(JSON.stringify(o));

}

With	the	handy	clone()	utility	function	you	make	a	copy	of	the	array	before
you	start	manipulating	it:

//	copy	the	data

const	data	=	clone(this.state.data);

The	actual	sorting	is	done	via	a	callback	to	the	sort()	method:

data.sort((a,	b)	=>	{

		return	a[column]	>	b[column]	?	1	:	-1;

});

Finally,	this	line	sets	the	state	with	the	new,	sorted	data:

this.setState({

		data,

});

Now,	when	you	click	a	header,	the	contents	get	sorted	alphabetically	(Figure	3-
4).

Figure	3-4.	Sorting	by	book	title	(03.07.table-sort.html)

And	this	is	it—you	don’t	have	to	touch	the	UI	rendering	at	all.	In	the
render()	method,	you’ve	already	defined	once	and	for	all	how	the	component
should	look	given	some	data.	When	the	data	changes,	so	does	the	UI;	however,
this	is	no	longer	your	concern.

NOTE
The	example	used	the	ECMAScript	property	value	shorthands	feature	where
this.setState({data})	is	a	shorter	way	of	expressing	this.setState({data:
data})	by	skipping	the	key	when	it	has	the	same	name	as	a	variable.

Can	You	Improve	the	Component?
The	example	above	uses	pretty	simple	sorting,	just	enough	to	be	relevant	to	the
React	discussion.	You	can	go	as	fancy	as	you	need,	parsing	the	content	to	see	if
the	values	are	numeric,	with	or	without	a	unit	of	measure	and	so	on.

Sorting	UI	Cues
The	table	is	nicely	sorted,	but	it’s	not	clear	which	column	it’s	sorted	by.	Let’s
update	the	UI	to	show	arrows	based	on	the	column	being	sorted.	And	while	at	it,
let’s	implement	descending	sorting	too.

To	keep	track	of	the	new	state,	you	need	two	new	properties	added	to
this.state:

this.state.sortby

The	index	of	the	column	currently	being	sorted

this.state.descending

A	boolean	to	determine	ascending	versus	descending	sorting

The	constructor	can	now	look	like:

constructor(props)	{

		super();

		this.state	=	{

				data:	props.initialData,

				sortby:	null,

				descending:	false,

		};

		this.sort	=	this.sort.bind(this);

}

In	the	sort()	function,	you	have	to	figure	out	which	way	to	sort.	Default	is
ascending	(A	to	Z),	unless	the	index	of	the	new	column	is	the	same	as	the
current	sort-by	column	and	the	sorting	is	not	already	descending	from	a	previous
click	on	the	header:

const	column	=	e.target.cellIndex;

const	data	=	clone(this.state.data);

const	descending	=	this.state.sortby	===	column	&&	

!this.state.descending;

You	also	need	a	small	tweak	to	the	sorting	callback:

data.sort((a,	b)	=>	{

		return	descending

				?	(a[column]	<	b[column]	?	1	:	-1)

				:	(a[column]	>	b[column]	?	1	:	-1);

});

And	finally,	you	need	to	set	the	new	state:

this.setState({

		data,

		sortby:	column,

		descending,

});

At	this	point	the	descending	ordering	works.	Clicking	on	the	table	headers	sorts
ascending	first,	then	descending	and	then	keeps	on	toggling	the	two.

The	only	thing	left	is	to	update	the	render()	function	to	indicate	sorting
direction.	For	the	currently	sorted	column,	let’s	just	add	an	arrow	symbol	to	the
title.	Now	the	headers	loop	looks	like:

{this.props.headers.map((title,	idx)	=>	{

		if	(this.state.sortby	===	idx)	{

				title	+=	this.state.descending	?	'	\u2191'	:	'	\u2193'

		}

		return	<th	key={idx}>{title}</th>

})}

Now	the	sorting	is	feature-complete—people	can	sort	by	any	column,	they	can
click	once	for	ascending	and	once	more	for	descending	ordering,	and	the	UI
updates	with	the	visual	cue	(Figure	3-5).

Figure	3-5.	Ascending/descending	sorting

Editing	Data
The	next	step	for	the	Excel	component	is	to	give	people	the	option	to	edit	the
data	in	the	table.	One	solution	could	work	like	so:

1.	 You	double-click	a	cell.	Excel	figures	out	which	cell	was	clicked	and
turns	its	content	from	simple	text	into	an	input	field	pre-filled	with	the
content	(Figure	3-6).

2.	 You	edit	the	content	(Figure	3-7).

3.	 You	hit	Enter.	The	input	field	is	gone,	and	the	table	is	updated	with	the
new	text	(Figure	3-8).

Figure	3-6.	Table	cell	turns	into	an	input	field	on	double-click

Figure	3-7.	Edit	the	content

Figure	3-8.	Content	updated	on	pressing	Enter

Editable	Cell
The	first	thing	to	do	is	set	up	a	simple	event	handler.	On	double-click,	the
component	“remembers”	the	selected	cell:

<tbody	onDoubleClick={this.showEditor}>

NOTE
Note	the	friendlier,	easier-to-read	onDoubleClick,	as	opposed	to	W3C’s	ondblclick.

