

React	Cookbook
Recipes	for	Mastering	the	React	Framework

With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the	authors’	raw	and	unedited
content	as	they	write—so	you	can	take	advantage	of	these	technologies	long	before	the	official	release
of	these	titles.

David	Griffiths	and	Dawn	Griffiths

React	Cookbook
by	David	Griffiths	and	Dawn	Griffiths

Copyright	©	2021	David	Griffiths	and	Dawn	Griffiths.	All	rights	reserved.

Printed	in	the	United	States	of	America.

Published	by	O’Reilly	Media,	Inc.,	1005	Gravenstein	Highway	North,
Sebastopol,	CA	95472.

O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional
use.	Online	editions	are	also	available	for	most	titles	(http://oreilly.com).	For
more	information,	contact	our	corporate/institutional	sales	department:	800-998-
9938	or	corporate@oreilly.com.

Acquisitions	Editor:	Amanda	Quinn
Development	Editor:	Corbin	Collins
Production	Editor:	Daniel	Elfanbaum
Interior	Designer:	David	Futato
Cover	Designer:	Karen	Montgomery
Illustrator:	Kate	Dullea
October	2021:	First	Edition

Revision	History	for	the	Early	Release
2020-08-05:	First	Release
2020-11-20:	Second	Release
2021-01-20:	Third	Release
2021-03-15:	Fourth	Release

See	http://oreilly.com/catalog/errata.csp?isbn=9781492085843	for	release
details.

The	O’Reilly	logo	is	a	registered	trademark	of	O’Reilly	Media,	Inc.	React
Cookbook,	the	cover	image,	and	related	trade	dress	are	trademarks	of	O’Reilly
Media,	Inc.

The	views	expressed	in	this	work	are	those	of	the	authors,	and	do	not	represent
the	publisher’s	views.	While	the	publisher	and	the	authors	have	used	good	faith
efforts	to	ensure	that	the	information	and	instructions	contained	in	this	work	are
accurate,	the	publisher	and	the	authors	disclaim	all	responsibility	for	errors	or

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492085843

omissions,	including	without	limitation	responsibility	for	damages	resulting
from	the	use	of	or	reliance	on	this	work.	Use	of	the	information	and	instructions
contained	in	this	work	is	at	your	own	risk.	If	any	code	samples	or	other
technology	this	work	contains	or	describes	is	subject	to	open	source	licenses	or
the	intellectual	property	rights	of	others,	it	is	your	responsibility	to	ensure	that
your	use	thereof	complies	with	such	licenses	and/or	rights.

978-1-492-08577-5

[LSI]

Preface

The	following	software	versions	have	been	used:

Tool/library Description Versions

Apollo	client GraphQL	client 3.3.6

axios HTTP	library 0.21.0

Create	React	App Tool	for	generating	React	apps 4.0.1

Cypress Automated	test	system 6.1.0

Gatsby Tool	for	generating	React	apps 2.26.1

GraphQL API	query	language 15.4.0

Material-UI Component	library 4.11.2

Node JavaScript	runtime v12.20.0

npm The	Node	package	manager 6.14.8

nvm Tool	for	running	multiple	Node	environments 0.33.2

nwb Tool	for	generating	React	apps 0.25.x

Next.js Tool	for	generating	React	apps 10.0.3

Preact Lightweight	React-like	framework 10.3.2

Preact	Custom	Elements Library	to	create	custom	elements 4.2.1

Rails Web	development	framework 6.0.3.4

Razzle Tool	for	generating	React	apps 3.3.8

React Web	framework 17.0.1

React	Media Media	queries	in	React	code 1.10.0

React	Router	(DOM) Library	for	managing	React	routes 5.2.0

React	Testing	Library Unit	testing	library	for	React 11.1.0

react-animations React	CSS	animation	library 1.0.0

react-md-editor Markdown	editor 2.0.3

React-Redux React	support	library	for	Redux 7.2.2

Redux State	management	library 4.0.5

Redux-Persist Library	to	store	Redux	state 6.0.0

Ruby Language	used	by	Rails 2.7.0p0

Storybook Component	gallery	system 6.1.11

TweenOne React	animation	library 2.7.3

Typescript Type-safe	extension	to	JavaScript 4.0.3

Webpacker Tool	for	adding	React	to	Rails	apps 4.3.0

Yarn Another	Node	package	manager 1.22.10

Conventions	Used	in	This	Book
The	following	typographical	conventions	are	used	in	this	book:

Italic
Indicates	new	terms,	URLs,	email	addresses,	filenames,	and	file	extensions.

Constant	width

Used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to	program
elements	such	as	variable	or	function	names,	databases,	data	types,
environment	variables,	statements,	and	keywords.

Constant	width	bold

Shows	commands	or	other	text	that	should	be	typed	literally	by	the	user.

Constant	width	italic

Shows	text	that	should	be	replaced	with	user-supplied	values	or	by	values
determined	by	context.

TIP
This	element	signifies	a	tip	or	suggestion.

NOTE
This	element	signifies	a	general	note.

WARNING
This	element	indicates	a	warning	or	caution.

Using	Code	Examples
Supplemental	material	(code	examples,	exercises,	etc.)	is	available	for	download
at	TBD.

If	you	have	a	technical	question	or	a	problem	using	the	code	examples,	please
send	email	to	bookquestions@oreilly.com.

This	book	is	here	to	help	you	get	your	job	done.	In	general,	if	example	code	is
offered	with	this	book,	you	may	use	it	in	your	programs	and	documentation.	You
do	not	need	to	contact	us	for	permission	unless	you’re	reproducing	a	significant
portion	of	the	code.	For	example,	writing	a	program	that	uses	several	chunks	of
code	from	this	book	does	not	require	permission.	Selling	or	distributing
examples	from	O’Reilly	books	does	require	permission.	Answering	a	question
by	citing	this	book	and	quoting	example	code	does	not	require	permission.
Incorporating	a	significant	amount	of	example	code	from	this	book	into	your
product’s	documentation	does	require	permission.

We	appreciate,	but	generally	do	not	require,	attribution.	An	attribution	usually
includes	the	title,	author,	publisher,	and	ISBN.	For	example:	“React	Cookbook
by	David	Griffiths	and	Dawn	Griffiths	(O’Reilly).	Copyright	2021	O’Reilly
Media	Inc.,	978-1-492-08584-3.”

If	you	feel	your	use	of	code	examples	falls	outside	fair	use	or	the	permission

mailto:bookquestions@oreilly.com

given	above,	feel	free	to	contact	us	at	permissions@oreilly.com.

O’Reilly	Online	Learning

NOTE
For	more	than	40	years,	O’Reilly	Media	has	provided	technology	and	business	training,	knowledge,	and
insight	to	help	companies	succeed.

Our	unique	network	of	experts	and	innovators	share	their	knowledge	and
expertise	through	books,	articles,	and	our	online	learning	platform.	O’Reilly’s
online	learning	platform	gives	you	on-demand	access	to	live	training	courses,	in-
depth	learning	paths,	interactive	coding	environments,	and	a	vast	collection	of
text	and	video	from	O’Reilly	and	200+	other	publishers.	For	more	information,
visit	http://oreilly.com.

How	to	Contact	Us
Please	address	comments	and	questions	concerning	this	book	to	the	publisher:

O’Reilly	Media,	Inc.
1005	Gravenstein	Highway	North
Sebastopol,	CA	95472
800-998-9938	(in	the	United	States	or	Canada)
707-829-0515	(international	or	local)
707-829-0104	(fax)

We	have	a	web	page	for	this	book,	where	we	list	errata,	examples,	and	any
additional	information.	You	can	access	this	page	at
http://www.oreilly.com/catalog/9781492085843.

Email	bookquestions@oreilly.com	to	comment	or	ask	technical	questions	about
this	book.

For	news	and	information	about	our	books	and	courses,	visit	http://oreilly.com.

Find	us	on	Facebook:	http://facebook.com/oreilly

mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com
http://www.oreilly.com/catalog/9781492085843
mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly

Follow	us	on	Twitter:	http://twitter.com/oreillymedia

Watch	us	on	YouTube:	http://www.youtube.com/oreillymedia

http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Chapter	1.	Creating	Applications

A	NOTE	FOR	EARLY	RELEASE	READERS

With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the	authors’	raw	and	unedited
content	as	they	write—so	you	can	take	advantage	of	these	technologies	long	before	the	official	release
of	these	titles.

This	will	be	the	1st	chapter	of	the	final	book.	Please	note	that	the	GitHub	repo	will	be	made	active
later	on.

If	you	have	comments	about	how	we	might	improve	the	content	and/or	examples	in	this	book,	or	if
you	notice	missing	material	within	this	chapter,	please	reach	out	to	the	editor	at	ccollins@oreilly.com.

React	is	a	surprisingly	adaptable	development	framework.	Developers	use	it	to
create	large	JavaScript-heavy	Single	Page	Applications	or	to	build	surprisingly
small	plug-ins.	You	can	use	it	to	embed	code	inside	a	Rails	applications	or
generate	a	content-rich	web	site.

In	this	chapter,	we	look	at	the	various	ways	of	creating	a	React	application.	We
also	look	at	some	of	the	more	useful	tools	that	you	might	want	to	add	to	your
development	cycle.	Very	few	people	now	create	their	JavaScript	projects	from
scratch.	Doing	so	is	now	a	very	tedious	process,	involving	an	uncomfortable
amount	of	tinkering	and	configuration.	The	good	news	is	that	in	almost	every
case,	you	can	use	a	tool	to	generate	the	code	you	need.

So	let’s	take	a	whistle-stop	tour	of	the	many	ways	of	starting	your	React	journey,
beginning	with	the	one	most	frequently	used:	create-react-app….

1.1	Create	a	Vanilla	App	with	create-react-app

Problem
React	projects	are	difficult	to	create	and	configure	from	scratch.	Not	only	are
there	numerous	design	choices	to	make–which	libraries	to	include,	which	tools
to	use,	which	language	features	to	enable–but	manually	created	applications	will,
by	their	nature,	differ	from	one	another.	Project	idiosyncrasies	increase	the	time

mailto:ccollins@oreilly.com

it	takes	a	new	developer	to	become	productive.

Solution
create-react-app	is	a	tool	for	building	SPAs	with	a	standard	structure	and
a	reasonable	set	of	default	options.	Generated	projects	use	the	react-
scripts	library	to	build,	test,	and	run	the	code.	Projects	have	a	standard
Webpack	configuration	and	a	standard	set	of	language	features	enabled.

Any	developer	who	has	worked	on	one	create-react-app	application
instantly	feels	at	home	with	any	other.	They	understand	the	project	structure	and
know	which	language	features	they	can	use.	It	is	simple	to	use	and	contains	all
the	features	that	a	typical	application	requires:	from	babel	configuration	and	file
loaders	to	testing	libraries	and	a	development	server.

If	you’re	new	to	React,	or	need	to	create	a	generic	SPA	with	the	minimum	of
fuss,	then	you	should	consider	creating	your	app	with	create-react-app.

You	can	choose	to	install	the	create-react-app	command	globally	on	your
machine,	but	this	is	now	discouraged.	Instead,	you	should	create	a	new	project
by	calling	create-react-app	via	npx.	Using	npx	ensures	you’re	building
your	application	with	the	latest	version	of	create-react-app:

$	npx	create-react-app	my-app

This	command	creates	a	new	project	directory	called	my-app.	By	default,	the
application	uses	JavaScript.	If	you	want	to	use	TypeScript	as	your	development
language,	create-react-app	provides	that	as	an	option:

$	npx	create-react-app	--template	typescript	my-app

Facebook	developed	create-react-app,	so	it	should	come	as	no	surprise
that	your	new	project	uses	the	yarn	package	manager.	To	use	npm,	change	into
the	directory	and	remove	the	yarn.lock	file,	and	then	re-run	the	install	with	npm:

$	cd	my-app

$	rm	yarn.lock

$	npm	install

To	start	your	application,	you	should	run	the	start	script:

npm	run	start	#	or	yarn	start

This	command	launches	a	server	on	port	3000,	and	opens	a	browser	at	the	home
page	(see	figure	1-1.)

Figure	1-1.	The	generated	front	page

The	server	delivers	your	application	as	a	single,	large	bundle	of	JavaScript.	The
code	mounts	all	of	its	components	inside	this	<div/>	in	public/index.html:

<div	id="root"></div>

The	code	to	generate	the	components	begins	in	the	src/index.js	file	(src/index.tsx
if	you’re	using	TypeScript):

import	React	from	'react';

import	ReactDOM	from	'react-dom';

import	'./index.css';

import	App	from	'./App';

import	reportWebVitals	from	'./reportWebVitals';

ReactDOM.render(

		<React.StrictMode>

				<App	/>

		</React.StrictMode>,

		document.getElementById('root')

);

//	If	you	want	to	start	measuring	performance	in	your	app,	pass	a	

function

//	to	log	results	(for	example:	reportWebVitals(console.log))

//	or	send	to	an	analytics	endpoint.	Learn	more:	https://bit.ly/CRA-

vitals

reportWebVitals();

This	file	does	little	more	than	render	a	single	component	called	<App/>,	which
is	imported	from	App.js	in	the	same	directory:

import	logo	from	'./logo.svg';

import	'./App.css';

function	App()	{

		return	(

				<div	className="App">

						<header	className="App-header">

								

								<p>

										Edit	<code>src/App.js</code>	and	save	to	reload.

								</p>

								<a

										className="App-link"

										href="https://reactjs.org"

										target="_blank"

										rel="noopener	noreferrer"

								>

										Learn	React

								

						</header>

				</div>

);

}

export	default	App;

If	you	edit	this	file	while	the	application	is	start-ed,	the	page	in	the	browser
automatically	updates.

When	you’re	ready	to	ship	the	code	to	production,	you	need	to	generate	a	set	of
static	files	that	you	can	deploy	on	a	standard	web	server.	To	do	this,	run	the
build	script:

$	npm	run	build

The	build	script	creates	a	build/	directory	and	in	there	generates	a	set	of	static
files	(see	figure	1-2.)

Figure	1-2.	The	generated	contents	in	the	build	directory.

The	build	copies	many	of	these	files	from	the	public/	directory.	The	code	for	the
app	is	transpiled	into	browser-compatible	JavaScript	and	stored	in	one	or	more

files	in	the	static/js	directory.	Stylesheets	used	by	the	application,	are
stitched	together	and	stored	in	static/css.	Several	of	the	files	have	randomized
ids	added	to	them	so	that	when	you	deploy	your	application,	browsers	download
the	latest	code,	rather	than	some	old	cached	version.

Discussion
create-react-app	is	not	just	a	tool	for	generating	a	new	application,	but
also	a	platform	to	keep	your	React	application	up-to-date	with	the	latest	tools
and	libraries.	You	can	upgrade	the	react-scripts	library	as	you	would	any
other:	by	changing	the	version	number	and	re-running	npm	install.	You
don’t	need	to	manage	a	list	of	babel	plug-ins,	postcss	libraries,	or	maintain	a
complex	webpack.config.js	file.	The	react-scripts	library	manages	them
all	for	you.

If,	however,	you	later	decide	to	manage	all	of	this	yourself,	you’re	free	to	do	so.
If	you	eject	the	application,	then	everything	comes	back	under	your	control:

npm	run	eject

However,	this	is	a	one-time-only	change.	Once	you	have	ejected	your
application,	there	is	no	going	back.	You	should	think	carefully	before	ever
ejecting	an	application.	You	may	find	that	the	configuration	you	need	is	already
available.	For	example,	developers	would	often	eject	an	application	to	switch	to
using	TypeScript.	The	--template	typescript	option	now	removes	the
need	for	that.

Another	common	reason	for	ejecting	was	to	proxy	web	services.	React	apps
often	need	to	connect	to	some	separate	API	backend.	Developers	used	to	do	this
by	configuring	Webpack	to	proxy	a	remote	server	through	the	local	development
server.	You	can	now	avoid	do	this	by	setting	a	proxy	in	the	package.json
file:

"proxy":	"http://myapiserver",

If	your	code	now	contacts	a	URL	that	the	server	cannot	find	locally
(/api/thing),	the	react-scripts	automatically	proxy	these	requests	to

http://myapiserver/api/thing.

TIP
If	you	possibly	can,	avoid	ejecting	your	application.	Look	through	the	create-react-app
documentation	at	https://create-react-app.dev/	to	see	if	you	can	make	the	change	some	other	way.

You	can	download	the	source	for	this	recipe	in	JavaScript	or	TypeScript	from	the
Github	site.

1.2	Build	Content-Rich	Apps	with	Gatsby

Problem
Content-rich	sites	like	blogs	and	online	stores	need	to	serve	large	amounts	of
complex	content	efficiently.	A	tool	like	create-react-app	is	not	suitable
for	this	kind	of	web	site	because	it	delivers	everything	as	a	single	large	bundle	of
JavaScript	that	a	browser	must	download	before	anything	displays.

Solution
If	you	are	building	a	content-rich	site,	consider	using	Gatsby.

Gatsby	focuses	on	loading,	transforming,	and	delivering	content	in	the	most
efficient	way	possible.	It	can	generate	static	versions	of	web	pages,	which	means
that	the	response	times	of	Gatsby	sites	are	often	significantly	lower	than,	say,
those	built	with	create-react-app.

Gatsby	has	a	large	number	of	plug-ins	that	can	load	and	transform	data
efficiently	from	static	local	data,	GraphQL	sources,	and	third-party	CMS
systems	such	as	Wordpress.

You	can	install	gatsby	globally,	but	you	can	also	run	it	via	the	npx	command:

$	npx	gatsby	new	my-app

The	gatsby	new	command	creates	a	new	project	in	a	subdirectory	called	my-

https://create-react-app.dev/
https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch01-01-create-react-app
https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch01-01-create-react-app-test
https://github.com/dogriffiths/ReactCookbook-source/

app.	The	first	time	you	run	this	command,	it	asks	which	package	manager	to	use:
either	yarn	or	npm.

To	start	your	application,	change	into	the	new	directory	and	run	it	in
development	mode:

$	cd	my-app

$	npm	run	develop

Figure	1-3.	Gatsby	page	at	http://localhost:8000

Gatsby	projects	have	a	straightforward	structure,	as	shown	in	figure	1-4.

http://localhost:8000

Figure	1-4.	The	Gatsby	directory	structure.

The	core	of	the	application	lives	under	the	src/	directory.	Each	page	within	a
Gatsby	app	has	its	own	React	component.	This	is	the	front	page	of	the	default
application:

import	React	from	"react"

import	{	Link	}	from	"gatsby"

import	Layout	from	"../components/layout"

import	Image	from	"../components/image"

import	SEO	from	"../components/seo"

const	IndexPage	=	()	=>	(

		<Layout>

				<SEO	title="Home"	/>

				<h1>Hi	people</h1>

				<p>Welcome	to	your	new	Gatsby	site.</p>

				<p>Now	go	build	something	great.</p>

				<div	style={{	maxWidth:	`300px`,	marginBottom:	`1.45rem`	}}>

						<Image	/>

				</div>

				<Link	to="/page-2/">Go	to	page	2</Link>	

				<Link	to="/using-typescript/">Go	to	"Using	TypeScript"</Link>

		</Layout>

)

export	default	IndexPage

There	is	no	need	to	create	a	route	for	the	page.	Each	page	component	is

automatically	assigned	a	route.	For	example,	the	page	at	src/pages/using-
typescript.tsx	1	is	automatically	available	at	/using-typescript/.	This
approach	has	multiple	advantages.	First,	if	you	have	a	lot	of	pages,	you	don’t
need	to	manage	the	routes	for	them	manually.	Second,	it	means	that	Gatsby	can
deliver	much	more	rapidly.	To	see	why	let’s	look	at	how	to	generate	a	production
build	for	a	Gatsby	application.

If	you	stop	the	Gatsby	development	server2,	you	can	generate	a	production	build
with	the	following:

$	npm	run	build

This	command	runs	a	gatsby	build	command,	which	creates	a	public/
directory.	And	it	is	the	public/	directory	that	contains	the	real	magic	of	Gatsby.
For	each	page,	you	find	two	files.	First,	a	generated	JavaScript	file:

1389	06:48	component---src-pages-using-typescript-tsx-

93b78cfadc08d7d203c6.js

Here	you	can	see	that	the	code	for	using-typescript.tsx	is	just	1389	bytes	long
and	which,	with	the	core	framework,	is	just	enough	JavaScript	to	build	the	page.
It	is	not	the	kind	of	include-everything	script	that	you	find	in	a	create-
react-app	project.

Secondly,	there	is	a	subdirectory	for	each	page,	containing	a	generated	HTML
file.	For	using-typescript.tsx	the	file	is	called	public/using-typescript/index.html,
which	is	a	statically	generated	version	of	the	web	page.	It	contains	the	HTML
that	the	using-typescript.tsx	component	would	otherwise	render	dynamically.	At
the	end	of	the	web	page,	it	loads	the	JavaScript	version	of	the	page	in	case	it
needs	to	generate	some	dynamic	content.

This	file	structure	means	that	Gatsby	pages	load	in	around	the	same	time	that	it
takes	to	load	a	static	web	page.	Using	the	bundled	react-helmet	library,	you
can	also	generate	<meta/>	header	tags	with	additional	features	about	your	site.
Both	features	are	great	for	Search	Engine	Optimization.

Discussion
How	will	the	content	get	into	your	Gatsby	application?	You	might	use	a	headless

CMS	system,	a	GraphQL	service,	a	static	data	source,	or	something	else.
Fortunately,	Gatsby	has	many	plug-ins	which	allow	you	to	connect	data	sources
to	your	application,	and	then	transform	the	content	from	a	format	such	as
Markdown	into	HTML.

You	can	find	a	full	set	of	plug-ins	on	the	Gatsby	web	site.

Most	of	the	time,	you	choose	the	plug-ins	you	need	when	you	first	create	the
project.	To	give	you	a	head-start,	Gatsby	also	supports	start	templates.	The
template	provides	the	initial	application	structure	and	configuration.	The	app	we
built	above	uses	the	default	started	template,	which	is	quite	simple.	The	gatsby-
config.js	file	in	the	root	of	the	application	configures	which	plug-ins	your
application	uses.

But	there	are	masses	of	Gatsby	starters	available,	pre-configured	to	build
applications	that	connect	to	a	variety	of	data	sources,	with	pre-configured
options	for	SEO,	styling,	offline	caching,	PWA	(Progressive	Web	Applications),
and	more.	Whatever	kind	of	content-rich	application	you	are	building,	there	is	a
starter	that	is	close	to	what	you	need.

There	is	more	information	on	the	Gatsby	web	site	about	Gatsby	starters,	as	well
as	a	cheat	sheet	for	the	most	useful	tools	and	commands.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

1.3	Build	Universal	Apps	with	Razzle

Problem
Sometimes	when	you	start	to	build	an	application,	it	is	not	always	clear	what	the
main	architectural	decisions	will	be.	Should	you	create	a	SPA?	If	performance	is
critical,	should	you	use	Server	Side	Rendering?	You	will	need	to	decide	what
your	deployment	platform	will	be,	and	whether	you	are	going	to	write	your	code
in	JavaScript	or	TypeScript.

Many	tools	require	that	you	answer	these	questions	early	on.	If	you	later	change
your	mind,	modifying	the	way	you	build	and	deploy	your	application	can	be
complicated.

https://www.gatsbyjs.org/docs/plugins/
https://www.gatsbyjs.org/starters/?v=2
https://www.gatsbyjs.org/docs/cheat-sheet/
https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch01-02-gatsby
https://github.com/dogriffiths/ReactCookbook-source/

Solution
If	you	want	to	defer	decisions	about	how	you	build	and	deploy	your	application,
you	should	consider	using	Razzle.

Razzle	is	a	tool	for	building	Universal	applications:	that	is,	applications	that	can
execute	their	JavaScript	on	the	server.	Or	the	client.	Or	both.

Razzle	uses	a	plug-in	architecture	that	allows	you	to	change	your	mind	about
how	you	build	your	application.	It	will	even	let	you	change	your	mind	about
whether	you	are	building	your	code	in	React,	or	Preact	or	some	other	framework
entirely,	like	Elm	or	Vue.

You	can	create	a	Razzle	application	with	the	create-razzle-app
command3:

$	npx	create-razzle-app	my-app

This	command	creates	a	new	Razzle	project	in	the	my-app	subdirectory.	You	can
start	the	development	server	with	the	start	script:

$	cd	my-app

$	npm	run	start

The	start	script	will	dynamically	build	both	client	code	and	server	code,	and
then	run	the	server	on	port	3000,	as	shown	in	figure	1-5.

https://github.com/jaredpalmer/razzle

Figure	1-5.	The	Razzle	front	page	at	http://localhost:3000

When	you	want	to	deploy	a	production	version	of	your	application,	you	can	then
run	the	build	script:

$	npm	run	build

Unlike	create-react-app,	this	will	build	not	just	the	client	code,	but	also	a

http://localhost:3000

node	server.	Razzle	generates	the	code	in	the	build/	subdirectory.	The	server
code	will	continue	to	generate	static	code	for	your	client	at	runtime.	You	can
start	a	production	server	by	running	the	build/server.js	file	with	node	using	the
start:prod	script:

$	npm	run	start:prod

You	can	deploy	the	production	server	anywhere	that	node	is	available.

The	server	and	the	client	can	both	run	the	same	code,	which	is	what	makes	it
Universal.	But	how	does	it	do	this?

The	client	and	the	server	have	different	entry	points.	The	server	runs	the	code	in
src/server.js;	the	browser	runs	the	code	in	src/client.js.	Both	server.js	and
client.js	then	render	the	same	app	using	src/App.js.

If	you	want	to	run	your	app	as	a	SPA,	remove	the	app/index.js	and	app/server.js
files.	Then	create	an	index.html	in	the	public/	folder	containing	a	<div/>	with
id	root,	and	re-build	the	application	with:

$	node_modules/.bin/razzle	build	--type=spa

You	will	generate	a	full	SPA	in	build/public/	that	you	can	deploy	on	any	web
server.

Discussion
Razzle	is	so	adaptable	because	it	is	built	from	a	set	of	highly	configurable	plug-
ins.	Each	plug-in	is	a	higher-order	function	that	receives	a	webpack
configuration	and	returns	a	modified	version.	One	plug-in	might	transpile
TypeScript	code,	another	might	bundle	the	React	libraries.

If	you	want	to	switch	your	application	to	Vue,	you	only	need	to	replace	the	plug-
ins	you	use.

You	can	find	a	list	of	available	plug-ins	on	the	Razzle	web	site.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

1.4	Manage	Server	and	Client	Code	with	Next.js

https://github.com/jaredpalmer/razzle#plugins
https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch01-03-razzle
https://github.com/dogriffiths/ReactCookbook-source/

Problem
The	focus	of	React	is	on	client	code–even	if	that	client	code	is	generated	on	the
server.	Sometimes,	however,	you	might	have	a	relatively	small	amount	of	API
code	that	you	would	prefer	to	manage	as	part	of	the	same	React	application.

Solution
Next.js	is	a	tool	for	generating	React	applications	that	include	their	own	server
code.	The	api	end-points	and	the	client	pages	use	default	routing	conventions,
which	makes	them	simpler	to	build	and	deploy	than	they	would	be	if	you
manage	them	yourself.	You	can	find	full	details	about	Next.js	on	the	web	site.

At	the	time	of	writing,	you	cannot	create	a	Next.js	application	using	npx.
Instead,	you	should	first	install	create-next-app	globally:

$	npm	install	-g	create-next-app

Then,	you	can	generate	a	new	application:

$	create-next-app	my-app

This	will	create	a	Next.js	application	in	the	my-app	subdirectory.	To	start	the
app,	run	the	start	script:

$	cd	my-app

$	npm	run	start

https://nextjs.org/

Figure	1-6.	A	NextJS	page	running	at	http://localhost:3000

http://localhost:3000

Next.js	allows	you	to	create	pages	without	the	need	to	manage	any	routing
configuration.	If	you	add	a	component	script	to	the	pages/	folder,	it	will
instantly	become	available	through	the	server.	For	example,	the
pages/index.js	component	is	used	to	generate	the	home	page	of	the	default
application.

This	approach	is	similar	to	the	one	taken	by	Gatsby4	but	is	taken	further	in
Next.js,	to	include	server-side	code	as	well.

Next.js	applications	usually	include	some	API	server	code.	This	is	unusual	for
React	applications,	which	are	often	built	quite	separately	from	server	code.	But
if	you	look	inside	pages/api	you	will	find	an	example	server	end-point	called
hello.js:

//	Next.js	API	route	support:	https://nextjs.org/docs/api-

routes/introduction

export	default	(req,	res)	=>	{

		res.statusCode	=	200

		res.json({	name:	'John	Doe'	})

}

The	routing	which	mounts	this	to	the	end-point	api/hello	happens
automatically.

The	code	that	you	write	in	Next.js	is	automatically	built	into	a	hidden	directory
called	.next/.	This	code	can	then	be	deployed	to	a	service	such	as	Next.js’	own
Vercel	platform.

If	you	want,	you	generate	a	static	build	of	your	application	with:

$	node_modules/.bin/next	export

This	will	build	your	client	code	in	a	directory	called	out/.	Each	page	of	your
site	will	be	converted	into	a	statically	rendered	HTML	file,	which	will	load	very
quickly	in	the	browser.	At	the	end	of	the	page,	it	will	load	the	JavaScript	version
in	case	the	React	code	needs	to	modify	the	DOM.

WARNING

https://vercel.com/

If	you	create	an	exported	version	of	a	Next.js	application,	it	won’t	include	any	server-side	APIs.

Next.js	comes	with	a	bunch	of	data-fetching	options,	which	allow	you	to	get	data
from	static	content,	or	via	headless	CMS	sources.

Discussion
Next.js	is	in	many	ways	similar	to	Gatsby.	Its	focus	is	on	the	speed	of	delivery,
with	a	small	amount	of	configuration.	It’s	probably	most	useful	for	teams	who
will	have	a	small	amount	of	server	code	that	they	want	to	manage	simply.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

1.5	Create	a	Tiny	App	with	Preact

Problem
React	applications	can	be	large.	It’s	quite	easy	to	create	a	simple	React
application	which	is	transpiled	into	bundles	of	JavaScript	code	that	are	several
hundred	Kbs	in	size.	There	are	times	when	you	might	want	to	build	an	app	with
React-like	features,	but	without	having	to	download	a	large	amount	of	JavaScript
code.

Solution
If	you	want	React-features,	but	don’t	want	to	pay	the	price	of	a	React-size
JavaScript	bundle,	you	might	want	to	consider	using	Preact.

Preact	is	not	React.	It	is	a	separate	library,	but	it	is	designed	to	be	as	close	to
React	as	possible	while	being	much,	much	smaller.

The	reason	that	the	React	framework	is	so	big	is	because	of	the	way	it	works.
React	components	don’t	generate	elements	in	the	Document	Object	Model
(DOM)	of	the	browser	directly.	Instead,	they	build	elements	within	a	virtual
DOM,	which	is	then	used	to	update	the	actual	DOM	at	frequent	intervals.	Doing
so	allows	basic	DOM-rendering	to	be	fast	because	the	actual	DOM	only	needs	to
be	updated	when	there	are	real	changes.	However,	it	does	have	a	downside.

https://nextjs.org/docs/basic-features/data-fetching
https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch01-04-nextjs
https://github.com/dogriffiths/ReactCookbook-source/

React’s	virtual	DOM	requires	a	lot	of	code	to	keep	it	up	to	date.	It	needs	to
manage	an	entire	synthetic	event	model,	which	parallels	the	one	in	the	browser.
For	this	reason,	the	React	framework	is	large	and	can	take	some	time	to
download.

One	way	around	this	is	to	use	techniques	such	as	Server-Side	Rendering5,	but
SSR	can	be	complex	to	configure.	Sometimes,	you	just	want	to	download	a
small	amount	of	code.	And	that’s	why	Preact	exists.

The	Preact	library,	although	similar	to	React,	is	tiny.	At	the	time	of	writing,	the
main	Preact	library	is	around	4Kb.	This	is	small	enough	that	it’s	possible	to	add
React-like	features	to	web	pages	in	barely	more	code	than	is	required	to	write
native	JavaScript.

Preact	lets	you	choose	how	to	use	it:	as	a	small	JavaScript	library	included	in	a
web	page	(the	no	tools	approach)	or	as	a	full-blown	JavaScript	application.

The	no-tools	approach	is	really	very	basic.	The	core	Preact	library	does	not
support	JSX,	and	you	will	have	no	Babel	support	and	so	you	will	not	be	able	to
use	modern	JavaScript.	This	is	an	example	web	page	using	the	raw	Preact
library:

<html>

				<head>

								<title>No	Tools!</title>

								<script	src="https://unpkg.com/preact?umd"></script>

				</head>

				<body>

								<h1>No	Tools	Preact	App!</h1>

								<div	id="root"></div>

								<script>

									var	h	=	window.preact.h;

									var	render	=	window.preact.render;

									var	mount	=	document.getElementById('root');

									render(

													h('button',

															{

																			onClick:	function()	{

																							render(h('div',	null,	'Hello'),	mount);

																			}

															},

															'Click!'),

													mount

);

								</script>

				</body>

</html>

This	application	will	mount	itself	at	the	<div/>	with	id	root,	where	it	will
display	a	button.	When	you	click	the	button,	it	will	replace	the	contents	of	the
root	div	with	the	string	"Hello".	This	is	about	as	basic	as	a	Preact	app	can	be.

You	would	rarely	write	an	application	in	this	way.	In	reality,	you	would	create	a
simple	build-chain	that	would,	at	the	very	least,	support	modern	JavaScript.

In	fact,	Preact	supports	the	entire	spectrum	of	JavaScript	applications.	At	the
other	extreme,	you	can	create	a	full	Preact	application,	with	the	preact-cli.

preact-cli	is	a	tool	for	creating	Preact	projects	and	is	analogous	to	tools	like
create-react-app.	You	can	install	preact-cli	globally	like	this:

npm	install	-g	preact-cli

Then	you	can	create	a	Preact	application	with:

preact	create	default	my-app

This	will	create	your	new	Preact	application	in	the	my-app/	subdirectory.	To	start
it,	run	the	dev	script:

cd	my-app

npm	run	dev

This	will	start	the	server	on	port	8080,	as	shown	in	figure	1-7.

Figure	1-7.	A	page	from	Preact

The	server	generates	a	web	page,	which	calls	back	for	a	JavaScript	bundle	made
from	the	code	in	src/index.js.

You	now	have	a	full-scale	React-like	application.	The	code	inside	the	Home
component,	for	example,	looks	very	react-like,	with	full	JSX	support.

import	{	h	}	from	'preact';

import	style	from	'./style.css';

const	Home	=	()	=>	(

				<div	class={style.home}>

								<h1>Home</h1>

								<p>This	is	the	Home	component.</p>

				</div>

);

export	default	Home;

The	only	significant	difference	from	a	standard	React	component,	is	that	a
function	called	h	is	imported	from	the	preact	library,	instead	of	importing
React	from	the	react	library.

However,	the	size	of	the	application	has	increased:	it	is	now	a	little	over	300Kb.
That’s	pretty	large,	but	we	are	still	in	dev-mode.	To	see	the	real	power	of	Preact,
stop	the	dev	server6	and	then	run	the	build	script:

npm	run	build

This	will	generate	a	static	version	of	the	application	in	the	build/	directory.	First
of	all,	this	will	have	the	advantage	of	creating	a	static	copy	of	the	front	page,
which	will	render	very	quickly.	Secondly,	it	will	remove	all	unused	code	from
the	application	and	shrink	everything	down.	If	you	serve	this	built	version	of	the
app	on	a	standard	web	server,	the	browser	will	transfer	only	about	50-60Kb
when	it’s	opened.

Discussion
Preact	is	a	remarkable	project.	Despite	working	in	a	very	different	way	to	React,
it	provides	virtually	the	same	power,	at	a	fraction	of	the	size.	And	the	fact	that	it
can	be	used	for	anything	between	the	lowliest	inline	code	to	a	full-blown	SPA
means	it	is	well	worth	considering	if	code-size	is	critical	to	your	project.

You	can	find	out	more	about	Preact	on	the	Preact	web	site.

You	can	download	the	source	for	the	no-tools	example	and	the	larger	Preact
example	from	the	Github	site.

If	you	would	to	make	Preact	look	even	more	like	React,	see	the	preact-compat
library.

https://preactjs.com/
https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch01-05-preact-notools
https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch01-05-preact
https://github.com/dogriffiths/ReactCookbook-source/
https://github.com/preactjs/preact-compat

Finally,	for	a	project	that	takes	a	similar	approach	to	Preact,	look	at	InfernoJS.

1.6	Build	Libraries	with	NWB

Problem
Large	organizations	often	develop	several	React	applications	at	the	same	time.	If
you’re	a	consultancy,	you	might	create	applications	for	multiple	organizations.	If
you’re	a	software	house,	you	might	create	various	applications	that	require	the
same	look	and	feel,	so	you	will	probably	want	to	build	shared	components	that
can	be	used	across	several	applications.

When	you	create	a	component	project,	you	need	to	create	a	directory	structure,
select	a	set	of	tools,	choose	a	set	of	language	features	and	create	a	build	chain
that	can	bundle	your	component	in	a	deployable	format.	This	can	be	just	as
tedious	as	manually	creating	a	project	for	an	entire	React	application.

Solution
The	NWB	toolkit	can	be	used	to	create	full	React	applications,	but	can	also
create	projects	that	are	specifically	intended	to	create	a	single	React	component.
In	fact,	it	can	also	create	components	for	use	within	Preact	and	InjernoJS
projects,	but	we	shall	concentrate	on	React	components	here.

To	create	a	new	React	component	project,	you	will	first	need	to	install	the	nwb
tool	globally:

npm	install	-g	nwb

You	can	then	create	a	new	project	with	the	nwb	command:

nwb	new	react-component	my-component

NOTE
If	instead	of	creating	a	single	component,	you	want	to	create	an	entire	NWB	application,	you	can	replace
react-component	in	this	command	with	react-app,	preact-app,	or	inferno-app	to	create
an	application	in	the	given	framework.	You	can	also	use	vanilla-app	if	you	want	to	create	a	basic

https://infernojs.org/

JavaScript	project	without	a	framework.

When	you	run	this	command,	you	will	be	asked	several	questions	about	the	type
of	library	you	want	to	build.	You	will	be	asked	if	you’re	going	to	build
ECMAScript	modules:

Creating	a	react-component	project...

?	Do	you	want	to	create	an	ES	modules	build?	(Y/n)

This	will	allow	you	to	build	a	version	including	an	export	statement,	which
can	use	by	WebPack	to	decide	whether	or	not	the	module	is	required	in	a	client
application.	You	will	also	be	asked	if	you	want	to	create	a	Universal	Module
Definition:

?	Do	you	want	to	create	a	UMD	build?	(y/N)

That’s	useful	if	you	want	to	include	your	component	in	a	<script/>	within	a
web	page.	For	our	example,	we	won’t	create	a	UMD	build.

This	will	create	an	NWB	component	project	inside	the	my-component/
subdirectory.	The	project	comes	with	a	simple	wrapper	application	that	you	can
start	with	the	start	script:

cd	my-component

npm	run	start

The	demo	application	runs	on	port	3000,	as	shown	in	figure	1-8.

Figure	1-8.	An	NWB	component

The	application	will	contain	a	single	component	defined	in	src/index.js.

import	React,	{Component}	from	'react'

export	default	class	extends	Component	{

		render()	{

				return	<div>

						<h2>Welcome	to	React	components</h2>

				</div>

		}

}

You	can	now	build	the	component	as	you	would	any	React	project.	When	you
are	reading	to	create	a	publishable	version,	simply	type:

npm	run	build

This	will	now	create	a	built	version	of	your	component	in	lib/index.js,	which	you
can	deploy	to	a	repository	for	use	within	other	projects.

Discussion
For	further	details	on	creating	NWB	components,	see	the	NWB	guide	to
developing	components	and	libraries.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

1.7	Add	React	to	Rails	with	Webpacker

Problem
The	Rails	framework	was	created	before	interactive	JavaScript	applications
became	popular.	Rails	applications	follow	a	more	traditional	model	for	web
application	development,	in	which	HTML	pages	are	rendered	on	the	server	in
response	to	browser	requests.	But	sometimes	you	may	want	to	include	more
interactive	elements	inside	a	Rails	application.

Solution
The	Webpacker	library	can	be	used	to	insert	React	applications	into	Rails
generated	web	pages.	To	see	how	it	works,	let’s	first	generate	a	Rails	application

https://github.com/insin/nwb/blob/master/docs/guides/ReactComponents.md#developing-react-components-and-libraries-with-nwb
https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch01-06-nwb-component
https://github.com/dogriffiths/ReactCookbook-source/

which	includes	Webpacker:

$	rails	new	my-app	--webpack=react

This	will	create	a	Rails	application	in	a	directory	called	my-app/	that	is
preconfigured	to	run	a	Webpacker	server.	Before	we	start	the	application,	let’s	go
into	it	and	generate	an	example	page/controller:

$	cd	my-app

$	rails	generate	controller	Example	index

That	will	generate	this	template	page	at	app/views/example/index.html.erb:

<h1>Example#index</h1>

<p>Find	me	in	app/views/example/index.html.erb</p>

Next,	we	need	to	create	a	small	React	application	that	we	can	insert	into	this
page.	Webpacker	applications	are	inserted	as	packs:	small	JavaScript	bundles,
within	Rails.	We’ll	create	a	new	pack	in	app/javascript/packs/counter.js
containing	a	simple	counter	component:

import	React,	{useState}	from	'react';

import	ReactDOM	from	'react-dom';

const	Counter	=	props	=>	{

		const	[count,	setCount]	=	useState(0);

		return	<div	className='Counter'>

				You	have	clicked	the	button	{count}	times.

				<button	onClick={()	=>	setCount(c	=>	c	+	1)}>Click!</button>

		</div>;

};

document.addEventListener('DOMContentLoaded',	()	=>	{

		ReactDOM.render(

				<Counter	/>,

				document.body.appendChild(document.createElement('div')),

)

});

This	application	updates	a	counter	every	time	the	button	is	clicked.

We	can	now	insert	the	pack	into	the	web	page	by	adding	a	single	line	of	code	to

the	template	page:

<h1>Example#index</h1>

<p>Find	me	in	app/views/example/index.html.erb</p>

<%=	javascript_pack_tag	'counter'	%>

Finally,	we	can	run	the	rails	server	on	port	3000:

$	rails	server

Which	will	show	the	page	you	can	see	in	figure	1-9.

Figure	1-9.	A	React	app	embedded	in	Rails

Discussion
Behind	the	scenes,	as	you	have	probably	guessed,	Webpacker	transforms	the
application	using	a	copy	of	webpack,	which	can	be	configured	with	the
app/config/webpacker.yml	config	file.

Webpacker	is	intended	to	be	used	alongside	Rails	code,	rather	than	as	a
replacement	of	it.	It’s	useful	if	your	Rails	application	requires	a	small	amount	of
additional	interactivity.

To	find	out	more	about	Webpacker	on	the	Webpacker	Github	site.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

1.8	Create	Custom	Elements	with	Preact

Problem

http://localhost:3000/example/index.html
https://github.com/rails/webpacker
https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch01-07-add-react-to-rails
https://github.com/dogriffiths/ReactCookbook-source/

There	are	sometimes	circumstances	where	it	is	challenging	to	add	React	code
into	existing	content.	For	example,	in	some	CMS	configurations,	users	are	not
allowed	to	insert	additional	JavaScript	into	the	body	of	a	page.	In	these	cases,	it
would	be	useful	to	have	some	standardized	way	to	insert	JavaScript	applications
safely	into	a	page.

Solution
Custom	elements	are	a	standard	way	of	creating	new	HTML	elements	that	can
be	used	in	a	web	page.	In	effect,	they	are	a	way	of	extending	the	HTML
language	by	making	more	tags	available	to	a	user.

This	recipe	looks	at	how	a	lightweight	framework	like	Preact	can	be	used	to
create	custom	elements,	which	themselves	can	be	served	from	a	third-party
service.

Let’s	begin	by	creating	a	new	Preact	application.	This	application	will	serve	the
custom	element	that	we	will	be	able	to	use	elsewhere:7

$	preact	create	default	my-element

Now	we	will	change	into	the	app’s	directory	and	add	the	preact-custom-
element	library	to	the	project:

$	cd	my-element

$	npm	install	preact-custom-element	--save

The	preact-custom-element	library	will	allow	us	to	register	a	new
custom	HTML	element	in	a	browser.

Next,	we	need	to	modify	the	app/index.js	of	the	Preact	project	so	that	it	registers
a	new	custom	element,	which	we	will	call	components/Converter/index.js

import	register	from	'preact-custom-element';

import	Converter	from	'./components/Converter';

register(Converter,	'x-converter',	['currency']);

The	register	method	tells	the	browser	that	we	want	to	create	a	new	custom
HTML	element	called	<x-converter/>,	which	has	a	single	property	called

currency	and	which	will	be	built	using	a	component	defined	in
./components/Converter/index.js,	which	we	will	define	like	this:

import	{h}	from	'preact';

import	{useEffect,	useState}	from	"preact/hooks";

import	'style/index.css';

const	rates	=	{gbp:	0.81,	eur:	0.92,	jpy:	106.64};

export	default	({currency	=	'gbp'})	=>	{

				const	[curr,	setCurr]	=	useState(currency);

				const	[amount,	setAmount]	=	useState(0);

				useEffect(()	=>	{

								setCurr(currency);

				},	[currency]);

				return	<div	className='Converter'>

								<p>

												<label	htmlFor='currency'>Currency:	</label>

												<select

																name='currency'

																value={curr}

																onChange={evt	=>	setCurr(evt.target.value)}

												>

																{

																				Object.keys(rates).map(r	=>	<option	value={r}>{r}

</option>)

																}

												</select>

								</p>

								<p	className='Converter-amount'>

												<label	htmlFor='amount'>Amount:	</label>

												<input

																name='amount'

																size={8}

																type="number"

																value={amount}

																onInput={evt	=>	

setAmount(parseFloat(evt.target.value))}

												/>

								</p>

								<p>

												Cost:

												{((amount	||	0)	/	rates[curr]).toLocaleString('en-US',	{

																style:	'currency',

																currency:	'USD'

												})}

								</p>

				</div>

};

NOTE
To	be	compliant	with	the	custom	elements	specification8	we	must	choose	a	name	for	our	element	that
begins	with	a	lowercase	letter,	does	not	include	any	uppercase	letters,	and	contains	a	hyphen.	This
ensures	the	name	does	not	clash	with	any	standard	element	name.

Our	Converter	component	is	a	very	simple	currency	converter,	which	in	our
example,	is	using	a	fixed	set	of	exchange	rates.	If	we	now	start	our	preact	server:

$	npm	run	dev

The	JavaScript	for	the	custom	element	will	be	available	at
http://localhost:8080/bundle.js

In	order	to	use	this	new	custom	element,	let’s	create	a	static	web	page
somewhere	with	this	HTML:

<html>

				<head>

								<script	src="https://unpkg.com/babel-

polyfill/dist/polyfill.min.js"></script>

								<script	

src="https://unpkg.com/@webcomponents/webcomponentsjs">

								</script>

								<!--	Replace	this	with	the	address	of	your	custom	element	-->

								<script	type="text/javascript"	

src="http://localhost:8080/bundle.js"></script>

				</head>

				<body>

								<h1>Custom	Web	Element</h1>

								<div	style="float:	right;	clear:	both">

												<!--	This	tag	will	insert	the	Preact	app	-->

												<x-converter	currency="jpy"/>

								</div>

								<p>This	page	contains	an	example	custom	element	called

												<code><x-converter/></code>,

												which	is	being	served	from	a	different	location</p>

				</body>

</html>

http://localhost:8080/bundle.js

This	web	page	is	including	the	definition	of	the	custom	element	in	the	final
<script/>	of	the	<head/>	element.	In	order	to	make	sure	that	the	custom
element	is	available	across	both	new	and	old	browsers,	we	also	include	a	couple
of	shims	from	unpkg.com.

Now	that	the	custom	element	code	is	included	in	the	web	page,	we	can	insert
<x-converter/>	tags	into	the	code,	as	if	they	are	part	of	standard	HTML.	In
our	example,	we	are	also	passing	a	currency	property,	which	will	be	passed
through	to	the	underlying	Preact	component.

WARNING
Custom	element	properties	are	passed	to	the	underlying	component	with	lowercase	names,	regardless	of
how	they	are	defined	in	the	HTML.

We	can	run	this	page	through	a	web	server,	separate	from	the	Preact	server.	The
new	custom	element	is	shown	in	figure	1-10.

Figure	1-10.	The	custom	element	embedded	in	a	static	page

Discussion
The	custom	element	does	not	need	to	be	served	from	the	same	server	as	the	web
page	that	uses	it.	This	means	that	custom	elements	are	a	way	of	making
embeddable	widgets	available	for	online	services.	Because	they	can	be	accessed
from	elsewhere,	you	might	want	to	check	the	Referer	header	on	any	incoming

request	to	the	component,	to	prevent	any	unauthorized	usage.

Our	example	is	serving	the	custom	element	from	Preact’s	development	server.
For	a	production	release,	you	would	probably	want	to	create	a	static	build	of	the
component,	which	can	then	be	placed	on	any	web	server,	and	will	likely	be
significantly	smaller.9

Think	about	security.	You	may	want	to	tie	down	which	domains	can	access	the
element	by	checking	the	forward	header

You	can	download	the	source	for	this	recipe	from	the	Github	site.

https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch01-08-custom-elements
https://github.com/dogriffiths/ReactCookbook-source/

1.9	Use	Storybook	for	Component	Development

Problem
React	components	are	the	stable	building	material	of	React	applications.	If	they
are	written	carefully,	they	can	be	re-used	cleanly	within	and	between	React
applications.	But	when	you	are	building	components,	it	is	sometimes	challenging
to	create	the	entire	set	of	circumstances	that	the	component	will	have	to	deal
with.	For	example,	in	an	asynchronous	application,	components	might	frequently
be	rendered	with	undefined	properties.	Will	the	component	still	render	correctly?
Will	they	show	errors	when	they’re	misused?

But	if	you	are	building	components	as	part	of	a	complex	application,	it	can	be
tough	to	create	all	of	the	situations	with	which	your	component	will	need	to
cope.

Also,	if	you	have	specialized	UX	developers	working	on	your	team,	it	can	waste
a	lot	of	time	if	they	have	to	navigate	through	an	application	to	view	the	single
component	they	have	in	development.

It	would	be	useful	if	there	was	some	way	of	displaying	a	component	in	isolation
and	passing	it	example	sets	of	properties.

Solution
Storybook	is	a	tool	for	displaying	libraries	of	components	in	various	states.	It
could	be	described	as	a	gallery	for	components,	but	that’s	probably	selling	it
short.	In	reality,	Storybook	is	a	tool	for	component	development.

How	do	we	add	Storybook	to	a	project?	Let’s	begin	by	creating	a	React
application	with	create-react-app:

$	npx	create-react-app	my-app

$	cd	my-app

Now	we	can	add	Storybook	to	the	project:

$	npx	-p	@storybook/cli	sb	init

And	then	start	the	Storybook	server:

$	npm	run	storybook

Storybook	runs	its	own	server:	in	this	case,	we	are	running	it	on	port	9000,	as
you	can	see	in	figure	1-11.	When	you	are	using	Storybook,	there	is	no	need	to
run	the	actual	React	application.

Figure	1-11.	The	welcome	page	in	Storybook

Storybook	calls	a	single	component	rendered	with	example	properties	a	story.
The	default	installation	of	Storybook	generates	sample	stories	in	the	src/stories/
directory	of	the	application.	This	is	src/stories/Button.stories.js:

import	React	from	'react';

import	{	Button	}	from	'./Button';

export	default	{

		title:	'Example/Button',

		component:	Button,

		argTypes:	{

				backgroundColor:	{	control:	'color'	},

		},

};

const	Template	=	(args)	=>	<Button	{...args}	/>;

export	const	Primary	=	Template.bind({});

Primary.args	=	{

		primary:	true,

		label:	'Button',

};

export	const	Secondary	=	Template.bind({});

Secondary.args	=	{

		label:	'Button',

};

export	const	Large	=	Template.bind({});

Large.args	=	{

		size:	'large',

		label:	'Button',

};

export	const	Small	=	Template.bind({});

Small.args	=	{

		size:	'small',

		label:	'Button',

};

Storybook	watches	for	files	named	*.stories.js	in	your	source	folder,	and	it
doesn’t	care	where	they	are,	so	you	are	free	to	create	them	where	you	like.	One
typical	pattern	places	the	stories	in	a	folder	alongside	the	component	they	are
showcasing.	So	if	you	copy	the	folder	to	a	different	application,	you	can	take

stories	with	it	as	a	form	of	living	documentation.

Figure	1-12	shows	what	Button.stories.js	looks	like	inside	Storybook.

Figure	1-12.	An	example	story

Discussion
Despite	its	simple	appearance,	Storybook	is	actually	a	very	productive

development	tool.	It	allows	you	to	focus	on	one	component	at	a	time.	Like	a
kind	of	visual	unit	test,	it	enables	you	to	try	out	a	component	in	a	series	of
possible	scenarios	to	check	that	it	behaves	appropriately.

Storybook	also	has	a	large	selection	of	additional	add-ons.

The	add-ons	allow	you	to:

Add	interactive	controls	for	setting	properties	(Knobs)

Include	inline	documentation	for	each	story	(Docs)

Record	snapshots	of	the	HTML	to	test	the	impact	of	changes	(Storyshots)

And	many,	many	more.

For	further	information	about	Storybook	see	their	web	site.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

1.10	Test	Your	Code	in	a	Browser	with	Cypress

Problem
Most	React	projects	include	a	testing	library.	The	most	common	is	probably
@testing-library/react,	which	comes	bundled	with	create-react-
app,	or	enzyme	which	is	used	by	preact.

But	nothing	quite	beats	testing	code	inside	a	real	browser,	with	all	of	the
additional	complications	that	that	entails.	Traditionally	browser	testing	can	be
unstable	and	prone	to	frequent	upgrade	problems	as	browser	drivers	(such	as
chromedriver)	have	to	be	upgraded	every	time	a	browser	is.

Add	to	that	the	issue	of	generating	test	data	on	a	backend	server	and	browser-
based	testing	can	be	complex	to	set	up	and	manage.

Solution
The	Cypress	testing	framework	avoids	many	of	the	downsides	of	traditional
browser	testing.	It	runs	in	a	browser	but	avoids	the	need	for	an	external
webdriver	tool.	Instead,	it	communicates	directly	with	a	browser,	like	Chrome	or
Electron,	over	a	network	port	and	then	injects	JavaScript	to	run	much	of	the	test

https://storybook.js.org/addons/
https://storybook.js.org
https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch01-09-add-storybook
https://github.com/dogriffiths/ReactCookbook-source/
https://www.cypress.io/

code.

Let’s	create	an	application	create-react-app	to	see	how	it	works:

$	npx	create-react-app	my-app

Now	let’s	go	into	the	app	directory	and	install	Cypress:

$	cd	my-app

$	npm	install	cypress	--save-dev

Before	we	run	Cypress,	we	need	to	configure	it	so	that	it	knows	how	to	find	our
application.	We	can	do	this	by	editing	the	cypress.json	file	in	the	application
directory,	and	tell	if	the	URL	of	our	app:

{

		"baseUrl":	"http://localhost:3000/"

}

Once	we	have	started	the	main	application:

$	yarn	start

We	can	then	open	Cypress:

$	npx	cypress	open

The	first	time	you	run	Cypress	it	will	install	all	of	the	dependencies	it	needs.
We’ll	now	create	a	test	in	the	cypress/integration/	directory	called	screenshot.js.
This	will	be	a	very	simple	test	which	opens	the	home	page	and	takes	a
screenshot:

describe('screenshot',	()	=>	{

				it('should	be	able	to	take	a	screenshot',	()	=>	{

								cy.visit('/');

								cy.screenshot('frontpage');

				});

});

You’ll	notice	that	tests	are	written	in	Jest	format.	Once	you	save	the	test,	it	will

appear	in	the	main	Cypress	window,	shown	in	figure	1-13.

Figure	1-13.	The	Cypress	window

If	you	double-click	on	the	test,	it	will	run	it	in	a	browser.	The	front	page	of	the
application	will	open,	and	a	screenshot	will	be	saved	as
cypress/screenshots/screenshot.js/frontpage.png.

Discussion
Here	are	some	example	commands	you	can	perform	with	Cypress:

Command Description

cy.contains('Fred') Find	the	element	containing	Fred

cy.get('.Norman').click() Click	the	element	with	class	Norman

cy.get('input').type('Hi!') Type	"Hi!"	into	the	input	field

cy.get('h1').scrollIntoView() Scroll	the	<h1/>	into	view

These	are	just	the	commands	that	interact	with	the	web	page.	But	Cypress	has
another	trick	up	its	sleeve.	Cypress	can	also	modify	the	code	inside	the	browser
to	change	the	time	(cy.clock()),	the	cookies	(cy.setCookie()),	the
local-storage	(cy.clearLocalStorage)	and–most	impressively–it	can	even
fake	requests	and	responses	to	an	API	server.

It	does	this	by	modifying	the	networking	functions	that	are	built	into	the	browser
so	that	this	code:

cy.route("/api/server?*",	[{some:	'Data'}])

Will	cause	any	networking	code	in	the	application	that	makes	a	call	to	a	server
endpoint	beginning	/api/server?...	will	return	the	JSON	array	[{some:
'Data'}].

This	can	completely	change	the	way	times	can	develop	applications	because	it
decouples	the	front-end	development	from	the	back	end.	The	browser	tests	can
specify	what	they	want	data	they	need	without	having	to	create	a	real	server	and
database.

To	learn	more	about	Cypress,	visit	the	documentation	site.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

And	yes,	this	means	that	Gatsby	has	TypeScript	support	built-in.

You	can	do	this	in	most	operating	systems	by	pressing	CTRL-C.
The	name	is	intentionally	similar	to	create-react-app.	The	maintainer	of	Razzle,	Jared	Palmer,
lists	create-react-app	as	one	of	the	inspirations	for	Razzle.

1

2

3

https://docs.cypress.io/api/api/table-of-contents.html
https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch01-10-add-cypress
https://github.com/dogriffiths/ReactCookbook-source/

See	recipe	2	in	this	chapter

See	the	Gatsby	and	Razzle	recipes	elsewhere	in	this	chapter.
By	pressing	CTRL=-C

For	more	information	on	creating	Preact	applications,	see	the	Preact	recipe	earlier	in	this	chapter.
See	the	WHATWG	specification	for	further	details	on	custom	elements	and	naming	conventions.

For	further	details	on	shrinking	Preact	downloads,	see	the	Preact	recipe	earlier	in	this	chapter.

4

5

6

7

8

9

https://html.spec.whatwg.org/multipage/custom-elements.html

Chapter	2.	Routing

A	NOTE	FOR	EARLY	RELEASE	READERS

With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the	authors’	raw	and	unedited
content	as	they	write—so	you	can	take	advantage	of	these	technologies	long	before	the	official	release
of	these	titles.

This	will	be	the	2nd	chapter	of	the	final	book.	Please	note	that	the	GitHub	repo	will	be	made	active
later	on.

If	you	have	comments	about	how	we	might	improve	the	content	and/or	examples	in	this	book,	or	if
you	notice	missing	material	within	this	chapter,	please	reach	out	to	the	editor	at	ccollins@oreilly.com.

In	this	chapter,	we	are	going	to	look	at	recipes	using	React	routes	and	the	react-
router-dom	library.

react-router-dom	uses	declarative	routing:	that	means	you	treat	routes	as	you
would	any	other	React	component.	React	routes	are	obviously	different	from
buttons,	text	fields,	and	blocks	of	text	because	they	have	no	visual	appearance.
But	in	most	other	ways,	they	are	very	similar	to	those	buttons	and	blocks	of	text.
Routes	live	in	the	virtual	DOM	tree	of	components.	They	listen	for	changes	in
the	current	browser	location	and	allow	you	to	switch	on	and	switch	off	parts	of
the	interface.	They	are	what	give	Single	Page	Applications	the	appearance	of
multi-page	applications.

Used	well,	they	can	make	your	application	feel	like	any	other	web	site.	Users
will	be	able	to	bookmark	sections	of	your	application,	as	they	might	bookmark	a
page	from	Wikipedia.	They	can	go	backward	and	forwards	in	their	browser
history,	and	your	interface	will	behave	properly.	If	you	are	new	to	React,	then	it
is	well	worth	your	time	looking	deeply	into	the	power	of	routing.

2.1	Create	Desktop/Mobile	Interfaces	with
Responsive	Routes

Problem

mailto:ccollins@oreilly.com

Most	apps	will	be	consumed	by	people	on	both	mobile	and	laptop	computers,
which	means	you	probably	want	your	React	application	to	work	well	across	all
screen	sizes.	This	might	involve	relatively	simple	CSS	changes	to	adjust	the
sizing	of	text	and	screen	layout,	as	well	as	more	substantial	changes,	which	can
give	mobile	and	desktop	users	very	different	experiences	when	navigating
around	your	site.

Our	example	application	shows	the	names	and	addresses	of	a	list	of	people.	On	a
desktop,	it	looks	like	this:

Figure	2-1.	The	desktop	view	of	the	app

But	this	won’t	work	very	well	on	a	mobile	device,	which	might	only	have	space
to	display	either	the	list	of	people,	or	the	details	of	one	person,	but	not	both.

What	can	we	do	in	React	to	provide	a	custom	navigation	experience	for	both
mobile	and	desktop	users,	without	having	to	create	two	completely	separate
versions	of	the	application?

Solution
We’re	going	to	use	responsive	routes.	A	responsive	route	changes	according	to
the	size	of	the	user’s	display.	Our	existing	application	uses	a	single	route	for
displaying	the	information	for	a	person:	/people/:id

When	you	navigate	to	this	route,	the	browser	shows	a	page	in	Figure	2-1.	All
people	are	listed	down	the	left-hand	side,	with	the	person	matching	:id
highlighted.	And	the	selected	person’s	details	are	displayed	on	the	right.

We’re	going	to	modify	our	application	so	that	it	will	also	cope	with	an	additional
route	at	/people.	Then	we	will	make	the	routes	responsive	so	that	the	user	will
see	different	things	on	different	devices:

Route Mobile Desktop

/people Show	list	of	people Redirect	to	/people/<some-id>

/people/<id> Show	details	for	<id> Show	list	of	people	and	details	of	<id>

What	ingredients	will	we	need	to	do	this?	First,	we	need	to	install	react-router-
dom	if	our	application	does	not	already	have	it:

npm	install	react-router-dom	--save

The	react-router-dom	library	allows	us	to	coordinate	the	current	location	of	the
browser	with	the	state	of	our	application.	Next,	we	will	install	the	react-media
library,	which	allows	us	to	create	React	components	that	respond	to	changes	in
the	size	of	the	display	screen.

npm	install	react-media	--save

Now	we’re	going	to	create	a	responsive	PeopleContainer	component	that	will
manage	the	routes	that	we	want	to	create.	On	small	screens,	our	component	will
display	either	a	list	of	people	or	the	details	of	a	single	person.	On	large	screens,
it	will	show	a	combined	view	of	a	list	of	people	on	the	left	and	the	details	of	a
single	person	on	the	right.

The	PeopleContainer	will	use	the	Media	component	from	react-media.	The
Media	component	performs	a	similar	job	to	the	CSS	@media	rule:	it	allows	you

to	generate	output	for	a	specified	range	of	screen	sizes.	The	Media	component
accepts	a	queries	property	which	allows	you	to	specify	a	set	of	screen	sizes.
We’re	going	to	define	a	single	screen	size–small–that	we’ll	use	as	the	break
between	mobile	and	desktop	screens:

<Media	queries={{

								small:	"(max-width:	700px)"

				}}>

		...

