

Fullstack Vue
The Complete Guide to Vue.js and Friends

Written by Hassan Djirdeh, Nate Murray, and Ari Lerner

© 2018 Fullstack.io

All rights reserved. No portion of the book manuscript may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means beyond the number of purchased copies,
except for a single backup or archival copy. The code may be used freely in your projects,
commercial or otherwise.

The authors and publisher have taken care in preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No
liability is assumed for incidental or consequential damagers in connection with or arising out
of the use of the information or programs container herein.

Published in San Francisco, California by Fullstack.io.

FULLSTACK.io

Contents

Book Revision . 1
Get the Code . 1
Join Our Discord Server! . 1
Bug Reports . 1
Be notified of updates via Twitter . 1
We’d love to hear from you! . 1

Foreword . 2

How to Get the Most Out of This Book . 1
Overview . 1
Vue 3.x . 2
Running Code Examples . 2
Code Blocks and Context . 3
Instruction for Windows users . 4
Live online community . 5
Getting Help . 5
Emailing Us . 5
Get excited! . 6

Your first Vue.js Web Application . 7
Building UpVote! . 7
Development environment setup . 8
JavaScript ES6/ES7 . 9
Getting started . 9
Setting up the view . 14
Making the view data-driven . 16
List rendering . 20
Sorting . 24
Event handling (our app’s first interaction) . 25
Components . 30
v-bind and v-on shorthand syntax . 37
Congratulations! . 38

Single-file components . 39

CONTENTS

Introduction . 39
Setting up our development environment . 40
Getting started . 41
Single-File Components . 47
Breaking the app into components . 50
Managing data between components . 54
Simple State Management . 55
Steps to building Vue apps from scratch . 59
Step 1: A static version of the app . 59
Step 2: Breaking the app into components . 61
Step 3: Hardcode Initial States . 65
Step 4: Create state mutations (and corresponding component actions) 76
The Calendar App . 102
Methodology review . 103

Custom Events . 104
Introduction . 104
JavaScript Custom Events . 104
Vue Custom Events . 105
Event Bus . 118
Custom events and managing data . 127
Summary . 127

Introduction to Vuex . 128
Recap . 128
What is Flux? . 128
Flux implementations . 129
Vuex . 129
Refactoring the note-taking app . 130
Vuex Store . 133
Building the components . 139

Vuex and Servers . 147
Introduction . 147
Preparation . 147
The Server API . 153
Playing with the API . 155
Client and server . 159
Preparing the application . 161
The Vuex Store . 169
productModule . 174
cartModule . 186
Interactivity . 196
Vuex and medium to large scale applications . 204

CONTENTS

Recap . 208

Form Handling . 210
Introduction . 210
Forms 101 . 210
Preparation . 210
The Basic Button . 212
Text Input . 217
Multiple Fields . 225
Validations . 228
Async Persistence . 239
Vuex . 246
Form Modules . 260

Routing . 262
What is routing? . 262
URL . 262
Single-page applications . 264
Basic Vue Router . 266
Dynamic Route Matching . 289
The Server API . 293
Starting point of the app . 296
Integrating vue-router . 299
Supporting authenticated routes . 327
Implementing login . 332
Vue Watchers . 339
Navigation Guards . 346
Recap and further reading . 352

Unit Testing . 353
End-to-end vs. Unit Testing . 353
Testing tools . 354
Testing a basic Vue component . 356
Setup . 356
Testing App . 362
vue-test-utils . 367
More assertions for App.vue . 371
Writing tests for a weather app . 386
Store . 425
Further reading . 429

Composition API . 431
Why do need the Composition API? . 431
What is the Composition API? . 433

CONTENTS

Building a simple listings app . 448
app/ . 456
Updating <App /> . 463
Updating <ListingsList /> . 470
Updating <ListingsListItem /> . 474
Notifications . 476
Dark Mode . 489
The Store . 499
Conclusion . 508

TypeScript . 509
What is TypeScript? . 510
Vue & TypeScript . 512
Annotating Props . 545
Conclusion . 557

Vue Apollo & GraphQL . 558
GraphQL . 558
Consuming GraphQL . 560
The GraphQL API we’ll be working with . 562
Vue Apollo . 571

Fullstack Vue Screencast . 608
Building SimpleCoinCap . 608
Agenda . 610
Updates with the new API . 611

Changelog . 617

CONTENTS 1

Book Revision

Revision 13 - 2021-02-01

Get the Code

You can get the complete sample code for the book either

1. In Gumroad¹ or
2. Via this form on our website²

Join Our Discord Server!

We’d love to hang outwith you and chat Vue, ask questions, and help each other: https://newline.co/discord/vue³

Bug Reports

If you’d like to report any bugs, typos, or suggestions just email us at: vue@fullstack.io.

For further help dealing with issues, refer to “How to Get the Most Out of This Book”.

Be notified of updates via Twitter

If you’d like to be notified of updates to the book on Twitter, follow us at @fullstackio⁴.

We’d love to hear from you!

Did you like the book? Did you find it helpful? We’d love to add your face to our list of testimonials
on the website! Email us at: vue@fullstack.io.

¹https://gumroad.com/library
²https://www.newline.co/vue/code
³https://newline.co/discord/vue
⁴https://twitter.com/fullstackio

Foreword
Front-end web development has become astoundingly complex. If you’ve never used a modern
JavaScript framework, building your first app that just displays “Hello” can take a whole week!
That might sound ridiculous, but most frameworks assume knowledge of the terminal, advanced
JavaScript, and tools such as the Node Package Manager (NPM), Babel, Webpack, and sometimes
more.

Chris Fritz - Vue Core Team

Vue, refreshingly, doesn’t assume. We call it the “pro-
gressive” JavaScript framework because it scales down
as well as it scales up. If your app is simple, you can
use Vue just like jQuery - by dropping in a <script>

tag. But as your skills and needs grow more advanced,
Vue grows with you to make you more powerful and
productive.

Hassan provides a catalyst for that growth in this
book. Through project-driven learning, he’ll guide you
from the simplest examples through the necessary skills
for large-scale, enterprise applications. Along the way,
you’ll learn not only how to solve a variety of problems
with Vue, but also the concepts and tools that have be-
come industry standards – no matter what framework
you use.

Welcome to the community, have fun, and enjoy the Vue!

– Chris Fritz, @chrisvfritz⁵, Vue Core Team

⁵https://twitter.com/chrisvfritz

How to Get the Most Out of This Book
Overview

This book aims to be the single most useful resource on learning Vue.js. By the time you’re done
reading this book, you (and your team) will have everything you need to build reliable, powerful
Vue applications.

Vue is built on the premise of simplicity by being designed from the ground up to be incrementally
adoptable. After the first few chapters, you’ll have a solid understanding of Vue’s fundamentals and
will be able to build a wide array of rich, interactive web apps with the framework.

But beyond Vue’s core, there are tools and libraries that exist in the Vue ecosystem that’s often
needed to build real-world production scale applications. Things like client-side routing between
pages, managing complex state, and heavy API interaction at scale.

This book can be broken down into three parts.

In Part I, we cover all the fundamentals with a progressive, example-driven approach. You’ll first
introduce Vue through a Content Delivery Network (CDN) before moving towards building
within Webpack bundled applications. You’ll gain a grasp of handling user interaction, working
with single-file components, understanding simple state management, and how custom events
work.

We bookend the first part by introducing Vuex and how Vuex is integrated to manage overall
application data architecture.

Part II of this book moves into more intermediate/advanced concepts that you’ll often see used
in large, production applications. We’ll integrate Vuex to a server-persisted app, manage rich
forms, build a multi-page app that uses client-side routing, and finally explore how unit tests can
be written with Vue’s official unit testing library.

In Part III of the book, we cover advanced topics within Vue and the Vue ecosystem.We’ll investigate
how to build reusable component logic with Vue’s Composition API, introduce the concept of
TypeScript and see how it can be used within a Vue app, and finally explore GraphQL and the
Vue Apollo library for integrating GraphQL to our Vue applications.

First, know that you do not need to read this book linearly from cover-to-cover. However, we’ve
ordered the contents of the book in a way we feel fits the order you should learn the concepts. Some
sections in Part II assume you’ve acquired certain fundamental concepts from Part I. As a result, we
encourage you to learn all the concepts in Part I of the book first before diving into concepts in Part
II and moving towards to Part III.

How to Get the Most Out of This Book 2

Second, keep in mind this package is more than just a book - it’s a course complete with example
code for every chapter. Below, we’ll tell you:

• how to approach the code examples and
• how to get help if something goes wrong

Vue 3.x

In Sept. 2020⁶, the Vue framework was updated and released as version 3.0. Vue 3.0 provides a suite
of changes such as smaller bundle sizes, better TypeScript integration, new APIs for tackling large
scale use cases, and a solid foundation for long-term future iterations of the framework. Vue 3.0
continues to build on concepts that existed in Vue 2.x such as the Virtual DOM, render functions,
and server-side rendering capabilities (i.e. Vue 3.0 is not a complete rewrite of Vue 2.x). In addition,
version 3.0 was rewritten to provide significant performance improvements over v2.

This book covers, and will always cover, the latest release of Vue - which is currently labelled as
version 3.x.

Running Code Examples

This book comes with a library of runnable code examples. The code is available to download from
the same place where you purchased this book.

If you have any trouble finding or downloading the code examples, email us at vue@fullstack.io.

Webpack projects

For Webpack-bundled projects, we use the program npm⁷ to run examples. You can install the
application dependencies with:

npm install

And boot apps with one of the following commands:

npm run start

or

⁶https://github.com/vuejs/vue-next/releases/tag/v3.0.0
⁷https://www.npmjs.com/

How to Get the Most Out of This Book 3

npm run serve

With every chapter, we’ll reiterate the commands necessary to install application dependancies and
boot example code.

After running npm run start or npm run serve, you will see some output on your screen that will
tell you what URL to open to view your app.

If you’re unfamiliar with npm, we cover how to get it installed in the “Setting Up” section in
the second chapter.

If you’re ever unclear on how to run a particular sample app, checkout the README.md in that
project’s directory. EveryWebpack bundled sample project contains a README.md that will give you
the instructions you need to run each app.

Direct <script> Include

For simpler examples, we’ve resorted to directly including the Vue library from a Content Delivery
Network (CDN) to get the app up and running as fast as possible.

In this book, applications that introduce Vue from a CDN often consist of a single HTML file
(index.html) for markup and a single JS file (main.js) for all Vue code. With these examples, we’ll
be able to run the app by opening the index.html file in our browser (e.g. right click index.html file
and select Open With > Google Chrome). Since the Vue library is hosted externally in these cases,
these examples will require your machine to be connected to the internet.

Code Blocks and Context

The majority of code blocks in this book is pulled from a runnable code example which you can
find in the sample code. For example, here is a code block pulled from the first chapter:

upvote/app_5/main.js

const upvoteApp = {

data() {

return {

submissions: Seed.submissions

}

},

computed: {

sortedSubmissions () {

return this.submissions.sort((a, b) => {

return b.votes - a.votes

How to Get the Most Out of This Book 4

});

}

},

components: {

'submission-component': submissionComponent

}

};

Notice that the header of this code block states the path to the file which contains this code:
upvote/app_5/main.js.

Certain code examples will resemble building blocks to get to a certain point and thus may not
reflect a code block directly from the sample code. If you ever feel like you’re missing the context
for a code example, open up the full code file using your favorite text editor. This book is written
with the expectation that you’ll also be looking at the example code alongside the manuscript.

For example, we often need to import libraries to get our code to run. In the early chapters of the
book we show these import statements, because it’s not clear where the libraries are coming from
otherwise. However, the later chapters of the book aremore advanced and they focus on key concepts
instead of repeating boilerplate code that was covered earlier in the book. If at any point you’re
not clear on the context, open up the code example on disk.

Code Block Numbering

In this book, we mostly build larger examples in steps. If you see a file being loaded that has a
numeric suffix, that generally means we’re building up to something bigger.

For instance, the code block above has the file path: upvote/app_5/main.js. When you see the -N.js
syntax, that means we’re building up to a final version of the file. You can jump into that file and
see the state of all the code at that particular stage.

Instruction for Windows users

All the code in this book has been tested on a Windows machine. If you have any issues
running the code on Windows, send us an email⁸ and we’ll try to help you get it resolved.

Ensure Node.js and npm are installed

If you’re on a Windows machine and have yet to do any web development on it, you can install
the Node.js Windows Installer from the Node.js⁹ website. With Node.js (and npm) appropriately
installed, you should be able to start the Webpack-bundled Node.js projects in the book as expected.

See this tutorial¹⁰ for installing Node.js and npm on Windows.
⁸vue@fullstack.io
⁹http://nodejs.org
¹⁰http://blog.teamtreehouse.com/install-node-js-npm-windows

How to Get the Most Out of This Book 5

Live online community

Feel stuck somewhere or need guidance on a certain topic? Hop on to the #vue channel in our
Discord¹¹ organization where you’ll be able to find help (and help others!). I (the instructor) will be
on the channel as well and look to see if questions have gone unanswered from time to time.

Getting Help

While we’ve made every effort to be clear, precise, and accurate you may find that when you’re
writing your code you run into a problem.

Generally, there are three types of problems:

• A “bug” in the book (e.g. how we describe something is wrong)
• A “bug” in our code
• A “bug” in your code

If you find an inaccuracy in how we describe something, or you feel a concept isn’t clear, email us!
We want to make sure that the book is both accurate and clear.

Similarly, if you’ve found a bug in our code we definitely want to hear about it.

If you’re having trouble getting your own app working (and it isn’t our example code), this case is
a bit harder for us to handle. If you’re still stuck, we’d still love to hear from you.

Emailing Us

If you’re emailing us asking for technical help, here’s what we’d like to know:

• What revision of the book are you referring to?
• What operating system are you on? (e.g. Mac OS X 10.13.2, Windows 95)
• Which chapter and which example project are you on?
• What were you trying to accomplish?
• What have you tried already?
• What output did you expect?
• What actually happened? (Including relevant log output.)

The absolute best way to get technical support is to send us a short, self-contained example of the
problem. Our preferred way to receive this would be for you to send us a code sample or a running
code example.

When you’ve written down these things, email us at vue@fullstack.io. We look forward to hearing
from you.

¹¹https://newline.co/discord/vue

How to Get the Most Out of This Book 6

Get excited!

Writing web apps with Vue is fun. And by using this book, you’re going to learn how to build real
Vue apps fast. (Much faster than spending hours parsing out-dated blog posts.)

If you’ve written client-side JavaScript before or used existing JavaScript frameworks, you’ll find
Vue refreshingly intuitive. If this is your first serious foray into the front-end, you’ll be blown away
at how quickly you can create something worth sharing.

So hold on tight - you’re about to become really proficient with Vue, and have a lot of fun along the
way. Let’s dig in!

• Hassan (@djirdehh¹²), Nate, and Ari

¹²https://twitter.com/djirdehh

Your first Vue.js Web Application
Building UpVote!

On our first step to learning Vue, we’re going to build a simple voting application (named UpVote!)
that takes inspiration from popular social feed websites like Reddit¹³ and Hacker News¹⁴.

Completed version of the app

UpVote! focuses on displaying a list of submissions that users can vote on. Each submission will
present some information about itself like an image, title, and description. All submissions are sorted
instantaneously by number of votes. The up-vote icon in each submissionwill allow users to increase
vote numbers and subsequently rearrange submission layout.

With UpVote!, we’ll become familiar with how Vue approaches front-end development by under-
standing the basic fundamentals associated with the library. By the end of the chapter we’ll be well
on our way to building dynamic front-end interfaces thanks to Vue’s simplicity!

¹³https://reddit.com
¹⁴https://hackernews.com

Your first Vue.js Web Application 8

Development environment setup

Code editor

Regardless of experience, whenever developing for the web, we’ll need a code editor to write our
application (this is true for all code in this book). It’s most important to be comfortable with your
code editor, so if you have one you like, stick with it. If not, we recommend Atom¹⁵, Sublime Text
3¹⁶, or Visual Studio Code¹⁷.

Development Environment

For this chapter, we’ll focus on getting our Vue app up and running as fast as possible, so we’ll simply
introduce Vue through a Content Delivery Network (CDN). We’ll take a deeper look into installing
all the necessary libraries for our development environment in the next chapter.

Browser

We highly recommend using the Google Chrome Web Browser¹⁸ to develop Vue apps since we’ll be
using the Chrome developer toolkit¹⁹ throughout this book. To follow along with our development
and debugging, we recommend installing Chrome, if not installed already.

With Chrome, Vue provides an incredibly useful extension, Vue.js devtools²⁰ that simplifies debug-
ging of Vue applications. We’ll be using the devtools at separate points throughout the book so we
encourage you to install it as well. To have the devtools support Vue 3, you may need to install the
new devtools extension²¹ currently being developed.

Note: With certain chapters in this book (like this chapter for example), we’ll be working with
applications opened via file:// protocol. To make the Vue devtools work for these pages, you’ll
need to check “Allow access to file URLs” for the extension in Chrome’s extension manager:

Allow access to file URLs

¹⁵http://atom.io
¹⁶https://www.sublimetext.com/
¹⁷https://code.visualstudio.com/
¹⁸https://www.google.com/chrome/
¹⁹https://developers.google.com/web/tools/chrome-devtools/
²⁰https://github.com/vuejs/vue-devtools
²¹https://v3.vuejs.org/guide/migration/introduction.html#devtools-extension

Your first Vue.js Web Application 9

JavaScript ES6/ES7

JavaScript is the language of the web. It runs on many different browsers, including Google Chrome,
Firefox, Safari, Microsoft Edge, and Internet Explorer. Different browsers have different JavaScript
interpreters which execute JavaScript code.

Its widespread adoption as the Internet’s client-side scripting language led to the formation of a
standards body which manages its specification. The specification is called ECMAScript or ES.

The 5th edition of the specification is called ES5. We think of ES5 as a “version” of the JavaScript
programming language. Finalized in 2009, ES5 was adopted by all major browsers within a few years.

The 6th edition of JavaScript is referred to as ES6. Finalized in 2015, the latest versions of major
browsers are still finishing adding support for ES6 as of 2017. ES6 provides a significant update. It
contains a whole host of new features for JavaScript, almost two dozen in total. JavaScript written
in ES6 is tangibly different than JavaScript written in ES5.

ES7, a much smaller update that builds on ES6, was ratified in June 2016. ES7 contains only two new
features.

To take advantage of the future versions of JavaScript, we want to write our code in ES6/ES7 today.
We’ll also want our JavaScript to run on older browsers until they fade out of widespread use.

This book is written using the JavaScript ES7 version. As ES6 ratified amajority of these new features,
we’ll commonly refer to these new features as ES6 features.

ES6 is sometimes referred to as ES2015, the year of its finalization. ES7, in turn, is often
referred to as ES2016.

Getting started

Sample Code

All the code examples/snippets contained in this chapter (and all the other chapters) are available
in the code package that came with the book. In the code package we’ll see completed versions of
the apps as well as boilerplates to help us get started. Each chapter provides detailed instruction on
how to follow along on our own.

While coding along with the book is not necessary, we highly recommend doing so. Playing around
with examples and sample code will help solidify and strengthen understanding of new concepts.

Your first Vue.js Web Application 10

Previewing the application

We’ll begin this chapter by taking a look at a working implementation of the UpVote! app.

Let’s open up the sample code that came with the book and locate the upvote/ folder with our
machines file navigator (Finder for OS X or Windows Explorer on Windows) or through our code
editor (e.g. Sublime). By opening the upvote/ folder, we’ll see all the sub-directories containedwithin
the sample app:

upvote

app/

app_1/

app_2/

app_3/

app_4/

app_5/

app_complete/

public/

We’ve included each version of the app as we build it up throughout this chapter (app_1/, app_2/,
etc). Each code block in this chapter references which app version it is contained within. We can
copy and paste longer code insertions from these app versions into our local app/ folder, the starting
point of our application.

The public/ sub-folder hosts all the images and custom styles we’ll use within our application.

app_complete represents the completed state of our application. Opening the app_complete folder,
we’ll see there are just three files located inside:

app_complete

index.html

main.js

seed.js

We can see the running application by right clicking on the index.html file and selecting Open With

> Google Chrome.

Your first Vue.js Web Application 11

Completed version of the app

Notice how the submissions are all sorted from highest to lowest number of votes. The application
will keep the posts sorted by number of votes, moving them around as the votes change without
reloading the page.

Prepare the app

Let’s begin building the application. We’re going to be working entirely from the app/ directory.
By opening the files within app/ in a text editor, we’ll see some boilerplate code contained in the
index.html and seed.js files, while main.js is left blank.

Let’s begin by looking inside the index.html file:

Your first Vue.js Web Application 12

upvote/app/index.html

<!DOCTYPE html>

<html>

<head>

<link rel="stylesheet"

href="https://cdnjs.cloudflare.com/ajax/libs/bulma/0.5.3/css/bulma.css">

<link rel="stylesheet"

href="https://use.fontawesome.com/releases/v5.0.6/css/all.css">

<link rel="stylesheet"

href="../public/styles.css" />

</head>

<body>

<div id="app">

<h2 class="title has-text-centered dividing-header">UpVote!</h2>

</div>

<script src="https://unpkg.com/vue@next"></script>

<script src="./seed.js"></script>

<script src="./main.js"></script>

</body>

</html>

In our <head> tag, there are three stylesheet dependancies we’ve included in our application:

upvote/app/index.html

<head>

<link rel="stylesheet"

href="https://cdnjs.cloudflare.com/ajax/libs/bulma/0.5.3/css/bulma.css">

<link rel="stylesheet"

href="https://use.fontawesome.com/releases/v5.0.6/css/all.css">

<link rel="stylesheet"

href="../public/styles.css" />

</head>

We’ve introduced Bulma²² as our applications CSS framework, Font Awesome²³ for icons, and our
own styles.css file that lives in our public folder.

²²http://bulma.io/
²³http://fontawesome.io/

Your first Vue.js Web Application 13

For this project, we’re using Bulma²⁴ for styling.

Bulma is a CSS framework, much like Twitter’s popular Bootstrap²⁵ framework. It provides
us with a grid system and some simple styling. We don’t need to know Bulma in-depth in
order to go through this chapter (or this book).

We’ll always provide all the styling code that is needed. At some point, it’s a good idea to
check out the Bulma docs²⁶ to get familiar with the framework and explore how to use it in
other projects we’ll build in the future.

The heart of our application lives in the few lines within our <body> tag which currently looks like
this:

upvote/app/index.html

<div id="app">

<h2 class="title has-text-centered dividing-header">UpVote!</h2>

</div>

The class attributes refer to CSS styles and are safe to ignore in the context of our application. Not
paying attention to those, we can see we have a title for the page (h2) and a <div> element with an
id of app.

The <div> element with the id of app is where our Vue application will be loaded and attached onto
the template. In other words, our Vue application will be mounted on to this particular element.

The next few lines tells the browser which JavaScript files to load:

upvote/app/index.html

<script src="https://unpkg.com/vue@next"></script>

<script src="./seed.js"></script>

<script src="./main.js"></script>

The first <script> tag loads the latest version of Vue from a Content Delivery Network (CDN) at
unpkg²⁷. Using the CDN to load the Vue dependency is the simplest and quickest way to introduce
Vue to an application.

A Content Delivery Network (CDN) is a system of services that deliver content to users
based on their geographical location and the content delivery server. Using CDN’s have the
benefit of decreasing server load and providing faster loading times to users who’ve already
downloaded the content.

Most CDNs are used to deliver static content like common JavaScript libraries, fonts, CSS
files, etc. We’ve also introduced Bulma and Font Awesome through CDNs in our <head> tag.

²⁴http://bulma.io/
²⁵http://getbootstrap.com/
²⁶http://bulma.io/documentation/overview/start/
²⁷https://unpkg.com

Your first Vue.js Web Application 14

The other two <script> tags reference the internal JavaScript files we’ll write in the ./seed.js and
./main.js files.

Setting up the view

Now that we have a good understanding of our boilerplate code, we can start diving in and writing
some code. Let’s first set up a template for how a single submission would look like. We’ll adapt
Bulma’s media object²⁸ as it represents a good starting point.

In our index.html we’ll insert the following template block right below our h2 title:

upvote/app_1/index.html

<div class="section">

<article class="media">

<figure class="media-left">

<img class="image is-64x64"

src="../public/images/submissions/image-yellow.png">

</figure>

<div class="media-content">

<div class="content">

<p>

Yellow Pail

#4

On-demand sand castle construction expertise.

<small class="is-size-7">

Submitted by:

<img class="image is-24x24"

src="../public/images/avatars/daniel.jpg">

</small>

</p>

</div>

</div>

<div class="media-right">

<i class="fa fa-chevron-up"></i>

<strong class="has-text-info">10

²⁸http://bulma.io/documentation/layout/media-object/

Your first Vue.js Web Application 15

</div>

</article>

</div>

This template is a slight modification of Bulma’s media object²⁹.