Let’s	see	what	showEditor	looks	like:

showEditor(e)	{

		this.setState({

				edit:	{

						row:	parseInt(e.target.parentNode.dataset.row,	10),

						column:	e.target.cellIndex,

				},

		});

}

What’s	happening	here?

The	function	sets	the	edit	property	of	this.state.	This	property	is
null	when	there’s	no	editing	going	on	and	then	turns	into	an	object
with	properties	row	and	column,	which	contain	the	row	index	and	the

column	index	of	the	cell	being	edited.	So	if	you	double-click	the	very
first	cell,	this.state.edit	gets	the	value	{row:	0,	column:
0}.

To	figure	out	the	column	index,	you	use	the	same
e.target.cellIndex	as	before,	where	e.target	is	the	<td>
that	was	double-clicked.

There’s	no	rowIndex	coming	for	free	in	the	DOM,	so	you	need	to	do
it	yourself	via	a	data-	attribute.	Each	row	should	have	a	data-row
attribute	with	the	row	index,	which	you	can	parseInt()	to	get	the
index	back.

Let’s	take	care	of	a	few	prerequisites.	First,	the	edit	property	didn’t	exist
before	and	should	also	be	initialized	in	the	constructor.	While	dealing	with	the
constructor,	let’s	bind	the	showEditor()	and	save()	methods.	The
save()	is	the	one	to	do	the	data	update	once	the	user	is	done	editing.	The
updated	constructor	looks	like	this:

constructor(props)	{

		super();

		this.state	=	{

				data:	props.initialData,

				sortby:	null,

				descending:	false,

				edit:	null,	//	{row:	index,	column:	index}

		};

		this.sort	=	this.sort.bind(this);

		this.showEditor	=	this.showEditor.bind(this);

		this.save	=	this.save.bind(this);

}

The	property	data-row	is	something	you	need	so	you	can	keep	track	of	row
indexes.	You	can	get	the	index	from	the	array	index	while	looping.	Previously
you	saw	how	idx	was	reused	as	a	local	variable	by	both	row	and	column	loops.
Let’s	rename	it	and	use	rowidx	and	columnidx	for	clarity.

The	whole	<tbody>	construction	could	look	like:

<tbody	onDoubleClick={this.showEditor}>

		{this.state.data.map((row,	rowidx)	=>	(

				<tr	key={rowidx}	data-row={rowidx}>

						{row.map((cell,	columnidx)	=>	{

								//	TODO	-	turn	`content`	into	an	input	if	the	`columnidx`

								//	and	the	`rowidx`	match	the	one	being	edited;

								//	otherwise,	just	show	the	text	content

								return	<td	key={columnidx}>{cell}</td>;

						})}

				</tr>

))}

</tbody>

Finally,	let’s	do	what	the	TODO	says — make	an	input	field	when	required.	The
whole	render()	function	is	called	again	just	because	of	the	setState()
call	that	sets	the	edit	property.	React	rerenders	the	table,	which	gives	you	the
chance	to	update	the	table	cell	that	was	double-clicked.

Input	Field	Cell
Let’s	look	at	the	code	to	replace	the	TODO	comment.	First,	remember	the	edit
state	for	brevity:

const	edit	=	this.state.edit;

Check	if	the	edit	is	set	and	if	so,	whether	this	is	the	exact	cell	being	edited:

if	(edit	&&	edit.row	===	rowidx	&&	edit.column	===	columnidx)	{

		//	...

}

If	this	is	the	target	cell,	let’s	make	a	form	and	an	input	field	with	the	content	of
the	cell:

cell	=	(

		<form	onSubmit={this.save}>

				<input	type="text"	defaultValue={cell}	/>

		</form>

);

As	you	see,	it’s	a	form	with	a	single	input	and	the	input	is	pre-filled	with	the	text
content.	When	the	form	is	submitted,	the	submission	event	is	trapped	in	the

save()	method.

Saving
The	last	piece	of	the	editing	puzzle	is	saving	the	content	changes	after	the	user	is
done	typing	and	has	submitted	the	form	(via	the	Enter	key):

save(e)	{

		e.preventDefault();

		//	...	do	the	save

}

After	preventing	the	default	behavior	(so	the	page	doesn’t	reload),	you	need	to
get	a	reference	to	the	input	field.	The	event	target	e.target	is	the	form	and	its
first	and	only	child	is	the	input:

const	input	=	e.target.firstChild;

Clone	the	data,	so	you	don’t	manipulate	this.state	directly:

const	data	=	clone(this.state.data);

Update	the	piece	of	data	given	the	new	value	and	the	column	and	row	indices
stored	in	the	edit	property	of	the	state:

data[this.state.edit.row][this.state.edit.column]	=	input.value;

Finally,	set	the	state,	which	causes	rerendering	of	the	UI:

this.setState({

		edit:	null,

		data,

});

And	with	this,	the	table	is	now	editable.	For	a	complete	listing	see
03.09.table-editable.html

Conclusion	and	Virtual	DOM	Diffs
At	this	point,	the	editing	feature	is	complete.	It	didn’t	take	too	much	code.	All

At	this	point,	the	editing	feature	is	complete.	It	didn’t	take	too	much	code.	All
you	needed	was	to:

Keep	track	of	which	cell	to	edit	via	this.state.edit

Render	an	input	field	when	displaying	the	table	if	the	row	and	column
indices	match	the	cell	the	user	double-clicked

Update	the	data	array	with	the	new	value	from	the	input	field

As	soon	as	you	setState()	with	the	new	data,	React	calls	the	component’s
render()	method	and	the	UI	magically	updates.	It	may	look	like	it	won’t	be
particularly	efficient	to	render	the	whole	table	for	just	one	cell’s	content	change.
And	in	fact,	React	only	updates	a	single	cell.