</Media>

The	Media	component	takes	a	single	child	component,	which	it	expects	to	be	a
function.	This	function	is	given	a	size	object	which	can	be	used	to	tell	what	the
current	screen	size	is.	In	our	example,	the	size	object	will	have	a	small	attribute,
which	we	can	use	to	decide	what	other	components	to	display:

<Media	queries={{

								small:	"(max-width:	700px)"

				}}>

		{

				size	=>	size.small	?	[SMALL	SCREEN	COMPONENTS]	:	[BIG	SCREEN	

COMPONENTS]

		}

</Media>

Before	we	look	at	the	details	of	what	code	we	are	going	to	return	for	large	and
small	screens,	it’s	worth	taking	a	look	at	how	we	will	mount	the
PeopleContainer	in	our	application.	This	is	going	to	be	our	main	App
component:

import	{BrowserRouter,	Link,	Route,	Switch}	from	'react-router-dom';

import	PeopleContainer	from	"./PeopleContainer";

function	App()	{

		return	(

				<BrowserRouter>

								<Switch>

												<Route	path='/people'>

																<PeopleContainer/>

												</Route>

												<Link	to='/people'>People</Link>

								</Switch>

				</BrowserRouter>

);

}

export	default	App;

We	are	using	the	BrowserRouter	from	react-router-dom.	This	is	the	link	between
our	code	and	the	HTML5	history	API	in	the	browser.	We	need	to	wrap	all	of	our
routes	in	a	Router	so	that	they	have	access	to	the	browser’s	current	address.

Inside	the	BrowserRouter,	we	have	a	Switch.	The	Switch	looks	at	the
components	inside	it,	looking	for	a	Route	that	matches	the	current	location.	Here
we	have	a	single	Route	matching	paths	that	begin	with	/people.	If	that’s	true,	we
display	the	PeopleContainer.	If	no	route	matches,	we	fall	through	to	the	end	of
the	Switch	and	just	render	a	Link	to	the	/people	path.	So	when	someone	goes	to
the	front	page	of	the	application,	they	only	see	a	link	to	the	People	page.

So	we	know	if	we’re	in	the	PeopleContainer,	we’re	already	on	a	route	that
begins	with	/people/….	If	we’re	on	a	small	screen,	we	need	to	either	show	a	list
of	people	or	display	the	details	of	a	single	person,	but	not	both.	We	can	do	this
with	Switch:

<Media	queries={{

								small:	"(max-width:	700px)"

				}}>

		{

				size	=>	size.small	?	[SMALL	SCREEN	COMPONENTS]

								<Switch>

										<Route	path='/people/:id'>

												<Person/>

										</Route>

										<PeopleList/>

								</Switch>

								:	[BIG	SCREEN	COMPONENTS]

		}

</Media>

On	a	small	device,	the	Media	component	will	call	its	child	function	with	a	value
that	means	size.small	is	true.	Our	code	will	render	a	Switch	that	will	show	a
Person	component	if	the	current	path	contains	an	id.	Otherwise,	the	Switch	will
fail	to	match	that	Route	and	will	instead	render	a	PeopleList.

Ignoring	the	fact	that	we’ve	yet	to	write	the	code	for	large	screens,	if	we	were	to
run	this	code	right	now	on	a	mobile	device,	and	hit	the	People	link	on	the	front

page,	we	would	navigate	to	/people	which	could	cause	the	application	to	render
the	PeopleList	component.	The	PeopleList	component1	displays	a	set	of	links	to
people	with	paths	of	the	form	/people/id.	When	someone	selects	a	person	from
the	list,	our	components	are	re-rendered,	and	this	time	PeopleContainer	displays
the	details	of	a	single	person.

Figure	2-2.	In	mobile	view:	the	list	of	people	(left)	which	links	to	a	person’s	details	(right)

So	far,	so	good.	Now	we	need	to	make	sure	that	our	application	still	works	for
larger	screens.	We	need	to	generate	responsive	routes	in	PeopleContainer	for
when	size.small	is	false.	If	the	current	route	is	of	the	form	/people/id	we	can
display	the	PeopleList	component	on	the	left,	and	the	Person	component	on	the
right:

<div	style={{display:	'flex'}}>

		<PeopleList/>

		<Person/>

</div>

Unfortunately	that	doesn’t	handle	the	case	where	the	current	path	is	/people.	For
that,	we	need	another	Switch	which	will	either	display	the	details	for	a	single
person,	or	will	redirect	to	/people/first-person-id	for	the	first	person	in	the	list	of
people.

<div	style={{display:	'flex'}}>

				<PeopleList/>

				<Switch>

								<Route	path='/people/:id'>

												<Person/>

								</Route>

								<Redirect	to={`/people/${people[0].id}`}/>

				</Switch>

</div>

The	Redirect	component	doesn’t	perform	an	actual	browser	redirect.	It	simply
updates	the	current	path	to	/people/first-person-id,	which	causes	the
PeopleContainer	to	re-render.	It’s	similar	to	making	a	call	to	history.push()	in
JavaScript,	except	it	doesn’t	add	an	extra	page	to	the	browser	history.	If	a	person
navigates	to	/people,	the	browser	will	simply	change	it’s	location	to	/people/first-
person-id.

If	we	were	now	to	go	to	/people	on	a	laptop	or	larger	tablet,	we	would	see	the	list
of	people	next	to	the	details	for	one	person.

Figure	2-3.	What	you	see	at	http://localhost:3000/people	on	a	large	display

Here	is	the	final	version	of	our	PeopleContainer

import	Media	from	"react-media";

import	{Redirect,	Route,	Switch}	from	"react-router-dom";

import	Person	from	"./Person";

import	PeopleList	from	"./PeopleList";

import	people	from	'./people';

export	default	()	=>	{

				return	<Media	queries={{

								small:	"(max-width:	700px)"

				}}>

								{

												size	=>	size.small	?

																<Switch>

																				<Route	path='/people/:id'>

																								<Person/>

																				</Route>

																				<PeopleList/>

http://localhost:3000/people

																</Switch>

																:

																<div	style={{display:	'flex'}}>

																				<PeopleList/>

																				<Switch>

																								<Route	path='/people/:id'>

																												<Person/>

																								</Route>

																								<Redirect	to={`/people/${people[0].id}`}/>

																				</Switch>

																</div>

								}

				</Media>;

};

Discussion
Declarative	routing	inside	components	can	seem	an	odd	thing	when	you	first
meet	it.	If	you’ve	used	a	centralized	routing	model	before,	declarative	routes
may	at	first	seem	messy.	They	do,	after	all,	spread	the	wiring	of	your	application
across	who-knows-how-many	components,	rather	than	keeping	it	all	neatly	in	a
single	file.	Rather	than	creating	clean	components	that	know	nothing	of	the
outside	world,	you	are	suddenly	giving	the	intimate	knowledge	of	the	paths	used
in	the	application,	which	might	make	them	less	portable.

However,	responsive	routes	show	the	real	power	of	declarative	routing.	If	you’re
concerned	about	your	components	knowing	too	much	about	the	paths	in	your
application,	consider	extracting	the	path-strings	into	a	shared	file.	That	way,	you
will	have	the	best	of	both	worlds:	components	that	modify	their	behavior	based
upon	the	current	path,	and	a	centralized	set	of	path	configurations.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

2.2	Move	State	into	Routes	to	Create	Deep	Links

Problem
It	is	often	useful	to	manage	the	internal	state	of	a	component	with	the	route	that
the	component	is	displayed.	For	example,	this	is	a	React	component	that	displays
two	tabs	of	information:	one	for	people	and	one	for	/offices.

https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch02-01-responsive-route
https://github.com/dogriffiths/ReactCookbook-source/

import	{useState}	from	"react";

import	People	from	"./People";

import	Offices	from	"./Offices";

import	"./About.css";

export	default	()	=>	{

				const	[tabId,	setTabId]	=	useState("people")

				return	<div	className='About'>

								<div	className='About-tabs'>

												<div	onClick={()	=>	setTabId("people")}

																	className={tabId	===	"people"	?	"About-tab	active"	:	

"About-tab"}

												>

																People

												</div>

												<div	onClick={()	=>	setTabId("offices")}

																	className={tabId	===	"offices"	?	"About-tab	active"	:

"About-tab"}

												>

																Offices

												</div>

								</div>

								{tabId	===	"people"	&&	<People/>}

								{tabId	===	"offices"	&&	<Offices/>}

				</div>;

}

When	a	user	clicks	on	a	tab,	an	internal	tabId	variable	is	updated,	and	the	People
of	Offices	component	is	displayed.	This	is	what	it	looks	like:

Figure	2-4.	By	default,	the	OldAbout	component	shows	people	details

What’s	the	problem?	The	component	works,	but	if	we	select	the	Offices	tab	and
then	refresh	the	page,	the	component	resets	to	the	People	tab.	Likewise,	we	can’t
bookmark	the	page	when	it’s	on	the	Offices	tab.	We	can	create	a	link	anywhere

else	in	the	application	which	takes	us	directly	to	the	Offices.	Accessibility
hardware	is	less	likely	to	notice	that	the	tabs	are	working	as	hyperlinks	because
they	are	not	rendered	in	that	way.

Solution
We	are	going	to	the	tabId	state	from	the	component	into	the	current	browser
location.	So	instead	of	rendering	the	component	at	/about	and	then	using	onClick
events	to	change	internal	state,	we	are	instead	going	to	have	routes	to
/about/people	and	/about/offices	which	display	one	tab	or	the	other.	The	tab
selection	will	survive	a	browser	refresh.	We	can	bookmark	the	page	on	a	given
tab.	We	can	jump	to	a	given	tab.	And	we	make	the	tabs	themselves	real
hyperlinks,	which	will	be	recognized	as	such	by	anyone	navigating	with	a
keyboard	or	screen	reader.

What	ingredients	do	we	need?	Just	one:	react-router-dom:

npm	install	react-router-dom	--save

react-router-dom	will	allow	us	to	synchronize	the	current	browser	URL	with	the
components	that	we	render	on	screen.

Our	existing	is	already	using	react-router-dom	to	display	the	OldAbout
component	at	path	/oldabout	as	you	can	see	from	this	fragment	of	code	from	the
App.js	file:

<Switch>

				<Route	path="/oldabout">

								<OldAbout/>

				</Route>

				<p>Choose	an	option</p>

</Switch>

You	can	see	the	full	code	for	this	file	at	the	Github	repository.

We’re	going	to	create	a	new	version	of	the	OldAbout	component,	called	About
and	we’re	going	to	mount	it	at	its	own	route:

<Switch>

				<Route	path="/oldabout">

								<OldAbout/>

				</Route>

				<Route	path="/about/:tabId?">

								<About/>

				</Route>

				<p>Choose	an	option</p>

</Switch>

This	means	that	we	will	be	able	to	open	both	versions	of	the	code	in	the	example
application.

Our	new	version	is	going	to	appear	to	be	virtually	identical	to	the	old
component.	We’ll	extract	the	tabId	from	the	component,	and	move	it	into	the
current	path.

Setting	the	path	of	the	Route	to	/about/:tabId?	means	that	both	/about,
/about/offices,	/about/people	will	all	mount	our	component.	The	"?"	indicates
that	the	tabId	parameter	is	optional.

We’ve	now	done	the	first	part:	we’ve	put	the	state	of	the	component	into	the	path
that	displays	it.	Now	we	need	to	update	the	component	to	interact	with	the	route,
rather	than	an	internal	state	variable.

In	the	OldAbout	component,	we	had	onClick	listeners	on	each	of	the	tabs:

<div	onClick={()	=>	setTabId("people")}

					className={tabId	===	"people"	?	"About-tab	active"	:	"About-tab"}

>

				People

</div>

<div	onClick={()	=>	setTabId("offices")}

					className={tabId	===	"offices"	?	"About-tab	active"	:	"About-

tab"}

>

				Offices

</div>

We’re	going	to	convert	these	into	Link	components,	going	to	/about/people	and
/about/offices.	In	fact,	we’re	going	to	convert	them	into	NavLink	components.	A
NavLink	is	like	a	link,	except	it	has	the	ability	to	set	an	additional	class-name,	if
the	place	it’s	linking	to	is	the	current	location.	These	means	we	don’t	need	the
className	logic	in	the	original	code:

<NavLink	to="/about/people"

									className="About-tab"

									activeClassName="active">

				People

</NavLink>

<NavLink	to="/about/offices"

									className="About-tab"

									activeClassName="active">

				Offices

</NavLink>

We	no	longer	set	the	value	of	a	tabId	variable.	We	instead	go	to	a	new	location
with	a	new	tabId	value	in	the	path.

But	what	do	we	do	to	read	the	tabId	value?	The	OldAbout	code	displays	the
current	tab	contents	like	this:

{tabId	===	"people"	&&	<People/>}

{tabId	===	"offices"	&&	<Offices/>}

This	code	can	be	replaced	with	a	Switch	and	a	couple	of	Route	components:

<Switch>

				<Route	path='/about/people'>

								<People/>

				</Route>

				<Route	path='/about/offices'>

								<Offices/>

				</Route>

</Switch>

We’re	now	almost	finished.	There’s	just	one	step	remaining:	what	to	do	if	the
path	is	simply	/about	and	contains	no	tabId.

The	OldAbout	sets	a	default	value	for	tabId	when	it	first	creates	the	state:

const	[tabId,	setTabId]	=	useState("people")

We	can	achieve	the	same	effect	by	adding	a	Redirect	to	the	end	of	our	Switch.	If
no	Route	matches	the	current	path,	we	change	the	address	to	/about/people.	This
will	cause	a	re-render	of	the	About	component	and	the	People	tab	will	be
selected	by	default:

<Switch>

				<Route	path='/about/people'>

								<People/>

				</Route>

				<Route	path='/about/offices'>

								<Offices/>

				</Route>

				<Redirect	to='/about/people'/>

</Switch>

This	is	our	completed	About	component:

import	{NavLink,	Redirect,	Route,	Switch}	from	"react-router-dom";

import	"./About.css";

import	People	from	"./People";

import	Offices	from	"./Offices";

export	default	()	=>

				<div	className='About'>

								<div	className='About-tabs'>

												<NavLink	to="/about/people"

																					className="About-tab"

																					activeClassName="active">

																People

												</NavLink>

												<NavLink	to="/about/offices"

																					className="About-tab"

																					activeClassName="active">

																Offices

												</NavLink>

								</div>

								<Switch>

												<Route	path='/about/people'>

																<People/>

												</Route>

												<Route	path='/about/offices'>

																<Offices/>

												</Route>

												<Redirect	to='/about/people'/>

								</Switch>

				</div>;

We	no	longer	need	an	internal	tabId	variable,	and	we	now	have	a	purely
declarative	component.

Figure	2-5.	Going	to	http://localhost/about/offices	with	the	new	component

Discussion
Moving	state	out	your	components	and	into	the	address	bar	can	simplify	your
code,	but	this	is	merely	a	fortunate	side-effect.	The	real	value	is	that	your
application	starts	to	behave	less	like	an	application,	and	more	like	a	web	site.
Pages	can	be	bookmarked,	and	the	browser’s	Back	and	Forward	buttons	work
correctly.	Managing	more	state	in	routes	is	not	an	abstract	design	decision,	it’s	a
way	of	making	your	application	less	surprising	to	users.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

2.3	Use	MemoryRouter	for	Unit	Testing

Problem
We	use	routes	in	React	applications	so	that	we	make	more	of	the	facilities	of	the
browser.	We	can	bookmark	pages,	we	can	create	deep	links	into	an	app,	and	we
can	go	backward	and	forwards	in	history.

However,	once	we	use	routes,	we	make	the	component	dependent	upon
something	outside	itself:	the	browser	location.	That	might	not	seem	like	too	big
an	issue,	but	it	does	have	consequences.

http://localhost/about/offices
https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch02-02-sync-routes
https://github.com/dogriffiths/ReactCookbook-source/

Let’s	say	we	want	to	unit	test	a	route-aware	component.	As	an	example,	let’s
create	a	unit	test	for	the	About	component	we	build	in	recipe	2	of	this	chapter.
This	is	what	a	unit	test	might	look	like.2

describe('About	component',	()	=>	{

				it('should	show	people',	()	=>	{

								render	(<About/>);

								expect(screen.getByText('Kip	Russel')).toBeInTheDocument();

				});

});

This	unit	test	renders	the	component	and	then	checks	that	it	can	find	the	name
“Kip	Russel”	appearing	in	the	output.	When	we	run	this	test,	we	get	the
following	error:

console.error	node_modules/jsdom/lib/jsdom/virtual-console.js:29

				Error:	Uncaught	[Error:	Invariant	failed:	You	should	not	use	

<NavLink>	outside	a	<Router>]

This	happened	because	a	NavLink	could	not	find	a	Router	higher	in	the
component	tree.	That	means	we	need	to	wrap	the	component	in	a	Router	before
we	test	it.

Also,	we	might	want	to	write	a	unit	test	that	checks	that	the	About	performs
behaves	correctly	when	it’s	mounted	on	a	specific	route.	Even	if	we	provide
some	sort	of	Router	component,	how	will	we	be	able	to	fake	a	particular	route?

It’s	not	just	an	issue	with	unit	tests.	If	we’re	using	a	library	tool	like	Storybook3,
we	might	want	to	show	an	example	of	how	a	component	appears	when	it	is
mounted	on	a	particular.

What	we	need	is	something	like	a	real	browser	router,	but	one	which	allows	us	to
specify	its	behavior.

Solution
The	react-router-dom	library	provides	just	such	a	router:	MemoryRouter.	The
MemoryRouter	appears	to	the	outside	world,	just	like	BrowserRouter.	The
difference	is	that	while	the	BrowserRouter	is	an	interface	to	the	underlying
browser	history	API,	the	MemoryRouter	has	no	dependency	upon	the	browser	at

all.	It	can	keep	track	of	the	current	location,	it	can	go	backward	and	forwards	in
history,	but	it	does	it	all	through	simple	memory	structures.

Let’s	take	another	look	at	that	failing	unit	test.	Instead	of	just	rendering	the
About	component,	let’s	wrap	it	in	a	MemoryRouter:

describe('About	component',	()	=>	{

				it('should	show	people',	()	=>	{

								render	(<MemoryRouter><About/></MemoryRouter>);

								expect(screen.getByText('Kip	Russel')).toBeInTheDocument();

				});

});

Now,	when	we	run	the	test,	it	works.	That’s	because	the	MemoryRouter	injects	a
mocked-up	version	of	the	API	into	the	context.	That	makes	it	available	to	all	of
its	child	components.	When	the	About	component	wants	to	render	a	Link	or	a
Route,	it’s	now	able	to	because	history	is	available	in	the	context.

But	the	MemoryRouter	has	an	additional	advantage.	Because	it’s	faking	the
browser	history	API,	it	can	be	given	a	completely	fake	history,	using	the
initialEntries	property.	The	initialEntries	property	should	be	set	to	an	array	of
history	entries.	If	you	pass	a	single	value	array,	it	will	be	interpreted	as	the
current	location.	That	allows	you	to	write	unit	tests	that	check	for	component
behavior	when	it’s	mounted	on	a	given	route:

describe('About	component',	()	=>	{

				it('should	show	offices	if	in	route',	()	=>	{

								render(<MemoryRouter	initialEntries={[

												{pathname:	'/about/offices'},

]}>

												<About/>

								</MemoryRouter>);

								expect(screen.getByText('South	Dakota')).toBeInTheDocument();

				});

});

We	can	actually	use	a	real	BrowserRouter	inside	Storybook	because	we’re	in	a
real	browser.	The	MemoryRouter	still	has	the	advantage	of	being	able	to	fake	a
current	location,	as	we	do	in	the	ToAboutOffices	story:

Figure	2-6.	Using	MemoryRouter	we	can	fake	the	/about/offices	route

Discussion
Routers	let	you	separate	the	details	of	where	you	want	to	go,	from	how	you’re
going	to	get	there.	In	this	recipe,	we	see	one	advantage	of	this	separation:	we	can
create	a	fake	browser	location	to	examine	component	behavior	on	different
routes.	It	is	this	separation	that	allows	you	to	change	the	way	that	links	are

followed	without	breaking	your	application.	If	you	convert	your	Single	Page
Application	to	a	Server-Side	Rendered	application,	you	swap	your
BrowserRouter	for	a	StaticRouter.	The	links	that	used	to	make	calls	into	the
browser’s	history	API	will	now	become	native	hyperlinks,	that	cause	the
browser	to	make	native	page	loads.	Routers	are	an	excellent	example	of	the
advantages	of	splitting	policy	(what	you	want	to	do)	from	mechanisms	(how
you’re	going	to	do	it).

You	can	download	the	source	for	this	recipe	from	the	Github	site.

2.4	Use	Prompt	for	Page	Exit	Confirmations

Problem
Sometimes	you	need	to	ask	a	user	to	confirm	that	they	want	to	leave	a	page	if
they’re	in	the	middle	editing	something.	This	seemingly	simple	task	can	be
complicated	because	it	relies	on	spotting	when	the	user	presses	the	back	button
and	then	finding	a	way	to	intercept	the	move	back	through	history	and
potentially	canceling	it.

Figure	2-7.	What	if	you	want	someone	to	confirm	that	they	wish	to	leave	a	page?

What	if	there	are	several	pages	in	the	application	which	need	the	same	feature?

https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch02-03-memoryrouter
https://github.com/dogriffiths/ReactCookbook-source/

Is	there	a	simple	way	to	create	this	feature	across	any	component	that	needs	it?

Solution
The	react-router-dom	library	includes	a	component	called	Prompt,	which	is
explicitly	designed	to	get	users	to	confirm	that	they	wish	to	leave	a	page.

The	only	ingredient	we	really	need	for	this	recipe	is	the	react-router-dom	library
itself:

npm	install	react-router-dom	--save

Let’s	say	we	are	going	to	have	a	component	called	Important	mounted	at
/important,	which	allows	a	user	to	edit	a	piece	of	text.

import	React,	{useEffect,	useState}	from	"react";

export	default	()	=>	{

				let	initialValue	=	"Initial	value";

				const	[data,	setData]	=	useState(initialValue);

				const	[dirty,	setDirty]	=	useState(false);

				useEffect(()	=>	{

								if	(data	!==	initialValue)	{

												setDirty(true);

								}

				},	[data,	initialValue]);

				return	<div	className='Important'>

								<textarea	onChange={evt	=>	setData(evt.target.value)}

																		cols={40}	rows={12}>

												{data}

								</textarea>

								

								<button	onClick={()	=>	setDirty(false)}

																disabled={!dirty}>Save</button>

				</div>;

}

Important	is	already	tracking	whether	the	text	in	the	textarea	has	changed	from
the	original	value.	If	the	text	is	different,	the	value	is	dirty	is	true.	How	do	we
ask	the	user	to	confirm	they	want	to	leave	the	page	if	they	press	the	Back	button
when	dirty	is	true?

We	add	in	a	Prompt	component:

return	<div	className='Important'>

				<textarea	onChange={evt	=>	setData(evt.target.value)}

														cols={40}	rows={12}>

								{data}

				</textarea>

				

				<button	onClick={()	=>	setDirty(false)}

												disabled={!dirty}>Save</button>

				<Prompt

								when={dirty}

								message={()	=>	"Do	you	really	want	to	leave?"}

								/>

</div>;

If	the	user	edits	the	text	and	then	hits	the	Back	button,	the	Prompt	appears:

Figure	2-8.	The	Prompt	asks	the	user	to	confirm	they	want	to	leave

Adding	the	confirmation	is	very	simple.	But	the	default	prompt	interface	is	a
simple	JavaScript	dialog.	It	would	be	useful	if	we	could	decide	for	ourselves
how	we	want	the	user	to	confirm	they’re	leaving.

To	demonstrate	how	we	can	do	this,	let’s	add	in	the	Material-UI	component
library	to	the	application:

npm	install	'@material-ui/core'	--save

The	Material-UI	library	is	a	React	implementation	of	Google’s	Material	Design
standard.	We’ll	use	it	as	an	example	of	how	to	replace	the	standard	Prompt
interface	with	something	more	customized.

The	Prompt	component	does	not	actually	any	UI	itself.	Instead,	when	Prompt	is
rendered,	it	asks	the	current	Router	object	to	show	the	confirmation.	By	default,
BrowserRouter	shows	the	default	JavaScript	dialog,	but	you	can	replace	this	with
your	own	code.

When	the	BrowserRouter	is	added	to	the	component	tree,	we	can	pass	it	a
property	called	getUserConfirmation:

<div	className="App">

				<BrowserRouter

								getUserConfirmation={(message,	callback)	=>	{

										//	Custom	code	goes	here

								}}

				>

								<Switch>

												<Route	path='/important'>

																<Important/>

												</Route>

								</Switch>

				</BrowserRouter>

</div>

The	getUserConfirmation	property	should	be	set	to	a	function	that	accepts	two
parameters:	the	message	that	should	be	presented	to	the	user,	and	a	callback
function.

When	the	user	presses	the	Back	button,	the	Prompt	component	will	run
getUserConfirmation,	and	then	wait	for	the	callback	function	to	be	called	with
the	value	true	or	false.

The	callback	function	allows	use	to	return	the	user’s	response	asynchronously.
The	Prompt	component	will	wait	while	we	ask	the	user	what	want	to	do.	That
allows	use	to	create	out	own	custom	interface.

Let’s	create	a	custom	Material-UI	dialog	called	Alert.	We’ll	show	this	instead	of
the	default	JavaScript	modal:

import	Button	from	'@material-ui/core/Button';

import	Dialog	from	'@material-ui/core/Dialog';

import	DialogActions	from	'@material-ui/core/DialogActions';

import	DialogContent	from	'@material-ui/core/DialogContent';

import	DialogContentText	from	'@material-ui/core/DialogContentText';

import	DialogTitle	from	'@material-ui/core/DialogTitle';

export	default	({open,	title,	message,	onOK,	onCancel})	=>	{

				return	<Dialog

																open={open}

																onClose={onCancel}

																aria-labelledby="alert-dialog-title"

																aria-describedby="alert-dialog-description"

												>

																<DialogTitle	id="alert-dialog-title">{title}

</DialogTitle>

																<DialogContent>

																				<DialogContentText	id="alert-dialog-description">

																								{message}

																				</DialogContentText>

																</DialogContent>

																<DialogActions>

																				<Button	onClick={onCancel}	color="primary">

																								Cancel

																				</Button>

																				<Button	onClick={onOK}	color="primary"	autoFocus>

																								OK

																				</Button>

																</DialogActions>

												</Dialog>;

}

Of	course,	there	is	no	reason	why	we	need	to	display	a	dialog.	We	could	show	a
countdown	timer	or	a	snackbar	message.	We	could	even	automatically	save	the
user’s	changes	for	them.	But	we	use	the	custom	Alert	dialog	in	this	case.

How	will	use	the	Alert	component	in	our	interface?	The	first	thing	we’ll	need	to
do	is	create	our	own	getUserConfirmation	function.	We’ll	store	the	message	and
the	callback	function,	and	then	set	a	boolean	value	saying	that	we	want	to	open
the	Alert	dialog:

const	[confirmOpen,	setConfirmOpen]	=	useState(false);

const	[confirmMessage,	setConfirmMessage]	=	useState();

const	[confirmCallback,	setConfirmCallback]	=	useState();

return	(

				<div	className="App">

								<BrowserRouter

												getUserConfirmation={(message,	callback)	=>	{

																setConfirmMessage(message);

																//	Use	this	setter	form	because	callback	is	a	function

																setConfirmCallback(()	=>	callback);

																setConfirmOpen(true);

												}}

								>

	

It’s	worth	noting	that	when	we	store	the	callback	function,	we	use
setConfirmCallback(()	⇒	callback)	instead	of	simply	writing
setConfirmCallback(callback).	That’s	because	the	setters	returned	by	the
useState	hook	will	execute	any	function	passed	to	them,	rather	than	store	them.

We	can	then	use	the	values	of	confirmMessage,	confirmCallback,	and
confirmOpen	to	render	the	Alert	in	the	interface.

This	is	the	complete	App.js	file:

import	{useState}	from	'react';

import	'./App.css';

import	{BrowserRouter,	Link,	Route,	Switch}	from	"react-router-dom";

import	Important	from	"./Important";

import	Alert	from	'./Alert';

function	App()	{

				const	[confirmOpen,	setConfirmOpen]	=	useState(false);

				const	[confirmMessage,	setConfirmMessage]	=	useState();

				const	[confirmCallback,	setConfirmCallback]	=	useState();

				return	(

								<div	className="App">

												<BrowserRouter

																getUserConfirmation={(message,	callback)	=>	{

																				setConfirmMessage(message);

																				//	Use	this	setter	form	because	callback	is	a	

function

																				setConfirmCallback(()	=>	callback);

																				setConfirmOpen(true);

																}}

												>

																<Alert	open={confirmOpen}

																							title='Leave	page?'

																							message={confirmMessage}

																							onOK={()	=>	{

																											confirmCallback(true);

																											setConfirmOpen(false);

																							}}

																							onCancel={()	=>	{

																											confirmCallback(false);

																											setConfirmOpen(false);

																							}}

																/>

																<Switch>

																				<Route	path='/important'>

																								<Important/>

																				</Route>

																				<div>

																								<h1>Home	page</h1>

																								<Link	to='/important'>Go	to	important	

page</Link>

																				</div>

																</Switch>

												</BrowserRouter>

								</div>

);

}

export	default	App;

Now	when	a	user	backs	out	of	an	edit,	they	see	the	custom	dialog.

Figure	2-9.	The	custom	Alert	appears	when	the	user	presses	the	back	button

Discussion
In	this	recipe,	we	have	re-implemented	the	Prompt	modal	using	a	component

library,	but	you	don’t	need	to	be	limited	to	just	replacing	one	dialog	box	with
another.	There	is	no	reason	why,	if	someone	leaves	a	page,	that	you	couldn’t	do
something	else:	such	as	store	the	work-in-progress	somewhere	so	that	they	could
return	to	it	later.	The	asynchronous	nature	of	the	getUserConfirmation	function
allows	this	flexibility.	It’s	another	example	of	how	react-router-dom	abstracts
away	a	cross-cutting	concern.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

2.5	Add	Page	Transitions	With	react-transition-
group

Problem
Native	and	desktop	applications	often	use	animation	to	visually	connect	different
elements	together.	If	you	press	an	item	in	a	list,	it	expands	to	show	you	the
details.	Swiping	left	or	right	can	be	used	to	indicate	whether	a	user	accepts	or
rejects	an	option.

Animations,	therefore,	are	often	used	to	indicate	a	change	in	location.	They
zoom	in	on	the	details.	They	take	you	to	the	next	person	on	the	list.

Changing	locations	in	a	React	application.	But	how	can	we	animate	when	we
move	from	one	location	to	another?

Solution
For	this	recipe,	we’re	going	to	need	the	react-router-dom	library	and	the	react-
transition-group	library.

npm	install	react-router-dom	--save

npm	install	react-transition-group	--save

We’re	going	to	animate	the	About	component	that	we’ve	used	previously4.	The
About	component	has	two	tabs	called	People	and	Offices,	which	are	displayed
for	routes	/about/people	and	/about/offices.

When	someone	clicks	on	one	of	the	tabs,	we’re	going	to	fade-out	the	content	of

https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch02-04-prompt-exit
https://github.com/dogriffiths/ReactCookbook-source/

the	old	tab	and	then	fade	in	the	content	of	the	new	tab.	Although	we’re	using	a
fade,	there’s	no	reason	why	we	couldn’t	use	a	more	complex	animation,	such	as
sliding	the	tab	contents	left	or	right5.	However,	a	simple	fade	animation	will
more	clearly	demonstrate	how	it	works.

Inside	the	About	component,	the	tab	contents	are	rendered	by	People	and	Offices
components	within	distinct	routes:

import	{NavLink,	Redirect,	Route,	Switch}	from	"react-router-dom";

import	"./About.css";

import	People	from	"./People";

import	Offices	from	"./Offices";

export	default	()	=>

				<div	className='About'>

								<div	className='About-tabs'>

												<NavLink	to="/about/people"

																					className="About-tab"

																					activeClassName="active">

																People

												</NavLink>

												<NavLink	to="/about/offices"

																					className="About-tab"

																					activeClassName="active">

																Offices

												</NavLink>

								</div>

								<Switch>

												<Route	path='/about/people'>

																<People/>

												</Route>

												<Route	path='/about/offices'>

																<Offices/>

												</Route>

												<Redirect	to='/about/people'/>

								</Switch>

				</div>;

We	need	to	animate	the	components	inside	the	Switch	component.	We’ll	need
two	things	to	do	this:

Something	to	track	when	the	location	has	changed

Something	to	animate	the	tab	contents	when	that	happens

How	do	we	know	when	the	location	has	changed?	We	can	get	the	current

location	from	the	useLocation	hook	from	react-router-dom:

const	location	=	useLocation();

Now	onto	the	more	complex	task:	the	animation	itself.	What	follows	is	actually
quite	a	complex	sequence	of	events,	but	it	is	worth	taking	the	time	to	understand
it.

When	we	are	animating	from	one	component	to	another,	we	need	to	keep	both
components	on	the	page.	As	the	Offices	component	fades	out,	the	People
component	fades	in.6	This	is	done	by	keeping	both	components	in	a	transition
group.	We	can	create	a	transition	group	by	wrapping	our	animation	in	a
TransitionGroup	component.	We	also	need	a	CSSTransition	component	to
coordinate	the	details	of	the	CSS	animation.

Our	updated	code	wraps	the	Switch	in	both	a	TransitionGroup	and	a
CSSTransition:

import	{NavLink,	Redirect,	Route,	Switch,	useLocation}	from	"react-

router-dom";

import	People	from	"./People";

import	Offices	from	"./Offices";

import	{CSSTransition,	TransitionGroup}	from	"react-transition-group";

import	"./About.css";

import	"./fade.css";

export	default	()	=>	{

				const	location	=	useLocation();

				return	<div	className='About'>

								<div	className='About-tabs'>

												<NavLink	to="/about/people"

																					className="About-tab"

																					activeClassName="active">

																People

												</NavLink>

												<NavLink	to="/about/offices"

																					className="About-tab"

																					activeClassName="active">

																Offices

												</NavLink>

								</div>

								<TransitionGroup	className='About-tabContent'>

												<CSSTransition

																key={location.key}

																classNames="fade"

																timeout={500}

												>

																<Switch	location={location}>

																				<Route	path='/about/people'>

																								<People/>

																				</Route>

																				<Route	path='/about/offices'>

																								<Offices/>

																				</Route>

																				<Redirect	to='/about/people'/>

																</Switch>

												</CSSTransition>

								</TransitionGroup>

				</div>;

}

Notice	that	we	pass	the	location.key	to	the	key	of	the	CSSTransition	group,	and
we	pass	the	location	to	the	Switch	component.	When	the	user	clicks	on	one	of
the	tabs,	the	location	changes,	which	refreshes	the	About	component.	The
TransitionGroup	will	keep	the	existing	CSSTransition	in	the	tree	of	components
until	its	timeout	occurs:	in	500	milliseconds.	But	it	will	now	also	have	a	second
CSSTransition	component.

Each	of	these	CSSTransition	components	will	keep	their	child	components	alive.

Figure	2-10.	The	TransitionGroup	keeps	both	the	old	and	new	components	in	the	virtual	DOM.

This	is	why	we	pass	the	location	value	to	the	Switch	components:	we	need	the
Switch	for	the	old	tab,	and	the	Switch	for	the	new	tab	to	keep	rendering	their
routes.

So	now,	onto	the	animation	itself.	The	CSSTransition	component	accepts	a
property	called	classNames7,	which	we	have	set	to	the	value	fade.	CSSTransition
will	use	to	generate	four	distinct	class-names:

fade-enter

fade-enter-active

fade-exit

fade-exit-active

The	fade-enter	class	is	for	components	that	are	about	to	start	to	animate	into
view.	The	fade-enter-active	class	is	applied	to	components	that	are	actually
animating.	fade-exit	and	fade-exit-active	are	for	components	that	are	beginning
or	animating	their	disappearance.

The	CSSTransition	component	will	add	these	class-names	to	their	immediate

children.	If	we	are	animating	from	the	Offices	tab	to	the	People	tab,	then	the	old
CSSTransition	will	add	the	fade-enter-active	class	to	the	People	HTML,	and	add
the	fade-exit-active	to	the	Offices	HTML.

All	that’s	left	to	do	is	define	the	CSS	animations	themselves:

.fade-enter	{

				opacity:	0;

}

.fade-enter-active	{

				opacity:	1;

				transition:	opacity	250ms	ease-in;

}

.fade-exit	{

				opacity:	1;

}

.fade-exit-active	{

				opacity:	0;

				transition:	opacity	250ms	ease-in;

}

The	fade-enter-	classes	use	CSS	transitions	to	change	the	opacity	of	the
component	from	0	to	1.	The	fade-exit-	classes	animate	the	opacity	from	1	back
to	0.	It’s	generally	a	good	idea	to	keep	the	animation	class	definitions	in	their
own	CSS	file.	That	way,	they	can	be	reused	for	other	animations.

The	animation	is	complete.	When	the	user	clicks	on	a	tab,	they	see	the	contents
cross-fade	from	the	old	data	to	the	new	data.

Figure	2-11.	The	contents	of	the	tab	fade	from	offices	to	people

Discussion
Animations	can	be	quite	irritating	when	used	poorly.	Each	animation	you	add
should	have	some	intent.	If	you	find	that	you	want	to	add	an	animation	just
because	you	think	it	will	be	attractive,	then	you	will	almost	certainly	find	that
the	users	will	dislike	it.	Generally,	it	is	best	to	ask	a	few	questions	before	adding
an	animation:

Will	this	animation	clarify	the	relationship	between	two	routes?	Are	you
zooming-in	to	see	more	detail,	or	moving	across	to	look	at	a	related	item?

How	short	should	the	animation	be?	Any	longer	than	half	a	second	is
probably	too	much.

What	is	the	impact	on	performance?	CSS	transitions	usually	have	minimal
effect	if	the	browser	hands	the	work	off	to	the	GPU.	But	what	happens	in	an
old	browser	on	a	mobile	device?

You	can	download	the	source	for	this	recipe	from	the	Github	site.

2.6	Create	Secured	Routes

Problem
Most	applications	need	to	prevent	access	to	particular	routes	until	a	person	logs
in.	But	how	do	you	secure	some	routes	and	not	others?	Is	it	possible	to	separate
the	security	mechanisms	from	the	user	interface	elements	for	logging	in	and
logging	out?	And	how	do	you	do	it	without	writing	a	vast	amount	of	code?

Solution
Let’s	look	at	one	way	to	implement	route-based	security	in	a	React	application.
This	application	contains	a	home	page	(/),	a	public	page	with	no	security
(/public),	and	it	also	has	two	private	pages	(/private1	and	/private2)	that	we	need
to	secure:

import	React	from	'react';

import	'./App.css';

import	{BrowserRouter,	Route,	Switch}	from	"react-router-dom";

import	Public	from	"./Public";

https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch02-05-transitions
https://github.com/dogriffiths/ReactCookbook-source/

import	Private1	from	"./Private1";

import	Private2	from	"./Private2";

import	Home	from	"./Home";

function	App()	{

				return	(

								<div	className="App">

												<BrowserRouter>

																<Switch>

																				<Route	exact	path='/'>

																								<Home/>

																				</Route>

																				<Route	path='/private1'>

																								<Private1/>

																				</Route>

																				<Route	path='/private2'>

																								<Private2/>

																				</Route>

																				<Route	exact	path='/public'>

																								<Public/>

																				</Route>

																</Switch>

												</BrowserRouter>

								</div>

);

}

export	default	App;

We’re	going	to	build	the	security	system	using	a	context.	A	context	is	a	place
where	data	can	be	stored	by	a	component	and	made	available	to	the	component’s
children.	A	BrowserRouter	uses	a	context	to	pass	routing	information	to	the
Route	components	within	it.

We’re	going	to	create	a	custom	context	called	SecurityContext

import	React	from	"react";

export	default	React.createContext({});

The	default	value	of	our	context	is	an	empty	object.	We	need	something	that	will
places	function	into	the	context	for	logging	in	and	logging	out.	We’ll	do	that	by
creating	a	SecurityProvider.

import	{useState}	from	"react";

import	SecurityContext	from	"./SecurityContext";

export	default	(props)	=>	{

				const	[loggedIn,	setLoggedIn]	=	useState(false);

				return	<SecurityContext.Provider

								value={{

												login:	(username,	password)	=>	{

																//	Note	to	engineering	team:

																//	Maybe	make	this	more	secure...

																if	(username	===	'fred'	&&	password	===	'password')	{

																				setLoggedIn(true);

																}

												},

												logout:	()	=>	setLoggedIn(false),

												loggedIn

								}}>

								{props.children}

				</SecurityContext.Provider>

};

This	is	obviously	not	what	you	would	use	in	a	real	system.	You	would	probably
create	a	component	that	logged	in	and	logged	out	using	some	sort	of	web	service
or	third	party	security	system.	But	in	our	example,	the	SecurityProvider	keeps
track	of	whether	we	are	logged	in	using	a	simple	loggedIn	boolean	value.	The
SecurityProvider	puts	three	things	into	the	context:

A	function	for	logging	(login())

A	function	for	logging	out	(logout())

A	boolean	value	saying	whether	we	are	logged	in	or	out	(loggedIn)

These	three	things	will	be	available	to	any	components	placed	inside	a
SecurityProvider	component.	To	allow	any	component	inside	a	SecurityProvider
to	access	these	functions,	we’ll	add	a	custom	hook	called	useSecurity:

import	SecurityContext	from	"./SecurityContext";

import	{useContext}	from	"react";

export	default	()	=>	useContext(SecurityContext);

Now	that	we	have	a	SecurityProvider	we	need	a	way	to	use	it	to	secure	a	sub-set
of	the	routes.	We’ll	create	another	component,	called	SecureRoute:

import	Login	from	"./Login";

import	{Route}	from	"react-router-dom";

import	useSecurity	from	"./useSecurity";

export	default	(props)	=>	{

				const	{loggedIn}	=	useSecurity();

				return	<Route	{...props}>

								{loggedIn	?	props.children	:	<Login/>}

				</Route>;

}

The	SecureRoute	component	gets	the	current	loggedIn	status	from	the
SecurityContext	(using	the	useSecurity()	hook),	and	if	the	user	is	logged-in,	it
renders	the	contents	of	the	route.	If	the	user	is	not	logged	in,	it	displays	a	log-in
form.8

The	LoginForm	calls	the	login()	function,	which–if	successful–will	re-render	the
SecureRoute	and	then	show	the	secured	data.

How	do	we	use	all	of	these	new	components?	This	is	an	updated	version	of	the
App.js	file:

import	'./App.css';

import	{BrowserRouter,	Route,	Switch}	from	"react-router-dom";

import	Public	from	"./Public";

import	Private1	from	"./Private1";

import	Private2	from	"./Private2";

import	Home	from	"./Home";

import	SecurityProvider	from	"./SecurityProvider";

import	SecureRoute	from	"./SecureRoute";

function	App()	{

				return	(

								<div	className="App">

												<BrowserRouter>

																<SecurityProvider>

																				<Switch>

																								<Route	exact	path='/'>

																												<Home/>

																								</Route>

																								<SecureRoute	path='/private1'>

																												<Private1/>

																								</SecureRoute>

																								<SecureRoute	path='/private2'>

																												<Private2/>

																								</SecureRoute>

																								<Route	exact	path='/public'>

																												<Public/>

																								</Route>

																				</Switch>

																</SecurityProvider>

												</BrowserRouter>

								</div>

);

}

export	default	App;

The	SecurityProvider	wraps	our	whole	routing	system,	making	login(),	logout(),
and	loggedIn	available	to	each	SecureRoute.

What	does	the	application	look	like	when	we	run	it?

Figure	2-12.	The	home	page	has	links	to	the	other	pages

If	we	click	on	the	link	for	the	Public	Page,	we	see	it	contents,	no	problem.

Figure	2-13.	The	public	page	is	available	without	logging	in

But	if	we	click	on	Private	Page	1,	we’re	presented	with	the	log-in	screen:

Figure	2-14.	You	need	to	log	in	before	you	can	see	Private	Page	1

If	you	log	in	with	the	username	fred,	and	password	password,	you	will	then	see
the	private	content

Figure	2-15.	The	content	of	Private	Page	1	after	log-in

Discussion
Real	security	is	only	ever	provided	by	secured	back-end	services.	However,
secured	routes	prevent	a	user	from	stumbling	into	a	page	that	will	be	unable	to
read	data	from	the	server.

A	better	implementation	of	the	SecurityProvider	would	defer	to	some	third-party
OAuth	tool	or	other	security	services.	But	by	splitting	the	SecurityProvider	from
the	security	UI	(Login	and	Logout)	and	the	main	application,	you	should	be	able
to	modify	the	security	mechanisms	over	time	without	having	to	change	a	lot	of
code	in	your	application.

If	you	want	to	see	how	your	components	behave	when	people	are	logged	in	and
out,	you	can	always	create	a	mocked	version	of	the	SecurityProvider	for	use	in
unit	tests.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

We’re	won’t	show	the	code	for	the	PeopleList	here,	but	it	is	available	on	Github

We	are	using	the	React	testing-library	in	this	example.
See	recipe	1-9	in	chapter	1.

See	recipes	2	and	3	in	this	chapter
This	is	a	common	feature	of	third-party	tabbed	components.	The	animation	reinforces	in	the	user’s	mind
that	they	are	moving	left	and	right	through	the	tabs.	This	is	particularly	true	if	we	allow	the	user	to
change	the	tab	by	swiping	left	or	right.

1

2

3

4

5

6

https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch02-06-auth-zones
https://github.com/dogriffiths/ReactCookbook-source/
https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch02-01-responsive-route

The	code	uses	relative	positioning	to	place	both	components	in	the	same	position	during	the	fade.

Please	note,	this	is	plural,	to	distinguish	it	from	the	standard	className	attribute.
We’ll	omit	the	contents	of	the	Login	component	here,	but	the	code	is	available	on	the	Github	repository.

6

7

8

Chapter	3.	Managing	State

A	NOTE	FOR	EARLY	RELEASE	READERS

With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the	authors’	raw	and	unedited
content	as	they	write—so	you	can	take	advantage	of	these	technologies	long	before	the	official	release
of	these	titles.

This	will	be	the	3rd	chapter	of	the	final	book.	Please	note	that	the	GitHub	repo	will	be	made	active
later	on.

If	you	have	comments	about	how	we	might	improve	the	content	and/or	examples	in	this	book,	or	if
you	notice	missing	material	within	this	chapter,	please	reach	out	to	the	editor	at	ccollins@oreilly.com.

When	we	manage	state	in	React,	we	have	to	not	only	store	data,	but	we	also	need
to	record	data	dependencies.	Dependencies	are	intrinsic	to	the	way	that	React
works.	They	allow	React	to	update	the	page	efficiently	and	only	when	necessary.

Managing	data	dependencies,	then,	are	the	key	to	managing	state	in	React.	You
will	see	through	this	chapter	that	most	of	the	tools	and	techniques	we	use	are	to
ensure	that	we	manage	dependencies	efficiently.

A	key	concept	in	the	following	recipes	is	a	data	reducer.	A	reducer	is	simply	a
function	which	receives	a	single	object	or	an	array,	and	then	returns	a	modified
copy.	This	simple	concept	is	what	lies	behind	much	of	the	state	management	in
React.	We’ll	look	at	how	React	uses	reducer	functions	natively,	and	how	we	can
use	the	Redux	library	to	manage	data	application-wide	with	reducers.

We’ll	also	look	at	selector	functions.	These	allow	us	to	drill	in	to	the	state
returned	by	reducers.	Selectors	help	us	ignore	the	irrelevant	data,	and	in	doing
so,	they	greatly	improve	the	performance	of	our	code.

Along	the	way	we’ll	look	at	simple	ways	of	checking	if	you’re	connected	to	the
network,	how	to	manage	form	data	and	various	other	tips	and	tricks	to	keep	your
application	ticking	along.

3.1	Use	reducers	to	manage	complex	state

mailto:ccollins@oreilly.com

Problem
Many	React	components	are	straightforward.	They	do	little	more	than	render	a
section	of	HTML	and	perhaps	show	a	few	properties.

However,	some	components	can	be	more	complicated.	They	might	need	to
manage	several	pieces	of	internal	state.	For	example,	consider	this	simple
number	game.

Figure	3-1.	A	simple	number	puzzle

The	component	displays	a	series	of	numeric	tiles,	in	a	grid,	with	a	single	space.
If	the	user	clicks	a	tile	next	to	the	space,	they	can	move	it.	In	this	way,	the	user
can	rearrange	the	tiles	until	they	are	in	the	correct	order	from	1	-	8.

This	component	renders	a	small	amount	of	HTML,	but	it	will	require	some	fairly
complex	logic	and	data.	It	will	record	the	positions	of	the	tiles.	It	will	need	to

know	whether	a	user	can	move	a	given	tile.	It	will	need	to	know	how	to	move
the	tile.	It	will	need	to	know	whether	the	game	is	complete.	It	will	also	need	to
do	other	things,	such	as	reset	the	game	by	shuffling	the	tiles.

It’s	entirely	possible	to	write	all	of	this	code	inside	the	component,	but	it	will	be
harder	to	test	it.	You	could	use	the	react	testing	library,	but	that	is	probably
overkill,	given	that	most	of	the	code	will	have	very	little	to	do	with	rendering
HTML.

Solution
If	you	have	a	component	with	some	complex	internal	state,	or	which	needs	to
manipulate	its	state	in	complex	ways,	consider	using	a	reducer.

A	reducer	is	a	function	that	accepts	two	parameters:

an	object	or	array	that	represents	a	given	state,	and

an	action,	which	describes	how	you	want	to	modify	the	state

The	function	returns	a	new	copy	of	the	state	we	pass	to	it.

The	action	parameter	can	be	whatever	you	want,	but	typically	it	is	an	object	with
a	string	type	attribute	and	a	payload	with	additional	information.	You	can
think	of	the	type	as	a	command	name	and	the	payload	as	parameters	to	the
command.

For	example,	if	we	number	our	tile	positions	from	0	(top-left)	to	8	(bottom-
right),	we	might	tell	the	reducer	to	move	whatever	tile	is	in	the	top-left	corner
with:

{type:	'move',	payload:	0}

We	need	an	object	or	array	that	completely	defines	our	game’s	internal	state.	We
could	use	a	simple	array	of	strings:

['1',	'2',	'3',	null,	'5',	'6',	'7',	'8',	'4']

Which	would	represent	the	tiles	laid	out	like	this:

1 2 3

5 6

7 8 4

However,	a	slightly	more	flexible	approach	uses	an	object	for	our	state	and	gives
it	an	items	attribute	containing	the	current	tile	layout.

{

				items:	['1',	'2',	'3',	null,	'5',	'6',	'7',	'8',	'4']

}

Why	would	we	do	this?	Because	it	will	allow	our	reducer	to	return	other	state
values,	such	as	whether	or	not	the	game	is	complete,	and	so	on.

Now	we’ve	thought	of	an	action	and	decided	what	the	state	is	like,	we	can	create
a	test:

import	reducer	from	"./reducer";

describe('reducer',	()	=>	{

				it('should	be	able	to	move	1	down	if	gap	below',	()	=>	{

								let	state	=	{

												items:	['1',	'2',	'3',	null,	'5',	'6',	'7',	'8',	'4']

								};

								state	=	reducer(state,	{type:	'move',	payload:	0});

								expect(state.items).toEqual([null,	'2',	'3',	'1',	'5',	'6',	

'7',	'8',	'4'])

				});

				it('should	say	when	it	is	complete',	()	=>	{

								let	state	=	{

												items:	['1',	'2',	'3',	'4',	'5',	'6',	'7',	null,	'8'],

								};

								state	=	reducer(state,	{type:	'move',	payload:	8});

								expect(state.complete).toBe(true);

								state	=	reducer(state,	{type:	'move',	payload:	5});

								expect(state.complete).toBe(false);

				});

});

In	our	first	test	scenario,	we	pass	in	the	tiles’	locations	in	one	state.	Then	we
check	that	the	reducer	returns	the	tiles	in	a	new	state.

In	our	second	test,	we	perform	two	tile	moves	then	look	for	a	complete
attribute	to	tell	us	the	game	has	ended.

OK,	we’ve	delayed	looking	at	the	actual	reducer	code	long	enough.

function	trySwap(newItems,	position,	t)	{

				if	(newItems[t]	===	null)	{

								const	temp	=	newItems[position];

								newItems[position]	=	newItems[t];

								newItems[t]	=	temp;

				}

}

function	arraysEqual(a,	b)	{

				for	(let	i	=	0;	i	<	a.length;	i++)	{

								if	(a[i]	!==	b[i])	{

												return	false;

								}

				}

				return	true;

}

const	CORRECT	=	['1',	'2',	'3',	'4',	'5',	'6',	'7',	'8',	null];

function	reducer(state,	action)	{

				switch	(action.type)	{

								case	"move":	{

												const	position	=	action.payload;

												const	newItems	=	[...state.items];

												const	col	=	position	%	3;

												if	(position	<	6)	{

																trySwap(newItems,	position,	position	+	3);

												}

												if	(position	>	2)	{

																trySwap(newItems,	position,	position	-	3);

												}

												if	(col	<	2)	{

																trySwap(newItems,	position,	position	+	1);

												}

												if	(col	>	0)	{

																trySwap(newItems,	position,	position	-	1);

												}

												return	{

																...state,

																items:	newItems,

																complete:	arraysEqual(

																				newItems,

																				CORRECT),

												}

								}

								default:	{

												throw	new	Error("Unknown	action:	"	+	action.type);

								}

				}

}

export	default	reducer;

Our	reducer	currently	recognizes	a	single	action:	move.	The	code	in	our	Github
repository	also	includes	actions	for	shuffle	and	reset.	The	repository	also	has	a
more	exhaustive	set	of	tests	that	we	used	to	create	the	code	you	can	see	above.

But	none	of	this	code	includes	any	React	components.	It’s	pure	JavaScript	and
so	can	be	created	and	tested	in	isolation	from	the	outside	world.

WARNING
Be	careful	to	generate	a	new	object	in	the	reducer	to	represent	the	new	state.	Doing	so	ensures	each	new
state	completely	independent	of	those	that	came	before	it.

Now	it’s	time	to	wire	up	our	reducer	into	a	React	component,	with	the
useReducer	hook:

import	{useReducer}	from	"react";

import	reducer	from	"./reducer";

import	"./Puzzle.css";

export	default	()	=>	{

				const	[state,	dispatch]	=	useReducer(reducer,	{

								items:	['4',	'1',	'2',	'7',	'6',	'3',	null,	'5',	'8']

				});

				return	<div	className='Puzzle'>

								<div	className='Puzzle-squares'>

												{

																state.items.map((s,	i)	=>	<div

																				className={`Puzzle-square	${s	?	''	:	'Puzzle-

square-empty'}`}

																				key={`square-${i}`}

																				onClick={()	=>	dispatch({type:	'move',	payload:	

i})}

																>{s}</div>)

												}

								</div>

								<div	className='Puzzle-controls'>

												<button	className='Puzzle-shuffle'

																				onClick={()	=>	dispatch({type:	

'shuffle'})}>Shuffle</button>

												<button	className='Puzzle-reset'

																				onClick={()	=>	dispatch({type:	

'reset'})}>Reset</button>

								</div>

								{

												state.complete	&&

												<div	className='Puzzle-complete'>Complete!</div>

								}

				</div>;

};

Even	though	our	puzzle	component	is	doing	something	quite	complicated,	that
actual	React	code	is	relatively	short.

The	useReducer	accepts	a	reducer	function	and	a	starting	state,	and	it	returns
a	two-element	array:

The	first	element	in	the	array	is	the	current	state	from	the	reducer,

The	second	element	is	a	dispatch	function	that	allows	us	to	send	actions	to
the	reducer.

We	display	the	tiles	by	looping	through	the	strings	in	the	array	given	by
state.items.

If	someone	clicks	on	a	tile	at	position	i,	we	send	a	move	command	to	the
reducer:

onClick={()	=>	dispatch({type:	'move',	payload:	i})}

The	React	component	has	no	idea	what	it	takes	to	move	the	tile.	It	doesn’t	even
know	if	it	can	move	the	tile	at	all.	The	component	sends	the	action	to	the

reducer.

If	the	move	action	moves	a	tile,	the	component	will	automatically	re-render	the
component	with	the	tiles	in	their	new	positions.	If	the	game	is	complete,	the
component	will	know	by	the	value	of	state.complete:

state.complete	&&	<div	className='Puzzle-complete'>Complete!</div>

We	also	added	two	buttons	to	run	the	shuffle	and	reset	actions,	which	we	omitted
above,	but	which	you	can	find	in	the	code	on	the	Github	repository.

OK,	now	that	we’ve	created	our	component,	let’s	try	it	out.	When	we	first	load
the	component,	we	see	it	in	its	initial	state:

Figure	3-2.	The	starting	state	of	the	game

If	we	click	the	tile	labeled	“7”,	it	moves	into	the	gap:

Figure	3-3.	After	moving	tile	7

If	we	click	the	“Shuffle”	button,	the	reducer	rearranges	tiles	randomly:

Figure	3-4.	The	shuffle	button	moves	tiles	to	random	positions

And	if	we	click	“Reset”,	the	puzzle	changes	to	the	complete	position,	and	the
“Complete”	text	appears:

Figure	3-5.	The	reset	button	moves	the	tiles	to	their	correct	positions

We	bury	all	of	the	complexity	inside	the	reducer	function,	where	it	can	be	easily
tested,	and	the	component	is	simple	and	easy	to	maintain.

Discussion
Reducers	are	a	way	of	managing	complexity.	You	will	typically	use	a	reducer	if
either:

You	have	a	large	amount	of	internal	state	to	manage,	or

You	need	complex	logic	to	manage	the	internal	state	of	your	component

If	either	of	these	things	is	correct,	then	a	reducer	can	make	your	code
significantly	easier	to	manage.

However,	be	wary	of	using	reducers	for	very	simple	components.	If	your

component	has	simple	state	and	very	little	logic,	you	probably	don’t	need	the
overhead	of	a	reducer.

Sometimes,	even	if	you	do	have	complex	state,	there	are	alternative	approaches.
For	example,	if	you	are	capturing	and	validating	data	in	a	form,	it	might	be
better	to	create	a	validating	form	component	(see	the	recipe	elsewhere	in	this
chapter).

You	need	to	ensure	that	your	reducer	does	not	have	any	side	effects.	Avoid,	say,
making	network	calls	that	update	a	server.	If	your	reducer	has	side-effects,	there
is	every	chance	that	it	might	break.	In	development	mode,	React	(very	sneakily)
might	sometimes	make	additional	calls	to	your	reducer	to	make	sure	that	no	side
effects	are	happening.	If	you’re	using	a	reducing	and	noticed	that	React	calls
your	code	twice	when	rendering	a	component,	this	is	React	checking	to	see	that
you	are	doing	anything	untoward.

With	all	of	those	provisos,	reducers	are	an	excellent	tool	at	fighting	complexity.
They	are	integral	to	libraries	such	as	Redux,	can	easily	be	reused	and	combined,
simplify	components,	and	make	your	React	code	significantly	easier	to	test.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

3.2	Creating	an	Undo	Feature

Problem
Part	of	the	promise	of	JavaScript	rich	frameworks	like	React	is	that	web
applications	can	achieve	a	closer	resemblance	to	desktop	applications.	One
common	feature	in	desktop	applications	is	the	ability	to	undo	an	action.	Some
native	components	within	React	applications	automatically	support	and	undo
function.	If	you	edit	some	text	in	a	text	area,	then	press	CMD/CTRL-Z,	it	will
undo	your	edit.	But	what	about	extending	undo	into	custom	components?	How	is
it	possible	to	track	state-changes	without	a	large	amount	of	code?

Solution
If	a	reducer	function	manages	the	state	in	your	component	(see	recipe	earlier	in
this	chapter),	you	can	implement	a	quite	general	undo	function	using	an	undo-

https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch03-01-reducer
https://github.com/dogriffiths/ReactCookbook-source/

reducer.

Consider	this	piece	of	code	from	the	Puzzle	example	in	the	first	recipe	of	this
chapter:

const	[state,	dispatch]	=	useReducer(reducer,	{

				items:	['4',	'1',	'2',	'7',	'6',	'3',	null,	'5',	'8']

});

This	code	uses	a	reducer	function	(called	reducer)	and	an	initial	state	to
manage	the	tiles	in	a	number-puzzle	game.

Figure	3-6.	A	simple	number	puzzle	game

If	the	user	pressed	the	Shuffle	button,	the	component	updates	the	tile	state	by
sending	a	“shuffle”	action	to	the	reducer:

<button	className='Puzzle-shuffle'

								onClick={()	=>	dispatch({type:	'shuffle'})}>Shuffle</button>

(for	more	details	on	what	reducers	are	and	when	you	should	use	them,	see	the
first	recipe	in	this	chapter)

What	we’re	going	to	do	in	this	recipe,	is	create	a	new	hook	called
userUndoReducer,	which	is	a	drop-in	replacement	for	userReducer.

const	[state,	dispatch]	=	useUndoReducer(reducer,	{

				items:	['4',	'1',	'2',	'7',	'6',	'3',	null,	'5',	'8']

});

The	useUndoReducer	hook	will	magically	give	out	component	the	ability	to
go	back	in	time:

<button	className='Puzzle-undo'

								onClick={()	=>	dispatch({type:	'undo'})}>Undo</button>

If	we	add	this	button	to	the	component,	it	undoes	the	last	action	the	user
performed.

Figure	3-7.	1.	Game	in	progress.	2.	Make	a	move	3.	Click	Undo	to	undo	move

But	how	do	we	perform	this	magic?	Although	useUndoReducer	is	relatively
easy	to	use,	it’s	somewhat	harder	to	understand.	But	it’s	worth	doing	so	that	you
can	adjust	the	recipe	to	your	requirements.

We	can	take	advantage	of	the	fact	that	reducers	are	work	in	a	very	similar	way:

The	action	defines	what	you	want	to	do

The	reducer	returns	a	fresh	state	after	each	action

No	side	effects	are	allowed	when	calling	the	reducer

Also,	reducers	are	just	simple	JavaScript	functions,	which	always	accept	a	state
object	and	an	action	object	as	parameters.

Because	reducers	work	in	such	a	well-defined	way,	we	can	create	a	new

reducer–an	undo-reducer–that	wraps	around	another	reducer	function.	Our	undo-
reducer	will	work	as	an	intermediary.	It	will	pass	most	actions	through	to	the
underlying	reducer	while	keeping	a	history	of	all	previous	states.	If	someone
wants	to	undo	an	action,	it	will	find	the	last	state	from	its	history,	and	then	return
that	without	calling	the	underlying	reducer.

We’ll	begin	by	creating	a	higher-order	function	that	accepts	one	reducer	and
returns	another:

import	lodash	from	'lodash';

export	default	(reducer)	=>

				(state,	action)	=>	{

								let	{undoHistory	=	[],

												undoActions	=	[],

												...innerState}	=	lodash.cloneDeep(state);

								switch	(action.type)	{

												case	'undo':	{

																if	(undoActions.length	>	0)	{

																				undoActions.pop();

																				innerState	=	undoHistory.pop();

																}

																break;

												}

												case	'redo':	{

																if	(undoActions.length	>	0)	{

																				undoHistory	=	[

																								...undoHistory,

																								{...innerState}

];

																				undoActions	=	[

																								...undoActions,

																								undoActions[undoActions.length	-	1]

];

																				innerState	=	reducer(

																								innerState,

																								undoActions[undoActions.length	-	1]

);

																}

																break;

												}

												default:	{

																undoHistory	=	[

																				...undoHistory,

																				{...innerState}

];

																undoActions	=	[

																				...undoActions,

																				action

];

																innerState	=	reducer(innerState,	action);

												}

								}

								return	{...innerState,	undoHistory,	undoActions};

				};

This	reducer	is	quite	a	complex	function,	so	it’s	worth	taking	some	time	to
understand	what	it	does.