We’ve added an encompassing <div> element over an <article> template block. The <article>

template block is the view for a single submission and has three child DOM elements:

• <figure> with media-left class which will display the main image of the submission and is
positioned to the left.

• <div> with media-content class which displays the additional details of the submission such
as the title, id, description, and avatar of the submitted user.

• <div> with media-right class which shows a fa-chevron-up icon alongside the submission’s
number of votes.

If we open our app/index.html in our Chrome Browser (right click and select Open With > Google

Chrome), we will see our newly built submission.

A single submission

²⁹http://bulma.io/documentation/layout/media-object/

Your first Vue.js Web Application 16

Awesome. We won’t write much more HTML markup than what we’ve just added.

While neat, at the moment our view is static. We’ve simply hard-coded the title, description and
other details. To use this template in a meanigful way, we’ll want to change it to be reactive (i.e.
dynamically data-driven).

Making the view data-driven

Driving the template with data will allow us to dynamically render the view based upon the data
that we give it. Let’s familiarize ourselves with the applications data model.

The data model

Within our app directory, we’ve included a file called seed.js. seed.js contains sample data for a
list of submissions (it seeds our application with data). The seed.js file contains a JavaScript object
called Seed.submissions. Seed.submissions is an array of JavaScript objects where each represents
a sample submission object:

const submissions = [

{

id: 1,

title: "Yellow Pail",

description: "On-demand sand castle construction expertise.",

url: "#",

votes: 16,

avatar: "../public/images/avatars/daniel.jpg",

submissionImage: "../public/images/submissions/image-yellow.png",

},

// ...

];

Each submission has a unique id and a series of properties including title, description, votes, etc.

Since we only have a single submission displayed in our view, we’ll first focus on getting the data
from a single submission object (i.e. submissions[0]) on to the template.

The Application Instance

The application instance is the starting point of all Vue applications. An application instance
accepts an options object which can contain details of the instance such as its template, data,
methods, etc. The root level application instance also allows us to reference the DOM with which
the instance is to be mounted/attached to.

Your first Vue.js Web Application 17

Let’s see an example of this by setting up the application instance for our app. We’ll write all our Vue
code for the rest of this chapter inside the main.js file. Let’s open main.js and create the application
instance using the Vue function:

const upvoteApp = {};

Vue.createApp(upvoteApp).mount("#app");

We’re using the global createApp()API function³⁰ to create our application instance. The createApp()
function takes an options object as its first parameter which specify the options and initial condition
of our Vue app. As of now, we’re simply passing in an empty object with which we’ve declared
above as upvoteApp.

The createApp() function allows us to chain functions to the global application instance. In the code
sample above, we’re chaining a mount()³¹ function which allows us to specify the HTML element
with the id of app to be the mounting point of our Vue application. Anywhere within this element
can Vue JavaScript code now be used.

The application instance can also return data that needs to be handled within the view. This data
must be specified within a data function in the instance. This is how we’ll arrange the connection
between the data in our seed.js file and the template view.

Let’s update the instance by specifying a new data function. In the function, we’ll return a data object
that includes a submissions key that will have the same value as the Seed.submissions array:

upvote/app_2/main.js

const upvoteApp = {

data() {

return {

submissions: Seed.submissions

}

},

};

Vue.createApp(upvoteApp).mount('#app');

In the HTML template, we can now reference all submission data by accessing submissions.

The Vue constructor is available on the global scope since we’ve included the <script />

tag, that loads Vue, in our index.html file. Without including this tag, the Vue.createApp()
function won’t be available and we’ll be presented with a console error stating Uncaught

ReferenceError: Vue is not defined.

³⁰https://v3.vuejs.org/api/global-api.html#createapp
³¹https://v3.vuejs.org/api/application-api.html#mount

Your first Vue.js Web Application 18

With our application instance created and containing submission data, we can now work towards
synchronizing data in the model to the view. In other words, we can now data bind the instance’s
data to the DOM.

Data binding

The simplest form of data binding in Vue is using the ‘Mustache’ syntax which is denoted by double
curly braces {{}}. We’ll apply this syntax to bind all the text within our HTML (e.g. title, description,
etc.).

The ‘Mustache’ syntax however cannot be used in HTML attributes like href, id, src etc. Vue
provides the native v-bind attribute (this is known as a Vue directive) to bind HTML attributes.
We’ll use this directive to update the src attributes in our template.

The Vue syntax may take some brief time to get used to, both within template manipulation
as well as on the JavaScript side.

We’ll gain familiarity on syntax/semantics as we continue to write code within this book.

Let’s swap the hard-coded data in the template to now reference the content in the first object in
the submissions array, submissions[0]. This will make the newly added template block now look
like this:

upvote/app_2/index.html

<div class="section">

<article class="media">

<figure class="media-left">

<img class="image is-64x64"

v-bind:src="submissions[0].submissionImage">

</figure>

<div class="media-content">

<div class="content">

<p>

<a v-bind:href="submissions[0].url" class="has-text-info">

{{ submissions[0].title }}

#{{ submissions[0].id }}

{{ submissions[0].description }}

<small class="is-size-7">

Your first Vue.js Web Application 19

Submitted by:

<img class="image is-24x24"

v-bind:src="submissions[0].avatar">

</small>

</p>

</div>

</div>

<div class="media-right">

<i class="fa fa-chevron-up"></i>

<strong class="has-text-info">{{ submissions[0].votes }}

</div>

</article>

</div>

If we’ve bound everything appropriately, we should see no change in our view (since the hard-coded
information was the same content in our submissions[0] object).

Let’s refresh our browser and see our template be rendered again.

Your first Vue.js Web Application 20

Submission with bound data

List rendering

We’ve successfully created our application instance and bound a single submission object in our
view. Our next objective is to render all the submission objects to our view by displaying each
submission object as a separate template block.

Since we’re going to be rendering a list of submission objects, we’re going to use Vue’s native v-for
directive.

v-for directive

The v-for directive is used to render a list of items based on a data source. In our case, we would
like to render a submission post for each of the submission objects in our Seeds.submission array.

The <article> element in the index.html file, which is a standard HTML element, currently displays
a single submission post:

Your first Vue.js Web Application 21

<article class="media">

<!-- Rest of the submission template -->

</article>

The v-for directive requires a specific syntax along the lines of item in items, where items is a
data collection and item is an alias for every element that is being iterated upon:

In our template, since submissions is the data collection we’ll be iterating over; submission would
be an appropriate alias to use. We’ll add the v-for statement to the <article> block like this:

<article v-for="submission in submissions" class="media">

<!-- Rest of the submission template -->

</article>

key

It’s common practice to specify a key attribute for every iterated element within a rendered v-for

list. Vue uses the key attribute to create unique bindings for each node’s identity.

To specify this uniqueness to each item in the list, we’ll assign a key to every iterated submission.
We’ll use the id of a submission since a submission’s id would never be equal to that of another
submission. Because we’re using dynamic values, we’ll need to use v-bind to bind our key to the
submission.id:

Your first Vue.js Web Application 22

<article

v-for="submission in submissions"

v-bind:key="submission.id"

class="media"

>

<!-- Rest of the submission template -->

</article>

If there were any dynamic changes made to a v-for list without the key attribute, Vue will opt
towards changing data within each element instead of moving the DOM elements accordingly. By
specifying a unique key attribute to each iterated item, we’re now telling Vue to reorder elements if
needed.

The Vue docs³² explains the importance of the key attribute in more detail.

In our template, let’s now change the submissions[0] references and update it to use the iterated
array instance variable submission:

upvote/app_3/index.html

<div class="section">

<article v-for="submission in submissions" v-bind:key="submission.id"

class="media">

<figure class="media-left">

<img class="image is-64x64"

v-bind:src="submission.submissionImage">

</figure>

<div class="media-content">

<div class="content">

<p>

<a v-bind:href="submission.url" class="has-text-info">

{{ submission.title }}

#{{ submission.id }}

{{ submission.description }}

<small class="is-size-7">

Submitted by:

³²https://v3.vuejs.org/guide/list.html#maintaining-state

Your first Vue.js Web Application 23

<img class="image is-24x24"

v-bind:src="submission.avatar">

</small>

</p>

</div>

</div>

<div class="media-right">

<i class="fa fa-chevron-up"></i>

<strong class="has-text-info">{{ submission.votes }}

</div>

</article>

</div>

Refreshing our browser, we should now expect to see a list of submissions. This is due to the v-for
directive now dynamically creating a submission <article> element for each submission in the seed
file.

List of submissions

Your first Vue.js Web Application 24

Sorting

In traditional social feeds (like Reddit³³ and Hacker News³⁴), we often see number of votes as the
measuring stick that controls the position of different submission posts. Submissionswith the highest
number of votes appear at the top of the web page with lower voted submissions being positioned
at the bottom.

If we go back to our v-for statement in the template, we see an iteration of submission in

submissions. submissions is the standard data object that is being used in our view, retrieved from
our data source.

Wouldn’t it be great if we can somehow specify an iteration like submission in sortedSubmissions

where sortedSubmissions returns a sorted array of submissions all the time? This is where Vue’s
computed properties come in.

Computed properties

Computed properties are used to handle complex calculations of information that need to be
displayed in the view. Below the data property in our application instance (back in the main.js file),
we’ll introduce a computed property sortedSubmissions that returns a sorted array of submissions:

const upvoteApp = {

data() {

return {

submissions: Seed.submissions,

};

},

computed: {

sortedSubmissions() {

return this.submissions.sort((a, b) => {

return b.votes - a.votes;

});

},

},

};

Within an application instance, we’re able to reference the instance’s data object with this. Hence
this.submissions refers to the submissions object we’ve specified in our instance’s data. For sorting
we’re simply using the native Array object’s sort method³⁵.

In our template where we have our v-for expression, we can now replace submissions with
sortedSubmissions as the array to iterate over.

³³https://reddit.com
³⁴https://hackernews.com
³⁵https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort

Your first Vue.js Web Application 25

<article

v-for="submission in sortedSubmissions"

v-bind:key="submission.id"

class="media"

>

<!-- Rest of the submission template -->

</article>

Refreshing our browser, we see the same list of submissions but now appropriately sorted by the
number of votes!

Sorted list of submissions

Event handling (our app’s first interaction)

When the up-vote icon on each one of the submissions is clicked, we expect it to increase the votes
attribute for that submission by one. To handle this interaction, we’ll be using Vue’s native v-on

directive.

The v-on directive

The v-on directive is used to create event listeners within the DOM.

Your first Vue.js Web Application 26

As all web browsers are event driven, we’ll use these events to trigger interaction in our Vue
application. For instance, in native JavaScript (i.e. without Vue), we can attach an event listener
to a DOM object using the addEventListener() method.

const ele = document.getElementById("app");

ele.addEventListener("click", () => console.log("clicked"));

In Vue, we can use the v-on:click directive to implement a click handler. We can specify
this click handler on an up-vote icon of a submission. We’ll set this click event handler to
call an upvote(submission.id) method whenever the up-vote icon is clicked. We’ll pass in the
submission.id as an argument to be used within the method. This updates the div element that
encompasses the up-vote icon to this:

<div class="media-right">

<i class="fa fa-chevron-up"></i>

<strong class="has-text-info">{{ submission.votes }}

</div>

Since we’ve specifed the click event, we now need to define the upvote(submissionId) method in
our application instance.

To define methods bound to the application instance, we can use the methods option that exists in a
Vue application instance. Methods behave like normal JavaScript functions and are only evaluated
when explicitly called. Below the computed property in our instance, let’s introduce the methods

property and the upvote method:

const upvoteApp = {

data() {

return {

submissions: Seed.submissions,

};

},

computed: {

sortedSubmissions() {

return this.submissions.sort((a, b) => {

return b.votes - a.votes;

});

},

},

methods: {

upvote(submissionId) {

Your first Vue.js Web Application 27

const submission = this.submissions.find(

(submission) => submission.id === submissionId

);

submission.votes++;

},

},

};

Vue.createApp(upvoteApp).mount("#app");

The up-voting logic involves using the native JavaScript find()³⁶ method to locate the submission
object with the id equal to the submissionId parameter. The votes attribute of that submission is
then incremented by one.

Reactive state

We need to note an important aspect of Vue here. With a library like React, the above method
implementation is problematic since state is often treated as immutable. State within Vue, on the
other hand, is reactive.

Reactive state is one of the key differences that makes Vue unique. State (i.e. data) management is
often intuitive and easy to understand since modifying state often directly causes the view to update.

We’ll be seeing more and more on how Vue data responds reactively throughout the book. For now,
keep in mind Vue has an unobtrusive system to how data is modified and the view reacts.

Our app is now responsive to user interaction. Let’s save the index.html and main.js files, refresh
the browser, and start clicking the up-vote icons.

³⁶https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/find

Your first Vue.js Web Application 28

They work! Try up-voting a submission multiple times. Do you notice how it immediately jumps
over other submissions with lower vote counts? This functionality works thanks to Vue’s reactivity
system.

As we up-vote a submission, we are directly modifying the this.submissions data array. Our
computed property sortedSubmissions depends on this.submissions, so as the latter changes, so
does the former.

Our view is reactive to sortedSubmissions. When changes happen to our computed property, our
view re-renders to display that change!

Class bindings

Our application has implemented almost all the functionality we expected from the beginning.

Before we dive in and try to improve how our code is laid out, let’s add a conditional class that
displays a special blue border around a submission when said submission reaches a certain number
of votes (let’s say 20 votes).

We have the class blue-border already set up in our custom styles.css file. Our conditional class
binding will basically dictate: the presence of the blue-border class depends on the truthiness of
submission.votes >= 20. We’ll use the v-bind directive to dynamically enable the class when the
submission votes exceeds 20:

Your first Vue.js Web Application 29

<article

v-for="submission in sortedSubmissions"

v-bind:key="submission.id"

class="media"

v-bind:class="{ 'blue-border': submission.votes >= 20 }"

>

<!-- Rest of the submission template -->

</article>

Pretty simple huh? There’s many ways to specify inline conditional class and style bindings with
which we’ll investigate deeper throughout the rest of the book.

Now, if we go ahead and up-vote a submission to twenty or more votes, we’ll see a blue border
appear.

Yay! We’ve introduced all the features we initially had in mind for UpVote!. Our application is
dynamically data-driven with external data, sorts all the submissions based on the number of votes,
and listens for user interaction on up-voting.

Let’s assume we had much larger plans on scaling the front end of UpVote!. New features could be
added in like having a navigation header, a sidebar for submitting new submissions, a footer, etc. If
we continue building our application the same way we’ve been going about it, we’ll be introducing
a lot more data/methods/properties to our root application instance.

Your first Vue.js Web Application 30

This will bloat our DOM, eventually making changes to our code unmanageable. This is where the
concept of isolated components come in.

Components

Vue, like other modern-day JavaScript frameworks, provides the ability for users to create isolated
components within their applications. Reusability and maintainability are some of the main
reasons as to why components are especially important.

Components are intended to be self-contained modules since we can group markup (HTML),
logic (JS) and even styles (CSS) within them. This allows for easier maintenance, especially when
applications grow much larger in scale.

Let’s create a new component for our application. As a result, we’ll break apart the interface of our
app into two separate entities:

• The parent component which encompasses all the separate submissions - this will be the
existing application instance.

• The new submission component which represents a single submission.

Our app’s components

Your first Vue.js Web Application 31

The standard method for creating a global Vue component is handled by using the component()

constructor method available from the root application instance:

const app = Vue.createApp({});

app.component("submission-component", {

// options

});

Though this would work, we’d want our component properly defined within the scope of our
application instance. Instead, let’s assign our newly created submission-component to a constant
variable and register it as part of the component option in our application instance.

In our main.js file, let’s specify a submissionComponent object that references a new component.
We’ll declare this object right above the root application instance:

const submissionComponent = {};

const upvoteApp = {

// ...

};

Vue.createApp(upvoteApp).mount("#app");

template

Vue components are Vue instances. The majority of properties (except for a few root-specific
options) that exist in a root application instance (data, methods, etc.) can exist in a component as
well.

In Vue components, a template option exists that allows us to define the template of that component.
The simplest way of defining a template is within strings. Here’s an example:

const submissionComponent = {

template: "<div>Hello World!</div>",

};

If we wanted to define a template over multiple lines, we’ll have to use ES6’s template literals³⁷
(specified with the use of backticks). This is because JavaScript doesn’t allow strings to span over
multiple lines.

³⁷https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals

Your first Vue.js Web Application 32

const submissionComponent = {

template: ` <div>

Hello World!

</div>`,

};

We’re specifying templates for a Vue application that isn’t being precompiled. In the next
chapter³⁸, we’ll be exposed to a different way of defining component templates since that
chapter’s application will be precompiled during build.

In the submissionComponent, the template property will reflect all the items contained within a
single submission. Let’s update the submissionComponent to reflect this:

const submissionComponent = {

template: `<div style="display: flex; width: 100%">

<figure class="media-left">

<img class="image is-64x64"

v-bind:src="submission.submissionImage">

</figure>

<div class="media-content">

<div class="content">

<p>

<a v-bind:href="submission.url" class="has-text-info">

{{ submission.title }}

#{{ submission.id }}

{{ submission.description }}

<small class="is-size-7">

Submitted by:

<img class="image is-24x24"

v-bind:src="submission.avatar">

</small>

</p>

</div>

</div>

<div class="media-right">

³⁸components

Your first Vue.js Web Application 33

<i class="fa fa-chevron-up"></i>

<strong class="has-text-info">{{ submission.votes }}

</div>

</div>`,

};

There’s a few things to address here.

1. In Vue 3, the template of a component doesn’t have to be enclosed within a single root element.
Though this isn’t a strict limitation, we’ve wrapped everything within a <div style="display:

flex; width: 100%"></div> element to have a single element represent a single component.
We’ve added some additional styling to comply with this new root element.

2. The submission object in this template is currently undefined. When this component is
declared, we’re going have to pass data from the parent component (i.e. the root instance) down
to this child component. We’re going to use Vue props to pass data from the root component
to this component.

3. The upvote() click listenermethod needs to bemapped to amethodwithin the submissionComponent
for it to work. As a result, we’re going to have to transfer the upvote() method from the
application instance to this component.

Before we look into points (2) and (3), let’s reference the newly created component in the DOM. In
the index.html file; we’ll first remove the submission template code within the <article> element.
We’ll then replace this inner content with a single <submission-component> element:

<article

v-for="submission in sortedSubmissions"

v-bind:key="submission.id"

class="media"

v-bind:class="{ 'blue-border': submission.votes >= 20 }"

>

<submission-component></submission-component>

</article>

Our root application instance currently doesn’t recognize this <submission-component> element.
In order to give the root instance awareness of our new component, we’ll define it as a key in a
components property of our root instance in the main.js file:

Your first Vue.js Web Application 34

const upvoteApp = {

// ...,

components: {

"submission-component": submissionComponent,

},

};

In the components options of the root application instance, we’ve mapped a submission-component
declaration to the submissionComponent object.

Props

Vue gives us the ability to pass data from a parent component down to a child component with the
help of props. In Vue, props are attributes that need to be given a value in the parent component
and have to be explicitly declared in the child component. As a result, props can only flow in a
single direction (parent to child), and never in the opposite direction (child to parent).

The v-bind directive is used to bind dynamic values (or objects) as props in a parent instance.

In the index.html file, we’re going to pass both the iterated submission object and the sortedSubmissions
array as props to submission-component. The submission object will be used in the template of
the submission-component while sortedSubmissions will be used in the upvote() method of that
component.

This makes our <article> element be updated to this:

upvote/app_5/index.html

<div class="section">

<article v-for="submission in sortedSubmissions"

v-bind:key="submission.id"

class="media"

v-bind:class="{ 'blue-border': submission.votes >= 20 }">

<submission-component

v-bind:submission="submission"

v-bind:submissions="sortedSubmissions">

</submission-component>

</article>

</div>

We’ve set the submission object to a prop of the same name and we’ve set the sortedSubmissions
array to a prop labelled as submissions.

For a child component to use the props provided to it, it needs to explictly declare the props it
receives with the props option. Let’s introduce a props option in the submissionComponent object
and specify the submission and submissions props being passed in:

Your first Vue.js Web Application 35

const submissionComponent = {

template: `

// ...

`,

props: ["submission", "submissions"],

};

Now the submission object and the submissions array can safely be used within the template of
submissionComponent. All that’s left for us to do is migrate the upvote() method from the root
instance to the submissionComponent object.

This will update the submissionComponent object to:

upvote/app_5/main.js

const submissionComponent = {

template:

` <div style="display: flex; width: 100%">

<figure class="media-left">

<img class="image is-64x64"

v-bind:src="submission.submissionImage">

</figure>

<div class="media-content">

<div class="content">

<p>

<a v-bind:href="submission.url" class="has-text-info">

{{ submission.title }}

#{{ submission.id }}

{{ submission.description }}

<small class="is-size-7">

Submitted by:

<img class="image is-24x24"

v-bind:src="submission.avatar">

</small>

</p>

</div>

</div>

<div class="media-right">

Your first Vue.js Web Application 36

<i class="fa fa-chevron-up"></i>

<strong class="has-text-info">{{ submission.votes }}

</div>

</div>`,

props: ['submission', 'submissions'],

methods: {

upvote(submissionId) {

const submission = this.submissions.find(

submission => submission.id === submissionId

);

submission.votes++;

}

}

};

And the root instance will now look like the following:

upvote/app_5/main.js

const upvoteApp = {

data() {

return {

submissions: Seed.submissions

}

},

computed: {

sortedSubmissions () {

return this.submissions.sort((a, b) => {

return b.votes - a.votes

});

}

},

components: {

'submission-component': submissionComponent

}

};

Vue.createApp(upvoteApp).mount('#app');

If we save the main.js file and refresh our browser, everything should remain as is and all
functionality should work as expected!

Your first Vue.js Web Application 37

v-bind and v-on shorthand syntax

Before we conclude this chapter, let’s discuss another feature that Vue provides.

The v- prefix in Vue directives is a visual indicator that a Vue template attribute is being used. For
simplicity, Vue provides shorthands for the commonly used v-bind and v-on directives.

The v-bind directive can be shortened with the : symbol:

// the full syntax

// the shorthand syntax

And the v-on directive can be shortened with the @ symbol:

Your first Vue.js Web Application 38

// the full syntax

// the shorthand syntax

This shorthand syntax is completely optional but allows us to use the v-bind and v-on directives
without explicitly typing out the full syntax.

For the rest of the book we’ll stick to using the shorthand syntax for v-bind and the v-on
directives.

For the UpVote! application, you’ll be able to see the use of the shorthand syntax in the upvote/app_-
complete/ folder. The rest of the code remains the same with the only changes replacing the
v-bind and v-on syntax with : and @ respectively.

Congratulations!

We just wrote our first Vue app. We’ve gone through the easiest foray to getting started and there are
plenty of powerful features we haven’t covered yet. With this chapter, we’ve managed to understand
the core fundamentals that we’ll be building on throughout the book.

Recap

1. The application instance is the starting point of all Vue applications. The instance can have
options like the data, computed and methods properties and is often mounted/attached to a
DOM element.

2. The ‘Mustache’ syntax can be used for data binding. The v-bind directive is used for binding
HTML attributes.

3. Vue directives such as v-for can be used to manipulate the template based on the data provided.
The v-on directive is used as an event handler to listen to DOM events.

4. We think and organize our Vue apps with components.

Onward!

Single-file components
Introduction

In the last chapter we briefly covered how Vue lets us organize our app into components which can
be used and manipulated in the view.

In this chapter, we’ll be diving in deeper into building components with Vue. We’ll investigate a
pattern that we’ll be be able to use to scale Vue apps from scratch. We’ll be using this pattern to
create an app interface that manages events within a weekly calendar.

In our weekly calendar app, a user can add, delete, and edit day to day events within a week. Each
event corresponds to a particular task/to-do item that the user would like to keep track of:

Single-file components 40

Setting up our development environment

Node.js and npm

For this project (and themajority of projects) in this book, we’ll need tomake sure we have a working
Node.js³⁹ development environment along with the Node Package Manager (npm).

There are a couple different ways we can install Node.js so please refer to the Node.js website for
detailed information: https://nodejs.org/download/⁴⁰.

It’s also possible to install Node.js using a tool like nvm⁴¹ or the n⁴² tool. Using a package like these
allow us to maintain multiple version of node in our development environment.

If you’re on a Mac, your best bet is to install Node.js directly from the Node.js⁴³ website
instead of through another package manager (like Homebrew). Installing Node.js via
Homebrew is known to cause some issues.

If you’re on a Windows machine, you would need to install Node.js through the Windows
Installer from the Node.js⁴⁴ website.

The easiest way to verify if Node.js has been successfully installed is to check which version of
Node.js is running. To do this, we’ll open a terminal window and run the following command:

$ node -v

npm is installed as a part of Node.js. To check if npm is available within our development
environment, we can list the version of our npm binary with:

$ npm -v

In either case, if a version number is not printed out and instead an error is emitted, make sure to
download a Node.js installer that includes npm and ensure that the PATH is set appropriately.