If	you	open	your	browser’s	dev	tools,	you	can	see	which	parts	of	the	DOM	tree
are	updated	as	you	interact	with	your	application.	In	Figure	3-9,	you	can	see	the
dev	tools	highlighting	the	DOM	change	after	changing	The	Hobbit’s	language
from	English	to	Elvish.

Behind	the	scenes,	React	calls	your	render()	method	and	creates	a
lightweight	tree	representation	of	the	desired	DOM	result.	This	is	known	as	a
virtual	DOM	tree.	When	the	render()	method	is	called	again	(after	a	call	to
setState(),	for	example),	React	takes	the	virtual	tree	before	and	after	and
computes	a	diff.	Based	on	this	diff,	React	figures	out	the	minimum	required
DOM	operations	(e.g.,	appendChild(),	textContent,	etc.)	to	carry	on
that	change	into	the	browser’s	DOM.

Figure	3-9.	Highlighting	DOM	changes

In	Figure	3-9,	there	is	only	one	change	required	to	the	cell	and	it’s	not	necessary
to	rerender	the	whole	table.	By	computing	the	minimum	set	of	changes	and
batching	DOM	operations,	React	“touches”	the	DOM	lightly,	as	it’s	a	known
problem	that	DOM	operations	are	slow	(compared	to	pure	JavaScript	operations,
function	calls,	etc.)	and	are	often	the	bottleneck	in	rich	web	applications’
rendering	performance.

React	has	your	back	when	it	comes	to	performance	and	updating	the	UI	by:

Touching	the	DOM	lightly

Using	event	delegation	for	user	interactions

Search
Next,	let’s	add	a	search	feature	to	the	Excel	component	that	allows	users	to
filter	the	contents	of	the	table.	Here’s	the	plan:

Add	a	button	to	toggle	the	new	feature	on	and	off	(Figure	3-10)

If	the	search	is	on,	add	a	row	of	inputs	where	each	one	searches	in	the
corresponding	column	(Figure	3-11)

As	a	user	types	in	an	input	box,	filter	the	array	of	state.data	to	only
show	the	matching	content	(Figure	3-12)

Figure	3-10.	Search	button

Figure	3-11.	Row	of	search/filter	inputs

Figure	3-12.	Search	results

State	and	UI
The	first	thing	to	do	is	update	the	constructor	by:

Adding	a	search	property	to	the	this.state	object	to	keep	track
of	whether	the	search	feature	is	on

Binding	two	new	methods:	this.toggleSearch()	to	turn	search
boxes	on	and	off	and	this.search()	to	do	the	actual	searching

Setting	up	a	new	class	property	this.preSearchData,	more	about
it	in	just	a	second

Update	the	incoming	initial	data	with	a	consecutive	ID,	this	will	help
identify	the	rows	when	editing	contents	of	filtered	data

constructor(props)	{

		super();

		const	data	=	clone(props.initialData).map((row,	idx)	=>	{

				row.push(idx);

				return	row;

		});

		this.state	=	{

				data,

				sortby:	null,

				descending:	false,

				edit:	null,	//	{row:	index,	column:	index}

				search:	false,

		};

		this.preSearchData	=	null;

		this.sort	=	this.sort.bind(this);

		this.showEditor	=	this.showEditor.bind(this);

		this.save	=	this.save.bind(this);

		this.toggleSearch	=	this.toggleSearch.bind(this);

		this.search	=	this.search.bind(this);

}

The	cloning	and	updating	of	the	initialData	changes	the	data	use	din	the
state	by	adding	a	sort	of	record	ID,	this	will	prove	useful	when	editing	data	that
was	already	filtered.	You	map()	the	data	adding	an	additional	column	which	is
an	integer	ID.

const	data	=	clone(props.initialData).map((row,	idx)	=>

		row.concat(idx),

);

As	a	result	the	state	data	now	looks	like:

		[

				'A	Tale	of	Two	Cities',	...,	0

],

		[

				'Le	Petit	Prince	(The	Little	Prince)',	...,	1

],

		//	...

This	change	also	requires	changes	in	the	render()	method,	namely	to	use	this
record	ID	to	identify	rows,	regardless	if	we’re	looking	at	all	the	data	or	a	filtered
subset	of	it	(as	a	result	of	a	search):

{this.state.data.map((row,	rowidx)	=>	{

		//	the	last	piece	of	data	in	a	row	is	the	ID

		const	recordId	=	row[row.length	-	1];

		return	(

				<tr	key={recordId}	data-row={recordId}>

						{row.map((cell,	columnidx)	=>	{

								if	(columnidx	===	this.props.headers.length)	{

										//	do	not	show	the	record	ID	in	the	table	UI

										return;

								}

								const	edit	=	this.state.edit;

								if	(

										edit	&&

										edit.row	===	recordId	&&

										edit.column	===	columnidx

)	{

										cell	=	(

												<form	onSubmit={this.save}>

														<input	type="text"	defaultValue={cell}	/>

												</form>

);

								}

								return	<td	key={columnidx}>{cell}</td>;

						})}

				</tr>

);

})}

Next	comes	updating	the	UI	with	a	search	button.	Where	before	there	was	a
<table>	as	the	root,	now	let’s	have	a	<div>	with	a	search	button	and	the
same	table.