It	creates	a	reducer	function	that	keeps	track	of	the	actions	and	states	we	pass	to
it.	Let’s	say	our	game	component	sends	an	action	to	shuffle	the	tiles	in	the	game.
Our	reducer	will	first	check	if	the	action	has	type	“undo”	or	“redo.”	It	doesn’t.
So	it	passes	the	“shuffle”	action	to	the	underlying	reducer	that	manages	the	tiles
in	our	game.

Figure	3-8.	The	undo-reducer	passes	most	actions	to	the	underlying	reducer

As	it	passes	the	“shuffle”	action	through	to	the	underlying	reducer,	the	undo
code	keeps	track	of	the	existing	state	and	the	“shuffle”	action	by	adding	them	to
the	undoHistory	and	undoActions.	It	then	returns	the	state	of	the
underlying	game	reducer,	as	well	as	the	undoHistory	and	undoActions.

If	our	puzzle	component	sends	in	an	“undo”	action,	the	undo-reducer	returns	the
previous	state	from	the	undoHistory,	completely	bypassing	the	game’s	own
reducer	function.

Figure	3-9.	For	undo	actions,	the	undo-reducer	returns	the	latest	historic	state

Now	let’s	look	at	the	useUndoReducer	hook	itself.

import	{useReducer}	from	"react";

import	undo	from	"./undo";

export	default	(reducer,	initialState)	=>	useReducer(undo(reducer),	

initialState);

This	useUndoReducer	hook	is	a	concise	piece	of	code.	It’s	simply	a	call	to
the	built-in	useReducer	hook,	but	instead	of	passing	the	reducer	straight
through,	it	passes	undo(reducer).	The	result	is	that	your	component	uses	an
enhanced	version	of	the	reducer	you	provide:	one	that	can	undo	and	redo	actions.

This	is	our	updated	Puzzle	component	(see	recipe	1	in	this	chapter	for	the
original	version):

import	reducer	from	"./reducer";

import	useUndoReducer	from	"./useUndoReducer";

import	"./Puzzle.css";

export	default	()	=>	{

				const	[state,	dispatch]	=	useUndoReducer(reducer,	{

								items:	['4',	'1',	'2',	'7',	'6',	'3',	null,	'5',	'8']

				});

				return	<div	className='Puzzle'>

								<div	className='Puzzle-squares'>

												{

																state.items.map((s,	i)	=>	<div

																				className={`Puzzle-square	${s	?	''	:	'Puzzle-

square-empty'}`}

																				key={`square-${i}`}

																				onClick={()	=>	dispatch({type:	'move',	payload:	

i})}

																>{s}</div>)

												}

								</div>

								<div	className='Puzzle-controls'>

												<button	className='Puzzle-shuffle'

																				onClick={()	=>	dispatch({type:	

'shuffle'})}>Shuffle</button>

												<button	className='Puzzle-reset'

																				onClick={()	=>	dispatch({type:	

'reset'})}>Reset</button>

								</div>

								<div	className='Puzzle-controls'>

												<button	className='Puzzle-undo'

																				onClick={()	=>	dispatch({type:	

'undo'})}>Undo</button>

												<button	className='Puzzle-redo'

																				onClick={()	=>	dispatch({type:	

'redo'})}>Redo</button>

								</div>

								{

												state.complete	&&

												<div	className='Puzzle-complete'>Complete!</div>

								}

				</div>;

};

The	only	changes	are	that	we	use	useUndoReducer	instead	of
useReducer,	and	we’ve	added	a	couple	of	buttons	to	call	the	“undo”	and
“redo”	actions.

If	you	now	load	the	component	and	makes	some	changes,	you	can	undo	the
changes	one	at	a	time:

actions	image::images/ch03-reducer-1-overview.png["After	replacing
useReducer	with	useUndoReducer,	you	can	now	send	“undo”	and	“redo”
actions"]

Discussion
The	undo-reducer	shown	here	will	work	with	reducers	that	accept	and	return
state-objects.	If	your	reducer	manages	state	using	arrays,	you	will	have	to
modify	the	undo	function.

Because	it	keeps	a	history	of	all	previous	states,	you	probably	want	to	avoid
using	it	if	your	state	data	is	extensive,	or	if	you’re	using	it	in	circumstances
where	might	make	large	(thousands?)	or	changes.	Also,	bear	in	mind	that	it
maintains	its	history	in	memory.	If	a	user	reloads	the	entire	page,	then	the	history
will	disappear.	It	should	be	possible	to	get	around	this	issue	by	persisting	the
global	state	in	local	storage	whenever	it	changes.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

3.3	Creating	and	Validating	Forms

Problem
Most	React	applications	use	forms	to	some	degree,	and	most	applications	take	an
ad-hoc	approach	to	creating	them.	If	a	team	is	building	your	application,	you
might	find	that	some	developers	manage	the	state	of	individual	fields	in	separate
state	variables.	Others	will	choose	to	record	form-state	in	a	single	value	object,
which	is	simpler	to	pass	into	and	out	of	the	form	but	can	be	quite	tricky	for	each
form-field	to	update.	Field	validation	often	leads	to	spaghetti	code,	with	some
forms	validating	at	submit	time,	others	validating	dynamically	as	the	user	types.
Some	forms	might	show	validation	messages	when	the	form	first	loads.	In	other
forms,	the	messages	might	appear	only	after	the	user	has	touched	the	fields.

These	variations	in	design	can	lead	to	poor	user	experience	and	an	inconsistent
approach	to	writing	code.	In	our	experience	working	with	React	teams,	forms,
and	form	validation,	are	a	frequent	stumbling	block	for	developers.

Solution
To	apply	some	consistency	to	form	development,	we	will	create	a	SimpleForm
component	that	we	will	wrap	around	one	or	more	InputField	components.
This	is	an	example	of	the	use	of	SimpleForm	and	InputField:

import	{useEffect,	useState}	from	'react';

import	'./App.css';

import	SimpleForm	from	"./SimpleForm";

import	InputField	from	"./InputField";

https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch03-02-undo
https://github.com/dogriffiths/ReactCookbook-source/

export	default	({onSubmit,	onChange,	initialValue	=	{}})	=>	{

				const	[formFields,	setFormFields]	=	useState(initialValue);

				const	[valid,	setValid]	=	useState(true);

				const	[errors,	setErrors]	=	useState({});

				useEffect(()	=>	{

								if	(onChange)	{

												onChange(formFields,	valid,	errors);

								}

				},	[onChange,	formFields,	valid,	errors]);

				return	<div	className='TheForm'>

								<h1>Single	field</h1>

								<SimpleForm	value={formFields}

																				onChange={setFormFields}

																				onValid={(v,	errs)	=>	{

																								setValid(v);

																								setErrors(errs)

																				}}>

												<InputField	name='field1'

																								onValidate={v	=>	(!v	||	v.length	<	3)

																												?	"Too	short!"	:	null}/>

												<button

																onClick={()	=>	onSubmit	&&	onSubmit(formFields)}

																disabled={!valid}>Submit!

												</button>

								</SimpleForm>

				</div>;

}

We	track	the	state	of	the	form	in	a	single	object	formFields.	Whenever	we
change	a	field	in	the	form,	the	field	will	call	onChange	on	the	SimpleForm.
The	field1	field	is	validated	using	the	onValidate	method,	and	whenever
the	validation	state	changes,	the	field	calls	the	onValid	method	on	the
SimpleForm.	Validation	will	only	occur	if	the	user	has	interacted	with	a	field:
making	it	dirty.

This	is	the	form	running:

Figure	3-10.	A	simple	form	with	field	validation

There	is	no	need	to	track	individual	field	values.	The	form	value	object	records
individual	field	values	with	attributes	derived	from	the	name	of	the	field.	The
InputField	handles	all	of	the	details	of	when	to	run	the	validation:	it	will
update	the	form-value	and	decide	when	to	display	errors.

Here	is	a	slightly	more	complex	example	which	uses	the	SimpleForm	with
several	fields:

Figure	3-11.	A	more	complex	form

To	create	the	SimpleForm	and	InputField	components,	we	must	first	look
at	they	will	communicate.	An	InputField	component	will	need	to	tell	the
SimpleForm	when	it’s	value	has	changed,	and	whether	or	not	the	new	value	is
valid.	It	will	do	this	with	a	context.

A	context	is	a	storage	scope.	When	a	component	stores	values	in	a	context,	that
value	is	visible	to	its	sub-components.	The	SimpleForm	will	create	a	context
called	FormContext	and	use	it	to	store	a	set	of	callback	functions	that	any
child	component	can	use	to	communicate	with	the	form.

import	{createContext}	from	"react";

export	default	createContext({});

To	see	how	SimpleForm	works,	let’s	begin	with	a	simplified	version,	which
only	tracks	its	sub-components’	values,	without	worrying	about	validation	just
yet:

import	React,	{useCallback,	useEffect,	useState}	from	"react";

import	'./SimpleForm.css';

import	FormContext	from	"./FormContext";

function	updateWith(oldValue,	field,	value)	{

				const	newValue	=	{...oldValue};

				newValue[field]	=	value;

				return	newValue;

}

export	default	({children,	value,	onChange,	onValid})	=>	{

				const	[values,	setValues]	=	useState(value	||	{});

				useEffect(()	=>	{

								setValues(value	||	{});

				},	[value]);

				useEffect(()	=>	{

								if	(onChange)	{

												onChange(values);

								}

				},	[onChange,	values]);

				let	setValue	=	useCallback(

								(field,	v)	=>	setValues(vs	=>	updateWith(vs,	field,	v)),	

[setValues]);

				let	getValue	=	useCallback(

								field	=>	values[field],	[values]);

				let	form	=	{

								setValue:	setValue,

								value:	getValue,

				};

				return	<div	className='SimpleForm-container'>

								<FormContext.Provider	value={form}>

												{children}

								</FormContext.Provider>

				</div>;

}

The	final	version	of	SimpleForm	will	have	additional	code	for	tracking
validation	and	errors,	but	this	cut-down	form	is	easier	to	understand.

The	form	is	going	to	track	all	of	its	field	values	in	the	values	object.	The	form
creates	two	callback	functions	called	getValue	and	setValue	and	puts	them
into	the	context	(as	the	form	object),	where	sub-components	will	find	them.	We
put	the	form	into	the	context	by	wrapping	a	<FormContext.Provider>
around	the	child	components.

Notice	that	we	have	wrapped	the	getValue	and	setValue	callbacks	in
useCallback,	which	prevents	the	component	from	creating	a	new	version	of
each	function	every	time	we	render	the	SimpleForm.

Whenever	a	child	component	calls	the	form.getValue	function,	they	will	be
given	the	current	value	of	the	specified	field.	If	a	child	component	calls
form.setValue,	it	will	update	that	value.

Now	let’s	look	at	a	simplified	version	of	the	InputField	component,	again
with	any	validation	code	removed	to	make	it	easier	to	understand:

import	React,	{useContext}	from	"react";

import	FormContext	from	"./FormContext";

import	"./InputField.css";

export	default	(props)	=>	{

				const	form	=	useContext(FormContext);

				if	(!form.value)	{

								return	"InputField	should	be	wrapped	in	a	form"

				}

				const	{name,	label,	...otherProps}	=	props;

				let	value	=	form.value(name);

				return	<div	className='InputField'>

								<label	htmlFor={name}>

												{label	||	name}:

								</label>

								<input

												id={name}

												value={value	||	''}

												onChange={event	=>	{

																form.setValue(name,	event.target.value);

												}}

												{...otherProps}

								/>	{

				}

				</div>;

};

The	InputField	extracts	the	form	object	from	the	FormContext.	If	it
cannot	find	a	form	object,	it	knows	that	we	have	not	wrapped	it	in	a
SimpleForm	component.	The	InputField	then	renders	a	<input/>	field,
setting	its	value	to	whatever	is	returned	by	form.value(name).	If	the	user
changes	the	field’s	value,	the	InputField	component	sends	the	new	value	to
form.setValue(name,	event.target.value).

If	you	need	a	form	field	other	than	an	input,	you	can	wrap	it	in	some
component	similar	to	the	InputField	shown	here.

The	validation	code	is	just	more	of	the	same.	In	the	same	way	that	the	form
tracks	its	current	value	in	the	values	state,	it	also	needs	to	track	which	fields
are	dirty	and	which	are	invalid.	It	then	needs	to	pass	callbacks	for	setDirty,
isDirty,	and	setInvalid.	These	callbacks	are	used	by	the	child	fields
when	running	their	onValidate	code.

Here	is	the	final	version	of	the	SimpleForm	component,	including	validation.

import	{useCallback,	useEffect,	useState}	from	"react";

import	'./SimpleForm.css';

import	FormContext	from	"./FormContext";

function	updateWith(oldValue,	field,	value)	{

				const	newValue	=	{...oldValue};

				newValue[field]	=	value;

				return	newValue;

}

export	default	({children,	value,	onChange,	onValid})	=>	{

				const	[values,	setValues]	=	useState(value	||	{});

				const	[dirtyFields,	setDirtyFields]	=	useState({});

				const	[invalidFields,	setInvalidFields]	=	useState({});

				useEffect(()	=>	{

								setValues(value	||	{});

				},	[value]);

				useEffect(()	=>	{

								if	(onChange)	{

												onChange(values);

								}

				},	[onChange,	values]);

				useEffect(()	=>	{

								if	(onValid)	{

												onValid(Object.keys(invalidFields)

																.every(i	=>	!invalidFields[i]),	invalidFields);

								}

				},	[onValid,	invalidFields]);

				let	setValue	=	useCallback(

								(field,	v)	=>	setValues(vs	=>	updateWith(vs,	field,	v)),	

[setValues]);

				let	getValue	=	useCallback(

								field	=>	values[field],	[values]);

				let	setDirty	=	useCallback(

								field	=>	setDirtyFields(df	=>	updateWith(df,	field,	true)),	

[setDirtyFields]);

				let	getDirty	=	useCallback(

								field	=>	Object.keys(dirtyFields).includes(field),	

[dirtyFields]);

				let	setInvalid	=	useCallback((field,	error)	=>	{

								setInvalidFields(i	=>	updateWith(i,	field,	error	?	error	:	

undefined));

				},	[setInvalidFields]);

				let	form	=	{

								setValue:	setValue,

								value:	getValue,

								setDirty:	setDirty,

								isDirty:	getDirty,

								setInvalid:	setInvalid,

				};

				return	<div	className='SimpleForm-container'>

								<FormContext.Provider	value={form}>

												{children}

								</FormContext.Provider>

				</div>;

}

And	this	is	the	final	version	of	the	InputField	component.	Notice	that	the
field	is	counted	as	dirty	once	it	loses	focus.

import	{useContext,	useEffect,	useState}	from	"react";

import	FormContext	from	"./FormContext";

import	"./InputField.css";

const	splitCamelCase	=	s	=>	s

				.replace(/([a-z0-9])([A-Z0-9])/g,	'$1	$2')

				.replace(/^([a-z])/,	x	=>	x.toUpperCase());

export	default	(props)	=>	{

				const	form	=	useContext(FormContext);

				if	(!form.value)	{

								return	"InputField	should	be	wrapped	in	a	form"

				}

				const	[error,	setError]	=	useState('');

				const	{onValidate,	name,	label,	...otherProps}	=	props;

				let	value	=	form.value(name);

				useEffect(()	=>	{

								if	(onValidate)	{

												setError(onValidate(value));

								}

				},	[onValidate,	value]);

				const	setInvalid	=	form.setInvalid;

				useEffect(()	=>	{

								setInvalid(name,	error);

				},	[setInvalid,	name,	error]);

				return	<div	className='InputField'>

								<label	htmlFor={name}>

												{label	||	splitCamelCase(name)}:

								</label>

								<input

												id={name}

												onBlur={()	=>	form.setDirty(name)}

												value={value	||	''}

												onChange={event	=>	{

																form.setDirty(name);

																form.setValue(name,	event.target.value);

												}}

												{...otherProps}

								/>	{

								<div	className='InputField-error'>

												{form.isDirty(name)	&&	error	?	error	:	<> </>}

								</div>

				}

				</div>;

};

Discussion
You	can	use	this	recipe	to	create	most	simple	forms,	and	you	can	extend	it	for
use	with	any	React	component.	For	example,	if	you	are	using	a	third-party
calendar	or	date	picker,	you	would	only	need	to	wrap	it	in	component	similar	to
InputField	to	use	it	inside	a	SimpleForm.

This	recipe	doesn’t	support	forms	within	forms	or	arrays	of	forms.	It	should	be
possible	to	modify	the	SimpleForm	component	to	behave	like	an
InputField	so	that	we	could	place	one	form	inside	another.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

3.4	Measuring	Time	with	a	Clock

Problem
Sometimes	a	React	application	needs	to	respond	to	the	time	of	day.	It	might	only
need	to	display	the	current	time,	or	it	might	need	to	poll	a	server	at	regular
intervals	or	change	its	interface	as	day	turns	to	night.	But	how	do	you	cause	your
code	to	re-render	as	the	result	of	a	time	change?	How	to	avoid	rendering	too
often?	And	how	do	you	all	that	without	littering	your	code	with	a	lot	of
setTimeout	calls	and	a	large	number	of	extraneous	state	variables?

Solution
We’re	going	to	create	a	useClock	hook.	The	useClock	hook	will	give	us
access	to	a	formatted	version	of	the	current	date	and	time,	and	automatically
update	the	interface	when	the	time	changes.	Here’s	an	example	of	it	in	use:

import	{useEffect,	useState}	from	'react';

import	useClock	from	"./useClock";

import	ClockFace	from	"./ClockFace";

import	"./Ticker.css";

https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch03-03-forms
https://github.com/dogriffiths/ReactCookbook-source/

export	default	()	=>	{

				const	[isTick,	setTick]	=	useState(false);

				const	time	=	useClock("HH:mm:ss");

				useEffect(()	=>	{

								setTick(t	=>	!t);

				},	[time]);

				return	(

								<div	className="Ticker">

												<div	className='Ticker-clock'>

																<h1>Time	{isTick	?	'Tick!'	:	'Tock!'}</h1>

																{time}

																

																<ClockFace	time={time}/>

												</div>

								</div>

);

};

Figure	3-12.	The	SimpleTicker	over	three	seconds

The	time	variable	contains	the	current	time	in	the	format	HH:mm:ss.	When
the	time	changes,	the	value	of	isTick	state	is	toggled	between	true/false	and
then	used	to	display	the	word	“Tick!”	or	“Tock!”.	We	show	the	current	time,	and
then	also	display	the	time	with	a	ClockFace	component.

As	well	as	accepting	a	date/time	format,	useClock	can	also	be	given	a	number
that	represents	the	number	of	milliseconds	between	updates.

import	{useEffect,	useState}	from	'react';

import	useClock	from	"./useClock";

import	"./Ticker.css";

export	default	()	=>	{

				const	[isTick3,	setTick3]	=	useState(false);

				const	tickThreeSeconds	=	useClock(3000);

				useEffect(()	=>	{

								setTick3(t	=>	!t);

				},	[tickThreeSeconds]);

				return	(

								<div	className="Ticker">

												<div	className='Ticker-clock'>

																<h1>{isTick3	?	'3	Second	Tick!'	:	'3	Second	Tock!'}

</h1>

																{tickThreeSeconds}

												</div>

								</div>

);

};

Figure	3-13.	The	IntervalTicker	re-renders	the	component	every	three	seconds

This	version	is	more	useful	if	you	want	to	perform	some	task	at	regular	intervals.
If	you	pass	a	numeric	parameter	to	useClock,	it	will	return	a	time	string	in	a
format	like	2021-06-11T14:50:34.706

To	build	this	hook,	we’re	going	to	use	a	third-party	library	called	MomentJS	to
handle	date	and	time	formatting.	If	you	would	prefer	to	use	another	library,	such
as	Datejs,	it	should	be	straightforward	to	convert.

npm	install	moment	--save

This	is	the	code	for	useClock:

import	{useEffect,	useState}	from	"react";

import	moment	from	"moment";

export	default	(formatOrInterval)	=>	{

				const	format	=	(typeof	formatOrInterval	===	'string')

								?	formatOrInterval	:	'YYYY-MM-DDTHH:mm:ss.SSS';

				const	interval	=	(typeof	formatOrInterval	===	'number')

								?	formatOrInterval	:	500;

				const	[response,	setResponse]	=	useState(

								moment(new	Date()).format(format));

				useEffect(()	=>	{

								const	newTimer	=	setInterval(()	=>	{

												setResponse(moment(new	Date()).format(format));

								},	interval);

								return	()	=>	clearInterval(newTimer);

				},	[format,	interval]);

				return	response;

};

We	derive	the	date/time	format,	and	the	required	ticking	interval	from	the
formatOrInterval	parameter	passed	to	the	hook.	Then	we	create	a	timer
with	setInterval.	This	time	will	set	the	response	value	every
interval	milliseconds.	If	the	response	is	the	same	as	previously,	there	will
be	no	update	of	the	interface.	But	if	we	set	the	response	string	to	a	new	time,
any	component	that	relies	on	useClock	will	re-render.

We	need	to	make	sure	that	we	cancel	any	timers	that	are	no	longer	in	use.	We
can	do	this	using	a	feature	of	the	useEffect	hook.	If	we	return	a	function	at
the	end	of	our	useEffect	code,	then	that	function	will	be	called	the	next	time
useEffect	needs	to	run.	So	we	can	use	it	to	clear	the	old	timer	before	creating
a	new	one.

So	if	we	pass	a	new	format	or	interval	to	useClock,	it	will	cancel	its	old	timer
and	respond	using	a	new	timer.

Discussion
This	recipe	is	an	example	of	how	you	can	use	hooks	to	solve	a	simple	problem
simply.	React	code	(the	clue	is	in	the	name)	is	designed	to	react	to	dependency
changes.	Rather	than	thinking	“How	can	I	run	this	piece	of	code	every	second,”
the	useClock	hook	allows	you	to	write	code	that	depends	on	the	current	time
and	hides	away	all	of	the	gnarly	details	of	creating	timers,	updating	state,	and
clearing	timers.

If	you	use	the	useClock	hook	several	times	in	a	component,	then	a	time
change	can	result	in	multiple	renders.	For	example,	if	you	have	two	clocks	that
format	the	current	time	in	12-hour	format	(“04:45”)	and	24-hour	format
(“16:45”),	then	your	component	will	render	twice	when	the	minute	changes.
This	is	unlikely	to	cause	much	of	a	performance	impact.

You	can	also	use	the	useClock	hook	inside	other	hooks.	If	you	create	a
useMessages	hook	to	retrieve	messages	from	a	server,	you	can	call

useClock	inside	it	to	poll	the	server	at	regular	intervals.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

3.5	Monitoring	Online	Status

Problem
Let’s	say	someone	is	using	your	application	on	their	cell	phone,	and	then	they
head	into	a	subway	with	no	data	connection.	How	can	you	check	that	the
network	connection	has	disappeared?	What’s	a	React-friendly	way	of	updating
your	interface	to	either	tell	the	user	that	there’s	a	problem	or	to	disable	some
features	that	require	network	access?

Solution
We	will	create	a	hook	called	useOnline	that	will	tell	us	whether	or	not	we
have	a	connection	to	a	network.	We	need	code	that	runs	when	the	browser	loses
or	regains	a	connection	to	the	network.	Fortunately,	there	are	window/body-level
events	called	“online”	and	“offline”	that	do	exactly	that:

import	{useEffect,	useState}	from	"react";

export	default	()	=>	{

				const	[online,	setOnline]	=	useState(navigator.onLine);

				useEffect(()	=>	{

								if	(window.addEventListener)	{

												window.addEventListener("online",	()	=>	setOnline(true),	

false);

												window.addEventListener("offline",	()	=>	setOnline(false),

false);

								}	else	{

												document.body.ononline	=	()	=>	setOnline(true);

												document.body.onoffline	=	()	=>	setOnline(false);

								}

				},	[]);

				return	online;

}

https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch03-04-clock
https://github.com/dogriffiths/ReactCookbook-source/

This	hook	manages	its	connection	state	in	the	online	variable.	When	the	hook
is	first	run	(notice	the	empty	dependency	array),	we	register	listeners	to	the
browser’s	online/offline	events.	When	either	of	these	events	occurs,	we	can	set
the	value	of	online	to	true	or	false.	If	this	is	a	change	to	the	current	value,
then	any	component	using	this	hook	will	re-render.

Here’s	an	example	of	the	hook	in	action:

import	useOnline	from	'./useOnline';

import	'./App.css';

function	App()	{

				const	online	=	useOnline();

				return	<div	className="App">

								<h1>Network	Checker</h1>

								

												You	are	now....

												{online

																?	<div	className='App-indicator-online'>ONLINE</div>

																:	<div	className='App-indicator-offline'>OFFLINE</div>

												}

								

				</div>;

}

export	default	App;

If	you	run	the	app,	the	page	will	currently	show	as	online.	If	you
disconnect/reconnect	your	network,	the	message	will	switch	to	“OFFLINE”	then
back	to	“ONLINE”

Figure	3-14.	The	code	re-renders	when	the	wifi	is	switched	off	and	back	on	again

Discussion
It’s	important	to	note	that	this	hook	checks	your	browser’s	connection	to	a
network,	not	whether	it	connects	to	the	broader	Internet	or	your	server.	If	you
would	like	to	check	that	your	server	is	running	and	available,	you	would	have	to
write	additional	code.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

3.6	Manage	Global	Application	State	with	Redux

Problem
In	other	recipes	in	this	chapter,	we’ve	seen	that	you	can	manage	complex
component	state	with	a	pure	JavaScript	function	called	a	reducer.	Reducers
simplify	components	and	make	business	logic	more	testable.

But	what	if	you	have	some	data,	such	as	the	contents	of	a	shopping	basket,
which	needs	to	be	accessed	globally	in	the	application?

Solution
We	will	use	the	Redux	library	to	manage	the	global	application	state.	Redux	uses
the	same	reducers	we	can	give	to	the	React	useReducer	function,	but	they	are
used	to	manage	a	single	state	object	for	the	entire	application.	Plus,	there	are
many	extensions	to	Redux	that	solve	common	programming	problems	and
develop	and	manage	your	application	more	quickly.

First,	we	need	to	install	the	Redux	library:

npm	install	redux	--save

We	will	also	install	the	React-Redux	library,	which	will	make	Redux	far	easier	to
use	with	React:

npm	install	react-redux	--save

https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch03-05-online
https://github.com/dogriffiths/ReactCookbook-source/

We’re	going	to	use	Redux	to	build	a	simple	shopping	application,	which	contains
a	shopping	basket.

Figure	3-15.	When	a	customer	buys	a	product,	the	application	adds	it	to	the	basket

If	a	customer	clicks	on	a	Buy	button,	the	application	adds	the	product	to	the
basket.	If	they	click	the	Buy	button	again,	the	quantity	in	the	basket	is	updated.
The	basket	will	appear	in	several	places	across	the	application,	so	it’s	a	good

candidate	for	moving	to	Redux.	This	is	the	reducer	function	that	we	will	use	to
manage	the	basket:

export	default	(state	=	{},	action	=	{})	=>	{

				switch	(action.type)	{

								case	'buy':	{

												const	basket	=	state.basket	?	[...state.basket]	:	[];

												const	existing	=	basket.findIndex(

																item	=>	item.productId	===	action.payload.productId);

												if	(existing	!==	-1)	{

																basket[existing].quantity	=	basket[existing].quantity	

+	1;

												}	else	{

																basket.push({quantity:	1,	...action.payload})

												}

												return	{

																...state,

																basket

												};

								}

								case	'clearBasket':	{

												return	{

																...state,

																basket:	[]

												}

								}

								default:

												return	{...state};

				}

};

TIP
We	are	creating	a	single	reducer	here.	Once	your	application	grows	in	size,	you	will	probably	want	to
split	your	reducer	into	smaller	sub-reducers,	which	you	can	combine	with	the	Redux
combineReducers	function.

The	reducer	function	responds	to	buy	and	clearBasket	actions.	The	buy
action	will	either	add	a	new	item	to	the	basket	or	update	the	quantity	of	an
existing	item	if	one	has	a	matching	productId.	The	clearBasket	action
will	set	the	basket	back	to	an	empty	array.

Now	that	we	have	a	reducer	function,	we	will	use	it	to	create	a	Redux	store.	The

https://redux.js.org/api/combinereducers/

store	is	going	to	be	our	central	repository	for	shared	application	state.	To	create	a
store,	add	these	two	lines	to	some	top-level	component	such	as	App.js:

import	reducer	from	"./reducer";

const	store	=	createStore(reducer);

The	store	needs	to	be	available	globally	in	the	app	and	to	do	that	we	need	to
inject	it	into	the	context	of	the	components	which	might	need	it.	The	React-
Redux	library	provides	a	component	to	inject	the	store	in	a	component	context
called	Provider:

<Provider	store={store}>

		All	the	components	inside	here	can	access	the	store

</Provider>

This	is	what	the	App.js	looks	like	in	the	example	application	you	can	find	on
the	Github	repository	for	this	book:

export	default	(state	=	{},	action	=	{})	=>	{

				switch	(action.type)	{

								case	'buy':	{

												const	basket	=	state.basket	?	[...state.basket]	:	[];

												const	existing	=	basket.findIndex(

																item	=>	item.productId	===	action.payload.productId);

												if	(existing	!==	-1)	{

																basket[existing].quantity	=	basket[existing].quantity	

+	1;

												}	else	{

																basket.push({quantity:	1,	...action.payload})

												}

												return	{

																...state,

																basket

												};

								}

								case	'clearBasket':	{

												return	{

																...state,

																basket:	[]

												}

								}

								default:

												return	{...state};

				}

};

Now	that	the	store	is	available	to	our	components,	how	do	we	use	it?	Redux-
React	allows	you	to	access	the	store	through	hooks.	If	you	want	to	read	the
contents	of	the	global	state,	you	can	use	useSelector:

const	basket	=	useSelector(state	=>	state.basket);

The	useSelector	hook	accepts	a	function	to	extract	part	of	the	central	state.
Selectors	are	quite	efficient	and	will	only	cause	your	component	to	re-render	if
the	particular	part	of	the	state	you	are	interested	in	changes.

If	you	need	to	submit	an	action	to	the	central	store,	you	can	do	it	with	the
useDispatch	hook:

const	dispatch	=	useDispatch();

This	returns	a	dispatch	function	which	you	can	use	to	send	actions	to	the
store:

dispatch({type:	'clearBasket'})}

These	hooks	work	by	extracting	the	store	from	the	current	context.	If	you	forget
to	add	a	Provider	to	your	application	or	try	to	run	useSelector	or
useDispatch	outside	of	a	Provider	context,	you	will	get	an	error:

Figure	3-16.	If	you	forget	to	include	a	Provider,	you	will	get	this	error

This	is	the	completed	Basket	component	that	reads	and	clears	the	app-wide
shopping	basket:

import	{useDispatch,	useSelector}	from	"react-redux";

import	"./Basket.css";

export	default	()	=>	{

				const	basket	=	useSelector(state	=>	state.basket);

				const	dispatch	=	useDispatch();

				return	<div	className='Basket'>

								<h2>Basket</h2>

								{

												(basket	&&	basket.length)	?

																<>

																				{basket.map(item	=>	<div	className='Basket-item'>

																								<div	className='Basket-itemName'>

																												{item.name}

																								</div>

																								<div	className='Basket-itemProductId'>

																												{item.productId}

																								</div>

																								<div	className='Basket-itemPricing'>

																												<div	className='Basket-itemQuantity'>

																																{item.quantity}

																												</div>

																												<div	className='Basket-itemPrice'>

																																{item.price}

																												</div>

																								</div>

																				</div>)}

																				<button

																								onClick={()	=>	dispatch({type:	

'clearBasket'})}>

																								Clear

																				</button>

																</>

																:	"Empty"

								}

				</div>;

};

To	demonstrate	some	code	adding	items	to	the	basket,	here’s	a	Boots
component	that	allows	a	customer	to	buy	a	selection	of	products:

import	{useDispatch}	from	"react-redux";

import	"./Boots.css";

const	products	=	[

				{productId:	"BE8290004",	name:	'Ski	boots',

								description:	'Mondo	26.5.	White.',	price:	698.62},

				{productId:	"PC6310098",	name:	'Snowboard	boots',

								description:	'Mondo	27.5.	Blue.',	price:	825.59},

				{productId:	"RR5430103",	name:	'Mountaineering	boots',

								description:	'Mondo	27.3.	Brown.',	price:	634.98},

];

export	default	()	=>	{

				const	dispatch	=	useDispatch();

				return	<div	className='Boots'>

								<h1>Boots</h1>

								<dl	className='Boots-products'>

												{

																products.map(product	=>	<>

																				<dt>{product.name}</dt>

																				<dd>

																								<p>{product.description}</p>

																								<p>${product.price}</p>

																								<button

																												onClick={()	=>	dispatch({type:	'buy',	

payload:	product})}>

																												Add	to	basket

																								</button>

																				</dd>

																</>)

												}

								</dl>

				</div>;

};

These	two	components	may	appear	at	very	different	locations	in	the	component
tree	they	share	the	same	Redux	store.	As	soon	as	a	customer	adds	a	product	to
the	basket,	the	Basket	component	will	automatically	update	with	the	change:

Figure	3-17.	The	Redux-React	hooks	make	sure	that	when	a	user	buys	a	product,	the	Basket	is	re-rendered

Discussion
The	Redux	library	has	long	been	used	with	the	React	framework.	For	a	long
time,	it	seemed,	almost	every	React	application	included	Redux	by	default.	It’s
probably	true	that	Redux	was	often	overused	or	used	inappropriately.	We	have
seen	projects	that	have	even	banned	local	state	properties	in	favor	of	using

Redux	for	all	state.	This	is	a	mistake.	Redux	is	intended	for	central	application
state	management,	not	for	simple	component	state.	If	you	are	storing	data	that	is
only	of	concern	to	a	component,	or	its	sub-components,	you	probably	don’t	need
to	use	Redux.

However,	if	your	application	manages	some	global	application	state,	then	Redux
is	still	the	tool	of	choice.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

3.7	Survive	Page	Reloads	with	redux-persist

Problem
Redux	is	an	excellent	way	of	managing	the	application	state	centrally.	However,
it	does	have	a	small	problem:	when	you	reload	the	page,	the	entire	state
disappears:

https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch03-06-redux
https://github.com/dogriffiths/ReactCookbook-source/

Figure	3-18.	Redux	state	(left)	is	lost	if	the	page	is	reloaded	(right)

The	state	disappears	because	Redux	keeps	its	state	in	memory.	How	do	we
prevent	the	state	from	disappearing?

Solution
We	will	use	the	redux-persist	library	to	keep	a	copy	of	the	Redux	state	in

local-storage.	To	install	redux-persist	type:

npm	install	redux-persist	--save

The	first	thing	we	need	to	do	is	create	a	persisted	reducer,	wrapped	around	our
existing	reducer:

import	storage	from	'redux-persist/lib/storage';

const	persistConfig	=	{

				key:	'root',

				storage,

};

const	persistedReducer	=	persistReducer(persistConfig,	reducer);

The	storage	specifies	where	we	will	persist	the	Redux	state:	it	will	be	in
localStorage	by	default.	The	persistConfig	says	that	we	want	to	keep
our	state	in	a	localStorage	item	called	persist:root.	When	the	Redux
state	changes,	the	persistedReducer	will	write	a	copy	with
localStorage.setItem('persist:root',	...).	We	now	need	to
create	our	Redux	store	with	persistedReducer:

const	store	=	createStore(persistedReducer);

We	need	to	interject	the	redux-persist	code	between	the	Redux	store	and
the	code	that’s	accessing	the	Redux	store.	We	do	that	with	a	component	called
PersistGate:

import	{	PersistGate	}	from	'redux-persist/integration/react'

import	{persistStore}	from	'redux-persist';

const	persistor	=	persistStore(store);

...

<Provider	store={store}>

				<PersistGate	loading={<div>Loading...</div>}	persistor=

{persistor}>

								Components	live	in	here

				</PersistGate>

</Provider>

The	PersistGate	must	be	inside	the	Redux	Provider	and	outside	the
components	that	are	going	to	use	Redux.	The	PersistGate	will	watch	for
when	the	Redux	state	is	lost	and	will	then	reload	it	from	localStorage.	It
might	take	a	moment	to	reload	the	data,	and	if	you	want	to	show	that	the	UI	is
briefly	busy,	you	can	pass	a	loading	component	to	the	PersistGate.	The
loading	component	will	be	displayed	in	place	of	its	child	components	when
Redux	is	reloading.	If	you	don’t	want	a	loading	component,	you	can	set	it	to
null.

This	is	the	final	version	of	the	modified	App.js	from	the	example	app:

import	{BrowserRouter,	Route,	Switch}	from	"react-router-dom";

import	{Provider}	from	'react-redux'

import	{createStore}	from	'redux';

import	Menu	from	"./Menu";

import	Home	from	"./Home";

import	Boots	from	"./Boots";

import	Basket	from	"./Basket";

import	'./App.css';

import	reducer	from	"./reducer";

import	{persistStore,	persistReducer}	from	'redux-persist';

import	{	PersistGate	}	from	'redux-persist/integration/react'

import	storage	from	'redux-persist/lib/storage';

const	persistConfig	=	{

				key:	'root',

				storage,

};

const	persistedReducer	=	persistReducer(persistConfig,	reducer);

const	store	=	createStore(persistedReducer);

const	persistor	=	persistStore(store);

function	App()	{

				return	(

								<div	className="App">

												<Provider	store={store}>

																<PersistGate	loading={<div>Loading...</div>}	

persistor={persistor}>

																				<BrowserRouter>

																								<Menu/>

																								<Switch>

																												<Route	exact	path='/'>

																																<Home/>

																												</Route>

																												<Route	path='/boots'>

																																<Boots/>

																												</Route>

																								</Switch>

																								<Basket/>

																				</BrowserRouter>

																</PersistGate>

												</Provider>

								</div>

);

}

export	default	App;

Now,	when	the	user	reloads	the	page,	the	Redux	state	survives:

Figure	3-19.	Redux	state	before	the	reload	(left)	and	after	(right)

Discussion
The	redux-persist	library	is	a	simple	way	of	persisting	Redux	state	through
page	reloads.	If	you	have	a	substantial	amount	of	Redux	data,	you	will	need	to
be	careful	not	to	break	the	localStorage	limit	in	the	browser,	which	is
typically	10MB.	However,	if	your	Redux	data	is	that	size,	you	should	consider

offloading	some	of	it	to	a	server.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

3.8	Calculate	Derived	State	with	reselect

Problem
When	you	extract	your	application	state	into	an	external	object	with	a	tool	like
Redux,	you	often	need	to	process	the	data	in	some	way	before	displaying	it.	For
example,	this	is	an	application	that	we	have	used	in	a	few	recipes	in	this	chapter:

https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch03-07-redux-persist
https://github.com/dogriffiths/ReactCookbook-source/

Figure	3-20.	What’s	the	best	method	for	calculating	the	total	cost	and	tax	of	the	basket?

What	if	we	want	to	calculate	the	total	cost	of	the	items	in	the	basket,	and	then
calculate	the	amount	of	sales	tax	to	pay?	We	could	create	a	JavaScript	function
that	reads	through	the	basket	items	calculates	both,	but	that	function	would	have
to	recalculate	the	values	every	time	the	basket	renders.	Is	there	a	way	of
calculating	derived	values	from	state	that	only	needs	to	be	performed	when	the
state	changes?

Solution
The	Redux	developers	have	created	a	library	specifically	designed	to	derive
values	efficiently	from	state	objects,	called	reselect.

The	reselect	library	creates	selector	functions.	A	selector	function	takes	a
single	parameter–a	state	object–and	returns	a	processed	version.

We’ve	already	seen	one	selector	in	the	Redux	recipe	in	this	chapter.	We	used	it	to
return	the	current	basket	from	the	central	Redux	state:

const	basket	=	useSelector(state	=>	state.basket);

The	state	=>	state.basket	is	a	selector	function;	it	derives	some	value
from	a	state	object.	The	reselect	library	creates	highly	efficient	selector
functions	that	can	cache	their	results	if	the	state	they	depend	upon	has	not
changed.

To	install	reselect,	enter	this	command:

npm	install	reselect	--save

Let’s	begin	by	creating	a	selector	function	that	will:

Count	the	total	number	of	items	in	a	basket,	and

Calculate	the	total	cost	of	all	of	the	items

We’ll	call	this	function	summarizer.	Before	we	go	into	the	details	of	how
we’ll	write,	we’ll	begin	by	writing	a	test	that	will	show	what	it	will	need	to	do:

it('should	be	able	to	handle	multiple	products',	()	=>	{

				const	actual	=	summarizer({

								basket:	[

												{productId:	'1234',	quantity:	2,	price:	1.23},

												{productId:	'5678',	quantity:	1,	price:	1.50},

]

				});

				expect(actual).toEqual({itemCount:	3,	cost:	3.96});

});

So	if	we	pass	it	a	state	object,	it	will	add	up	the	quantities	and	costs	and	return	an
object	containing	the	itemCount	and	cost.

We	can	create	a	selector	function	called	summarizer.js	with	the	reselect
library	like	this:

import	{createSelector}	from	"reselect";

export	default	createSelector(

				state	=>	(state.basket	||	[]),

				basket	=>	({

												itemCount:	basket.reduce((i,	j)	=>	i	+	j.quantity,	0),

												cost:	basket.reduce((i,	j)	=>	i	+	(j.quantity	*	j.price),	

0),

								})

);

The	createSelector	function	creates	a	selector	function	based	on	other
selector	functions.	Each	of	the	parameters	passed	to	it–except	the	last	parameter–
should	be	selector	functions.	We	are	passing	just	one:

state	=>	(state.basket	||	[])

Which	extracts	the	basket	from	the	state.

The	final	parameter	passed	to	createSelector	(the	combiner)	is	a	function
which	derives	a	new	value,	based	of	the	results	of	the	preceding	selectors:

basket	=>	({

												itemCount:	basket.reduce((i,	j)	=>	i	+	j.quantity,	0),

												cost:	basket.reduce((i,	j)	=>	i	+	(j.quantity	*	j.price),	

0),

								})

The	basket	value	is	the	result	of	running	the	state	through	the	first	selector.

Why	on	Earth	would	anyone	create	functions	this	way?	Isn’t	it	way	more
complicated	than	just	creating	a	JavaScript	function	manually,	without	the	need
to	pass	all	of	these	functions	to	functions?

The	answer	is	efficiency.	State	objects	can	be	complex	and	might	have	dozens	of
attributes.	But	we	are	only	interested	in	the	contents	of	the	basket	attribute,
and	we	don’t	want	to	have	to	recalculate	our	costs	if	anything	else	changes.

What	reselect	does	is	work	out	when	the	value	it	returns	is	likely	to	have

changed.	Let’s	say	we	call	it	one	time,	and	it	calculates	the	itemCount	and
value	like	this:

{itemCount:	3,	cost:	3.96}

Then	the	user	runs	a	bunch	of	commands	that	update	personal	preferences,	posts
a	message	to	somebody,	adds	several	things	to	their	wish-list,	etc.

Each	of	the	events	might	update	the	global	application	state.	But	the	next	time
we	run	the	summarizer	function,	it	will	return	the	cached	value	that	it
produced	before:

{itemCount:	3,	cost:	3.96}

Why?	Because	it	knows	that	this	value	is	only	dependent	upon	the	basket
value	in	the	global	state.	And	if	that	hasn’t	changed,	then	it	doesn’t	need	to
recalculate	the	return	value.

Because	reselect	allows	us	to	build	selector	functions	from	other	selector
functions,	we	could	build	another	selector	called	taxer	to	calculate	the	basket’s
sales	tax:

import	{createSelector}	from	"reselect";

export	default	createSelector(

				state	=>	(state.basket	||	[]),

				basket	=>	({

												itemCount:	basket.reduce((i,	j)	=>	i	+	j.quantity,	0),

												cost:	basket.reduce((i,	j)	=>	i	+	(j.quantity	*	j.price),	

0),

								})

);

The	taxer	selector	uses	the	value	returned	by	the	summarizer	function.	It
takes	the	cost	of	the	summarizer	result	and	multiplies	it	by	25%.	If	the
basket’s	summarized	total	doesn’t	change,	then	the	taxer	function	will	not
need	to	update	its	result.

Now	we	have	the	summarizer	and	taxer	selectors,	we	can	use	them	inside	a
component,	just	as	we	would	any	other	selector	function:

import	{useDispatch,	useSelector}	from	"react-redux";

import	"./Basket.css";

import	summarizer	from	"./summarizer";

import	taxer	from	"./taxer";

export	default	()	=>	{

				const	basket	=	useSelector(state	=>	state.basket);

				const	{itemCount,	cost}	=	useSelector(summarizer);

				const	tax	=	useSelector(taxer);

				const	dispatch	=	useDispatch();

				return	<div	className='Basket'>

								<h2>Basket</h2>

								{

												(basket	&&	basket.length)	?

																<>

																				{basket.map(item	=>	<div	className='Basket-item'>

																								<div	className='Basket-itemName'>

																												{item.name}

																								</div>

																								<div	className='Basket-itemProductId'>

																												{item.productId}

																								</div>

																								<div	className='Basket-itemPricing'>

																												<div	className='Basket-itemQuantity'>

																																{item.quantity}

																												</div>

																												<div	className='Basket-itemPrice'>

																																{item.price}

																												</div>

																								</div>

																				</div>)}

																				<p>{itemCount}	items</p>

																				<p>Total:	${cost.toFixed(2)}</p>

																				<p>Sales	tax:	${tax.toFixed(2)}</p>

																				<button

																								onClick={()	=>	dispatch({type:	

'clearBasket'})}>

																								Clear

																				</button>

																</>

																:	"Empty"

								}

				</div>;

};

When	we	run	the	code	now,	we	see	a	summary	at	the	bottom	of	the	shopping

basket,	which	will	update	whenever	we	buy	a	new	product.

Figure	3-21.	The	selectors	recalculate	the	total	cost	and	sales	tax	only	when	the	basket	changes

Discussion
The	first	time	you	meet	selector	functions,	they	can	seem	complicated	and	hard
to	understand.	But	it	is	worth	taking	the	time	to	understand	them.	There	is

nothing	Redux-specific	about	them.	There	is	no	reason	why	you	can’t	also	use
them	with	non-Redux	reducers.	Because	they	have	no	dependencies	beyond	the
reselect	library	itself,	they	are	very	easy	to	unit	test.	Example	tests	are
included	in	the	code	for	this	chapter.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch03-08-reselect
https://github.com/dogriffiths/ReactCookbook-source/

Chapter	4.	Interaction	Design

A	NOTE	FOR	EARLY	RELEASE	READERS

With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the	authors’	raw	and	unedited
content	as	they	write—so	you	can	take	advantage	of	these	technologies	long	before	the	official	release
of	these	titles.

This	will	be	the	4th	chapter	of	the	final	book.	Please	note	that	the	GitHub	repo	will	be	made	active
later	on.

If	you	have	comments	about	how	we	might	improve	the	content	and/or	examples	in	this	book,	or	if
you	notice	missing	material	within	this	chapter,	please	reach	out	to	the	editor	at	ccollins@oreilly.com.

In	this	chapter,	we	look	at	some	recipes	that	address	a	bunch	of	typical	interface
problems.	How	do	you	deal	with	errors?	How	do	you	help	people	use	your
system?	How	do	you	create	complex	input	sequences	without	writing	a	bunch	of
spaghetti	code?

The	recipes	you’ll	find	in	this	chapter	we’ve	used	in	some	React	applications
over	the	years.	It’s	an	assortment:	a	collection	of	useful	tips	that	we’ve	seen
come	in	useful,	time	and	again.	At	the	end	of	the	chapter,	we	look	at	various
ways	of	adding	animation	to	your	application.	We	take	a	low-tech	approach
where	possible,	and	hopefully,	the	recipes	we	include	will	add	meaning	to	your
interface	designs	with	a	minimum	of	fuss.

4.1	Centralized	Error	Handler

Problem
It’s	hard	to	define	precisely	what	makes	good	software	good.	But	one	thing	that
most	excellent	has	in	common	is	how	it	responds	to	errors	and	exceptions.	There
will	always	be	exceptional,	unexpected	situations	that	occur	when	people	are
running	your	code:	the	network	can	disappear,	the	server	can	crash,	the	storage
can	become	corrupted.	It’s	important	to	consider	how	you	should	deal	with	these
situations	when	they	occur.

mailto:ccollins@oreilly.com

One	approach	that	is	almost	certain	to	fail	is	to	ignore	the	fact	that	error
conditions	occur	and	to	hide	the	gory	details	of	what	went	wrong.	Somewhere,
somehow,	you	need	to	leave	a	trail	of	evidence	that	you	can	use	to	prevent	that
error	from	happening	again.

When	we’re	writing	server	code,	we	might	log	the	error	details	and	return	an
appropriate	message	to	a	request.	But	if	we’re	writing	client	code,	we	need	a
plan	for	how	we’ll	deal	with	local	errors.	We	might	choose	to	display	the	crash’s
details	to	the	user	and	ask	them	to	file	an	error	report.	We	might	use	a	third-party
service	like	Sentry.io1	to	remotely	log	the	details.

Whatever	our	code	does,	it	should	be	consistent.	But	how	can	we	handle
exceptions	consistently	in	a	React	application?

Solution
In	this	recipe,	we’re	going	to	look	at	one	way	of	creating	a	centralized	error
handler.	To	be	clear:	this	code	won’t	automatically	capture	all	exceptions.	It	still
needs	to	be	added	explicitly	to	JavaScript	catch	blocks.	It’s	also	not	a
replacement	for	dealing	with	any	error	from	which	we	can	otherwise	recover.	If
an	order	fails	because	the	server	is	down	for	maintenance,	it	is	much	better	to
ask	the	user	to	try	again	later.

But	this	technique	is	useful	for	catching	any	errors	for	which	we	have	not
previously	planned.

As	a	general	principle,	when	something	goes	wrong,	there	are	three	things	that
you	should	tell	the	user:

What	happened

Why	it	happened

What	they	should	do	about	it

In	the	example	we	show	here,	we’re	going	to	handle	errors	by	display	a	dialog
box	that	shows	the	details	of	a	JavaScript	Error	object	and	asks	the	user	to
email	the	contents	to	systems	support.	We	want	a	simple	error-handler	function
that	we	can	call	when	an	error	happens:

setVisibleError('Cannot	do	that	thing',	errorObject);

If	we	want	to	make	the	function	readily	available	across	the	entire	application,
the	usual	way	is	by	using	a	context.	A	context	is	a	kind	of	scope	that	we	can
wrap	around	a	set	of	React	components.	Anything	we	put	into	that	context	is
available	to	all	the	child	components.	We	will	use	our	context	to	store	the	error-
handler	function	that	we	can	run	when	an	error	occurs.

We’ll	call	our	context	ErrorHandlerContext:

import	React	from	"react";

export	default	React.createContext(

				()	=>	{}

);

To	allow	us	to	make	the	context	available	to	a	set	of	components,	let’s	create	an
ErrorHandlerProvider	component	that	will	create	an	instance	of	the
context	and	make	it	available	to	any	child	components	we	pass	to	it:

import	ErrorHandlerContext	from	"./ErrorHandlerContext";

let	setError	=	()	=>	{};

export	default	(props)	=>	{

				if	(props.callback)	{

								setError	=	props.callback;

				}

				return	(

								<ErrorHandlerContext.Provider	value={setError}>

												{props.children}

								</ErrorHandlerContext.Provider>

);

};

Now	we	need	some	code	that	says	what	to	do	when	we	call	the	error-handler
function.	In	our	case,	we	need	some	code	that	will	respond	to	an	error	report	by
displaying	a	dialog	box	containing	all	of	the	error	details.	If	you	want	to	handle
errors	differently,	this	is	the	code	you	need	to	modify:

import	{useCallback,	useState}	from	"react";

import	ErrorHandlerProvider	from	"./ErrorHandlerProvider";

import	ErrorDialog	from	"./ErrorDialog";

export	default	(props)	=>	{

				const	[error,	setError]	=	useState();

				const	[errorTitle,	setErrorTitle]	=	useState();

				const	[action,	setAction]	=	useState();

				if	(error)	{

								console.error(

												"An	error	has	been	thrown",

												errorTitle,

												JSON.stringify(error)

);

				}

				const	callback	=	useCallback((title,	err,	action)	=>	{

								console.error("ERROR	RAISED	");

								console.error("Error	title:	",	title);

								console.error("Error	content",	JSON.stringify(err));

								setError(err);

								setErrorTitle(title);

								setAction(action);

				},	[]);

				return	(

								<ErrorHandlerProvider

												callback={callback}

								>

												{props.children}

												{error	&&	(

																<ErrorDialog

																				title={errorTitle}

																				onClose={()	=>	{

																								setError(null);

																								setErrorTitle("");

																				}}

																				action={action}

																				error={error}

																/>

)}

								</ErrorHandlerProvider>

);

};

The	ErrorContainer	displays	the	details	using	an	ErrorDialog.	We
won’t	go	into	the	details	of	the	code	for	ErrorDialog	here	2	as	this	is	the	code
that	you	are	most	likely	to	replace	with	your	implementation.

We	need	to	wrap	the	bulk	of	our	application	in	an	ErrorContainer.	Any
components	inside	the	ErrorContainer	will	be	able	to	call	the	error-handler:

import	'./App.css';

import	ErrorContainer	from	"./ErrorContainer";

import	ClockIn	from	"./ClockIn";

function	App()	{

		return	(

				<div	className="App">

						<ErrorContainer>

								<ClockIn/>

						</ErrorContainer>

				</div>

);

}

export	default	App;

How	does	a	component	use	the	error-handler?	We’ll	create	a	custom	hook	called
useErrorHandler()	which	will	get	the	error-handler	function	out	of	the
context	and	return	it:

import	ErrorHandlerContext	from	"./ErrorHandlerContext";

import	{	useContext	}	from	"react";

const	useErrorHandler	=	()	=>	useContext(ErrorHandlerContext);

export	default	useErrorHandler;

That’s	quite	a	complex	set	of	code,	but	now	we	come	to	use	the	error-handler,
it’s	very,	very	simple.	This	example	piece	of	code	tries	to	make	a	network
request	when	a	user	presses	a	button.	If	the	network	request	fails,	then	the	details
of	the	error	are	passed	to	the	error-handler:

import	useErrorHandler	from	"./useErrorHandler";

import	axios	from	"axios";

export	default	()	=>	{

				const	setVisibleError	=	useErrorHandler();

				const	doClockIn	=	async	()	=>	{

								try	{

												await	axios.put('/clockTime');

								}	catch(err)	{

												setVisibleError('Unable	to	record	work	start	time',	err);

								}

				};

				return	<>

								<h1>Click	Button	to	Record	Start	Time</h1>

								<button	onClick={doClockIn}>Start	work</button>

								</>;

}

You	can	see	what	the	app	looks	like	when	it	start	in	figure	4-1.

Figure	4-1.	The	time-recording	app

When	you	click	the	button,	the	network	request	fails	because	the	server	code
doesn’t	exist.	Figure	4-2	shows	the	error	dialog	that	appears.	Notice	that	it
shows:	what	went	wrong,	why	it	went	wrong	and	what	the	user	should	do	about
it.

Figure	4-2.	When	the	network	request	throws	an	exception,	we	pass	it	to	the	error	handler

Discussion
Of	all	of	the	recipes	that	we’ve	created	over	the	years,	this	one	has	saved	the
most	time.	During	development,	code	often	breaks,	and	if	the	only	evidence	of	a
failure	is	a	stack	trace	hidden	away	inside	the	JavaScript	console,	you	are	likely
to	miss	it.

Significantly	when	some	piece	of	infrastructure	(networks,	gateways,	servers,
databases)	fails,	this	small	amount	of	code	can	save	you	untold	hours	tracking

down	the	cause.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

4.2	Create	an	Interactive	Help	Guide

Problem
Tim	Berners-Lee	deliberately	designed	the	web	to	have	very	few	features.	It	has
a	simple	protocol	(HTTP),	and	it	originally	had	a	straightforward	markup
language	(HTML).	The	lack	of	complexity	meant	that	new	users	of	web	sites
immediately	knew	how	to	use	them.	If	you	saw	something	that	looked	like	a
hyperlink,	you	could	click	on	it	and	go	to	another	page.

But	rich	JavaScript	applications	have	changed	all	that.	No	longer	are	web
applications	a	collection	of	hyperlinked	web	pages.	Instead,	they	resemble	old
desktop	applications;	they	are	more	powerful	and	feature-rich,	but	the	down-side
is	that	they	are	now	far	more	complex	to	use.

How	can	your	application	help	people	to	use	it?

Solution
We’re	going	to	build	a	simple	help-system	that	you	can	overlay	onto	an	existing
application.	When	the	user	opens	the	help,	they	will	see	a	series	of	popup	notes
that	describe	how	to	use	the	various	features	they	can	see	on	the	page,	as	show	in
figure	4-3.

https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch04-01-error
https://github.com/dogriffiths/ReactCookbook-source

Figure	4-3.	Show	a	sequence	of	help	messages	when	the	user	asks

We	want	something	that	will	be	easy	to	maintain	and	will	only	provide	help	for
visible	components.	That	sounds	like	quite	a	big	task,	so	let’s	begin	by	first
constructing	a	component	that	will	display	a	popup-help	message:

import	{Popper}	from	"@material-ui/core";

import	'./HelpBubble.css';

export	default	(props)	=>	{

				const	element	=	props.forElement	?	

document.querySelector(props.forElement)	:	null;

				return	element	?

								<Popper	className='HelpBubble-container'

																open={props.open}

																anchorEl={element}

																placement={props.placement	||	'bottom-start'}>

												<div	className='HelpBubble-close'

																	onClick={props.onClose}

												>Close	[X]

												</div>

												{props.content}

												<div	className='HelpBubble-controls'>

																{

																				props.previousLabel	?

																								<div	className='HelpBubble-control	HelpBubble-

previous'

																													onClick={props.onPrevious}

																								><	{props.previousLabel}

																								</div>

																								:	<div> </div>

																}

																{

																				props.nextLabel	?

																								<div	className='HelpBubble-control	HelpBubble-

next'

																													onClick={props.onNext}

																								>{props.nextLabel}	></div>

																								:	<div> </div>

																}

												</div>

								</Popper>

								:	null;

}

We’re	using	the	Popper	component	from	the	@material-ui	library.	The
Popper	component	that	can	be	anchored	on	the	page,	next	to	some	other
component.	Our	HelpBubble	takes	a	forElement	string,	which	will
represent	a	CSS	selector	such	as	".class-name"	or	"#some-id".	Will	use
selectors	to	associate	things	on	the	screen	with	popup	messages.

Now	that	we	have	a	popup	message	component,	we’ll	need	something	that
coordinates	a	sequence	of	HelpBubbles.	We’ll	call	this	the	HelpSequence:

import	{useEffect,	useState}	from	"react";

import	HelpBubble	from	"./HelpBubble";

function	isVisible(e)	{

				return	!!(e.offsetWidth	||	e.offsetHeight	||	

e.getClientRects().length);

}

export	default	(props)	=>	{

				const	[position,	setPosition]	=	useState(0);

				const	[sequence,	setSequence]	=	useState();

				useEffect(()	=>	{

								if	(props.sequence)	{

												const	filter	=	props.sequence.filter(i	=>	{

																if	(!i.forElement)	{

																				return	false;

																}

																const	element	=	document.querySelector(i.forElement);

																if	(!element)	{

																				return	false;

																}

																return	isVisible(element);

												});

												setSequence(filter);

								}	else	{

												setSequence(null);

								}

				},	[props.sequence,	props.open]);

				const	data	=	sequence	&&	sequence[position];

				useEffect(()	=>	{

								setPosition(0);

				},	[props.open]);

				const	onNext	=	()	=>	setPosition(p	=>	{

								if	(p	===	sequence.length	-	1)	{

												props.onClose	&&	props.onClose();

								}

								return	p	+	1;

				});

				const	onPrevious	=	()	=>	setPosition(p	=>	{

								if	(p	===	0)	{

												props.onClose	&&	props.onClose();

								}

								return	p	-	1;

				});

				return	<div	className='HelpSequence-container'>

								{

												data	&&

												<HelpBubble	open={props.open}	forElement={data.forElement}

																								placement={data.placement}

																								onClose={props.onClose}

																								previousLabel={(position	>	0)	&&	'Previous'}

																								nextLabel={(position	<	sequence.length	-	1)	?	

'Next'	:	'Finish'}

																								onPrevious={onPrevious}

																								onNext={onNext}

																								content={data.text}

												/>

								}

				</div>;

}

The	HelpSequence	takes	an	array	of	JavaScript	objects	like	this:

[

				{forElement:	"p",	text:	"This	is	some	introductory	text	telling	

you	how	to	start"},

				{forElement:	".App-link",	text:	"This	will	show	you	how	to	use	

React"},

				{forElement:	".App-nowhere",	text:	"This	help	text	will	never	

appear"},

]

and	converts	it	into	a	dynamic	sequence	of	HelpBubbles.	It	will	only	show	a
HelpBubble	if	it	can	find	an	element	that	matches	the	forElement	selector.
It	then	places	the	HelpBubble	next	to	element	and	shows	the	help	text.

Let’s	add	a	HelpSequence	to	the	default	App.js	code	generated	by
create-react-app:

import	{useState}	from	'react';

import	logo	from	'./logo.svg';

import	HelpSequence	from	"./HelpSequence";

import	'./App.css';

function	App()	{

		const	[showHelp,	setShowHelp]	=	useState(false);

		return	(

				<div	className="App">

						<header	className="App-header">

								

								<p>

										Edit	<code>src/App.js</code>	and	save	to	reload.

								</p>

								<a

										className="App-link"

										href="https://reactjs.org"

										target="_blank"

										rel="noopener	noreferrer"

								>

										Learn	React

								

						</header>

						<button	onClick={()	=>	setShowHelp(true)}>Show	help</button>

						<HelpSequence

								sequence={[

										{forElement:	"p",	text:	"This	is	some	introductory	text	

telling	you	how	to	start"},

										{forElement:	".App-link",	text:	"This	will	show	you	how	to	

use	React"},

										{forElement:	".App-nowhere",	text:	"This	help	text	will	

never	appear"},

]}

								open={showHelp}

								onClose={()	=>	setShowHelp(false)}

						/>

				</div>

);

}

export	default	App;

To	begin	with,	we	cannot	see	anything	different,	other	than	a	help-button	(see
figure	4-4).

Figure	4-4.	The	application	when	it	first	loads

When	the	user	clicks	the	help	button,	the	first	help	topic	appears,	as	shown	in
figure	4-5.

Figure	4-5.	When	they	click	the	help	button,	the	help	bubble	appears	for	the	first	match

Figure	4-6	shows	that	when	the	user	clicks	next,	the	help	will	move	to	the	next
element.	The	user	can	continue	moving	to	the	next	help	item	until	there	are	no
more	matching	elements	visible.

Figure	4-6.	The	final	element	has	a	Finish	button

Discussion
Adding	interactive	help	to	your	application	makes	your	user-interface
discoverable.	Developers	spend	a	lot	of	their	time	adding	functionality	to
applications	that	people	might	never	use,	simply	because	they	don’t	know	that
it’s	there.

The	implementation	you	can	see	this	in	this	recipe	displays	the	help	as	simple
plain	text.	You	might	consider	using	Markdown,	as	this	will	allow	for	a	richer-

experience,	and	help	topics	can	then	include	links	to	other	more	expansive	help
pages.3

The	help-topics	are	automatically	limited	to	just	those	elements	which	are	visible
on	the	page.	You	could	choose	to	create	either	a	separate	help-sequence	for	each
page	or	choose	to	create	a	single	large	help-sequence	that	will	automatically
adapt	to	the	user’s	current	view	of	the	interface.