Vue syntax highlighting

In this chapter, we’ll be introducing Vue single-file components. These components allow us to write
Vue code within a new file format - .vue. Depending on your code editor, you may need to install a
syntax highlighting plugin to simplify the readability of these components. Here are some popular
Vue code highlighting plugins for the following editors:

• Sublime Text: vue-syntax-highlight⁴⁵
³⁹http://nodejs.org
⁴⁰https://nodejs.org/download/
⁴¹https://github.com/creationix/nvm
⁴²https://github.com/tj/n
⁴³http://nodejs.org
⁴⁴http://nodejs.org
⁴⁵https://github.com/vuejs/vue-syntax-highlight

Single-file components 41

• Atom: language-vue-component⁴⁶
• Vim: vim-vue⁴⁷
• Visual Studio Code: Vetur⁴⁸

Getting started

As with all chapters, we begin by making sure that we’ve downloaded the book’s sample code and
have it at the ready.

Previewing the app

Before we start writing any code, let’s see a complete implementation of the app.

In the terminal, let’s change into the calendar_app directory using the cd command:

$ cd calendar_app

We’ll use npm to install all the application’s dependencies. These dependencies allow us to write our
application using ES6/ES7 as well as include the Vue library. Instead of using the CDN version of
Vue, we’ll embed the dependency into our application.

Let’s install the applications’ dependencies:

$ npm install

Now we can start the server using the npm run serve call (which starts the application in
development mode):

$ npm run serve

To preview the complete application, we’ll point our browser to the URL http://localhost:8080.
Spend a few minutes playing around with the app to get an understanding of what we’ll be building.

⁴⁶https://atom.io/packages/language-vue-component
⁴⁷https://github.com/posva/vim-vue
⁴⁸https://marketplace.visualstudio.com/items?itemName=octref.vetur

Single-file components 42

Prepare the app

In our terminal, let’s run ls to see the project’s layout:

$ ls

README.md

babel.config.js

node_modules/

package.json

public/

src/

In addition, we have the hidden .gitignore file in the project directory.

There are significant changes in the structure of this project as compared to our first app. We’ll break
down each file and directory in the section below.

If you’re not familiar with Javascript Webpack projects, don’t be deterred from continuing
with this chapter. The configuration is good to understand but we’ll only be working within
the src/ folder of the application.

Single-file components 43

README.md

All extra information/run steps are listed in the README.md file.

babel.config.js

Babel⁴⁹ is a JavaScript transpiler that transpiles ES6 syntax to older ES5 syntax for any browser to
understand. The .babel.config.js⁵⁰ file can be used to configure the Babel presets and plugins in
our application. This package/setup allows us to transpile all of our .js files, which subsequently
allows us to write with ES6.

node_modules

The node_modules directory refers to all the different JavaScript libraries that have been installed in
our application with npm install.

package.json

The package.json file lists all the locally installed npm packages in our application for us to manage.
The scripts portion dictates the npm commands that can be run in our application.

calendar_app/package.json

"scripts": {

"serve": "vue-cli-service serve",

"build": "vue-cli-service build",

"lint": "vue-cli-service lint"

},

For our app, we’ll be running npm run serve in our terminal to run our local Webpack server.

Though we won’t be deploying our application in this chapter, npm run build will use Webpack to
bundle our application files to static assets within a dist/ folder. This prepares the dist/ folder to
be ready for deployment.

npm run lint uses ESLint⁵¹ to run through our application source code and identify/report any errors
or code that doesn’t follow a particular pattern. The patterns our application will lint (i.e. check for)
are dictated in the eslintConfig field of package.json.

The overview of code to identify and report any errors or disorder is known as linting. The
primary reason behind linting is to ensure code quality by verifying code is both free of
errors and it adheres to certain code standards/practices.

⁴⁹https://babeljs.io/
⁵⁰https://cli.vuejs.org/config/#babel
⁵¹https://eslint.org/

Single-file components 44

Notice how each script runs a command that starts with vue-cli-service? The vue-cli-service⁵²
is a development dependency that is installed to each and every project scaffolded with the Vue CLI.
This service, built on top of webpack⁵³ and webpack-dev-server⁵⁴, introduces the commands for us
to build, lint, test, and serve our application.

The Vue CLI scaffolds a standard Webpack configuration that’s able to be used by most Vue
applications. If customization needs to be done to this out-of-the-box configuration, the vue-cli

gives us the ability to do so in fine-grained manner. Though we won’t be making any customizations
to the scaffold in this chapter, you can read more details in the Configuration Reference⁵⁵ section of
the vue-cli docs.

Let’s quickly address the dependencies that have been installed in our application.

We have the vue library as the main dependency:

calendar_app/package.json

"vue": "^3.0.0"

And a series of build libraries as the devDependencies:

calendar_app/package.json

"devDependencies": {

"@vue/cli-plugin-babel": "~4.5.0",

"@vue/cli-plugin-eslint": "~4.5.0",

"@vue/cli-service": "~4.5.0",

"@vue/compiler-sfc": "^3.0.0",

"babel-eslint": "^10.1.0",

"eslint": "^6.7.2",

"eslint-plugin-vue": "^7.0.0-0",

"node-sass": "^4.12.0",

"sass-loader": "^8.0.2"

},

@vue/cli-service installs the vue-cli-service binary.

@vue/cli-plugin-babel and @vue/cli-plugin-eslint are plugins that have been introduced in to
our application. In the vue-cli, plugins⁵⁶ can be used to add additional features to a project by
modifying the internal Webpack configuration. @vue/cli-plugin-babel⁵⁷ is a plugin that introduces
Babel to help transpile ES6 JavaScript down to ES5. @vue/cli-plugin-eslint⁵⁸ is used to introduce
ESLint into our application.

⁵²https://cli.vuejs.org/guide/cli-service.html#cli-service
⁵³https://webpack.js.org/
⁵⁴https://github.com/webpack/webpack-dev-server
⁵⁵https://cli.vuejs.org/config/#configuration-reference
⁵⁶https://cli.vuejs.org/guide/plugins-and-presets.html
⁵⁷https://github.com/vuejs/vue-cli/tree/dev/packages/%40vue/cli-plugin-babel
⁵⁸https://github.com/ascendancyy/vue-cli-plugin-eslint

Single-file components 45

node-sass and sass-loader helps compile SCSS to CSS within a node development environment.

@vue/compiler-sfc is a package to help compile Vue single-file components.

In a Node.js environment, devDependencies are the packages needed only during develop-
ment while dependencies are often needed for both development and production.

In the package.json file, there also exists the eslintConfig and browserslist fields:

eslintConfig lists the details of our applications ESLint configuration. In the Vue CLI, ESLint can
be configured with the eslintConfig field in package.json or a separate .eslintrc file.

browserslist declares the browsers our application is targeting. The details in browserslist is used
by both our application’s babel configuration (to determine the appropriate JavaScript transpilation)
as well as autoprefixer (to determine the appropriate CSS vendor prefixes).

public/

The public/ folder hosts the bulma/⁵⁹ and font-awesome/⁶⁰ libraries that we’ll use in our application.

In addition, public/ contains the index.html file which represents the root markup page of our
application. This file is where we specify the external stylesheet dependencies as well as the DOM
element where the Vue instance is to be mounted.

The index.html file:

calendar_app/public/index.html

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<meta http-equiv="X-UA-Compatible" content="IE=edge">

<meta name="viewport" content="width=device-width,initial-scale=1.0">

<link rel="icon" href="<%= BASE_URL %>favicon.ico">

<title><%= htmlWebpackPlugin.options.title %></title>

<link rel="stylesheet"

href="<%= BASE_URL %>bulma/bulma.css">

<link rel="stylesheet"

href="<%= BASE_URL %>font-awesome/css/font-awesome.min.css">

</head>

<body>

<noscript>

⁵⁹https://bulma.io/
⁶⁰http://fontawesome.io/

Single-file components 46

We're sorry but <%= htmlWebpackPlugin.options.title %> doesn't work pr\

operly without JavaScript enabled. Please enable it to continue.

</noscript>

<div id="app"></div>

<!-- built files will be auto injected -->

</body>

</html>

In the <body></body> element, the <no-script></no-script> tag displays a message to the user that
states the application won’t work as intended if JavaScript is disabled in the browser.

The built files will be auto injected comment references the fact that in the production build
(i.e. the dist/ folder that’s generated from the application build script), the app configuration will
auto inject⁶¹ the built files into the index.html file.

src/

The src/ directory contains the JavaScript files that we’ll be working directly with:

$ ls src/

app/

app-1/

app-2/

app-3/

app-4/

app-5/

app-6/

app-7/

app-complete/

main.js

We’ll be building our app inside app/. Each significant step we take along the way is included here:
app-1/, app-2/, and so forth.

Like the last chapter, code examples in the book are titled with the file in which the example is
defined.

Our main.js file dictates the starting point of our application. main.js is where we mount our Vue
instance to the DOM element with an id of #app, the declared DOM element in our index.html file.

We also import and specify the component App.vue to be the root-level parent component rendered
in our Vue application.

⁶¹https://cli.vuejs.org/guide/html-and-static-assets.html#the-index-file

Single-file components 47

calendar_app/src/main.js
import { createApp } from 'vue';

import App from './app-complete/App.vue';

createApp(App).mount('#app');

Like we’ve seen in the first chapter of the book, we’re using the global createApp() function
to create our application instance.We chain a mount() function to specify the HTML element
with the id of app to be the mounting point of our Vue application.

Our first step is to ensure we’re not referencing the app-complete sub folder anymore. Instead, we’ll
import App from ./app/App.vue to load the application from a starting point:

import { createApp } from "vue";

import App from "./app/App.vue";

createApp(App).mount("#app");

.gitignore

.gitignore dictates the files in our repository that we don’t want Git to check into Github. This file
is often used to ignore certain files such as build products (node_modules/) or local configuration
settings.

Front end configuration with build tools like Webpack is known to be an arduous task often
labelled as JavaScript fatigue.

Vue CLI⁶² does a great job in rapidly scaffolding Vue.js applications with minimal to no
additional configuration needed. All Webpack based projects in this book will be scaffolded
from the Vue CLI to have all the necessary build tools set up right away. For more details in
the inner-workings of the Vue CLI, be sure to head to the main documentation⁶³.

Single-File Components

Before we start building our application, we’ll address and talk about a powerful Vue feature known
as single-file components.

In the last chapter, we touched on how app.component() can be used to define global components
where app represents the application instance. Instead of using app.component(), we assigned
our created components to constant variables and declared them in the components option of the
application instance, like this:

⁶²https://cli.vuejs.org/guide/
⁶³https://cli.vuejs.org/guide/

Single-file components 48

const submissionComponent = {

/* ... */

};

const upvoteApp = {

// ...

components: {

"submission-component": submissionComponent,

},

};

Vue.createApp(upvoteApp).mount("#app");

With either app.component() or components assigned to constant variables, we have to write our
component templates using ES6’s template literals (by using backticks) to obtain a presentable
multiline format.

const submissionComponent = {

template: `<div>

<p>Component Template</p>

</div>`,

};

The above does a good job for small projects. However, as an application grows, global components
create limitations by not allowing us to specify unique CSS within them and not having appropriate
syntax highlighting within their template.

As a result, Vue provides the option to use single-file components to reduce this disorganization.
Vue’s single-file components focus heavily on coupling logic by giving us the ability to define
HTML/CSS and JS of a component all within a single .vue file.

A single-file component consists of three parts:

• <template> which contains the component’s markup in plain HTML
• <script>which exports the component object constructor that consists of all the JS logic within
that component

• <style> which contains all the component styles

Here’s an example of a single-file component called MyComponent.vue:

Single-file components 49

appendix/components/MyComponent.vue

<template>

<h2>{{ getGreeting }}</h2>

<p>This is the Hello World component.</p>

</template>

<script>

export default {

name: 'MyComponent',

data () {

return {

reversedGreeting: '!dlrow olleH'

}

},

computed: {

getGreeting() {

return this.reversedGreeting.split("").reverse().join("");

}

}

}

</script>

<style lang="scss" scoped>

h2 {

width: 100%;

text-align: center;

}

</style>

Our template displays the returned value of the getGreeting computed property declared in the
<script> tag. getGreeting simply reverses the reversedGreeting data property to return “Hello
World!” in the template.

The <style> tag specifies lang="scss"which dictates the use of the SCSS preprocessor in our styles.
scoped dictates these styles will be applied to this and only this component.

Single-file components in Vue are made possible due to build tools like Webpack. These tools
work alongside prepared packages like @vue/compiler-sfc to compile .vue components to plain
JavaScript modules that can be understood in browsers.

With the single-responsibility principle, we’ll be able to componentize our application with the help
of single-file components.

Single-file components 50

Breaking the app into components

Just like we did in the last chapter, we’ll start by breaking the app down into its components. Visual
components can be tightly mapped to their respective single-file components.

With the components of our application in mind, let’s address the interface of the app again:

We can first separate the application to three main components - App (the overarching parent
component), CalendarWeek, and CalendarEntry.

Single-file components 51

Within CalendarWeek, we can spot a pattern between the different columns (i.e. days). From this, we
can say the CalendarWeek component is the parent of different CalendarDay components.

Single-file components 52

We can also take this a step further and declare CalendarDay to be the parent component of multiple
CalendarEvent components.

Single-file components 53

The naming of our components is up to us, but having some consistent rules around language
will greatly improve code clarity.

Our final component hierarchy:

• App: Parent container
• CalendarWeek: Displays a row of calendar days

– CalendarDay: Displays a list of day events
* CalendarEvent: Displays a given event

• CalendarEntry: Displays a form

Our hierarchy represented with a simple graphical tree:

When it comes to Component-Based Architecture, levels of granularity depends upon how
we wish to encapsulate individual pieces of an interface.

Different teams/developers have different ways of laying out components, but the underly-
ing goal is maintainability and/or reusability. It’s a good idea to define the approach across
all developers explicitly.

Single-file components 54

Managing data between components

We’ve stressed that components should be as self-contained and isolated as much as possible.
Taking into account the scope of our application - we know that there should be some level
of communication between the components (e.g. submitting an event entry in CalendarEntry

should surface an event on CalendarDay). This brings us to component communication and/or state
management.

Parent-Child Components

Since every component has it’s own isolated scope, child components can never (and should never)
reference data directly from parent components. For a child component to access data from a parent,
data has to flow from the parent down to the child with the help of props. This design greatly
simplifies the understanding of an applications data flow since child components will never be able
to mutate parent state directly.

We’ll use props to pass data from CalendarWeek to CalendarDay to CalendarEvent, since a linear
hierarchy exists between these components.

Child-Parent Components

Since props can only flow in a single direction from parent to child, children components can only
directly communicate with a parent through custom events. Vue’s custom events work by triggering
events within a particular component, $emit(nameOfEvent), and listening for that event in another
component, $on(nameOfEvent). Data can also be passed through these events.

Though custom events work well, we won’t have the need to use it in this chapter. We’ll be going
through custom events in detail in Chapter 3.

Sibling Components

Managing data between sibling components are more difficult than that of parent-child (or child-
parent). Props cannot be used since sibling components are independent of one another (i.e. a sibling
component isn’t rendered within another sibling component).

In our application, we need to pass information from CalendarEntry to its sibling component
CalendarDay.

Managing data between sibling components in Vue can be categorized in three main buckets:

• Using a global event bus
• Using a simple, shared store object (for simple state management)
• Using the state management library Vuex

Single-file components 55

Global Event Bus

A global event bus builds on top of using Vue’s simple custom events by making events global to
the entire application. This is often a simple way of passing information between any components
regardless of their relationship (parent-child, child-parent or sibling-sibling).

It’s important to note, however, a global event bus is not often the recommended way of managing
data between components, since it doesn’t conform to a predictable and manageable way to handle
application state. [Since it’s a good concept to grasp due to its simplicity, we’ll be building a global
event bus in Chapter 3].

Vuex

Vuex builds upon having a simple state object by introducing explicitly defined getters, mutations,
and actions. A gradual understanding of this and the benefits of Vuex comes from first understand-
ing how simple state management works, which is exactly what we’ll be doing in this chapter. We
need not worry! We’ll be introducing how to integrate Vuex in Chapter 4.

Vue style guide suggestions Despite its boilerplate, the Vue style guide suggests Vuex as
the preferred method for global state management in large scale applications. The Non-Flux
State Management⁶⁴ section of the style guide addresses application state management and
provides some useful examples.

Simple State Management

Simple state management can be performed by creating a store pattern that involves sharing a data
store between components. The store manages this state with its actions/mutations/etc. and simply
passes the same data to multiple components.

State basically means data. State management often refers to the management of appli-
cation level data.

To give an example: assume we had a store.js file that exports a store object (which contains a
state object within):

⁶⁴https://v3.vuejs.org/style-guide/#non-flux-state-management-use-with-caution

Single-file components 56

appendix/store/simpleStore/store.js

export const store = {

state: {

numbers: [1, 2, 3]

},

// ...

}

Let’s say we had a single-file component, named NumberDisplay.vue, that displays the entire array
from the numbers property in our store:

appendix/store/simpleStore/NumberDisplay.vue

<template>

<div>

<h2>{{ storeState.numbers }}</h2>

</div>

</template>

<script>

import { store } from './store.js';

export default {

name: 'NumberDisplay',

data () {

return {

storeState: store.state

}

}

}

</script>

Assume we needed to provide functionality to add a new number, one at a time, to the rendered
array shown in NumberDisplay.vue. We will need a method that takes an input value and simply
pushes that value to that array.

All actions that mutate/change store data should always be within the store itself to ensure
proper centralization of application state.

With this method in mind, we can update the store with the following code:

Single-file components 57

appendix/store/simpleStore/store.js

export const store = {

state: {

numbers: [1, 2, 3]

},

pushNewNumber(newNumberString) {

this.state.numbers.push(Number(newNumberString));

}

}

We can now introduce a separate component NumberSubmit that simply calls the pushNewNumber

action in our store. In other words, the NumberSubmit component dispatches the store mutation,
pushNewNumber, which subsequently mutates the store (application) state.

The NumberSubmit component (defined in a NumberSubmit.vue file) can handle this functionality like
so:

appendix/store/simpleStore/NumberSubmit.vue

<template>

<div>

<input v-model="newNumber" type="number" />

<button @click="pushNewNumber(newNumber)">Add new number</button>

</div>

</template>

<script>

import { store } from './store.js';

export default {

name: 'NumberSubmit',

data () {

return {

newNumber: 0

}

},

methods: {

pushNewNumber(newNumber) {

store.pushNewNumber(newNumber);

}

}

}

</script>

Single-file components 58

We’re using the v-model directive in the example above to specify two-way data binding
between the input element and the newNumber data property. We explain the v-model

directive in detail later in this chapter.

Thanks to Vue’s reactivity, whenever the data within store state is manipulated - the relevant DOM
(<template> of NumberDisplay) should automatically update.

With a pattern like this, components should not change application state directly. Instead
they should dispatch events for the store to listen and invoke a mutation within. This form
of simple state management is a great precursor to understanding how the Flux architecture
works.

With Vue 3 and the example above, we’ll need to declare the application state as reactive to
have Vue’s reactivity system work as intended. We’ll explain this in more detail later in this
chapter.

Here’s a diagram to better display how state was managed in the example provided above:

Single-file components 59

Steps to building Vue apps from scratch

Now that we have a good understanding of the composition of our components and how to set up
simple state management, we’re ready to start building our calendar app.

Like our last chapter, it simplifies things for us to start off with static components. Clicking on
buttons won’t yield any behavior as we will not have wired up any interactivity. This will enable us
to lay the framework for the app getting a clear idea of how our components should be organized.

Next, we can determine the state for the app and in which component it should live. We’ll just
hard-code the state into the components instead of loading it from the server.

At that point, we’ll have the data flow from parent to child in place. We can then address setting
up our state mutations so one component can start manipulating the view in other components.

This follows from a simple, generic approach for developing an app from scratch:

1. Build a static version of the app
2. Break the app into components
3. Hard-code initial states with parent-child data flow
4. Create state mutations (and accompanying component dispatchers)

Let’s start with Step (1).

Step 1: A static version of the app

App.vue

As mentioned, all our Vue code for this chapter will be inside src/app/. By opening up the existing
App.vue file in src/app/, we’ll see a single file component with a large amount of markup and css.

A summarized App.vue looks like the following:

<template>

<div id="app">

<div id="calendar-week" class="container">

<!-- Markup for calendar week -->

</div>

<div id="calendar-entry">

<!-- Markup for calendar entry -->

</div>

</div>

</template>

Single-file components 60

<script>

export default {

name: "App",

};

</script>

<style lang="scss">

html, body, #app {

height: 100%;

}

#app {

<!-- SCSS for app -->

}

#calendar-week {

<!-- SCSS for calendar week -->

}

#calendar-entry {

<!-- SCSS for calendar entry -->

}

</style>

The markup for App.vue consists of a parent <div>, #app, with two child elements - #calendar-week
and #calendar-entry.

The <div id="calendar-week"></div> element displays a series of columns for each day within a
week with two hard-coded calendar events, on Monday and Friday respectively.

The <div id="calendar-entry"></div> element displays an input section where users will be able
to submit events to any particular day.

The <script> tag simply creates an export of the file with the name of App. The <style> element
contains custom styling for the #app, #calendar-week and #calendar-entry elements.

Just like the first chapter, our focus will be primarily on the usage of Vue. All the styling
needed in our application has already been prepared. As we start breaking our app into
components, we’ll transfer the necessary custom styles to each respective component.

Let’s see the current static version of the app. We’ll run the webpack-server (npm run serve) and
open our browser to the url at http://localhost:8080:

Single-file components 61

Static version of the app

Step 2: Breaking the app into components

Here’s the component layout we created earlier by assessing the app UI:

• App: Parent container
• CalendarWeek: Displays a row of calendar days

– CalendarDay: Displays a list of day events
* CalendarEvent: Displays a given event

• CalendarEntry: Displays a form to create a new calendar event

Let’s begin by creating the two main sibling components CalendarWeek and CalendarEntry. Within
our app/ folder we’ll create a components/ subfolder that consists of two new component files -
CalendarWeek.vue and CalendarEntry.vue. To do so, we can run the following steps in our terminal:

$ mkdir src/app/components

$ touch src/app/components/CalendarEntry.vue

$ touch src/app/components/CalendarWeek.vue

Let’s check out the structure now:

src/app/:

Single-file components 62

$ ls src/app/

App.vue

components/

seed.js

src/app/components/:

$ ls src/app/components/

CalendarEntry.vue

CalendarWeek.vue

Vue style guide suggestions

• With the exception of App, component names should generally be multi-word (e.g.
CalendarEntry). Check out the Multi-word components⁶⁵ blurb of the Vue style guide
for a deeper discussion about this.

• The filenames for single-file components should either be kebab-case
(calendar-entry.vue) or PascalCase (CalendarEntry.vue) as stated in the Single-file
component filename casing⁶⁶ section of the Vue style guide.

The HTMLmarkup and scss within App.vue are conveniently segregated with #app, #calendar-week
and #calendar-entry.We’ll simplymove the relevantmarkup/scss for #calendar-week to CalendarWeek
and #calendar-entry to CalendarEntry.

A summary of the new CalendarWeek.vue component:

<template>

<div id="calendar-week" class="container">

<!-- Markup for calendar week -->

</div>

</template>

<script>

export default {

name: "CalendarWeek",

};

</script>

<style lang="scss" scoped>

⁶⁵https://v3.vuejs.org/style-guide/#multi-word-component-names-essential
⁶⁶https://v3.vuejs.org/style-guide/#single-file-component-filename-casing-strongly-recommended

Single-file components 63

#calendar-week {

<!-- SCSS for calendar week -->

}

</style>

Next, we’ll take the same approach to building the CalendarEntry component. In the same manner,
a summary of the new CalendarEntry.vue component:

<template>

<div id="calendar-entry">

<!-- Markup for calendar entry -->

</div>

</template>

<script>

export default {

name: "CalendarEntry",

};

</script>

<style lang="scss" scoped>

#calendar-entry {

<!-- SCSS for calendar entry -->

}

</style>

We’re not displaying the entire markup/scss in the examples above for easier readability. As
you follow along, include the necessary markup and scss within these components that are
included in the final version of the application.

We now can update our root App.vue file to import and reference these newly created components:

calendar_app/src/app-1/App.vue

<template>

<div id="app">

<CalendarWeek />

<CalendarEntry />

</div>

</template>

<script>

Single-file components 64

import CalendarWeek from './components/CalendarWeek.vue';

import CalendarEntry from './components/CalendarEntry.vue';

export default {

name: 'App',

components: {

CalendarWeek,

CalendarEntry

}

}

</script>

<style lang="scss">

html, body, #app {

height: 100%;

}

</style>

<style lang="scss" scoped>

#app {

background: #6e6e6e;

display: flex;

flex-direction: column;

align-items: center;

-webkit-align-items: center;

justify-content: center;

-webkit-justify-content: center;

}

</style>

Notice how we have two <style> elements in App.vue. The scoped tag element (the one below)
references the styles within our component while the other element adds the CSS property height:

100% to the global html/body/#app elements.