<div>

		<button	className="toolbar"	onClick={this.toggleSearch}>

				{this.state.search	?	'Hide	search'	:	'Show	search'}

		</button>

		<table>

				{/*	...	*/}

		</table>

</div>

As	you	see,	the	search	button	label	is	dynamic	to	reflect	whether	the	search	is	on
or	off	(this.state.search	is	true	or	false).

Next	comes	the	row	of	search	boxes.	You	can	add	it	to	the	increasingly	big
chunk	of	JSX	or	have	it	composed	upfront	and	added	to	a	constant	which	is	to	be
included	in	the	main	JSX.	Let’s	go	the	second	route.	If	the	search	feature	is	not
on,	you	don’t	need	to	render	anything,	so	searchRow	is	just	null.	Otherwise
a	new	table	row	is	created	where	each	cell	is	an	input	element.

const	searchRow	=	!this.state.search	?	null	:	(

		<tr	onChange={this.search}>

				{this.props.headers.map((_,	idx)	=>	(

						<td	key={idx}>

								<input	type="text"	data-idx={idx}	/>

						</td>

))}

		</tr>

);

NOTE
Using	(_,	idx)	is	an	illustration	of	a	convention	where	an	unused	variable	in	a	callback	is
named	with	an	underscore	_	to	signal	to	the	reader	of	the	code	that	it’s	not	used.

The	row	of	search	inputs	is	just	another	child	node	before	the	main	data	loop
(the	one	that	creates	all	the	table	rows	and	cells),	so	you	include	searchRow
right	there.

<tbody	onDoubleClick={this.showEditor}>

		{searchRow}

		{this.state.data.map((row,	rowidx)	=>	(....

At	this	point,	that’s	all	for	the	UI	updates.	Let’s	take	a	look	at	the	meat	of	the
feature,	the	“business	logic”	if	you	will:	the	actual	search.

Filtering	Content
The	search	feature	is	going	to	be	fairly	simple:	take	the	array	of	data,	call	the
Array.prototype.filter()	method	on	it,	and	return	a	filtered	array	with
the	elements	that	match	the	search	string.

The	UI	still	uses	this.state.data	to	do	the	rendering,	but
this.state.data	is	a	reduced	version	of	itself.

You	need	a	reference	to	the	data	before	the	search,	so	that	you	don’t	lose	the
data	forever.	This	allows	the	user	to	go	back	to	the	full	table	or	change	the
search	string	to	get	different	matches.	Let’s	call	this	reference
this.preSearchData.	Now	that	there’s	data	in	two	places,	the	save()
method	will	need	an	update,	so	both	places	are	updated	should	the	user	decide	to

edit	the	data,	regardless	if	it’s	been	filtered	or	not.

When	the	user	clicks	the	“search”	button,	the	toggleSearch()	function	is
invoked.	This	function’s	task	is	to	turn	the	search	feature	on	and	off.	It	does	its
task	by:

Setting	the	this.state.search	to	true	or	false	accordingly

When	enabling	the	search,	“remembering”	the	current	data

When	disabling	the	search,	reverting	to	the	remembered	data.

Here’s	what	this	function	can	look	like:

toggleSearch()	{

		if	(this.state.search)	{

				this.setState({

						data:	this.preSearchData,

						search:	false,

				});

				this.preSearchData	=	null;

		}	else	{

				this.preSearchData	=	this.state.data;

				this.setState({

						search:	true,

				});

		}

}

The	last	thing	to	do	is	implement	the	search()	function,	which	is	called	every
time	something	in	the	search	row	changes,	meaning	the	user	is	typing	in	one	of
the	inputs.	Here’s	the	complete	implementation,	followed	by	some	more	details:

search(e)	{

		const	needle	=	e.target.value.toLowerCase();

		if	(!needle)	{

				this.setState({data:	this.preSearchData});

				return;

		}

		const	idx	=	e.target.dataset.idx;

		const	searchdata	=	this.preSearchData.filter((row)	=>	{

				return	row[idx].toString().toLowerCase().indexOf(needle)	>	-1;

		});

		this.setState({data:	searchdata});

}

You	get	the	search	string	from	the	change	event’s	target	(which	is	the	input	box).
Let’s	call	it	“needle”	as	we’re	looking	for	a	needle	in	a	haystack	of	data.

const	needle	=	e.target.value.toLowerCase();

If	there’s	no	search	string	(the	user	erased	what	they	typed),	the	function	takes
the	original,	cached	data	and	this	data	becomes	the	new	state:

if	(!needle)	{

		this.setState({data:	this.preSearchData});

		return;

}

If	there	is	a	search	string,	filter	the	original	data	and	set	the	filtered	results	as	the
new	state	of	the	data:

const	idx	=	e.target.dataset.idx;

const	searchdata	=	this.preSearchData.filter((row)	=>	{

		return	row[idx].toString().toLowerCase().indexOf(needle)	>	-1;

});

this.setState({data:	searchdata});

And	with	this,	the	search	feature	is	complete.	To	implement	the	feature,	all	you
needed	to	do	was:

Add	search	UI

Show/hide	the	new	UI	upon	request

The	actual	“business	logic”	-	a	simple	array	filter()	call

As	always,	you	only	worry	about	the	state	of	your	data	and	let	React	take	care	of
rendering	(and	all	the	grunt	DOM	work	associated)	whenever	the	state	of	the
data	changes.