Finally,	a	help	system	like	this	is	perfectly	suited	for	storage	in	a	headless	CRM,
which	will	allow	you	to	update	help	dynamically,	without	the	need	to	create	a
new	deployment	each	time.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

4.3	Use	Reducers	for	Complex	Sequences

Problem
Applications	frequently	need	users	to	follow	a	sequence	of	actions.	They	might
be	completing	the	steps	in	a	wizard,	or	(see	figure	4-7)	they	might	need	to	log	in
and	confirm	some	dangerous	operation.

https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch04-02-help
https://github.com/dogriffiths/ReactCookbook-source

Figure	4-7.	This	deletion	process	requires	logging	in	and	then	confirming	the	deletion

Not	only	will	the	user	need	to	perform	a	sequence	of	steps,	but	the	steps	might
be	conditional.	If	the	user	has	logged	in	recently,	they	perhaps	don’t	need	to	log
in	again.	They	might	want	to	cancel	some-way	through	the	sequence.

If	you	model	the	complex	sequences	inside	your	components,	you	can	soon	find
your	application	is	full	of	spaghetti	code.

Solution
We	are	going	to	use	a	reducer	to	manage	a	complex	sequence	of	operations.	We
introduced	reducers	for	managing	state	in	chapter	3.	A	reducer	is	a	function	that
accepts	a	state	object	and	an	action.	The	reducer	uses	the	action	to	decide	how	to
change	the	state,	and	it	must	have	no	side-effects.

Because	reducers	have	no	user-interface	code,	they	are	perfect	for	managing
gnarly	pieces	of	inter-related	state	without	worrying	about	how	it	will	appear	on
the	screen.	They	are	particularly	amenable	to	unit	testing.

For	example,	let	us	say	we	will	implement	the	deletion	sequence	mentioned	at

the	start	of	this	recipe.	We	can	begin	in	classic	test-driven	style	by	writing	a	unit
test:

import	deletionReducer	from	"./deletionReducer";

describe('deletionReducer',	()	=>	{

				it('should	show	the	login	dialog	if	we	are	not	logged	in',	()	=>	{

								const	actual	=	deletionReducer({},	{type:	'START_DELETION'});

								expect(actual.showLogin).toBe(true);

								expect(actual.message).toBe('');

								expect(actual.deleteButtonDisabled).toBe(true);

								expect(actual.loginError).toBe('');

								expect(actual.showConfirmation).toBe(false);

				});

});

Here	our	reducer	function	is	going	to	be	called	deletionReducer.	We	pass	it
an	empty	object	({})	and	an	action	that	says	we	want	to	start	the	deletion
process	({type:	'START_DELETION'});	We	then	say	that	we	expect	the
new	version	of	the	state	to	have	a	showLogin	value	of	true,	a
showConfirmation	value	to	be	false	and	so	on.

We	can	then	implement	the	code	for	a	reducer	to	do	just	that:

function	deletionReducer(state,	action)	{

				switch	(action.type)	{

								case	'START_DELETION':

												return	{

																...state,

																showLogin:	true,

																message:	'',

																deleteButtonDisabled:	true,

																loginError:	'',

																showConfirmation:	false,

												};

								default:

												return	null;	//	Or	anything

				}

};

At	first,	we	are	merely	setting	the	state	attributes	to	values	that	pass	the	test.	As
we	add	more	and	more	tests,	our	reducer	improves	as	it	handles	more	situations.

Eventually,	we	get	something	that	looks	like	this:4

function	deletionReducer(state,	action)	{

				switch	(action.type)	{

								case	'START_DELETION':

												return	{

																...state,

																showLogin:	!state.loggedIn,

																message:	'',

																deleteButtonDisabled:	true,

																loginError:	'',

																showConfirmation:	!!state.loggedIn,

												};

								case	'CANCEL_DELETION':

												return	{

																...state,

																showLogin:	false,

																showConfirmation:	false,

																showResult:	false,

																message:	'Deletion	canceled',

																deleteButtonDisabled:	false,

												};

								case	'LOGIN':

												const	passwordCorrect	=	action.payload	===	'swordfish'

												return	{

																...state,

																showLogin:	!passwordCorrect,

																showConfirmation:	passwordCorrect,

																loginError:	passwordCorrect	?	''	:	'Invalid	password',

																loggedIn:	true,

												};

								case	'CONFIRM_DELETION':

												return	{

																...state,

																showConfirmation:	false,

																showResult:	true,

																message:	'Widget	deleted',

												};

								case	'FINISH':

												return	{

																...state,

																showLogin:	false,

																showConfirmation:	false,

																showResult:	false,

																deleteButtonDisabled:	false,

												};

								default:

												throw	new	Error('Unknown	action:	'	+	action.type);

				}

}

export	default	deletionReducer;

Although	this	code	is	complicated,	you	can	write	it	quickly	if	you	create	the	tests
first.

Now	that	we	have	the	reducer,	we	just	need	to	use	it	in	our	application.

import	{useReducer,	useState}	from	'react';

import	'./App.css';

import	deletionReducer	from	"./deletionReducer";

function	App()	{

				const	[state,	dispatch]	=	useReducer(deletionReducer,	{});

				const	[password,	setPassword]	=	useState();

				return	<div	className="App">

								<button

												onClick={()	=>	{

																dispatch({type:	'START_DELETION'});

												}}

												disabled={state.deleteButtonDisabled}

								>Delete	Widget!

								</button>

								<div	className='App-message'>{state.message}</div>

								{

												state.showLogin	&&

																<div	className='App-dialog'>

																				<p>Enter	your	password</p>

																				<input	type='password'	value={password}

																								onChange={evt	=>	

setPassword(evt.target.value)}/>

																				<button	onClick={()	=>	dispatch({type:	'LOGIN',

																								payload:	password})}>Login</button>

																				<button	onClick={()	=>	dispatch({type:	

'CANCEL_DELETION'})}

																								>Cancel</button>

																				<div	className='App-error'>{state.loginError}

</div>

																</div>

								}

								{

												state.showConfirmation	&&

																<div	className='App-dialog'>

																				<p>Are	you	sure	you	want	to	delete	the	widget?</p>

																				<button	onClick={()	=>	dispatch({

																								type:	'CONFIRM_DELETION'})}>Yes</button>

																				<button	onClick={()	=>	dispatch({

																								type:	'CANCEL_DELETION'})}>No</button>

																</div>

								}

								{

												state.showResult	&&

												<div	className='App-dialog'>

																<p>The	widget	was	deleted</p>

																<button	onClick={()	=>	dispatch({

																				type:	'FINISH'})}>Done</button>

												</div>

								}

				</div>;

}

export	default	App;

Most	of	this	code	is	purely	creating	the	user-interface	for	each	of	the	dialogs	that
appear	in	the	sequence.	There	is	virtually	no	logic	in	this	component.	It	just	does
what	the	reducer	tells	it.	It	will	take	the	user	through	the	happy	path	of	logging
in	and	confirming	the	deletion	(see	figure	4-8).

Figure	4-8.	The	final	result

But	figure	4-9	shows	it	also	handles	all	of	the	edge	cases,	such	as	invalid

passwords	and	cancellation.

Figure	4-9.	The	edge	cases	are	all	handled	by	the	reducer

Discussion
There	are	times	when	reducers	can	make	your	code	convoluted;	if	you	have	very
few	pieces	of	state	with	very	few	interactions	between	them,	you	probably	don’t
need	a	reducer.	But	if	you	find	yourself	drawing	a	flowchart	or	a	state	diagram	to
describe	a	sequence	of	user	interactions,	that’s	a	sign	that	might	need	a	reducer.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

4.4	Keyboard	Interaction

Problem
Power	users	like	to	use	keyboards	for	common	operations.	React	components
can	respond	to	keyboard	events,	but	only	when	(or	their	children)	have	focus.

https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch04-03-reducer-seq
https://github.com/dogriffiths/ReactCookbook-source

What	do	you	do	if	you	want	your	component	to	respond	to	events	at	the
document	level?

Solution
We’re	going	to	create	a	key-listener	hook	to	listen	for	keydown	events	at	the
document	level.	Still,	it	could	be	easily	modified	to	listen	for	any	other
JavaScript	event	in	the	DOM.	This	is	the	hook:

import	{useEffect}	from	"react";

export	default	(callback)	=>	{

				useEffect(()	=>	{

								const	listener	=	(e)	=>	{

												e	=	e	||	window.event;

												const	tagName	=	e.target.localName	||	e.target.tagName;

												//	Only	accept	key-events	that	originated	at	the	body	

level

												//	to	avoid	key-strokes	in	e.g.	text-fields	being	included

												if	(tagName.toUpperCase()	===	'BODY')	{

																callback(e);

												}

								};

								document.addEventListener('keydown',	listener,	true);

								return	()	=>	{

												document.removeEventListener('keydown',	listener,	true);

								}

				},	[callback]);

};

The	hook	accepts	a	callback	function	and	registers	it	for	keydown	events	on	the
document	object.	At	the	end	of	the	useEffect,	it	returns	a	function	that	will
un-register	the	callback.	If	the	callback	function	we	pass	in	changes,	we	will	first
un-register	the	old	function	before	registering	the	new	one.

How	do	we	use	the	hook?	This	is	an	example.	See	if	you	notice	the	little	coding-
wrinkle	we	have	to	deal	with:

import	{useCallback,	useState}	from	'react';

import	'./App.css';

import	useKeyListener	from	"./useKeyListener";

const	RIGHT_ARROW	=	39;

const	LEFT_ARROW	=	37;

const	ESCAPE	=	27;

function	App()	{

				const	[angle,	setAngle]	=	useState(0);

				const	[lastKey,	setLastKey]	=	useState('');

				let	onKeyDown	=	useCallback(evt	=>	{

								if	(evt.keyCode	===	LEFT_ARROW)	{

												setAngle(c	=>	Math.max(-360,	c	-	10));

												setLastKey('Left');

								}	else	if	(evt.keyCode	===	RIGHT_ARROW)	{

												setAngle(c	=>	Math.min(360,	c	+	10));

												setLastKey('Right');

								}	else	if	(evt.keyCode	===	ESCAPE)	{

												setAngle(0);

												setLastKey('Escape');

								}

				},	[setAngle]);

				useKeyListener(onKeyDown);

				return	(

								<div	className="App">

												<p>Angle:	{angle}	Last	key:	{lastKey}</p>

												<svg	width="400px"	height="400px"	title='arrow'	

fill='none'

																	strokeWidth="10"	stroke='black'	style={{

																transform:	`rotate(${angle}deg)`,

												}}>

																<polyline	points="100,200	200,0	300,200"/>

																<polyline	points="200,0	200,400"/>

												</svg>

								</div>

);

}

export	default	App;

This	code	listens	for	the	user	pressing	the	left/right	cursor	keys.	Our
onKeyDown	function	says	what	should	when	those	key-presses	occur,	but
notice	that	we’ve	wrapped	it	in	a	useCallback.	If	we	didn’t	do	that,	the
browser	would	re-create	the	onKeyDown	function	each	time	it	rendered	the
App	component.	The	new	function	would	do	the	same	as	the	old	onKeyDown
function,	but	it	would	live	in	a	different	place	in	memory,	and	the
useKeyListener	would	keep	un-registering	and	re-registering	it.

WARNING
If	you	forget	to	wrap	your	callback	function	in	a	useCallback,	it	may	result	in	a	blizzard	of	render	calls,
which	might	slow	your	application	down.

By	using	useCallback,	we	can	ensure	that	we	only	create	the	function	if
setAngle	changes.

If	you	run	the	application,	you	will	see	an	arrow	on	the	screen.	If	you	press	the
left/right	cursor	keys	(figure	4-10),	you	can	rotate	it.	If	you	press	the	escape	key,
you	can	reset	it	to	vertical.

Figure	4-10.	Pressing	the	left/right/escape	keys	causes	the	arrow	to	rotate

Discussion
We	are	careful	in	the	useKeyListener	function	to	only	listen	to	events	that
originated	at	the	body	level.	If	the	user	presses	the	arrow	keys	in	a	text	field,	the
browser	won’t	send	those	events	to	your	code.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch04-04-keyboard
https://github.com/dogriffiths/ReactCookbook-source

4.5	Use	Markdown	for	Rich	Content

Problem
If	your	application	allows	users	to	provide	large	blocks	of	text	content,	it	would
be	useful	if	that	content	could	also	include	formatted	text,	links,	and	so	forth.
However,	allowing	users	to	pass	in	such	horrors	as	raw	HTML	can	lead	to
security	flaws	and	untold	misery	for	developers.

How	do	you	allow	users	to	post	rich	content	without	undermining	the	security	of
your	application?

Solution
Markdown	is	a	wonderful	way	of	allowing	users	to	post	rich	content	into	your
application	safely.	To	see	how	to	use	Markdown	in	your	application,	let	us
consider	this	simple	application	which	allows	a	user	to	post	a	timestamped	series
of	messages	into	a	list:

import	{useState}	from	"react";

import	'./Forum.css';

export	default	()	=>	{

				const	[text,	setText]	=	useState('');

				const	[messages,	setMessages]	=	useState([])

				return	<section	className='Forum'>

								<textarea	cols={80}	rows={20}	value={text}

												onChange={evt	=>	setText(evt.target.value)}/>

								<button	onClick={()	=>	{

												setMessages(msgs	=>	[{

																body:	text,

																timestamp:	new	Date().toISOString()},	...msgs]);

												setText('');

								}}>Post</button>

								{messages.map(msg	=>	{

												return	<dl>

																<dt>{msg.timestamp}</dt>

																<dd>{msg.body}</dd>

												</dl>;

								})}

				</section>;

}

When	you	run	the	application	(figure	4-11),	you	see	a	large	text-area.	When	you
post	a	plain-text	message,	the	app	preserves	white-space	and	line-breaks.

Figure	4-11.	A	user	enters	text	into	a	textarea,	and	it	gets	posted	as	a	plain-text	message

Any	time	your	application	contains	a	text-area,	it’s	worth	considering	allowing

the	user	to	enter	Markdown	content.

There	are	many,	many	Markdown	libraries	available,	but	most	of	them	are
wrappers	for	`react-markdown`5	or	a	syntax	highlighter	like	PrismJS	or
codemirror.

We’ll	look	at	a	library	that	allows	you	to	both	display	Markdown	and	edit,	called
react-md-editor.	Begin	by	installing	the	library:

npm	install	@uiw/react-md-editor

We’ll	now	convert	our	plain	text-area	to	a	Markdown	editor	and	convert	the
posted	messages	from	Markdown	to	HTML:

import	{useState}	from	"react";

import	MDEditor	from	'@uiw/react-md-editor';

export	default	()	=>	{

				const	[text,	setText]	=	useState('');

				const	[messages,	setMessages]	=	useState([])

				return	<section	className='Forum'>

								<MDEditor	height={300}	value={text}	onChange={setText}/>

								<button	onClick={()	=>	{

												setMessages(msgs	=>	[{

																body:	text,

																timestamp:	new	Date().toISOString()},	...msgs]);

												setText('');

								}}>Post

								</button>

								{messages.map(msg	=>	{

												return	<dl>

																<dt>{msg.timestamp}</dt>

																<dd><MDEditor.Markdown	source={msg.body}/></dd>

												</dl>;

								})}

				</section>;

}

Converting	plain-text	to	Markdown	is	a	small	change	with	a	large	return.	As	you
can	see	in	figure	4-12,	the	user	can	apply	rich	formatting	to	message	and	choose
to	edit	it	fullscreen	before	posting	it.

https://prismjs.com/
https://codemirror.net/

Figure	4-12.	The	markdown	editor	shows	a	preview	as	you	type	and	also	allows	you	to	work	fullscreen

Discussion
Adding	Markdown	to	an	application	is	quick	and	improves	the	user’s	experience

with	minimal	effort.	For	more	details	on	Markdown,	see	John	Gruber’s	original
guide.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

4.6	Animations	with	CSS	Classes

Problem
You	want	to	add	a	small	amount	of	simple	animation	to	your	application,	but	you
don’t	want	to	increase	your	application	size	by	installing	a	third-party	library.

Solution
Most	of	the	animation	you	are	ever	likely	to	need	in	a	React	application	will
probably	not	require	a	third	party	animation	library.	That’s	because	CSS
animation	now	gives	browsers	the	native	ability	to	animate	CSS	properties	with
minimal	effort.	It	takes	very	little	code,	and	the	animation	is	smooth	because	the
graphics	hardware	will	generate	it.	GPU	animation	uses	less	power,	making	it
more	appropriate	for	mobile	devices.

TIP
If	you	are	looking	add	animation	to	your	React	application,	begin	with	CSS	animation	before	looking
elsewhere

How	does	CSS	animation	work?	It	uses	a	CSS	property	called	transition.
Let’s	say	we	want	to	create	an	expandable	information-panel.	When	the	user
clicks	on	the	button,	the	panel	smoothly	opens.	When	they	click	it	again,	it
closes	smoothly,	as	show	in	figure	4-13.

https://daringfireball.net/projects/markdown/
https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch04-05-markdown
https://github.com/dogriffiths/ReactCookbook-source

Figure	4-13.	Simple	CSS	animation	will	smoothly	expand	and	contract	the	panel

We	can	create	this	effect	using	the	CSS	transition	property:

.InfoPanel-details	{

				height:	350px;

				transition:	height	0.5s;

}

This	CSS	specifies	a	height,	as	well	as	a	transition	property.	This
combination	translates	to	“Whatever	your	current	height,	animate	to	my
preferred	height	during	the	next	half-second.”

The	animation	will	occur	whenever	the	height	of	the	element	changes,	such	as
when	an	additional	CSS	rule	becomes	valid.	For	example,	if	we	have	an	extra
CSS	class-name	with	a	different	height:

.InfoPanel-details	{

				height:	350px;

				transition:	height	0.5s;

}

.InfoPanel-details.InfoPanel-details-closed	{

				height:	0;

}

If	an	InfoPanel-details	element	suddenly	acquires	an	additional
.InfoPanel-details-closed`footnote:[This	class	name

structure	is	an	example	of	Block-Element-Modifier

(BEM)	naming.	The	_block_	is	the	component

(`InfoPanel),	the	element	is	a	thing	inside	the	block	(Details),	and	the
modifier	says	something	about	the	element’s	current	state	(closed).]	class,	the
height	will	change	from	350px	to	0,	and	transition	property	will
smoothly	shrink	the	element.	Conversely,	if	the	component	loses	the
.InfoPanel-details-closed	class,	the	element	will	expand	again.

That	means	that	we	can	defer	the	hard	work	to	CSS,	and	all	we	need	to	do	in	our
React	code	is	add	or	remove	the	class	to	an	element:

import	{useState}	from	'react';

import	'./InfoPanel.css';

export	default	({title,	children})	=>	{

				const	[open,	setOpen]	=	useState(false);

				return	<section	className='InfoPanel'>

								<h1>

												{title}

												<button	onClick={()	=>	setOpen(v	=>	!v)}>

																{open	?	'' 	:	'' }

												</button>

								</h1>

								<div	className={`InfoPanel-details	${(open	?	''

																:	'InfoPanel-details-closed')}`}>

												{children}

								</div>

				</section>

}

Discussion

We	have	frequently	seen	many	projects	bundle	in	third	party	component	libraries
to	use	some	small	widget	that	expands	or	contracts	its	contents.	As	you	can	see
above,	such	animation	is	trivial	to	include.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

4.7	Animations	with	react-animation

Problem
CSS	animations	are	very	low-tech	and	will	be	appropriate	for	most	animations
that	you	are	likely	to	need.

However,	they	require	you	to	understand	a	lot	about	the	various	CSS	properties
and	the	effects	of	animating	them.	If	you	want	to	illustrate	an	item	being	deleted
by	it	rapidly	expanding	and	becoming	transparent,	how	do	you	do	that?

Libraries	such	as	animate.css	contain	a	whole	host	of	pre-canned	CSS
animations,	but	they	often	require	more	advanced	CSS	animation	concepts	like
keyframes	and	are	not	particularly	tuned	for	React.	How	can	we	add	CSS	library
animations	to	a	React	application?

Solution
The	react-animations	library	is	a	React-wrapper	for	the	animate.css
library.	It	will	efficiently	add	animated-styling	to	your	components	without
generating	unnecessary	renders	or	significantly	increasing	the	size	of	the
generated	DOM.

It’s	able	to	work	so	efficiently	because	react-animations	works	with	a
CSS-in-JS	library.	CSS-in-JS	is	a	technique	for	coding	your	style	information
directly	in	your	JavaScript	code.	React	will	let	you	add	your	style	attributes	as
React	components,	but	CSS-in-JS	does	this	more	efficiently,	dynamically
creating	shared	style	elements	in	the	head	of	the	page.

There	are	several	CSS-in-JS	libraries	to	choose	from,	but	in	this	recipe,	we’re
going	to	use	one	called	Radium

Let’s	begin	by	installing	Radium	and	react-animations:

https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch04-06-css-anim
https://github.com/dogriffiths/ReactCookbook-source
https://animate.style/
https://formidable.com/open-source/radium/

npm	install	radium

npm	install	react-animations

Our	example	application	(figure	4-14)	is	going	to	run	an	animation	each	time	we
add	an	image	item	to	the	collection.

Figure	4-14.	Clicking	the	add	button	will	load	a	new	image	from	picsum.images

Likewise,	when	a	user	clicks	on	an	image,	it	shows	a	fade-out	animation	before

removing	the	images	from	the	list6,	as	shown	in	figure	4-15.

Figure	4-15.	If	we	click	the	5th	image,	it	will	fade	out	from	the	list	and	disappear

We’ll	begin	by	importing	some	animations	and	helper	code	from	Radium:

import	{pulse,	zoomOut,	shake,	merge}	from	'react-animations';

import	Radium,	{StyleRoot}	from	'radium';

const	styles	=	{

				created:	{

								animation:	'x	0.5s',

								animationName:	Radium.keyframes(pulse,	'pulse')

				},

				deleted:	{

								animation:	'x	0.5s',

								animationName:	Radium.keyframes(merge(zoomOut,	shake),	

'zoomOut')

				},

};

From	react-animations	we	are	getting	the	details	for	pulse,	zoomOut,
and	shake	animations.	We	are	going	to	use	the	pulse	animation	when	we	add
an	image.	We’ll	use	a	combined	animation	of	zoomOut	and	shake	when	we
remove	an	image.	We	can	combine	animations	using	react-animations
merge	function.

The	styles	generate	all	of	the	CSS-styles	needed	to	run	each	of	these
animations	in	half	a	second.	The	call	to	Radium.keyframes	handles	all	of
the	animation	details	for	us.

We	must	know	when	an	animation	has	completely	ended.	If	we	delete	an	image
before	the	deletion-animation	completes,	there	would	be	no	image	to	animate.

We	can	keep	track	of	CSS	animations	by	passing	an	onAnimationEnd
callback	to	any	element	we	are	going	to	animate.	For	each	item	in	our	image
collection,	we	are	going	to	track	three	things:

The	URL	of	the	image	it	represents

A	boolean	value	which	will	be	true	while	the	“created”	animation	is	running

A	boolean	value	which	will	be	true	while	the	“deleted”	animation	is	running

This	is	the	example	code	to	animate	images	into	an	out	of	the	collection:

import	{useState}	from	'react';

import	{pulse,	zoomOut,	shake,	merge}	from	'react-animations';

import	Radium,	{StyleRoot}	from	'radium';

import	'./App.css';

const	styles	=	{

				created:	{

								animation:	'x	0.5s',

								animationName:	Radium.keyframes(pulse,	'pulse')

				},

				deleted:	{

								animation:	'x	0.5s',

								animationName:	Radium.keyframes(merge(zoomOut,	shake),	

'zoomOut')

				},

};

function	getStyleForItem(item)	{

				return	item.deleting	?	styles.deleted	:	item.creating	?	

styles.created	:	null;

}

function	App()	{

				const	[data,	setData]	=	useState([]);

				let	deleteItem	=	(i)	=>	setData(d	=>	{

								const	result	=	[...d];

								result[i].deleting	=	true;

								return	result;

				});

				let	createItem	=	()	=>	{

								setData(d	=>	[...d,	{

												url:	`https://picsum.photos/id/${d.length	*	3}/200`,

												creating:	true

								}]);

				};

				let	completeAnimation	=	(d,	i)	=>	{

								if	(d.deleting)	{

												setData(d	=>	{

																const	result	=	[...d];

																result.splice(i,	1);

																return	result;

												});

								}	else	if	(d.creating)	{

												setData(d	=>	{

																const	result	=	[...d];

																result[i].creating	=	false;

																return	result;

												});

								}

				};

				return	(

								<div	className="App">

												<StyleRoot>

																<p>

																				Images	from

																				Lorem	Picsum

																</p>

																<button	onClick={createItem}>Add</button>

																{

																				data.map((d,	i)	=>	<div

																								style={getStyleForItem(d)}

																								onAnimationEnd={()	=>	completeAnimation(d,	

i)}>

																								<img

																												id={`image${i}`}

																												src={d.url}

																												width={200}

																												height={200}

																												alt='Random'

																												title='Click	to	delete'

																												onClick={()	=>	deleteItem(i)}

																								/>

																				</div>)

																}

												</StyleRoot>

								</div>

);

}

export	default	App;

Discussion
When	choosing	which	animation	to	use,	it’s	important	to	first	ask:	what	will	this
animation	mean?

All	animation	should	have	meaning.	It	can	show	something	existential7.	It	might
indicate	a	change	of	state8.	It	might	zoom	in	to	show	detail,	or	zoom	out	to
reveal	a	broader	context.	Or	it	might	illustrate	a	limit	or	boundary9,	or	allow	a
user	to	express	a	preference	10

Animation	should	also	be	short.	Most	animations	should	probably	be	over	in	less
than	a	second	so	that	the	user	can	experience	the	meaning	of	the	animation
without	being	consciously	aware	of	its	appearance.

An	animation	should	never	be	merely	attractive.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

4.8	Create	Animated	Infographics	with
TweenOne

https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch04-07-reanim
https://github.com/dogriffiths/ReactCookbook-source

Problem
CSS	animations	are	smooth	and	extremely	efficient.	Browsers	might	defer	CSS
animations	to	the	graphics	hardware	at	the	compositing	stage,	which	means	that
not	only	are	the	animations	running	at	machine-code	speeds,	the	machine-code
itself	is	not	running	on	the	CPU.

However,	the	downside	to	CSS	animations	being	handed-off	in	this	way	is	that
your	application	code	won’t	know	what’s	happening	during	an	animation.	You
can	track	when	an	animation	has	started,	ended,	or	has	been	repeated11	but
everything	that	happens	in	between	is	a	mystery.

If	you	are	animating	an	infographic,	you	may	want	to	animate	the	numbers	on	a
bar	chart	as	the	bars	change	height.	Or,	if	you	are	writing	an	application	to	track
cyclists,	you	might	want	to	show	the	current	altitude	as	the	bicycle	animates	its
way	up	and	down	the	terrain.

But	how	do	you	create	animations	that	you	can	listen	to	while	they	are
happening?

Solution
The	TweenOne	library	creates	animations	with	JavaScript,	which	means	you	can
track	them	as	they	happen,	frame-by-frame.

Let’s	begin	by	installing	the	TweenOne	library.

npm	install	rc-tween-one

TweenOne	works	with	CSS,	but	it	doesn’t	use	CSS	animations.	Instead,	it
generates	CSS	transforms,	which	it	updates	many	times	each	second.

You	need	to	wrap	the	thing	you	want	to	animate	in	a	<TweenOne/>	element.
For	example,	let’s	say	we	want	to	animate	a	rect	inside	an	SVG:

<TweenOne	component='g'	animation={...details	here}>

				<rect	width="2"	height="6"	x="3"	y="-3"	fill="white">

</TweenOne>

TweenOne	takes	an	element	name	and	an	object	that	will	describe	the
animation	to	perform.	We’ll	come	to	what	that	animation	object	looks	like

shortly.

TweenOne	will	use	the	element	name	(g	in	this	case)	to	generate	a	wrapper
around	the	animated	thing.	This	wrapper	will	have	a	style	attribute	that	will
include	a	set	of	CSS	transforms	to	move	and	rotate	the	contents	somewhere.

So	in	our	example,	at	some	point	in	the	animation,	the	DOM	might	look	like
this:

<g	style="transform:	translate(881.555px,	489.614px)	

rotate(136.174deg);">

		<rect	width="2"	height="6"	x="3"	y="-3"	fill="white">

</g>

This	means	that	although	you	can	create	very	similar	effects	to	CSS	animations,
the	TweenOne	library	works	differently.	Instead	of	handing	the	animation	to	the
hardware,	the	TweenOne	library	uses	JavaScript	to	create	each	frame,	which	has
two	consequences.	First,	we’ll	use	more	CPU	power,	and	second,	we	can	track
the	animation	while	it’s	happening.

If	we	pass	TweenOne	an	onUpdate	callback,	we	will	be	sent	information
about	the	animation	on	every	single	frame:

<TweenOne	component='g'	animation={...details	here}	onUpdate={info=>

{...}>

				<rect	width="2"	height="6"	x="3"	y="-3"	fill="white">

</TweenOne>

The	information	object	passed	to	onUpdate	has	a	ratio	value	between	0
and	1,	representing	the	proportion	of	the	way	the	TweenOne	element	is	through
an	animation.	We	can	use	the	ratio	to	animate	text	that	is	associated	with	the
graphics.

For	example,	if	we	build	an	animated	dashboard	that	shows	vehicles	on	a	race
track,	we	can	use	onUpdate	to	show	each	car’s	speed	and	distance	as	it
animates.

We’ll	create	the	visuals	for	this	example	in	SVG.	First,	let’s	create	a	string
containing	an	SVG	path,	which	represents	the	track:

export	default	'm	723.72379,404.71306	...		-8.30851,-3.00521	z';

This	is	a	greatly	truncated	version	of	the	actual	path	that	we’ll	use.	We	can
import	the	path	string	from	track.js	like	this:

import	path	from	'./track';

To	display	the	track	inside	a	React	component,	we	can	render	an	svg	element:

<svg	height="600"	width="1000"	viewBox="0	0	1000	600"

					style={{backgroundColor:	'black'}}>

		<path	stroke='#444'	strokeWidth={10}

								fill='none'	d={path}/>

</svg>

We	can	add	a	couple	of	rectangles	for	the	vehicle	-	a	red	one	for	the	body	and	a
white	one	for	the	windshield:

<svg	height="600"	width="1000"	viewBox="0	0	1000	600"

					style={{backgroundColor:	'black'}}>

		<path	stroke='#444'	strokeWidth={10}

								fill='none'	d={path}/>

		<rect	width={24}	height={16}	x={-12}	y={-8}	fill='red'/>

		<rect	width={2}	height={6}	x={3}	y={-3}	fill='white'/>

</svg>

Figure	4-16	shows	the	track	with	the	vehicle	at	the	top-left	hand	corner.

Figure	4-16.	The	static	image	with	the	vehicle	at	the	top-left

But	how	do	we	animate	the	vehicle	around	the	track?	TweenOne	makes	this	very
easy	because	it	contains	a	plug-in	to	generate	animations	that	follow	SVG	path
strings.

import	PathPlugin	from	'rc-tween-one/lib/plugin/PathPlugin';

TweenOne.plugins.push(PathPlugin);

We’ve	configured	TweenOne	for	use	with	SVG	path	animations.	That	means	we

can	look	at	how	to	describe	an	animation	for	TweenOne.	We	do	it	with	a	simple
JavaScript	object:

import	path	from	'./track';

const	followAnimation	=	{

				path:	{x:	path,	y:	path,	rotate:	path},

				repeat:	-1,

};

We	tell	TweenOne	two	things	with	this	object:	firstly,	we’re	telling	it	to	generate
translates	and	rotations	that	follow	the	path	string	that	we’ve	imported	from
track.js.	Secondly,	we’re	saying	that	we	want	the	animation	to	loop
infinitely	by	setting	the	repeat	count	to	-1.

We	can	use	this	as	the	basis	of	animation	for	our	car:

<svg	height="600"	width="1000"	viewBox="0	0	1000	600"

					style={{backgroundColor:	'black'}}>

		<path	stroke='#444'	strokeWidth={10}

								fill='none'	d={path}/>

		<TweenOne	component='g'	animation={{...followAnimation,	duration:	

16000}}>

				<rect	width={24}	height={16}	x={-12}	y={-8}	fill='red'/>

				<rect	width={2}	height={6}	x={3}	y={-3}	fill='white'/>

		</TweenOne>

</svg>

Notice	that	we’re	using	the	spread	operator	to	provide	an	additional	animation
parameter:	duration.	A	value	of	16000	means	we	want	the	animation	to	take
16	seconds.

We	can	add	a	second	vehicle	and	use	the	onUpdate	callback	method	to	create	a
very	rudimentary	set	of	faked	telemetry	statistics	for	each	one	as	they	move
around	the	track.	This	is	the	completed	code:

import	{useState}	from	'react';

import	TweenOne	from	'rc-tween-one';

import	Details	from	"./Details";

import	path	from	'./track';

import	PathPlugin	from	'rc-tween-one/lib/plugin/PathPlugin';

import	grid	from	'./grid.svg';

import	'./App.css';

TweenOne.plugins.push(PathPlugin);

const	followAnimation	=	{

				path:	{x:	path,	y:	path,	rotate:	path},

				repeat:	-1,

};

function	App()	{

				const	[redTelemetry,	setRedTelemetry]	=	useState({

								dist:	0,	speed:	0,	lap:	0});

				const	[blueTelemetry,	setBlueTelemetry]	=	useState({

								dist:	0,	speed:	0,	lap:	0});

				const	trackVehicle	=	(info,	telemetry)	=>	({

								dist:	info.ratio,

								speed:	info.ratio	-	telemetry.dist,

								lap:	info.ratio	<	telemetry.dist	?

												telemetry.lap	+	1	:	telemetry.lap

				});

				return	<div	className="App">

								<h1>Nürburgring</h1>

								<Details	redTelemetry={redTelemetry}

																	blueTelemetry={blueTelemetry}/>

								<svg	height="600"	width="1000"	viewBox="0	0	1000	600"

													style={{backgroundColor:	'black'}}>

												<image	href={grid}

																			width={1000}	height={600}/>

												<path	stroke='#444'	strokeWidth={10}

																		fill='none'	d={path}/>

												<path	stroke='#c0c0c0'	strokeWidth={2}

																		strokeDasharray='3	4'	fill='none'	d={path}/>

												<TweenOne	component='g'	animation={{

																...followAnimation,

																duration:	16000,

																onUpdate:	(info)	=>	setRedTelemetry(

																				(telemetry)	=>	trackVehicle(info,	telemetry)),

												}}>

																<rect	width={24}	height={16}	x={-12}	y={-8}	

fill='red'/>

																<rect	width={2}	height={6}	x={3}	y={-3}	fill='white'/>

												</TweenOne>

												<TweenOne	component='g'	animation={{

																...followAnimation,

																delay:	3000,

																duration:	15500,

																onUpdate:	(info)	=>	setBlueTelemetry(

																				(telemetry)	=>	trackVehicle(info,	telemetry)),

												}}>

																<rect	width={24}	height={16}	x={-12}	y={-8}	

fill='blue'/>

																<rect	width={2}	height={6}	x={3}	y={-3}	fill='white'/>

												</TweenOne>

								</svg>

				</div>;

}

export	default	App;

Figure	4-17	shows	the	animation.	The	vehicles	follow	the	path	of	the	race	track,
rotating	to	face	the	direction	of	travel.

Figure	4-17.	Our	final	animation	with	telemetry	generated	from	the	current	animation	state

Discussion
CSS	animations	are	what	you	should	use	for	most	UI	animation.	However,	in	the
case	of	infographics,	you	often	need	to	synchronize	the	text	and	the	graphics.
TweenOne	makes	that	possible.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

https://sentry.io/1

2

https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch04-08-tween
https://github.com/dogriffiths/ReactCookbook-source
https://sentry.io/

You	can	download	all	source	for	this	recipe	on	the	Github	repository

See	the	5th	recipe	in	this	chapter	for	details	on	how	to	use	Markdown	in	your	application.
See	the	Github	repository	for	the	tests	we	used	to	drive	out	this	code

A	Markdown	rendering	library	which	(safely)	converts	Markdown	text	to	HTML
Paper	books	are	wonderful	things,	but	to	fully	experience	the	animation	effect,	see	the	full	code	on
Github

Creation	or	deletion
Becoming	enabled	or	disabled

A	spring-back	operation	at	the	end	of	a	long	list
Swipe	left	or	swipe	right

onAnimationStart,	onAnimationEnd,	onAnimationIteration

2

3

4

5

6

7

8

9

10

11

https://github.com/dogriffiths/ReactCookbook-source/ch04-01-error
https://github.com/dogriffiths/ReactCookbook-source/ch04-03-reducer-seq
https://github.com/dogriffiths/ReactCookbook-source/ch04-07-reanim

Chapter	5.	Connecting	to	services

A	NOTE	FOR	EARLY	RELEASE	READERS

With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the	authors’	raw	and	unedited
content	as	they	write—so	you	can	take	advantage	of	these	technologies	long	before	the	official	release
of	these	titles.

This	will	be	the	5th	chapter	of	the	final	book.	Please	note	that	the	GitHub	repo	will	be	made	active
later	on.

If	you	have	comments	about	how	we	might	improve	the	content	and/or	examples	in	this	book,	or	if
you	notice	missing	material	within	this	chapter,	please	reach	out	to	the	editor	at	ccollins@oreilly.com.

React,	unlike	frameworks	like	Angular,	does	not	include	everything	you	might
need	for	an	application.	In	particular,	it	does	not	provide	a	standard	way	to	get
data	from	network	services	into	your	application.	That	freedom	is	excellent
because	it	means	that	React	applications	can	use	whatever	the	latest	technology.
The	downside	is	that	developers	just	starting	with	React	are	left	to	struggle	on
their	own.

In	this	chapter,	we	will	look	at	a	few	ways	to	attach	network	services	to	your
application.	We	will	see	some	common	themes	through	each	of	these	recipes.	We
will	try	to	keep	the	network	code	separate	from	the	components	which	use	it.
That	way,	when	the	next	web	service	technology	sweeps	past,	we	will	be	able	to
switch	over	to	it,	with	the	minimum	of	impact	to	the	rest	of	our	application.

5.1	Convert	Network	Calls	to	Hooks

Problem
One	of	the	advantages	of	component-based	development	is	that	it	breaks	the
code	down	into	small	management	chunks,	each	of	which	performs	a	distinct,
identifiable	action.	In	some	ways,	the	best	kind	of	component	is	one	that	you	can
see	on	a	large	screen	without	scrolling.	One	of	the	great	features	of	React	is	that
it	has,	in	many	ways,	gotten	simpler	over	time.	React	hooks	and	the	move	away
from	class-based	components	have	removed	boilerplate	and	reduced	the	amount

mailto:ccollins@oreilly.com

of	code.

However,	one	way	to	inflate	the	size	of	a	component	is	by	filling	it	with
networking	code.	If	you	aim	to	create	simple	code,	you	should	try	to	strip	out
networking	code	from	your	components.	The	components	will	become	smaller,
and	the	network	code	will	be	more	reusable.

But	how	should	we	split-out	the	networking	code?

Solution
In	this	recipe,	we	will	look	at	a	way	of	moving	your	network	requests	into	React
hooks	to	track	whether	a	network	request	is	still	underway	or	if	there	has	been
some	error	that	prevented	it	from	succeeding.

Before	we	look	at	the	details,	we	need	to	think	about	what	things	are	important
to	us	when	making	an	asynchronous	network	request.	There	are	three	things	that
we	need	to	track:

The	data	returned	by	the	request,

Whether	the	request	is	still	loading	the	data	from	the	server,	and

Any	errors	which	might	have	occurred	when	running	the	request

You	will	see	these	three	things	appearing	in	each	of	the	recipes	in	this	chapter.	It
doesn’t	matter	whether	we	are	making	the	requests	with	fetch	or	axios
commands,	via	Redux	middleware	or	through	a	querying	layer	like	GraphQL;
our	component	will	always	care	about	data,	loading-state,	and	errors.

As	an	example,	let’s	build	a	simple	message	board	that	contains	several	forums.
The	messages	on	each	forum	contain	an	author	and	a	text	field.	Figure	5-1
shows	a	screenshot	of	the	example	application,	which	you	can	download	from
the	Github	site.

Figure	5-1.	The	buttons	select	the	NASA	or	Not	NASA	forums

The	buttons	at	the	top	of	the	page	select	the	“NASA”	or	“Not	NASA”	forums.	A
small	node	server	provides	the	back-end	for	our	example	application,	which	has
pre-populated	some	messages	into	the	NASA	forum.	Once	you	have	downloaded
the	source	code,	you	can	run	the	back-end	server	by	running	the	server.js
script	in	the	application’s	main	directory:

$	node	./server.js

The	back-end	server	runs	at	http://localhost:5000.	We	can	start	the	React
application	itself	in	the	usual	way:

npm	run	start

The	React	application	will	run	on	port	3000.

TIP

http://localhost:5000

When	in	development	mode,	we	proxy	all	back-end	requests	through	the	React	server.	If	you’re	using
create-react-app,	you	can	do	this	by	adding	a	proxy	property	to	the	package.json	and
setting	it	to	"http://localhost:5000"	The	React	server	will	pass	API	calls	to	our	server.js
back-end.	For	example,	http://localhost:3000/messages/nasa	(which	returns	an	array	of	messages	for	the
NASA	forum)	will	be	proxied	to	http://localhost:5000/messages/nasa.

We’ll	make	the	network	request	to	read	the	messages	using	a	simple	fetch
command.

const	response	=	await	fetch(`/messages/${forum}`);

if	(!response.ok)	{

				const	text	=	await	response.text();

				throw	new	Error(

								`Unable	to	read	messages	for	${forum}:	${text}`

);

}

const	body	=	await	response.json();

Here,	the	forum	value	will	contain	the	string	id	of	the	forum.	The	fetch
command	is	asynchronous	and	returns	a	promise	so	that	we	will	await	it.	Then
we	can	check	if	the	call	failed	with	any	bad	HTTP	status,	and	if	so,	we	will
throw	an	error.	We	will	extract	the	JSON	object	out	of	the	response	and	store	it
in	the	body	variable.	If	the	response	body	is	not	a	correctly	formatted	JSON
object,	we	will	also	throw	an	error.

We	need	to	keep	track	of	three	things	in	this	call:	the	data,	the	loading-state,	and
any	errors.	We’re	going	to	bundle	this	whole	thing	up	inside	a	custom	hook,	so
let’s	have	three	states	called	data,	loading,	and	error:

const	useMessages	=	(forum)	=>	{

				const	[data,	setData]	=	useState([]);

				const	[loading,	setLoading]	=	useState(false);

				const	[error,	setError]	=	useState();

			

				return	{data,	loading,	error};

};

We’ll	pass	in	the	forum	name	as	a	parameter	to	the	useMessages	hook,	which
will	return	an	object	containing	the	data,	loading,	and	error	states.	We	can

http://localhost:3000/messages/nasa
http://localhost:5000/messages/nasa

use	the	spread	operator	to	extract	and	rename	the	values	in	any	component	that
uses	the	hook,	like	this:

const	{data:	messages,	loading:	messagesLoading,	error:	messagesError}

=	useMessages('nasa');

Renaming	the	variables	helps	avoid	naming	conflicts	if,	for	example,	you
wanted	to	read	the	messages	from	more	than	one	forum.

Let’s	get	back	to	the	useMessages	hook.	The	network	request	depends	upon
the	forum	value	that	we	pass	in,	so	we	need	to	make	sure	that	we	run	the
fetch	request	inside	a	useEffect:

useEffect(()	=>	{

				setError(null);

				if	(forum)	{

							

				}	else	{

								setData([]);

								setLoading(false);

				}

},	[forum]);

We’re	omitting	for	the	moment	the	code	that	makes	the	actual	request.	The	code
inside	the	useEffect	will	run	the	first	time	hook	is	called.	If	the	client-
component	is	re-rendered	and	passes	in	the	same	value	for	forum,	the
useEffect	will	not	run	because	the	[forum]	dependency	will	not	have
changed.	It	will	only	run	again	if	the	forum	value	changes.

Now	let’s	look	at	how	we	can	drop	in	the	fetch	request	to	this	hook:

import	{useEffect,	useState}	from	"react";

const	useMessages	=	(forum)	=>	{

				const	[data,	setData]	=	useState([]);

				const	[loading,	setLoading]	=	useState(false);

				const	[error,	setError]	=	useState();

				useEffect(()	=>	{

								setError(null);

								if	(forum)	{

												(async	()	=>	{

																try	{

																				setLoading(true);

																				const	response	=	await	

fetch(`/messages/${forum}`);

																				if	(!response.ok)	{

																								const	text	=	await	response.text();

																								throw	new	Error(

																												`Unable	to	read	messages	for	${forum}:	

${text}`

);

																				}

																				const	body	=	await	response.json();

																				setData(body);

																}	catch(err)	{

																				setError(err);

																}	finally	{

																				setLoading(false);

																}

												})();

								}	else	{

												setData([]);

												setLoading(false);

								}

				},	[forum]);

				return	{data,	loading,	error};

};

export	default	useMessages;

Because	we’re	using	await	to	handle	the	promises	correctly,	we	need	to	wrap
the	code	in	a	rather	ugly	(async	()	=>	{...})()	call.	Inside	there,	we’re
able	to	set	values	for	data,	loading,	and	error	as	the	request	runs,	finishes,
and	(possibly)	fails.	All	of	this	will	happen	asynchronously	after	the	call	to	the
hook	has	been	completed.	When	the	data,	loading,	and	error	states
change,	the	hook	will	cause	the	component	to	be	re-rendered	with	the	new
values.

Let’s	take	a	look	at	the	App.js	in	the	example	application	to	see	what	it	looks
like	to	use	this	hook:

import	'./App.css';

import	{useState}	from	"react";

import	useMessages	from	"./useMessages";

function	App()	{

				const	[forum,	setForum]	=	useState('nasa');

				const	{data:	messages,	loading:	messagesLoading,	error:	

messagesError}	=	useMessages(forum);

				return	(

								<div	className="App">

												<button	onClick={()	=>	setForum('nasa')}>NASA</button>

												<button	onClick={()	=>	setForum('notNasa')}>Not	

NASA</button>

												{

																messagesError	?

																				<div	className='error'>

																								Something	went	wrong:

																								<div	className='error-contents'>

																												{messagesError.message}

																								</div>

																				</div>

																				:	messagesLoading	?

																				<div	className='loading'>Loading...</div>

																				:

																				(messages	&&	messages.length)	?	<dl>

{messages.map(m	=>	<>

																												<dt>{m.author}</dt>

																												<dd>{m.text}</dd>

																								</>)}</dl>

																								:	'No	messages'

												}

								</div>

);

}

export	default	App;

Our	example	application	changes	which	forum	is	loaded	when	you	click	either
the	“NASA”	or	“Not	NASA”	buttons.	The	example	server	returns	a	404-status
for	the	“Not	NASA”	forum,	which	causes	an	error	to	appear	on-screen.	In	figure
5-2,	we	can	see	the	example	application	showing	the	loading	state,	the	messages
from	the	NASA	forum,	and	an	error	when	we	try	to	load	data	from	the	missing
“Not	NASA”	forum.

Figure	5-2.	The	application	showing	loading,	messages,	and	errors

The	useMessages	hook	will	also	cope	if	the	server	throws	an	error,	as	shown
in	figure	5-3.

Figure	5-3.	The	component	can	display	errors	that	are	thrown	by	the	server.

Discussion
When	you’re	creating	an	application,	it’s	tempting	to	spend	your	time	building
features	that	assume	everything	works.	But	it	is	worth	investing	the	time	to
handle	errors	and	make	an	effort	to	show	when	data	is	still	loading.	Your
application	will	be	pleasant	to	use,	and	you	will	have	an	easier	time	tracking
down	slow	services	and	errors.

You	might	also	consider	combining	this	recipe	with	the	error-handling	recipe	in
chapter	4,	which	will	make	it	easier	for	users	to	describe	what	happened.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

5.2	Generate	Automatic	Refreshes	with	State
Counters

https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch05-01-callhooks
https://github.com/dogriffiths/ReactCookbook-source

Problem
Network	services	often	need	to	interact	with	each	other.	Take,	for	example,	the
forum	application	we	used	in	the	previous	recipe.	If	we	add	a	form	to	post	a	new
message,	we	want	the	message-list	to	update	automatically	every	time	a	person
posts	something.

In	the	previous	version	of	this	application,	we	created	a	custom	hook	called
useMessages,	which	contained	all	of	the	code	needed	to	read	a	forum’s
messages.

We’ll	add	a	form	to	the	application	to	post	new	messages	to	the	server:

const	{

		data:	messages,

		loading:	messagesLoading,

		error:	messagesError,

}	=	useMessages('nasa');

const	[text,	setText]	=	useState();

const	[author,	setAuthor]	=	useState();

const	[createMessageError,	setCreateMessageError]	=	useState();

//	Other	code	here...

<input	type='text'	value={author}	placeholder='Author'

							onChange={evt	=>	setAuthor(evt.target.value)}/>

<textarea	value={text}	placeholder='Message'

										onChange={evt	=>	setText(evt.target.value)}/>

<button	onClick={async	()	=>	{

				try	{

						await	[code	to	post	message	here]

						setText('');

						setAuthor('');

				}	catch(err)	{

						setCreateMessageError(err);

				}

		}}

		>Post

</button>

Here’s	the	problem:	when	you	post	a	new	message,	it	doesn’t	appear	on	the	list
unless	you	refresh	the	page	manually	(see	figure	5-4).

Figure	5-4.	Posting	a	message	does	not	refresh	the	message	list.

How	do	we	automatically	reload	the	messages	from	the	server	each	time	we	post
a	new	one?

Solution
We’re	going	to	trigger	data	refreshes	by	using	a	thing	called	a	state	counter.	A
state	counter	is	just	an	increasing	number.	It	doesn’t	matter	what	the	counter’s
current	value	is;	it	just	matters	that	we	change	it	every	time	we	want	to	reload
the	data.

const	[stateVersion,	setStateVersion]	=	useState(0);

You	can	think	of	a	state	counter	as	representing	our	perceived	version	of	the	data

on	the	server.	When	we	do	something	that	we	suspect	will	change	the	server
state,	we	update	the	state	counter	to	reflect	the	change:

//	code	to	post	a	new	message	here

setStateVersion(v	=>	v	+	1);

WARNING
Notice	that	we’re	increasing	the	stateVersion	value	using	a	function,	rather	than	saying
setStateVersion(stateVersion	+	1).	You	should	always	use	a	function	to	update	a	state
value	if	the	new	value	depends	upon	the	old	value.	That’s	because	React	sets	states	asynchronously.	If
we	ran	setStateVersion(stateVersion	+	1)	twice	in	rapid	succession,	the	value	of
stateVersion	might	not	change	in	between	the	two	calls,	and	we	would	miss	an	increment.

The	code	which	reads	the	current	set	of	messages	is	wrapped	inside	a
useEffect	which	we	can	force	to	re-run	by	making	it	dependent	upon	the
stateVersion	value:

useEffect(()	=>	{

				setError(null);

				if	(forum)	{

								//	Code	to	read	/messages/:forum

				}	else	{

								setData([]);

								setLoading(false);

				}

},	[forum,	stateVersion]);

If	the	value	of	the	forum	variable	changes,	or	if	the	stateVersion	changes,
it	will	automatically	reload	the	messages	(see	figure	5-5).

Figure	5-5.	Posting	a	new	message	causes	the	message-list	to	reload.

So	that’s	our	approach.	Now	we	need	to	look	at	where	we’re	going	to	put	the
code.	This	is	the	previous	version	of	the	component,	which	is	only	reading
messages:

import	'./App.css';

import	{useState}	from	"react";

import	useMessages	from	"./useMessages";

function	App()	{

				const	[forum,	setForum]	=	useState('nasa');

				const	{data:	messages,	loading:	messagesLoading,	error:	

messagesError}	=	useMessages(forum);

				return	(

								<div	className="App">

												<button	onClick={()	=>	setForum('nasa')}>NASA</button>

												<button	onClick={()	=>	setForum('notNasa')}>Not	

NASA</button>

												{

																messagesError	?

																				<div	className='error'>

																								Something	went	wrong:

																								<div	className='error-contents'>

																												{messagesError.message}

																								</div>

																				</div>

																				:	messagesLoading	?

																				<div	className='loading'>Loading...</div>

																				:

																				(messages	&&	messages.length)	?	<dl>

{messages.map(m	=>	<>

																												<dt>{m.author}</dt>

																												<dd>{m.text}</dd>

																								</>)}</dl>

																								:	'No	messages'

												}

								</div>

);

}

export	default	App;

We’re	going	to	add	the	new	form	into	this	component.	We	could	also	include	the
networking	code,	and	the	state-counter	code	right	here,	inside	the	component.
However	that	would	put	the	posting-code	in	the	component,	and	the	reading-
code	in	the	useMessages	hook.	It’s	better	to	keep	all	the	networking	code
together	in	the	hook.	Not	only	will	the	component	be	cleaner	but	the	networking
code	will	be	more	re-usable.

This	is	code	we’ll	use	for	a	new	version	of	the	useMessages	hook,	which	we
will	rename	useForum.	1

import	{useCallback,	useEffect,	useState}	from	"react";

const	useForum	=	(forum)	=>	{

				const	[data,	setData]	=	useState([]);

				const	[loading,	setLoading]	=	useState(false);

				const	[error,	setError]	=	useState();

				const	[creating,	setCreating]	=	useState(false);

				const	[stateVersion,	setStateVersion]	=	useState(0);

				const	create	=	useCallback(async	(message)	=>	{

								try	{

												setCreating(true);

												const	response	=	await	fetch(`/messages/${forum}`,	{

																method:	'POST',

																body:	JSON.stringify(message),

																headers:	{

																				"Content-type":	"application/json;	charset=UTF-8"

																}

												});

												if	(!response.ok)	{

																const	text	=	await	response.text();

																throw	new	Error(

																				`Unable	to	create	a	${forum}	message:	${text}`

);

												}

												setStateVersion(v	=>	v	+	1);

								}	finally	{

												setCreating(false);

								}

				},	[forum]);

				useEffect(()	=>	{

								setError(null);

								if	(forum)	{

												(async	()	=>	{

																try	{

																				setLoading(true);

																				const	response	=	await	

fetch(`/messages/${forum}`);

																				if	(!response.ok)	{

																								const	text	=	await	response.text();

																								throw	new	Error(

																												`Unable	to	read	messages	for	${forum}:	

${text}`

);

																				}

																				const	body	=	await	response.json();

																				setData(body);

																}	catch	(err)	{

																				setError(err);

																}	finally	{

																				setLoading(false);

																}

												})();

								}	else	{

												setData([]);

												setLoading(false);

								}

				},	[forum,	stateVersion]);

				return	{data,	loading,	error,	create,	creating};

};

export	default	useForum;

We	now	construct	a	create	function	inside	the	useForum	hook	and	then
return	it	with	various	other	pieces	of	state	to	the	component.	Notice	that	we	are
wrapping	the	create	function	inside	a	useCallback.	This	means	that	we
won’t	create	a	new	version	of	the	function,	unless	we	need	to	for	a	different
forum	value.

WARNING
Be	careful	when	creating	functions	inside	hooks	and	components.	React	will	often	trigger	a	re-render	if	a
new	function	object	is	created,	even	if	that	function	does	exactly	the	same	thing	as	the	previous	version.

When	the	create	function	is	called,	it	posts	a	new	message	to	the	forum,	and
then	updates	the	stateVersion	value,	which	will	automatically	cause	the
hook	to	re-read	the	messages	from	the	server.	Notice,	that	we	also	have	a
creating	value	which	is	set	to	true	when	the	network	code	is	in	the	process
of	sending	the	message	to	the	server.	This	will	allow	us	to	disable	the	POST
button	while	the	message	is	being	sent.

However,	we	don’t	track	any	errors	inside	the	create.	Why	don’t	we?	After
all	we	do	when	we’re	reading	data	from	the	server.	It’s	because	you	often	want
more	control	over	exception	handling	when	changing	data	on	the	server,	than
you	do	when	you	are	simply	reading	it.	In	the	example	application,	we	clear	out
the	message	form	if	a	message	is	correctly	sent	to	the	server.	If	there’s	an	error,
we	want	to	leave	the	text	in	the	message	form.

OK,	so	that’s	what	our	hook	looks	like.	What	about	the	client	code	which	calls
it?

import	'./App.css';

import	{useState}	from	"react";

import	useForum	from	"./useForum";

function	App()	{

				const	{

								data:	messages,

								loading:	messagesLoading,

								error:	messagesError,

								create:	createMessage,

								creating:	creatingMessage,

				}	=	useForum('nasa');

				const	[text,	setText]	=	useState();

				const	[author,	setAuthor]	=	useState();

				const	[createMessageError,	setCreateMessageError]	=	useState();

				return	(

								<div	className="App">

												<input	type='text'	value={author}	placeholder='Author'

																			onChange={evt	=>	setAuthor(evt.target.value)}/>

												<textarea	value={text}	placeholder='Message'

																						onChange={evt	=>	setText(evt.target.value)}/>

												<button	onClick={async	()	=>	{

																try	{

																				await	createMessage({author,	text});

																				setText('');

																				setAuthor('');

																}	catch(err)	{

																				setCreateMessageError(err);

																}

												}}

																				disabled={creatingMessage}

												>Post

												</button>

												{

																createMessageError	?

																				<div	className='error'>

																								Unable	to	create	message

																								<div	className='error-contents'>

																												{createMessageError.message}

																								</div>

																				</div>	:	null

												}

												{

																messagesError	?

																				<div	className='error'>

																								Something	went	wrong:

																								<div	className='error-contents'>

																												{messagesError.message}

																								</div>

																				</div>

																				:	messagesLoading	?

																				<div	className='loading'>Loading...</div>

																				:

																				(messages	&&	messages.length)	?	<dl>

{messages.map(m	=>	<>

																												<dt>{m.author}</dt>

																												<dd>{m.text}</dd>

																								</>)}</dl>

																								:	'No	messages'

												}

								</div>

);

}

export	default	App;

All	of	details	of	how	we	read	and	write	messages	are	now	hidden	inside	the
useForum	hook.	We	use	the	spread	operator	to	assign	the	create	function	to
the	createMessage	variable,	and	if	we	call	createMessage	then	it	will
not	only	post	the	message,	it	will	also	automatically	re-read	the	new	messages
from	the	forum,	and	update	the	screen.

Figure	5-6.	Posting	a	new	message	and	automatically	reloading

Our	hook	if	no	longer	just	a	way	to	read	data	from	the	server.	It’s	becoming	a
service	for	managing	the	forum	itself.

Discussion
Be	careful	using	this	approach	if	you	intend	to	post	data	to	the	server	in	one
component,	and	then	read	data	in	a	different	component;	separate	hook	instances
will	have	separate	state	counters,	and	posting	data	from	one	component,	will	not
automatically	re-read	the	data	in	another	component.	If	you	want	to	split	post
and	read	across	separate	components,	then	call	the	custom	hook	in	some
common	parent	component	and	pass	the	data	and	the	posting	functions	to	the
child	components	that	need	them.

If	you	want	to	make	your	code	poll	a	network	service	at	a	regular	interval,	then
consider	creating	a	clock2	and	making	your	network	code	depend	upon	the
current	clock	value,	much	as	the	above	code	depends	upon	the	state	counter.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

5.3	Prevent	Late	Responses	With	Cancel	Tokens

Problem
Let’s	consider	a	buggy	application	that	can	be	used	to	search	for	cities.	When	a
user	starts	to	type	a	name	in	the	search	field,	a	list	of	matching	cities	appears.	As
the	user	type	“C…	H…	I…	G…”	then	the	matching	cities	appears	in	the	table	of
results.	But	then,	after	a	moment,	a	longer	list	of	cities	appears	which	includes
erroneous	results,	such	as	Wichita	Falls	(see	figure	5-7).

https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch05-02-statecount
https://github.com/dogriffiths/ReactCookbook-source

Figure	5-7.	The	search	works	initially,	then	the	wrong	cities	appear

The	problem	is	that	the	application	is	sending	a	new	network	request	each	time
the	user	types	a	character.	But	not	all	network	requests	take	the	same	amount	of
time.	In	the	example	you	can	see	here,	the	network	request	that	was	search	for
“CHI”	took	a	couple	of	seconds	longer	than	the	search	for	“CHIG”.	That	meant
that	the	“CHI”	results	returned	after	the	results	for	“CHIG”.

How	can	you	prevent	a	series	of	asynchronous	network	calls	returning	out	of
sequence?

Solution
If	you	are	making	multiple	GET	calls	to	a	network	server,	you	can	cancel	old
calls	before	sending	new	ones.	This	means	that	you	will	never	get	results	back
out	of	order	because	you	will	only	have	one	network	request	calling	the	service
at	a	time.

For	this	recipe	we	are	going	to	use	the	axios	network	library.	That	means	that	we
have	to	install	it:

$	npm	install	axios

The	axios	library	is	a	wrapper	for	the	native	fetch	command.	There	is	nothing
you	can	do	with	axios	that	you	can’t	do	with	fetch,	but	axios	makes	it	a	little
easier.

Let’s	begin	by	looking	at	our	problem	code.	The	network	code	is	wrapped	in	a
custom	hook3

import	{useEffect,	useState}	from	"react";

import	axios	from	"axios";

export	default	(terms)	=>	{

				const	[data,	setData]	=	useState([]);

				const	[loading,	setLoading]	=	useState(false);

				const	[error,	setError]	=	useState();

				useEffect(()	=>	{

								setError(null);

								if	(terms)	{

												(async	()	=>	{

																try	{

																				setLoading(true);

																				const	response	=	await	axios.get("/search",

																								{

																												params:	{terms},

																								},

);

																				setData(response.data);

																}	catch	(err)	{

																				setError(err);

																}	finally	{

																				setLoading(false);

																}

												})();

								}	else	{

												setData([]);

												setLoading(false);

								}

				},	[terms]);

				return	{data,	loading,	error};

};

The	terms	parameter	contains	the	string	that	we	are	searching	for.	The	problem
occurred	because	the	code	made	a	network	request	to	/search	for	the	string

"CHI".

While	that	was	in	progress	another	call	was	made	with	the	string	"CHIG".	This
earlier	request	took	longer,	which	caused	the	bug.

We’re	going	to	avoid	this	problem	using	an	axios	cancel-token.	If	we	attach	a
token	to	a	request,	we	can	then	later	use	the	token	to	cancel	the	request.	The
browser	will	terminate	the	request,	and	we’ll	never	hear	back	from	it.

To	use	the	token,	we	need	to	first	create	a	source	for	it:

const	source	=	axios.CancelToken.source();

The	source	is	like	a	remote	control	for	the	network	request.	Once	a	network
request	is	connected	to	a	source,	we	can	tell	the	source	to	cancel	it.	We	associate
a	source	with	a	request	using	source.token:

const	response	=	await	axios.get("/search",{

				params:	{terms},

				cancelToken:	source.token,

});

axios	will	remember	which	token	is	attached	to	which	network	request.	It	we
want	to	cancel	the	request,	we	just	call:

source.cancel("axios	request	canceled")

We	need	to	make	sure	that	we	only	cancel	a	request	if	a	new	request	is	called.
Fortunately,	out	network	call	is	inside	a	useEffect,	which	has	a	very	useful
feature.	If	we	return	a	function	that	cancels	the	current	request,	then	this	function
will	be	run	just	before	the	useEffect	runs	again.	So	if	we	return	a	function
that	cancels	the	current	network	request,	we	will	automatically	cancel	the	old
network	request,	each	time	we	run	a	new	one4.	This	is	the	updated	version	of	the
custom	hook:

import	{useEffect,	useState}	from	"react";

import	axios	from	"axios";

export	default	(terms)	=>	{

				const	[data,	setData]	=	useState([]);

				const	[loading,	setLoading]	=	useState(false);

				const	[error,	setError]	=	useState();

				useEffect(()	=>	{

								setError(null);

								if	(terms)	{

												const	source	=	axios.CancelToken.source();

												(async	()	=>	{

																try	{

																				setLoading(true);

																				const	response	=	await	axios.get("/search",

																								{

																												params:	{terms},

																												cancelToken:	source.token,

																								},

);

																				setData(response.data);

																}	catch	(err)	{

																				setError(err);

																}	finally	{

																				setLoading(false);

																}

												})();

												return	()	=>	{

																source.cancel("axios	request	cancelled");

												};

								}	else	{

												setData([]);

												setLoading(false);

								}

				},	[terms]);

				return	{data,	loading,	error};

};

Discussion
You	should	only	use	this	approach	if	you	are	accessing	services	that	are
idempotent.	In	practice,	this	means	that	you	should	use	it	for	GET	requests
where	you	are	only	interested	in	the	latest	results.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

5.4	Make	Network	Calls	with	Redux	Middleware

https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch05-03-service
https://github.com/dogriffiths/ReactCookbook-source

Problem
Redux	is	a	library	that	allows	you	to	manage	application	state	centrally5.	When
you	want	to	change	the	application	state,	you	do	it	by	dispatching	commands
(called	actions),	which	are	captured	and	processed	by	JavaScript	functions	called
reducers.	Redux	is	popular	with	React	developers	because	it	provides	a	way	to
separate	state-management	logic	from	component	code.	Actions	are	performed
asynchronously,	but	in	a	strict	order.	This	means	you	can	create	large,	complex
applications	that	are	both	efficient	and	stable.