Vue style guide suggestions It is recommended for components with no content to be
self-closing (e.g. <CalendarEntry /> instead of <CalendarEntry></CalendarEntry>) when
declared in single file components. This is mentioned in the Self-closing-components⁶⁷
section of the Vue style guide.

⁶⁷https://v3.vuejs.org/style-guide/#self-closing-components-strongly-recommended

Single-file components 65

Step 3: Hardcode Initial States

Let’s move on to step 3: hard-coding initial states for our components.

CalendarDay

In our app/ folder, we have a seed.js file just like we had in our first chapter. The seed.js exports
a seedData array that contains information for every day of the weekly calendar:

export const seedData = [

{

id: 1,

abbvTitle: 'Mon',

fullTitle: 'Monday',

events: [

{ details: 'Get Groceries', edit: false },

{ details: 'Carpool', edit: false }

],

active: true

},

// ...,

}

To reference the seed data in our components, we’ll do so in the store for our application. We’ll
create the store.js file in the root of our app/ folder:

$ ls src/app/

App.vue

components/

seed.js

store.js

Let’s now set up our store.js file to export a constant store variable that contains a state object
with a data property that references the seedData available in our app.

Single-file components 66

calendar_app/src/app-2/store.js

import { seedData } from './seed.js';

export const store = {

state: {

data: seedData

}

}

As we mentioned previously, the CalendarWeek component can render a list of CalendarDay

components and a single CalendarDay component can render a list of CalendarEvent components.
Let’s use the seed data to create our nested CalendarDay and CalendarEvent components.

First we’ll create the CalendarDay.vue and CalendarEvent.vue files in the components sub-directory:

$ ls src/app/components/

CalendarDay.vue

CalendarEntry.vue

CalendarEvent.vue

CalendarWeek.vue

In the CalendarWeek.vue file, we can see a repetition of markup associated with <div class="day

column"></div> elements. We’ll remove these sections and instead use v-for to render a list of
CalendarDay components. Let’s lay out how we’ll do this step-by-step.

In the <script> element of the CalendarWeek component, we’ll first import the store and reference
the store state as a sharedState data property within the component:

<script>

import { store } from "../store.js";

export default {

name: "CalendarWeek",

data() {

return {

sharedState: store.state,

};

},

};

</script>

We’ll then import CalendarDay and pass it in a components property:

Single-file components 67

calendar_app/src/app-2/components/CalendarWeek.vue

<script>

import { store } from '../store.js';

import CalendarDay from './CalendarDay.vue';

export default {

name: 'CalendarWeek',

data () {

return {

sharedState: store.state

}

},

components: {

CalendarDay

}

}

</script>

With this, we can now dictate a list of CalendarDay components using the v-for directive. Recall the
v-for directive requires the form of [variable name] in [data], so our CalendarDay component
can be repeated like so:

<CalendarDay v-for="day in sharedState.data" :key="day.id" />

We’re using the day id value as the key for each iterated component.

We can also pass down a prop, the iterated day object within our list, down to every CalendarDay

component. Since we’re passing in data objects as props, we’ll need to use the v-bind directive (with
the : shorthand) to bind our iterated data objects to our props.

<CalendarDay v-for="day in sharedState.data"

:key="day.id"

:day="day"/>

Implementing all the above and removing all repetitive day column elements in CalendarWeek, the
CalendarWeek.vue file will be updated to this:

Single-file components 68

calendar_app/src/app-2/components/CalendarWeek.vue

<template>

<div id="calendar-week" class="container">

<div class="columns is-mobile">

<CalendarDay v-for="day in sharedState.data"

:key="day.id"

:day="day" />

</div>

</div>

</template>

<script>

import { store } from '../store.js';

import CalendarDay from './CalendarDay.vue';

export default {

name: 'CalendarWeek',

data () {

return {

sharedState: store.state

}

},

components: {

CalendarDay

}

}

</script>

<style lang="scss" scoped>

#calendar-week {

margin-bottom: 50px;

.column {

padding: 0 0 0 0;

}

}

</style>

For our application to run, we’ll now need to create the CalendarDay component.

CalendarDay should explicitly declare the day prop that it’s receiving so that it can be used in the
template. We’ll set up a <script> element in the CalendarDay.vue file that specifies the name of the
component as CalendarDay and declares a day attribute as a prop of the component:

Single-file components 69

calendar_app/src/app-2/components/CalendarDay.vue

<script>

export default {

name: 'CalendarDay',

props: ['day']

}

</script>

The <template> of CalendarDay will consist of a single <div class="day column"></div> element.
With the use of the Mustache syntax, {{ }}, this element will display the day.abbvTitle and day.id

properties:

calendar_app/src/app-2/components/CalendarDay.vue

<template>

<div class="day column">

<div class="day-banner has-text-centered">{{ day.abbvTitle }}</div>

<div class="day-details">

<div class="day-number">{{ day.id }}</div>

<div class="day-event" style="background-color: rgb(153, 255, 153)">

<div>

Get Groceries

<div class="has-text-centered icons">

<i class="fa fa-pencil-square edit-icon"></i>

<i class="fa fa-trash-o delete-icon"></i>

</div>

</div>

</div>

</div>

</div>

</template>

Moving the necessary CSS along, our entire CalendarDay.vue file will be laid out like so:

Single-file components 70

calendar_app/src/app-2/components/CalendarDay.vue
<template>

<div class="day column">

<div class="day-banner has-text-centered">{{ day.abbvTitle }}</div>

<div class="day-details">

<div class="day-number">{{ day.id }}</div>

<div class="day-event" style="background-color: rgb(153, 255, 153)">

<div>

Get Groceries

<div class="has-text-centered icons">

<i class="fa fa-pencil-square edit-icon"></i>

<i class="fa fa-trash-o delete-icon"></i>

</div>

</div>

</div>

</div>

</div>

</template>

<script>

export default {

name: 'CalendarDay',

props: ['day']

}

</script>

<style lang="scss" scoped>

.day {

background-color: #4A4A4A;

color: #FFF;

border-left: 1px solid #8F8F8F;

border-bottom: 1px solid #8F8F8F;

font-size: 12px;

cursor: pointer;

&:hover {

background: darken(#4A4A4A,3%);

}

.day-banner {

background-color: #333333;

color: #FFF;

padding: 10px;

Single-file components 71

text-transform: uppercase;

letter-spacing: 1px;

font-size: 12px;

font-weight: 600;

}

.day-details {

padding: 10px;

}

&:last-child {

border-right: 1px solid #8F8F8F;

}

.day-event {

margin-top: 6px;

margin-bottom: 6px;

display: block;

color: #4C4C4C;

padding: 5px;

.details {

display: block;

}

.icons .fa {

padding: 0 2px;

}

input {

background: none;

border: 0;

border-bottom: 1px solid #FFF;

width: 100%;

&:focus {

outline: none;

}

}

}

}

</style>

Single-file components 72

If we run our application, we will see everything rendered with no errors. However, since our
CalendarDay component always renders the same <div class="day-event"></div> element, we
should expect to see the same event (Get Groceries) rendered multiple times.

App with CalendarDay components

CalendarEvent

If we look back at our seed data, we’ll notice that each day object has a list of event objects. Very
similar to what we just did to render CalendarDay, we can invoke a v-for directive to render a new
CalendarEvent component for every event in CalendarDay.

Assuming all event information (markup and css) is containedwithin CalendarEvent, our CalendarDay.vue
file now becomes:

Single-file components 73

calendar_app/src/app-3/components/CalendarDay.vue
<template>

<div class="day column">

<div class="day-banner has-text-centered">{{ day.abbvTitle }}</div>

<div class="day-details">

<div class="day-number">{{ day.id }}</div>

<CalendarEvent v-for="(event, index) in day.events"

:key="index"

:event="event"

:day="day"/>

</div>

</div>

</template>

<script>

import CalendarEvent from './CalendarEvent.vue';

export default {

name: 'CalendarDay',

props: ['day'],

components: {

CalendarEvent

}

}

</script>

<style lang="scss" scoped>

.day {

background-color: #4A4A4A;

color: #FFF;

border-left: 1px solid #8F8F8F;

border-bottom: 1px solid #8F8F8F;

font-size: 12px;

cursor: pointer;

&:hover {

background: darken(#4A4A4A,3%);

}

.day-banner {

background-color: #333333;

color: #FFF;

padding: 10px;

Single-file components 74

text-transform: uppercase;

letter-spacing: 1px;

font-size: 12px;

font-weight: 600;

}

.day-details {

padding: 10px;

}

&:last-child {

border-right: 1px solid #8F8F8F;

}

}

</style>

We’re passing down both day and event objects to the CalendarEvent component. The event prop
will be used to display information of the event while the day prop will be used in method handlers
we’ll create later.

Since an id doesn’t exist for each event object, we’re using the index of the event within the events
array as the key identifier. The v-for directive supports the index of the iterated item as an optional
second argument. We’re declaring this index and binding its value to the key of each iterated item.

We’ll go ahead and build out the CalendarEvent component in the CalendarEvent.vue file. Within
the CalendarEvent component, let’s create a computed property called getEventBackgroundColor

that returns a random color from an array to be used as the background-color for each event for
styling.

This makes the CalendarEvent.vue file become:

calendar_app/src/app-3/components/CalendarEvent.vue

<template>

<div class="day-event" :style="getEventBackgroundColor">

<div>

{{ event.details }}

<div class="has-text-centered icons">

<i class="fa fa-pencil-square edit-icon"></i>

<i class="fa fa-trash-o delete-icon"></i>

</div>

</div>

</div>

</template>

Single-file components 75

<script>

export default {

name: 'CalendarEvent',

props: ['event', 'day'],

computed: {

getEventBackgroundColor() {

const colors = ['#FF9999', '#85D6FF', '#99FF99'];

let randomColor = colors[Math.floor(Math.random() * colors.length)];

return `background-color: ${randomColor}`;

}

}

}

</script>

<style lang="scss" scoped>

.day-event {

margin-top: 6px;

margin-bottom: 6px;

display: block;

color: #4C4C4C;

padding: 5px;

.details {

display: block;

}

.icons .fa {

padding: 0 2px;

}

input {

background: none;

border: 0;

border-bottom: 1px solid #FFF;

width: 100%;

&:focus {

outline: none;

}

}

}

</style>

Single-file components 76

At this point, we have our store created and the App, CalendarWeek, CalendarEntry, and CalendarEvent
components all appropriately set up.

Saving our edited files and opening http://localhost:8080 in our browser, we should see our
application look like this:

App with CalendarEvent components

Step 4: Create state mutations (and corresponding
component actions)

We’ve done a good job in appropriately defining markup and CSS within their self-contained
components. The messy and large single file we had started with is now a lot more easier to maintain.

We’ll continue with this mindset by building and coupling interactions within their respective
components.

Before we make our app interactive, we’ll break down all the unique interactions our application
should have before addressing each one of them:

1. When the user clicks a day within the calendar week, our CalendarEntry component should
appropriately reference the correct day selected. (i.e. the user clicks THU - text in CalendarEntry

becomes Day of Event: Thursday).

Single-file components 77

2. The user can submit a new event to a certain day by typing the details in the input within the
CalendarEntry component and clicking Submit. (If the user clicks Submit with a blank input, an
error message should appear stating blank inputs are invalid).

3. If the user clicks the edit icon on an event, an input is provided to allow the user to change the
event details. When the user updates the event and clicks the confirm icon, the event details are
updated. (If the user clicks the edit icon, then the confirm icon with a blank input - the event details
remains the same).

4. The user is able to completely remove an event by clicking the delete icon on an event.

We’ll address each of these interactions one by one. However before we begin establishing these
interactions, we’ll first need to specify that the shared state we have in our application is reactive.

Declaring Reactive State

We’ve mentioned in the first chapter how Vue treats state and state changes as reactive. This is
because the view is updated when state is modified directly. When we return an object from the
data() in a component, Vue internally makes the data reactive.

When we take a look at how we’re establishing our own store object in the store.js file, we can
see that we’re constructing this store outside of a component.

calendar_app/src/app-2/store.js

import { seedData } from './seed.js';

export const store = {

state: {

data: seedData

}

}

Though we’ll reference this store state in our component data, our Vue application won’t always
be able to recognize that this store state should be reactive. This is where we can use a reactive()
method that Vue provides.

In our store.js file, we’ll import the reactive() function from the Vue package and specify the
value of the data property as reactive(seedData).

Single-file components 78

calendar_app/src/app-3/store.js

import { reactive } from 'vue';

import { seedData } from './seed.js';

export const store = {

state: {

data: reactive(seedData)

},

}

With this change, we can ensure that the view would automatically update when our application
state changes.

When we return an object from data() in a component, it is internally made reactive by the
reactive() function. Since our shared application state object is created outside of the context of
a component and to ensure that this state is to be reactive, we’ve used the reactive() function
available to us to help us achieve this familiar reactivity with our shared application state.

We’ll now move towards establishing the different interactions that will occur in our app.

getActiveDay | setActiveDay

Let’s take a look at a single day object within our seed data once again:

calendar_app/src/app/seed.js

{

id: 1,

abbvTitle: 'Mon',

fullTitle: 'Monday',

events: [

{ details: 'Get Groceries', edit: false },

{ details: 'Carpool', edit: false }

],

active: true

},

We see the active property in each day object behaves as a boolean (true/false). This property is
the primary indicator for our first interaction. This interaction will be seen as two separate pieces:

• getActiveDay(): return the day object that has active: true

This method is used to display the title of the active day in CalendarEntry.

Single-file components 79

• setActiveDay(): sets the selected day to active: true and all other day objects to active:

false

This function will run when the user clicks on a particular day (CalendarDay), with which the user
intends to make active.

As we mentioned earlier, all actions that mutate state should always be contained within the store.
With this in mind, let’s create our store methods.

We’ll build the getActiveDay() function by using JavaScript’s find()method on the data array. The
find() method always returns the first value from the array that pass the test implemented.

export const store = {

state: {

data: reactive(seedData),

},

getActiveDay() {

return this.state.data.find((day) => day.active);

},

};

Keep in mind we’re simply laying out the store methods first. Nothing will change in our
application until we create the @click listeners in our components to dispatch events to the
store.

For the second piece, as the user clicks on a particular day, we’ll use day.id as the argument to
determine what day was selected. We’ll use JavaScript’s native map() method to iterate over the
entire state object, set the intended day’s active property to true, and set every other day to active:
false.

We’ll include the setActiveDay()method right below getActiveDay()making our store object now
look like:

calendar_app/src/app-4/store.js

export const store = {

state: {

data: reactive(seedData)

},

getActiveDay () {

return this.state.data.find((day) => day.active);

},

setActiveDay (dayId) {

this.state.data.map((dayObj) => {

Single-file components 80

dayObj.id === dayId ? dayObj.active = true : dayObj.active = false;

});

}

}

We’re using a ternary operator in the setActiveDay() method as a shortcut for an if

statement. If this is unclear, check out the Conditional (ternary) Operator⁶⁸ section in the
MDN web docs for details on how this works.

With our state getter/setter setup, we need to dispatch events in our components to call these actions.

For CalendarEntry, we’ll use a simple computed property, titleOfActiveDay, to return the full title
of the returned day from the getActiveDay() method.

We can update the <template> and <script> tags in the CalendarEntry.vue file to be:

calendar_app/src/app-4/components/CalendarEntry.vue

<template>

<div id="calendar-entry">

<div class="calendar-entry-note">

<input type="text" placeholder="New Event" />

<p class="calendar-entry-day">

Day of event: {{ titleOfActiveDay }}

</p>

Submit

</div>

</div>

</template>

<script>

import { store } from '../store.js';

export default {

name: 'CalendarEntry',

computed: {

titleOfActiveDay () {

return store.getActiveDay().fullTitle;

}

},

}

</script>

⁶⁸https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator

Single-file components 81

We now need to create the @click listener in the CalendarDay component to listen for the user click
event on a particular day. The day prop is available in CalendarDay so we’ll use this property to pass
in the day.id into the click handler method.

We’ll create the click handler on the encompassing <div class="day column"></div> element of
CalendarDay:

<template>

<div class="day column" @click="setActiveDay(day.id)">

<!-- rest of the CalendarDay template -->

</div>

</template>

Let’s now set up the setActiveDay() method in CalendarDay’s method property to subsequently
dispatch the store.setActiveDay() function when called:

calendar_app/src/app-4/components/CalendarDay.vue

<script>

import { store } from '../store.js';

import CalendarEvent from './CalendarEvent.vue';

export default {

name: 'CalendarDay',

props: ['day'],

methods: {

setActiveDay (dayId) {

store.setActiveDay(dayId);

}

},

components: {

CalendarEvent

}

}

</script>

Together, the <template> and <script> elements in the CalendarDay.vue file should look like this:

Single-file components 82

calendar_app/src/app-4/components/CalendarDay.vue

<template>

<div class="day column" @click="setActiveDay(day.id)">

<div class="day-banner has-text-centered">{{ day.abbvTitle }}</div>

<div class="day-details">

<div class="day-number">{{ day.id }}</div>

<CalendarEvent v-for="(event, index) in day.events"

:key="index"

:event="event"

:day="day"/>

</div>

</div>

</template>

<script>

import { store } from '../store.js';

import CalendarEvent from './CalendarEvent.vue';

export default {

name: 'CalendarDay',

props: ['day'],

methods: {

setActiveDay (dayId) {

store.setActiveDay(dayId);

}

},

components: {

CalendarEvent

}

}

</script>

Great! Running our application and clicking on the day columns, we will now see the Day of Event:
text in our CalendarEntry component referencing the selected day!

Single-file components 83

getActiveDay | setActiveDay

submitEvent

To address the interaction that involves submitting a new event to a certain day, we’ll implement
functionality that involves obtaining the information the user submits within the CalendarEntry

input.

The day the user intends to submit an event to will have the active property set to true since the
user must have clicked the day prior to typing the new event. With this in mind, let’s set up a
submitEvent() method in the store.js file that accepts an argument for the event details a user
submits. The method will start by obtaining the active day with getActiveDay():

export const store = {

// ...,

submitEvent(eventDetails) {

const activeDay = this.getActiveDay();

},

};

Having the active day in ourmethod, we can access the events array of that daywith activeDay.events.
We know a single event object within events has a details property and an edit property. We can

Single-file components 84

push a new event object to the array by setting the details of the new object to the eventDetails
argument and the edit property to false.

We’ll set the edit property of a new submitted event to false since this property will
play a role in toggling UI with which we’ll see later.

Our submitEvent() method now becomes:

calendar_app/src/app-5/store.js

export const store = {

// ...

submitEvent (eventDetails) {

const activeDay = this.getActiveDay();

activeDay.events.push({ "details": eventDetails, "edit": false });

},

}

With the submitEvent()mutation prepared in our store, we need to create the component dispatcher.
This component dispatcher will call submitEvent() and pass in the details a user types within the
input field in CalendarEntry.

To capture the input value, we’ll use the v-model directive to create two-way data binding between
the form input and a data property in the component.

v-model

The v-model directive is used for two-way data binding with form inputs and textarea elements. In
other words, v-model directly binds user input with a Vue object’s data model (as one changes, the
other gets updated).

In the CalendarEntry component, we’ve created the input field like below:

<input type="text" placeholder="New Event" required />

The v-model directive syntax takes an expression which is the name of the data property that the
input is bound to. Specifying inputEntry to be the name of our input property, our v-model directive
will be written as:

<input type="text" placeholder="New Event" v-model="inputEntry" required />

inputEntry now needs to be specified in the CalendarEntry data method. We’ll set the initial value
to be a blank string so the user is first presented with an empty field (remember, it’s two-way data
binded!):

Single-file components 85

<script>

import { store } from "../store.js";

export default {

name: "CalendarEntry",

data() {

return {

inputEntry: "",

};

},

// ...

};

</script>

In the CalendarEntry submit button, we can now add a click event listener to pass the inputEntry
data value to a submitEvent() method:

<a

class="button is-primary is-small is-outlined"

@click="submitEvent(inputEntry)"

>

Submit

When the user clicks the Submit button, this data property (inputEntry) will be passed to our
component action as the new event details.

With the click listener specified in the template, we need to create the accompanying method in our
component. This submitEvent() method will subsequently call store.submitEvent() and pass the
user input appropriately. We’ll also set inputEntry back to a blank string to clear out the user input:

<script>

import { store } from "../store.js";

export default {

name: "CalendarEntry",

// ...,

methods: {

submitEvent(eventDetails) {

store.submitEvent(eventDetails);

this.inputEntry = "";

},

},

Single-file components 86

};

</script>

Things should be working well here. Before we test our application, let’s introduce an error property
within the component that:

1. Displays an error message if the user clicks submit without typing anything in the input
2. Prevents the action from calling the state mutation.

We’ll first introduce the error property (initialized with false) in the component’s data method:

<script>

import { store } from "../store.js";

export default {

name: "CalendarEntry",

data() {

return {

inputEntry: "",

error: false,

};

},

// ...

};

</script>

We can now specify a <p> tag in our <template> that renders only if the error property is set to
true. This is where we’ll use the v-if directive to conditionally display the <p> tag.

v-if

The v-if directive takes a data property as an expression and renders a particular code-block based
on the truthiness of that data property. Here is how we’ll implement the <p> tag using the error

property as the condition to display the tag:

<p style="color: red; font-size: 13px" v-if="error">

You must type something first!

</p>

We’ll add the above tag as a sibling to the <div class="calendar-entry-note"></div> element, in
the <template> of CalendarEntry:

Single-file components 87

calendar_app/src/app-5/components/CalendarEntry.vue

<template>

<div id="calendar-entry">

<div class="calendar-entry-note">

<input type="text" placeholder="New Event" v-model="inputEntry" required />

<p class="calendar-entry-day">

Day of event: {{ titleOfActiveDay }}

</p>

<a class="button is-primary is-small is-outlined"

@click="submitEvent(inputEntry)">

Submit

</div>

<p style="color: red; font-size: 13px" v-if="error">

You must type something first!

</p>

</div>

</template>

Knowing that the error message should only show if the user attempts to submit with a blank string
(i.e. when error = true), we’ll dictate this in our components submitEvent()method. We’ll also set
a return statement to prevent the method dispatching the store action in this case:

calendar_app/src/app-5/components/CalendarEntry.vue

methods: {

submitEvent (eventDetails) {

if (eventDetails === '') return this.error = true;

store.submitEvent(eventDetails);

this.inputEntry = '';

this.error = false;

}

}

If eventDetails is blank, we’ve set the error property to true and return early. If eventDetails is
not blank, we set the error property to false at the end of our method, after the store dispatcher, to
remove any potential existing error messages in our template.

With all the above, our CalendarEntry component <template> and <script> will be laid out like
this:

Single-file components 88

calendar_app/src/app-5/components/CalendarEntry.vue
<template>

<div id="calendar-entry">

<div class="calendar-entry-note">

<input type="text" placeholder="New Event" v-model="inputEntry" required />

<p class="calendar-entry-day">

Day of event: {{ titleOfActiveDay }}

</p>

<a class="button is-primary is-small is-outlined"

@click="submitEvent(inputEntry)">

Submit

</div>

<p style="color: red; font-size: 13px" v-if="error">

You must type something first!

</p>

</div>

</template>

<script>

import { store } from '../store.js';

export default {

name: 'CalendarEntry',

data () {

return {

inputEntry: '',

error: false

}

},

computed: {

titleOfActiveDay () {

return store.getActiveDay().fullTitle;

}

},

methods: {

submitEvent (eventDetails) {

if (eventDetails === '') return this.error = true;

store.submitEvent(eventDetails);

this.inputEntry = '';

this.error = false;

}

Single-file components 89

}

}

</script>

We can now click any day in the calendar and submit events. Submit some events and try to submit
events with blank inputs to see the error message. Here’s a screen grab of three new events being
submitted on Thursday:

submitEvent

editEvent

Recall interacting with the completed app interface, a single event itself had a fair bit of functionality.
The event can transform into an input to update the event details and clicking the trash icon deletes
the event entirely.

We can regard displaying the event and editing the event as two distinct UI elements:

Single-file components 90

A single event: Displaying event (left) vs. edit event (right)

This is a case where we can take advantage of the event objects edit boolean to render one UI
element in one condition and the other in the other condition.

Let’s look at the <template> of what we have in the CalendarEvent.vue file:

calendar_app/src/app-5/components/CalendarEvent.vue

<template>

<div class="day-event" :style="getEventBackgroundColor">

<div>

{{ event.details }}

<div class="has-text-centered icons">

<i class="fa fa-pencil-square edit-icon"></i>

<i class="fa fa-trash-o delete-icon"></i>

</div>

</div>

</div>

</template>

We know event.details, fa-pencil-square, and fa-trash-o elements refer to the UI of an
event that isn’t being edited. Similar to how we conditionally displayed the error message in
CalendarEntry, we can use the v-if directive to only render these elements when the event is not
being edited (i.e. !event.edit).