Update	the	save()	method
Previously	there	was	only	state.data	to	be	cloned	and	updated,	but	now	you
also	have	the	“remembered”	preSearchData.	If	the	user	is	editing	(even
while	searching)	now	the	two	pieces	of	data	need	an	update.	That’s	the	whole

reason	for	adding	a	record	ID	-	so	you	can	find	the	real	row	even	in	a	filtered
state.

Updating	the	preSearchData	is	just	like	in	the	previous	save()
implementation	-	just	find	the	row	and	column.	Updating	the	state	data	requires
one	more	step	which	is	to	find	the	record	ID	of	the	row	and	match	it	to	the	row
currently	being	edited	(this.state.edit.row).

save(e)	{

		e.preventDefault();

		const	input	=	e.target.firstChild;

		const	data	=	clone(this.state.data).map((row)	=>	{

				if	(row[row.length	-	1]	===	this.state.edit.row)	{

						row[this.state.edit.column]	=	input.value;

				}

				return	row;

		});

		this.logSetState({

				edit:	null,

				data,

		});

		if	(this.preSearchData)	{

				this.preSearchData[this.state.edit.row][this.state.edit.column]	=

						input.value;

		}

}

See	03.10.table-search.html	in	the	book’s	repo	for	the	complete	code.

Can	You	Improve	the	Search?
This	was	a	simple	working	example	for	illustration.	Can	you	improve	the
feature?

Try	to	implement	an	additive	search	in	multiple	boxes,	meaning	filter	the
already	filtered	data.	If	the	user	types	“Eng”	in	the	language	row	and	then
searches	using	a	different	search	box,	why	not	search	in	the	search	results	of	the
previous	search	only?	How	would	you	implement	this	feature?

Instant	Replay
As	you	know	now,	your	components	worry	about	their	state	and	let	React	render

and	rerender	whenever	appropriate.	This	means	that	given	the	same	data	(state
and	properties),	the	application	will	look	exactly	the	same,	no	matter	what
changed	before	or	after	this	particular	data	state.	This	gives	you	a	great
debugging-in-the-wild	opportunity.

Imagine	someone	encounters	a	bug	while	using	your	app—they	can	click	a
button	to	report	the	bug	without	needing	to	explain	what	happened.	The	bug
report	can	just	send	you	back	a	copy	of	this.state	and	this.props,	and
you	should	be	able	to	re-create	the	exact	application	state	and	see	the	visual
result.

An	“undo”	could	be	another	feature	based	of	the	fact	that	React	renders	your	app
the	same	way	given	the	same	props	and	state.	And,	in	fact,	the	“undo”
implementation	is	somewhat	trivial:	you	just	need	to	go	back	to	the	previous
state.

Let’s	take	that	idea	a	bit	further,	just	for	fun.	Let’s	record	each	state	change	in
the	Excel	component	and	then	replay	it.	It’s	fascinating	to	watch	all	your
actions	played	back	in	front	of	you.	The	question	of	when	the	change	occurred	is
not	that	important,	so	let’s	“play”	the	app	state	changes	at	1-second	intervals.

To	implement	this	feature,	you	need	add	a	logSetState()	method	which
first	logs	the	new	state	to	a	this.log	array	and	then	calls	setState().	And
everywhere	in	the	code	you	called	setState()	should	now	be	changed	to	call
logSetState().	So	first	search	and	replace	all	calls	to	setState()	with
calls	to	the	new	function.

So	all	calls	to…

this.setState(...);

…become

this.logSetState(...);

Now	let’s	start	with	the	constructor.	You	need	to	bind	the	two	new	functions:
logSetState()	and	replay()	and	also	declare	this.log	array	and
initialize	it	with	the	initial	state.

constructor(props)	{

		//	...

		//	log	the	initial	state

		this.log	=	[clone(this.state)];

		//	...

		this.replay	=	this.replay.bind(this);

		this.logSetState	=	this.logSetState.bind(this);

}

The	logSetState	needs	to	do	two	things:	log	the	new	state	and	then	pass	it
over	to	setState().	Here’s	one	example	implementation	where	you	make	a
deep	copy	of	the	state	and	append	it	to	this.log:

logSetState(newState)	{

		//	remember	the	old	state	in	a	clone

		this.log.push(clone(newState));

		//	now	set	it

		this.setState(newState);

}

Now	that	all	state	changes	are	logged,	let’s	play	them	back.	To	trigger	the
playback,	let’s	add	a	simple	event	listener	that	captures	keyboard	actions	and
invokes	the	replay()	function.	The	place	for	events	listeners	like	this	is	in	the
componentDidMount()	lifecycle	method.