It	would	be	great	if	we	could	leverage	the	power	of	Redux	to	orchestrate	all	of
our	network	requests.	We	could	dispatch	actions	that	say	things	like	“Go	and
read	the	latest	search	results”,	and	Redux	could	make	the	network	request,	and
then	update	the	central	state.

However,	to	ensure	that	Redux	code	is	stable,	reducer	functions	have	to	meet	a
number	of	quite	strict	criteria:	and	one	of	them	is	that	no	reducer	function	can
have	side	effects.	That	means	that	you	should	never	make	network	requests
inside	a	reducer.

But	if	we	cannot	make	network	requests	inside	reducer	functions,	how	can	we
configure	Redux	to	talk	to	the	network	for	us?

Solution
In	a	React-Redux	application,	components	publish	(dispatch)	actions,	and
reducers	respond	to	actions	by	updating	the	central	state	(see	figure	5-8).

Figure	5-8.	Using	Redux	reducers	to	update	central	state

If	we	want	create	actions	that	have	side-effects,	we	will	have	to	use	Redux
middleware.	Middleware	receives	actions	before	they	are	sent	to	the	reducers,
and	they	can	transform	actions,	cancel	them	or	create	new	actions.	Most
importantly,	Redux	middleware	code	is	allowed	to	have	side-effects.	That	means
that	if	have	a	component	that	dispatches	an	action	that	says	“Go	and	search	for
this	string…”,	we	can	write	middleware	that	receives	that	action,	generates	a
network	call,	and	then	convert	the	response	into	a	new	“Store	these	search
results”	action.	You	can	see	how	Redux	middleware	works	in	figure	5-9.

Figure	5-9.	Middleware	can	be	used	to	make	network	calls.

Let’s	create	some	middleware	which	intercepts	an	action	with	type	"SEARCH"
and	uses	it	to	generate	a	network	service.

When	we	get	the	results	back	from	the	network,	we	will	then	create	a	new	action
with	type	"SEARCH_RESULTS",	which	we	can	then	use	to	store	the	search
results	in	the	central	Redux	state.	Our	action	object	will	look	something	like	this:

{

		"type":	"SEARCH",

		"payload":	"Some	search	text"

}

This	is	the	aciosMiddleware.js	code	that	we’ll	use	to	intercept	SEARCH
actions:

import	axios	from	'axios';

let	axiosMiddleware	=	store	=>	next	=>	action	=>	{

				if	(action.type	===	'SEARCH')	{

								const	terms	=	action.payload;

								if	(terms)	{

												(async	()	=>	{

																try	{

																				store.dispatch({

																								type:	'SEARCH_RESULTS',

																								payload:	{

																												loading:	true,

																												data:	null,

																												error:	null,

																								}

																				});

																				const	response	=	await	axios.get("/search",

																								{

																												params:	{terms},

																								},

);

																				store.dispatch({

																								type:	'SEARCH_RESULTS',

																								payload:	{

																												loading:	false,

																												error:	null,

																												data:	response.data

																								}

																				});

																}	catch(err)	{

																				store.dispatch({

																								type:	'SEARCH_RESULTS',

																								payload:	{

																												loading:	false,

																												error:	err,

																												data:	null

																								}

																				});

																}

												})();

								}

				}

				return	next(action);

};

export	default	axiosMiddleware;

The	function	signature	for	axios	middleware	can	be	confusing.	You	can	think	of
it	as	a	function	which	is	given	a	store,	an	action	and	another	function	called

next,	which	can	be	used	to	forward	actions	on	to	the	rest	of	Redux.

In	the	code	above,	we	check	to	see	if	the	action	is	of	type	SEARCH.	If	it	is,	we
will	make	a	network	call.	If	it	isn’t,	we	run	next(action),	which	will	pass	it
on	to	any	other	code	which	might	be	interested	in	it.

When	we	start	the	network	call,	when	we	receive	data,	and	if	we	capture	any
errors,	then	we	can	generate	a	new	SEARCH_RESULTS	action:

store.dispatch({

				type:	'SEARCH_RESULTS',

				payload:	{

								loading:	...,

								error:	...,

								data:	...

				}

});

The	payload	for	our	new	action,	has:

A	boolean	flag	called	loading,	which	is	initially	set	to	false,	until	the
network	request	is	complete

A	data	object,	which	contains	the	response	from	the	server,	and

An	error	object	containing	the	details	of	any	error	which	might	occur6

We	can	then	create	reducer-code	which	will	store	SEARCH_RESULTS	in	the
central	state:

let	reducer	=	(state,	action)	=>	{

				if	(action.type	===	'SEARCH_RESULTS')	{

								return	{

												...state,

												searchResults:	{...action.payload},

								};

				}

				return	{...state};

};

export	default	reducer;

We	also	need	to	register	out	middleware	using	the	Redux	applyMiddleware
function,	when	we	create	the	Redux	store.	In	the	example	code,	we	do	it	in	the
App.js	file:

import	{Provider}	from	'react-redux'

import	{createStore,	applyMiddleware}	from	'redux';

import	'./App.css';

import	reducer	from	"./reducer";

import	Search	from	"./Search";

import	axiosMiddleware	from	"./axiosMiddleware";

const	store	=	createStore(reducer,	applyMiddleware(axiosMiddleware));

function	App()	{

		return	(

				<div	className="App">

								<Provider	store={store}>

												<Search/>

								</Provider>

				</div>

);

}

export	default	App;

Finally,	we	can	wire	everything	up	in	a	Search	component,	which	will	dispatch
a	search	request,	and	then	read	the	results	through	a	Redux	selector:

import	{Provider}	from	'react-redux'

import	{createStore,	applyMiddleware}	from	'redux';

import	'./App.css';

import	reducer	from	"./reducer";

import	Search	from	"./Search";

import	axiosMiddleware	from	"./axiosMiddleware";

const	store	=	createStore(reducer,	applyMiddleware(axiosMiddleware));

function	App()	{

		return	(

				<div	className="App">

								<Provider	store={store}>

												<Search/>

								</Provider>

				</div>

);

}

export	default	App;

You	can	see	the	demo	application	running	in	figure	5-10.

Figure	5-10.	The	application	when	data	is	loading,	loaded	or	errored.

Discussion
Redux	reducers	always	process	actions	in	strict	dispatch-order.	The	same	is	not
true	for	network	requests	generated	by	middleware.	If	you	are	making	of	a	lot
network	requests	in	quick	succession,	you	might	find	that	responses	return	in	a
different	order.	If	this	is	likely	to	lead	to	bugs,	then	consider	using	cancellation
tokens7

You	might	also	consider	moving	all	Redux
useDispatch()/useSelector()	code	out	of	components	and	into
custom	hooks.	This	will	give	you	a	more	flexible	architecture	by	separating	your
service	later	from	your	component	code.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch05-04-redux-middleware
https://github.com/dogriffiths/ReactCookbook-source

5.5	Connecting	to	GraphQL

Problem
GraphQL	is	a	great	way	of	creating	APIs.	If	you’ve	used	REST	services	for	a
while,	then	some	features	of	GraphQL	will	seem	odd	(or	even	heretical),	but
having	worked	on	a	few	GraphQL	projects	we	would	certainly	recommend	that
you	consider	it	for	your	next	development	project.

When	people	refer	to	GraphQL,	they	can	mean	several	things.	They	might	be
referring	to	the	GraphQL	language,	which	is	managed	and	maintained	by
GraphQL	Foundation.	The	GraphQL	allows	you	to	specify	APIs,	and	to	create
queries	to	access	and	mutate	the	data	stored	behind	those	APIs.	They	might	be
referring	to	a	GraphQL	server,	which	stitches	together	multiple	low-level	data
access	methods	into	a	rich	web	service.	Or	they	might	be	referring	to	a	GraphQL
client,	which	allows	you	rapidly	create	new	client	requests	with	the	minimal	of
coding	and	to	transfer	just	the	data	you	need	across	the	network.

But	you	do	integrate	GraphQL	with	your	React	application?

Solution
Before	we	look	at	how	to	use	GraphQL	from	React,	will	begin	by	creating	a
small	GraphQL	server.	The	first	thing	we	need	is	a	GraphQL	schema.	The
schema	is	a	formal	definition	of	the	data	and	services	that	our	GraphQL	server
will	provide.

This	is	the	schema.graphql	schema	we’ll	use.	It’s	a	GraphQL	specification
of	the	forum	message	example	we’ve	used	elsewhere	in	this	chapter.

type	Query	{

				messages:	[Message]

}

type	Message	{

				id:	ID!

				author:	String!

				text:	String!

}

type	Mutation	{

				addMessage(

								author:	String!

								text:	String!

):	Message

}

This	schema	defines	a	single	query	(method	for	reading	data)	called	messages,
which	returns	an	array	of	Message	objects.	Each	Message	has	an	id,	a	string
called	author	and	a	string	called	text.	We	also	also	have	a	single	mutation
(method	for	changing	data)	called	addMessage,	which	will	store	a	message
based	on	an	author	string	and	a	text	string.

Before	we	create	our	sample	server,	we’ll	install	a	few	libraries:

$	npm	install	apollo-server

$	npm	install	graphql

$	npm	install	require-text

The	apollo-server	is	a	framework	for	creating	GraphQL	servers.	The
require-text	library	will	allows	us	to	read	the	schema.graphql	file.
This	is	our	server.js,	our	example	server:

type	Query	{

				messages:	[Message]

}

type	Message	{

				id:	ID!

				author:	String!

				text:	String!

}

type	Mutation	{

				addMessage(

								author:	String!

								text:	String!

):	Message

}

All	of	the	message	data	in	the	server	is	stored	in	memory	in	the	messages
array,	which	is	pre-populated	with	a	few	messages.	You	can	start	the	server	with:

$	node	./server.js

This	should	start	the	server	on	port	5000.	If	you	open	a	browser	to
http://localhost:5000	you	should	see	the	GraphQL	Playground	client.	This	is	a
web	tool	which	allows	you	try	out	queries	and	mutations	interactively,	before
adding	them	to	your	code	(see	figure	5-11).

Figure	5-11.	The	GraphQL	Playground	should	be	running	at	http://localhost:5000

Now	we	can	start	to	look	at	the	React	client	code.	We’ll	install	the	Apollo	client:

$	npm	install	@apollo/client

All	of	the	requests	to	a	GraphQL	server	are	done	with	POST	requests.	This

http://localhost:5000
http://localhost:5000

avoids	any	cross-domain	issues,	which	means	you	can	connect	to	a	third-party
GraphQL	server,	without	having	to	proxy.	As	a	consequence,	it	means	that	a
GraphQL	client	has	to	handle	its	own	caching,	so	we	will	need	to	provide	a
cache	and	the	address	of	the	server	when	we	configure	the	client	in	App.js:

import	'./App.css';

import	{ApolloClient,	ApolloProvider,	InMemoryCache}	from	

'@apollo/client';

import	Forum	from	"./Forum";

const	client	=	new	ApolloClient({

				uri:	'http://localhost:5000',

				cache:	new	InMemoryCache()

});

function	App()	{

		return	(

				<div	className="App">

								<ApolloProvider	client={client}>

												<Forum/>

								</ApolloProvider>

				</div>

);

}

export	default	App;

The	ApolloProvider	makes	the	client	available	to	any	child	component.	If
you	forget	to	add	the	ApolloProvider,	you	will	find	that	all	of	your
GraphQL	client	code	will	fail.

We’re	going	to	make	the	calls	to	GraphQL	from	inside	the	Forum	component.
We’ll	be	performing	two	action:

A	query	called	Messages	which	reads	all	of	the	messages,	and

A	mutation	called	AddMessage	which	will	post	a	new	message

The	query	and	the	mutation	of	written	in	the	GraphQL	language.	Here’s	the
Messages	query:

query	Messages	{

		messages	{

				author	text

		}

}

This	query	means	that	we	want	to	read	all	of	the	messages,	but	we	only	want	to
return	the	author	adnd	text	strings.	Because	we’re	not	asking	for	the
message	id,	it	won’t	be	returned.	This	is	part	of	the	flexibility	of	GraphQL:	you
specify	what	you	want	at	query	time,	rather	than	by	crafting	a	special	API	call
for	each	variation.

The	AddMessage	mutation	is	a	little	more	complex,	because	it	needs	to	be
parameterized,	so	that	we	can	specify	the	author	and	text	values	each	time
we	call	it:

mutation	AddMessage(

		$author:	String!

		$text:	String!

)	{

		addMessage(

				author:	$author

				text:	$text

)	{

				author

				text

		}

}

We’re	going	to	use	the	useQuery	and	useMutation	hooks	provided	by	the
Apollo	GraphQL	client.	The	useQuery	hook	returns	an	object	with	data,
loading	and	error	attributes8.	The	useMutation	hook	returns	an	array
with	two	values:	a	function	and	an	object	representing	the	result.

Previously9	we	have	looked	at	the	problem	of	how	to	how	to	automatically	re-
load	data	after	some	mutation	has	changed	it	on	the	server.	Thankfully,	the
Apollo	client	has	a	ready-made	solution.	When	you	call	a	mutation,	you	can
specify	an	array	of	other	queries	which	should	be	re-run	if	the	mutation	is
successful:

await	addMessage({variables:	{author,	text},	refetchQueries:	

['Messages']});

The	'Messages'	string	refers	to	the	name	word	query	in	the	GraphQL
query.	This	means	we	can	be	running	multiple	queries	against	the	GraphQL

service,	and	specify	which	of	them	are	likely	to	need	refreshing	after	a	change.

Finally,	here	is	the	complete	Forum	component:

import	{gql,	useMutation,	useQuery}	from	'@apollo/client';

import	{useState}	from	"react";

const	MESSAGES	=	gql`

				query	Messages	{

								messages	{

												author	text

								}

				}

`;

const	ADD_MESSAGE	=	gql`

				mutation	AddMessage(

								$author:	String!

								$text:	String!

)	{

								addMessage(

												author:	$author

												text:	$text

)	{

												author

												text

								}

				}

`;

let	Forum	=	()	=>	{

				const	{loading:	messagesLoading,	error:	messagesError,	data}	=	

useQuery(MESSAGES);

				const	[addMessage]	=	useMutation(ADD_MESSAGE);

				const	[text,	setText]	=	useState();

				const	[author,	setAuthor]	=	useState();

				const	messages	=	data	&&	data.messages;

				return	(

								<div	className="App">

												<input	type='text'	value={author}	placeholder='Author'

																			onChange={evt	=>	setAuthor(evt.target.value)}/>

												<textarea	value={text}	placeholder='Message'

																						onChange={evt	=>	setText(evt.target.value)}/>

												<button	onClick={async	()	=>	{

																try	{

																				await	addMessage({variables:	{author,	text},

																								refetchQueries:	['Messages']});

																				setText('');

																				setAuthor('');

																}	catch	(err)	{

																}

												}}

												>Post

												</button>

												{

																messagesError	?

																				<div	className='error'>

																								Something	went	wrong:

																								<div	className='error-contents'>

																												{messagesError.message}

																								</div>

																				</div>

																				:	messagesLoading	?

																				<div	className='loading'>Loading...</div>

																				:

																				(messages	&&	messages.length)	?	<dl>

{messages.map(m	=>	<>

																												<dt>{m.author}</dt>

																												<dd>{m.text}</dd>

																								</>)}</dl>

																								:	'No	messages'

												}

								</div>

);

};

export	default	Forum;

When	you	run	the	application,	and	post	a	new	message,	the	messages	list	is
automatically	updated	with	the	new	message	added	to	the	end,	as	you	can	see	in
figure	5-12.

Figure	5-12.	After	the	message	is	posted,	it	appears	on	the	list

Discussion
GraphQL	is	particularly	useful	if	you	have	a	large	team,	split	between	front-	and
back-end	developers.	Unlike	REST,	a	GraphQL	system	does	not	require	the
back-end	developers	to	hand-craft	every	API	call	made	by	the	client.	Instead,	the
back-end	team	can	focus	on	providing	a	solid	and	consistent	API	structure,	and
leave	it	to	the	front-end	team	to	decide	exactly	how	they	will	use	it.

If	you	are	creating	a	React	application	using	GraphQL,	you	might	consider
extracting	all	of	the	useQuery	and	useMutation	calls	into	a	custom
hooks10.	In	this	way	you	will	create	a	more	flexible	architecture	in	which	the
components	are	less	bound	to	the	details	of	the	service	layer.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch05-05-graphql
https://github.com/dogriffiths/ReactCookbook-source

5.6	Reduce	Network	Load	With	Debounced
Requests

Problem
It	is	very	easy	when	you’re	working	with	in	a	development	system	to	pnot	worry
too	much	about	performance.	That’s	probably	a	good	thing,	because	it’s	more
important	that	code	does	the	right	thing,	rather	than	do	the	wrong	thing	quickly.

But	when	your	application	gets	deployed	to	it’s	first	real	environment–such	as
one	used	for	user	acceptance	testing–then	performance	will	then	become	more
important.	The	kind	of	dynamic	interfaces	associated	with	React	often	make	a
lot	of	network	calls,	and	the	cost	of	these	calls	will	only	really	be	noticeable
once	the	server	has	to	cope	with	a	lot	of	concurrent	clients.

We’ve	used	an	example	search	application	a	few	times	in	this	chapter.	In	the
search	app,	a	user	can	look	for	a	city	by	name	or	state.	The	search	happens
immediately–while	they	are	typing.	If	you	open	the	developer	tools	and	look	at
the	network	requests	(see	figure	5-13)	you	will	see	that	it	generates	as	many
network	requests	as	there	are	characters	typed.

Figure	5-13.	The	demo	search	application	runs	a	network	request	for	each	character.

Most	of	these	network	requests	will	provide	almost	no	value.	The	average	typist
will	probably	hit	a	key	every	half	second,	and	if	they	looking	at	their	keyboard
they	probably	won’t	even	see	the	results	for	each	of	those	searches.	Of	the	7
requests	they	send	to	the	server,	they	will	likely	only	read	the	results	from	one	of

them:	the	last.	That	means	the	server	is	doing	7	times	more	work	than	was
needed.

What	can	we	do	avoid	to	avoid	sending	so	many	wasted	requests?

Solution
We’re	going	to	debounce	the	network	requests	for	the	search	calls.	Debouncing
means	that	we	will	delay	sending	a	network	request	for	a	very	short	period	of
time,	say	a	half-second.	If	another	request	comes	in	while	we’re	waiting,	we’ll
forget	about	the	first	request	and	then	create	another	delayed	request.	In	this	way
we	defer	sending	any	request	until	the	we	receive	no	new	requests	for	half	a
second.

To	see	how	to	do	this,	look	at	our	example	search	code,	useSearch.js:

import	{useEffect,	useState}	from	"react";

import	axios	from	"axios";

const	useSearch	=	(terms)	=>	{

				const	[data,	setData]	=	useState([]);

				const	[loading,	setLoading]	=	useState(false);

				const	[error,	setError]	=	useState();

				useEffect(()	=>	{

								setError(null);

								if	(terms)	{

												(async	()	=>	{

																try	{

																				setLoading(true);

																				const	response	=	await	axios.get("/search",

																								{

																												params:	{terms},

																								},

);

																				setData(response.data);

																}	catch	(err)	{

																				setError(err);

																}	finally	{

																				setLoading(false);

																}

												})();

								}	else	{

												setData([]);

												setLoading(false);

								}

				},	[terms]);

				return	{data,	loading,	error};

};

export	default	useSearch;

The	code	that	sends	the	network	request	is	wrapped	up	inside	the	(async
()....)()	block	of	code.	This	is	what	we	need	to	delay	until	we	get	a	half
second	to	spare.

The	JavaScript	function	setTimeout	allows	to	run	code	after	a	delay.	This
will	be	key	to	how	we	implement	the	debounce	feature:

const	newTimer	=	setTimeout(SOMEFUNCTION,	500)

The	newTimer	value	it	returns	can	be	used	to	clear	the	timeout,	which	if	we	do
it	quickly	enough,	might	mean	that	our	function	never	gets	called.	To	see	how
we	can	use	this	to	debounce	the	network	requests,	look	at
useDebouncedSearch.js,	and	a	debounced	version	of	useSearch.js:

import	{useEffect,	useState}	from	"react";

import	axios	from	"axios";

const	useDebouncedSearch	=	(terms)	=>	{

				const	[data,	setData]	=	useState([]);

				const	[loading,	setLoading]	=	useState(false);

				const	[error,	setError]	=	useState();

				useEffect(()	=>	{

								setError(null);

								if	(terms)	{

												const	newTimer	=	setTimeout(()	=>	{

																(async	()	=>	{

																				try	{

																								setLoading(true);

																								const	response	=	await	axios.get("/search",

																												{

																																params:	{terms},

																												},

);

																								setData(response.data);

																				}	catch	(err)	{

																								setError(err);

																				}	finally	{

																								setLoading(false);

																				}

																})();

												},	500);

												return	()	=>	clearTimeout(newTimer);

								}	else	{

												setData([]);

												setLoading(false);

								}

				},	[terms]);

				return	{data,	loading,	error};

};

export	default	useDebouncedSearch;

We	pass	the	network	code	into	the	setTimeout	function,	and	then	return:

()	=>	clearTimeout(newTimer)

If	you	return	a	function	from	useEffect,	then	this	code	is	called	just	before
the	next	time	useEffect	triggers.	This	means	if	network	keep	coming	in
within	half	a	second,	we	keep	deferring	the	network	requests.	Only	if	the	code	if
left	in	peace	for	half	a	second,	will	it	actually	submit	any	network	requests.

The	original	version	of	the	useSearch	ran	a	network	request	for	every	single
character.	With	the	debounced	version	of	the	hook,	then	typing	at	a	normal	speed
will	result	in	just	a	single	network	request	(see	figure	5-14).

Figure	5-14.	The	debounced	search	hook	will	send	fewer	requests.

Discussion
It’s	important	to	remember	that	debouncing	reduces	the	number	of	unnecessary
network	requests.	It	does	not	avoid	the	problem	of	network	responses	returning
in	a	different	order.	For	more	details	on	how	to	avoid	the	response	order
problem,	see	recipe	3	in	this	chapter.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch05-06-debounce
https://github.com/dogriffiths/ReactCookbook-source

We’re	renaming	it	because	it	is	no	longer	just	a	way	to	read	a	list	of	messages	but	the	forum	as	a	whole.
We	could	eventually	add	functions	to	delete,	edit,	or	flag	messages.
See	recipe	4	in	chapter	3.

Compare	this	code	with	recipe	1	in	this	chapter,	which	uses	fetch.
If	the	previous	network	request	has	completed,	cancelling	it	will	have	no	effect.

It	can	also	be	quite	confusing	when	you	first	use	it.	See	chapter	3	for	more	Redux	recipes.
To	simplify	things,	we	are	simply	storing	the	entire	object.	In	reality,	you	would	want	to	ensure	that	the
error	contained	only	serializable	text.

See	the	third	recipe	in	this	chapter.
This	is	a	common	set	of	values	for	an	asynchronous	service.	We’ve	used	them	in	each	of	the	non-
GraphQL	recipes	in	this	chapter.

In	the	second	recipe	of	this	chapter.
Much	as	we	do	with	HTTP	network	calls	in	recipe	2	of	this	chapter.

1

2

3

4

5

6

7

8

9

10

Chapter	6.	Component	Libraries

A	NOTE	FOR	EARLY	RELEASE	READERS

With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the	authors’	raw	and	unedited
content	as	they	write—so	you	can	take	advantage	of	these	technologies	long	before	the	official	release
of	these	titles.

This	will	be	the	6th	chapter	of	the	final	book.	Please	note	that	the	GitHub	repo	will	be	made	active
later	on.

If	you	have	comments	about	how	we	might	improve	the	content	and/or	examples	in	this	book,	or	if
you	notice	missing	material	within	this	chapter,	please	reach	out	to	the	editor	at	ccollins@oreilly.com.

If	you	are	building	an	application	of	any	size,	you	are	likely	to	need	a	component
library.	The	number	of	data	types	that	native	HTML	support	are	somewhat
limited,	and	the	implementations	can	vary	from	browser	to	browser.	For	example
a	date	input	field	looks	very	different	on	Chrome,	Firefox	and	Edge	browsers.

Component	libraries	allow	you	to	create	a	consistent	feel	for	your	application,
regardless	of	the	client	that’s	used.	They	will	often	adapt	well	when	switching
between	desktop	and	mobile	clients.	Most	importantly,	component	libraries	often
give	your	application	a	usability-boost.	They	have	either	been	generated	from
design	standards	that	have	been	thoroughly	tested	in	UX	labs	(such	as	Material
Design)	or	else	have	been	developed	over	several	years,	and	any	rough	UX
corners	have	generally	been	smoothed	out.

Be	aware:	there	is	no	such	thing	as	the	perfect	component	library.	They	all	have
strengths	and	weaknesses,	and	you	need	to	choose	a	library	that	best	meets	your
needs.	If	you	have	a	large	UX	team,	and	a	strong	set	of	pre-existing	design
standards,	you	are	likely	to	want	a	library	that	allows	for	a	lot	of	tinkering	to
adapt	the	library	to	match	your	corporate	themes.	An	example	would	be
Material-UI,	which	allows	you	to	modify	its	components	quite	significantly.	If
you	have	a	very	small	UX	team,	or	no	UX	team	at	all,	you	would	probably	want
to	consider	something	like	Semantic	UI,	which	is	clean	and	functional	and	get
you	up-and-running	quickly.

Whichever	library	you	choose,	always	remember	that	the	most	important	thing
in	UX	is	not	how	your	applications	looks,	but	how	it	behaves.	Users	will	soon

mailto:ccollins@oreilly.com

ignore	whatever	flashy	graphics	you	add	to	the	interface,	but	they	will	never
forget	(or	forgive)	some	part	of	the	interface	that	irritates	them	each	time	they
use	it.

6.1	Use	Material	Design	with	Material-UI

Problem
Many	applications	are	now	available	on	both	the	web	and	as	native	applications
on	mobile	devices.	Google’s	Material	Design	is	intended	to	provide	a	seamless
experience	across	all	platforms.	Material	Design	is	just	a	specification,	and	there
are	several	implementations	available.	One	such	is	the	Material	UI	library	for
React.	But	what	are	the	steps	involved	in	using	Material	UI,	and	how	do	you
install	it?

Solution
Let’s	begin	by	installing	the	core	Material	UI	library.

$	npm	install	@material-ui/core

The	core	library	includes	the	main	components,	but	there	is	one	notable	feature	it
omits:	the	standard	typeface.	In	order	to	make	Material	UI	feel	the	same	as	it
does	in	a	native	mobile	application,	you	should	also	install	Google’s	Roboto
type-face:

$	npm	install	fontsource-roboto

Material	Design	also	specifies	a	large	set	of	standard	icons.	These	provide	a
common	visual	language	for	standard	tasks	so	as	editing	task,	creating	new
items,	sharing	content,	and	so	on.	In	order	to	use	high	quality	versions	of	these
icons,	you	should	also	install	the	Material-UI	icon	library:

$	npm	install	@material-ui/icons

Now	that	we	have	Material-UI	up	and	running,	what	can	we	do	with	it?	We	can’t

look	in	detail	at	all	of	the	available	components	here1,	but	we	swill	take	a	look	at
some	of	the	more	popular	features.

We’ll	begin	by	looking	at	the	basics	of	styling	within	Material-UI.	In	order	to
ensure	that	Material-UI	components	appear	the	same	across	different	browsers,
they	have	included	a	CssBaseline	component.	This	will	normalize	the	basic
styling	of	your	application.	It	will	remove	margins	and	apply	standard
background	colors.	You	should	add	a	CssBaseline	component	somewhere
near	the	start	of	your	application.	For	example,	if	you	are	using	create-
react-app,	you	should	probably	add	it	to	your	App.js:

import	CssBaseline	from	"@material-ui/core/CssBaseline";

'''

function	App()	{

				//	...

				return	(

								<div	className="App">

												<CssBaseline/>

												...

								</div>

);

}

export	default	App;

Next,	we’ll	take	a	look	at	the	Material	Design	AppBar	and	Toolbar
components.	These	provide	the	standard	heading	you	see	in	most	Material
Design	application,	and	are	where	other	features	such	as	hamburger-menus	and
drawer-panels	will	appear.

We’ll	place	an	AppBar	at	the	top	of	the	screen,	and	put	a	Toolbar	inside.	This
will	give	us	a	chance	to	look	at	the	way	that	typography	is	handled	inside
Material-UI:

<div	className="App">

				<CssBaseline/>

				<AppBar	position='relative'>

								<Toolbar>

												<Typography	component='h1'	variant='h6'	color='inherit'	

noWrap>

																Material-UI	Gallery

												</Typography>

								</Toolbar>

				</AppBar>

				<main>

						//	Main	content	goes	here....

				</main>

</div>

Although	you	can	insert	ordinary	textual	content	inside	Material-UI	applications,
it	is	generally	bettwe	to	display	it	inside	Typography.	A	Typography
component	will	ensure	that	the	text	is	rendered	in	accordance	with	the	Material
Design	standards.	It	can	also	be	used	to	display	text	inside	the	appropriate
markup	elements.	In	this	case,	we’re	going	to	display	the	text	in	the	Toolbar
as	a	h1	element.	That’s	what	the	Typography	component	attribute
specifies:	the	HTML	element	that	should	be	used	to	wrap	the	text.	However,	we
can	also	tell	Material-UI	to	style	the	text	as	if	it’s	a	h6	heading.	That	will	make	it
a	little	smaller,	and	less	overpowering	as	a	page	heading.

Next,	let’s	look	at	how	Material-UI	styles	the	output.	It	uses	themes.	A	theme	is	a
JavaScript	object	which	is	used	to	define	a	hierarchy	of	CSS	styles.	Themes	can
be	defined	centrally,	and	this	allows	you	to	control	the	overall	appearance	of
your	application.

Themes	are	extensible.	We’ll	import	a	function	called	makeStyles,	which	will
allow	us	to	create	a	modified	version	of	the	default	theme.

import	{makeStyles}	from	"@material-ui/core/styles";

We’re	going	to	make	our	example	application	display	a	gallery	of	images,	so	we
will	want	to	create	styles	for	gallery	items,	descriptions,	and	so	on.	We	can
create	styles	for	these	different	screen	elements	with	makeStyles:

const	useStyles	=	makeStyles((theme)	=>	({

				galleryGrid:	{

								paddingTop:	theme.spacing(4),

				},

				galleryItemDescription:	{

								overflow:	'hidden',

								textOverflow:	'ellipsis',

								whiteSpace:	'nowrap',

				},

}));

In	this	simplified	example,	we	are	extending	the	base	theme	to	also	include
styles	for	classes	called	galleryGrid	and	galleryItemDescription.
We	can	either	add	in	additional	CSS	attributes	literally,	or	(in	the	case	of
paddingTop	in	the	galleryGrid)	we	can	use	a	reference	to	some	value	if
the	current	theme:	in	this	case	theme.spacing(4).	This	allows	us	to	defer
parts	of	the	styling	to	a	centralized	theme,	where	it	can	modified	at	a	later	date.

The	useStyles	returned	by	makeStyles	is	actually	a	hook	which	will
generate	a	set	of	CSS	classes,	and	then	return	their	names	that	they	can	be	used
inside	our	component.

For	example,	we	will	want	to	display	a	grid	of	images,	using	Container	and
Grid	components2.	We	can	attached	the	styles	to	them	from	the	theme	like	this:

const	classes	=	useStyles();

return	(

				<div	className="App">

								...

								<main>

												<Container	className={classes.galleryGrid}>

																<Grid	container	spacing='4'>

																				<Grid	item>...</Grid>

																				<Grid	item>...</Grid>

																				...

																</Grid>

												</Container>

								</main>

				</div>

);

Each	Grid	component	is	either	a	container	or	an	item.	We	will	display	a	gallery
image	within	each	container.

In	Material	Design,	important	things	are	generally	displayed	as	Cards.	A	Card
is	a	rectangular	panel	that	appears	to	float	slight	above	the	background.	If	you’ve
ever	used	the	Google	Play	Store,	you	will	have	seen	cards	used	to	display
applications,	music	tracks	or	other	things	that	you	might	want	to	download.	We
will	place	a	card	inside	each	Grid	item,	and	used	it	to	display	a	preview	of	the
image,	a	text	description,	and	a	button	which	can	be	used	to	show	a	more
detailed	version	of	the	image.	You	can	see	the	cards	in	the	example	application
in	figure	6-1.

Figure	6-1.	Cards	are	inside	grid	items,	which	are	inside	a	container

Material	UI	also	has	extensive	support	for	dialog	windows.	This	is	an	example
of	a	custom	dialog:

import	Dialog	from	"@material-ui/core/Dialog";

import	DialogTitle	from	"@material-ui/core/DialogTitle";

import	Typography	from	"@material-ui/core/Typography";

import	DialogContent	from	"@material-ui/core/DialogContent";

import	DialogActions	from	"@material-ui/core/DialogActions";

import	Button	from	"@material-ui/core/Button";

import	CloseIcon	from	'@material-ui/icons/Close';

export	const	MyDialog	=	({onClose,	open,	title,	children})	=>	{

				return	<Dialog

								open={open}

								onClose={onClose}

				>

								<DialogTitle>

												<Typography	component='h1'	variant='h5'	color='inherit'	

noWrap>

																{title}

												</Typography>

								</DialogTitle>

								<DialogContent>

												{children}

								</DialogContent>

								<DialogActions>

												<Button	variant='outlined'

																				startIcon={<CloseIcon	/>}

																				onClick={onClose}>

																Close

												</Button>

								</DialogActions>

				</Dialog>;

};

Notice	that	we	are	importing	an	SVG	icon	from	the	Material-UI	SVG	library
that	we	installed	earlier.	The	DialogTitle	appears	at	the	top	of	the	dialog.
The	DialogActions	are	the	buttons	that	appear	at	the	base	of	the	dialog.	The
main	body	of	the	dialog	is	given	in	the	DialogContent.

Here	is	the	complete	code	for	App.js

import	'./App.css';

import	CssBaseline	from	"@material-ui/core/CssBaseline";

import	AppBar	from	"@material-ui/core/AppBar";

import	{Toolbar}	from	"@material-ui/core";

import	Container	from	"@material-ui/core/Container";

import	Grid	from	"@material-ui/core/Grid";

import	Card	from	"@material-ui/core/Card";

import	CardMedia	from	"@material-ui/core/CardMedia";

import	CardContent	from	"@material-ui/core/CardContent";

import	CardActions	from	"@material-ui/core/CardActions";

import	Typography	from	"@material-ui/core/Typography";

import	{makeStyles}	from	"@material-ui/core/styles";

import	{useState}	from	"react";

import	{MyDialog}	from	"./MyDialog";

import	ImageSearchIcon	from	'@material-ui/icons/ImageSearch';

import	gallery	from	"./gallery.json";

import	IconButton	from	"@material-ui/core/IconButton";

const	useStyles	=	makeStyles((theme)	=>	({

				galleryGrid:	{

								paddingTop:	theme.spacing(4),

				},

				galleryItem:	{

								height:	'100%',

								display:	'flex',

								flexDirection:	'column',

								//	maxWidth:	'200px'

				},

				galleryImage:	{

								paddingTop:	'54%',

				},

				galleryItemDescription:	{

								overflow:	'hidden',

								textOverflow:	'ellipsis',

								whiteSpace:	'nowrap',

				},

}));

function	App()	{

				const	[showDetails,	setShowDetails]	=	useState(false);

				const	[selectedImage,	setSelectedImage]	=	useState();

				const	classes	=	useStyles();

				return	(

								<div	className="App">

												<CssBaseline/>

												<AppBar	position='relative'>

																<Toolbar>

																				<Typography	component='h1'	variant='h6'	

color='inherit'	noWrap>

																								Material-UI	Gallery

																				</Typography>

																</Toolbar>

												</AppBar>

												<main>

																<Container	className={classes.galleryGrid}>

																				<Grid	container	spacing='4'>

																								{

																												gallery.map((item,	i)	=>	{

																																return	<Grid	item	key={`photo-${i}`}	

xs={12}	sm={3}	lg={2}>

																																				<Card	className=

{classes.galleryItem}>

																																								<CardMedia	image={item.image}

																																																			className=

{classes.galleryImage}

																																																			title='A	photo'

																																								/>

																																								<CardContent>

																																												<Typography	gutterBottom	

variant="h6"	component="h2">

																																																Image

																																												</Typography>

																																												<Typography	className=

{classes.galleryItemDescription}>

																																																{item.description}

																																												</Typography>

																																								</CardContent>

																																								<CardActions>

																																												<IconButton	aria-

label="delete"

																																																								onClick={()	=>

{

																																																												

setSelectedImage(item);

																																																												

setShowDetails(true);

																																																								}}

																																																								

color="primary">

																																																<ImageSearchIcon	/>

																																												</IconButton>

																																								</CardActions>

																																				</Card>

																																</Grid>

																												})

																								}

																				</Grid>

																</Container>

												</main>

												<MyDialog

																open={showDetails}

																title='Details'

																onClose={()	=>	setShowDetails(false)}>

																<img	src={selectedImage	&&	selectedImage.image}	

alt='From	PicSum'/>

																<Typography>

																				{selectedImage	&&	selectedImage.description}

																</Typography>

												</MyDialog>

								</div>

);

}

export	default	App;

Discussion
Material-UI	is	a	great	library	to	use	and	is	one	of	the	most	popular	libraries
currently	used	with	React.	Users	coming	to	your	application	will	almost
certainly	have	used	it	elsewhere,	and	that	will	increase	the	usability	of	your
application.	Before	launching	into	using	Material-UI	on	your	application,	it	is
worth	spending	some	time	understanding	the	Material	Design	principles.	In	that
way,	you	will	not	only	create	an	application	is	nice	to	look	at,	but	one	that	is	easy
to	use,	is	full	of	meaning,	and	which	is	accessible	to	users.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

6.2	Create	Simple	Effective	UI	with	React
Bootstrap

Problem
The	most	popular	CSS	library	of	the	last	10	years	is	probably	Twitter’s	Bootstrap
library.	It	is	incredibly	popular,	and	it’s	a	good	choice	if	you	are	creating	a	new
application	and	have	very	little	time	to	worry	about	creating	a	custom	UI,	and
just	want	something	that	is	easy-to-use,	easy-to-maintain	and	familiar	to	the	vast
number	of	users.

But	Bootstrap	was	created	at	a	time	before	large-scale	application	like	React
existed.	It’s	made	up	of	a	large	number	of	CSS	resources,	and	a	set	of	JavaScript
libraries	which	are	intended	to	be	used	with	web	pages	containing	a	small
amount	of	hand-crafted	client	code.	The	base	Bootstrap	library	doesn’t	really
play	well	with	a	framework	like	React.

How	do	you	use	Bootstrap	when	you’re	creating	a	React	application?

Solution
There	are	actually	several	ports	of	the	Bootstrap	library	for	use	with	React.	In
this	recipe	we	are	going	to	look	at	React	Bootstrap.	React	Bootstrap	works
alongside	the	ordinary	Bootstrap	CSS	libraries,	but	it	extends	the	Bootstrap
JavaScript	to	make	it	more	React-friendly.

https://material.io/design
https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch06-01-material
https://github.com/dogriffiths/ReactCookbook-source

Let’s	begin	by	first	install	the	React	Bootstrap	components,	and	the	Bootstrap
JavaScript	libraries:

$	npm	install	react-bootstrap	bootstrap

The	React	Bootstrap	library	does	not	include	any	CSS	styling	of	its	own.	You
will	need	to	include	a	copy	of	that	yourself.	The	most	common	way	of	doing	this
is	by	downloading	it	from	a	Content	Distribution	Network	in	your	HTML.	For
example,	if	you	are	using	create-react-app,	you	should	include
something	like	this	in	your	public/index.html	file:

<link

		rel="stylesheet"

		

href="https://maxcdn.bootstrapcdn.com/bootstrap/4.5.0/css/bootstrap.mi

n.css"

		integrity="sha384-

9aIt2nRpC12Uk9gS9baDl411NQApFmC26EwAOH8WgZl5MYYxFfc+NcPb1dKGj7Sk"

		crossorigin="anonymous"

/>

You	should	replace	this	with	whatever	if	the	latest	stable	version	of	Bootstrap
that’s	available.

Bootstrap	is	a	good,	general	purpose	library,	but	it’s	support	for	forms	is
particularly	strong.	Good	form	layout	can	take	time,	and	can	be	tedious.
Bootstrap	handles	all	of	the	hard	work	for	you	and	allows	you	to	focus	on	the
functionality	of	your	form.	For	example,	the	react-boostrap	Form
component	contains	almost	everything	you	need	to	create	a	form.	The
Form.Control	component	will	generate	an	input	by	default.	The
Form.Label	will	generate	a	label,	and	a	Form.Group	will	associate	the
two	together,	and	lay	them	out	appropriately:

<Form.Group	controlId="startupName">

				<Form.Label>Startup	name</Form.Label>

				<Form.Control	placeholder="No	names	ending	in	...ly,	please"/>

</Form.Group>

Form	fields	are	normally	displayed	on	a	single	line	and	take	up	the	available
width.	If	you	want	more	than	one	field	to	appear	on	a	line,	then	you	can	use	a

Form.Row:

<Form.Row>

				<Form.Group	as={Col}	controlId="startupName">

								<Form.Label>Startup	name</Form.Label>

								<Form.Control	placeholder="No	names	ending	in	...ly,	please"/>

				</Form.Group>

				<Form.Group	as={Col}	controlId="market">

								<Form.Label>Market</Form.Label>

								<Form.Control	placeholder="e.g.	seniors	on	Tik-Tok"/>

				</Form.Group>

</Form.Row>

The	Col	component	ensures	that	the	labels	and	fields	are	sized	appropriately.	If
you	want	a	form	field	that’s	other	than	an	input,	you	can	use	the	as	attribute:

<Form.Control	as="select"	defaultValue="Choose...">

				<option>Progressive	web	application</option>

				<option>Conservative	web	application</option>

				<option>Android	native</option>

				<option>iOS	native</option>

				<option>New	Jersey	native</option>

				<option>VT220</option>

</Form.Control>

This	will	generate	a	bootstrap	styled	select	element.

Putting	the	whole	thing	together	leads	to	the	form	you	can	see	in	figure	6-2:

import	Form	from	'react-bootstrap/Form';

import	Col	from	'react-bootstrap/Col';

import	Button	from	'react-bootstrap/Button';

import	Alert	from	'react-bootstrap/Alert';

import	{useState}	from	"react";

import	'./App.css';

function	App()	{

				const	[submitted,	setSubmitted]	=	useState(false);

				return	(

								<div	className="App">

												<h1>VC	Funding	Registration</h1>

												<Form>

																<Form.Row>

																				<Form.Group	as={Col}	controlId="startupName">

																								<Form.Label>Startup	name</Form.Label>

																								<Form.Control	placeholder="No	names	ending	in	

...ly,	please"/>

																				</Form.Group>

																				<Form.Group	as={Col}	controlId="market">

																								<Form.Label>Market</Form.Label>

																								<Form.Control	placeholder="e.g.	seniors	on	

Tik-Tok"/>

																				</Form.Group>

																				<Form.Group	as={Col}	controlId="appType">

																								<Form.Label>Type	of	application</Form.Label>

																								<Form.Control	as="select"	

defaultValue="Choose...">

																												<option>Progressive	web	

application</option>

																												<option>Conservative	web	

application</option>

																												<option>Android	native</option>

																												<option>iOS	native</option>

																												<option>New	Jersey	native</option>

																												<option>VT220</option>

																								</Form.Control>

																				</Form.Group>

																</Form.Row>

																<Form.Row>

																				<Form.Group	as={Col}	controlId="description">

																								<Form.Label>Description</Form.Label>

																								<Form.Control	as='textarea'/>

																				</Form.Group>

																</Form.Row>

																<Form.Group	id="technologiesUsed">

																				<Form.Label>Technologies	used	(check	at	least	3)

</Form.Label>

																				<Form.Control	as="select"	multiple>

																								<option>Blockchain</option>

																								<option>Machine	learning</option>

																								<option>Quantum	computing</option>

																								<option>Autonomous	vehicles</option>

																								<option>For-loops</option>

																				</Form.Control>

																</Form.Group>

																<Button	variant="primary"

																								onClick={()	=>	setSubmitted(true)}

																>

																				Submit

																</Button>

												</Form>

												<Alert	show={submitted}

																			variant="success"

																			onClose={()	=>	setSubmitted(false)}	dismissible>

																<Alert.Heading>We'll	be	in	touch!</Alert.Heading>

																<p>

																				One	of	our	partners	will	be	in	touch	shortly.

																</p>

												</Alert>

								</div>

);

}

export	default	App;

Figure	6-2.	A	React	bootstrap	form	and	alert	box.

Discussion
Bootstrap	is	a	much	older	UI	toolkit	than	Material	Design,	but	there	are	still
markets	where	it	feels	more	appropriate.	If	you’re	building	an	application	that
has	to	feel	more	like	a	traditional	web	site,	then	Bootstrap	will	give	it	that	more
traditional	feel.	If	you	want	to	build	something	like	feels	more	like	a	cross-

platform	application,	then	you	should	consider	Material-UI3.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

6.3	View	Large	Volumes	of	Data	with	React
Window

Problem
Some	applications	are	designed	to	display	a	seamingly	endless	quantity	of	data.
If	you	are	writing	an	application	like	Twitter,	you	don’t	want	to	download	all	of
the	tweets	that	are	in	the	user	timeline,	because	it	would	probably	take	several
hours,	days	or	months.	The	solution	is	to	window	the	data.	When	you	display	a
list	of	items,	you	only	keep	the	items	in	memory	that	you	are	currently
displaying.	As	you	scroll	up	or	down,	the	application	downloads	the	data	needed
for	the	current	view.

But	creating	this	windowing	logic	is	quite	complex.	Not	only	does	it	involve
very	careful	tracking	of	what’s	currently	visible4	but	if	you’re	not	careful	you
can	easily	run	into	memory	issues	if	you	fail	to	cache	the	windowing	data
efficiently.

How	do	you	implement	windowing	code	inside	a	React	application?

Solution
The	React	Window	library	is	a	set	of	components	specifically	intended	for
applications	that	need	to	scroll	a	large	amount	of	data.	We’ll	look	at	how	to
create	a	large,	fixed-size	list5.

To	start,	we	need	to	create	a	component	which	will	show	the	details	for	a	single
item.	In	our	example	application	we’re	going	to	create	a	set	of	10,000	date
strings.	We	will	render	each	individual	date	with	a	component	called	DateRow.
This	will	be	our	item-renderer.	react-window	works	by	only	rendering	the
items	that	are	currently	visible	in	the	current	viewport.	As	the	user	scrolls	up	or
down	the	list,	items	will	be	created	as	they	come	into	view	and	be	removed	as
they	disappear.

https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch06-02-react-bootstrap
https://github.com/dogriffiths/ReactCookbook-source

When	react-window	renders	an	item-renderer,	it	passes	it	two	properties:	an
item	number,	which	begins	at	0,	and	a	style	object.

This	is	our	DateRow	item-renderer:

import	moment	from	"moment";

const	DateRow	=	({index,	style})	=>	(

				<div	className={`aDate	${index	%	2	&&	'aDate-odd'}`}	style=

{style}>

								{moment().add(index,	'd')

												.format('dddd,	MMMM	Do	YYYY')}

				</div>

);

export	default	DateRow;

This	component	calculates	a	date	index	days	in	the	future.	In	a	real	application,
this	component	would	probably	download	an	item	of	data	from	a	back-end
server.

To	generate	the	list	itself,	we	will	use	a	FixedSizeList.	We	need	to	give	the
list	a	fixed	width	and	height.	The	list	needs	to	calculate	how	many	items	are
currently	visible	in	the	view-port,	and	it	does	this	using	the	height	of	the	list,	and
the	height	of	each	individual	item,	which	is	given	in	the	itemSize	attribute.	If
the	height	is	400	and	the	itemHeight	is	40,	then	the	list	will	only	need	to
display	10	or	11	DateRow	(see	figure	6-3.)

This	is	the	final	version	of	the	code.	Notice	that	the	FixedSizeList	does	not
include	an	instance	of	the	DateRow	component.	That’s	because	it	wants	to	use
the	DateRow	function	to	create	multiple	items	dynamically	as	the	list	is
scrolled.	So	instead	of	using	<DateRow/>,	the	list	uses	the	{DateRow}
function	itself.

import	{FixedSizeList}	from	"react-window";

import	DateRow	from	"./DateRow";

import	'./App.css';

function	App()	{

				return	(

								<div	className="App">

												<FixedSizeList

																height={400}

																itemCount={10000}

																itemSize={40}

																width={300}

												>

																{DateRow}

												</FixedSizeList>

								</div>

);

}

export	default	App;

Figure	6-3.	The	list	contains	only	visible	items.

One	final	point	to	note	is	that	because	the	items	are	dynamically	added	and
removed	the	to	the	list,	you	have	to	be	very	careful	using	the	nth-child
selector	in	CSS:

.aDate:nth-child(even)	{	/*	This	won't	work	*/

				background-color:	#eee;

}

Instead,	you	need	to	dynamically	check	the	current	index	for	an	item,	and	check
if	it’s	odd	using	a	little	modulo-2	math,	as	we	do	in	the	example:

<div	className={`aDate	${index	%	2	&&	'aDate-odd'}`}	...>

Discussion
react-window	is	a	very	narrowly-focused	component	library,	but	an
extremely	useful	one	if	you	need	to	present	a	very	large	data	set.	You	would	still
be	responsible	for	downloading	and	caching	the	data	that	appears	in	the	list	but
this	is	a	relatively	simple	task,	compared	to	the	kind	of	virtual-list-magic	that
react-window	performs.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

6.4	Create	Responsive	Dialogs	with	Material-UI

Problem
If	you’re	using	a	component	library,	there’s	a	good	chance	that	at	some	point	you
will	display	a	dialog	window.	Dialogs	allow	you	to	add	additional	UI	detail
without	making	the	user	feel	that	they	are	travelling	to	another	page.	They	are
very	good	for	content	creation,	or	as	a	quick	way	of	displaying	more	detail	about
an	item.

However,	dialogs	don’t	plkay	very	well	with	mobile	devices.	Mobiles	have	a
small	display	screen,	and	dialogs	frequently	waste	a	lot	of	space	around	the
edges	to	display	the	background	page.

How	can	you	create	responsive	dialogs,	which	act	just	like	floating	windows
when	you	are	using	a	desktop	machine,	but	look	like	separate	fullscreen	pages
when	you	are	on	a	mobile	device?

Solution
The	Material-UI	includes	a	higher-order	function	which	can	tell	you	when	you

https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch06-03-react-vir
https://github.com/dogriffiths/ReactCookbook-source

are	on	a	mobile	device,	and	should	run	display	dialogs	as	full-screen	windows.

import	{withMobileDialog}	from	"@material-ui/core";

...

export	const	ResponsiveDialog	=	withMobileDialog()(

				({...	fullScreen,	...})	=>	{

								return	//	Some	component	using	the	fullScreen	(true/false)	

property;

				}

);

The	withMobileDialog	gives	any	component	it	wraps	an	extra	property
called	fullScreen,	which	is	set	to	true	or	false.	A	Dialog	component
can	use	this	property	to	change	its	behavior.	If	you	pass	fullScreen	to	a
Dialog	like	this:

import	{withMobileDialog}	from	"@material-ui/core";

import	Dialog	from	"@material-ui/core/Dialog";

import	DialogTitle	from	"@material-ui/core/DialogTitle";

import	Typography	from	"@material-ui/core/Typography";

import	DialogContent	from	"@material-ui/core/DialogContent";

import	DialogActions	from	"@material-ui/core/DialogActions";

import	Button	from	"@material-ui/core/Button";

import	CloseIcon	from	'@material-ui/icons/Close';

export	const	ResponsiveDialog	=	withMobileDialog()(

				({onClose,	open,	title,	fullScreen,	children})	=>	{

								return	<Dialog

												open={open}

												fullScreen={fullScreen}

												onClose={onClose}

								>

												<DialogTitle>

																<Typography	component='h1'	variant='h5'	

color='inherit'	noWrap>

																				{title}

																</Typography>

												</DialogTitle>

												<DialogContent>

																{children}

												</DialogContent>

												<DialogActions>

																<Button	variant='outlined'

																								startIcon={<CloseIcon	/>}

																								onClick={onClose}>

																				Close

																</Button>

												</DialogActions>

								</Dialog>;

				}

);

The	dialog	will	change	it’s	behavior	when	running	on	a	mobile	or	desktop
device.

Let’s	say	we	modify	the	application	we	created	in	the	first	recipe	of	this	chapter.
In	our	original	application,	a	dialog	was	displayed	when	the	user	clicked	on	an
image	in	a	gallery.	When	on	a	mobile	device,	the	dialog	looked	like	you	can	see
in	figure	6-4.

Figure	6-4.	By	default,	a	dialog	on	a	mobile	device	has	space	around	the	edge.

If	you	replace	this	dialog	with	a	ResponsiveDialog,	it	will	look	exactly	the
same	on	a	large	screen.	But	on	a	small	screen,	the	dialog	will	completely	fill	the
display,	as	you	can	see	in	figure	6-5.	This	not	only	gives	you	more	space	for	the
contents	of	the	dialog,	but	it	will	also	give	the	application	a	simpler	appearance
for	mobile	users.	Instead	of	it	working	like	a	popup	window,	it	will	feel	more
like	a	separate	page.

Figure	6-5.	On	a	mobile	device,	the	responsive	dialog	fills	the	screen.

Discussion
For	more	ideas	on	how	to	deal	with	responsive	interfaces,	see	also	the	recipe	for
responsive	routes	in	chapter	2	of	this	book.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

6.5	Build	an	Admin	Console	with	React	Admin

https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch06-04-reactstrap
https://github.com/dogriffiths/ReactCookbook-source

Problem
Developers	can	spend	so	long	creating	and	maintaining	end-user	applications,
that	one	important	task	is	often	left	neglected:	admin	consoles.	Admin	consoles
are	not	used	by	customers;	they	are	used	by	backoffice	staff	and	administrators
to	look	at	the	current	data	set	and	to	investigate	and	resolve	data	issue	in	an
application.	Some	data	storage	systems	like	Firebase	have	quite	advanced	admin
consoles	built	in.	But	that’s	not	the	case	for	most	back-end	services.	Instead,
developers	often	have	to	dig	into	data	problems	by	directly	accessing	the
databases,	which	themselves	are	often	hidden	several	walls	of	cloud
infrastructure.

What	is	the	fatest	and	simplest	way	to	create	an	admin	console	for	almost
application	using	React?

Solution
We’re	going	to	look	at	react-admin,	and	although	this	chapter	is	about
component	libraries,	react-admin	is	actually	far	more.	It’s	really	an
application	framework	that	makes	it	easy	to	build	interfaces	to	allow
administrators	to	examine	and	maintain	the	data	in	your	application.

Different	applications	will	use	different	network	service	layers.	They	might
REST,	or	GraphQL,	or	one	of	many	other	systems.	But	in	most	cases	data	will
accessed	as	a	set	of	resources	held	on	the	server.	react-admin	has	most	of
the	pieces	in	place	for	creating	an	admin	application	that	will	allow	you	to
browse	through	each	resource.	To	search	and	filter	the	data	within	it.	To	admin,
update,	or	delete	data.	Even	to	export	it	to	an	external	application.

To	show	how	react-admin	works,	we’re	going	to	create	an	admin	console
for	a	message-board	application	we	created	in	chapter	5	(see	/figure	6-6).

https://firebase.google.com

Figure	6-6.	The	original	message	board	application.

The	back-end	for	the	application	was	a	simple	GraphQL	server.	The	GraphQL
server	had	a	fairly	simple	scheme.	Messages	were	defined	in	the	schema
language	like	this:

type	Message	{

				id:	ID!

				author:	String!

				text:	String!

}

Each	message	had	a	unique	id.	The	text	of	the	message	and	the	name	of	the
author	were	stored	as	strings.

There	was	only	one	type	of	change	that	a	user	could	make	to	the	data:	they	could

add	a	message.	There	was	one	type	of	query	they	could	run:	they	could	read	all
of	the	messages.

To	create	a	react-admin	application,	you	first	need	to	create	a	new	React
application,	and	then	install	the	react-admin	library:

$	npm	install	react-admin

The	main	component	of	the	library	is	called	Admin.	This	will	form	the	shell	of
our	entire	application:

<Admin	dataProvider={...}>

		...UI	for	separate	resources	goes	here...

</Admin>

An	Admin	component	needs	a	data	provider.	A	data	provider	is	an	adapter
which	will	connect	the	application	to	the	back	end	service.	Our	back-end	service
is	written	in	GraphQL,	so	we	will	need	a	GraphQL	data	provider:

$	npm	install	ra-data-graphql-simple

There	are	data	providers	available	for	most	back-end	services.	See	the	React
Admin	web	site	for	more	details.	We’ll	need	to	initialize	our	data	provider	before
we	can	use	it.	The	GraphQL	is	configured	with	a	buildGraphQLProvider
function	that	is	asynchronous,	so	we	need	to	be	careful	that	it’s	ready	before	we
use	it:

import	{Admin}	from	"react-admin";

import	buildGraphQLProvider	from	'ra-data-graphql-simple';

import	{useEffect,	useState}	from	"react";

function	App()	{

				const	[dataProvider,	setDataProvider]	=	useState();

				useEffect(()	=>	{

								(async	()	=>	{

												const	dp	=	await	buildGraphQLProvider({

																clientOptions:	{uri:	'http://localhost:5000'}

												});

												setDataProvider(()	=>	dp);

								})();

				},	[])

https://marmelab.com/react-admin/

				return	(

								<div	className="App">

												{

																dataProvider	&&

																<Admin	dataProvider={dataProvider}>

																			...resource	UI	here...

																</Admin>

												}

								</div>

);

}

export	default	App;

The	data	provider	connects	to	our	GraphQL	server	running	on	port	50006.	The
data	provider	will	first	download	the	scheme	for	the	application.	This	will	tell	it
what	resources	(just	a	single	resource	Messages	in	our	case)	are	available,	and
what	things	can	be	done	to	them.

If	we	try	to	run	the	application	now,	it	won’t	do	anything.	That’s	because	even
though	it	knows	that	there’s	a	Messages	resources	on	the	server,	it	doesn’t
know	that	we	want	it	to	do	anything	with	it.	SO	let’s	add	the	Messages
resource	to	the	app.

If	we	want	the	application	to	list	all	of	the	messages	on	the	server,	we	will	need
to	create	a	simple	component	called	ListMessages.	This	will	use	some	of	the
ready-components	in	react-admin	to	build	its	interface:

const	ListMessages	=	(props)	=>	{

				return	<List	{...props}>

								<Datagrid>

												<TextField	source="id"/>

												<TextField	source="author"/>

												<TextField	source="text"/>

								</Datagrid>

				</List>;

};

This	will	create	a	table	with	columns	for	message	id,	author	and	text.	We
can	now	pass	tell	the	admin	system	about	the	new	component	by	passing	a
Resource	to	the	Admin	component:

<Admin	dataProvider={dataProvider}>

				<Resource	name="Message"	list={ListMessages}/>

</Admin>

The	Admin	component	will	see	the	new	Resource,	and	will	contact	the	server
to	read	the	messages	from	the	server,	and	then	render	them	with	a
ListMessages	component	(see	figure	6-7.)

Figure	6-7.	Displaying	the	messages	from	the	server.

This	appears	to	work	by	magic.	Actually,	it’s	because	the	server	has	to	follow
certain	conventions	so	that	the	GraphQL	adapter	knows	which	service	to	call.	In
this	case,	it	will	find	a	query	called	allMessages	which	returns	messaages:

type	Query	{

				Message(id:	ID!):	Message

				allMessages(page:	Int,	perPage:	Int,

								sortField:	String,	sortOrder:	String,

								filter:	MessageFilter):	[Message]

}

This	might	mean	that	you	have	to	slightly	change	your	back-end	API	to	meet	the
requirements	of	your	data	provider,	the	services	that	you	add,	will	probably	be
useful	to	your	main	application.

Notice	that	the	allMessages	query	accepts	a	set	of	parameters	which	allow
the	Admin	interface	to	page	through	the	data	from	you	server.	It	also	can	pass	a
property	called	filter	which	can	be	used	to	search	or	narrow-down	the	data	to
download.	The	MessageFilter	in	the	example	scheme	will	allow	the	admin
console	to	find	messages	containing	strings	for	author	and	text.	It	will	also
allow	the	admin	console	to	send	a	general	search	string	(q)	which	can	be	used	to
find	messages	that	contain	a	string	in	any	field.	This	is	the	GraphQL	schema
definition	of	the	MessageFilter	object.	You	would	obviously	need	to	create
something	similar	for	each	resource	in	your	application:

input	MessageFilter	{

				q:	String

				author:	String

				text:	String

}

If	we	want	to	enable	filtering	and	searching	in	the	front-end,	we	will	first	need	to
create	some	filtering	fields	in	a	React	component	we’ll	call	MessageFilter.
This	is	quite	distinct	from	the	MessageFilter	in	the	schema,	although	you
will	notice	it	contains	matching	fields:

const	MessageFilter	=	(props)	=>	(

				<Filter	{...props}>

								<TextInput	label="Author"	source="author"	/>

								<TextInput	label="Text"	source="text"	/>

								<TextInput	label="Search"	source="q"	alwaysOn	/>

				</Filter>

);

We	can	now	add	the	MessageFilter	to	the	ListMessages	component,

and	we	will	suddenly	find	that	we	can	page,	search	and	filter	the	information	in
the	admin	console	(see	figure	6-8):

const	ListMessages	=	(props)	=>	{

				return	<List	{...props}	filters={<MessageFilter/>}>

								<Datagrid>

												<TextField	source="id"/>

												<TextField	source="author"/>

												<TextField	source="text"/>

								</Datagrid>

				</List>;

};

Figure	6-8.	Filtering	the	messages	table.

We	can	also	add	the	ability	to	create	a	new	messages,	by	adding	a
CreateMessage	component:

const	CreateMessage	=	(props)	=>	{

				return	<Create	title="Create	a	Message"	{...props}>

								<SimpleForm>

												<TextInput	source="author"	/>

												<TextInput	multiline	source="text"	/>

								</SimpleForm>

				</Create>

};

And	then	add	the	CreateMessage	component	to	the	Resource	(see	figure
6-9):

<Resource	name="Message"	list={ListMessages}	create={CreateMessage}/>

Figure	6-9.	Creating	messages	on	the	console.

The	GraphQL	data	provider	will	create	messages	by	passing	the	contents	of	the
CreateMessage	form	to	a	mutation	called	CreateMessage:

type	Mutation	{

				createMessage(

								author:	String!

								text:	String!