Single-file components 91

<!-- ... -->

<div v-if="!event.edit">

{{ event.details }}

<div class="has-text-centered icons">

<i class="fa fa-pencil-square edit-icon"></i>

<i class="fa fa-trash-o delete-icon"></i>

</div>

</div>

<!-- ... -->

We still need to create the UI element that is displayed when the event is being edited (i.e.
event.edit). The UI for this will have an input field (with a placeholder of the original event details)
and a fa-check icon.

Let’s specify this block right below the previous elementmaking the entire CalendarEvent <template>
element like so:

calendar_app/src/app-6/components/CalendarEvent.vue

<template>

<div class="day-event" :style="getEventBackgroundColor">

<div v-if="!event.edit">

{{ event.details }}

<div class="has-text-centered icons">

<i class="fa fa-pencil-square edit-icon"

@click="editEvent(day.id, event.details)"></i>

<i class="fa fa-trash-o delete-icon"></i>

</div>

</div>

<div v-if="event.edit">

<input type="text" :placeholder="event.details"/>

<div class="has-text-centered icons">

<i class="fa fa-check"></i>

</div>

</div>

</div>

</template>

Our application now appears the same as it did before since all event objects have the edit attribute
set to false. We’ll need to create the click event listener to toggle between the non-edit and edit
views.

Before we tackle that, let’s create the necessary store method mutation.

Single-file components 92

The goal of our edit action/mutation is to simply allow the user to change the edit boolean of the
intended event object from false to true. Since events are part of the day object, we can create a
method that uses two find() calls to get the targeted event object:

• Filter state data, based on day.id, to get the day that the event is being edited.
• Filter the events array of the targeted day, based on event.details, to get the targeted event.

Once the targeted event object is obtained, we can set its edit property to true. Let’s introduce this
editEvent() mutation to our store:

export const store = {

// ...,

editEvent(dayId, eventDetails) {

const dayObj = this.state.data.find((day) => day.id === dayId);

const eventObj = dayObj.events.find(

(event) => event.details === eventDetails

);

eventObj.edit = true;

},

};

We now can create our component dispatcher to invoke the above mutation.

In the <template> of our CalendarEvent component, we’ll introduce the editEvent() click-event
listener on the fa-pencil-square <i> icon:

<i

class="fa fa-pencil-square edit-icon"

@click="editEvent(day.id, event.details)"

></i>

Since we’ve attached the editEvent() click listener on the edit icon, we’ll now introduce the method
in our components methods option:

Single-file components 93

<script>

import { store } from "../store.js";

export default {

name: "CalendarEvent",

// ...,

methods: {

editEvent(dayId, eventDetails) {

store.editEvent(dayId, eventDetails);

},

},

};

</script>

At this moment, the events in our calendar app can switch from the first UI element (display event
details) to the second UI element (edit event details) by clicking the edit icon.

Here’s a screen grab of clicking the edit icon for all the events:

editEvent

Let’s only allow the editing of one event at a time. This requirement means the edit boolean
of all other events have to be set to false. To do handle this functionality, we can introduce a
resetEditOfAllEvents() helper method in our store that sets all events to the non-edit state prior

Single-file components 94

to toggling the targeted event.

In the resetEditOfAllEvents() method, we’ll use the map() function to run through all the data
and set all the events edit property to false:

export const store = {

// ...,

resetEditOfAllEvents() {

this.state.data.map((dayObj) => {

dayObj.events.map((event) => {

event.edit = false;

});

});

},

};

The editEvent() method can now call the helper resetEditOfAllEvents() prior to toggling the
intended event edit property to true:

export const store = {

// ...,

editEvent(dayId, eventDetails) {

this.resetEditOfAllEvents();

const dayObj = this.state.data.find((day) => day.id === dayId);

const eventObj = dayObj.events.find(

(event) => event.details === eventDetails

);

eventObj.edit = true;

},

resetEditOfAllEvents() {

this.state.data.map((dayObj) => {

dayObj.events.map((event) => {

event.edit = false;

});

});

},

};

Our application now only allows editing a single event at a time.

Single-file components 95

editEvent

updateEvent

We’ve established the first part of editing events within our calendar. Let’s focus on the second part
which involves updating event details with user input.

For this particular method, we’ll create our component action first before setting up our state
mutation. Lets look at the UI element and understand howwe’ll address capturing new event details.

Update event details UI

Single-file components 96

There is no correct order in creating component actions and store mutations. Whether you
find it easier to first set up the mutation or create the component action doesn’t matter since
you’ll often find yourself frequently switching between them.

We’ll use the v-model directive again to bind the user input to an attribute within the component’s
data object. We can then attach an @click event listener to our fa-check <i> icon and pass day.id,
the current event.details, and the new user input to the method invoked when clicked. We’ll call
this method updateEvent()

The v-if="event.edit" section of CalendarEvent can now be updated to the following:

calendar_app/src/app-7/components/CalendarEvent.vue

<div v-if="event.edit">

<input type="text" :placeholder="event.details" v-model="newEventDetails"/>

<div class="has-text-centered icons">

<i class="fa fa-check"

@click="updateEvent(day.id, event.details, newEventDetails)"></i>

</div>

</div>

Since we’re binding a newEventDetails data property to the edit input, we’ll create this property in
the component’s data object:

<script>

import { store } from "../store.js";

export default {

name: "CalendarEvent",

// ...,

data() {

return {

newEventDetails: "",

};

},

// ...

};

</script>

The new updateEvent() method now needs to be declared in the component to subsequently call
the store action:

Single-file components 97

<script>

import { store } from "../store.js";

export default {

name: "CalendarEvent",

// ...,

methods: {

editEvent(dayId, eventDetails) {

store.editEvent(dayId, eventDetails);

},

updateEvent(dayId, originalEventDetails, updatedEventDetails) {

store.updateEvent(dayId, originalEventDetails, updatedEventDetails);

},

},

};

</script>

In updateEvent(), we’ll also specify that if updatedEventDetails is an empty string (i.e. the
user input is left blank) - we’ll assume the user aims to keep his original event details as is (i.e.
updatedEventDetails = originalEventDetails):

updateEvent (dayId, originalEventDetails, updatedEventDetails) {

if (updatedEventDetails === '') updatedEventDetails = originalEventDetails;

store.updateEvent(dayId, originalEventDetails, updatedEventDetails);

},

The last thing we’ll specify in our updateEvent()method is to set the bound input value back to an
empty string. This clears out the user input upon submit:

calendar_app/src/app-7/components/CalendarEvent.vue

updateEvent (dayId, originalEventDetails, updatedEventDetails) {

if (updatedEventDetails === '') updatedEventDetails = originalEventDetails;

store.updateEvent(dayId, originalEventDetails, updatedEventDetails);

this.newEventDetails = '';

}

Now that we have this set up, we’ll need to create the necessary follow up method in the store.

We’ll mimic the store’s editEvent method to find the intended event object to update and set the
event details of the event to the new user input. In addition, we can set the event edit attribute to
false to revert the display out of the ‘edit’ UI element.

Our new store updateEvent() action:

Single-file components 98

export const store = {

// ...,

updateEvent(dayId, originalEventDetails, newEventDetails) {

// Find the day object

const dayObj = this.state.data.find((day) => day.id === dayId);

// Find the specific event

const eventObj = dayObj.events.find(

(event) => event.details === originalEventDetails

);

// Set the event details to the new details

// and turn off editing

eventObj.details = newEventDetails;

eventObj.edit = false;

},

// ...

};

In both editEvent() and updateEvent(), we’re following the same format to obtain the event object
that’s being edited/updated. We’ll separate that functionality on to a helper method to keep our code
D.R.Y.

In the store, let’s add a new helper method, called getEventObj() that we’d be able to use in our
editEvent() and updateEvent() methods:

export const store = {

// ...,

getEventObj(dayId, eventDetails) {

const dayObj = this.state.data.find((day) => day.id === dayId);

return dayObj.events.find((event) => event.details === eventDetails);

},

// ...

};

editEvent() and updateEvent() can now use this helper method:

Single-file components 99

calendar_app/src/app-7/store.js

editEvent (dayId, eventDetails) {

this.resetEditOfAllEvents();

const eventObj = this.getEventObj(dayId, eventDetails);

eventObj.edit = true;

},

updateEvent (dayId, originalEventDetails, newEventDetails) {

const eventObj = this.getEventObj(dayId, originalEventDetails);

eventObj.details = newEventDetails;

eventObj.edit = false;

},

getEventObj (dayId, eventDetails) {

const dayObj = this.state.data.find(

day => day.id === dayId

);

return dayObj.events.find(

event => event.details === eventDetails

);

},

Saving our files and heading to http://localhost:8080 in the browser, we can now edit our events!

Single-file components 100

updateEvent

deleteEvent

We’ve almost completed the functionality of our application! The only other feature we want to
introduce is the ability to completely delete events from the calendar.

Similar to our editEvent() method, we’ll pass in day.id and event.details to a new dispatcher,
deleteEvent(), in the CalendarEvent component.

We’ll introduce the deleteEvent() click-event listener on the fa-trash-o <i> icon element in the
CalendarEvent.vue file:

<i

class="fa fa-trash-o delete-icon"

@click="deleteEvent(day.id, event.details)"

></i>

Let’s set up the accompanying component method declaration:

Single-file components 101

<script>

export default {

name: "CalendarEvent",

// ...,

methods: {

// ...,

deleteEvent(dayId, eventDetails) {

store.deleteEvent(dayId, eventDetails);

},

},

};

</script>

The deleteEvent() store mutation will use JavaScript’s native findIndex() method on the Array

object to return the index of the event to be deleted, based on its event.details. We’ll then use
Array’s splice() function to remove the event from the events array.

We’ll create deleteEvent() in the store.js file like so:

calendar_app/src/app-complete/store.js

export const store = {

// ...

deleteEvent (dayId, eventDetails) {

const dayObj = this.state.data.find(

day => day.id === dayId

);

const eventIndexToRemove = dayObj.events.findIndex(

event => event.details === eventDetails

);

dayObj.events.splice(eventIndexToRemove, 1);

},

// ...

}

Ideally, we’d be using a more unique identifier (e.g. id) to parse through the events of a day
and remove the event the user aims to delete. Since our event objects don’t have unique
id’s; we’ll stick with using the event details.

Saving our changes, we can see that we’re now able to delete events entirely.

Single-file components 102

deleteEvent

The Calendar App

We can create, update and delete events in our application! This is excellent progress. With that
being said, we’ll address two important topics that limit the scale/capability of our app.

Persistence of data

When we refresh our browser, we lose all our application data. In other words, our app does not
have any data-persistence.

A server can give us persistence. When our app loads, it will query the server and construct our data
store based on the data the server provides (as opposed to using a static seedData object).

We’ll then have our Vue app notify the server about any state changes/mutations, like when we
delete a calendar event entirely.

Communicating with a server is a big major building block we’ll need to develop and distribute
real-world web applications with Vue.

Single-file components 103

State management

The store pattern we’ve set up worked fairly well for our application by allowing us to share
data between components, and query and update our seed data. We employed good convention
by keeping all our store actions centralized and had our components dispatch events to the store.

What if we want to scale our application state and appropriately track and replay changes to our
state as they were happening? This feature is one primary benefit behind using Vue’s official State
Management library - Vuex.

We’ll introduce Vuex in Chapter 4 and in Chapter 5 we’ll see how Vuex can work with a server to
ensure persistence. So get ready to level-up!

Methodology review

While building our calendar app, we learned and applied a methodology for building simple Vue
apps. As a recap, these steps are:

1. Build a static version of the app

Our application starting point was a static implementation of the app. This is always a great start to
building any Vue application.

1. Break the app into components

We mapped out the component structure of our app by examining the app’s working UI. We then
used Vue’s single-file components and the single-responsibility principle to break components down
so that each had minimal viable functionality.

1. Hard-code initial states with parent-child data flow

By determining in which component each piece of state should live; we passed and referenced props
from higher level components down to their children.

1. Create state actions (and corresponding component dispatchers)

To make our app interactive, we created and centralized all state actions within the app store. We
then created our component event listeners to dispatch events to the store which reactively updated
our app.

Custom Events
Introduction

In the last chapter, we briefly touched upon what Vue Custom Events are and how they can be used
to communicate from a child component back to a parent component. We also talked about how a
global event bus can be used to make events global to all components.

When building our calendar app, we didn’t find the need to use custom events since we set up a
simple state pattern to manage our data. In this chapter, we’ll build a simple application that takes
advantage of the Vue event system to manage information between multiple components.

JavaScript Custom Events

As browsers are event-driven, events and event handling play a core role in JavaScript development
by notifying our application when certain user actions occur.

Common JavaScript events we use all the time include the onclick event (when an element is clicked
by a user), the onload event (when a page has completed loading), and the onsubmit event (when a
form’s submit button has been clicked).

We can create event listeners to provide additional methods/functionality to work with these events
when the browser calls the callback.

In addition, JavaScript provides a CustomEvent API to allow us to create our own custom events.

Here’s an example of how a custom event can be created, dispatched and listened to with native
JavaScript:

// Creating the event

let event = new CustomEvent("customEvent", {

detail: { book: "FullStack Vue " },

});

// Dispatching the event

element.dispatchEvent(event);

// Listening for the event

element.addEventListener("customEvent", (e) =>

console.log("This book is " + e.detail.book)

);

Custom Events 105

Vue Custom Events

Vue implements its own events interface that works similarly to JavaScript’s addEventListener and
dispatchEvent. Though similar, it’s important to note that Vue’s event system is different than
JavaScripts event system for DOM communication.

Vue’s event system is primarily used for communication between components, as
opposed to communication between DOM nodes.

We know props have to be passed from parent to child components to pass data downwards through
our component tree. Vue custom events are mainly used to create communication in the opposite
direction, communication from the child up to the parent component.

Preparing the app

Let’s build a very simple note-taking application to get an understanding of how custom events work
in Vue.

Our note-taking app will have a simple input field that allows a user to enter notes. We’ll assume
there isn’t a need for a submit button, so only when the user presses the Enter key, would the user
input and the current timestamp gets captured and displayed to the view.

Custom Events 106

Let’s open up the sample code that came with the book and locate the custom_events/ folder.
Opening the custom_events/ folder, we’ll see all the sub-directories contained within:

custom_events/

app/

app-1/

app-2/

app-complete/

public/

We’ll be working solely within the app/ folder. We’ve included each version of the app as we build
it through the chapter, in the app-1/, app-2/, and app-complete/ folders.

The public/ folder hosts the internal stylesheet, styles.css, of our application.

If we take a look within the app/ directory, we’ll see there’s only two files located inside, index.html
and main.js.

Custom Events 107

app/

index.html

main.js

Let’s first take a look inside the index.html file.

custom_events/app/index.html

<!DOCTYPE html>

<html>

<head>

<link

rel="stylesheet"

href="https://cdnjs.cloudflare.com/ajax/libs/bulma/0.5.3/css/bulma.css">

<link rel="stylesheet" href="../public/styles.css" />

<title>Custom Events</title>

</head>

<body>

<div id="app">

<div class="notes-section">

<div class="columns">

<div class="column has-text-centered">

Notes

</div>

<div class="column has-text-centered">

Timestamp

</div>

</div>

<input-component></input-component>

</div>

</div>

<script src="https://unpkg.com/vue@next"></script>

<script src="https://unpkg.com/mitt/dist/mitt.umd.js"></script>

<script src="./main.js"></script>

</body>

</html>

The index.html file has a similar set-up to the application we built in the first chapter. We’re
including Bulma⁶⁹ as our app’s CSS framework and referencing an internal stylesheet styles.css

⁶⁹http://bulma.io/

Custom Events 108

in our <head> tag.

In our <script> tags, we’re including Vue from a Content Delivery Network (CDN, for short) at
unpkg⁷⁰ and specifying ./main.js as the internal JavaScript file where we’ll write our JavaScript.
We’ve also included another library called mitt⁷¹ which we’ll use closer to the end of this chapter to
illustrate how a global event bus/hub can be created.

Within the <body> of our HTML, we can see an encompassing <div> with an id of app, two
separate columns of static text (Note and Timestamp), and a declaration of a custom child component
<input-component></input-component>.

Let’s open up our main.js file next:

custom_events/app/main.js

const inputComponent = {

template: `<input class="input is-small" type="text" />`

}

const app = {

components: {

'input-component': inputComponent

}

};

Vue.createApp(app).mount('#app');

We can see the template of <input-component> is a simple input field and the root application
instance specifies the element with the id of app as the element our application is to be mounted on.

When we open the app/index.html file in our Chrome Browser (right click and select Open With >

Google Chrome), we will see a static view with no interactivity:

⁷⁰https://unpkg.com
⁷¹https://github.com/developit/mitt

Custom Events 109

Components of the app

Before we begin adding interactivity into our application, let’s lay out the actions we’ll need to
implement in order to have a complete working application. From our starting point, let’s note
that our application has a parent component (the root instance #app) and a single child component
input-component.

Custom Events 110

When the user types information and presses the Enter key, the user input should be displayed in
the Notes column and the timestamp of that submission should be seen in the Timestamp column.

The input field is part of the input-component and the information displayed under Notes and
Timestamp is part of the parent component (the root instance). We need an action to occur in
the input-component that notifies the parent with the relevant data, so the parent can display that
information.

Building the app

Sincewe knowNotes andTimestamps are part of the root component, lets create the necessary prop-
erties notes and timestamps within the root instance’s data function. We’ll set blank arrays as their
initial values. We’ll also specify a placeholder property that we’ll pass down to input-component.

In the main.js file, let’s create the data object in our application instance:

Custom Events 111

custom_events/app-1/main.js

const app = {

data() {

return {

notes: [],

timestamps: [],

placeholder: 'Enter a note'

}

},

// ...

};

With our placeholder property declared in our instance, let’s bind this value as a placeholder prop
for <input-component></input-component> to consume, in the index.html file:

<input-component :placeholder="placeholder"></input-component>

Let’s declare the placeholder prop in inputComponent and bind it to the input placeholder attribute
in its template. In our main.js file, let’s update the inputComponent definition object to:

const inputComponent = {

template: `<input

:placeholder="placeholder"

class="input is-small" type="text" />`,

props: ["placeholder"],

};

The input field now has a placeholder with a dynamic value declared in the application instance.

<input-component></input-component> refers to the declaration of the component in the
application template. inputComponent refers to the component variable in the main.js file.

Our input in inputComponent needs to be dynamically-bound to a data value to allow it to
communicate with the parent instance. To bind a data value, we’ll set up the v-model directive
with input as the name of the input property:

Custom Events 112

const inputComponent = {

template: `<input

:placeholder="placeholder"

v-model="input"

class="input is-small" type="text" />`,

props: ["placeholder"],

data() {

return {

input: "",

};

},

};

We’re now in a good spot to create our first event handler. We know the input is to only be submitted
when the Enter key is released. With this interaction in mind, we’ll need to use JavaScripts keyup
event listener.

When we listen for certain keyboard button triggers in vanilla JavaScript, we usually need to check
the code for the event key that was triggered (e.g. event.code === '13').

Vue allows us to specify the key code within the keyup directive declaration (e.g. @keyup.13). For
even further simplification, Vue provides aliases for the most common keys (e.g. @keyup.enter will
trigger only when the Enter key is released).

The Key Modifiers⁷² section in the Vue docs provides further details on the different
modifiers we can apply to the keyup event.

We’ll use @keyup.enter to call a monitorEnterKey() method that we’ll create in our component
shortly. Let’s add this keyup event listener to the <template> of inputComponent:

custom_events/app-2/main.js

template: `<input

:placeholder="placeholder"

v-model="input"

@keyup.enter="monitorEnterKey"

class="input is-small" type="text" />`,

Just like we’ve done with most of our event listeners, we’re using the @ shorthand instead of
v-on:.

⁷²https://v3.vuejs.org/guide/events.html#key-modifiers

Custom Events 113

With our keyup listener in place, we now need to create the monitorEnterKey() method. This
function is where we’ll be emitting the input the user enters from the component to the Vue instance.

Vue custom events are triggered using $emit while specifying the name of the custom event:

this.$emit("nameOfEvent");

The $emit function allows for a second optional argument that allows the caller to pass arbitrary
values along with the emitted event:

this.$emit("nameOfEvent", {

data: {

book: "FullStack Vue",

},

});

Though listening for custom events in Vue can be done with $on, the v-on directive must
be used in parent templates to listen to events emitted by children.We’ll address $onwhen
we set up event communication between unrelated components.

In our monitorEnterKey()method, let’s set up a custom event $emitwith an event name of add-note.

In this custom event, we’ll pass in a data object that consists of two properties:

• the user input
• the timestamp.

The user input is the bound data value of the input field. We’ll get the timestamp using the new

Date().toLocaleStringmethod, which returns a language appropriate representation of the current
date in a string.

Let’s define the monitorEnterKey() method in a methods property of the component:

const inputComponent = {

// ...,

methods: {

monitorEnterKey() {

this.$emit("add-note", {

note: this.input,

timestamp: new Date().toLocaleString(),

});

},

},

};

Directly after the declared event emitter, we’ll set the input field value to an empty string to clear
out user input.

Custom Events 114

const inputComponent = {

// ...

methods: {

monitorEnterKey() {

this.$emit("add-note", {

note: this.input,

timestamp: new Date().toLocaleString(),

});

this.input = "";

},

},

};

One of the recommended changes with Vue 3 is the recommendation to always document the events
emitted in a component in an emits property. This is important because any events emitted by a
component will be bound the the component’s root node (i.e. the component’s parent) by default.
This can cause issues if we wanted a child component to re-emit a native event to the parent (e.g.
click). If interested, the Vue documentation⁷³ explains this some more.

We’ll follow the recommended practice and declare the add-note event in the inputComponent’s
emits property. The syntax for the value of the emits property is very similar to the props property
of a component where in the most simple way, we’re able to define events as strings within an array
value. This will look like the following for our inputComponent:

const inputComponent = {

// ...

emits: ["add-note"],

// ...

methods: {

monitorEnterKey() {

this.$emit("add-note", {

note: this.input,

timestamp: new Date().toLocaleString(),

});

this.input = "";

},

},

};

With the event emitter created, we need to find a way to notify our root instance when the add-note
event is triggered.

⁷³https://v3.vuejs.org/guide/migration/emits-option.html#_3-x-behavior

Custom Events 115

Just like how we’ve specified our keyup event listener on the DOM, we can declare custom event
listeners on the template DOM as well. Since the add-note custom event is triggered within the
input-component, we have to create the event listener on the <input-component></input-component>
declaration in the application template. This event listener can trigger a method in the root instance
to update the parent.

Let’s create the event listener on the <input-component></input-component> declaration, in index.html,
to call an addNote() method when triggered:

custom_events/app-2/index.html

<input-component

@add-note="addNote" :placeholder="placeholder"></input-component>

Now we can create the addNote() method in our root instance. With the event object present,
the addNote() method pushes the event.note and event.timestamp to the instance’s notes and
timestamps arrays respectively:

custom_events/app-2/main.js

const app = {

// ...

methods: {

addNote(event) {

this.notes.push(event.note);

this.timestamps.push(event.timestamp);

}

},

// ...

};

By default with JavaScript, the event object is automatically passed down as the first argument
without the need for us to declare it in the template.

We can render a list of notes and timestamps in the view now that we have our event system wired
up. We’ll use v-for to render a list of <div> elements for each note and timestamp in their respective
arrays.

Setting the v-for lists right below the titles, the <div class="columns"></div> section of
our #app template, in the index.html, will look like this:

Custom Events 116

custom_events/app-2/index.html

<div class="columns">

<div class="column has-text-centered">

Notes

<div v-for="note in notes" class="notes">

{{ note }}

</div>

</div>

<div class="column has-text-centered">

Timestamp

<div v-for="timestamp in timestamps" class="timestamps">

{{ timestamp }}

</div>

</div>

</div>

With this implementation, we’ve just crafted our first custom event using Vue’s event system.

Saving our files and refreshing our browser, we should be able to submit notes by typing information
and releasing the ‘Enter’ key.

Custom Events 117

Let’s summarize what we did to make this work:

• On input-component, the keyup.enter event listener is triggered when the ‘Enter’ key is
released and calls monitorEnterKey().

• The monitorEnterKey() method emits the custom add-note event and clears the input field.
• The add-note event listener declared on <input-component></input-component> listens for the
event trigger and calls the root instance addNote() method.

• The addNote() method then updates the instance’s data property which reactively rerenders
the view

Here’s a simple graphical representation of how that worked:

Custom Events 118

Event Bus

With props and custom events, we’ve become accustomed to how parents pass props down and
custom events send events up.

With our application, assume we want to introduce a single new feature that displays the number
of notes a user has entered. We’ll introduce this feature through a new <note-count-component>

</note-count-component> as a sibling to <input-component> </input-component> and a child of
the root instance.