componentDidMount()	{

		document.addEventListener('keydown',	e	=>	{

				if	(e.altKey	&&	e.shiftKey	&&	e.keyCode	===	82)	{

						//	ALT+SHIFT+R(eplay)

						this.replay();

				}

		});

}

Finally,	the	replay()	method.	It	uses	setInterval()	and	once	a	second	it
reads	the	next	object	from	the	log	and	passes	it	to	setState():

replay()	{

		if	(this.log.length	===	1)	{

				console.warn('No	state	changes	to	replay	yet');

				return;

		}

		let	idx	=	-1;

		const	interval	=	setInterval(()	=>	{

				if	(++idx	===	this.log.length	-	1)	{

						//	the	end

						clearInterval(interval);

				}

				this.setState(this.log[idx]);

		},	1000);

}

And	with	this,	the	new	feature	is	complete	(03.11.table-replay.html	in
the	repo).	Play	around	with	the	component,	sort,	edit…	Then	press
ALT+SHIFT+R	(OPTION+SHIFT+R	on	Mac)	and	see	the	past	unfolding	before
you.

Cleaning	up	event	handlers
The	replay	feature	needs	just	a	bit	of	cleanup.	When	this	component	is	the	only
thing	hapenning	on	the	page,	that’s	not	necessary,	but	in	a	real	application
components	get	added	and	removed	from	the	DOM	more	frequently.	When
removing	from	the	DOM	a	“good	citizen”	component	should	take	care	of
cleaning	up	after	itself.	In	the	example	above	there	are	two	items	that	need
cleaning	up:	the	keydown	event	listener	and	the	replay	interval	callback.

If	you	don’t	clean	up	the	keydown	event	listener	function,	it	will	linger	on	in
memory	after	the	component	is	gone.	And	because	it’s	using	this,	the	whole
Excel	instance	needs	to	be	retained	in	memory.	This	is	in	effect	a	memory
leak.	Too	many	of	those	and	the	user	may	run	out	of	memory	and	your
application	may	crash	the	browser	tab.	As	to	the	interval,	well,	the	callback
function	will	continue	executing	after	the	component	is	gone	and	cause	another
memry	leak.	The	callback	will	also	attempt	to	call	setState()	on	a	non-
existing	component	which	React	handles	gracefully	and	gives	you	a	warning.

You	can	test	the	latter	behavior	by	removing	the	component	from	the	DOM
while	the	replay	is	still	going.	To	remove	the	component	from	the	DOM	you	can
just	replace	it,	e.g.	run	the	“Hello	world”	from	Chapter	1	in	the	console:

ReactDOM.render(

		React.createElement('h1',	null,	'Hello	world!'),

		document.getElementById('app'),

);

You	can	also	log	a	timestamp	to	the	console	in	the	interval	callback	to	see	that	it
keeps	on	being	executed.

const	interval	=	setInterval(()	=>	{

		//	...

		console.log(Date.now());

		//	...

},	1000);

Now	when	you	replace	the	component	during	replay,	you	see	an	error	from
React	and	the	timestamps	of	the	interval	callback	still	being	logged	as	evidence
that	the	callback	is	still	running	(Figure	3-13).

Figure	3-13.	Memory	leak	in	action

Similarly,	you	can	test	the	event	listener	memory	leak	by	pressing
ALT+SHIFT+R	after	the	component	has	been	removed	from	the	DOM.	The

Cleaning	solution
Taking	care	of	these	memory	leaks	is	fairly	straightforward.	You	need	to	keep
references	to	the	handlers	and	intervals/timeouts	you	want	to	clean	up.	Then
clean	them	up	in	componentWillUnmount().

For	the	event	handler,	have	it	as	a	class	method,	as	opposed	to	an	inline	function:

keydownHandler(e)	{

		if	(e.altKey	&&	e.shiftKey	&&	e.keyCode	===	82)	{

				//	ALT+SHIFT+R(eplay)

				this.replay();

		}

}

Then	componentDidMount()	becomes	the	simpler:

componentDidMount()	{

		document.addEventListener('keydown',	this.keydownHandler);

}

For	the	interval	replay	ID,	have	it	as	a	class	property	as	opposed	to	a	local
variable:

this.replayID	=	setInterval(()	=>	{

		if	(++idx	===	this.log.length	-	1)	{

				//	the	end

				clearInterval(this.replayID);

		}

		this.setState(this.log[idx]);

},	1000);

You	need	to,	of	course,	bind	the	new	method	and	add	the	new	property	in	the
constructor:

constructor(props)	{

		//	...

		this.replayID	=	null;

		//	...

		this.keydownHandler	=	this.keydownHandler.bind(this);

}

And,	finally,	the	cleanup	in	the	componentWillUnmount():

componentWillUnmount()	{

		document.removeEventListener('keydown',	this.keydownHandler);

		clearInterval(this.replayID);

}

Now	all	the	leaks	are	plugged	(03.12.table-replay-clean.html).

Can	You	Improve	the	Replay?
How	about	implementing	an	Undo/Redo	feature?	Say	when	the	person	uses	the
ALT+Z	keyboard	combination,	you	go	back	one	step	in	the	state	log	and	on
ALT+SHIFT+Z	you	go	forward.