):	Message

}

In	a	similar	way,	you	can	add	the	ability	to	update	or	delete	messages.	If	you

have	a	complex	schema	with	sub-resources,	react-admin	has	the	ability	to
display	sub-items	within	a	table.	It	can	also	handle	different	display	types.	It	can
show	images	and	links.	There	are	components	available7	which	can	display
resources	on	calendars,	or	in	charts	(see	figure	6-10	for	examples	from	the	online
demo	application).	Admin	consoles	can	also	be	made	to	work	with	your	existing
security	model.

https://marmelab.com/ra-enterprise-demo/#/

Figure	6-10.	Different	view	types	in	the	online	demo.

Discussion

Whilst	you	will	have	to	make	some	additional	changes	to	your	back-end	services
to	make	react-admin	work	for	you,	there	is	a	very	good	cahnce	that	this
additional	services	will	prove	useful	elsewhere	in	your	main	application.	Even	if
they	aren’t,	the	building	blocks	that	react-admin	provides	will	likely	slash
the	development	time	needed	to	create	a	back	office	system.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

6.6	No	Designer?	Use	Semantic	UI

Problem
Well-designed	styling	can	add	a	lot	of	visual	appeal	to	an	application.	But	poor
styling	can	make	even	a	good	application	appear	cheap	and	amateurish.	Many
developers8	have	very	limited	design	sense.	In	cases	where	you	have	little	or	no
access	to	professional	UX	help,	a	simple,	clear	UI	component	library	can	allow
you	to	focus	on	the	functionality	of	the	application,	without	spending	endless
hours	tweaking	the	location	of	buttons	and	borders.

Tried-and-tested	frameworks	like	Bootstrap9	can	provide	a	good,	no-glass,
foundation	for	most	applications.	But	even	they	often	require	a	lot	of	focus	on
visual	appearance.	If	you	really	want	to	focus	on	the	functionaliuty	of	an
application,	and	want	to	get	a	clear	functional	visual	appearance	then	the
Semantic	UI	library	is	a	good	choice.

But	the	Semantic	UI	library	is	old.	It	was	written	in	the	days	when	jQuery	ruled
the	roost.	At	the	time	of	writing10	it	has	not	been	updated	in	over	two	years.
What	do	you	do	if	you	want	to	use	a	reliable	and	well	established	library	like
Semantic	UI	with	React.

Solution
The	Semantic-UI-React	library	is	a	wrapper	that	makes	the	Semantic	UI	library
available	for	React	users.

As	the	name	suggests,	Semantic	UI	focuses	on	the	meaning	of	the	interface.
There	are	very	few	components	that	describe	the	visual	appearance;	that	is	left	to
tweaking	with	CSS.	Instead,	Smenatic	UI	components	focus	on	the	functionality.

https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch06-07-react-admin
https://github.com/dogriffiths/ReactCookbook-source

When	you	are	creating	a	form,	for	example,	you	say	which	fields	to	include,
rather	than	saying	anything	about	their	layout.	That	leads	a	to	very	clean,
consistent	appearance,	which	needs	little	or	no	visual	adjustment.

To	get	started,	let’s	install	the	Semantic	library	and	its	styling	support:

$	npm	install	semantic-ui-react	semantic-ui-css

In	addition,	we	also	need	to	include	a	reference	to	the	stylesheet	in	the
index.js	of	the	application:

import	React	from	'react';

import	ReactDOM	from	'react-dom';

import	'./index.css';

import	App	from	'./App';

import	reportWebVitals	from	'./reportWebVitals';

import	'semantic-ui-css/semantic.min.css'

ReactDOM.render(

		<React.StrictMode>

				<App	/>

		</React.StrictMode>,

		document.getElementById('root')

);

//	If	you	want	to	start	measuring	performance	in	your	app,	pass	a	

function

//	to	log	results	(for	example:	reportWebVitals(console.log))

//	or	send	to	an	analytics	endpoint.	Learn	more:	https://bit.ly/CRA-

vitals

reportWebVitals();

We’re	going	to	re-create	our	message	posting	application.	We’ll	need	a	form
with	a	text	field	for	the	author’s	name,	and	a	text-area	for	posting	a	message.
Semantic	components	are	designed	to	be	as	similar	to	simple	HTML	elements	as
possible.	So	if	we’re	building	a	form,	we’ll	import	a	Form,	Input,
TextArea,	and	a	Button	to	post	the	message:

import	{Button,	Form,	Input,	TextArea}	from	'semantic-ui-react'

import	'./App.css';

import	{useState}	from	"react";

function	App()	{

				const	[author,	setAuthor]	=	useState('');

				const	[text,	setText]	=	useState('');

				return	(

								<div	className="App">

												<Form>

																<Form.Field>

																				<label	htmlFor='author'>Author</label>

																				<Input	value={author}	id='author'	onChange={evt	=>

setAuthor(evt.target.value)}/>

																</Form.Field>

																<Form.Field>

																				<label	htmlFor='text'>Message</label>

																				<TextArea	value={text}	id='text'	onChange={evt	=>	

setText(evt.target.value)}/>

																</Form.Field>

																<Button	basic

																								onClick={()	=>	{

																												setMessages(m	=>	[{

																																icon:	'pencil',

																																date:	new	Date().toString(),

																																summary:	author,

																																extraText:	text

																												},	...m]);

																												setAuthor('');

																												setText('');

																								}}

																>

																				Post

																</Button>

												</Form>

								</div>

);

}

export	default	App;

This	should	feel	very	familiar.	The	Form	component	does	have	a	Field	helper
which	makes	it	a	little	easier	to	group	labels	and	fields	together,	but	beyond	that
the	code	looks	very	similar	to	a	very	simple	HTML	form.

In	the	example	application,	we’re	“posting”	messages	by	adding	them	to	array
called	messages.	You	may	have	noticed	that	we’re	adding	messages	to	the
array	in	a	very	particular	object	structure:

setMessages(m	=>	[{

				icon:	'pencil',

				date:	new	Date().toString(),

				summary:	author,

				extraText:	text

},	...m]);

This	is	not	by	accident.	Although	most	of	the	components	in	Semantic	are	very
simple,	there	are	some	more	complex	examples,	which	are	there	to	support	some
common	use-cases.	One	such	example	of	the	Feed	component.	The	Feed
component	is	there	to	render	any	kind	of	social	message	stream,	such	as	you
might	see	on	Twitter	or	Instagram.	It	will	render	a	clean	series	of	messages,	with
date-stamps,	headlines,	icons	and	so	on.	This	kind	of	visual	component	if	very
easy	to	build	badly:	i.e.	in	a	way	that	works,	but	just	looks	ugly.	Here’s	what	our
final	code	looks	like	with	the	Feed	included:

import	{Button,	Form,	Input,	TextArea,	Feed}	from	'semantic-ui-react'

import	'./App.css';

import	{useState}	from	"react";

function	App()	{

				const	[author,	setAuthor]	=	useState('');

				const	[text,	setText]	=	useState('');

				const	[messages,	setMessages]	=	useState([]);

				return	(

								<div	className="App">

												<Form>

																<Form.Field>

																				<label	htmlFor='author'>Author</label>

																				<Input	value={author}	id='author'	onChange={evt	=>

setAuthor(evt.target.value)}/>

																</Form.Field>

																<Form.Field>

																				<label	htmlFor='text'>Message</label>

																				<TextArea	value={text}	id='text'	onChange={evt	=>	

setText(evt.target.value)}/>

																</Form.Field>

																<Button	basic

																								onClick={()	=>	{

																												setMessages(m	=>	[{

																																icon:	'pencil',

																																date:	new	Date().toString(),

																																summary:	author,

																																extraText:	text

																												},	...m]);

																												setAuthor('');

																												setText('');

																								}}

																>

																				Post

																</Button>

												</Form>

												<Feed	events={messages}/>

								</div>

);

}

export	default	App;

When	you	run	the	application,	the	interface	is	clean	and	un-fussy	(see	figure	6-
11.)

Figure	6-11.	The	Semantic	UI	interface	in	action

Discussion
Semantic	UI	is	an	old	library.	But	that’s	not	a	bad	thing.	It’s	battle-tested
interface	is	clean	and	functional	and	is	one	of	the	best	ways	of	getting	your
application	up	and	running	without	the	support	of	a	visual	designer.	It’s
particularly	useful	if	you’re	creating	a	Lean	Startup11	and	want	to	throw
something	together	quickly	to	test	if	there	is	a	market	for	your	product.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

For	full	details	of	the	entire	component	set,	see	https://material-ui.com

For	more	information	on	these	components,	see	the	Material-UI	site.
See	the	first	recipe	in	this	chapter	for	more	information.

Including,	dealing	with	all	the	nasty	edge	cases	that	can	occur	when	a	window	is	resized.
The	library	can	be	used	for	variable	and	sized	lists	and	grids.	See	the	documentation	for	more	details.

You	will	find	the	server	in	the	source	code	for	this	chapter.	You	can	run	the	server	by	typing	“node
./server.js”
Some	of	them	available	only	if	you	subscribe	to	the	Enterprise	edition.

Including	at	least	one	of	the	authors…
See	earlier	in	this	chapter	for	guidance	on	how	to	use	Bootstrap	with	your	application.

November,	2020.
For	more	details,	see	The	Lean	Startup	published	by	O’Reilly	Media.

1

2

3

4

5

6

7

8

9

10

11

https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch06-07-react-admin
https://github.com/dogriffiths/ReactCookbook-source
https://material-ui.com
https://material-ui.com
https://react-window.now.sh

Chapter	7.	Security

A	NOTE	FOR	EARLY	RELEASE	READERS

With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the	authors’	raw	and	unedited
content	as	they	write—so	you	can	take	advantage	of	these	technologies	long	before	the	official	release
of	these	titles.

This	will	be	the	7th	chapter	of	the	final	book.	Please	note	that	the	GitHub	repo	will	be	made	active
later	on.

If	you	have	comments	about	how	we	might	improve	the	content	and/or	examples	in	this	book,	or	if
you	notice	missing	material	within	this	chapter,	please	reach	out	to	the	editor	at	ccollins@oreilly.com.

In	this	chapter	we	look	at	various	ways	of	securing	your	application.

7.1	Secure	requests	not	routes

Problem
In	chapter	2,	recipe	6	showed	how	you	can	use	React	Router	to	create	shared
routes.	That	means	that	if	the	user	tries	to	get	to	certain	paths	within	your
application,	you	can	force	them	to	submit	a	login	form	before	they	can	see	the
contents	of	that	page.

This	is	a	good,	fairly	general	approach	to	take	when	you	are	first	building	an
application.	However,	some	applications	do	not	fall	so	easily	into	this	static
model	of	security.	Some	pages	will	be	secure,	and	some	will	be	insecure.	But	in
many	applications,	security	is	not	defined	by	the	particular	pages	peope	are	on,
but	by	the	contents	of	the	data	they	are	looking	at.	Sometimes	page	contents	are
only	available	to	users	when	they’ve	been	granted	access	to	particular	roles.
Sometimes	what	was	once	secure	data	becomes	insecure	data.	You	can	also	have
different	views	of	data	for	people	who	are	logged	in,	compared	to	people	who
are	not.

All	of	these	complexities	are	usually	straightforward	to	define	at	the	API	level.
But	it’s	the	kind	of	complexity	that	you	don’t	want	to	have	to	reproduce	in	the

mailto:ccollins@oreilly.com

logic	of	your	front	end	client.	For	these	reasons,	the	simple	approach	of	marking
some	routes	secure	and	others	as	insecure	is	not	good	enough.

Solution
If	defining	routes	as	secure	or	insecure	is	not	sufficient	for	the	security	of	your
client,	you	might	want	to	consider	driving	access	to	app	by	the	security
responses	you	receive	from	the	back-end	server.

With	this	approach,	you	begin	by	assuming	in	the	client	can	go	anywhere	in	your
app.	You	don’t	worry	about	secure	routes	and	insecure	routes.	You	just	have
routes.	If	a	user	visits	a	path	which	contains	private	data,	the	server	will	return
some	kind	of	errors	response,	typically	a	HTTP	status	401,	and	in	the	event	of
that	error,	the	user	is	redirected	to	a	login	form.

With	this	approach,	the	policy	of	which	data	is	private	and	which	data	is	public
is	driven	by	the	server.	If	the	security	policies	change,	you	only	need	to	modify
the	code	on	the	server,	without	needing	to	change	the	client	code.

Let’s	take	a	look	at	the	code	for	the	original	secured-routes	recipe	again.	In	our
application,	we	inject	a	SecurityProvider,	which	controls	the	security	of
all	of	its	child	components.	In	the	example	application	we	do	this	is	the	App.js
file:

import	'./App.css';

import	{BrowserRouter,	Route,	Switch}	from	"react-router-dom";

import	Public	from	"./Public";

import	Private1	from	"./Private1";

import	Private2	from	"./Private2";

import	Home	from	"./Home";

import	SecurityProvider	from	"./SecurityProvider";

import	SecureRoute	from	"./SecureRoute";

function	App()	{

				return	(

								<div	className="App">

												<BrowserRouter>

																<SecurityProvider>

																				<Switch>

																								<Route	exact	path='/'>

																												<Home/>

																								</Route>

																								<SecureRoute	path='/private1'>

																												<Private1/>

																								</SecureRoute>

																								<SecureRoute	path='/private2'>

																												<Private2/>

																								</SecureRoute>

																								<Route	exact	path='/public'>

																												<Public/>

																								</Route>

																				</Switch>

																</SecurityProvider>

												</BrowserRouter>

								</div>

);

}

export	default	App;

You	can	see	that	the	application	has	simple	Routes	and	SecuredRoutes.	If
an	un-logged	in	user	tries	to	access	a	secured	route,	they	are	redirected	to	a
login,	as	you	can	see	in	figure	7-1

Figure	7-1.	When	you	first	access	a	secured	route,	you	see	a	login	form

Once	they	are	logged	in	(see	figure	7-2)	they	then	have	access	to	the	secured
content.

Figure	7-2.	Once	you	are	logged	in,	secured	routes	are	visible

If	we	want	to	base	our	security	upon	the	security	of	the	back-end	API,	we’ll
begin	by	replacing	all	of	the	SecuredRoutes	with	simple	Routes.	The
application	simply	doesn’t	know,	until	it’s	informed	by	the	API,	which	data	is
private	and	which	data	is	public.	For	the	example	app	in	this	recipe,	we’ll	have
two	pages	on	the	application	that	contain	a	mix	of	public	and	private	data.	The
Transactions	will	read	secure	data	from	the	server.	The	Offers	page	will	read
insecure	data	from	the	server.	This	is	what	the	new	version	of	our	App.js	file
will	look	like:

import	'./App.css';

import	{BrowserRouter,	Route,	Switch}	from	"react-router-dom";

import	Transactions	from	"./Transactions";

import	Offers	from	"./Offers";

import	Home	from	"./Home";

import	SecurityProvider	from	"./SecurityProvider";

function	App()	{

				return	(

								<div	className="App">

												<BrowserRouter>

																<SecurityProvider>

																				<Switch>

																								<Route	exact	path='/'>

																												<Home/>

																								</Route>

																								<Route	exact	path='/transactions'>

																												<Transactions/>

																								</Route>

																								<Route	exact	path='/offers'>

																												<Offers/>

																								</Route>

																				</Switch>

																</SecurityProvider>

												</BrowserRouter>

								</div>

);

}

export	default	App;

We’ll	also	need	to	make	a	change	to	our	SecurityProvider.	In	an	API-
security	model,	the	client	begins	by	assuming	that	all	data	is	public.	This	is	the
opposite	of	the	secured-routes	approach,	which	assumes	you	don’t	have	access
until	you	prove	that	you	do	by	logging	in.

This	means	our	new	SecurityProvider	has	to	default	its	initial	logged-in
state	to	true:

import	{useState}	from	"react";

import	SecurityContext	from	"./SecurityContext";

import	Login	from	"./Login";

import	axios	from	'axios';

export	default	(props)	=>	{

				const	[loggedIn,	setLoggedIn]	=	useState(true);

				return	<SecurityContext.Provider

								value={{

												login:	async	(username,	password)	=>	{

																await	axios.post('/api/login',	{username,	password});

																setLoggedIn(true);

												},

												logout:	async	()	=>	{

																await	axios.post('/api/logout');

																return	setLoggedIn(false);

												},

												onFailure()	{

																return	setLoggedIn(false);

												},

												loggedIn

								}}>

								{loggedIn	?	props.children	:	<Login/>}

				</SecurityContext.Provider>

};

We’ve	also	made	several	other	changes.	First,	the	code	which	decides	whether
the	user	should	see	the	Login	form	is	now	in	the	SecurityProvider.	This
used	to	live	inside	the	SecuredRoute	component,	but	now	we	display	it
centrally.	Second,	we’ve	replace	the	dummy	username/password	checks	with
calls	to	the	back-end	services	called	_api/login	and	//api/logout_.	You	should
replace	these	with	whatever	security	code	is	applicable	to	your	system.	Finally,
the	SecurityProvider	now	provides	a	new	function	called	onFailure,
which	simply	marks	the	person	as	logged-out.	If	this	function	is	called,	the	user
will	be	forced	to	log	in.

If	we	no	longer	have	secured-routes,	at	what	point	do	we	perform	the	security
checks?	We	don’t	them	in	the	API	calls	themselves.

WARNING
For	a	real	implementation,	you	would	want	to	add	code	the	deals	with	an	invalid	login	attempt.	To	keep
the	code	short,	we’ve	omitted	any	special	handling	here.	In	the	example	application,	a	failed	login	will
simply	leave	you	in	the	login	form,	without	any	error	messages.

Let’s	take	a	look	at	our	new	Transactions	page,	as	defined	in	the
src/Transactions.js.	This	component	reads	the	transactions	data	and
displays	it	on	the	screen:

import	useTransactions	from	"./useTransactions";

export	default	()	=>	{

				const	{data:	transactions}	=	useTransactions();

				return	<div>

								<h1>Transactions</h1>

								<main>

												<table>

																<thead>

																<tr>

																				<th>Date</th>

																				<th>Amount</th>

																				<th>Description</th>

																</tr>

																</thead>

																<tbody>

																{

																				transactions	&&	transactions.map(trx	=>	<tr>

																								<td>{trx.date}</td>

																								<td>{trx.amount}</td>

																								<td>{trx.description}</td>

																				</tr>)

																}

																</tbody>

												</table>

								</main>

				</div>;

};

The	network	code	that	reads	the	data	from	the	server	is	hidden	inside	the
useTransactions	hook.	It’s	inside	this	hook	that	we	need	to	add	our	check
for	a	failed-access	response	from	the	server:

import	{useEffect,	useState}	from	'react';

import	axios	from	'axios';

import	useSecurity	from	"./useSecurity";

const	useTransactions	=	()	=>	{

				const	security	=	useSecurity();

				const	[transactions,	setTransactions]	=	useState([]);

				useEffect(()	=>	{

								(async	()	=>	{

												try	{

																const	result	=	await	axios.get('/api/transactions');

																setTransactions(result.data);

												}	catch	(err)	{

																const	status	=	err.response	&&	err.response.status;

																if	(status	===	401)	{

																				security.onFailure();

																}

																//	Handle	other	exceptions	here	(consider	a	shared

																//	error	handler	--	see	elsewhere	in	the	book)

												}

								})();

				},	[]);

				return	{data:	transactions};

};

export	default	useTransactions;

In	the	example	application,	we’re	using	the	axios	library	to	contact	the	server.

axios	handles	HTTP	errors	such	as	401	(the	HTTP	status	for	Unauthorized)	as
exceptions.	That	makes	it	a	little	clearer	which	code	is	dealing	with	an
unexpected	response.	If	you	were	using	a	different	API	standard,	like	GraphQL,
you	would	be	able	to	deal	with	security	errors	in	an	analogous	way,	by
examining	the	contents	of	the	error	object	that	GraphQL	returns.

In	the	event	that	there’s	an	Unauthorized	response	from	the	server,	the
useTransactions	hook	makes	a	call	to	the	onFailure	function	in	the
SecurityProvider.

We’ll	build	the	Offers	page	in	exactly	the	same	way.	The	src/Offers.js
component	will	format	the	offers	data	from	the	server:

import	useOffers	from	"./useOffers";

export	default	()	=>	{

				const	{data:	offers}	=	useOffers();

				return	<div>

								<h1>Offers</h1>

								<main>

												

																{

																				offers	&&	offers.map(offer	=>	<li	

className='offer'>{offer})

																}

												

								</main>

				</div>;

};

And	the	code	that	reads	the	data	is	inside	the	src/useOffers.js	hook:

import	{useEffect,	useState}	from	'react';

import	axios	from	'axios';

import	useSecurity	from	"./useSecurity";

const	useOffers	=	()	=>	{

				const	security	=	useSecurity();

				const	[offers,	setOffers]	=	useState([]);

				useEffect(()	=>	{

								(async	()	=>	{

												try	{

																const	result	=	await	axios.get('/api/offers');

																setOffers(result.data);

												}	catch	(err)	{

																const	status	=	err.response	&&	err.response.status;

																if	(status	===	401)	{

																				security.onFailure();

																}

																//	Handle	other	exceptions	here	(consider	a	shared

																//	error	handler	--	see	elsewhere	in	the	book)

												}

								})();

				},	[]);

				return	{data:	offers};

};

export	default	useOffers;

NOTE
Even	though	the	data	from	the	//api/offers/	end-point	is	not	secured,	we	still	have	code	that	checks	for
security	errors.	One	consequence	of	the	API	security	approach,	is	that	you	have	to	treat	all	end-points	as
if	they	are	secure,	just	in	case	the	become	secure	in	the	future.

OK,	let’s	try	our	example	application	out.	We’ll	begin	by	opening	the	front	page
(see	figure	7-3.)

Figure	7-3.	This	is	the	front	page	of	the	application

If	we	click	on	the	Offers	link,	we	see	the	offers	read	from	the	server	(see	figure
7-4).	This	data	is	unsecured,	and	we’ve	not	been	asked	to	log	in	to	see	it.

Figure	7-4.	If	we	click	on	the	offers	link,	we	can	see	the	contents

If	we	now	go	back	to	the	home	page,	and	click	on	the	Transactions	link,	we	are
immediately	asked	to	log	in	(see	figure	7-5).	The	transactions	page	has	attempted
to	download	transaction	data	from	the	server,	which	resulted	in	a	401
(Unauthorized)	response.	The	code	catches	this	as	an	exception,	and	calls	the
onFailure	function	in	the	SecurityProvider,	which	then	displays	the
login	form.

Figure	7-5.	image

If	we	log	in,	our	username	and	password	are	sent	to	the	server.	Assuming	that
doesn’t	result	in	an	error,	the	SecurityProvider	hides	the	login	form,	and
the	Transactions	page	is	re-rendered	and	the	data	is	now	able	to	be	read	as	we’ve
logged	in	(see	figure	7-6).

Figure	7-6.	Once	we	are	logged	in,	we	can	see	the	page

Discussion
Our	example	app	now	contains	nothing	to	indicate	which	APIs	are	secured,	and
which	are	unsecured.	All	of	that	work	is	now	handled	by	the	server.	The	API
endpoints	are	entirely	in	charge	of	the	security	of	the	application.

Using	this	approach,	you	should	apply	the	same	security	handling	to	all	API
calls.	One	of	the	benefits	of	extracting	API	calls	into	custom	hooks,	is	that	this
code	can	be	shared.	Hooks	can	call	other	hooks,	and	a	common	approach	is	to
create	hooks	which	act	as	general	purpose	GET	and	POST	calls1.	A	general-
purpose	GET	hook	could	not	only	handle	access	failures,	it	can	also	include
request	cancellations,	and	debouncing	(recipes	3	and	6	in	chapter	5)	as	well	as
shared	error	handling	(recipe	1	in	chapter	4).

Another	advantage	to	the	secured-API	approach	is	that	it’s	possible	to	entirely
disable	security	in	some	circumstances.	For	example,	during	development	you
could	do	away	with	the	need	for	developers	to	have	an	identity	provider
configured.	You	can	also	choose	to	have	different	security	configurations	in
different	deployments.

Finally,	for	automated	testing	systems,	like	Cypress,	which	can	simulated
network	responses,	you	can	split	the	testing	of	application	functionality	from
non-functional	security	testing.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

7.2	Enable	two	factor	authentication	with
physical	tokens

Problem
Usernames	and	passwords	are	not	always	enough;	they	might	be	stolen	or
guessed.	They	might	be	shared	online.	Some	applications	may	require	additional
levels	of	security	to	protect	their	data.	Some	users	might	only	choose
applications	that	provide	additional	security.

An	increasing	number	of	systems	now	provide	two-factor	authentication.	A	two-
factor	system	requires	the	user	to	login	with	a	form,	and	then	provide	some
additional	information.	This	might	be	a	code	sent	to	them	by	an	SMS	text
message.	Or	an	application	on	their	phone	which	generates	a	pseudo-random
key.	Or,	perhaps	most	securely,	it	might	involve	the	use	of	a	physical	hardware
device,	like	a	Yubikey2,	which	is	attached	to	the	computer	when	required	and
pressed.

These	physical	tokens	work	using	public	key	cryptography.	They	can	generate	a
public	key	for	use	with	a	given	application.	They	can	also	encrypt	strings	using	a
private	key.	An	application	can	send	a	random	“challenge”	string	to	the	device,
which	will	then	generate	a	signature	using	the	private	key.	The	application	can
then	use	the	public	key	to	checked	that	the	string	signed	correctly.

But	how	do	you	integrate	them	with	you	React	application?

Solution
Web	Authentication	(also	known	as	WebAuthn)	is	a	widely3	supported	W3C
standard	that	allows	a	browser	to	communicate	with	a	physical	device,	like	a
Yubikey.

https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch06-01-material
https://github.com/dogriffiths/ReactCookbook-source

There	are	two	flows	in	web	authentication.	The	first	is	called	attestation.	During
attestation,	a	user	registers	a	security	device	with	an	application.	During
assertion,	the	user	is	able	to	verify	their	identity	to	log	in	to	a	system.

First,	let’s	look	at	attestation.	During	this	flow,	the	user	registers	a	physical
device	against	their	account.	That	means	that	user	should	always	be	logged	in
during	attestation.

The	code	for	this	recipe	includes	a	dummy	node	server,	which	you	can	run	from
the	//server/	directory	within	the	application:

$	cd	server

$	npm	install

$	npm	run	start

There	are	three	steps	to	attestation:

The	server	generates	an	attestation	request,	saying	what	can	kind	of	device	is
acceptable

The	user	connects	the	device	and	activates	it.	Probably	by	pressing	a	button
on	it.

A	response	is	generated	from	the	device	which	includes	the	public	key,	and	is
then	returned	to	the	server	where	it	can	be	stored	against	the	user’s	account

We	can	tell	if	the	browser	supports	WebAuthn,	by	checking	for	the	existence	of
window.PublicKeyCredential.	If	it	exists,	you’re	good	to	go.

On	the	server,	there	is	an	end-point	at	//startRegister/	which	will	create	the
attestation	request	for	us.	So	we’ll	begin	by	calling	that:

import	axios	from	"axios";

...

//	Ask	to	start	registering	a	physical	token	for	the	current	user

const	response	=	await	axios.post("/startRegister");

What	does	an	attestation	request	look	like?	This	is	an	example.

{

				"rpName":	"Physical	Token	Server",

				"rpID":	"localhost",

				"userID":	"1234",

				"userName":	"freda",

				"excludeCredentials":	[

								{"id":	"existingKey1",	"type":	"public-key"}

],

				"authenticatorSelection":	{

								"userVerification":	"discouraged"

				},

				"extensions":	{

								"credProps":	true,

				},

}

Some	of	the	attributes	begin	with	the	letters	rp…,	which	stands	for	Relying	party
and	refers	to	the	application	that	has	generated	the	request.

The	rpName	is	a	free	form	text	string	that	describes	the	application.	You	should
set	the	rpId	to	the	current	domain	name.	Here	it’s	localhost,	because	we’re
running	on	a	development	server.	The	userID	is	a	string	which	uniquely
identifies	the	user.	The	userName	is	the	name	of	user.

excludeCredentials	is	an	interesting	attribute.	Users	might	record
multiple	devices	against	their	account.	This	value	list	the	devices	which	are
already	recorded,	to	avoid	the	user	registering	the	same	device	twice.	If	you
attempt	to	register	the	same	device	more	than	once,	the	browser	will
immediately	throw	an	exception	saying	that	the	device	has	been	registered
elsewhere.

The	authenticatorSelection	allows	you	to	set	various	options	about
what	the	user	needs	to	do	when	they	activate	their	device.	Here	we’re	setting
userVerification	to	false,	to	prevent	the	user	having	to	perform	any
additional	steps	(such	as	entering	a	pin	number)	when	activating	their	device.
This	means	that	when	asked	to	plug	in	their	device,	they	will	just	insert	it	into
the	USB	socket	and	press	the	button,	with	nothing	else	needed.

The	credProps	extension	asks	the	device	to	return	additional	credential
properties,	which	might	be	useful	to	the	server.

Once	the	attestation	request	has	been	generated	by	the	server,	we	need	to	ask	the
user	to	connect	their	security	device.	This	is	done	with	a	browser	function	called

navigator.credentials.create()

The	create	function	accepts	an	attestation	request	object.	Unfortunately,	the

data	within	the	object	needs	to	be	in	a	variety	of	low-level	binary	forms,	such	as
byte	arrays.	We	can	make	out	life	significantly	easier	by	installing	a	library	from
Github	called	webauthn-json,	which	will	allows	to	use	JSON	to	specify	the
request.

npm	install	"@github/webauthn-json"

We	can	then	pass	the	contents	of	the	WebAuthn	request	to	the	Github	version	of
the	create	function

import	{create}	from	"@github/webauthn-json";

import	axios	from	"axios";

...

//	Ask	to	start	registering	a	physical	token	for	the	current	user

const	response	=	await	axios.post("/startRegister");

//	Pass	the	WebAuthn	config	to	webauthn-json	'create'	function

const	attestation	=	await	create({publicKey:	response.data});

This	is	the	point	where	the	user	will	be	asked	to	insert	and	activate	their	security
device	(see	figure	7-7)

Figure	7-7.	The	browser	asks	for	the	token	when	create()	is	called

The	create	function	resolves	to	an	attestation	object,	which	you	can	think	of
as	the	registration	information	for	the	device.	The	attestation	object	can	be	used
by	the	server	to	verify	the	user’s	identity	when	they	log	in.	We	need	to	record	the
attestation	object	against	the	user’s	account.	We’ll	do	that	by	posting	it	back	to

an	endpoint	on	the	example	server	at	//register/

import	{create}	from	"@github/webauthn-json";

import	axios	from	"axios";

...

//	Ask	to	start	registering	a	physical	token	for	the	current	user

const	response	=	await	axios.post("/startRegister");

//	Pass	the	WebAuthn	config	to	webauthn-json	'create'	function

const	attestation	=	await	create({publicKey:	response.data});

//	Send	the	details	of	the	physical	YubiKey	to	be	stored	against	the	

user

const	attestationResponse	=	await	axios.post("/register",	

{attestation});

That’s	the	overview	of	how	we	register	a	new	device	for	a	user.	But	where	do	we
put	that	in	the	code?

The	example	application	has	an	Account	page	(see	figure	7-8)	and	we’ll	add	a
button	in	there	to	register	a	new	key

Figure	7-8.	We’ll	add	a	button	to	the	account	page	to	register	a	new	device

This	is	the	registration	code	in	place:	.src/Private2.js

import	{useState}	from	'react';

import	Logout	from	"./Logout";

import	axios	from	"axios";

import	{create}	from	"@github/webauthn-json";

const	Private2	=	()	=>	{

				const	[busy,	setBusy]	=	useState(false);

				const	[message,	setMessage]	=	useState();

				return	<div	className='Private2'>

								<h1>Account	page</h1>

								{

												window.PublicKeyCredential	&&	<>

																<p>

																				Register	new	hardware	key

																</p>

																<button	onClick={async	()	=>	{

																				setBusy(true);

																				try	{

																								const	response	=	await	

axios.post("/startRegister");

																								setMessage('Send	response')

																								const	attestation	=	await	create({publicKey:	

response.data});

																								setMessage('Create	attestation')

																								const	attestationResponse	=	await	

axios.post("/register",	{attestation});

																								setMessage('registered!')

																								if	(attestationResponse.data	&&	

attestationResponse.data.verified)	{

																												alert("New	key	registered");

																								}

																				}	catch	(err)	{

																								setMessage(''	+	err);

																				}	finally	{

																								setBusy(false);

																				}

																}}

																								disabled={busy}

																>Register

																</button>

												</>

								}

								<div	className='Account-message'>

												{message}

								</div>

								<Logout/>

				</div>;

};

export	default	Private2;

If	we	press	the	registration	button	on	the	account	page,	we’re	asked	to	connect

the	security	device	(see	figure	7-9),	once	we	do	that	the	device’s	credentials	are
sent	to	the	server,	and	we’re	told	that	a	new	device	has	been	recorded	against	our
account	(see	figure	7-10.)

Figure	7-9.	When	you	choose	to	register	a	new	device,	you	are	asked	to	activate	it

Figure	7-10.	We	are	told	when	a	new	device	is	registered

The	next	flow	we	need	to	think	about	is	assertion.	Assertion	happens	when	a
user	verifies	their	identity	when	logging	in.

The	steps	are	quite	similar	to	attestation.	First,	the	application	asks	the	server	to
create	an	assertion	request.	Second,	the	user	converts	that	request	into	an

assertion	object,	by	activating	their	security	device.	Third,	the	server	checks	the
assertion	against	its	stored	credentials,	to	prove	the	person	is	who	they	say	they
are.

Let’s	begin	with	the	first	stage,	when	we	create	an	assertion	request.	This	is	what
an	assertion	request	looks	like:

{

				"allowCredentials":	[

								{id:	"existingTokenID",	"type":	"public-key"}

],

				"attestation":	"direct",

				"extensions":	{

								"credProps":	true,

				},

				"rpID":	"localhost",

				"timeout":	60000,

				"challenge":	"someRandomString"

}

The	allowCredentials	attribute	is	an	array	of	registered	devices	which	will
be	acceptable.	The	browser	will	be	able	to	use	this	array	to	check	that	the	user
has	connected	the	correct	device.

The	assertion	request	also	includes	a	challenge	string.	This	is	a	randomly
generated	string	which	the	device	will	need	to	create	a	signature	for	with	its
private	key.	The	server	will	be	able	to	check	this	signature	with	the	public	key,	to
ensure	that	the	correct	device	was	used.	The	timeout	specifies	how	long	the
user	will	have	to	prove	their	identity.

The	example	server	generates	an	assertion	request	when	you	call	the
//startVerify/	endpoint	with	a	specified	user-id

import	axios	from	"axios";

...

//	Ask	for	a	challenge	to	verify	user	userID

const	response	=	await	axios.post("/startVerify",	{userID});

We	can	then	pass	the	assertion	request	to	the	get()	WebAuthn	function,	which
will	ask	the	user	to	verify	their	identity	by	connecting	an	acceptable	device	(see
/figure	7-11).

import	{get}	from	"@github/webauthn-json"

import	axios	from	"axios";

...

const	response	=	await	axios.post("/startVerify",	{userID});

const	assertion	=	await	get({publicKey:	response.data});

Figure	7-11.	image

The	get()	function	returns	an	assertion	object,	which	contains	a	signature	for
the	challenge	string.	This	is	sent	back	to	the	server’s	//verify/	endpoint,	to	check
the	signature.	The	response	to	that	call	will	tell	us	if	the	user	has	correctly
verified	their	identity.

import	{get}	from	"@github/webauthn-json"

import	axios	from	"axios";

...

				const	response	=	await	axios.post("/startVerify",	{userID});

const	assertion	=	await	get({publicKey:	response.data});

const	resp2	=	await	axios.post("/verify",	{userID,	assertion});

if	(resp2.data	&&	resp2.data.verified)	{

				//	User	is	verified

}

Where	do	we	put	this	code	in	the	application?

The	example	application	is	based	on	the	secured-routes	recipe4.	It	contains	a
SecurityProvider,	which	manages	the	security	for	all	of	its	child
components.	The	SecurityProvider	provides	a	function	called	login,
which	is	called	with	the	username	and	password	when	the	user	submits	a	login
form.	We’ll	put	the	verification	code	in	here.

import	{useState}	from	"react";

import	SecurityContext	from	"./SecurityContext";

import	{get}	from	"@github/webauthn-json"

import	axios	from	"axios";

const	SecurityProvider	=	(props)	=>	{

				const	[loggedIn,	setLoggedIn]	=	useState(false);

				return	<SecurityContext.Provider

								value={{

												login:	async	(username,	password)	=>	{

																const	response	=	await	axios.post('/login',	{username,

password});

																const	{data}	=	response;

																if	(data.twoFactorNeeded)	{

																				const	userID	=	data.userID;

																				const	response	=	await	axios.post("/startVerify",	

{userID});

																				const	assertion	=	await	get({publicKey:	

response.data});

																				const	resp2	=	await	axios.post("/verify",	{userID,

assertion});

																				if	(resp2.data	&&	resp2.data.verified)	{

																								setLoggedIn(true);

																				}

																}	else	{

																				setLoggedIn(true);

																}

												},

												logout:	async	()	=>	{

																await	axios.post('/logout');

																setLoggedIn(false);

												},

												loggedIn

								}}>

								{props.children}

				</SecurityContext.Provider>

};

export	default	SecurityProvider;

We	first	send	the	username	and	password	to	the	//login/	endpoint.	If	the	user	has
registered	a	security	device,	the	response	to	the	_login	will	have	a
twoFactorNeeded	attribute	set	to	true.	We	can	call	the	//startVerify_
endpoint	with	the	user’s	id,	use	the	resulting	assertion	request	to	ask	the	use	to
activate	their	device.	We	can	then	the	assertion	back	to	the	server.	And	if	all	is
well,	we	set	loggedIn	to	true,	and	the	user	will	then	see	the	page.

Let’s	look	at	it	in	action.	We’ll	assume	we’ve	already	registered	the	device
against	our	account.	We	open	the	application,	and	click	on	the	Account	page	(see
figure	7-12.)

Figure	7-12.	When	the	application	opens,	click	the	Account	link

The	Account	page	is	secured,	so	we’re	asked	for	a	username	and	password	(see
figure	7-13.)	In	the	example	application	you	can	enter	“freda”	as	the	username,
and	“mypassword”	as	the	password.

Figure	7-13.	The	login	form	appears

Once	we’ve	entered	the	username	and	password,	the	browser	asks	us	to	connect
the	security	device	(see	figure	7-14.)

Figure	7-14.	The	browser	asks	the	user	to	activate	their	security	device

If	they	connect	their	device,	and	activate	it,	the	user	is	then	able	to	see	the
secured	page	(see	figure	7-15.)

Figure	7-15.	The	Account	page	is	visible	once	the	user	has	verified	their	identity

Discussion
As	you	can	probably	tell,	WebAuthn	is	quite	a	complex	API.	It	uses	quite
obscure	language	(attestation	for	registration,	and	assertion	for	verification)	and
uses	some	low-level	data-types,	which	fortunately	the	Github	webauthn-
json	allows	us	to	avoid.

The	real	complexity	lives	on	the	server.	The	example	server	in	the	downloadable
source	code	uses	a	library	called	SimpleWebAuthn	to	handle	most	of	the
cryptological	stuff	for	us.	If	you	are	planning	on	using	SimpleWebAuthn	for	the
server-side	of	your	application,	be	aware	that	there	is	also	a	client
SimpleWebAuthn	library	that	works	with	it.	We’ve	avoided	using	it	in	the
example	client	source,	to	avoid	making	our	code	too	SimpleWebAuthn-specific.

If	you	implement	two-factor	authentication,	you	will	need	to	think	about	what
you	will	do	if	a	user	loses	their	security.	Technically,	all	you	will	have	to	do	re-
enable	their	account	is	to	remove	the	device	that’s	registered	against	their	name.
But	you	need	to	be	extremely	careful.	A	common	attack	against	two-factor
authentication	is	to	call	the	service	desk	and	pretend	to	be	a	user	who	has	lost
their	token.

Instead,	you	will	need	to	create	a	sufficiently	rigorous	process	that	will	check	the
identity	of	any	person	asking	for	an	account	reset.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch06-01-material
https://github.com/dogriffiths/ReactCookbook-source

7.3	Enable	https	in	your	development	system

Problem
HTTPS	is	often	used	during	production	environments,	but	there	are
circumstances	where	it	can	useful	to	use	HTTPS	during	development.	Some
networked	services	will	only	work	from	within	pages	secured	with	HTTPS,
WebAuthn	will	only	work	remotely	with	HTTPS5,	and	numerous	bugs	and	other
issues	can	creep	into	your	code	if	your	application	uses	a	proxy	server	with
HTTPS.

Enabling	HTTPS	on	production	servers	is	now	quite	straightforward6,	but	how
do	you	enable	HTTPS	on	a	development	server?

Solution
If	you’ve	created	your	application	with	create-react-app,	you	can	enable
HTTPS	by:

Generating	a	self-signed	SSL	certificate,	and

Registering	the	certificate	with	your	development	server

To	generate	a	self-signed	certificate,	we	need	to	understand	a	little	about	how
HTTPS	works.

HTTPS	is	really	just	HTTP	that	is	tunneled	through	an	encrypted	Secure	Sockets
Layer	(SSL)	connection.	When	a	browser	connects	to	a	HTTPS	address,	it	opens
a	connection	to	a	secure	socket	on	the	server7.	In	order	to	make	this	connection,
the	server	has	to	provide	a	certificate	that	has	been	issued	by	some	organisation
that	the	browser	trusts.	If	the	browser	accepts	the	certificate,	it	will	then	send
encrypted	data	to	the	secure	socket	on	the	server,	which	will	then	be	decrypted
on	the	server,	and	forwarded	to	a	HTTP	server.

The	main	difficulty	in	setting	up	a	HTTPS	server,	is	getting	a	certificate	that	a
web	browser	will	trust.	Browsers	maintain	a	set	of	root	certificates.	These	are
certificates	that	are	issued	by	large,	trustworthy	organizations.	When	a	HTTPS
server	presents	a	certificate	to	a	browser,	that	certificate	must	be	signed	by	one
of	the	browser’s	root	certificates.

If	we	want	to	generate	our	own	SSL	certificate,	we	will	first	need	to	create	a	root

certificate	and	tell	the	browser	to	trust	it.	Then	we	must	generate	a	certificate	for
our	development	server,	that	has	been	signed	by	the	root	certificate.

If	this	sounds	complicated,	it’s	because	it	is.

Let’s	begin	by	creating	a	root	certificate.	To	do	this,	you	will	need	a	tool	called
OpenSSL	installed	on	your	machine.

We’ll	use	the	openssl	command	to	create	a	key	file.	It	will	ask	your	for	a	pass
phrase,	which	you	will	have	to	enter	twice:

$	openssl	genrsa	-des3	-out	mykey.key	2048

Generating	RSA	private	key,	2048	bit	long	modulus

...+++

.................................+++

e	is	65537	(0x10001)

Enter	pass	phrase	for	mykey.key:

Verifying	-	Enter	pass	phrase	for	mykey.key:

$

The	mykey.key	file	now	contains	a	private	key.	This	key	can	be	used	for
encrypting	data.	We	can	use	the	key	file	to	create	a	certificate	file.	A	certificate
file	contains	information	about	an	organization,	and	an	end-date	after	which	it	is
no	longer	valid.

You	can	create	a	certificate,	using	the	following	command:

$	openssl	req	-x509	-new	-nodes	-key	mykey.key	-sha256	-days	2048	-out

mypem.pem

Enter	pass	phrase	for	mykey.key:

You	are	about	to	be	asked	to	enter	information	that	will	be	

incorporated

into	your	certificate	request.

What	you	are	about	to	enter	is	what	is	called	a	Distinguished	Name	or	

a	DN.

There	are	quite	a	few	fields	but	you	can	leave	some	blank

For	some	fields	there	will	be	a	default	value,

If	you	enter	'.',	the	field	will	be	left	blank.

Country	Name	(2	letter	code)	[]:US

State	or	Province	Name	(full	name)	[]:Massachusetts

Locality	Name	(eg,	city)	[]:Cambridge

Organization	Name	(eg,	company)	[]:O'Reilly	Media

Organizational	Unit	Name	(eg,	section)	[]:Harmless	scribes

Common	Name	(eg,	fully	qualified	host	name)	[]:Local

Email	Address	[]:me@example.com

$

Here	we	are	creating	a	certificate	that	will	be	valid	for	the	next	2048	days.	The
pass	phrase	you	are	asked	for	is	the	pass	phrase	you	set	when	you	created	the
mykey.key	file.	It	doesn’t	really	matter	what	you	enter	for	the	organization
details,	as	you	will	only	be	using	it	on	your	local	machine.

The	certificate	is	now	stored	in	a	file	called	`mypem.pem`8,	and	we	need	to
install	this	file	as	a	root	certificate	on	our	machine.	There	are	a	number	of	ways
of	installing	root	certificates	on	your	machine9.	Root	certificates	can	be	used	to
sign	web	site	certificates,	which	is	what	we’ll	do	next.

We’ll	create	a	local	key	file,	and	a	Certificate	Signing	Request	(CSR)	file,	with
the	following	command:

$	openssl	req	-new	-sha256	-nodes	-out	myprivate.csr	-newkey	rsa:2048	

-keyout	myprivate.key

-subj	"/C=US/ST=Massachusetts/L=Cambridge/O=O'Reilly	Media/OU=Harmless

scribes/CN=Local/ema

ilAddress=me@example.com"

Generating	a	2048	bit	RSA	private	key

....................+++

..+++

writing	new	private	key	to	'myprivate.key'

$

Next,	create	a	file	called	extfile.txt,	containing	the	following:

authorityKeyIdentifier=keyid,issuer

basicConstraints=CA:FALSE

keyUsage=digitalSignature,nonRepudiation,keyEncipherment,dataEncipherm

ent

subjectAltName=DNS:localhost

We	can	now	run	a	command	that	will	generate	a	SSL	certificate	for	our
application:

$	openssl	x509	-req	-in	myprivate.csr	-CA	mypem.pem	-CAkey	mykey.key	-

CAcreateserial	-out

myprivate.crt	-days	500	-sha256	-extfile		./extfile.txt

Signature	ok

subject=/C=US/ST=Massachusetts/L=Cambridge/O=O'Reilly	

Media/OU=Harmless	scribes/CN=Local/

emailAddress=me@example.com

Getting	CA	Private	Key

Enter	pass	phrase	for	mykey.key:

$

Remember,	the	pass	phrase	is	the	one	you	created	when	you	first	created	the
mykey.key	file.

OK,	the	result	of	going	through	all	of	those	steps	if	that	we	have	two	files	that
we	can	use	to	secure	our	development	server:

The	myprivate.crt	file	is	a	certificate	signed	by	the	root	certificate.	This
is	the	file	that	reassures	the	browser	that	our	app	can	be	trusted,	and

The	myprivate.key	file	will	be	used	to	encrypt	connections	between	the
development	server	and	the	browser.

If	you	created	your	application	with	create-react-app,	you	can	enable
HTTPS	by	putting	this	in	a	.env	file	in	your	main	application	directory:

..env

HTTPS=true

SSL_CRT_FILE=myprivate.crt

SSL_KEY_FILE=myprivate.key

If	you	restart	your	server,	you	should	be	able	to	access	your	application	at
https://localhost:3000

Discussion
Self-signed	certificates	are	quite	complex	things	to	create,	but	there	are
circumstances	when	they	are	required.	However,	even	if	you	don’t	need	to	run
HTTPS	in	your	development	environment,	it	can	still	be	worth	understanding
what	HTTPS	is,	how	it	works,	and	why	you	should	trust	it.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

7.4	Enable	two	factor	authentication	with
fingerprints

https://localhost:3000
https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch06-01-material
https://github.com/dogriffiths/ReactCookbook-source

Problem
Elsewhere	in	this	chapter10,	we	look	at	how	physical	tokens,	such	as	Yubikeys,
can	be	used	for	two-factor	authentication.	But	physical	tokens	are	still	fairly
uncommon,	and	can	be	quite	expensive.	Most	people	already	have	mobile
devices,	such	as	cell	phones	and	tablets.	Many	of	those	have	built	in	fingerprint
sensors.	But	how	can	we	get	a	React	application	to	use	a	fingerprint	sensor	for
two-factor	authentication?

Solution
We	can	also	use	fingerprint	sensors	as	WebAuthn	authentication	tokens.	The
connect	to	the	API	in	the	same	way,	although	there	are	a	number	of
configuration	changes	that	are	required.

This	recipe	is	a	based	on	recipe	2	in	this	chapter,	on	how	to	use	removable
tokens	for	two-factor	authentication.	We	saw	in	recipe	2	that	there	are	two	main
flows	in	WebAuthn	authentication:

Registering	a	token.	This	is	called	attestation,	and

Verifying	a	token,	this	is	called	assertion

Both	attestation	and	assertion	have	three	stages.	First	the	server	generates	a
request.	Second,	the	user	uses	the	token,	which	generates	a	response.	Third,	the
response	to	the	server.

If	we	want	to	switch	from	using	a	removable	physical	token,	to	using	the	built-in
fingerprint	sensor	in	a	device,	we	will	only	need	to	change	the	attestation	request
stage.	The	attestation	request	says	what	kind	of	token	can	be	registered	for	a
user.	For	removable	physical	tokens,	like	Yubikeys,	we	generated	an	attestation
request	that	looked	like	this:

{

				"rpName":	"Physical	Token	Server",

				"rpID":	"localhost",

				"userID":	"1234",

				"userName":	"freda",

				"excludeCredentials":	[

								{"id":	"existingKey1",	"type":	"public-key"}

],

				"authenticatorSelection":	{

								"userVerification":	"discouraged"

				},

				"extensions":	{

								"credProps":	true,

				},

}

We	need	to	change	this	slightly	to	allow	the	user	to	use	a	fingerprint	sensor:

{

				"rpName":	"Physical	Token	Server",

				"rpID":	"localhost",

				"userID":	"1234",

				"userName":	"freda",

				"excludeCredentials":	[

								{"id":	"existingKey1",	"type":	"public-key"}

],

				"authenticatorSelection":	{

								"authenticatorAttachment":	"platform",

								"userVerification":	"required"

				},

				"attestation":	"direct",

				"extensions":	{

								"credProps":	true,

				},

}

The	two	requests	are	almost	the	same.	The	first	change	is	in	the	authenticator
selection.	We	now	want	to	use	a	platform	authenticator,	because	fingerprint
sensors	are	built-in	to	the	device	and	not	removable.	This	means	we	are
effectively	limiting	the	user	to	their	current	physical.	Whereas,	a	Yubikey	can	be
disconnected	from	one	machine,	and	then	connected	to	another.	We’re	also
saying	that	we	want	to	use	direct	attestation.	This	means	that	we	won’t	want	to
use	any	additional	verification	that	can	be	configured	against	other	tokens.	For
example,	we	won’t	be	asking	the	user	to	press	the	fingerprint	sensor	and	enter	a
pin.

Beyond	changing	this	initial	attestation	request	object,	all	of	the	other	code
remains	the	same.	Once	a	user	responds	to	the	attestation	request	by	pressing	the
fingerprint	sensor,	it	will	generate	a	public	key	which	we	can	store	against	the
user.	When	the	user	logs	back	in	and	confirms	their	identity	by	pressing	the
fingerprint	sensor,	it	will	sign	the	challenge	string	in	the	same	way	that	a
Yubikey	would.

Therefore,	if	you’re	going	to	support	one	type	of	authenticator,	it’s	worth
allowing	the	user	to	support	both	fingerprint	sensors	and	removable	tokens.

NOTE
Unless	a	user	has	a	removable	token	that	also	works	on	mobile	devices–for	example	by	using	Near-Field
Communication	(NFC)–it’s	unlikely	that	any	one	user	will	register	both	removable	tokens	and
fingerprints.	As	soon	as	they	have	registered	a	fingerprint,	they	won’t	be	able	to	log	in	and	register	a
removable	token.	And	vice-versa.

This	is	how	we’ll	update	the	component	that	allows	a	user	to	register	a	token:

import	{useState}	from	'react';

import	Logout	from	"./Logout";

import	axios	from	"axios";

import	{create}	from	"@github/webauthn-json";

const	Private2	=	()	=>	{

				const	[busy,	setBusy]	=	useState(false);

				const	[message,	setMessage]	=	useState();

				const	registerToken	=	async	(startRegistrationEndpoint)	=>	{

								setBusy(true);

								try	{

												const	response	=	await	

axios.post(startRegistrationEndpoint);

												setMessage('Send	response')

												const	attestation	=	await	create({publicKey:	

response.data});

												setMessage('Create	attestation')

												const	attestationResponse	=	await	axios.post("/register",	

{attestation});

												setMessage('registered!')

												if	(attestationResponse.data	&&	

attestationResponse.data.verified)	{

																alert("New	key	registered");

												}

								}	catch	(err)	{

												setMessage(''	+	err);

								}	finally	{

												setBusy(false);

								}

				};

				return	<div	className='Private2'>

								<h1>Account	page</h1>

								{

												window.PublicKeyCredential	&&	<>

																<p>

																				Register	new	hardware	key

																</p>

																<button	onClick={()	=>	

registerToken("/startRegister")}

																								disabled={busy}

																>Register	Removable	Token

																</button>

																<button	onClick={()	=>	

registerToken("/startFingerprint")}

																								disabled={busy}

																>Register	Fingerprint

																</button>

												</>

								}

								<div	className='Account-message'>

												{message}

								</div>

								<Logout/>

				</div>;

};

export	default	Private2;

We’re	calling	a	slightly	different	end-point	when	we	want	to	register	a
fingerprint,	otherwise	the	rest	of	the	code	remains	the	same.

To	try	it	out,	you’ll	need	to	use	a	device	with	a	fingerprint	sensor.	WebAuthn	can
only	be	used	when	the	browser	is	connected	to	either	a	localhost	server,	or	to	a
remote	server	using	HTTPS.	To	test	this	code	from	a	mobile	device,	you	will
either	need	to	configure	HTTPS	on	on	your	development	server11,	or	you	will
need	to	configure	your	device	to	proxy	localhost	connections	to	your
development	machines12.

To	run	the	example	application,	you	will	need	to	change	into	the	application
directory	and	start	the	development	server	with:

npm	run	start

You	will	also	need	to	run	the	API	server.	Open	a	separate	terminal	for	this	and
the	run	it	from	the	server	sub-directory:

cd	server

npm	run	start

The	development	server	will	run	on	port	3000,	and	the	API	on	port	5000.	The
development	server	is	configured	to	proxy	API	requests	to	the	API	server.

When	you	open	the	application,	you	should	click	the	“Account	page”	link	(see
figure	7-16).

Figure	7-16.	Click	on	the	Account	page	link	on	the	home	page

The	application	will	ask	you	to	sign-in.	Enter	the	username	freda	and	the
password	mypassword	(see	figure	7-17.)	These	values	have	been	hard-coded	in
the	example	server.

Figure	7-17.	Enter	freda/mypassword	into	the	login	form

You	will	now	see	two	buttons	for	registering	tokens	against	your	account.	One
for	fingerprints,	the	other	for	removable	tokens	(see	figure	7-18.)

Figure	7-18.	There	are	buttons	to	register	fingerprints	and	removable	tokens

Press	the	button	to	register	a	fingerprint.	Your	mobile	device	will	ask	you	to
press	the	fingerprint	sensor.	Your	fingerprint	sensor	will	generate	a	public	key
that	can	be	stored	against	the	freda	account.	A	message	box	will	appear	to	tell
you	when	this	is	done,	as	you	can	see	in	figure	7-19.

Figure	7-19.	The	application	will	confirm	when	the	token	is	registered

Now	log	out.	When	you	log	back	in	again,	enter	freda	and	mypassword	in	the
form.	You	will	now	be	asked	to	confirm	your	identity	by	pressing	the	fingerprint
sensor,	and	you	will	then	be	logged	back	in	to	the	system.

Discussion
Built-in	fingerprint	sensors	are	much	more	common	that	removable	tokens	like
Yubikeys.	There	is	a	difference	in	the	usage	pattern	of	the	two	devices.	Yubikeys
can	be	moved	from	device	to	device,	whereas	fingerprints	are	typically	limited
to	a	single	device13.	Removable	tokens	therefore	have	additional	flexibility	for
users	who	might	want	to	connect	from	several	devices.	The	downside	to
removable	devices	is	that	they	are	far	easier	to	lose	than	a	cell	phone.	In	most
cases,	it	is	worthwhile	supporting	both	types	of	device,	and	leave	it	to	the	users
to	decide	which	option	is	best	for	them.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

7.5	Use	confirmation	logins

Problem
Sometimes	a	user	might	want	to	perform	operations	that	are	more	dangerous	or
are	not	easily	reversible.	They	might	want	to	delete	data,	remove	a	user	account,
or	do	something	that	will	send	an	email.	How	do	you	prevent	a	third	party	from
carrying	out	these	operations	if	they	find	a	logged-in,	but	unattended	machine?

Solution
Many	systems	force	users	to	confirm	their	login	credentials	before	being	able	to
perform	sensitive	operations.	You	will	mostly	likely	want	to	do	this	for	several
operations,	and	so	it	would	be	useful	if	there	was	a	way	of	doing	the
confirmation	centrally.

We’ll	base	this	recipe	on	the	code	for	the	Secured	Routes	recipe	from	chapter	4.
In	the	Secured	Routes	recipe	we	built	a	SecurityProvider	component	which

https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch06-01-material
https://github.com/dogriffiths/ReactCookbook-source

provided	login	and	logout	functions	to	its	child	components:

import	{useState}	from	"react";

import	SecurityContext	from	"./SecurityContext";

export	default	(props)	=>	{

				const	[loggedIn,	setLoggedIn]	=	useState(false);

				return	<SecurityContext.Provider

								value={{

												login:	(username,	password)	=>	{

																//	Note	to	engineering	team:

																//	Maybe	make	this	more	secure...

																if	(username	===	'fred'	&&	password	===	'password')	{

																				setLoggedIn(true);

																}

												},

												logout:	()	=>	setLoggedIn(false),

												loggedIn

								}}>

								{props.children}

				</SecurityContext.Provider>

};

Components	that	needed	to	use	the	login	or	logout	functions	could	access	them
from	the	from	useSecurity	hook:

const	security	=	useSecurity();

...

//	Anywhere	that	we	need	to	logout...

security.logout();

For	this	recipe,	we’ll	add	an	extra	function	to	SecurityProvider	that	will	allow	a
child	component	to	confirm	that	the	user	is	logged	in.	Once	they’ve	provided	the
username	and	password,	we	allow	them	to	perform	the	dangerous	operation.

We	could	do	this	by	creating	a	function	that	accepts	a	callback	function
containing	the	dangerous	operation,	which	is	then	called	after	the	user	confirms
their	login	details.	This	will	be	easier	to	implement	in	the	SecurityProvider,	but
will	have	some	issues	when	we	call	it	from	a	component.	That’s	because	we	will
either	have	to	return	some	sort	of	success/failure	flag:

//	We	WON'T	do	it	like	this

confirmLogin((success)	=>	{

				if	(success)	{

								//	Do	dangerous	thing	here

				}	else	{

								//	Handle	the	user	canceling	the	login

				}

})

This	has	the	disadvantage	that	if	you	forget	to	check	the	value	of	the	success
flag,	the	code	will	perform	the	dangerous	operation,	even	if	the	user	cancels	the
login	form.

Or	else,	we	will	have	to	pass	two	separate	callbacks:	one	for	success,	and	one	for
cancellation.

//	We	WON'T	do	it	like	this	either

confirmLogin(

				()	=>	{

								//	Do	dangerous	thing	here

				},

				()	=>	{

								//	Handle	the	user	canceling	the	login

				});

This	has	the	disadvantage	that	the	code	is,	well,	a	little	ugly.

Instead,	we’ll	implement	the	code	with	a	promise.	This	will	make	the
implementation	a	little	more	complex,	but	it	will	simplify	any	code	that	calls	it.

This	is	a	version	of	SecurityProvider,	complete	with	the	new	confirmLogin
function:

import	{useRef,	useState}	from	"react";

import	SecurityContext	from	"./SecurityContext";

import	LoginForm	from	"./LoginForm";

export	default	(props)	=>	{

				const	[showLogin,	setShowLogin]	=	useState(false);

				const	[loggedIn,	setLoggedIn]	=	useState(false);

				const	resolver	=	useRef();

				const	rejecter	=	useRef();

				const	onLogin	=	async	(username,	password)	=>	{

								//	Note	to	engineering	team:

								//	Maybe	make	this	more	secure...

								if	(username	===	'fred'	&&	password	===	'password')	{

												setLoggedIn(true);

								}

				};

				const	onConfirmLogin	=	async	(username,	password)	=>	{

								//	Note	to	engineering	team:

								//	Same	here...

								return	(username	===	'fred'	&&	password	===	'password');

				};

				return	<SecurityContext.Provider

								value={{

												login:	onLogin,

												confirmLogin:	async	(callback)	=>	{

																setShowLogin(true);

																return	new	Promise((res,	rej)	=>	{

																				resolver.current	=	res;

																				rejecter.current	=	rej;

																});

												},

												logout:	()	=>	setLoggedIn(false),

												loggedIn

								}}>

								{

												showLogin	?

																<LoginForm

																				onLogin={async	(username,	password)	=>	{

																								const	valid	=	await	onConfirmLogin(username,	

password);

																								if	(valid)	{

																												setShowLogin(false);

																												resolver.current();

																								}

																				}}

																				onCancel={()	=>	{

																								setShowLogin(false);

																								rejecter.current();

																				}}

																/>

																:	null

								}

								{props.children}

				</SecurityContext.Provider>

};

If	the	user	calls	the	confirmLogin	function,	the	SecurityProvider	will	display
a	login	form	to	allow	the	user	to	confirm	their	username	and	password.	The
confirmLogin	function	returns	a	promise	which	will	only	resolve	if	the	user
types	in	the	username	and	password	correctly.	If	the	user	cancels	the	login	form,

the	promise	will	be	rejected.

We’re	not	showing	the	details	of	the	LoginForm	component	here,	but	you	can
find	it	in	the	downloadable	source	for	this	recipe.

Our	example	code	here	is	just	checking	the	username	and	password	against	static
strings	to	see	if	they’re	correct.	In	your	version	of	the	code,	you	will	replace	this
with	a	call	to	some	security	service.

NOTE
When	we	call	the	confirmLogin,	we’re	creating	a	storing	the	promise	in	a	ref.	Refs	are	commonly
used	to	acquire	references	to	elements	in	the	DOM	are	render	time,	but	they	can	also	be	used	whenever
to	want	to	store	a	piece	of	state	immediately.	In	general,	it’s	not	good	practice	to	use	a	lot	of	refs	in	your
code,	and	we’re	only	using	them	here	so	we	can	record	the	promise	immediately,	without	wait	for	a
useState	operation	to	resolve.

How	would	you	use	the	confirmLogin	function	in	practice?	Let’s	say	we
have	a	component	that	contains	a	button	which	performs	some	dangerous
operation:

import	{useState}	from	'react';

import	Logout	from	"./Logout";

export	default	()	=>	{

				const	[message,	setMessage]	=	useState();

				const	doDangerousThing	=	()	=>	{

								setMessage('DANGEROUS	ACTION!')

				}

				return	<div	className='Private1'>

								<h1>Private	page	1</h1>

								<button	onClick={()	=>	{

												doDangerousThing();

								}}>

												Do	dangerous	thing

								</button>

								<p	className='message'>{message}</p>

								<Logout/>

				</div>;

};

If	we	want	the	user	to	confirm	their	login	details	before	performing	this
operation,	we	can	first	get	hold	of	the	context	provided	by	the	SecurityProvider:

const	security	=	useSecurity();

In	the	code	that	performs	the	dangerous	operation,	when	can	then	await	the
promise	returned	by	confirmLogin:

const	security	=	useSecurity();

...

await	security.confirmLogin();

setMessage('DANGEROUS	ACTION!')