Custom Events 119

There are two ways we can go about creating this component’s functionality.

• We can specify a new data property noteCount on the root instance which gets incremented
with the addNote() method and pass it down as props to note-count-component.

• The second approach is to directly trigger an event from input-component, to increment a
noteCount property within note-count-component.

We’ll go with the latter approach to explain how an Event Bus can achieve this.

input-component and note-count-component are independent of one another. We can say they
are unaware of each other’s existence since neither explicitly registers the other. As a result,
note-count-component will not be able to directly listen for an event trigger that occurs in
input-component. This case is where we need a mechanism to transfer events between components,
or in other words, an Event Bus.

An Event Bus is a global property that is used to enable isolated components to subscribe
and publish custom events between each other.

With Vue 2, we were able to make the Vue application instance itself be the Event Bus by making
the root instance global in the application. With Vue 3, we’re not able to do this since the application
instance no longer has $on and $emit methods (these are only available within a component). The

Custom Events 120

Vue documentation⁷⁴ recommends us to an external library to implement an event emitter interface
within our app (i.e. implement an Event Bus). The external library we’ll use is themitt⁷⁵ event emitter
library.

In our application’s index.html file, we’ve already declared the import of the mitt library.

custom_events/app-complete/index.html

<script src="https://unpkg.com/mitt/dist/mitt.umd.js"></script>

To create the Event Bus, we can simply create an instance of the emitter from the now available
mitt() function.

const emitter = mitt();

An Event Bus is often made global to make it available everywhere in your app. For very simple
project scaffolds, this can be done with:

window.emitter = mitt();

And for projects with import/export available:

import mitt from "mitt";

const emitter = mitt();

export default emitter;

We know every Vue component implements an events interface to allow the instance to trigger
and listen for events. An Event Bus has its own events interface that can be used within multiple
components. Emitting events will remain the same with the available .emit() function:

emitter.emit("nameOfEvent", {

data: {

book: "FullStack Vue",

},

});

Listening for events anywhere in our applications can now be handled using the .on() method:

emitter.on("nameOfEvent", (e) => console.log("This book is " + e.data.book));

Refactoring this.$emit to emitter.emit

Let’s refactor our existing custom event to instead use an Event Bus. First, let’s declare the Event
Bus at the top of our main.js file so we can use it within the rest of our application.

⁷⁴https://v3.vuejs.org/guide/migration/events-api.html#migration-strategy
⁷⁵https://github.com/developit/mitt

Custom Events 121

custom_events/app-complete/main.js

const emitter = mitt();

In the monitorEnterKey()method within inputComponent, we’ll change from using the components
events interface to that of the Event Bus to trigger the add-note event:

custom_events/app-complete/main.js

methods: {

monitorEnterKey() {

emitter.emit('add-note', {

note: this.input,

timestamp: new Date().toLocaleString()

});

this.input = '';

}

}

Since we’re using the Event Bus, a completely separate object, to trigger the event, we’re now unable
to listen to the event with v-on directly on the template. Instead, we have to specify emitter.on()

within the component we want to listen.

Let’s introduce the emitter.on() call method somewhere in our root instance to listen on and
subsequently call the addNote() method when the event is triggered.

We’ll implement this callback within the component’s created lifecycle hook.

The Vue instance lifecycle

Lifecycle hooks, within a Vue instance are named functions that occur throughout the lifecycle of
the instance. The lifecycle refers to the time an instance has been created, mounted, updated, and
even destroyed. Vue gives us the ability to create actions whenever a lifecycle hook has been run.

An example of such a lifecycle hook is the created hook. The created hook is run when the instance
has just been created and the instance data and events are active, and when the instance can be
accessed.

If we wanted to alert the browser with information about an instance’s data property upon launch,
the created hook will work well:

Custom Events 122

const app = {

data() {

return {

book: "FullStack Vue",

};

},

created() {

alert("This book is " + this.book);

},

};

Vue.createApp(app).mount("#app");

The updated hook can be used to apply an action whenever there are any data changes to a Vue
instance causing it to re-render. Here’s a simple case where updated can be used to log a data property
when a data change has been made:

const app = {

data() {

return {

count: 0,

};

},

updated() {

console.log("The count is " + this.count);

},

methods: {

updateCount() {

this.count++;

},

},

};

Vue.createApp(app).mount("#app");

The Vue instance lifecycle is an important concept to understand since it allows us to run
actions in specific stages of a Vue instance. We’ll be explaining the hooks we use throughout
the book, as we use them.

If you’d like to see all the possible lifecycle hooks one can use, the Lifecycle Diagram⁷⁶
section of the Vue docs provides a great graphical summary.

⁷⁶https://v3.vuejs.org/guide/instance.html#lifecycle-diagram

Custom Events 123

created

The created hook is triggered the moment a Vue component has been created and the component
data and events can be accessed.

Since this hook refers to the moment of creation, it’s the perfect time to set up our event listener
(emitter.on()). We’ll first do this in the root instance.

Once the instance is created, the Event Bus listener will be prepared to listen for an event trigger
throughout the life of the instance. When the event is triggered, the listener will call the addNote()
method and pass down the event object.

Let’s see this in practice. We’ll add this created hook to the application instance like so:

const app = {

// ...,

created() {

emitter.on("add-note", (event) => this.addNote(event));

},

// ...,

};

Vue.createApp(app).mount("#app");

We can now remove the event listener that’s been declared on <input-component></input-component>
in the parent template making our <input-component></input-component> declaration only have a
placeholder prop:

custom_events/app-complete/index.html

<input-component :placeholder="placeholder"></input-component>

We’ve now refactored our add-note event to be part of the EventBus as opposed to the internal
input-component. Saving our files and running our application, everything should remain the same
since we haven’t changed anything else:

Custom Events 124

note-count-component

With our Event Bus appropriately set up, it’s now simple to build our note-count-component and
create an event listener within this new component.

Let’s create the <note-count-component></note-count-component> declaration at the bottom of our
parent template in the index.html file:

<div id="app">

<div class="notes-section">

<!-- The notes-section -->

</div>

<note-count-component></note-count-component>

</div>

To allow the use of the component declaration in the parent instance, we need to register this
component within the scope of the parent. We’ll do this by defining it in the components property
of the parent instance, in the main.js file:

Custom Events 125

const app = {

// ...,

components: {

"input-component": inputComponent,

"note-count-component": noteCountComponent,

},

};

Vue.createApp(app).mount("#app");

Now we can set up the noteCountComponent component object. The template for this compo-
nent is to be a simple <div> element that displays a noteCount data property. We’ll create the
noteCountComponent object right above the Vue instance:

const emitter = mitt();

const inputComponent = {

// ...

};

const noteCountComponent = {

template: `<div class="note-count">Note count: {{ noteCount }}</d\

iv>`,

data() {

return {

noteCount: 0,

};

},

};

const app = {

// ...

};

Vue.createApp(app).mount("#app");

We know the add-note event is triggered whenever a single note is entered. The simplest way we
can count the number of notes submitted is to trigger an increment to the noteCount data value
whenever the add-note event is emitted.

Just like how we set up the event listener in the created hook of the root instance, we’ll do the same
in this component. In this component’s created hook, when the add-note event is triggered, the
noteCount property value will be incremented by one:

Custom Events 126

custom_events/app-complete/main.js

const noteCountComponent = {

template: `<div class="note-count">

Note count: {{ noteCount }}

</div>`,

data() {

return {

noteCount: 0

};

},

created() {

emitter.on('add-note', event => this.noteCount++);

}

};

That’s it! Notice how easy it is to create event listeners now, regardless of whether components are
dependant/independent of one other. Saving the files and running our application we’ll be able to
see a count of the number of notes submitted:

Custom Events 127

Custom events and managing data

With this simple note-taking app, we’ve obtained a good understanding of how custom events work
and how an Event Bus can be used to communicate between all the components in an application.

Reviewing our work thus far, custom events can be used to notify a parent whenever a child
component performs a certain action. An Event Bus on the other hand is geared towards setting
up a standard method for all components to communicate with each other.

In much larger Vue applications, the global Event Bus can be extracted to its own separate file (e.g.
event-bus.js) and imported whenever needed. The Event Bus itself can also be modified to have
more internal logic to communicate with a server or a real-time backend. This set-up is useful since
all events will be handled within a central location.

Different developers have different use cases for different applications. However, as mentioned in
the previous chapter, a global Event Bus is not the recommended way of managing data between
components⁷⁷.

Though incredibly easy to set-up, things get difficult to track really quickly. Having a large number
of event emitters/listeners sporadically placed in your components can make code frustrating to
maintain and can become a source of bugs.

The main pain-point arises from the tight coupling between user interactions and data changes.
For complex web applications, oftentimes a single user interaction can affect many different, discrete
parts of the state.

This is where the advantage of using Vuex⁷⁸, the Flux-like library for state management, comes in.
Vuex is the preferred method for managing data within applications, with which we’ll be seeing in
detail in the next chapter!

Summary

1. Vue custom events, though similar to native JavaScript custom events, are used primarily for a
child component to notify its parent. $emit is used to create the event emitter within the child
component and the v-on directive used on the template listens to the emitted events.

2. Vue lifecycle hooks can be used for us to create actions when an instance has gone through
its lifecycle. created, mounted, updated and destroy are some of the more commonly used
lifecycle hooks.

3. An Event Bus can use its internal events interface to create event emitters/listeners that any
component relationship (parent-child, sibling-sibling) can adhere to.

⁷⁷https://v3.vuejs.org/style-guide/#implicit-parent-child-communication-use-with-caution
⁷⁸https://vuex.vuejs.org/

Introduction to Vuex
Recap

In the second chapter, we used a basic methodology to build a Vue app. After setting up our static
components, we created a store pattern to manage the application state for all components.

We kept all store actions centralized within the store object and had components dispatch events to
the store. The components that displayed store information reactively rendered whenever a relevant
change to store data was made.

The pattern we’ve just explained brings us very close to the popular and widely used Flux
architecture.

What is Flux?

Flux⁷⁹ is a design pattern created by Facebook. The Flux pattern is made up of four parts, organized
as a one-way data pipeline:

General Flux diagram

The view dispatches actions that describe what happened. The store receives these actions and
determines what state changes should occur. After the state updates, the new state is pushed to the
view.

In addition to decoupling interaction handling and state changes, Flux also provides the following
benefits:

Breaking up state management logic

Flux allows us to naturally break up state management into isolated, smaller, and testable parts.

⁷⁹https://facebook.github.io/flux/

Introduction to Vuex 129

Components are simpler

Certain component-managed state is fine, like activating certain buttons on mouse hover. However,
by managing all other state externally, Vue components become simple HTML rendering functions.
Detaching the data storage from the view makes them smaller, easier to understand, and more
composable.

Mismatch between the state tree and the DOM tree

Oftentimes, we want to store our state with a different representation than how we want to display
it. For example, we might want to have our app store a timestamp for a message (createdAt), but in
the view we want to display a human-friendly representation, like “23 minutes ago.”

Instead of having components hold all this computational logic for derived data, we can let Flux
perform these computations before providing state to Vue components.

Flux implementations

Flux is a design pattern, not a specific library or implementation. Facebook has open-sourced a
library they use⁸⁰. This library provides the interface for a dispatcher and a store that we can use in
our application.

Facebook’s implementation is not the exclusive option. Since Facebook started sharing Flux with
the community, the community has responded by writing tons of different Flux implementations⁸¹.

Redux⁸² has been made incredibly popular within the React ecosystem (and can be used in a Vue
application, with minor configuration changes).

Within the Vue community, however, Vuex⁸³ is the most-widely used state management library.

Vuex

Unlike other Flux libraries, Vuex was created by the Vue team and built solely for use with Vue.
Vuex provides a more fluid and intuitive development experience when integrated to an existing
Vue app.

Vuex builds on top of having a simple store pattern by introducing:

• Explicitly defined getters, mutations and actions
• Integration with the Vue devtools for time-travel debugging and state snapshot import/export

⁸⁰https://github.com/facebook/flux
⁸¹https://github.com/voronianski/flux-comparison
⁸²https://github.com/reactjs/redux
⁸³https://github.com/vuejs/vuex

Introduction to Vuex 130

Vuex does come with more boilerplate that may not be necessary for all applications. However, once
we get beyond the initial hurdle of setting up Vuex, there are numerous benefits in conforming to a
strong Flux-like pattern.

In the following chapters, we’ll see how using Vuex as the backbone of our application equips our
app to handle increasing feature complexity.

Though Vuex is primarily a Flux-like library, it also takes inspiration from the Elm
Architecure⁸⁴ of building web apps.

Vuex’s key ideas

Throughout this chapter, we’ll become familiar with each of Vuex’s key ideas. Those ideas are:

• All of our application’s data is in a single data structure called the state, which is held in the
store

• Our app reads the state from this store
• The state is never mutated directly outside the store
• The views dispatch actions that describe what happened
• The actions commit to mutations
• Mutations directly mutate/change store state
• When the state is mutated, relevant components/views are re-rendered

We’ve already implemented some of these ideas previously by using a simple store pattern. Over the
course of this chapter, we’ll work through them even deeper within the context of using Vuex.

Just like how Vue differs from React, Vuex differs from Redux by mutating the state
directly as opposed to making the state immutable and replacing it entirely. This idea ties
with Vue’s ability to automatically understand which components need to be re-rendered
when state has been changed.

Refactoring the note-taking app

In the last chapter, we built a simple note-taking application with the help of an Event Bus:

⁸⁴https://guide.elm-lang.org/architecture/

Introduction to Vuex 131

We’re going to explore Vuex’s core ideas by refactoring how data was managed in this app.

Despite adding a bit of overhead (especially for such a simple app), the focus of this chapter is to
gain a solid understanding of the context of Vuex before moving to more complex applications.

This work is a good starting point in getting into Vuex, so let’s take the time to absorb all the new
information!

Preparation

Inside of the code download that came with this book, navigate to vuex/note_taking:

$ cd vuex/note_taking

Like always, we’ll be working directly from the app/ directory with the completed implementation
being in app-complete/.

The initial set-up of app/ is almost exactly the same as that of the last chapter:

Introduction to Vuex 132

$ ls app/

index.html

main.js

The only difference is the introduction of Vuex with the unpkg⁸⁵ CDN, in the index.html file:

vuex/note_taking/app/index.html

<script src="https://unpkg.com/vuex@next"></script>

Like the last chapter, we’ll be writing all our JavaScript code within the main.js file.

Since everything else remains the same, refer to preparing the app section of Chapter 3 for
a breakdown of the initial code.

Overview

Before we start to build and implement Vuex to the application, let’s get a refresher of the
components and interactions needed in the note-taking app.

⁸⁵https://unpkg.com

Introduction to Vuex 133

• The instance #app is the parent of two child components, input-component and note-count-component.
• When the user types information in the input field of input-component and presses and releases
the Enter key, the user input will be displayed in the Notes column along with the timestamp
of that submission in the Timestamp column.

• The note-count-component displays the total number of notes submitted.

Vuex Store

Just like how the core of a Vue application is it’s root application instance, the heart of a Vuex
implementation is the Vuex store. The store is where the application data, (i.e. state) is kept.

State can never be mutated directly and can only be modified by calling mutations. Actions are
often responsible in calling mutations and are themselves dispatched within components. A Vuex
store also allows us to define getters, methods that involve receiving computed state data.

We’ve just defined all the pieces that make up a Vuex store

• state
• mutations
• actions
• getters

We’re going to build each of these pieces before wiring everything together into a Vuex store.

State

To build the state of an application, it’s important to understand and segregate component level and
application level data. Application level data is the data that needs to be shared between components;
which is the state.

Looking at our completed note-taking app from the last chapter, we can see two lists of data that
are stored as part of the root instance, notes and timestamps. Instead of having these properties as
part of the parent instance, we’ll wire them up to be part of the application state.

In the top of our main.js file, let’s define a new state object with the properties notes and timestamps.
We’ll initialize them with empty arrays:

Introduction to Vuex 134

vuex/note_taking/app-complete/main.js

const state = {

notes: [],

timestamps: []

}

Mutations

There are two changes we’ll make to the state object (i.e. mutations) during the lifetime of our
application. We’ll need to be able to:

• Push a new note to the state notes array
• Push a new timestamp to the state timestamps array

To create a mutation, we’ll simply need to define functions. In fact, when we say mutation, we
really simply mean a function that’s responsible in mutating store state.

In Vuex, mutations need to be explicitly defined. A mutation consists of a string type and a handler.
In Flux architectures, mutation string types are often declared in capital letters to distinguish them
from other functions and for tooling/linting purposes.

With this in mind, let’s create our two mutation function handlers as ADD_NOTE and ADD_TIMESTAMP

within a mutations object.

const mutations = {

ADD_NOTE() {},

ADD_TIMESTAMP() {},

};

When the mutation function is run, the first argument passed in is the state. It’s important to
reiterate that mutations always have access to state as the first argument. In addition, when an
action calls a mutation, it may or may not pass a payload to the mutation.

The payload is an optional argument and, in some cases we can safely ignore it. However, in our
case the mutations need access to the new note and timestamp objects to update the state arrays.
These data objects will therefore be passed as the second argument to each mutation function.

The ability to always have access to state arises from how a Vuex store is wired together.
The optional argument (payload) exists only when an action subsequently passes it to the
mutation, with which we’ll see shortly.

With the appropriate payloads, the ADD_NOTE and ADD_TIMESTAMPmutations will involve pushing the
payload object to the notes and timestamps state arrays respectively.

With this functionality implemented, our mutations object now becomes:

Introduction to Vuex 135

vuex/note_taking/app-complete/main.js

const mutations = {

ADD_NOTE (state, payload) {

let newNote = payload;

state.notes.push(newNote);

},

ADD_TIMESTAMP (state, payload) {

let newTimeStamp = payload;

state.timestamps.push(newTimeStamp);

}

}

It’s important to remember that mutations have to be synchronous. If asynchronous tasks
need to be done, actions are responsible in dealing with them prior to calling mutations.

Actions

Actions are functions that exist to call mutations. In addition, actions can perform asynchronous
calls/logic handling before committing to mutations.

Our example application is simple enough that our actions will consist of just calling the mutations
directly.

Let’s set up an actions object in the main.js file with an addNote and addTimestamp action.

const actions = {

addNote() {},

addTimestamp() {},

};

Similar to mutations, actions automatically receive an object as the first argument. In actions, this
object is regarded as the context object which allows us to access the state with context.state,
access getters with context.getters, and call/commit to mutations with context.commit.

Just like mutations, an optional payload object is passed in as a second argument to the function
(optional because we can safely ignore it as an argument, if we don’t need it). In our case, we’ll be
passing this payload on to our mutations.

Using context.commit to call the mutations, we can update our actions object:

Introduction to Vuex 136

vuex/note_taking/app-complete/main.js

const actions = {

addNote (context, payload) {

context.commit('ADD_NOTE', payload);

},

addTimestamp (context, payload) {

context.commit('ADD_TIMESTAMP', payload);

}

}

Getters

Getters are to an application store what computed properties are to a component. Getters are used
to derive computed information from store state. We can call getters multiple times in our actions
and in our components.

Getters aren’t required to workwith Vuex since information from store state can be directly obtained.
For instance, a way to fetch the state notes array within a component might look like this:

computed: {

getNotes () {

return this.$store.state.notes;

}

}

However, if this functionality is required in multiple places and to avoid repetition and ease testing;
getters can be used to streamline this everywhere.

In our application, we’ll use Vuex getters to get all the information we need in our components. We’ll
need three getter functions from our store; get all notes, get all timestamps, and get a count of the
total number of notes.

Our getters object will initially be laid out like this:

const getters = {

getNotes() {},

getTimestamps() {},

getNoteCount() {},

};

Getter functions receive state as their first argument. Knowing this, we can update our getter
methods to pluck the appropriate data off the state object:

Introduction to Vuex 137

const getters = {

getNotes(state) {

return state.notes;

},

getTimestamps(state) {

return state.timestamps;

},

getNoteCount(state) {

return state.notes.length;

},

};

Since we’re returning a single expression for each method, we can use ES6 arrow functions (omitting
the brackets and the return keyword) to simplify our getters object:

vuex/note_taking/app-complete/main.js

const getters = {

getNotes: state => state.notes,

getTimestamps: state => state.timestamps,

getNoteCount: state => state.notes.length

}

Store

With the state, mutations, actions, and getters all set-up, the final part of integrating Vuex into our
application is creating and integrating the store.

Creating the store means we’ll need to wire everything together. The store object is how our
mutations and getters get access to the state object and how actions can directly commit to mutations
with context.commit.

The Vuex library provides a function for creating a store - createStore({}). At the minimum, this
function requires state and mutations objects. Knowing that we’ve set-up our state, mutations,
actions, and getters properties, our store can be instantiated like this:

Introduction to Vuex 138

vuex/note_taking/app-complete/main.js

const store = Vuex.createStore({

state,

mutations,

actions,

getters

})

In ES6-land, adding an object with just a command is a convenient way to define both a
key and a value.

For instance, the example above is exactly the same as calling it like so:

> const store = Vuex.createStore({

> state: state,

> mutations: mutations,

> actions: actions,

> getters: getters,

> });

>

To inject the store to the entire application and have it accessible within all components, we need
to pass the store object to the application’s instance. To do this, we’ll have our application instance
be created with the Vue.createApp() method. We’ll then chain the .use()⁸⁶ method to our created
application instance, which allows us to install a Vue plugin, and pass the store object along. Only
after this would we mount the application instance to the desired DOM element.

This will look like the following:

const app = Vue.createApp({

components: {

"input-component": inputComponent,

},

});

app.use(store);

app.mount("#app");

With this instantiation, we have pretty much summed up everything we need to integrate Vuex into
our application. We can now build our components to retrieve store state and have methods that
simply dispatch to the actions we’ve created. Our store takes care of the rest!

⁸⁶https://v3.vuejs.org/api/application-api.html#use

Introduction to Vuex 139

Building the components

Let’s get back to our demo application and convert it to use the Vuex store we just set up.

input-component

Just like we did in the last chapter, we’ll dynamically bind the input field in input-component to an
input data property. We’ll specify a keyup.enter event listener to call a monitorEnterKey method
when the enter key is released:

This makes the inputComponent object set up like this:

template: `<input

placeholder='Enter a note'

v-model="input"

@keyup.enter="monitorEnterKey"

class="input is-small" type="text" />`,

data () {

return {

input: '',

}

},

methods: {

monitorEnterKey () {

}

}

When an input is entered by the user, we want two actions to be dispatched: addNote and
addTimestamp. Store actions are dispatched simplywith store.dispatch('nameOfAction', payload).
With our payloads being the input value for addNote and the current date/timestamp for addTimestamp,
we can update our monitorEnterKey method:

monitorEnterKey () {

store.dispatch('addNote', this.input);

store.dispatch('addTimestamp', new Date().toLocaleString());

this.input = ''; // set input field back to blank

}

Though this would work if we’ve defined our store object above our component object, this doesn’t
reference the injected store in our entire application. To reference the injected store object, we’ll
update it to use the this.$store object:

Introduction to Vuex 140

vuex/note_taking/app-complete/main.js

monitorEnterKey () {

this.$store.dispatch('addNote', this.input);

this.$store.dispatch('addTimestamp', new Date().toLocaleString());

this.input = '';

}

note-count-component

The note-count-component is solely responsible for displaying the number of notes entered. We’ll
introduce this component by having a computed noteCount property that simply references the
getNotes getter method from the store, to get the total number of entered notes.

Our noteCountComponent object can now be updated to reflect this additional functionality:

vuex/note_taking/app-complete/main.js

const noteCountComponent = {

template:

`<div class="note-count">

Note count: {{ noteCount }}

</div>`,

computed: {

noteCount() {

return this.$store.getters.getNoteCount;

}

}

}

Vuex provides additional helpers that allow us to neatly map store getters (or state, actions)
to components (mapGetters, mapState, mapActions). Though we won’t be using these in this
chapter, we’ll be explaining and using them in the next chapter!

Let’s now make sure we specify the noteCountComponent as a component property in the Vue
instance so that it can get access to the this.$store property:

Introduction to Vuex 141

const app = Vue.createApp({

components: {

"input-component": inputComponent,

"note-count-component": noteCountComponent,

},

});

app.use(store);

app.mount("#app");

And be referenced in the template of the root instance (#app), in the index.html file:

<div id="app">

<div class="notes-section">

<!-- Notes section -->

</div>

<note-count-component></note-count-component>

</div>

Root Instance

The root instance needs to display the list of notes and timestamps to the view. Very similar to
note-count-component, we can introduce two computed properties, notes and timestamps. These
properties can return the values that the getNotes and getTimestamps getter functions return.