An	Alternative	Implementation?
Is	there	another	way	to	implement	replay/undo	type	of	functionality	without
changing	all	your	setState()	calls?	Maybe	use	an	appropriate	lifecycle
method	(Chapter	2)?

Download	the	Table	Data
After	all	the	sorting,	editing,	and	searching,	the	user	is	finally	happy	with	the
state	of	the	data	in	the	table.	It	would	be	nice	if	they	could	download	the	data,
the	result	of	all	their	labor,	to	use	at	a	later	time.

Luckily,	there’s	nothing	easier	in	React.	All	you	need	to	do	is	grab	the	current
this.state.data	and	give	it	back—for	example	in	JSON	or	CSV	format.

Figure	3-14	shows	the	end	result	when	a	user	clicks	“Export	CSV,”	downloads
the	file	called	data.csv	(see	the	bottom	left	of	the	browser	window),	and	opens
this	file	in	Numbers	(on	a	Mac,	or	Microsoft	Excel	on	a	PC	or	Mac).

Figure	3-14.	Export	table	data	to	Numbers	via	CSV

The	first	thing	to	do	is	add	new	options	to	the	toolbar	(where	the	Search	button
is).	Let’s	use	some	HTML	magic	that	forces	<a>	links	to	trigger	file	downloads,
so	the	new	“buttons”	have	to	be	links	disguised	as	buttons	with	some	CSS:

<div	className="toolbar">

		<button	onClick={this.toggleSearch}>

				{this.state.search	?	'Hide	search'	:	'Show	search'}

		</button>

		

				Export	JSON

		

		

				Export	CSV

		

</div>

As	you	see,	you	need	downloadJSON	and	downloadCSV()	methods.	These
have	some	repeating	logic,	so	they	can	be	done	by	a	single	download()
function	bound	with	the	format	(meaning	file	type)	argument.	The
download()	method’s	signature	could	be	like:

download(format,	ev)	{

		//	TODO:	implement	me

}

In	the	constructor	you	can	bind	this	method	twice,	like	so:

this.downloadJSON	=	this.download.bind(this,	'json');

this.downloadCSV	=	this.download.bind(this,	'csv');

All	the	React	work	is	done,	now	for	the	download()	function.	While
exporting	to	JSON	is	trivial,	CSV	(comma-separated	values)	needs	a	little	bit
more	work.	In	essence,	it’s	just	a	loop	over	all	rows	and	all	cells	in	a	row,
producing	a	long	string.	Once	this	is	done,	the	function	initiates	the	downloads
via	the	download	attribute	and	the	href	blob	created	by	window.URL:

download(format,	ev)	{

		const	data	=	clone(this.state.data).map(row	=>	{

				row.pop();	//	drop	the	last	column,	the	recordId

				return	row;

		});

		const	contents	=

				format	===	'json'

						?	JSON.stringify(data,	null,	'		')

						:	data.reduce((result,	row)	=>	{

										return	(

												result	+

												row.reduce((rowcontent,	cellcontent,	idx)	=>	{

														const	cell	=	cellcontent.replace(/"/g,	'""');

														const	delimiter	=	idx	<	row.length	-	1	?	','	:	'';

														return	`${rowcontent}"${cellcontent}"${delimiter}`;

												},	'')	+

												'\n'

);

								},	'');

		const	URL	=	window.URL	||	window.webkitURL;

		const	blob	=	new	Blob([contents],	{type:	'text/'	+	format});

		ev.target.href	=	URL.createObjectURL(blob);

		ev.target.download	=	'data.'	+	format;

}

The	complete	code	is	in	03.13.table-download.html	in	the	repo.

Fetching	data
All	through	the	chapter	the	Excel	component	had	access	to	the	data	in	the
same	file.	But	what	if	the	data	lives	elsewhere,	on	a	server,	and	needs	to	be
fetched.	There	are	various	solutions	to	this	and	you’ll	see	more	further	in	the
book,	but	let	try	one	of	the	simplest—fetching	the	data	in
componentDidMount().

Let’s	say	the	Excel	component	is	created	with	an	empty	initialData
property:

ReactDOM.render(

		<Excel	headers={headers}	initialData={[]}	/>,

		document.getElementById('app'),

);

The	component	can	gracefully	render	an	intermendiate	state	to	let	the	user	know
that	data	is	coming.	In	the	render()	method	you	can	have	a	condition	and

render	a	different	table	body	if	data	is	not	there:

{this.state.data.length	===	0	?	(

		<tbody>

				<tr>

						<td	colSpan={this.props.headers.length}>

								Loading	data...

						</td>

				</tr>

		</tbody>

)	:	(

		<tbody	onDoubleClick={this.showEditor}>

				{/*	...	same	as	before	...*/}

		</tbody>

)}

While	waiting	for	the	data	the	user	sees	a	loading	indicator	(Figure	3-15),	in	this
case	a	simple	text,	but	you	can	have	an	animation	if	you	like.