The	code	following	the	call	to	confirmLogin	will	only	be	performed	once
the	promise	has	been	resolved.	This	only	happens	if	the	user	provides	the	correct
username	and	password.

If	the	user	cancels	the	login	dialog,	the	promise	will	be	rejected,	and	we	can
handle	the	cancellation	in	a	catch	block.

This	is	a	modified	version	of	the	component	performing	dangerous	code,	that
now	confirms	the	user’s	login	before	proceeding:

import	{useState}	from	'react';

import	Logout	from	"./Logout";

import	useSecurity	from	"./useSecurity";

export	default	()	=>	{

				const	security	=	useSecurity();

				const	[message,	setMessage]	=	useState();

				const	doDangerousThing	=	async	()	=>	{

								try	{

												await	security.confirmLogin();

												setMessage('DANGEROUS	ACTION!')

								}	catch	(err)	{

												setMessage('DANGEROUS	ACTION	CANCELLED!')

								}

				}

				return	<div	className='Private1'>

								<h1>Private	page	1</h1>

								<button	onClick={()	=>	{

												doDangerousThing();

								}}>

												Do	dangerous	thing

								</button>

								<p	className='message'>{message}</p>

								<Logout/>

				</div>;

};

If	we	try	out	the	code,	we	will	first	need	to	run	the	application	from	the	app
directory:

npm	run	start

When	the	application	opens	(see	figure	7-20),	you	will	need	to	click	on	Private
page	1.

Figure	7-20.	Begin	by	clicking	the	Private	Page	1	link

You	will	now	be	asked	to	login	(see	figure	7-21).	You	should	log	in	with
fred/password.

Figure	7-21.	The	page	is	secured,	so	you	will	need	to	log	in

If	you	now	click	the	button	to	perform	the	dangerous	operation,	you	will	be
asked	to	confirm	your	credentials	before	continuing	(as	show	in	figure	7-22):

Figure	7-22.	You	must	confirm	your	login	details	before	continuing

Discussion
This	recipe	allows	you	to	centralize	your	confirmation	code,	because	all	of	the
user-interface	for	the	confirmation	process	is	hidden	away	in	the

SecurityProvider.

This	has	an	additional	advantage	that	might	be	immediately	clear.	Not	only	does
this	lighten	the	code	in	our	components,	but	it	has	the	added	advantage	that	user
confirmation	can	take	place	inside	custom	hooks.	If	you	abstract	a	set	of
operations	into	some	hook-based	service14,	you	can	also	include	the	confirmation
logic	into	that	service.	This	will	leave	your	components	completely	unaware	of
which	operations	are	classed	as	dangerous,	and	which	are	not.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

7.6	Use	single	factor	authentication

Problem
We’ve	already	seen	that	removable	tokens	and	fingerprints	can	be	in	a	two-factor
authentication	system	to	provide	additional	security	to	a	user’s	account.

However,	they	can	also	be	used	as	a	simple	login	convenience.	Many	mobile
applications	allow	a	user	to	log	in	by	simply	pressing	the	fingerprint	sensor,
without	needing	to	enter	a	username	or	password.	Whilst	this	doesn’t	increase
the	security	of	the	application,	neither	does	it	decrease	it.	The	user	still	needs
access	to	a	particular	security	device,	which	will	be	far	harder	to	copy	than	a
username	and	password.

But	how	do	you	enable	single-factor	authentication	for	a	React	application?

Solution
Security	tokens,	such	as	fingerprint	sensors	and	USB-devices	like	Yubikeys,
need	to	be	recorded	against	a	user-account	on	the	server.	The	problem	with
single-factor	authentication	is	that	we	don’t	know	who	the	user	is	supposed	to	be
when	they	tap	the	fingerprint	sensor.	In	a	two-factor	system,	they	have	just	typed
their	username	into	a	form.	But	in	a	single-factor	system	we	need	to	know	who
the	user	is	supposed	to	be	when	we	create	the	assertion	request15

We	can	avoid	this	problem	by	setting	a	cookie	in	the	browser	containing	the
user-id	whenever	a	person	with	a	token-enabled	account	logs	in16

https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch06-01-material
https://github.com/dogriffiths/ReactCookbook-source

When	the	time	comes	in	the	application	to	display	the	login	form,	the	app	can
check	for	the	existence	or	the	cookie,	and	then	use	it	to	create	a	assertion	request
which	can	be	used	to	then	ask	for	the	security	token.	If	the	user	does	not	wish	to
use	the	token,	or	if	they	are	a	different	user,	then	can	cancel	the	request	and
simply	use	the	login	form.17

WARNING
The	user-id	is	not,	in	itself,	particularly	private	information.	User-ids	are	often	machine-generated
internal	keys	which	provide	very	little	in	the	way	of	secured	information.	However,	if	your	user-ids	are
more	easily	identifiable,	such	as	an	email	address,	you	might	not	want	to	use	this	approach.

We’re	basing	the	code	for	this	recipe,	on	the	Secured	Routes	code	from	chapter
2.	We	manage	all	of	our	security	through	a	wrapper	component	called
SecurityProvider.	This	provide	child	components	with	login	and	logout
functions.	We’ll	add	another	functions	called	loginWithToken:

import	{useState}	from	"react";

import	SecurityContext	from	"./SecurityContext";

import	{get}	from	"@github/webauthn-json"

import	axios	from	"axios";

const	SecurityProvider	=	(props)	=>	{

				const	[loggedIn,	setLoggedIn]	=	useState(false);

				return	<SecurityContext.Provider

								value={{

												login:	async	(username,	password)	=>	{

																const	response	=	await	axios.post('/login',	{username,

password});

																setLoggedIn(true);

												},

												loginWithToken:	async	(userID)	=>	{

																const	response	=	await	axios.post("/startVerify",	

{userID});

																const	assertion	=	await	get({publicKey:	

response.data});

																await	axios.post("/verify",	{userID,	assertion});

																setLoggedIn(true);

												},

												logout:	async	()	=>	{

																await	axios.post('/logout');

																setLoggedIn(false);

												},

												loggedIn

								}}>

								{props.children}

				</SecurityContext.Provider>

};

export	default	SecurityProvider;

The	loginWithToken	accepts	a	user-id	and	then	asks	the	user	to	verify	their
identity	with	a	token	by:

Calling	a	startVerify	function	on	the	server,	to	create	an	assertion	request

Passing	the	request	to	WebAuthn	so	that	the	user	will	be	asked	to	activate
their	token,	for	example,	by	pressing	the	fingerprint	sensor,	then

Passing	the	generate	assertion	back	to	an	endpoint	called	verify	to	check	that
a	valid	token	has	been	provided

In	your	implementation,	you	will	need	to	provide	your	own	equivalent	code	to
the	startVerify	and	verify	endpoints.

In	order	to	call	the	loginWithToken	function	in	SecurityProvider,	we	will	need	to
find	the	current	user’s	ID	from	the	cookies.	We’ll	do	this	by	installing	the	js-
cookie	library:

npm	install	js-cookie

This	will	allow	us	to	read	a	userID	cookie	like	this:

import	Cookies	from	'js-cookie';

...

const	userIDCookie	=	Cookies.get('userID');

We	can	now	use	this	code	in	a	Login	component,	which	will	check	for	a	userID
cookie.	If	one	exists,	it	will	ask	to	log	in	by	token.	Otherwise,	it	will	allow	the
user	to	log	in	using	a	username	and	password.

import	{useEffect,	useState}	from	"react";

import	useSecurity	from	"./useSecurity";

import	Cookies	from	'js-cookie';

const	Login	=	()	=>	{

				const	{login,	loginWithToken}	=	useSecurity();

				const	[username,	setUsername]	=	useState();

				const	[password,	setPassword]	=	useState();

				const	userIDCookie	=	Cookies.get('userID');

				useEffect(()	=>	{

								(async	()	=>	{

												if	(userIDCookie)	{

																loginWithToken(userIDCookie);

												}

								})();

				},	[userIDCookie]);

				return	<div>

								<h1>Login	Page</h1>

								<p>You	need	to	log	in.</p>

								<label	htmlFor='username'>Username:</label>

								<input

												id='username'

												name='username'

												type='text'

												value={username}

												onChange={(evt)	=>	setUsername(evt.target.value)}/>

								

								<label	htmlFor='password'>Password:</label>

								<input

												id='password'

												name='password'

												type='password'

												value={password}

												onChange={(evt)	=>	setPassword(evt.target.value)}/>

								

								<button	onClick={()	=>	login(username,	

password)}>Login</button>

				</div>;

};

export	default	Login;

Let’s	try	out	the	example	application.	We	must	first,	start	the	development	server
from	the	application	directory:

npm	run	start

Then	in	a	separate	terminal,	we	can	start	the	example	API	server.

cd	server

npm	run	start

The	development	server	runs	on	port	3000;	the	API	server	on	port	5000.

When	the	application	starts,	click	on	the	link	to	the	Account	page	(as	show	in
figure	7-23).

Figure	7-23.	When	the	app	opens,	click	on	the	link	to	the	account	page

We’re	now	asked	to	log	in	(see	figure	7-24).	Use	the	username	freda	and	the
password	mypassword.

Figure	7-24.	Log	in	with	freda/mypassword

The	account	page	asks	if	we	want	to	enable	log-in	with	a	fingerprint	sensor	or
physical	token	(see	figure	7-25).	You	can	register	a	token	and	then	log	out.

Figure	7-25.	Choose	to	enable	log	in	with	a	physical	token	or	fingerprint

The	next	time	we	log	in,	we	will	immediately	see	the	request	to	activate	a	token
(see	figure	7-26).

Figure	7-26.	Once	enabled,	you	can	log	in	with	just	the	token

If	we	activate	the	token,	we	are	then	logged	in,	without	needing	to	use	the	login
form.

Discussion
It’s	important	to	note	that	single-factor	authentication	is	about	increasing
convenience	rather	than	security.	Fingerprint	sensors	are	particularly	useful	for
this,	as	logging	in	literally	involves	moving	one	finger.

You	should	always	provide	the	ability	to	fall	back	to	using	the	login	form.	Doing
so	will	not	reduce	the	security	of	your	application,	as	a	wily	hacker	could	always
delete	the	cookie	and	fall	back	to	using	the	form	anyway.

You	can	download	the	source	for	this	recipe	from	the	Github	site.

https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch06-01-material
https://github.com/dogriffiths/ReactCookbook-source

7.7	Test	local	React	apps	on	an	Android	device

Problem
Most	mobile	browser	testing	can	be	carried	out	using	a	desktop	browser
simulating	the	appearance	of	a	mobile	device	(see	/figure	7-27).

Figure	7-27.	A	desktop	browser	can	be	used	for	most	mobile	testing

But	there	are	times	when	it	is	best	to	test	a	React	application	on	a	real	physical.
This	is	usually	not	a	problem;	the	React	application	can	be	accessed	remotely
using	the	IP	address	of	the	development	machine.

There	are,	however,	circumstances	where	that	is	not	true:

Your	mobile	device	might	not	be	able	to	connect	to	the	same	network	as	your
development	machine,	or

You	might	be	using	a	technology,	like	WebAuthn,	that	requires	HTTPS	for
domains	other	than	localhost

Is	it	possible	to	configure	a	mobile	device	to	access	a	React	app	running	on
localhost,	even	though	it	is	running	on	a	separate	machine?

Solution
In	this	recipe	we	will	look	at	how	we	can	proxy	the	network	on	an	Android-
based	device	so	that	connections	to	localhost	will	automatically	be	routed	to	the
server	on	your	development	machine.

The	first	thing	you’ll	need	is	an	Android	device	that	has	USB	debugging
enabled18.	You	will	also	need	a	copy	of	the	Android	SDK	installed.	This	will
allow	you	to	use	a	tool	called	the	Android	Debug	Bridge	(adb).	The	Android
Debug	Bridge	opens	a	communication	channel	between	your	development
machine	and	an	Android	device.

You	will	then	need	to	connect	your	Android	device	to	your	development
machine	with	a	USB	cable,	and	ensure	that	the	adb	command	is	available	on
your	command	path19	You	can	then	list	the	Android	devices	connected	to	your
machine:

$	adb	devices

*	daemon	not	running;	starting	now	at	tcp:5037

*	daemon	started	successfully

List	of	devices	attached

25PRIFFEJZWWDFWO								device

$

https://developer.android.com/studio/

Here	you	can	see	there	is	a	single	device	connected,	with	a	device-id
25PRIFFEJZWWDFWO.

You	can	now	use	the	adb	command	to	configure	a	proxy	on	the	Android	which
will	redirect	all	HTTP	traffic	to	its	internal	port	3000:

adb	shell	settings	put	global	http_proxy	localhost:3000

WARNING
If	you	have	more	than	one	Android	device	connected	to	your	machine,	you	will	also	need	pass	the	option
-s	<device-id>	to	the	adb,	so	that	it	will	know	which	device	to	talk	to.

You	will	next	need	to	tell	adb	to	run	a	proxy	service	on	the	Android	device,
which	will	forward	any	traffic	from	port	3000	on	the	device,	to	port	3000	on	the
development	machine:

adb	reverse	tcp:3000	tcp:3000

If	you	now	open	a	browser	on	the	Android	device,	and	tell	it	to	go	to
http://localhost:3000,	it	will	display	the	app	running	on	your	development
machine,	as	if	it’s	running	inside	the	device	(see	figure	7-27).

http://localhost:3000

Figure	7-28.	If	you	open	a	mobile	browser	to	localhost,	it	will	connect	to	the	development	machine

Once	you	have	finished	using	the	app,	you	will	need	to	disable	the	proxy	setting
on	the	Android	device.

WARNING
If	you	fail	to	disable	the	proxy	on	the	Android	device,	it	will	no	longer	be	able	to	access	the	network.

You	can	do	this	by	resetting	the	proxy	back	to	:0

adb	shell	settings	put	global	http_proxy	:0

Discussion
This	recipe	requires	a	lot	of	work	the	first	time	you	use	it,	because	it	involves
installing	an	entire	Android	SDK	on	your	development	machine.	But	then	it	will
be	very	easy	to	connect	and	disconnect	real	Android	devices	to	your	machine.

7.8	Use	eslint	to	check	for	security	flaws

Problem
Security	threats	in	JavaScript	are	frequently	caused	by	just	a	few	common
coding	issues.	You	can	decide	to	create	a	set	of	coding	standards	that	will	avoid
those	errors,	but	you	will	then	need	to	frequently	review	the	standards	to	keep
them	up	to	date	with	the	latest	changes	in	technology,	and	you	will	also	need	to
introduce	slow	and	expensive	code	review	processes.

Is	there	a	way	to	check	for	poor	security	practices	in	code,	that	will	not	slow
down	your	development	processes?

Solution
The	best	way	to	introduce	security	reviews	is	to	try	to	automate	them.	One	tool

that	will	allow	you	to	do	this	is	eslint.	If	you’ve	created	your	application	with
a	tool	like	create-react-app,	you	have	probably	already	got	eslint
installed.	In	fact,	create-react-app	runs	eslint	each	time	it	restarts	its
development	server.	If	you	ever	see	coding	issues	being	flagged	in	the	terminal,
that	output	has	come	from	eslint:

Compiled	with	warnings.

src/App.js

		Line	5:9:		'x'	is	assigned	a	value	but	never	used		no-unused-vars

Search	for	the	keywords	to	learn	more	about	each	warning.

To	ignore,	add	//	eslint-disable-next-line	to	the	line	before.

If	you	don’t	have	eslint	installed,	you	can	add	install	it	through	npm:

npm	install	--save-dev	eslint

Once	installed,	you	can	initialize	it	like	this:

$	node_mobule/.bin/eslint	--init

✔	How	would	you	like	to	use	ESLint?	·	problems
✔	What	type	of	modules	does	your	project	use?	·	esm
✔	Which	framework	does	your	project	use?	·	react
✔	Does	your	project	use	TypeScript?	·	No	/	Yes
✔	Where	does	your	code	run?	·	browser
✔	What	format	do	you	want	your	config	file	to	be	in?	·	JavaScript
Local	ESLint	installation	not	found.

The	config	that	you've	selected	requires	the	following	dependencies:

eslint-plugin-react@latest	eslint@latest

✔	Would	you	like	to	install	them	now	with	npm?	·	No	/	Yes
$

Remember:	you	don’t	need	to	initialize	eslint	if	you’re	using	create-
react-app;	it’s	already	done	for	you.

At	this	point,	you	could	choose	to	write	your	own	set	of	eslint	rules	to	check
for	breaches	of	any	security	practices.	However,	it’s	far	easier	to	install	an
eslint	plugin	with	a	set	of	security	rules	already	written	for	you.

As	an	example,	let’s	install	the	eslint-plugin-react-security	package,	which	is

created	and	managed	by	https://slyk.io

npm	install	--save-dev	eslint-plugin-react-security

Once	installed,	we	can	enable	this	plugin	by	editing	the	eslintConfig
section	of	package.json	(if	you’re	using	create-react-app)	or	the
eslintrc*	file	in	your	app	directory.

You	should	change	it	from	this:

"eslintConfig":	{

		"extends":	[

				"react-app",

				"react-app/jest"

]

},

to	this:

"eslintConfig":	{

		"extends":	[

				"react-app",

				"react-app/jest"

],

		"plugins":	[

				"react-security"

],

		"rules":	{

				"react-security/no-javascript-urls":	"warn",

				"react-security/no-dangerously-set-innerhtml":	"warn",

				"react-security/no-find-dom-node":	"warn",

				"react-security/no-refs":	"warn"

		}

},

This	will	enable	four	rules	from	the	react-security	plugin.

To	check	that	they	work,	let’s	add	some	code	to	an	application	that	will
contravene	the	no-dangerously-set-innerhtml	rule:

import	logo	from	'./logo.svg';

import	'./App.css';

function	App()	{

https://slyk.io

				return	(

				<div	className="App">

						<header	className="App-header">

								

								<p>

										Edit	<code>src/App.js</code>	and	save	to	reload.

								</p>

										<div	dangerouslySetInnerHTML={{__html:	'<p>This	is	a	bad	

idea</p>'}}	/>

								<a

										className="App-link"

										href="https://reactjs.org"

										target="_blank"

										rel="noopener	noreferrer"

								>

										Learn	React

								

						</header>

				</div>

);

}

export	default	App;

If	you’ve	installed	eslint	manually,	you	can	now	scan	this	file	with:

node_modules/.bin/eslint	src/App.js

If	you’re	using	create-react-app	you	just	need	to	restart	the	server,	to	ensure	that
it	reloads	the	eslint	config:

Compiled	with	warnings.

src/App.js

		Line	12:16:		dangrouslySetInnerHTML	prop	usage	detected		react-

security/no-dangerously-set-innerhtml

Search	for	the	keywords	to	learn	more	about	each	warning.

To	ignore,	add	//	eslint-disable-next-line	to	the	line	before.

Discussion
Another	advantage	of	automating	your	security	checks,	if	that	you	can	add	them
to	your	build-and-deploy	pipeline.	If	you	run	the	checks	at	the	start	of	the
pipeline,	you	can	reject	a	commit	immediately	and	notify	the	developer.

If	you	have	a	team	of	developers,	you	might	also	want	to	run	the	eslint
checks	using	a	git	pre-commit	hook.	This	will	prevent	developers	ever	checking-
in	code	that	fails	the	audit.	This	will	give	faster	feedback	to	the	developer,	and
prevent	them	failing	the	build	for	everyone	else.

If	you	want	to	configure	pre-commit	hooks	through	your	package.json	file,
consider	installing	Husky	code	hooks

You	can	download	the	source	for	this	recipe	from	the	Github	site.

7.9	Make	login	forms	browser-friendly

Problem
Many	security	solutions	rely	on	username/password	forms,	but	there	are	a
number	of	usability	traps	that	are	easy	to	fall	into	when	creating	them.	On	some
devices,	in	an	attempt	to	be	helpful,	automated	capitalization	and	autocorrect	can
corrupt	usernames	and	passwords.	Some	browsers	will	attempt	to	autocomplete
username	fields,	but	it	is	often	not	clear	what	rules	they	use,	and	so	autocomplete
works	on	some	sites	but	not	others.

What	practices	should	you	follow	when	building	login	forms,	so	that	they	will
work	with	the	browser,	rather	than	against	it?

Solution
There	are	several	HTML	attributes	that	can	greatly	improve	the	usability	of	your
login	forms.

First,	it	can	be	useful	to	disable	autocorrect	for	username	fields.	Autocorrect	is
frequently	applied	on	mobile	devices,	to	compensate	for	the	small	keyboards,
and	the	spelling	mistakes	that	inevitably	occur.	But	autocorrect	is	of	little	use
when	typing	usernames.	You	can	disable	autocorrect	using	the	autoCorrect
attribute:

<input	autoCorrect="off"/>

Next,	if	your	username	is	an	email	address,	consider	setting	the	type	to	email.

https://typicode.github.io/husky/#/
https://github.com/dogriffiths/ReactCookbook-source/tree/master/ch06-01-material
https://github.com/dogriffiths/ReactCookbook-source

On	mobile	devices	this	might	launch	an	email-specific	keyboard,	which	will
make	typing	email	addresses	far	easier.	Some	browsers	may	even	show	recent
email	addresses	in	an	autocomplete	window,	or	in	the	header	of	an	email-specific
keyboard:

<input	type="email"/>

You	might	also	consider	using	j_username	as	the	id	and	name	of	the
username	field.	Why?	It’s	because	j_username	is	commonly	used	by	Java-
based	and	is	likely	to	have	been	used	at	some	point	in	the	past	by	the	user.	This
increases	the	likelihood	that	the	browser	might	offer	the	email	address	in	an
autocomplete	window:

<input	id="j_username"	name="j_username"/>

For	many	browsers,	you	can	explicitly	say	that	a	field	represents	a	username
field,	making	it	very	likely	that	you	will	trigger	an	autocomplete	response	from
the	browser.

<input	autoComplete="username"/>

Now,	what	to	do	about	passwords?

First,	always	set	the	type	to	password.

<input	type="password"/>

Never	be	tempted	to	reproduce	the	visual	appearance	of	a	password	field	in
some	other	way,	for	example,	by	custom	CSS	styling.	Doing	so	will	prevent	the
browser	applying	standard	security	features	to	the	password	field,	such	as
disabling	the	copy	function	inside	it.	Also,	if	you	don’t	set	the	type	to
password,	the	browser	will	not	offer	to	store	the	value	in	its	password
manager.

Password	fields	are	typically	used	for	two	different	things:	for	current	passwords
(when	logging	in)	and	for	new	passwords	(when	signing	up,	or	when	changing	a
password).

Why	is	this	relevant?	It’s	because	the	HTML	autoComplete	attribute	can
indicate	to	the	browser	how	you	intend	to	use	the	password	field.

If	it’s	a	login	form,	you	will	want	to	say	that	the	password	is	a	current	password:

<input	type="password"	autoComplete="current-password"/>

If	it’s	a	registration,	or	change	password	form,	you	should	set	it	to	new-
password:

<input	type="password"	autoComplete="new-password"/>

This	will	encourage	the	browser	to	autocomplete	stored	passwords	in	a	login
form.	It	will	also	trigger	any	built-in,	or	third-party,	password	generation	tools.

Finally,	avoid	using	wizard-style	login	screens	(see	figure	7-30	for	an	example
from	the	Washington	Post).

Figure	7-29.	Multi-step	login	forms	can	prevent	a	browser	using	autocomplete

Browsers	are	less	likely	to	recognize	a	single	username	field	as	a	login	form,	and
so	are	less	likely	to	offer	to	complete	the	details	for	you.

Discussion
The	autocomplete	attribute	has	many	other	seldom-used	values	that	are
useful	for	many	types	of	form-fields,	from	address	details	and	phone	numbers	to
credit	card	numbers.	For	further	information	see	the	Mozilla	development	site.

Or,	in	the	case	of	GraphQL,	accessors	and	mutators.

https://www.yubico.com
With	the	notable	exception	of	Internet	Explorer

Recipe	6,	in	chapter	2.
It	is	possible	to	get	around	this	problem	from	Android	devices,	by	proxying	your	phone	through	your
development	machine.	There	is	a	recipe	for	doing	this,	elsewhere	in	this	chapter.

See	https://letsencrypt.org
By	default,	this	will	be	on	port	443.

The	.pem	extension	stands	for	Privacy-Enhanced	Mail.	The	PEM	format	was	originally	designed	for	use
with	email,	but	it	now	used	as	a	general	certificate	storage	format.
For	a	detailed	guide,	see	https://www.bounca.org/tutorials/install_root_certificate.html

See	recipe	2	in	the	chapter	for	how	to	use	physical	tokens	for	two-factor	authentication.
See	recipe	3	in	this	chapter.

See	recipe	7	in	this	chapter.
This	is	obviously	not	the	case	if	the	user	has	connected	and	external	fingerprint	sensor.

For	an	example	of	such	a	service,	see	the	useForum	hook	in	the	second	recipe	of	chapter	5.

The	assertion	request	is	needed	when	the	browser	asks	the	user	to	scan	their	fingerprint,	or	activate	their
token.	It	includes	a	list	of	the	devices	that	can	be	used,	and	therefore	will	be	unique	to	a	given	user.

A	consequence	of	this	approach	is	that	the	user	will	only	be	able	to	perform	single-factor	authentication
on	the	browser	where	they	registered	the	token.	If	they	use	a	different	browser,	or	if	they	have	recently
cleared	their	cookies,	they	will	have	to	fall	back	to	using	the	login	form.
This	assumes	that	you	are	using	a	cookie	that	is	readable	by	JavaScript.	It’s	also	possible	to	use	a
HTTP-only	cookie,	which	will	only	be	read	by	server	code.	If	you	use	a	HTTP-only	cookie,	you	will
need	code	on	the	server	to	check	if	the	user	should	provide	a	token,	or	not.

For	details,	see	the	Android	developer	site
You	will	need	to	locate	the	Android	SDK	installation	on	your	machine.	The	adb	command	can	be
found	in	a	sub-directory	within	this	installation.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes/autocomplete
https://www.yubico.com
https://letsencrypt.org
https://www.bounca.org/tutorials/install_root_certificate.html
https://developer.android.com/studio/debug/dev-options

Chapter	8.	Testing

A	NOTE	FOR	EARLY	RELEASE	READERS

With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the	authors’	raw	and	unedited
content	as	they	write—so	you	can	take	advantage	of	these	technologies	long	before	the	official	release
of	these	titles.

This	will	be	the	8th	chapter	of	the	final	book.	Please	note	that	the	GitHub	repo	will	be	made	active
later	on.

If	you	have	comments	about	how	we	might	improve	the	content	and/or	examples	in	this	book,	or	if
you	notice	missing	material	within	this	chapter,	please	reach	out	to	the	editor	at	ccollins@oreilly.com.

In	this	chapter	we’ll	look	at	various	techniques	for	testing	your	React
applications.	In	general,	we’ve	found	that	it	is	a	bad	idea	to	be	too	prescriptive
about	the	precise	mix	of	tests	you	should	have.	A	good	guiding	principle	is	to
follow	these	two	rules:

Never	write	code	unless	you	have	a	failing	test,	and

If	a	test	passes	the	first	time	you	run	it,	then	delete	it.

These	two	rules	will	help	you	build	code	that	works,	whilst	avoiding	creating
redundant	tests	that	provide	very	little	value.

We	have	found	that	early	in	a	project	it	is	easier	to	write	more	browser-based
tests.	These	tests	tend	to	be	higher-level	and	help	capture	the	principle	business
requirements	for	an	application.	Later	on,	when	the	architecture	of	the
application	starts	to	emerge	and	stabilize,	it	becomes	easier	to	right	more	unit
tests	of	individual	components.	They	are	faster	to	write,	quicker	to	run	and	once
you	have	a	stable	structure	to	your	code,	you	will	not	need	to	continuously
update	them.

Sometimes	it’s	worth	loosening	the	definition	of	what	a	test	is.	When	you	are
working	on	layout	code,	whose	main	value	is	visual,	you	might	consider	a
Storybook	story	to	be	a	“test”.	The	assertion	is	done	by	your	eye,	looking	at	the
component	as	you	create.	Of	course,	this	kind	of	test	will	not	automatically	pick
up	regression	failures,	but	we	present	a	technique	in	recipe	that	will	allow	you	to
turn	these	visual	checks	into	actual	automated	tests.

mailto:ccollins@oreilly.com

If	you	write	tests	before	you	write	code,	you	will	find	that	tests	are	tools	for
design.	They	will	become	executable	examples	of	how	you	would	like	your
application	to	work.	They	become	the	principle	tools	of	development.

Instead,	if	you	write	tests	after	you	write	the	code,	they	will	be	simply	artifacts.
Pieces	of	code	that	you	must	slavishly	create	because	they	feel	like	the	sorts	of
things	a	professional	developer	should	write.

There	are	four	key	tools	that	we	focus	on	in	this	chapter:	the	React	testing
library,	Storybook,	the	Selenium	library	and	Cypress.

The	React	testing	library	is	a	great	way	of	creating	very	detailed	unit	tests.

Storybook	is	a	gallery	tool	that	we	have	looked	at	previously.	We	include	it	in
this	chapter	because	a	gallery	is	a	set	of	code	examples,	and	that’s	what	tests	are.
You	will	find	ways	of	using	Storybook	as	part	of	your	testing/development
process.

Selenium	is	one	of	the	most	established	libraries	testing	your	application	in	a
real	browser.

Finally,	what	is	quickly	becoming	our	favorite	tool	for	testing:	Cypress.	Cypress
is	similar	to	Selenium,	in	that	it	runs	inside	a	browser.	But	it	includes	a	whole
host	of	additional	features,	such	as	test	replays,	generated	videos	of	test
runnings,	and	a	significantly	simpler	programming	model.	If	you	use	only	one
tool	from	this	chapter,	let	it	be	Cypress.

8.1	Using	the	react	testing	library

Problem
There	are	many	ways	that	you	can	test	a	React	application.	Early	on	in	a	project,
when	you	are	still	defining	the	basic	purpose	and	function	of	an	application,	you
might	choose	to	create	tests	in	some	very	high-level	form,	such	as	Cucumber
tests.	If	you	are	looking	at	some	isolated	piece	of	the	system	(such	as	the
creation	and	maintenance	of	a	data	item)	you	might	want	o	create	functional
tests	using	a	tool	like	Cypress.

But	if	you	are	deep	into	the	detail	of	creating	a	single	component,	then	you	will
probably	want	to	create	unit	tests.	Unit	tests	are	so	called	because	they	attempt	to

test	a	single	piece	of	code	as	an	isolated	unit.	While	it’s	debatable	whether	unit
test	is	the	correct	term	for	testing	components	(which	often	contain	sub-
components	and	so	are	not	isolated),	it’s	the	name	usually	applied	to	tests	of
components	that	are	tested	outside	of	a	browser.

But	how	do	you	unit	test	React	components?	There	have	histrically	been	several
approaches.	Early	unit	tests	relied	on	rendering	the	component	into	an	HTML
string.	This	required	very	little	testing	infrastructure,	but	there	were	mutliple
downsides:

Managing	re-renders	when	the	component	state	changed,

Making	assertion	on	HTML	elements	that	must	first	be	parsed	from	a	string

Creating	complex	code	to	simulate	UI	interactions

It	was	not	long	before	various	libraries	were	created	to	take	care	of	the	details	of
each	of	these	problems.

However,	tests	created	in	this	way	still	lack	the	reality	of	tests	created	in
browsers.	The	subtleties	of	the	interaction	between	the	virtual	Document	Object
Model	(DOM)	and	the	browser	DOM	are	lost.	Often	sub-components	were	not
rendered	to	reduce	the	complexity	of	the	tests.

The	result	was	that	React	applications	often	had	very	few	unit	tests.	Developers
would	refactor	their	code	so	that	complex	logic	was	moved	into	easily	testable
JavaScript	functions.	Anything	more	complex	would	have	to	be	tested	with	a
real	browser,	and	that	would	lead	to	tests	that	were	slow	to	run.	Because	they
were	slow,	developers	would	be	discouraged	from	testing	too	many	scenarios.

So	how	can	you	unit	test	React	components	in	a	realistic	way,	but	without	the
overheading	of	launching	the	entire	app,	and	running	the	tests	in	a	real	browser?

Solution
The	testing-library	by	Kent	C.	Dodds	attempts	to	avoid	the	issues	with	previous
unit	testing	libraries	by	providing	a	standalone	implementation	of	the	Document
Object	Model.	This	means	that	you	React	component	can	render	to	the	virtual
DOM,	and	that	result	can	then	be	synchronized	with	the	testing-library’s	DOM
and	create	a	tree	of	HTML	elements	that	behave	in	the	same	way	that	they	would
in	a	real	browser.

You	can	inspect	the	elements	in	the	same	way	that	would	within	a	browser.	They
have	the	same	attributes	and	properties.	You	can	even	pass	keystrokes	to	input
fields	and	have	them	behave	the	same	way	as	fields	in	the	browser.

If	you	created	your	application	with	create-react-app,	you	should	already	have
the	testing-library	installed.	If	not,	you	can	install	it	from	the	command	line:

$	npm	install	--save-dev	"@testing-library/react"

$	npm	install	--save-dev	"@testing-library/jest-dom"

$	npm	install	--save-dev	"@testing-library/user-event"

These	three	libraries	will	allow	us	to	unit	test	components.

The	@testing-library/react	library	allows	us	to	render	components.	To
do	this,	it	will	use	the	DOM	implementation	in	@testing-library/jest-
dom.	The	@testing-library/user-event	library	greatly	simplifies	the
process	of	interacting	with	the	generate	DOM	elements.	This	is	the	library	that
will	allow	us	to	click	the	buttons	and	type	in	the	fields	of	our	components.

In	order	to	show	how	to	unit	test	components,	we	will	need	an	application	to
test.	We’ll	be	using	the	same	application	through	much	of	this	chapter.	When	the
application	is	launched,	the	user	is	asked	to	performance	a	simple	calculation.
They	will	be	told	if	the	answer	they	provide	is	right	or	wrong	(see	figure	8-1).

Figure	8-1.	The	application	under	test

The	main	component	of	the	application	is	called	App.	We	can	create	a	unit	test
for	this	component	by	writing	a	new	file	called	App.test.js

describe('App',	()	=>	{

				it('should	tell	you	when	you	win',	()	=>	{

								//	Given	we've	rendered	the	app

								//	When	we	enter	the	correct	answer

								//	Then	we	are	told	that	we've	won

				})

});

This	is	a	Jest	test,	with	a	single	scenario	that	tests	that	the	App	component	will
tell	us	we’ve	won,	if	we	enter	the	correct	answer.	We’ve	put	placeholder
comments	for	the	structure	of	the	test.

We	will	begin	by	rendering	the	App	component.	We	can	do	this	by	importing	the
component	and	passing	it	to	the	testing	library’s	render	function:

import	{render}	from	'@testing-library/react';

import	App	from	'./App';

describe('App',	()	=>	{

				it('should	tell	you	when	you	win',	()	=>	{

								//	Given	we've	rendered	the	app

							render(<App/>);

							//	When	we	enter	the	correct	answer

							//	Then	we	are	told	that	we've	won

				})

});

Notice	that	we	pass	actual	JSX	to	the	render	function.	This	means	that	we	could,
if	we	wish,	test	the	components	behavior	when	passed	different	sets	of
properties.

For	the	next	part	of	the	test,	we’ll	need	to	enter	the	correct	answer.	In	order	to	do
that,	we	must	first	know	what	the	correct	answer	is.	The	puzzle	that	user	is
shown	is	always	a	randomly	generated	multiplication,	so	we	can	capture	the
numbers	from	the	page	and	then	type	in	the	product	into	the	Guess	field1.

We	will	need	to	look	at	the	elements	generated	by	the	App	component.	The
render	function	returns	and	object	that	not	only	contains	the	elements,	but	also	a
set	of	functions	for	filtering	them.	Instead	of	using	this	returned	value,	we’ll
instead	use	the	testing-library’s	screen	object.

You	can	think	of	the	screen	object	as	the	contents	of	the	browser	window.	It
allows	use	to	find	elements	within	the	page	so	that	we	can	interact	with	them.
For	example,	if	we	want	to	find	the	input	field	labeled	Guess,	we	can	do	it	like
this:

const	input	=	screen.getByLabelText(/guess:/i);

The	filter	methods	in	the	screen	object	typically	begin	with:

getBy…	if	you	know	that	the	DOM	contains	a	single	instance	of	the	matching
element

queryBy…	if	you	know	there	are	0	or	1	elements	that	match

getAllBy…	if	you	know	there	are	one	or	more	matching	elements	(returns	an
array)

queryAllBy…	to	find	0	or	more	elements	(returns	an	array)

These	methods	will	throw	an	exception	if	they	find	more	or	fewer	elements	that
they	were	expecting.	There	are	also	findBy…	and	findAllBy…	methods	which	are
asynchronous	versions	of	getBy…	and	getAllBy…	which	returns	promises.

For	each	of	these	filter	method	types,	you	can	search:

Function	name	ends Description

…ByLabelText Find	matching	field

…ByPlaceHolderText Find	with	text

…ByText With	matching	text	content

…ByDisplayValue Find	by	value

…ByAltText Matching	the	alt	attribute

…ByTitle Matching	the	title	attribute

…ByRoie Find	by	aria	role

…ByTestId Find	by	data-testid	attribute

This	means	there	are	nearly	50	ways	to	find	elements	within	the	page.	However,
you	might	have	noticed	that	none	of	them	use	a	CSS	selector	to	track	an	element
down.	This	is	deliberate.	The	testing-library	restricts	the	number	of	ways	that
you	can	find	elements	within	the	DOM.	It	doesn’t	allow	you	to,	for	example,
find	elements	by	class-name.	This	is	to	reduce	the	fragility	of	the	test.	Class
names	are	frequently	used	for	cosmetic	styling	and	are	subject	to	frequent
change.

It	is	still	possible	to	track	down	elements	with	selectors,	by	using	the	container
returned	by	the	render	method:

const	{container}	=	render(<App/>);

const	theInput	=	container.querySelector('#guess');

But	this	approach	is	frowned	upon.	If	you	are	using	the	testing-library,	it’s
probably	best	to	follow	the	standard	approach	and	find	elements	based	upon
their	content.

There	is	one	small	concession	to	this	approach	made	by	the	filter	functions:	the
…ByTestId	functions.	If	you	really	have	no	practical	way	of	finding	an	element
by	its	content,	then	you	can	always	add	a	data-testid	attribute	to	the
relevant	tag.	That	is	useful	for	the	test	we	are	currently	writing	because	we	need
to	find	two	numbers	displayed	on	the	page.	And	these	numbers	are	randomly
generated,	so	we	don’t	know	what	their	content	is	(figure	8-2).

Figure	8-2.	We	cannot	find	the	numbers	by	content,	because	we	won’t	know	what	they	are

So	we	make	a	small	amendment	to	the	code,	and	add	test-ids:

<div	className='Question-detail'>

				<div	data-testid='number1'	className='number1'>{pair	&&	pair[0]}

</div>

				×

				<div	data-testid='number2'	className='number2'>{pair	&&	pair[1]}

</div>

				?

</div>

This	means	we	can	start	to	implement	the	next	part	of	our	test:

import	{render,	screen}	from	'@testing-library/react';

import	App	from	'./App';

describe('App',	()	=>	{

				it('should	tell	you	when	you	win',	()	=>	{

								//	Given	we've	rendered	the	app

								render(<App/>);

								//	When	we	enter	the	correct	answer

								const	number1	=	screen.getByTestId('number1').textContent;

								const	number2	=	screen.getByTestId('number2').textContent;

								const	input	=	screen.getByLabelText(/guess:/i);

								const	submitButton	=	screen.getByText('Submit');

								//	Err...

								//	Then	we	are	told	that	we've	won

				})

});

We	have	the	text	for	each	of	the	numbers,	and	we	have	the	input	element.	We
now	need	to	type	the	correct	number	into	the	field	and	then	submit	the	answer.
We’ll	do	this	with	the	@testing-library/user-event	library.	The	user-
event	library	simplifies	the	process	of	generating	JavaScript	events	for	HTML
elements.	You	will	often	see	the	user-event	library	imported	with	the	alias	user.
This	is	because	you	can	think	of	the	calls	to	the	user-event	library	as	the	actions
a	user	is	making:

import	{render,	screen}	from	'@testing-library/react';

import	user	from	'@testing-library/user-event';

import	App	from	'./App';

describe('App',	()	=>	{

				it('should	tell	you	when	you	win',	()	=>	{

								//	Given	we've	rendered	the	app

								render(<App/>);

								//	When	we	enter	the	correct	answer

								const	number1	=	screen.getByTestId('number1').textContent;

								const	number2	=	screen.getByTestId('number2').textContent;

								const	input	=	screen.getByLabelText(/guess:/i);

								const	submitButton	=	screen.getByText('Submit');

								user.type(input,	''	+	(parseFloat(number1)	*	

parseFloat(number2)));

								user.click(submitButton);

								//	Then	we	are	told	that	we've	won

				})

});

Finally,	we	need	to	make	an	assertion	that	we	have	won.	We	can	write	this	very
simply	by	looking	for	some	element	containing	the	word	“won”2.

//	Then	we	are	told	that	we've	won

screen.getByText(/won/i);

This	assertion	will	work	because	getByText	throws	an	exception	if	it	does	not
find	exactly	one	matching	element.

TIP
If	you	are	unsure	about	the	current	HTML	state	at	some	point	in	a	test,	try	adding
screen.getByTestId('NONEXISTANT')	into	the	code.	The	exception	that’s	thrown	will	show
you	the	current	HTML.

However,	it’s	liable	to	break	if	your	application	is	running	slowly.	This	because
the	get…	and	query…	functions	look	at	the	existing	state	of	the	DOM.	If	the
result	takes	a	couple	seconds	to	appear,	the	assertion	will	fail.	For	this	reason,
it’s	a	good	idea	to	make	some	assertions	asynchronous.	It	makes	the	code	a	little
more	complex,	but	the	test	will	be	more	stable	when	running	against	slow
moving	code.

The	find…	methods	are	asynchronous	versions	of	the	get…	methods,	and	the
testing-library’s	waitFor	will	allow	you	to	re-run	code	for	a	period	of	time.
Combining	the	two	functions	together,	we	can	create	the	final	part	of	our	test:

import	{render,	screen,	waitFor}	from	'@testing-library/react';

import	user	from	'@testing-library/user-event';

import	App	from	'./App';

describe('App',	()	=>	{

				it('should	tell	you	when	you	win',	async	()	=>	{

								//	Given	we've	rendered	the	app

								render(<App/>);

								//	When	we	enter	the	correct	answer

								const	number1	=	screen.getByTestId('number1').textContent;

								const	number2	=	screen.getByTestId('number2').textContent;

								const	input	=	screen.getByLabelText(/guess:/i);

								const	submitButton	=	screen.getByText('Submit');

								user.type(input,	''	+	(parseFloat(number1)	*	

parseFloat(number2)));

								user.click(submitButton);

								//	Then	we	are	told	that	we've	won

								await	waitFor(()	=>	screen.findByText(/won/i),	{timeout:	

4000});

				})

});

WARNING
Unit	tests	should	run	very	quickly,	but	if	some	reason	your	test	takes	longer	than	5	seconds,	you	will
need	to	pass	a	second	timeout	value	in	milliseconds	to	the	it	function.

Discussion
Working	with	different	teams,	we	found	that	early	on	in	a	project	the	developers
would	write	unit	tests	for	each	of	the	components.	But	over	time,	they	would
write	fewer	and	fewer	unit	tests.	If	we	revisited	them	several	months	later	we
might	even	discover	them	removing	some	of	the	unit	tests	they	had	originally
created.

This	is	partly	because	unit	tests	are	more	abstract	than	browser	tests.	They	are
doing	the	same	kinds	of	things	as	browser	tests,	but	they	do	them	invisibly.
When	they	are	interacting	with	components,	you	don’t	see	them.

A	second	reason	is	that	teams	often	see	tests	as	deliverable	artifacts	within	a
project.	The	team	might	even	have	builds	that	fail	if	a	certain	percentage	of	the
code	isn’t	covered	by	unit	tests.

These	issues	generally	disappear	if	developers	write	tests	before	they	write	code.
If	you	write	the	tests	first,	a	line	at	a	time,	you	will	have	a	much	better	grasp	of
the	current	state	of	HTML.	If	you	stop	seeing	tests	as	development	artifacts,	and

start	to	look	at	them	as	tools	for	designing	your	code,	they	stop	becoming	a	time-
consuming	burden	and	start	to	become	tools	which	make	your	work	easier.

The	important	thing	when	writing	code,	is	that	you	begin	with	a	failing	test.	In
the	early	days	of	a	project,	that	might	be	a	failing	browser	test.	As	the	project
matures,	and	the	architecture	stabilizes,	you	should	find	that	you	are	creating
more	and	more	unit	tests.

8.2	Use	storybook	for	render	tests

Problem
Tests	are	really	nothing	more	or	less	than	examples	that	you	can	execute.	In	that
way,	tests	have	a	lot	in	common	with	component	gallery	systems	like	Storybook.
Both	tests	and	galleries	are	examples	of	components	running	in	particular
circumstances.	Whereas	a	test	will	make	assertions	with	a	code,	a	developer	will
make	an	assertion	of	a	library	example	by	looking	at	it	and	checking	that	it
appears	as	expected.	In	both	galleries	and	tests,	exceptions	will	be	easily	visible.

There	are	obvious	differences.	Tests	can	automatically	interact	with	components;
gallery	components	require	a	person	to	press	buttons	and	type	text.	Tests	can	all
be	exercised	with	a	single	command;	galleries	have	to	be	manually	viewed,	one
example	at	a	time.	Gallery	components	are	visual	and	easy	to	understand;	tests
are	quite	abstract	and	less	fun	to	create.

Is	there	some	way	that	galleries	like	Storybook	can	be	combined	with	automated
tests,	to	get	the	best	of	both	worlds?

Solution
We’re	going	to	look	at	how	you	can	re-use	your	Storybook	stories	inside	tests.
You	can	install	Storybook	into	your	application	with	this	command:

npx	-p	@storybook/cli	sb	init

The	example	application	we	are	using	in	this	chapter	is	a	simple	mathematical
game,	in	which	the	user	needs	to	calculate	the	answer	to	a	multiplication	(see
figure	8-3).

Figure	8-3.	For	more	information	on	the	game,	see	the	downloadable	source.

One	of	the	components	in	the	game	is	called	Question,	and	it	displays	a
randomly	generated	multiplication	question	(figure	8-4).

Figure	8-4.	The	Question	component

Let’s	say	we	don’t	worry	too	much	about	tests	for	this	component.	Let’s	just
build	it	by	creating	some	Storybook	stories.	We’ll	write	a	new
Question.stories.js	file:

import	Question	from	"./Question";

const	Info	=	{

				title:	'Question'

};

export	default	Info;

export	const	Basic	=	()	=>	<Question/>;

And	then	we’ll	create	an	initial	version	of	the	component,	that	we	can	look	at	in
Storybook	and	be	happy	with:

import	{useEffect,	useState}	from	'react';

import	'./Question.css';

const	RANGE	=	10;

function	rand()	{

				return	Math.floor((Math.random()	*	RANGE)	+	1);

}

const	Question	=	({refreshTime})	=>	{

				const	[pair,	setPair]	=	useState();

				const	refresh	=	()	=>	{

								setPair(pair	=>	{

												return	[rand(),	rand()];

								});

				};

				useEffect(refresh,	[refreshTime]);

				return	<div	className='Question'>

								<div	className='Question-detail'>

												<div	data-testid='number1'	className='number1'>{pair	&&	

pair[0]}</div>

												×

												<div	data-testid='number2'	className='number2'>{pair	&&	

pair[1]}</div>

												?

								</div>

								<button

												onClick={refresh}

								>Refresh

								</button>

				</div>;

};

export	default	Question;

This	component	displays	a	randomly	generated	question	if	the	user	presses	the
Refresh	button,	or	if	a	parent	component	passes	in	a	new	refreshTime	value.

We	display	the	component	in	Storybook,	and	it	looks	like	it	works	fine.	We	can
click	the	refresh	button	and	it	refreshes.	So	at	that	point	we	start	to	use	the
component	in	the	main	application.	After	a	while,	we	start	to	add	in	a	few	extra
features,	but	none	of	them	are	really	visual	changes,	so	we	don’t	look	at	the
Storybook	stories	for	it	again.	After	all,	it	will	still	look	the	same,	right?

This	is	a	modified	version	of	the	component,	after	we’ve	wired	it	into	the	rest	of

the	application:

import	{useEffect,	useState}	from	'react';

import	'./Question.css';

const	RANGE	=	10;

function	rand(notThis)	{

				return	Math.floor((Math.random()	*	RANGE)	+	1);

}

const	Question	=	({onAnswer,	refreshTime})	=>	{

				const	[pair,	setPair]	=	useState();

				const	result	=	pair	&&	(pair[0]	*	pair[1]);

				useEffect(()	=>	{

							onAnswer(result);

				},	[onAnswer,	result]);

				const	refresh	=	()	=>	{

								setPair(pair	=>	{

												return	[rand(),	rand()];

								});

				};

				useEffect(refresh,	[refreshTime]);

				return	<div	className='Question'>

								<div	className='Question-detail'>

												<div	data-testid='number1'	className='number1'>{pair	&&	

pair[0]}</div>

												×

												<div	data-testid='number2'	className='number2'>{pair	&&	

pair[1]}</div>

												?

								</div>

								<button

												onClick={refresh}

								>Refresh

								</button>

				</div>;

};

export	default	Question;

This	version	is	only	slightly	longer	than	before.	We’ve	added	in	an	onAnswer
callback	function	that	will	return	the	correct	answer	to	the	parent	component

each	time	a	new	question	is	generated.

The	new	component	appears	to	work	well	in	the	application,	but	then	an	odd
thing	occurs.	The	next	time	someone	looks	at	Storybook,	they	notice	an	error	as
shown	in	figure	8-5.

Figure	8-5.	An	error	occurs	when	we	look	at	the	new	version	of	the	component.

What	happened?	We’ve	added	an	implicit	assumption	into	the	code	that	the
parent	component	will	always	pass	an	onAnswer	callback	into	the	component.
Because	the	Storybook	stories	rendered	Basic	story	without	an	onAnswer,	we	got

the	error:

<Question/>

Does	this	really	matter?	Not	for	a	simple	component	like	this.	After	all,	the
application	itself	still	worked.	But	failure	to	cope	with	missing	properties,	such
as	the	missing	callback	here	or	more	frequently	missing	data,	is	one	of	the
commonest	causes	of	errors	in	React.

React	properties	are	frequently	generated	using	data	from	the	network,	and	that
means	that	the	initial	properties	you	pass	to	components	will	often	be	null	or
undefined.	It’s	generally	a	good	idea	to	either	use	a	type-safe	language,	like
Typescript,	to	avoid	this	issues,	or	else	to	write	tests	that	check	that	your
components	can	cope	with	missing	properties.

We	created	this	component	without	any	tests,	but	we	did	create	it	with	a
Storybook	story–and	that	story	did	catch	the	issue.	So	is	there	some	way	that	we
can	write	a	test	that	will	automatically	check	that	all	the	Storybook	stories	can	be
rendered?

We’re	going	to	create	a	test	for	this	component	in	a	file	called	Question.test.js

TIP
Consider	creating	a	folder	for	each	component.	Instead	of	simply	having	a	file	called	Question.js	in	the
src/	directory,	create	a	folder	called	src/Question/,	and	inside	there	you	can	place	Question.js,
Question.stories.js	and	Question.test.js.	If	you	then	add	an	src/Question/index.js	file,	which	does	a
default	export	of	the	Question	component,	the	rest	of	your	code	will	be	unaffected,	and	you	will	reduce
the	number	of	files	other	developers	have	to	deal	with3.

In	the	test	file	we	can	then	create	a	Jest	test	that	loads	each	of	the	stories,	and
then	passes	them	to	the	testing-library	render	function4.

import	{render}	from	'@testing-library/react';

import	Question	from	"./Question";

const	stories	=	require('./Question.stories');

describe('Question',	()	=>	{

				it('should	render	all	storybook	stories	without	error',	()	=>	{

								for	(let	story	in	stories)	{

												if	(story	!==	'default')	{

																let	C	=	stories[story];

																render(<C/>);

												}

								}

				});

});

WARNING
If	your	stories	are	using	decorators	to	provide	such	things	as	routers	or	styling,	this	technique	will	not
pick	them	up	automatically.	You	should	add	them	into	the	render	method	within	the	test.

When	you	run	this	test,	you	will	get	a	failure:

onAnswer	is	not	a	function

TypeError:	onAnswer	is	not	a	function

We	can	fix	the	error	by	checking	if	there	is	a	callback	before	calling	it:

useEffect(()	=>	{

				//	We	need	to	check	to	avoid	an	error

				if	(onAnswer	&&	result)	{

								onAnswer(result);

				}

},	[onAnswer,	result]);

This	technique	you	to	create	some	extremely	basic	tests	for	a	component	with
very	little	effort.	It’s	worth	creating	a	story	for	the	component	which	includes	no
properties	whatsoever.	Then,	before	you	add	a	new	property,	create	a	story	that
uses	it	and	think	about	how	you	will	expect	the	component	to	behave.

Even	though	the	test	will	only	perform	a	simple	render	of	each	story,	there	is	no
reason	why	you	can’t	import	a	single	story	and	create	a	test	using	that	story:

import	{render,	screen}	from	'@testing-library/react';

import	user	from	'@testing-library/user-event';

import	Question	from	"./Question";

import	{Basic,	WithDisabled}	from	'./Question.stories'

...

it('should	disable	the	button	when	asked',	()	=>	{

		render(<WithDisabled/>);

		const	refreshButton	=	screen.getByRole('button');

		expect(refreshButton.disabled).toEqual(true);

});

Discussion
This	is	a	technique	for	introducing	very	rudimentary	unit	testing	into	your
application	and	in	practice	we’ve	found	that	it	can	find	a	surprising	number	of
regression	bugs.	It	also	helps	you	think	of	tests	as	examples,	which	are	there	to
help	you	design	your	code5	rather	than	coding	artifacts	that	must	be	produced	to
keep	the	team-lead	happy6.	Creating	render	tests	for	stories	is	also	useful	if	you
have	a	team	who	are	new	to	unit	testing.	By	creating	visual	examples	it	avoids
the	problems	that	can	arise	from	non-visual	tests	feeling	very	abstract.	It	can	also
get	developers	into	the	habit	of	having	a	test	file	for	each	component	in	the
system.	At	some	future	point	where	a	small	change	needs	to	be	made	on	the
component,	it	will	then	be	much	easier	to	add	a	small	unit	test	function	before
adding	the	change.

8.3	Using	Cypress	for	network	testing

Problem
One	of	the	principle	features	of	high	quality	code	is	in	the	way	it	responds	to
errors.	The	first	of	Peter	Deutsch’s	Eight	Fallacies	of	Distributed	Computing	is:
The	network	is	reliable.	Not	only	is	the	network	not	reliable,	neither	are	the
servers	or	databases	that	are	connected	to	it.	At	some	point	your	application	is
going	to	have	to	deal	with	some	kind	of	network	failure.	It	might	be	that	the
phone	loses	its	connection,	or	the	server	goes	down,	or	the	database	crashes,	or
the	data	you	are	updating	has	just	been	deleted	by	somebody	else.	Whatever	the
causes,	you	will	need	to	decide	what	your	application	will	do	when	terrible
things	happen.

Network	issues	can	be	extremely	difficult	to	simulate	in	testing	environments.	If
you	write	code	that	puts	the	server	into	some	error	state,	that	is	likely	to	causes
problems	for	other	tests	or	users	who	are	connected	to	the	server.

How	can	you	create	automated	tests	for	network	failure	cases?

http://nighthacks.com/jag/res/Fallacies.html

Solution
For	this	recipe	we	are	going	to	use	Cypress.	We	mentioned	the	Cypress	testing
system	back	in	chapter	1.	It’s	a	truly	remarkable	testing	system	which	is	rapidly
becoming	our	go-to	tool	in	many	development	projects.

To	install	Cypress	into	your	project,	type	the	following:

npm	install	--save-dev	cypress

Cypress	works	by	automating	a	web	browser.	In	that	sense,	it	is	similar	to	other
systems	like	Selenium,	but	the	difference	is	that	Cypress	does	not	require	you	to
install	a	separate	driver,	and	it	has	the	ability	to	both	run	the	browser	remotely,
and	also	it	can	inject	itself	into	the	JavaScript	engine	of	the	browser.

The	reason	this	is	significant,	is	that	Cypress	can	actively	replace	core	parts	of
the	JavaScript	infrastructure	with	faked	versions	which	it	can	control.	For
example,	Cypress	has	the	ability	to	replace	the	JavaScript	fetch	function,
which	is	used7	to	make	network	calls	to	the	server.	Cypress	tests	can	therefore
spoof	the	behavior	of	a	network	server	and	allow	a	client-side	developer	to
artificially	craft	responses	from	the	server.

For	this	recipe	we	will	use	the	example	game	application	that	we	use	for	other
recipes	in	this	chapter.	We	will	add	a	network	call	to	store	the	result	each	time	a
user	answers	a	question.	We	can	do	this	without	creating	the	actual	server	code,
by	faking	the	responses	in	Cypress.

In	order	to	show	how	this	works,	we	will	first	create	a	test	which	simulates	the
server	responding	correctly.	Then	we	will	create	a	test	to	simulate	the	server
failing.

Once	Cypress	is	installed,	create	a	file	in	cypress/integration/	called	0001-basic-
game-functions.js8:

describe('Basic	game	functions',	()	=>	{

				it('should	notify	the	server	if	I	lose',	()	=>	{

								//	Given	I	started	the	application

								//	When	I	enter	an	incorrect	answer

								//	Then	the	server	will	be	told	that	I	have	lost

				});

});

We’ve	put	placeholder	comments	for	each	of	the	steps	we	will	need	to	write.

Each	command	and	assertion	in	Cypress	begins	with	cy..	If	we	want	to	open	the
browser	at	location	http://localhost:3000	we	can	do	it	with:

describe('Basic	game	functions',	()	=>	{

				it('should	notify	the	server	if	I	lose',	()	=>	{

								//	Given	I	started	the	application

								cy.visit('http://localhost:3000');

								//	When	I	enter	an	incorrect	answer

								//	Then	the	server	will	be	told	that	I	have	lost

				});

});

To	run	the	test	we	can	either	type:

npx	cypress	run

This	will	run	all	tests	without	showing	the	browser9	or	we	can	type:

npx	cypress	open

This	will	open	the	Cypress	application	window	(as	you	can	see	in	figure	8-6).	If
we	double-click	the	test	file,	the	test	will	open	in	a	browser	(as	you	can	see	in
figure	8-7)

http://localhost:3000

Figure	8-6.	The	test	will	appear	in	the	Cypress	window	when	you	type	npx	cypress	open

Figure	8-7.	Cypress	will	run	a	test	running	in	a	browser

The	example	application	asks	the	user	to	perform	a	multiplication	of	two	random
numbers	(see	figure	8-8).	The	numbers	will	be	in	the	range	1..10,	so	if	we	enter
the	value	101	we	can	be	sure	that	the	answer	will	be	incorrect.

NOTE
Cypress	does	not	allow	to	capture	textual	content	from	the	screen	directly.	So	we	cannot	simply	read	the
values	of	the	two	numbers	and	store	them	in	variables.	This	is	because	the	commands	in	Cypress	do	not
immediately	perform	the	actions	in	the	browser.	Instead,	when	you	run	a	command,	Cypress	adds	it	to	a
chain	of	instructions	which	are	performed	at	the	end	of	the	test.	This	might	seem	a	little	odd,	but	these
chainable	instructions10	allow	Cypress	to	handle	most	of	the	problems	caused	by	asynchronous
interfaces.	The	downside	is	that	no	command	can	return	the	contents	of	the	page	as	the	page	will	not
exist	at	the	time	the	command	is	run.	We	will	see	elsewhere	in	this	chapter	how	we	can	remove
randomness	in	test	scenarios	and	make	this	test	deterministic.

Figure	8-8.	The	application	asks	the	user	to	calculate	the	product	of	two	random	numbers

We	can	use	the	cy.get()	command	to	find	the	input-field	by	a	CSS	selector.	We
can	also	use	the	cy.contains()	command	to	find	the	Submit	button:

describe('Basic	game	functions',	()	=>	{

				it('should	notify	the	server	if	I	lose',	()	=>	{

								//	Given	I	started	the	application

								cy.visit('http://localhost:3000');

								//	When	I	enter	an	incorrect	answer

								cy.get('input').type('101');

								cy.contains('Submit').click();

								//	Then	the	server	will	be	told	that	I	have	lost

				});

});

Now	we	just	need	to	test	that	the	application	contacts	the	server	with	the	result
of	the	game.

We	will	use	the	cy.intercept()	command	to	do	this.	The	cy.intercept()	command
will	change	the	behavior	of	network	requests	in	the	application	so	that	we	can
fake	responses	for	a	given	request.	If	the	result	is	going	to	be	POSTed	to	the
endpoint	//api/result/	we	generate	a	faked	response	like	this:

cy.intercept('POST',	'/api/result',	{

				statusCode:	200,

				body:	''

});

Once	this	command	takes	effect,	network	requests	to	//api/result/	will	receive	the
fakes	response.	That	means	we	need	to	run	the	command	before	the	network
request	is	made.	We	will	do	it	at	the	start	of	the	test:

describe('Basic	game	functions',	()	=>	{

				it('should	notify	the	server	if	I	lose',	()	=>	{

								//	Given	I	started	the	application

								cy.intercept('POST',	'/api/result',	{

												statusCode:	200,

												body:	''

								});

								cy.visit('http://localhost:3000');

								//	When	I	enter	an	incorrect	answer

								cy.get('input').type('101');

								cy.contains('Submit').click();

								//	Then	the	server	will	be	told	that	I	have	lost

				});

});

We’ve	now	specified	the	network	response.	But	how	do	we	assert	that	the
network	call	has	been	made,	and	how	do	we	know	that	it	has	sent	the	correct

data	the	//api/result/	endpoint?

We	will	need	to	given	the	network	request	an	alias.	This	will	allow	us	to	refer	to
the	request	later	in	the	test11:

cy.intercept('POST',	'/api/result',	{

				statusCode:	200,

				body:	''

}).as('postResult');

We	can	then	make	an	assertion	at	the	end	of	the	test,	which	will	wait	for	the
network	call	to	be	made,	and	will	check	the	contents	of	the	data	sent	in	the
request	body:

describe('Basic	game	functions',	()	=>	{

				it('should	notify	the	server	if	I	lose',	()	=>	{

								//	Given	I	started	the	application

								cy.intercept('POST',	'/api/result',	{

												statusCode:	200,

												body:	''

								}).as('postResult');

								cy.visit('http://localhost:3000');

								//	When	I	enter	an	incorrect	answer

								cy.get('input').type('101');

								cy.contains('Submit').click();

								//	Then	the	server	will	be	told	that	I	have	lost

								cy.wait('@postResult').then(xhr	=>	{

												expect(xhr.request.body.guess).equal(101)

												expect(xhr.request.body.result).equal('LOSE')

								});

				});

});

This	assertion	is	checking	two	of	the	attributes	of	the	request	body	for	the
expected	values.

If	we	run	the	test	now,	it	will	pass	(as	you	can	see	in	figure	8-9)

Figure	8-9.	The	completed	test	passes.