Let’s update our instance definition to include these two properties:

vuex/note_taking/app-complete/main.js

const app = Vue.createApp({

computed: {

notes() {

return this.$store.getters.getNotes;

},

timestamps() {

return this.$store.getters.getTimestamps;

}

},

components: {

'input-component': inputComponent,

'note-count-component': noteCountComponent

}

})

Introduction to Vuex 142

app.use(store)

app.mount('#app')

In our parent template, we need to set the v-for directives to render the list of notes and timestamps.
Let’s update the <div class="columns"></div> section of the index.html template to the following:

custom_events/app-complete/index.html

<div class="columns">

<div class="column has-text-centered">

Notes

<div v-for="note in notes" class="notes">

{{ note }}

</div>

</div>

<div class="column has-text-centered">

Timestamp

<div v-for="timestamp in timestamps" class="timestamps">

{{ timestamp }}

</div>

</div>

</div>

That’s it! We’ve completed our Vuex application! Saving the main.js and index.html files and
opening index.html in Chrome, we’ll see everything work as expected:

Introduction to Vuex 143

Notice how easy it was to create our components once our Vuex store was built? The Vuex store
often makes the bulk of an application, since components become a lot simpler and focus primarily
in displaying the view. Component methods will often now directly dispatch to an action letting the
Vuex store deal with everything else.

Vuex and Vue devtools

Note: The beta version of Vue devtools for Vue 3⁸⁷ is currently under development and
may not have the following Vuex tracking features shown below.

In addition to a structured Flux-like pattern for data management, another primary benefit of using
Vuex is its integration with Vue’s official devtools⁸⁸ to provide ‘time-travel’ debugging. ‘Time-travel’
debugging allows us to track and replay changes to the state with each and every mutation.

Let’s see this in practice. With the application launched in our browser, we’ll open up the Vue
devtools and select the Vuex tab in the top right corner:

⁸⁷https://chrome.google.com/webstore/detail/vuejs-devtools/ljjemllljcmogpfapbkkighbhhppjdbg
⁸⁸https://github.com/vuejs/vue-devtools

Introduction to Vuex 144

Base State

Mutations are tracked on the left hand side. For each selected mutation, information about the store
is displayed on the right. In the Base State, we can see our store state and getters all consisting of
and returning empty arrays.

Let’s enter a few notes into the application. We’ll notice both the ADD_NOTE and ADD_TIMESTAMP

mutations being added as we invoke the monitorEnterKey method in our UI.

ADD_TIMESTAMP

In the image above we’re inspecting the latest ADD_TIMESTAMP mutation. We can see the payload in
this mutation, the state after the mutation is complete, and all the getters in the store. If we click the
other mutation, we can inspect it by seeing the store information at that point.

When we click the Time Travel option within a mutation, we can actually ‘time-travel’ the UI back
to when that mutation was called! Here’s a screen grab of ‘time-travelling’ to when the ADD_NOTE

mutation occured but before the ADD_TIMESTAMP mutation took into effect:

Introduction to Vuex 145

ADD_NOTE

Notice how the UI displays the note message without the timestamp? This is the moment right before
the ADD_TIMESTAMP mutation was committed. This example is a good display of how mutations are
all synchronous. They happen one after the other.

‘Time-travel’ debugging provides huge benefits towards solving application bugs or issues. Though
not intended to replace standard debugging practices, debugging in this manner provides an extra
layer towards inspecting the various parts of a Vuex store.

Recap

Let’s recap how our Vuex store works:

1. The root instance and the note-count-component obtain state data with the help of getters.
2. When an input is entered, the input-component will dispatch the addNote and addTimestamp

actions with the appropriate payloads.
3. These actions then commit to the relevant mutations, ADD_NOTE and ADD_TIMESTAMP, further

passing in the necessary payloads.
4. The mutations mutate and modify the state causing the components that have the modified

state data (root instance and note-count-component) to re-render.

Introduction to Vuex 146

Regardless of how large/small an application is, this pattern of data management remains the same.
This form of unidirectional data flow and restriction of state changes to mutations keeps a front-end
application consistent and maintainable as things continue to scale.

In the next chapter, we’ll see how this pattern remains the same even as we build a much larger
Vuex application!

Vuex and Servers
Introduction

In the last chapter, we learned about Vue’s most widely used Flux implementation,Vuex. By building
our own Vuex store from scratch and integrating the store to the application Vue instance, we got a
feel for how data flows through a Vuex-powered Vue app.

In this chapter, we build on these concepts by using Vuex to build a functional shopping cart
application that persists data to a server. All the applications we’ve built thus far had hard-coded
initial state and the state only lived as long as the browser window was open.

In this chapter, however, the server will be in charge of persisting the data.

Our shopping cart app will begin to look like a real-world Vuex/Vue app as we explore strategies for
handling more complex state management.

Preparation

Previewing the App

Like we’ve done for all our chapters, we’ll start by previewing a completed implementation of the
app.

In the terminal, let’s change into the vuex/shopping_cart directory using the cd command:

$ cd vuex/shopping_cart

We’ll use npm to install all the application’s dependencies:

$ npm install

When all dependencies have been installed, we’ll boot the application with npm run start:

$ npm run start

We’ll see something similar to the following in our terminal:

Vuex and Servers 148

$ npm run start

Compiled successfully in ####ms

App running at:

- Local: http://localhost:8080

- Network: http://##.##.##.###:8080

We’ll now be able to visit http://localhost:8080 to see our app running in the browser:

The Fullstack Shopping Cart

The premise of the shopping cart is the Fullstack team’s first foray into selling clothing online! Spend
some time playing around with the completed app to get an understanding of what we’ll be building.
Add items, remove items, refresh, and note that everything is persisted. You can even make changes
to your app in one browser tab and see the changes propagate to another tab.

Preparing the App

In the terminal, let’s run ls to see the project’s layout:

Vuex and Servers 149

$ ls

README.md

babel.config.js

node_modules/

package.json

public/

server-cart-data.json

server-product-data.json

server.js

src/

vue.config.js

In addition, we have the hidden .gitignore file in the project directory.

Let’s address the responsibilities of each of these directories/files:

README.md

The README.md file summarizes the instructions on how to run the application.

babel.config.js/

Babel⁸⁹ is a JavaScript transpiler that transpiles ES6 syntax to older ES5 syntax for any browser to
understand. The .babel.config.js⁹⁰ file can be used to configure the Babel presets and plugins in
our application. This package/setup allows us to transpile all of our .js files, which allows us to
write with ES6.

node_modules/

The node_modules directory refers to all the different JavaScript libraries that have been installed in
our application when we installed our dependencies using npm install.

package.json

The package.json file lists all the locally installed npm packages for us to manage.

The scripts portion dictates the npm commands that can be run in our application:

⁸⁹https://babeljs.io/
⁹⁰https://cli.vuejs.org/config/#babel

Vuex and Servers 150

{

// ...

"scripts": {

"start": "concurrently \"npm run server\" \"npm run serve\"",

"server": "node server",

"serve": "vue-cli-service serve",

"build": "vue-cli-service build",

"lint": "vue-cli-service lint"

},

// ...

}

We can use these different script commands to work with our application.

• npm run start: run both the client and server
• npm run server: run the server only
• npm run serve: run the client only
• npm run build: bundle the application files to static assets within a dist/ folder
• npm run lint: run through the code to check for potential lint errors

We’ll discuss the first three commands as we take a closer look into the server API.

Let’s address the main dependencies that have been installed in our application:

{

// ...

"dependencies": {

"axios": "^0.21.0",

"core-js": "^3.6.5",

"vue": "^3.0.0",

"vuex": "^4.0.0-0"

},

// ...

}

• axios: the ajax library used to make HTTP requests from the client to the server
• core-js: Standard JavaScript library, installed as part of the Vue CLI, and introduces polyfills
for a variety of different ECMAScript features.

• vue: the Vue npm library
• vuex: the Vuex npm library

The rest of the content in package.json constitute the packages needed for the build/configuration
of the Vue application, which we’ve discussed in Chapter 2.

Vuex and Servers 151

public/

public/ holds the installed bulma/ and font-awesome/ libraries that we use in our application in
addition to the root markup page - the index.html file.

server-cart-data.json - server-product-data.json

These files are the root data files needed in the application server (server.js).

server.js

server.js is a Node.js server specifically designed for our shopping cart app.

You don’t have to know anything about Node.js or about servers in general to work with
the server we’ve supplied.

We’ll provide the guidance that you need.

server.js uses both files server-cart-data.json and server-product-data.json.

• server-product-data.json acts as a read-only file holding product information for the server
to display.

• server-cart-data.json, on the other hand, is where the server will read and write to persist
data. Take a look at both files to see the data that exists.

Note that we’re using the server-product-data.json and server-cart-data.json files
as a file-based database. In production, we could replace these files with a database like
PostgreSQL or MySQL.

src/

src/ contains the JavaScript files that we’ll be working directly with:

Vuex and Servers 152

$ ls src/

app/

app-1/

app-2/

app-3/

app-complete/

main.js

We’ll be building our app inside the app/ directory. app-complete/ denotes the completed implemen-
tation of the application. Each significant step we take along the way is included in app-1/, app-2/
and app-3/.

The main.js file represents the starting point of the application. This file is where the Vue instance
is mounted to #app, the declared DOM element in our index.html file.

If we take a look in the main.js file, we can see the main component App.vue imported from the
app-complete/ directory and rendered in the application instancewith createApp(App).use(store).mount('#app').

We have a store instance being imported from app-complete/ and chained into the application
instance with .use(). This entails that the Vuex plugin is being installed to our application instance.

vuex/shopping_cart/src/main.js

import { createApp } from 'vue';

import App from './app-complete/App.vue';

import store from './app-complete/store';

createApp(App).use(store).mount('#app');

Our first step to building our own application is to ensure we’re not referencing the app-complete
sub folder anymore. Let’s change the import of App from ./app-complete/App.vue to ./app/App.vue
instead.

In addition, let’s remove the store import and the store property declaration within the instance.
We’ll create this when we start building the store of our application.

This will update the main.js file to look like the following:

import { createApp } from "vue";

import App from "./app/App.vue";

createApp(App).mount("#app");

We’ll get a better understanding of the starting code within app/ once we start building our
application.

Vuex and Servers 153

vue.config.js

Placed in the root of the project, the vue.config.js file is automatically loaded by the vue-cli-service
and can be used to make configurations/changes to a Vue CLI project.

In this application, the vue.config.js file contains details to help set up a proxy between the client
and the server. We’ll get a better understanding of this specification as we discuss the application’s
client-server interaction.

Instead of using a root-level vue.config.js file, we’re also able to make changes to our
application configuration by declaring options within a vue field in the package.json file.
Making changes within package.json limits us to specifying only JSON-compatible values
which makes the use of the vue.config.js file be more flexible.

The vue.config.js⁹¹ section of the Vue CLI docs highlight all the different possible configura-
tions that can be done to customize our Webpack configuration.

The Server API

Our ultimate goal in this chapter is to understand how Vuex manages data on a server. We’re not
going to move all state management exclusively to the server. Instead, the server will maintain its
state (in server-cart-data.json and server-product-data.json) and Vuex will maintain its own
client-side state. We’ll demonstrate later why keeping state in both places is desirable.

If we perform an operation on the server that we want persisted, then we also need to notify the
Vuex store on that state change. This functionality keeps the two states in sync. We’ll consider these
our “write” operations. The write operations we want to send to the server are:

• Add an item to the shopping cart
• Remove an item from the shopping cart
• Remove all items from the shopping cart

We’ll have two read operations, which focus on fetching data from the server:

• Get all items in the product list
• Get all items in the shopping cart

HTTP APIs

This section assumes some familiarity with HTTP APIs. If you’re not familiar with HTTP
APIs, you may want to read up on them⁹².

However, don’t be deterred from continuing with this chapter for the time being. Essentially
what we’re doing is making a “call” from our browser out to a remote web-server server (in
this case, on our local development machine) and conforming to a specified format.

⁹¹https://cli.vuejs.org/config/#vue-config-js
⁹²http://www.andrewhavens.com/posts/20/beginners-guide-to-creating-a-rest-api/

Vuex and Servers 154

curl

We’ll use a tool called curl to make more involved requests from the command line.

OSX users should already have curl installed. Windows users can download and install curl here:
https://curl.haxx.se/download.html⁹³.

JSON endpoints

server-cart-data.json and server-product-data.json are JSON documents. JSON is a format for
storing human-readable data objects. We can serialize JavaScript objects into the JSON format and
deserialize JSON files back into JavaScript objects. This format enables JavaScript objects to be stored
in text files and transported over the network.

The .json files contain an array of objects. While not strictly JavaScript, the data in these arrays can
be readily loaded into JavaScript.

In server.js, we see lines like this:

fs.readFile(CART_DATA_FILE, function (err, data) {

const cartProducts = JSON.parse(data);

// ...

});

data is a string, or in other words the contents of the file CART_DATA_FILE. We need to parse it into
a JavaScript object. JSON.parse() converts this string into an actual JavaScript array of objects.

Let’s break down all the calls that can be made to the server:

GET /products

Returns a list of all product items.

GET /cart

Returns a list of all cart items.

POST /cart

Accepts a JSON body with id, title, description, and price attributes and inserts that body as a
new item object to the cart. If the cart item already exists, this call increments the quantity of the
existing cart item by 1.

POST /cart/delete

Accepts a JSON body with the attribute id. The server iterates through the cart store and decrements
the quantity of the cart item with the matching id by 1. If the quantity of that item is equal to 1
when the call is made, the cart item object is removed.

⁹³https://curl.haxx.se/download.html

Vuex and Servers 155

POST /cart/delete/all

Removes all items in the cart.

Playing with the API

Let’s exit our application if we haven’t stopped it previously. We’ll now only boot the server with:

npm run server

With the server running, we can visit the /products and /cart endpoints at http://localhost:3000/products
and http://localhost:3000/cart in the browser. When visiting these URLs, our browser makes a
GET request to /products and /cart to see the JSON responses returned for each of these calls.

Here’s a screenshot of visiting http://localhost:3000/products in our browser:

GET /products

Note that the server stripped all of the extraneous whitespace in server-product-data.json, includ-
ing newlines, to keep the payload as small as possible. Those only exist in server-product-data.json
to make it human-readable.

We can use a Chrome extension like JSONView⁹⁴ to “humanize” the raw JSON. JSONView takes
these raw JSON chunks and adds back in the whitespace for readability:

⁹⁴https://chrome.google.com/webstore/detail/jsonview/chklaanhfefbnpoihckbnefhakgolnmc

Vuex and Servers 156

GET /products after installing JSONView

Visiting http://localhost:3000/cart, we can see the existing data within server-cart-data.json

that shows the one item that currently exists in the shopping cart:

Vuex and Servers 157

GET /cart after installing JSONView

The browser can only be used to make GET requests. For writing data — like removing an item from
the cart — we’ll have to make POST, PUT, or DELETE requests. For our application, the server uses POST
for all write commands. Let’s use curl to test this out.

Run the following command from the command line:

$ curl -X GET localhost:3000/cart

The -X flag specifies which HTTP method to use. It should return a response that looks a bit like
this:

[{"id":1,"title":"The Fullstack Hoodie","description":"Lightweight, breathable

hoodie with the Fullstack Crest. Guaranteed to keep you looking fresh while

warm.","price":19.99,"quantity":2}]

We can insert a new item to the cart by issuing a POST request to the /cart endpoint. We need to
send along a JSON body with id, title, description and price attributes as the new cart item:

Vuex and Servers 158

$ curl -X POST localhost:3000/cart \

-H 'Content-Type: application/json' \

-d '{ "id":100,

"title":"A New Cart Item",

"description":"Adding a new cart item",

"price":99 }'

Pasting the entire block above may cause some formatting issues in your terminal. To
appropriately run the command, paste each line one by one or type it out.

The -H flag sets a header for our HTTP request, Content-Type. We’re informing the server that the
body of the request is JSON.

The -d flag sets the body of our request. Inside of single-quotes '' is the JSON data.

The backslash \ above is only used to break the command out over multiple lines for readability.
This only works on MacOS and Linux. Windows users can just type it out as one long string.

When you press enter, curl will quickly return with an output. For this endpoint, the server will
return all the cart items, with the newly included item:

[{"id":1,"title":"The Fullstack Hoodie","description":"Lightweight, breathable

hoodie with the Fullstack Crest. Guaranteed to keep you looking fresh while

warm.","price":19.99,"quantity":2},{"id":100,"title":"A New Cart Item",

"description":"Adding a new cart item","price":99,"quantity":1}]

If we open up server-cart-data.json, we’ll also see the new item we’ve just added.

To bring back the server-cart-data.json to it’s original state, we’ll delete the added cart itemwith a
POST request to the /cart/delete endpoint. We’ll pass in the same JSON body since the id attribute
is used in this case to find and remove the item:

$ curl -X POST localhost:3000/cart/delete \

-H 'Content-Type: application/json' \

-d '{ "id":100,

"title":"A New Cart Item",

"description":"Adding a new cart item",

"price":99 }'

The endpoint will return showing that the added cart item was removed.

Vuex and Servers 159

[{"id":1,"title":"The Fullstack Hoodie","description":"Lightweight, breathable

hoodie with the Fullstack Crest. Guaranteed to keep you looking fresh while

warm.","price":19.99,"quantity":2}]

We’ve tested most of the calls that can be made to the server. Feel free to play around with
the other endpoints to get a feel for how theywork. Just be sure to set the appropriate method
with -X and to pass along the JSON Content-Type for the write endpoints.

For MacOS and Linux users, parsing and processing JSON on the command line can be greatly
enhanced with the tool “jq”. jq can pretty format responses as well do powerful manipulation of
JSON (like iterating over all objects in the response and returning a particular field). You can find
more about jq here: https://stedolan.github.io/jq/.

https://stedolan.github.io/jq/

Client and server

The Vue Webpack server can be booted on http://localhost:8080 with the following command:

$ npm run serve

Our Node.js server runs on http://localhost:3000 when we run:

$ npm run server

For our Vue application to make requests to the server, we need to launch both the Webpack dev
server and the API server simultaneously. To do so, we’ll use the npm library concurrently.

concurrently

concurrently⁹⁵ is a npm utility for running multiple processes. The utility is already installed and
set-up in our application, but we’ll go through how it works.

concurrently works by passing multiple commands concurrently in quotes:

⁹⁵https://www.npmjs.com/package/concurrently

Vuex and Servers 160

$ concurrently "command1" "command2"

In the package.json file, we have a start script that uses concurrently to boot both the Webpack
and Node.js servers simultaneously:

"start": "concurrently \"npm run server\" \"npm run serve\"",

To get both servers running, we’ll always run the start command in the terminal:

$ npm run start

At this point, the client would be able to make GET/POST requests to http://localhost:3000 (i.e. the
server running on our local machine).

This difference in web servers actually presents a browser security issue. Since our Vue app (hosted at
http://localhost:8080) is attempting to load a resource from a different origin (http://localhost:3000),
this will be performing Cross-Origin Resource Sharing⁹⁶. The browser will prevent these types of
requests from scripts for security reasons.

We essentially need our Webpack server to proxy requests intended for our API server.

API proxying

API proxying has already been set-up in our scaffold but we’ll explain how it was done.

The vue-cli boilerplate we’re using provides a mechanism for working with an API server in
development. In the vue.config.js file in our application, a new proxy rule has been introduced
via the devServer.proxy option:

module.exports = {

devServer: {

proxy: {

"/api": {

target: "http://localhost:3000/",

changeOrigin: true,

pathRewrite: {

"^/api": "",

},

},

},

},

};

⁹⁶https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Vuex and Servers 161

This rule dictates; if a request within our Vue Webpack server is made to /api/, it will be
proxied to http://localhost:3000/. This will essentially allow us to make requests from our Vue
client to the server with no issues! In our code, all our calls will be made to /api instead of
http://localhost:3000.

Head to the devServer.proxy⁹⁷ section of the Vue CLI docs to read more on API proxying.

Preparing the application

With a good understanding of the Node.js server and how our client can proxy requests to it, we
can now start building our application.

Components

Let’s break down the interface of the app to smaller pieces. From looking at the completed
implementation, we can see at least two main components:

• A component that displays the list of cart items and the checkout button - we’ll call this the
CartList component

• A component that displays the list of items in the product list - we’ll call this the ProductList
component

⁹⁷https://cli.vuejs.org/config/#devserver-proxy

Vuex and Servers 162

CartList and ProductList components

The CartList and ProductList components each display a list of cart items and product items
respectively. Because of this, we can introduce these smaller list items as the CartListItem and
ProductListItem components:

Vuex and Servers 163

CartList and ProductList components

Our component hierarchy is:

• App: Parent container
• CartList: Displays a list of cart items and the checkout button

– CartListItem: Displays a single cart item
• ProductList: Displays a list of product items

– ProductListItem: Displays a single product item

Single-file components

In Chapter 2, we discussed how Vue allows us to create single-file components in a Webpack
bundled application. To reiterate, a single-file component is a Vue component that has its HTML,
CSS and JS defined in a .vue file. A single-file component consists of three parts:

• <template> which contains the components markup in plain HTML.
• <script>which exports the component object constructor that consists of all the JS logic within
that component.

• <style> which contains all the component styles.

Vuex and Servers 164

All the components we build in this application will be single-file components.

Throughout this chapter, we’ll often refer to pieces of a component that we’ll be addressing at
a time. For example, to modify the HTML of a component, we’ll address and display only the
<template> element of said component. To create a component’s data, we’ll only show how we
update information in the <script> element of the .vue file. This helps in providing more concise
code samples as we proceed through the chapter.

Component styles have already been prepared and exist within each component. For the sake
of brevity, like always, we won’t be addressing styles and CSS attributes since our focus is
on the usage of Vue.

Static version of the app

All our Vue code for this chapter will be inside src/. We’ll be focusing all our attention to src/app/.
With that said, let’s survey the existing files in src/app/:

$ ls src/app/

components/

App.vue

We can see a components/ folder and a parent component App.vue file. If we look inside the
components/ folder, we’ll see two subfolders within - cart/ and product/:

$ ls src/app/components/

cart/

product/

Within cart/, exists the main cart component CartList.vue:

$ ls src/app/components/cart/

CartList.vue

Within product/, exists the main product component ProductList.vue:

$ ls src/app/components/product/

ProductList.vue

Let’s take a deeper look at the content within each of these files.

App.vue

In the App.vue file, we can see the <template>markup consists of a parent div #app that encompasses
the <CartList /> and <ProductList /> component declarations in separate CSS columns:

Vuex and Servers 165

vuex/shopping_cart/src/app/App.vue

<template>

<div id="app">

<div class="container">

<div class="columns">

<div class="column is-3">

<CartList />

</div>

<div class="column is-9">

<ProductList />

</div>

</div>

</div>

</div>

</template>

In the <script> tag of App.vue, the CartList and ProductList components are imported from the
components/ subfolder and declared in the App’s component property:

vuex/shopping_cart/src/app/App.vue

<script>

import CartList from './components/cart/CartList';

import ProductList from './components/product/ProductList';

export default {

name: 'App',

components: {

CartList,

ProductList

}

};

</script>

CartList.vue and ProductList.vue

For both the CartList.vue and ProductList.vue files, the <script> tags currently export the
constructor only containing the name of the components.

<script> of the CartList.vue file:

Vuex and Servers 166

vuex/shopping_cart/src/app/components/cart/CartList.vue

<script>

export default {

name: 'CartList',

}

</script>

<script> of the ProductList.vue file:

vuex/shopping_cart/src/app/components/product/ProductList.vue

<script>

export default {

name: 'ProductList',

}

</script>

The <template> of the CartList.vue and ProductList.vue files display the markup of the cart list
and product list component UIs. Each of these templates currently consist of hard-coded data of a
single cart item and a single product item.

The <template> portion of the CartList.vue file looks like the following:

vuex/shopping_cart/src/app/components/cart/CartList.vue

<template>

<div id="cart">

<div class="cart--header has-text-centered">

<i class="fa fa-2x fa-shopping-cart"></i>

</div>

<li class="cart-item">

<div>

<p class="cart-item--title is-inline">The Fullstack Hoodie</p>

<div class="is-pulled-right">

<i class="fa fa-arrow-circle-up cart-item--modify"></i>

<i class="fa fa-arrow-circle-down cart-item--modify"></i>

</div>

<div class="cart-item--content">

<span class="cart-item--price

has-text-primary

has-text-weight-bold">

19.99$ each

Vuex and Servers 167

<span class="cart-item--quantity

has-text-grey

is-pulled-right">

Quantity: 2

</div>

</div>

<div class="cart-details">

<p>Total Quantity: 2</p>

<p class="cart-remove-all--text">

<i class="fa fa-trash"></i>Remove all

</p>

</div>

<button class="button is-primary">

Checkout ($)

</button>

</div>

</template>

The <template> of the ProductList.vue file looks like this:

vuex/shopping_cart/src/app/components/product/ProductList.vue

<template>

<div id="products" class="box">

<div class="products--header has-text-centered">

<i class="fa fa-2x fa-user-circle"></i>

</div>

<div class="product-list">

<div class="product-list--item">

<div>

<h2 class="has-text-weight-bold">The Fullstack Hoodie

<span class="tag

is-primary

is-pulled-right

has-text-white">

Add to Cart

</h2>

<p>Lightweight, breathable hoodie with the Fullstack Crest.