Figure	3-15.	Waiting	for	the	data	to	be	fetched

Now	let’s	fetch	the	data.	Using	the	HTML	Fetch	API,	you	make	a	request	to	a
server	and	once	the	response	arrives,	you	set	the	state	with	the	new	data.	You
also	need	to	take	care	of	adding	the	record	ID	which	was	previously	the	job	of
the	contstructor.	The	updated	componentDidMount()	can	look	like	so:

componentDidMount()	{

		document.addEventListener('keydown',	this.keydownHandler);

		fetch('https://www.phpied.com/files/reactbook/table-data.json')

				.then((response)	=>	response.json())

				.then((initialData)	=>	{

						const	data	=	clone(initialData).map((row,	idx)	=>	{

								row.push(idx);

								return	row;

						});

						this.setState({data});

				});

}

The	complete	code	is	in	03.14.table-fetch.html	in	the	repo.

About	the	Author

Stoyan	Stefanov	is	a	Facebook	engineer.	Previously	at	Yahoo,	he	was	the
creator	of	the	smush.it	online	image-optimization	tool	and	architect	of	the
YSlow	2.0.	performance	tool.	Stoyan	is	the	author	of	JavaScript	Patterns
(O’Reilly,	2010)	and	Object-Oriented	JavaScript	(Packt	Publishing,	2008),	a
contributor	to	Even	Faster	Web	Sites	and	High-Performance	JavaScript,	a
blogger,	and	a	frequent	speaker	at	conferences,	including	Velocity,	JSConf,
Fronteers,	and	many	others.

http://shop.oreilly.com/product/9780596806767.do
http://phpied.com

1.	 1.	Hello	World

a.	 Setup

b.	 Hello	React	World

c.	 What	Just	Happened?

d.	 React.createElement()

e.	 JSX

i.	 Setup	Babel

ii.	 Hello	JSX	world

iii.	 What	just	happened?

f.	 Next:	Custom	Components

2.	 2.	The	Life	of	a	Component

a.	 A	Custom	Functional	Component

i.	 A	JSX	Version

b.	 A	Custom	Class	Component

i.	 Which	Syntax	to	Use?

c.	 Properties

i.	 Properties	in	Functional	Components

ii.	 Default	Properties

d.	 State

e.	 A	Textarea	Component

f.	 Make	it	Stateful

g.	 A	Note	on	DOM	Events

i.	 Event	Handling	in	the	Olden	Days

ii.	 Event	Handling	in	React

iii.	 Event-Handling	Syntax

h.	 Props	Versus	State

i.	 Props	in	Initial	State:	An	Anti-Pattern

j.	 Accessing	the	Component	from	the	Outside

k.	 Lifecycle	Methods

l.	 Lifecycle	Example:	Log	It	All

i.	 Paranoid	State	Protection

m.	 Lifecycle	Example:	Using	a	Child	Component

n.	 Performance	Win:	Prevent	Component	Updates

o.	 Whatever	Happened	to	Functional	Components?

3.	 3.	Excel:	A	Fancy	Table	Component

a.	 Data	First

b.	 Table	Headers	Loop

c.	 Table	Headers	Loop,	a	terse	version

d.	 Debugging	the	Console	Warning

e.	 Adding	<td>	Content

i.	 Prop	types

ii.	 Can	You	Improve	the	Component?

f.	 Sorting

i.	 Can	You	Improve	the	Component?

g.	 Sorting	UI	Cues

h.	 Editing	Data

i.	 Editable	Cell

ii.	 Input	Field	Cell

iii.	 Saving

iv.	 Conclusion	and	Virtual	DOM	Diffs

i.	 Search

i.	 State	and	UI

ii.	 Filtering	Content

iii.	 Update	the	save()	method

iv.	 Can	You	Improve	the	Search?

j.	 Instant	Replay

i.	 Cleaning	up	event	handlers

ii.	 Cleaning	solution

iii.	 Can	You	Improve	the	Replay?

iv.	 An	Alternative	Implementation?

k.	 Download	the	Table	Data

l.	 Fetching	data

	1. Hello World
	Setup
	Hello React World
	What Just Happened?
	React.createElement()
	JSX
	Setup Babel
	Hello JSX world
	What just happened?

	Next: Custom Components

	2. The Life of a Component
	A Custom Functional Component
	A JSX Version

	A Custom Class Component
	Which Syntax to Use?

	Properties
	Properties in Functional Components
	Default Properties

	State
	A Textarea Component
	Make it Stateful
	A Note on DOM Events
	Event Handling in the Olden Days
	Event Handling in React
	Event-Handling Syntax

	Props Versus State
	Props in Initial State: An Anti-Pattern
	Accessing the Component from the Outside
	Lifecycle Methods
	Lifecycle Example: Log It All
	Paranoid State Protection

	Lifecycle Example: Using a Child Component
	Performance Win: Prevent Component Updates
	Whatever Happened to Functional Components?

	3. Excel: A Fancy Table Component
	Data First
	Table Headers Loop
	Table Headers Loop, a terse version
	Debugging the Console Warning
	Adding td Content
	Prop types
	Can You Improve the Component?

	Sorting
	Can You Improve the Component?

	Sorting UI Cues
	Editing Data
	Editable Cell
	Input Field Cell
	Saving
	Conclusion and Virtual DOM Diffs

	Search
	State and UI
	Filtering Content
	Update the save() method
	Can You Improve the Search?

	Instant Replay
	Cleaning up event handlers
	Cleaning solution
	Can You Improve the Replay?
	An Alternative Implementation?

	Download the Table Data
	Fetching data