Now	that	we’ve	created	a	test	for	the	successful	case,	we	can	now	write	a	test	for
the	failure	case.	The	application	should	display	a	message	on	screen	if	the
network	call	fails.	We	don’t	actually	care	what	details	are	sent	to	the	server	in
this	test,	but	we	still	need	to	wait	for	the	network	request	to	complete	before
checking	for	the	existence	of	the	error	message:

it('should	display	a	message	if	I	cannot	post	the	result',	()	=>	{

				//	Given	I	started	the	application

				cy.intercept('POST',	'/api/result',	{

								statusCode:	500,

								body:	{message:	'Bad	thing	happened!'}

				}).as('postResult');

				cy.visit('http://localhost:3000');

				//	When	I	enter	an	answer

				cy.get('input').type('16');

				cy.contains('We	are	unable	to	save	the	

result').should('not.exist');

				cy.contains('Submit').click();

				//	Then	I	will	see	an	error	message

				cy.wait('@postResult');

				cy.contains('We	are	unable	to	save	the	result');

});

Notice	that	we	check	for	the	error	message	not	existing	before	we	make	the
network	call,	just	to	ensure	that	the	network	call	causes	the	error.

In	addition	to	generating	stubbed	responses	and	status	codes,	cy.intercept()	can
perform	other	tricks,	such	as	slowing	response	times,	throttling	network	speed	or
even	generating	responses	from	test	functions.	For	further	details,	see	the
cy.intercept	documentation

Discussion
Cypress	testing	can	transform	the	way	a	development	team	works,	specifically	in
its	ability	to	mock	network	calls.	APIs	are	often	reused	across	an	application	and
this	can	mean	they	are	developed	at	a	different	cadence	to	front-end	code.	Some
teams	may	even	has	developers	who	specialize	in	front-end	or	server	code.
Cypress	allows	front-end	developers	to	write	code	against	network	that	do	not
currently	exist,	as	well	as	handling	all	of	the	pathological	failure	cases.

https://docs.cypress.io/api/commands/intercept.html

One	area	of	network	code	that	can	introduce	very	subtle	bugs	if	network
performance.	Development	environments	are	generally	configured	to	use	local
servers	with	little	or	no	data	in	them.	This	means	that	API	performance	is	far
better	at	development	time	that	it	is	in	a	more	realistic	environment.	It	is	very
easy	to	write	code	that	assumes	that	data	is	immediately	available.	This	code	is
likely	to	break	in	a	realistic	environment	where	the	data	may	take	a	second	or	so
to	arrive.

It	is	therefore	worth	having	at	least	one	test	for	each	API	call	where	the	response
is	slowed	by	a	second	or	so:

cy.intercept('GET',	'/api/widgets',	{

				statusCode:	200,

				body:	[{id:	1,	name:	'Flange'}],

				delay:	1000

}).as('getWidgets');

This	will	often	flush	out	a	whole	plethora	of	asynchronous	bugs	that	might
otherwise	creep	into	your	code.

Almost	as	importantly,	creating	artificially	slow	network	responses	will	give	you
a	sense	of	the	impact	on	overall	performance	of	each	of	the	API	calls.

8.4	Use	Cypress	for	testing	offline

Problem
This	recipe	uses	a	custom	Cyporess	command	invented	by	Etienne	Bruines.

Applications	need	to	cope	with	being	disconnected	from	the	network.	We’ve
seen	elsewhere12	that	we	can	create	a	hook	to	detect	if	we	are	currently	offline.
But	how	are	we	test	for	offline	behavior?

Solution
We	can	simulate	offline	working	using	Cypress.	Cypress	tests	have	the	ability	to
inject	code	that	modifies	the	internal	behavior	of	the	browser	under	test.	We
should	therefore	be	able	to	modify	the	network	code	in	order	to	simulate	offline
conditions.

https://github.com/EtienneBruines/

For	this	recipe,	you	will	need	to	install	Cypress	in	your	application.	If	you	don’t
already	have	Cypress,	you	can	install	it	by	running	this	command	in	your
application	directory.

npm	install	--save-dev	cypress

You	can	then	add	a	0002-offline-working.js	file	to	the	//cypress/integration/
directory:

describe('Offline	working',	()	=>	{

				it('should	tell	us	when	we	are	offline',	{browser:	'!firefox'},	()

=>	{

								//	Given	we	have	started	the	application

								//	When	the	application	is	offline

								//	Then	we	will	see	a	warning

								//	When	the	application	is	back	online

								//	Then	we	will	not	see	a	warning

				});

});

WARNING
This	test	will	be	ignored	if	the	test	is	run	with	Firefox.	The	offline-simulation	code	relies	upon	the
remote	debugging	protocol	which	is	not	currently	available	in	the	Firefox	browser.

We	have	marked	out	the	structure	of	the	test	as	a	series	of	comments.	Cypress
commands	all	begin	with	cy..,	so	we	can	open	the	application	like	this:

describe('Offline	working',	()	=>	{

				it('should	tell	us	when	we	are	offline',	{browser:	'!firefox'},	()

=>	{

								//	Given	we	have	started	the	application

								cy.visit('http://localhost:3000');

								//	When	the	application	is	offline

								//	Then	we	will	see	a	warning

								//	When	the	application	is	back	online

								//	Then	we	will	not	see	a	warning

				});

});

The	question	is,	how	do	we	force	the	browser	to	simulate	offline	working?

We	can	do	it	because	Cypress	is	designed	to	be	extensible.	We	can	add	a	custom
Cypress	command	that	will	allow	to	go	offline	and	back	online:

cy.network({	offline:	true	});

cy.network({	offline:	false	});

To	add	a	custom	command,	open	the	//cypress/support/commands.js/	file,	and
add	the	following	code:

Cypress.Commands.add('network',	(options	=	{})	=>	{

								Cypress.automation('remote:debugger:protocol',	{

												command:	'Network.enable',

								})

								Cypress.automation('remote:debugger:protocol',	{

												command:	'Network.emulateNetworkConditions',

												params:	{

																offline:	options.offline,

																'latency':	0,

																'downloadThroughput':	0,

																'uploadThroughput':	0,

																'connectionType':	'none',

												},

								})

				}

);

This	command	uses	the	remote	debugging	protocol	in	DevTools	to	emulate
offline	network	conditions.	Once	you	have	saved	this	file,	you	can	then
implement	the	rest	of	the	test:

describe('Offline	working',	()	=>	{

				it('should	tell	us	when	we	are	offline',	{browser:	'!firefox'},	()

=>	{

								//	Given	we	have	started	the	application

								cy.visit('http://localhost:3000');

								cy.contains(/you	are	currently	offline/i).should('not.exist');

								//	When	the	application	is	offline

								cy.network({	offline:	true	});

								//	Then	we	will	see	a	warning

								cy.contains(/you	are	currently	

offline/i).should('be.visible');

								//	When	the	application	is	back	online

								cy.network({	offline:	false	});

								//	Then	we	will	not	see	a	warning

								cy.contains(/you	are	currently	offline/i).should('not.exist');

				});

});

If	you	run	the	test	now,	in	a	browser	like	Electron,	it	will	pass	(see	figure	8-10.)

Figure	8-10.	The	online/offline	test.	You	can	view	each	stage	by	clicking	in	the	left	panel.

Discussion
It	should	be	possible	to	create	similar	commands	that	simulate	various	network
conditions.	This	would	make	it	possible	to	simulate	a	user	opening	your
application	whilst	connected	to	a	cell	network,	then	losing	the	connection	as	they
wonder	into	a	subway.	and	then	reestablishing	their	connection	when	they	come
in	range	of	wifi.

For	more	information	on	how	the	network	command	works,	see	the	Cypress.io
blog	article.

8.5	Use	Selenium	for	browser-based	testing

Problem
Nothing	beats	running	your	code	inside	a	real	browser,	and	the	most	common
way	of	writing	automated	browser-based	tests	is	by	using	a	web	driver.	Most
browsers	can	be	controlled	by	sending	a	command	to	a	network	port.	Different
browsers	have	different	commands,	and	a	web	driver	is	a	command	line	tool
which	simplifies	the	process	of	controlling	the	browser.

But	how	can	we	write	a	test	for	a	React	application	that	uses	a	web	driver?

Solution
In	this	recipe	we	are	going	to	use	the	Selenium	library.	Selenium	is	a	framework
that	provides	a	consistent	API	for	a	whole	set	of	different	web	drivers.	This
means	that	you	can	write	a	test	for	Firefox,	and	the	same	code	should	work	in
the	same	way	for	Chrome,	Safari	and	Edge13.

In	this	recipe	we	are	going	to	use	the	same	example	application	that	we	are	using
for	all	recipes	in	this	chapter.	It’s	a	game	that	asks	the	user	for	the	answer	to	a
simple	multiplication.

The	Selenium	library	is	available	for	a	whole	set	of	different	lanuages,	such	as
Python	Java	and	C#.	We	will	be	using	the	JavaScript	version:	SeleniumJS.

We’ll	begin	by	installing	Selenium:

npm	install	--save-dev	selenium-webdriver

https://www.cypress.io/blog/2020/11/12/testing-application-in-offline-network-mode/

We	will	also	need	to	install	at	least	one	web	driver.	Web	drivers	at	the	operating
system	level,	but	it	more	manageable	to	make	the	installation	part	of	your
application.	We	could	install	a	driver	like	geckodriver	for	Firefox,	but	for	now
we	will	install	chromedriver	for	Chrome:

npm	install	--save-dev	chromedriver

We	can	now	start	to	create	a	test.	It’s	useful	to	include	Selenium	tests	inside	the
src_	folder	of	the	application,	because	it	will	make	it	easier	to	use	an	IDE	to	run
the	tests	manually.	So	we’ll	create	a	folder	called	//src/selenium_	and	then	add	a
file	inside	it	called	0001-basic-game-functions.spec.js__14:

describe('Basic	game	functions',	()	=>	{

				it('should	tell	me	if	I	won',	()	=>	{

								//	Given	I	have	started	the	application

								//	When	I	enter	the	correct	answer

								//	Then	I	will	be	told	that	I	have	won

				});

});

We	have	sketched	out	the	outline	a	test	in	the	comments.

TIP
Whilst	it’s	convenient	to	include	Selenium	tests	in	the	main	src	tree,	it	will	mean	that	a	tool	like	Jest	will
run	it	as	if	it	were	a	unit	test.	This	is	a	problem	if	you	leave	a	process	running	tests	in	the	background.
For	example,	if	you	created	your	application	with	create-react-app	and	leave	a	npm	run	test	command
running,	you	will	find	that	a	browser	will	suddenly	appear	on	your	screen	each	time	you	save	the
Selenium	test.	To	avoid	this,	adopt	some	sort	of	naming	convention	to	distinguish	between	Selenium	and
unit	tests.	If	you	name	all	your	Selenium	tests	*.spec.js,	you	can	modify	your	test	script	to	avoid	them	by
setting	it	to	react-scripts	test	‘.*.test.js’

Selenium	uses	a	web	driver	to	automate	the	web	browser.	We	can	create	an
instance	of	the	driver	at	the	start	of	each	test:

import	{Builder}	from	"selenium-webdriver";

let	driver;

describe('Basic	game	functions',	()	=>	{

				beforeEach(()	=>	{

								driver	=	new	Builder().forBrowser('chrome').build();

				});

				afterEach(()	=>	{

								driver.quit();

				});

				it('should	tell	me	if	I	won',	()	=>	{

								//	Given	I	have	started	the	application

								//	When	I	enter	the	correct	answer

								//	Then	I	will	be	told	that	I	have	won

				});

});

In	this	example,	we	are	creating	a	Chrome	driver.

NOTE
By	creating	a	driver	for	each	test,	we	will	also	create	a	fresh	instance	of	the	browser	for	each	test.	This
ensures	that	no	browser	state	is	carried	between	tests.	This	is	important	because	it	will	allow	us	to	run	the
tests	in	any	order.	We	have	no	such	guarantee	on	shared	server	state.	If	your	tests	are	reliant	upon,	for
example,	database	data,	you	should	ensure	that	each	test	initializes	the	server	correctly	when	it	starts.

In	order	for	Selenium	to	create	an	instance	of	the	driver,	we	should	also
explicitly	require	the	driver.	This	will	ensure	that	Selenium	can	find	it	in
nodemodules:

import	{Builder}	from	"selenium-webdriver";

require('chromedriver');

let	driver;

describe('Basic	game	functions',	()	=>	{

				beforeEach(()	=>	{

								driver	=	new	Builder().forBrowser('chrome').build();

				});

				afterEach(()	=>	{

								driver.quit();

				});

				it('should	tell	me	if	I	won',	()	=>	{

								//	Given	I	have	started	the	application

								//	When	I	enter	the	correct	answer

								//	Then	I	will	be	told	that	I	have	won

				});

});

We	can	now	start	to	fill	out	the	test.	The	JavaScript	version	of	Selenium	is	highly
asynchronous.	Virtually	all	commands	return	promises,	which	means	that	it	is
very	efficient,	but	it	is	also	extremely	easy	to	introduce	testing	bugs.

Let’s	begin	our	test	by	opening	the	application:

import	{Builder}	from	"selenium-webdriver";

require('chromedriver');

let	driver;

describe('Basic	game	functions',	async	()	=>	{

				beforeEach(()	=>	{

								driver	=	new	Builder().forBrowser('chrome').build();

				});

				afterEach(()	=>	{

								driver.quit();

				});

				it('should	tell	me	if	I	won',	()	=>	{

								//	Given	I	have	started	the	application

								await	driver.get('http://localhost:3000');

								//	When	I	enter	the	correct	answer

								//	Then	I	will	be	told	that	I	have	won

				},	60000);

});

The	driver.get	command	tells	the	browser	to	open	the	given	URL.	In	order	for
this	to	work,	we’ve	also	had	to	make	two	other	changes.	First,	we’ve	had	to
mark	the	test	function	with	async.	This	will	allow	us	to	await	the	promise
returned	by	driver.get.	Second,	we’ve	added	a	time-out	value	of	60,000
milliseconds	to	the	test.	This	is	almost	far	longer	than	you	will	need,	but	it’s	to
avoid	the	implicit	5	second	limit	of	Jest	tests.	Without	it,	you	will	find	your	test
failing	before	it	starts.

In	order	to	enter	the	correct	value	into	game,	we	will	need	to	read	the	two
numbers	that	appear	in	the	question	(as	shown	in	figure	8-11)

Figure	8-11.	The	game	asks	the	user	to	calculate	a	random	product.

We	can	find	the	two	numbers	on	the	page,	and	the	input	and	submit	buttons
using	a	command	called	findElement:

const	number1	=	await	

driver.findElement(By.css('.number1')).getText();

const	number2	=	await	

driver.findElement(By.css('.number2')).getText();

const	input	=	await	driver.findElement(By.css('input'));

const	submit	=	await	

driver.findElement(By.xpath('//button[text()='Submit']'));

If	you	are	ever	reading	a	set	of	elements	from	the	page,	and	don’t	care	about
resolving	them	in	a	strict	order,	you	can	use	the	Promise.all	function	to	combine
them	into	a	single	promise	which	you	can	then	await:

const	[number1,	number2,	input,	submit]	=	await	Promise.all([

				driver.findElement(By.css('.number1')).getText(),

				driver.findElement(By.css('.number2')).getText(),

				driver.findElement(By.css('input')),

				driver.findElement(By.xpath('//button[text()='Submit']'))

]);

In	the	example	application,	this	optimization	will	save	virtually	no	time,	but	if
you	have	a	page	that	renders	different	components	in	uncertain	orders,
combining	the	promises	can	improve	test	performance.

This	means	we	can	now	complete	the	next	part	of	our	test:

import	{Builder,	By}	from	"selenium-webdriver";

require('chromedriver');

let	driver;

describe('Basic	game	functions',	async	()	=>	{

				beforeEach(()	=>	{

								driver	=	new	Builder().forBrowser('chrome').build();

				});

				afterEach(()	=>	{

								driver.quit();

				});

				it('should	tell	me	if	I	won',	()	=>	{

								//	Given	I	have	started	the	application

								await	driver.get('http://localhost:3000');

								//	When	I	enter	the	correct	answer

								const	[number1,	number2,	input,	submit]	=	await	Promise.all([

												driver.findElement(By.css('.number1')).getText(),

												driver.findElement(By.css('.number2')).getText(),

												driver.findElement(By.css('input')),

												driver.findElement(By.xpath('//button[text()='Submit']'))

]);

								await	input.sendKeys(''	+	(number1	*	number2));

								await	submit.click();

								//	Then	I	will	be	told	that	I	have	won

				},	60000);

});

Notice	that	we	are	not	combining	the	promises	returned	by	sendKeys	and	click,
because	we	care	that	the	answer	is	entered	into	the	input	field	before	we	submit
it.

Finally,	we	want	to	make	the	assertion	that	a	You	have	won!	message	appears	on
the	screen	(see	figure	8-12.)

Figure	8-12.	The	user	will	be	told	if	they	got	the	correct	answer.

Now	we	could	write	our	assertion	like	this:

const	resultText	=	await	

driver.findElement(By.css('.Result')).getText();

expect(resultText).toMatch(/won/i);

This	code	will	almost	certainly	work,	because	the	result	is	displayed	very

quickly	after	the	user	submits	an	answer.	Quite	often,	React	applications	will
display	dynamic	results	slowly,	particularly	if	they	rely	upon	data	from	the
network.	If	we	modify	the	application	code	to	simulate	a	2	second	delay	before
the	result	appears15,	our	test	will	produce	the	following	error:

no	such	element:	Unable	to	locate	element:	{"method":"css	

selector","selector":".Result"}

		(Session	info:	chrome=88.0.4324.192)

NoSuchElementError:	no	such	element:	Unable	to	locate	element:	

{"method":"css	selector","selector":".Result"}

		(Session	info:	chrome=88.0.4324.192)

We	can	avoid	this	problem	by	waiting	until	the	element	appears	on	the	screen,
and	then	waiting	until	the	text	matches	the	expected	result.	We	can	dow	both	of
those	things	with	the	driver.wait	function:

await	driver.wait(until.elementLocated(By.css('.Result')));

const	resultElement	=	driver.findElement(By.css('.Result'));

await	driver.wait(until.elementTextMatches(resultElement,	/won/i));

This	gives	us	the	final	version	of	our	test:

import	{Builder,	By}	from	"selenium-webdriver";

require('chromedriver');

let	driver;

describe('Basic	game	functions',	async	()	=>	{

				beforeEach(()	=>	{

								driver	=	new	Builder().forBrowser('chrome').build();

				});

				afterEach(()	=>	{

								driver.quit();

				});

				it('should	tell	me	if	I	won',	()	=>	{

								//	Given	I	have	started	the	application

								await	driver.get('http://localhost:3000');

								//	When	I	enter	the	correct	answer

								const	[number1,	number2,	input,	submit]	=	await	Promise.all([

												driver.findElement(By.css('.number1')).getText(),

												driver.findElement(By.css('.number2')).getText(),

												driver.findElement(By.css('input')),

												driver.findElement(By.xpath('//button[text()='Submit']'))

]);

								await	input.sendKeys(''	+	(number1	*	number2));

								await	submit.click();

								//	Then	I	will	be	told	that	I	have	won

								await	driver.wait(until.elementLocated(By.css('.Result')));

								const	resultElement	=	driver.findElement(By.css('.Result'));

								await	driver.wait(until.elementTextMatches(resultElement,	

/won/i));

				},	60000);

});

Discussion
In	our	experience,	web	driver	tests	are	the	most	popular	form	of	automated	test
for	web	applications.	Popular	that	is,	in	the	sense	of	frequently	used.	They	are
inevitably	dependent	upon	matching	versions	of	browsers	and	web	drivers,	and
they	do	have	a	reputation	for	failing	intermittently.	These	failures	are	generally
caused	by	timing	issues	and	are	particularly	common	in	Single	Page
Applications	which	can	update	their	contents	asynchronously.

Although	it	is	possible	to	avoid	these	problems	by	carefully	adding	timing	delays
and	retires	into	the	code,	this	can	them	make	your	tests	sensitive	to
environmental	changes,	such	as	running	your	application	on	a	different	testing
server.

This	is	probably	why	testing	systems	like	Cypress	are	becoming	more	popular.

8.6	Automatically	find	visual	differences

Problem
Applications	can	look	very	different	when	viewed	on	different	browsers.
Applications	can	even	look	different	if	viewed	on	the	same	browser	but	on	a
different	operating	system.	One	example	of	this	would	be	Chorme,	which	tends
to	hide	scrollbars	when	viewed	on	a	Mac,	but	display	them	when	displayed	on
Windows.	Thankfully,	very	old	browsers	like	Internet	Explorer	are	finally
disappearing,	but	even	modern	browsers	can	apply	CSS	in	subtly	different	ways
which	can	radically	change	the	appearance	of	a	page.

It	can	be	a	time	consuming	job	to	constantly	check	an	application	manually

across	a	range	of	browsers	and	platforms.

What	can	be	done	to	automate	this	compatibility	process?

Solution
In	this	recipe,	we’re	going	to	combine	three	tools	to	check	for	visual	consistency
across	different	browsers	and	platforms:

Storybook.	This	will	give	us	a	basic	gallery	of	all	of	the	components,	in	all
relevant	configurations,	that	we	need	to	check.

Selenium.	This	will	allow	us	to	capture	the	visual	appearance	of	all	of	the
components	in	Storybook.	The	Selenium	Grid	will	also	allow	us	to	remotely
connect	to	browsers	on	different	operating	systems	in	order	to	make
comparisons	between	operating	systems.

ImageMagick.	Specifically	we	will	use	a	command	line	tool	called	compare,
to	generate	visual	differences	between	screenshots,	and	a	numerical	metric	of
how	far	appart	two	images	are.

We’ll	begin	by	installing	Storybook.	You	can	do	this	in	your	application	with
this	command:

npx	-p	@storybook/cli	sb	init

You	will	then	need	to	create	stories	for	each	of	the	components	and
configurations	that	you	interested	in	tracking.	You	can	find	out	how	to	do	this
from	other	recipes	in	this	book	or	from	the	Storybook	tutorials.

Next,	we	will	need	Selenium,	in	order	to	automate	the	capture	of	screenshots.
You	can	install	Selenium	with	this	command:

npm	install	--save-dev	selenium-webdriver

You	will	also	need	to	install	the	relevant	web	drivers.	For	example,	to	automate
Firefox	and	Chrome	you	will	need:

npm	install	--save-dev	geckodriver

npm	install	--save-dev	chromedriver

https://storybook.js.org/tutorials/

Finally,	you	will	need	to	install	ImageMagick.	This	is	a	set	of	command-line
image	manipulation	tools.	For	details	on	how	to	install	ImageMagick,	see	the
ImageMagick	download	page.

We	are	going	to	use	the	same	example	game	application	that	we’ve	used
previously	in	this	chapter.	You	can	see	the	components	from	the	application
displayed	inside	Storybook	in	figure	8-13.

Figure	8-13.	Components	from	the	application	displayed	in	Storybook.

You	can	run	the	Storybook	server	on	your	application	by	typing:

https://imagemagick.org/script/download.php

npm	run	storybook

Next,	we	will	create	a	test,	that	will	actually	just	be	a	script	for	capturing
screenshots	of	each	of	the	components	inside	Storybook.	In	a	folder	called
//src/selenium/	16	create	a	script	called	shots.spec.js:

import	{Builder,	By,	until}	from	"selenium-webdriver";

require('chromedriver');

let	fs	=	require('fs');

describe('shots',	()	=>	{

				it('should	take	screenshots	of	storybook	components',

								async	()	=>	{

												const	browserEnv	=	process.env.SELENIUM_BROWSER	||	

'chrome';

												const	url	=	process.env.START_URL	||	

'http://localhost:6006';

												const	driver	=	new	Builder().forBrowser('chrome').build();

												driver.manage().window().setRect({

																width:	1200,

																height:	900,

																x:	0,

																y:	0

												})

												const	outputDir	=	'./screenshots/'	+	browserEnv;

												fs.mkdirSync(outputDir,	{recursive:	true});

												await	driver.get(url);

												await	driver.wait(

																until.elementLocated(By.className("sidebar-item")),

																60000

);

												let	elements	=	await	driver.findElements(

																By.css("button.sidebar-item")

);

												for	(let	e	of	elements)	{

																const	expanded	=	await	e.getAttribute('aria-

expanded');

																if	(expanded	!==	'true')	{

																				await	e.click();

																}

												}

												let	links	=	await	driver.findElements(

																By.css("a.sidebar-item"));

												for	(let	link	of	links)	{

																await	link.click();

																const	s	=	await	link.getAttribute('id');

																let	encodedString	=	await	driver.findElement(

																				By.css('#storybook-preview-wrapper')

).takeScreenshot();

																await	fs.writeFileSync(`${outputDir}/${s}.png`,

																				encodedString,

																				'base64'

);

												}

												driver.quit();

								},	60000);

});

This	is	quite	a	long	script.	What	it	does	is	open	a	browser	to	the	Storybook
server,	then	open	each	of	the	components	and	taking	a	screenshot	of	each	story,
which	it	stores	in	a	sub-directory	within	screenshots.	You	can	see	example
screenshots	in	figure	8-14.

Figure	8-14.	A	set	of	example	screenshots	of	components	produced	by	the	test.

We	could	use	a	different	testing	system	to	take	screenshots	of	each	component,
such	a	Cypress.	The	advantage	of	using	Selenium	is	that	we	can	remotely	open	a
browser	session	on	a	remote	machine.

By	default	the	shots.spec.js	test	will	take	screenshots	of	Storybook	at	address
http://localhost:6006	using	the	Chrome	browser.	Let’s	say	we	are	running	the
shots	test	on	a	Mac.	If	we	have	a	Windows	machine	on	the	same	network,	we
can	install	a	Selenium	Grid	server.	This	is	a	proxy	server	which	allows	remote
machines	to	start	a	web	driver	session.

If	the	Windows	machine	has	address	192.168.1.16,	we	can	set	this	environment
variable	on	the	command	line	before	run	the	shots.spec.js	test:

export	SELENIUM_REMOTE_URL=http://192.168.1.16:4444/wd/hub

http://localhost:6006
https://www.selenium.dev/documentation/en/grid/grid_4/setting_up_your_own_grid/

Because	the	Windows	machine	will	be	accessing	the	Storybook	server	back	on
the	Mac,	with	an	IP	address	of	192.168.1.14,	we	will	also	need	to	set	an
environment	variable	that	on	the	command	line:

export	START_URL=http://192.168.1.14:6006

We	can	also	choose	which	browser	we	want	the	Windows	machine	to	use17:

export	SELENIUM_BROWSER=firefox

If	we	create	a	script	to	run	shots.spec.js	in	package.json:

"scripts":	{

		...

		"testShots":	"CI=true	react-scripts	test	--detectOpenHandles	

'selenium/shots.spec.js'"

}

We	can	run	the	test	and	capture	the	screenshots	of	each	component:

npm	run	testShots

The	test	will	use	the	environment	variables	we	created	to	contact	the	Selenium
Grid	server	on	the	remote	machine.	It	will	ask	Selenium	Grid	to	open	a	Firefox
browser	to	our	local	Storybook	server,	and	it	will	then	take	a	screenshot	of	each
of	the	components,	which	will	then	be	sent	back	over	the	network	where	they
will	be	stored	in	a	folder	called	//screenshots/firefox/.

Once	we’ve	run	it	for	Firefox,	we	can	then	run	it	for	Chrome:

export	SELENIUM_BROWSER=chrome

npm	run	testShots

The	screen	shots	for	that	session	will	be	stored	in	//screenshots/chrome/.

NOTE
A	fuller	implementation	of	this	technique	would	also	record	the	operating	system	and	type	of	client	(e.g.
screen	size)	used.

We	now	need	some	way	to	check	for	visual	differences	between	the	screenshots
from	Chrome	and	the	screenshots	from	Firefox.	This	is	where	ImageMagick	is
useful.	The	compare	command	in	ImageMagick	can	generate	an	image	that
highlights	the	visual	differences	between	two	other	images.	For	example,
consider	the	two	screenshots	from	Firefox	and	Chrome	in	figure	8-15.

Figure	8-15.	The	same	component	captured	in	Chrome	and	Firefox.

These	two	images	appear	to	be	identical.	If	we	type	in	this	command	from	the
main	application	directory:

$	compare	-fuzz	15%	screenshots/firefox/question--basic.png					

screenshots/chrome/question--basic.png	difference.png

We	will	generate	a	new	image	that	shows	the	differences	between	the	two
screenshots,	which	you	can	see	in	figure	8-16.

Figure	8-16.	The	generated	image	showing	the	differences	between	two	screen	captures.

The	generated	image	shows	pixels	that	are	more	than	15%	visually	different
between	the	two	images.	And	you	can	see	that	the	screenshots	are	virtually
identical.

That’s	good,	but	it	still	requires	a	human	being	to	look	at	the	images	and	assess
whether	the	differences	are	significant.	What	else	can	we	do?

The	compare	command	also	has	the	ability	to	display	a	numerical	measure	of	the
difference	between	two	images:

$	compare	-metric	AE	-fuzz	15%	screenshots/firefox/question--basic.png

screenshots/chrome/question--basic.png	difference.png

6774

$

The	value	6774	is	a	numerical	measure	of	the	visual	difference	between	the	two
images.	For	another	example,	consider	these	two	screenshots	in	figure	8-17
which	show	the	Answer	component	when	it	has	been	passed	the	disabled
property.

Figure	8-17.	Disabled	form	rendered	by	Chrome	and	Firefox.

Comparing	these	two	images	returns	a	much	larger	number:

$	compare	-metric	AE	-fuzz	15%	screenshots/firefox/answer--with-

disabled.png					screenshots/chrome/answer--with-disabled.png	

difference3.png

28713

$

And	indeed	the	generated	image	(see	figure	8-18)	shows	exactly	where	the
difference	lies:	in	the	appearance	of	the	disabled	input	field.

Figure	8-18.	The	visual	difference	between	the	Chrome	and	Firefox	forms.

Figure	8-19	shows	a	similarly	large	difference18	for	a	component	that	displays
different	font	styling	between	the	browsers,	which	is	actually	the	result	of	some

Mozilla-specific	CSS	attributes.

bottom.	image::images/ch10-text-comparison.png["A	component	with	different
text	styling	in	Chrome	and	Firefox.	The	difference	is	show	at	the	bottom."]

In	fact,	it’s	possible	to	write	a	shell	script	to	run	through	each	of	the	images	and
generate	a	small	web	report	showing	the	visual	differences	alongside	their
metrics:

#!/bin/bash

mkdir	-p	screenshots/diff

export	HTML=screenshots/compare.html

echo	'<body>'	>	$HTML

for	file	in	screenshots/chrome/*.png

do

				FROM=$file

				TO=$(echo	$file	|	sed	's/chrome/firefox/')

				DIFF=$(echo	$file	|	sed	's/chrome/diff/')

				echo	"FROM	$FROM	TO	$TO"

				ls	-l	$FROM

				ls	-l	$TO

				METRIC=$(compare	-metric	AE	-fuzz	15%	$FROM	$TO	$DIFF	2>&1)

				echo	"$FROM	$METRIC
"	>>	$HTML

done

echo	"</body>"	>>	$HTML

Which	will	create	the	//screenshots/compare.html/	report	you	can	see	in	figure	8-
20.

Figure	8-19.	An	example	of	the	generated	comparison	report.

Discussion
To	save	space,	we	have	shown	only	a	very	simplistic	implementation	of	this
technique.	It	would	be	possible	to	create	a	ranked	report,	which	showed	visual
differences	from	largest	to	smallest.	This	would	highlight	the	most	significant
visual	differences	between	platforms.	It	would	also	be	possible	to	create	a
continuous	integration	job	that	would	set	some	visual	threshold	between	images.
Any	components	that	varied	by	more	than	that	threshold	would	fail	the	job,	and
notify	someone	of	the	inconsistency.

8.7	Add	a	visual	console	to	mobile	browsers

Problem
This	recipe	is	slightly	different	to	the	others	in	this	chapter	because	instead	of
being	about	automated	testing,	it’s	about	manual	testing.	Specifically	about
manually	testing	code	on	mobile	devices.

If	you	are	testing	an	application	on	a	mobile,	you	might	stumble	across	a	bug
that	doesn’t	appear	in	the	desktop	environment.	Normally	if	a	bug	appears,
you’re	able	to	add	debug	messages	into	the	JavaScript	console.	But	mobile
browsers	tend	not	to	have	a	visible	JavaScript	console.	It’s	true	that	if	you	are
using	Mobile	Chrome,	you	can	try	debugging	it	remotely	with	a	desktop	version
of	Chrome.	But	what	if	the	problem	is	discovered	in	another	browser?	Or	if	you
simply	don’t	want	to	go	through	the	work	of	setting	up	a	remote	debug	session?

Is	there	some	way	to	get	access	to	the	JavaScript	console,	and	other	development
tools,	from	within	a	mobile	browser?

Solution
In	this	recipe	we	are	going	to	a	quite	remarkable	piece	of	software	called	Eruda.

Eruda	is	a	lightweight	implementation	of	a	development	tools	panel,	which	will
allow	you	to	view	the	JavaScript	console,	the	structure	of	the	page	as	well	as	a

https://github.com/liriliri/eruda

whole	heap	of	other	plugins	and	extensions.

In	order	to	enable	Eruda,	you	will	need	to	install	a	small	amount	of	fairly
rudimentary	JavaScript	in	the	head	section	of	your	application.	Eruda	itself	can
be	downloaded	from	a	content	distribution	network,	but	because	it	can	be	quite
large,	you	should	only	enable	it	if	the	person	using	the	browser	has	indicated	that
they	want	to	access	it.

One	way	of	doing	this	is	only	enabling	Eruda	if	eruda=true	appears	in	the	URL.
Here’s	an	example	script	that	you	can	insert	into	your	page	container19.

<script>

				;(function	()	{

								var	src	=	'//cdn.jsdelivr.net/npm/eruda';

								if	(!/eruda=true/.test(window.location)

												&&	localStorage.getItem('active-eruda')	!=	'true')	return;

								document.write('<scr'	+	'ipt	src="'	+	src

												+	'"></scr'	+	'ipt>');

								document.write('<scr'	+	'ipt>');

								document.write('window.addEventListener('	+

												'"load",	'	+

												'function	()	{'	+

												'		var	container=document.createElement("div");	'	+

												'		document.body.appendChild(container);'	+

												'		eruda.init({'	+

												'				container:	container,'	+

												'				tool:	["console",	"elements"]'	+

												'		});'	+

												'})');

								document.write('</scr'	+	'ipt>');

				})();

</script>

If	you	now	open	your	application	as	http://ipaddress/?eruda=true	or
http://ipaddress/#eruda=true	you	will	notice	that	an	additional	button	has
appeared	in	the	interface,	as	show	in	figure	8-21.

https://eruda.liriliri.io/
http://ipaddress/?eruda=true
http://ipaddress/#eruda=true

Figure	8-20.	If	you	add	?eruda=true	to	the	URL,	a	button	will	appear	on	the	right	of	the	page.

If	you	are	using	the	example	application	for	this	chapter20,	then	try	entering	a
few	answers	in	the	game.	Then,	click	on	the	Eruda	button.	The	console	will
appear	as	show	in	figure	8-22.

Figure	8-21.	Pressing	the	button	opens	the	Eruda	tools.

Because	the	server	for	the	example	application	has	not	been	implemented,	you
should	find	some	errors	and	other	logs	recorded	in	the	console.	The	console	even
supports	the	much	underused	console.table	function,	which	is	a	useful	way	of
displaying	an	array	of	objects	in	tabular	format.

The	Elements	tab	provides	a	fairly	rudimentary	view	of	the	Document	Object
Model	(see	figure	8-23.)

Figure	8-22.	The	Eruda	elements	view.

Meanwhile,	the	Settings	tab	has	a	very	large	set	of	JavaScript	features	that	you
can	enable	and	disable	while	interacting	with	the	web	page	(see	figure	8-24)

Figure	8-23.	The	Eruda	settings	view.

Discussion
Eruda	is	a	delightful	tool	which	delivers	a	whole	bucket	of	functionality,	with
very	little	work	required	by	the	developer.	In	addition	to	the	basic	features,	it
also	has	plugins	that	allow	you	to	track	performance,	screen	refresh	rate,
generate	fake	geolocations	and	even	write	a	run	JavaScript,	from	inside	the
browser.	Once	you	start	to	use	it,	you	probably	find	that	it	quickly	becomes	a
standard	part	of	your	manual	testing	process.

8.8	Remove	randomness	from	tests

Problem
In	a	perfect	world,	tests	would	always	have	a	completely	artificial	environment.
Tests	are	examples	of	how	you	would	like	your	application	to	work	under
explicitly	defined	conditions.	But	there	are	often	uncertainties	that	tests	have	to
cope	with.	For	example,	they	might	run	at	different	times	of	day21.	They	might
even,	as	in	the	example	application	that	we	have	used	throughout	this	chapter,
have	to	deal	with	randomness.

Our	example	application	is	a	game	which	presents	the	user	with	a	randomly
generated	question	that	they	must	answer	(see	figure	8-25.)

Figure	8-24.	The	game	asks	the	user	to	calculate	a	random	multiplication.

Randomness	might	also	appear	in	the	generation	of	identifiers	within	the	code,
or	random	data	sets.	If	you	are	suggested	a	new	username,	your	application
might	suggest	a	randomly	generated	string.

But	randomness	creates	a	problem	for	tests.	This	is	an	example	test	that	we
implemented	earlier	in	this	chapter:

describe('Basic	game	functions',	()	=>	{

				it('should	notify	the	server	if	I	lose',	()	=>	{

								//	Given	I	started	the	application

								//	When	I	enter	an	incorrect	answer

								//	Then	the	server	will	be	told	that	I	have	lost

				});

});

There	was	actually	a	very	good	reason	why	that	test	looked	at	the	case	where	the
user	entered	an	incorrect	answer.	The	question	asked	is	always	to	caulcate	the
product	of	2	numbers	between	1	and	10.	It’s	therefore	easy	to	think	of	an
incorrect	answer.	101.	It	will	always	be	wrong.	But	if	we	want	to	write	a	test	to
show	what	happens	when	the	user	enters	the	correct	answer,	we	have	a	problem.
The	correct	answer	depends	upon	data	that	is	randomly	generated.	That	either
means	that	we	have	to	write	some	code	that	finds	the	two	numbers	that	appear
on	the	screen,	as	in	this	example	from	the	first	Selenium	recipe	in	this	chapter:

const	[number1,	number2,	input,	submit]	=	await	Promise.all([

				driver.findElement(By.css('.number1')).getText(),

				driver.findElement(By.css('.number2')).getText(),

				driver.findElement(By.css('input')),

				driver.findElement(By.xpath('//button[text()='Submit']'))

]);

await	input.sendKeys(''	+	(number1	*	number2));

await	submit.click();

This	means	we	have	to	write	a	bunch	of	extra	code	to	find	details	which,	in	the
end,	we	don’t	care	about.	We	only	care	that	the	answer	is	right.

Alternatively,	having	tests	which	conditionally	depend	upon	data	that	is
randomly	generated	at	runtime	can	have	a	much	more	severe	effect.	If	we
wanted	to	write	a	Cypress	test	to	enter	the	correct	answer	to	the	multiplication,
we	would	have	very	great	difficulty.	That’s	because	Cypress	does	not	allow	you
to	capture	values	from	the	page	and	pass	them	to	other	steps	in	the	test22.

It	would	be	much	better	then,	if	we	could	turn	off	the	randomness	for	a	while.
Just	during	a	test.

But	can	we?

Solution

We	are	going	to	look	at	how	we	can	use	the	Sinon	library	temporarily	replace	the
Math.random	with	a	faked	one	of	our	own	making.

Let’s	first	consider	how	we	can	do	this	inside	a	unit	test.	We’ll	create	a	new	test
for	the	top-level	App.js	component	which	will	check	that	entering	the	correct
value	results	in	a	message	saying	that	we	won.

We’ll	first	create	a	function	that	will	fix	the	return	value	of	Math.random():

const	sinon	=	require('sinon');

function	makeRandomAlways(result)	{

				if	(Math.random.restore)	{

								Math.random.restore();

				}

				sinon.stub(Math,	'random').returns(result);

}

This	function	works	by	replacing	the	random()	method	of	the	Math	object	with	a
stubbed	method	which	always	returns	the	same	value.	We	can	now	use	this	in	a
test.	The	Question	that	appears	on	the	page,	always	generates	random	numbers
between	1	and	10,	based	upon	the	value	of

Math.random()	*	10	+	1

If	we	fix	Math.random()	so	that	it	always	produced	the	value	0.5,	then	the
“random”	number	will	always	be	6.	That	means	we	can	write	a	unit	test	like	this:

it('should	tell	you	that	you	entered	the	right	answer',	async	()	=>	{

				//	Given	we've	rendered	the	app

				makeRandomAlways(0.5);

				render(<App/>);

				//	When	we	enter	the	correct	answer

				const	input	=	screen.getByLabelText(/guess:/i);

				const	submitButton	=	screen.getByText('Submit');

				user.type(input,	'36');

				user.click(submitButton);

				//	Then	we	are	told	that	we've	won

				await	waitFor(()	=>	screen.findByText(/won/i),	{timeout:	4000});

})

And	this	test	will	always	pass,	because	the	application	will	always	ask	the
question	“What	is	6	x	6?”

The	real	value	of	fixing	Math.random()	is	when	we	are	using	a	testing
framework	that	explicitly	prevents	us	from	capturing	a	randomly	generated
value.	Such	as	Cypress,	as	we	saw	above.

Cypress	allows	us	to	add	custom	commands23,	by	adding	them	to	the
//cypress/support/commands.js/	script.	If	you	edit	that	file,	and	add	this	code:

Cypress.Commands.add('random',	(result)	=>	{

				cy.reload().then((win)	=>	{

								if	(win.Math.random.restore)	{

												win.Math.random.restore();

								}

								sinon.stub(win.Math,	'random').returns(result);

				});

});

You	will	create	a	new	command	called	cy.random().	We	can	use	this	command
to	create	a	test	that	the	winning	case	which	we	discussed	in	the	introduction24:

describe('Basic	game	functions',	()	=>	{

				it('should	notify	the	server	if	I	win',	()	=>	{

								//	Given	I	started	the	application

								cy.intercept('POST',	'/api/result',	{

												statusCode:	200,

												body:	''

								}).as('postResult');

								cy.visit('http://localhost:3000');

								cy.random(0.5);

								cy.contains('Refresh').click();

								//	When	I	enter	the	correct	answer

								cy.get('input').type('36');

								cy.contains('Submit').click();

								//	Then	the	server	will	be	told	that	I	have	lost

								cy.wait('@postResult').then(xhr	=>	{

												assert.deepEqual(xhr.request.body,	{

																guess:	36,	answer:	36,	result:	'WIN'

												});

								});

				});

});

NOTE
After	calling	the	cy.random()	command,	we	need	to	press	the	Refresh	button	just	in	case	the	random
numbers	on	the	page	were	generated	after	the	page	was	loaded,	but	before	the	Math.random()	function
was	replaced.

Discussion
You	can	never	remove	all	randomness	from	a	test.	The	basic	performance	of	the
machine	can	have	a	huge	effect	on	when	and	how	often	your	components	are	re-
rendered	for	example.	But	removing	uncertainty	as	much	as	we	can	is	generally
a	good	thing	in	a	test.	The	more	we	can	do	to	remove	external	dependencies
from	our	tests,	the	better.

Which	is	a	topic	that	will	crop	up	again	in	our	next	recipe.

8.9	Time	travel

Problem
Time	can	be	the	source	of	a	tremendous	amount	of	bugs.	If	time	was	simply	a
scientific	measurement,	it	would	relatively	straightforward.	But	it	isn’t.	The
representation	of	time	is	affected	by	national	boundaries	and	by	local	laws.	Some
countries	have	their	own	time	zones.	Others	have	multiple	time	zones.	One
reassuring	factor	is	that	all	countries	have	a	time	zone	offset	that	can	be
measured	in	whole	hours.	Except	for	places	like	India,	where	time	is	offset	by
05:30	from	UTC.

That’s	why	it	is	useful	to	try	to	fix	time	within	a	test.	But	how	do	we	do	that?

Solution
In	this	recipe	we	are	going	to	look	at	how	you	can	fix	time	when	testing	your
React	application.	There	are	some	issues	that	you	need	to	consider	when	testing
time-dependent.	First	of	all,	you	should	probably	avoid	changing	the	time	on
your	server.	In	most	cases,	you	are	best	to	set	your	server	to	UTC	and	leave	it
that	way.

That	does	mean	that	if	you	want	to	fake	a	date	and	time	in	your	browser,	you
will	have	problems	as	soon	as	the	browser	makes	contact	with	the	server.	That
means	you	will	either	have	to	modify	the	server	APIs	to	always	accept	an
effective	date	in	all	time-sensitive	code25	or	you	should	try	to	time-dependent
browser	code	in	isolation	from	the	server.

We	will	adopt	the	latter	approach	for	this	recipe:	we	will	use	the	Cypress	testing
system	which	will	allow	us	to	fake	any	connections	with	the	server26.

The	example	application	we	will	use	for	this	recipe	is	the	same	one	we	use	for
other	recipes	in	this	chapter.	It’s	a	simple	game	that	asks	the	user	to	calculate	the
product	of	two	numbers.	We’re	going	to	test	a	feature	of	the	game	which	gives
the	user	30	seconds	to	provide	an	answer.	After	30	seconds	they	will	see	a
message	telling	them	they’ve	run	out	of	time	(see	figure	8-26)

Figure	8-25.	The	player	will	lose	if	they	do	not	answer	within	30	seconds.

30	seconds	is	not	very	long	time,	so	we	could	try	writing	a	test	that	somehow
pauses	for	30	seconds.	That	has	two	problems.	First,	it	will	slow	your	test	down.
You	don’t	need	many	30	second	pauses	before	your	tests	will	become	unbearable
to	run.	Second,	adding	a	pause	is	not	a	very	precise	way	of	testing	the	feature.	If
you	pause	for	30	seconds,	the	time	might	actually	pause	for	30.5	seconds	before
looking	for	the	message.

In	order	to	get	precision,	we	need	to	take	control	of	time	within	the	browser.	As
you	saw	in	the	previous	recipe27,	Cypress	has	the	ability	to	inject	code	into	the
browser	which	can	replace	key	pieces	of	code	with	stubbed	functions,	which	we
can	control.	Cypress	actually	has	a	built	in	command	called	cy.clock()	which	will
allow	us	to	specify	the	current	time.

Let’s	see	how	to	use	cy.clock()	by	creating	a	test	for	the	timeout	feature.	This
will	be	the	structure	of	our	test:

describe('Basic	game	functions',	()	=>	{

				it('should	say	if	I	timed	out',	()	=>	{

								//	Given	I	have	started	a	new	game

								//	When	29	seconds	have	passed

								//	Then	I	will	not	see	the	time-out	message

								//	When	another	second	has	passed

								//	Then	I	will	see	the	time-out	message

								//	And	the	game	will	be	over

				});

});

We	will	can	start	by	opening	the	application	and	starting	a	new	game	by	pressing
the	Refresh	button.

describe('Basic	game	functions',	()	=>	{

				it('should	say	if	I	timed	out',	()	=>	{

								//	Given	I	have	started	a	new	game

								cy.visit('http://localhost:3000');

								cy.contains('Refresh').click();

								//	When	29	seconds	have	passed

								//	Then	I	will	not	see	the	time-out	message

								//	When	another	second	has	passed

								//	Then	I	will	see	the	time-out	message

								//	And	the	game	will	be	over

				});

});

Now	we	need	to	simulate	29	seconds	of	time	passing.	We	can	do	this	with	the
cy.clock()	and	cy.tick()	commands.	The	cy.clock()	allows	you	to	either	specify	a
new	date	and	time,	or	by	default	it	will	set	the	time	and	date	back	to	1969.	The
cy.tick()	command	allows	you	to	add	a	set	number	of	milliseconds	to	the	current
date	and	time.

describe('Basic	game	functions',	()	=>	{

				it('should	say	if	I	timed	out',	()	=>	{

								//	Given	I	have	started	a	new	game

								cy.clock();

								cy.visit('http://localhost:3000');

								cy.contains('Refresh').click();

								//	When	29	seconds	have	passed

								cy.tick(29000);

								//	Then	I	will	not	see	the	time-out	message

								//	When	another	second	has	passed

								//	Then	I	will	see	the	time-out	message

								//	And	the	game	will	be	over

				});

});

We	can	now	complete	the	other	steps	in	the	test.	For	details	on	the	other	Cypress
commands	we’re	using,	see	the	Cypress	documentation.

describe('Basic	game	functions',	()	=>	{

				it('should	say	if	I	timed	out',	()	=>	{

								//	Given	I	have	started	a	new	game

								cy.clock();

								cy.visit('http://localhost:3000');

								cy.contains('Refresh').click();

								//	When	29	seconds	have	passed

								cy.tick(29000);

								//	Then	I	will	not	see	the	time-out	message

								cy.contains(/out	of	time/i).should('not.exist');

								//	When	another	second	has	passed

								cy.tick(1000);

								//	Then	I	will	see	the	time-out	message

								cy.contains(/out	of	time/i).should('be.visible');

								//	And	the	game	will	be	over

								cy.get('input').should('be.disabled');

								cy.contains('Submit').should('be.disabled');

				});

});

If	we	run	the	test	in	Cypress,	it	passes	(as	you	can	see	in	figure	FIGNUM).

https://docs.cypress.io/api/cypress-api/custom-commands.html#Syntax

That’s	a	relatively	simple	time-based	test.	But	what	if	we	wanted	to	test
something	much	more	complex,	like	Daylight	Savings	Time?

Daylight	Savings	are	the	bane	of	most	development	teams.	They	sit	in	your	code
base,	silently	for	months	and	then	suddenly	appear	in	the	Spring	and	Autumn,	in
the	early	hours	of	the	morning.

When	Daylight	Savings	Time	occurs	depends	upon	which	time-zone	you	are	in.
And	that’s	a	particularly	awful	thing	to	deal	with	inclient	code,	because
JavaScript	dates	don’t	really	work	with	time-zones.	They	can	certainly	handle
offsets,	for	example,	you	can	create	a	Date	object	in	a	browser	like	Chrome28
that	is	set	to	5	hours	before	Greenwich	Mean	Time:

new	Date("2021-03-14	01:59:30	GMT-0500")

But	JavaScript	dates	are	all	implicitly	in	the	time-zone	of	the	browser.	When	you
create	a	date	with	a	time-zone	name	in	it,	the	JavaScript	engine	will	simply	shift
it	into	the	browser’s	own	time-zone.

The	browser’s	time-zone	is	fixed	at	the	time	that	the	browser	opens.	There’s	no
way	to	say	Let’s	pretend	we’re	in	New	York	from	now	on.

What	inevitably	happens	if	that	if	developers	create	tests	for	Daylight	Savings
Time29	then	they	are	likely	to	create	tests	that	work	in	their	own	time-zone.	And
then	find	that	these	tests	fail	when	run	on	an	integration	server	that	is	probably
set	to	UTC.

There	is,	however,	a	way	around	this	problem.	On	Linux	and	Mac	computers30
you	can	specify	the	time-zone	when	you	launch	a	browser	by	setting	an
environment	variable	called	TZ.	If	we	start	the	Cypress	with	the	TZ	variable	set,
that	variable	will	be	inherited	by	any	browser	that	Cypress	then	launches.	This
means	that	while	we	can’t	set	the	timezone	for	a	single	test,	we	can	set	it	for	an
entire	test	run.

First,	let’s	launch	Cypress	with	the	time-zone	set	to	New	York:

TZ='America/New_York'	npx	cypress	open

The	example	application	has	a	button	that	allows	you	to	see	the	current	time	(see
figure	8-27).

Figure	8-26.	The	current	time	is	shown	on	the	screen.

We	can	create	a	test	that	checks	that	the	time	on	page	correctly	handles	the
change	to	Daylight	Savings.	This	is	the	test	we’ll	create:

describe('Timing',	()	=>	{

				it('should	tell	us	the	current	time',()	=>	{

								cy.clock(new	Date("2021-03-14	01:59:30").getTime());

								cy.visit('http://localhost:3000');

								cy.contains('Show	time').click();

								cy.contains('2021-03-14T01:59:30.000').should('be.visible');

								cy.tick(30000);

								cy.contains('2021-03-14T03:00:00.000').should('be.visible');

				});

});

In	this	test	we	are	passing	an	explicit	date	to	cy.clock().	We	need	to	convert	this
to	milliseconds	by	calling	getTime()	as	cy.clock()	only	accepts	numeric	times.
We	then	check	that	the	initial	time	is	displayed,	and	that	30	seconds	later,	the
time	rolls	over	to	3am,	instead	of	2am	(as	show	in	figure	8-28).

Figure	8-27.	After	30	seconds,	the	time	correctly	changes	from	01:59	to	03:00.

Discussion
If	you	do	need	to	create	tests	that	are	sensitive	to	the	current	time	zone,	consider
placing	them	into	a	sub-folder	so	that	they	can	be	run	is	a	separately	configured
test	run.	If	you	wish	to	format	dates	into	various	time-zones,	you	can	use	the
toLocaleString()	data	method:

(new	Date()).toLocaleString('en-US',	{	timeZone:	'Asia/Tokyo'	})

If	you	want	more	extensive	time-zone	functionality,	such	as	inferring	the	name
of	your	current	time-zone,	consider	looking	at	the	Moment	Timezone	library.

You	will	see	in	other	recipes	in	this	chapter,	that	it’s	possible	to	dynamically	remove	the	randomness
from	a	test	and	fixing	the	correct	answer,	without	the	need	the	question	from	the	page.

Notice	that	many	text	comparisons	are	made	using	regular	expressions.	This	allows,	as	in	this	example,
for	case-insensitive	matches	of	substrings.	This	is	another	technique	to	avoid	tests	that	frequently	break.
See	the	source	code	in	the	Github	repisitory.	This	is	how	we’ve	structured	the	code	in	the	example
application.

If	you	don’t	have	the	testing-library	installed,	see	the	first	recipe	in	this	chapter.
That	is,	they	make	your	life	easier.

That	is,	more	work.
Either	directly,	or	indirectly	via	libraries	such	as	axios.

It	doesn’t	actually	matter	what	you	call	the	file,	but	we	are	following	the	convention	of	prefixing	high-
level	tests	such	as	this	with	story	numbers.	This	general	reduces	the	likelihood	of	test	merge	conflicts,
and	makes	it	much	easier	to	track	the	intent	of	individual	changes.
This	will	run	the	tests	more	quickly,	and	record	a	video	of	the	test	running,	in	case	you	need	to	examine
it	later.	This	is	useful	if	your	test	is	running	on	an	integration	server.

Cypress	commands	are	similar	in	many	ways	to	promises,	although	they	are	not	implemented	as
promises.	You	can	think	of	each	one	as	a	“prom-ish”.
The	cy.intercept()	command	cannot	simply	return	a	reference	to	the	faked	network	request,	because	of
the	chainable	nature	of	Cypress	commands.

Recipe	5	in	chapter	2.
This	doesn’t	mean	that	the	tests	will	work	against	every	browser,	just	that	they	will	all	run	across	every
browser.

We	are	following	a	convention	where	we	prefix	the	test	with	it’s	associated	story	number.	This	is	not
required	by	Selenium.
You	will	find	the	code	to	do	this	is	downloadable	source	for	this	chapter	from	Github.

You	could	actually	put	this	script	anywhere,	but	this	is	the	location	we	used	in	the	example	code	on	the
Github	site.
The	remote	machine	will	have	to	have	the	appropriate	browser	and	web	driver	installed	for	this	to	work.

The	visual	difference	for	this	image	is	21,131.
For	create-react-app	applications,	this	should	be	added	to	//public/index.html/.

The	code	is	available	in	the	source	code	repository	for	this	book.
We	will	see	how	to	deal	with	controlling	time	in	a	later	recipe	in	this	chapter.

At	least,	not	without	a	good	deal	of	extra	work
For	further	information	on	Cypress,	see	the	other	recipes	in	this	chapter.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

https://momentjs.com/timezone/

You	can	find	out	more	about	this	test	in	recipe	3	of	this	chapter.

That	is,	allow	the	browser	to	say	to	the	server	Let’s	pretend	it’s	Thursday,	April	14th.
For	more	information	on	how	to	install	and	create	tests	for	Cypress,	see	other	recipes	in	this	chapter.

See	recipe	8	in	this	chapter	to	see	how	to	remove	randomness.
Firefox	will	not	generally	accept	this	format.

This	rarely	happens.
Sadly,	not	on	Windows	machines.

25

26

27

28

29

30

About	the	Authors
David	Griffiths	has	been	writing	code	professionally	in	React	for	five	years,
and	has	created	applications	for	startups,	retail	stores,	vehicle	manufacturers,
national	sports	bodies	and	large	software	vendors.	He	has	over	10	years	of
JavaScript	experience.

Together,	David	and	Dawn	have	written	several	books	in	the	Head	First	series,
including	Head	First	Android	Development	and	Head	First	Kotlin,	and	delivered
video	courses	for	O’Reilly	Media.

1.	 Preface
a.	 Conventions	Used	in	This	Book
b.	 Using	Code	Examples
c.	 O’Reilly	Online	Learning
d.	 How	to	Contact	Us

2.	 1.	Creating	Applications
a.	 1.1.	Create	a	Vanilla	App	with	create-react-app
b.	 1.2.	Build	Content-Rich	Apps	with	Gatsby
c.	 1.3.	Build	Universal	Apps	with	Razzle
d.	 1.4.	Manage	Server	and	Client	Code	with	Next.js
e.	 1.5.	Create	a	Tiny	App	with	Preact
f.	 1.6.	Build	Libraries	with	NWB
g.	 1.7.	Add	React	to	Rails	with	Webpacker
h.	 1.8.	Create	Custom	Elements	with	Preact
i.	 1.9.	Use	Storybook	for	Component	Development
j.	 1.10.	Test	Your	Code	in	a	Browser	with	Cypress

3.	 2.	Routing
a.	 2.1.	Create	Desktop/Mobile	Interfaces	with	Responsive	Routes
b.	 2.2.	Move	State	into	Routes	to	Create	Deep	Links
c.	 2.3.	Use	MemoryRouter	for	Unit	Testing
d.	 2.4.	Use	Prompt	for	Page	Exit	Confirmations
e.	 2.5.	Add	Page	Transitions	With	react-transition-group
f.	 2.6.	Create	Secured	Routes

4.	 3.	Managing	State
a.	 3.1.	Use	reducers	to	manage	complex	state
b.	 3.2.	Creating	an	Undo	Feature
c.	 3.3.	Creating	and	Validating	Forms
d.	 3.4.	Measuring	Time	with	a	Clock
e.	 3.5.	Monitoring	Online	Status
f.	 3.6.	Manage	Global	Application	State	with	Redux
g.	 3.7.	Survive	Page	Reloads	with	redux-persist

h.	 3.8.	Calculate	Derived	State	with	reselect
5.	 4.	Interaction	Design

a.	 4.1.	Centralized	Error	Handler
b.	 4.2.	Create	an	Interactive	Help	Guide
c.	 4.3.	Use	Reducers	for	Complex	Sequences
d.	 4.4.	Keyboard	Interaction
e.	 4.5.	Use	Markdown	for	Rich	Content
f.	 4.6.	Animations	with	CSS	Classes
g.	 4.7.	Animations	with	react-animation
h.	 4.8.	Create	Animated	Infographics	with	TweenOne

6.	 5.	Connecting	to	services
a.	 5.1.	Convert	Network	Calls	to	Hooks
b.	 5.2.	Generate	Automatic	Refreshes	with	State	Counters
c.	 5.3.	Prevent	Late	Responses	With	Cancel	Tokens
d.	 5.4.	Make	Network	Calls	with	Redux	Middleware
e.	 5.5.	Connecting	to	GraphQL
f.	 5.6.	Reduce	Network	Load	With	Debounced	Requests

7.	 6.	Component	Libraries
a.	 6.1.	Use	Material	Design	with	Material-UI
b.	 6.2.	Create	Simple	Effective	UI	with	React	Bootstrap
c.	 6.3.	View	Large	Volumes	of	Data	with	React	Window
d.	 6.4.	Create	Responsive	Dialogs	with	Material-UI
e.	 6.5.	Build	an	Admin	Console	with	React	Admin
f.	 6.6.	No	Designer?	Use	Semantic	UI

8.	 7.	Security
a.	 7.1.	Secure	requests	not	routes
b.	 7.2.	Enable	two	factor	authentication	with	physical	tokens
c.	 7.3.	Enable	https	in	your	development	system
d.	 7.4.	Enable	two	factor	authentication	with	fingerprints
e.	 7.5.	Use	confirmation	logins
f.	 7.6.	Use	single	factor	authentication

g.	 7.7.	Test	local	React	apps	on	an	Android	device
h.	 7.8.	Use	eslint	to	check	for	security	flaws
i.	 7.9.	Make	login	forms	browser-friendly

9.	 8.	Testing
a.	 8.1.	Using	the	react	testing	library
b.	 8.2.	Use	storybook	for	render	tests
c.	 8.3.	Using	Cypress	for	network	testing
d.	 8.4.	Use	Cypress	for	testing	offline
e.	 8.5.	Use	Selenium	for	browser-based	testing
f.	 8.6.	Automatically	find	visual	differences
g.	 8.7.	Add	a	visual	console	to	mobile	browsers
h.	 8.8.	Remove	randomness	from	tests
i.	 8.9.	Time	travel

	Preface
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us

	1. Creating Applications
	1.1. Create a Vanilla App with create-react-app
	1.2. Build Content-Rich Apps with Gatsby
	1.3. Build Universal Apps with Razzle
	1.4. Manage Server and Client Code with Next.js
	1.5. Create a Tiny App with Preact
	1.6. Build Libraries with NWB
	1.7. Add React to Rails with Webpacker
	1.8. Create Custom Elements with Preact
	1.9. Use Storybook for Component Development
	1.10. Test Your Code in a Browser with Cypress

	2. Routing
	2.1. Create Desktop/Mobile Interfaces with Responsive Routes
	2.2. Move State into Routes to Create Deep Links
	2.3. Use MemoryRouter for Unit Testing
	2.4. Use Prompt for Page Exit Confirmations
	2.5. Add Page Transitions With react-transition-group
	2.6. Create Secured Routes

	3. Managing State
	3.1. Use reducers to manage complex state
	3.2. Creating an Undo Feature
	3.3. Creating and Validating Forms
	3.4. Measuring Time with a Clock
	3.5. Monitoring Online Status
	3.6. Manage Global Application State with Redux
	3.7. Survive Page Reloads with redux-persist
	3.8. Calculate Derived State with reselect

	4. Interaction Design
	4.1. Centralized Error Handler
	4.2. Create an Interactive Help Guide
	4.3. Use Reducers for Complex Sequences
	4.4. Keyboard Interaction
	4.5. Use Markdown for Rich Content
	4.6. Animations with CSS Classes
	4.7. Animations with react-animation
	4.8. Create Animated Infographics with TweenOne

	5. Connecting to services
	5.1. Convert Network Calls to Hooks
	5.2. Generate Automatic Refreshes with State Counters
	5.3. Prevent Late Responses With Cancel Tokens
	5.4. Make Network Calls with Redux Middleware
	5.5. Connecting to GraphQL
	5.6. Reduce Network Load With Debounced Requests

	6. Component Libraries
	6.1. Use Material Design with Material-UI
	6.2. Create Simple Effective UI with React Bootstrap
	6.3. View Large Volumes of Data with React Window
	6.4. Create Responsive Dialogs with Material-UI
	6.5. Build an Admin Console with React Admin
	6.6. No Designer? Use Semantic UI

	7. Security
	7.1. Secure requests not routes
	7.2. Enable two factor authentication with physical tokens
	7.3. Enable https in your development system
	7.4. Enable two factor authentication with fingerprints
	7.5. Use confirmation logins
	7.6. Use single factor authentication
	7.7. Test local React apps on an Android device
	7.8. Use eslint to check for security flaws
	7.9. Make login forms browser-friendly

	8. Testing
	8.1. Using the react testing library
	8.2. Use storybook for render tests
	8.3. Using Cypress for network testing
	8.4. Use Cypress for testing offline
	8.5. Use Selenium for browser-based testing
	8.6. Automatically find visual differences
	8.7. Add a visual console to mobile browsers
	8.8. Remove randomness from tests
	8.9. Time travel