Guaranteed to keep you looking fresh while warm.</p>

Vuex and Servers 168

<i class="fa fa-usd"></i> 19.99

</div>

</div>

</div>

<div class="product-count has-text-right">

of products: 4

</div>

</div>

</template>

To see the current static version of the app, we’ll run the application (npm run start) and open the
browser to the url at http://localhost:8080:

Static version of the app

All information currently displayed is hard-coded (Total Quantity, # of products, etc.). In the
subsequent sections, we’ll be making all application data dynamic and enabling interactivity.

Vuex and Servers 169

The Vuex Store

We’ll start building our application by first building the Vuex store. We know a fully-defined Vuex
store is composed of 4 distinct pieces - state, mutations, actions, and getters. We’ll set up the store
in steps:

1. Create our state objects
2. Set up the mutations that will occur in our application
3. Create the actions that will commit to these subsequent mutations
4. Create getters for components to directly compute state data

In the last chapter, we had our entire store created and integrated within the same file we declared
our components. We’ll be structuring things a bit differently here.

Similar to how a components/ folder exists, we’ll set up a store/ folder that hosts all the information
pertaining to the Vuex store. This separation of concerns will help greatly in maintaining our app.

Let’s create a store/ subfolder and create an index.js file inside of it:

The app/ directory will now have the following structure:

$ ls src/app/

components/

store/

App.vue

And the store/ subfolder will have a single index.js file:

$ ls src/app/store/

index.js

This index.js file will be the heart of our Vuex application and where we declare createStore().
In index.js, let’s import the createStore function at the top from the Vuex library.

vuex/shopping_cart/src/app-1/store/index.js

import { createStore } from 'vuex';

Our application already has the Vuex package installed. On a new npm project, npm
install vuex needs to be run prior to importing it.

And at the end of the file, we’ll default export a createStore({}) declaration. This will allow us to
import the store anywhere else in our application:

Vuex and Servers 170

import { createStore } from "vuex";

export default createStore({});

The standard process would now be to build all the pieces of the Vuex store and specify them within
the createStore({}) export. For this application, however, we’ll be dividing our Vuex store into
modules.

Vuex Modules

Vuex provides the ability to create modules to separate an application store into more manageable
fragments. As an application scales, the store actions, mutations, and getters constantly evolve and
grow. Modules exist primarily to avoid making an entire application store bloated and difficult to
manage.

A module can be set up with the same pieces that make up the Vuex store. Here are examples of two
module objects moduleOne and moduleTwo:

const moduleOne = {

stateOne,

mutationsOne,

actionsOne,

gettersOne,

};

const moduleTwo = {

stateTwo,

mutationsTwo,

actionsTwo,

gettersTwo,

};

When the store is instantiated, the module objects can then be introduced to the store’s modules
property:

const store = createStore({

modules: {

moduleOne,

moduleTwo,

},

});

Anywhere in the application, the states of the separate modules can be accessed independently:

Vuex and Servers 171

// accessing moduleOne state

this.$store.state.moduleOne;

// accessing moduleTwo state

this.$store.state.moduleTwo;

Though the states of the modules can be independently accessed; actions, mutations, and getters are
registered to the global namespace by default. In other words, if you wanted to access getters from
either moduleOne or moduleTwo you’d be able to do so without explicitly stating a module:

this.$store.getters;

This setup gets the getters from the entire store (i.e. for both modules). It’s important to note that
if the same getter method name exists in two modules, Vuex would not know which module it’s
referring to! To bypass this, Vuex allows us to namespace modules by specifying a namespaced

property to true:

const moduleOne = {

namespaced: true,

stateOne,

mutationsOne,

actionsOne,

gettersOne,

};

Within components; namespaced mutations, actions, and getters have to be explicitly declared with
the path the module is registered at. Here’s an example of how an action is dispatched without a
namespaced module and with a namespaced module:

// with namespacing

this.$store.dispatch("moduleA/nameOfAction");

// without namespacing

this.$store.dispatch("nameOfAction");

We won’t have the need to namespace the modules we build in this application. For more reading
on this, refer to the Modules⁹⁸ section of the Vuex docs.

⁹⁸https://next.vuex.vuejs.org/guide/modules.html

Vuex and Servers 172

cartModule - productModule

Since our application is separated into two distinct domains (cart and product), we can specify
modules for each of these domains.

Within the store/ directory, we’ll create a modules/ folder that contains a cart/ and product/

subfolders.

Let’s create two directories (cart/ and product/) and create an index.js file within them.

The store/ directory will now look like this:

$ ls src/app/store/

modules/

index.js

With the modules/ folder containing the new modules:

$ ls src/app/store/modules/

cart/

product/

The modules/cart/ and modules/product/ subfolders will each have an index.js file of their own:

The modules/cart/ subfolder:

$ ls src/app/store/modules/cart/

index.js

The modules/product/ subfolder:

$ ls src/app/store/modules/product/

index.js

With our module directories set-up, let’s create the pieces for each module and wire them to the
global Vuex store.

In the index.js file for both the cart/ and product/ modules, let’s create empty objects for state,
mutations, actions and getters. With the empty objects, let’s create and export cartModule and
productModule in their respective files.

Our store/module/cart/index.js file should look like this:

Vuex and Servers 173

vuex/shopping_cart/src/app-1/store/modules/cart/index.js

const state = {};

const mutations = {};

const actions = {};

const getters = {};

const cartModule = {

state,

mutations,

actions,

getters

}

export default cartModule;

Similarly, the store/module/product/index.js file becomes:

vuex/shopping_cart/src/app-1/store/modules/product/index.js

const state = {};

const mutations = {};

const actions = {};

const getters = {};

const productModule = {

state,

mutations,

actions,

getters

}

export default productModule;

Our main Vuex store now needs to import these modules and include them within the modules

property. We’ll update store/index.js to reflect this:

Vuex and Servers 174

vuex/shopping_cart/src/app-1/store/index.js

import { createStore } from 'vuex';

import product from './modules/product';

import cart from './modules/cart';

export default createStore({

modules: {

product,

cart

}

});

To have the store accessible in all our application’s components, we need to inject it into the entire
application.

In the src/main.js file, we’ll import the entire store and pass it in a .use() function of the
application’s Vue instance before we mount the instance to the appropriate DOM element.

Our updated src/main.js file should look like this:

import { createApp } from "vue";

import App from "./app/App.vue";

import store from "./app/store";

createApp(App).use(store).mount("#app");

We’ll need to install the Vuex plugin to our application instance. In the main.js file kept in our src/
folder, we’ll import the store we’ll look to create from the store/ directory and use the .use()

function in the application instance to install our Vuex store to our app.

We can now begin building the pieces for both the productModule and the cartModule.

productModule

The productModule is solely responsible in obtaining a list of product items directly from the server.
We’ll build the interaction that involves adding a product item to the cart within the cartModule.

State

The application level state we need in productModule is simply an entire list (i.e. array) of product
items. With this in mind, our productModule state will have a productItems property initialized
with an empty array.

Let’s update the state object in store/modules/product/index.js to be:

Vuex and Servers 175

vuex/shopping_cart/src/app-2/store/modules/product/index.js

const state = {

productItems: []

}

Mutations

When the application loads in the browser, we’ll make a call from our client to the server to
GET all items in server-product-data.json. When this call is made, we need to update the
state.productItems property to reflect the information in server-product-data.json.

In essence, we need to mutate our productModule state to be equal to the state in the server. This is
how we keep our client state and our server state in sync.

We’ll create a mutation called UPDATE_PRODUCT_ITEMS that simply updates the state with the payload
provided.

Remember, state is always the first argument of a mutation. The optional payload is the data we
need here to update our state.

The mutations object in store/modules/product/index.js becomes:

vuex/shopping_cart/src/app-2/store/modules/product/index.js

const mutations = {

UPDATE_PRODUCT_ITEMS (state, payload) {

state.productItems = payload;

}

}

Actions

We need to create an action that allows us to GET a list of product items from the server. We’ll set
this action up as the getProductItems action:

const actions = {

getProductItems(context) {

// action goes here

},

};

Vuex and Servers 176

Wewon’t need to pass any argument into this function, so we can safely ignore the second argument
in this action. Therefore, we only set the single context argument in the function definition.

The context object allows us to commit to a mutation in addition to accessing getters and state. Since
we’re not going to have a need for anything else but committing to a mutation with context.commit,
we’ll destructure the context argument to a commit property that we can call directly.

Destructuring is a feature enabled by ES6 which allows us to pull out a specific key into
a variable from a JavaScript object.

For example, take the following functionality in ES5. First, let’s assume we have an object
like this:

> var obj = { a: "A", func: function () {} };

>

To get access to the func part of the object, we can create a variable:

> function(obj) {

> var func = obj.func

> }

>

In ES6, we can destructure the obj object using the following line:

> function({ func }) {}

>

Using destructuring, we can change the getProductItems function to:

const actions = {

getProductItems({ commit }) {

// action goes here

},

};

With our getProductItems action set up, we’ll need to create an async call to the server to retrieve
the payload associated with a list of product items. This payload can then be passed to the UPDATE_-
PRODUCT_ITEMS mutation to maintain the synchronicity between the client and the server.

Though numerous ajax libraries exist, we’ll use the axios library for handling async API calls.

Just in case it’s not apparent as to why it’s important to keep the Vuex and server state in sync, let’s
explain it in a little more detail.

When the application loads for the first time, the ProductList component needs to display a list of
product items from the server.

Vuex and Servers 177

To list our product items on the server within a Flux-like pattern, the component needs to compute
data directly from the Vuex state. The getProductItems action essentially needs to occur right when
the application loads, to commit to the UPDATE_PRODUCT_ITEMSmutation that updates the Vuex state.

With the Vuex state updated, the ProductList component can then compute the product list directly
from the state!

axios

axios behaves like other HTTP libraries to enable the client to make XMLHttpRequests requests.
Since axios is promise-based, we dictate what happenswhen a call is made successfully with .then()
or when a call fails with .catch().

Here’s an example of fetching and posting information with axios:

// Fetching information

axios

.get("/api/book")

.then((response) => {

console.log("GET call successful :)", response);

})

.catch((error) => {

console.log("GET call unsuccessful :(", error);

});

// Posting information

axios

.post("/api/book", { title: "Fullstack Vue", edition: 1 })

.then((response) => {

console.log("Post call successful :)", response);

})

.catch((error) => {

console.log("POST call unsuccessful :(", error);

});

The axios library has already been installed in our application. We need to simply import it in the
store/modules/product/index.js file for it to be used. We’ll import it at the top of the file:

vuex/shopping_cart/src/app-2/store/modules/product/index.js

import axios from 'axios';

The call to the server to GET a list of product items is done with /api/products. With this in mind,
we’ll set up our asynchronous call in the getProductItems action and commit the response retrieved
from the call.

Vuex and Servers 178

vuex/shopping_cart/src/app-2/store/modules/product/index.js

const actions = {

getProductItems ({ commit }) {

axios.get('/api/products').then((response) => {

commit('UPDATE_PRODUCT_ITEMS', response.data)

});

}

}

The entire response object consists of information such as the headers of the HTTP call,
the status, the data that was retrieved etc. Since the fetched data is the only relevant
information for our mutation, we simply commit with response.data as the payload.

Within actions, it’s important to commit to unique mutations under the conditions that an
asynchronous call fails.

These mutations should update the state accordingly which would display information to
the view specifying a call was unsuccessful. Though we won’t create error cases for this
application (for the sake of simplicity), this is an important note to remember.

Getters

The only getter we’ll need in productModule is a method that gets the list of product items in our
state. Calling this getter productItems, our getters object becomes:

vuex/shopping_cart/src/app-2/store/modules/product/index.js

const getters = {

productItems: state => state.productItems

}

With everything set up, the store/modules/product/index.js file will be laid out like this:

Vuex and Servers 179

vuex/shopping_cart/src/app-2/store/modules/product/index.js

import axios from 'axios';

const state = {

productItems: []

}

const mutations = {

UPDATE_PRODUCT_ITEMS (state, payload) {

state.productItems = payload;

}

}

const actions = {

getProductItems ({ commit }) {

axios.get('/api/products').then((response) => {

commit('UPDATE_PRODUCT_ITEMS', response.data)

});

}

}

const getters = {

productItems: state => state.productItems

}

const productModule = {

state,

mutations,

actions,

getters

}

export default productModule;

ProductList - ProductListItem

With a portion of our Vuex store complete, we can now make the ProductList component dynamic.

For us to retrieve information from the store, we first need to invoke the mutation that syncs the
server data with the store. Since we need the mutation to occur at the moment the component is
created, we’ll dispatch the getProductItems action within the component’s created() hook.

Vuex and Servers 180

In the <script> tag of the ProductList.vue file, we’ll set up the created() hook to dispatch the
getProductItems action. Since the store is injected through the entire application, we can access it
with this.$store:

<script>

export default {

name: "ProductList",

created() {

this.$store.dispatch("getProductItems");

},

};

</script>

We can verify if the asynchronous call was successful and the store state was updated before we aim
to display the information to the view. We can do this with the help of the Vue devtools.

Note: The beta version of Vue devtools for Vue 3⁹⁹ is currently under development and
may not have the following Vuex tracking features shown below.

With our application launched in the browser, let’s open up Vue devtools and select the Vuex tab in
the top right corner:

⁹⁹https://chrome.google.com/webstore/detail/vuejs-devtools/ljjemllljcmogpfapbkkighbhhppjdbg

Vuex and Servers 181

As we can see in the image above, our productItems state and getters are displaying the entire list
of product item objects! The devtools validate that our productModule store is appropriately set up
and can be used by components to compute information.

In our ProductList.vue file, we can create a computed property that calls the productItems getter
method to retrieve the entire list of product items:

computed: {

productItems() {

return this.$store.getters.productItems;

}

}

Though this computed property would work just fine, this can be simplified further. Vuex provides a
mapGetters helper that directly maps store getters with component computed properties. This helper
function helps avoid the continous reference of this.$store.getters.

We’ll import mapGetters from the vuex plugin, and use it to mount the productItems getter to the
scope of the component. The <script> of ProductList.vue will become:

Vuex and Servers 182

<script>

import { mapGetters } from "vuex";

export default {

name: "ProductList",

computed: {

...mapGetters([

// map this.productItems to this.$store.getters.productItems

"productItems",

]),

},

created() {

this.$store.dispatch("getProductItems");

},

};

</script>

We’re using the object spread operator (i.e. the three dots) to directly ‘copy’ the getters into the
components computed property. This helper function allows us to define local computed properties
above mapGetters if we wish to do so. If we wanted to reference only mapGetters, computed can also
be written as:

computed: mapGetters({

productItems: "productItems",

});

In the ProductList component template; the content within <div class="product-list"></div>

refers to a single product item:

<div class="product-list">

<!-- Single product list item -->

<div class="product-list--item">

<div>

<h2 class="has-text-weight-bold">

The Fullstack Hoodie

<span

class="tag

is-primary

is-pulled-right

has-text-white"

>

Add to Cart

Vuex and Servers 183

</h2>

<p>

Lightweight, breathable hoodie with the Fullstack Crest. Guaranteed to

keep you looking fresh while warm.

</p>

<i class="fa fa-usd"></i> 19.99

</div>

</div>

<!-- -->

</div>

We can use the v-for directive to render a list of these divs for every product item in the computed
productItems property.

Since we’ll be creating a ProductListItem component that contains the information associated
with a single product item, we can update the <div class=product-list></div> section of the
ProductList component <template> to the following:

vuex/shopping_cart/src/app-2/components/product/ProductList.vue

<div class="product-list">

<div

v-for="productItem in productItems"

:key="productItem.id"

class="product-list--item">

<ProductListItem :productItem="productItem" />

</div>

</div>

We’ve passed each product item as a productItem prop for every iterated ProductListItem

component. We’ve used productItem.id as the unique key identifier.

Assuming we’ll create the ProductListItem component within the components/product folder, we’ll
need to import its respective file and reference it in ProductList’s component property.

The ProductList <script> tag now looks like:

Vuex and Servers 184

vuex/shopping_cart/src/app-2/components/product/ProductList.vue

<script>

import {mapGetters} from 'vuex';

import ProductListItem from './ProductListItem';

export default {

name: 'ProductList',

computed: {

...mapGetters(['productItems'])

},

created() {

this.$store.dispatch('getProductItems');

},

components: {

ProductListItem

}

};

</script>

Our applicationwill error until we create the ProductListItem component.Within components/product,
let’s create a new ProductListItem.vue file:

$ ls src/app/components/product/

ProductList.vue

ProductListItem.vue

The <template> of ProductListItem.vue will contain the markup for a single product item. The
<script> tag will explicitly declare the productItem props for it to be used in the template.

With this in mind, the completed ProductListItem.vue file will be:

vuex/shopping_cart/src/app-2/components/product/ProductListItem.vue

<template>

<div>

<h2 class="has-text-weight-bold">{{ productItem.title }}

<span class="tag

is-primary

is-pulled-right

has-text-white">

Add to Cart

</h2>

Vuex and Servers 185

<p>{{ productItem.description }}</p>

<i class="fa fa-usd"></i> {{ productItem.price }}

</div>

</template>

<script>

export default {

name: 'ProductListItem',

props: ['productItem']

}

</script>

<style scoped>

.tag {

cursor: pointer;

}

</style>

Our application should now render a list of product items directly from our Vuex store. Saving all
our files and refreshing our browser, we’ll see a list of dynamic data in the product section:

Vuex and Servers 186

cartModule

The cartModule has more responsibilities than productModule by being responsible for the following
functionality:

• Retrieving the list of cart items from the server
• Adding/persisting a new cart item to the server
• Deleting a single cart item from the server
• Deleting all cart items from the server

State

Though a number of interactions are to occur in cartModule, they are to act on a single source of
data - the list of cart items. With this fact in mind, the state object in cartModule will contain a
single cartItems property intialized with an empty array:

Vuex and Servers 187

vuex/shopping_cart/src/app-3/store/modules/cart/index.js

const state = {

cartItems: []

}

Mutations

We’ll have a number of different actions that involve invoking changes to the server. Though our
actions may have different purposes, their subsequent mutation will essentially do the same thing -
update the cartItems state property with the payload provided to keep the client and the server
in sync.

All our server calls return the updated server cart data when a call is made successfully thus all our
actions will essentially be similar/do the same thing. We’ve seen examples of this when we tested
out the API earlier - e.g. adding a cart item to the server returns a response of the updated cart list
with the new item.

Because of this similarity, we can set up a single mutation, UPDATE_CART_ITEMS, that updates the
state cartItems property with a provided payload.

Let’s update our mutations object to contain this UPDATE_CART_ITEMS mutation:

vuex/shopping_cart/src/app-3/store/modules/cart/index.js

const mutations = {

UPDATE_CART_ITEMS (state, payload) {

state.cartItems = payload;

}

}

Actions

We need to create actions for each of the changes we’d want to GET or POST to the server. Since every
cart related call to the server returns the updated cart list items; each of the actions we’ll create can
commit to the same UPDATE_CART_ITEMS mutation.

To begin, we’ll import the axios library at the top of the store/modules/cart/index.js file:

vuex/shopping_cart/src/app-3/store/modules/cart/index.js

import axios from 'axios';

Let’s now create the getCartItems action that does a GET request to /api/cart to get a list of cart
items. This action will then commit to the UPDATE_CART_ITEMS mutation to update the state:

Vuex and Servers 188

const actions = {

getCartItems({ commit }) {

axios.get("/api/cart").then((response) => {

commit("UPDATE_CART_ITEMS", response.data);

});

},

};

The two POST calls to the server that involve adding a new item with /api/cart and deleting an
item with /api/cart/delete each require a cart item object to be passed to the call. Let’s create
the actions for each of these as addCartItem and removeCartItem. Each of these actions will make a
POST call with a cartItem object payload.

We’ll update our actions object to reflect this:

const actions = {

getCartItems({ commit }) {

axios.get("/api/cart").then((response) => {

commit("UPDATE_CART_ITEMS", response.data);

});

},

addCartItem({ commit }, cartItem) {

axios.post("/api/cart", cartItem).then((response) => {

commit("UPDATE_CART_ITEMS", response.data);

});

},

removeCartItem({ commit }, cartItem) {

axios.post("/api/cart/delete", cartItem).then((response) => {

commit("UPDATE_CART_ITEMS", response.data);

});

},

};

The final call to the server involves the deletion of all cart itemswith a POST to /api/cart/delete/all.
Since no object needs to be passed in to this call, we won’t pass a second argument to axios.post().
We’ll set up a removeAllCartItemsmethod for this server call making our entire actions object now
look like:

Vuex and Servers 189

vuex/shopping_cart/src/app-3/store/modules/cart/index.js
const actions = {

getCartItems ({ commit }) {

axios.get('/api/cart').then((response) => {

commit('UPDATE_CART_ITEMS', response.data)

});

},

addCartItem ({ commit }, cartItem) {

axios.post('/api/cart', cartItem).then((response) => {

commit('UPDATE_CART_ITEMS', response.data)

});

},

removeCartItem ({ commit }, cartItem) {

axios.post('/api/cart/delete', cartItem).then((response) => {

commit('UPDATE_CART_ITEMS', response.data)

});

},

removeAllCartItems ({ commit }) {

axios.post('/api/cart/delete/all').then((response) => {

commit('UPDATE_CART_ITEMS', response.data)

});

}

}

The process of having multiple actions commit to a single mutation doesn’t have to be
enforced in Vuex-Vue apps. Different mutations are used to make different changes to an
application state.

In our case, the server does a good job in returning the updated server data with every action
- with which we’re always able to use to update the module state.

Getters

There are three forms of computed data we would need to get from our cartModule state. The first
being a method that gets the list of cart items in our state. We’ll call this getter cartItems:

const getters = {

cartItems: (state) => state.cartItems,

};

We also need the total price of all items in the cart which we’ll present in the Checkout button of
our view. We can use JavaScript’s native reducemethod to compute this. The reduce will create the
sum of cartItem.quantity * cartItem.price for every cart item. We’ll label this getter cartTotal:

Vuex and Servers 190

const getters = {

cartItems: (state) => state.cartItems,

cartTotal: (state) => {

return state.cartItems

.reduce((acc, cartItem) => {

return cartItem.quantity * cartItem.price + acc;

}, 0)

.toFixed(2);

},

};

In addition, we’ll use the reduce function again to determine the total quantity of items in the cart.
The getter for this will be named cartQuantity making our getters object now become:

vuex/shopping_cart/src/app-3/store/modules/cart/index.js

const getters = {

cartItems: state => state.cartItems,

cartTotal: state => {

return state.cartItems.reduce((acc, cartItem) => {

return (cartItem.quantity * cartItem.price) + acc;

}, 0).toFixed(2);

},

cartQuantity: state => {

return state.cartItems.reduce((acc, cartItem) => {

return cartItem.quantity + acc;

}, 0);

}

}

We’ve just set up the cartModule, which completes the application’s Vuex store.

CartList - CartListItem

Similar to what we did in the ProductList component, we’ll need to dispatch the getCartItems

action in the CartList component to get a list of cart items from the server. We’ll need to do this
when the CartList component is created.

In the <script> tag of the CartList.vue file, we’ll dispatch the getCartItems in the created hook:

Vuex and Servers 191

<script>

export default {

name: "CartList",

created() {

this.$store.dispatch("getCartItems");

},

};

</script>

With the action appropriately dispatched on page load, we’re now able to get the necessary computed
data from the state.

We’ll use the mapGetters helper tomap component computed cartItems, cartTotal, and cartQuantity
properties to the respective store getters.

Importing mapGetters and creating the helper in the components computed property will make our
CartList.vue file <script> tag be:

<script>

import { mapGetters } from "vuex";

export default {

name: "CartList",

computed: {

...mapGetters(["cartItems", "cartTotal", "cartQuantity"]),

},

created() {

this.$store.dispatch("getCartItems");

},

};

</script>

With the cartItems computed property, we can now render a list of cart items dynamically in the
view. In the CartList component template, the <li class="cart-item"> element represents
a single cart item:

Vuex and Servers 192

<!-- single cart item -->

<li class="cart-item">

<div>

<p class="cart-item--title is-inline">The Fullstack Hoodie</p>

<div class="is-pulled-right">

<i class="fa fa-arrow-circle-up cart-item--modify"></i>

<i class="fa fa-arrow-circle-down cart-item--modify"></i>

</div>

<div class="cart-item--content">

19.99$ each

Quantity: 2

</div>

</div>

<!-- -->

...

We’ll set up a CartListItem component that displays the markup of a single cart item shortly.

In CartList, we’ll use the v-for directive to render a list of these CartListItem components for every
item in the computed cartItems property. For every rendered CartListItem component, we’ll pass
in the respective cartItem as props.

This will change the <li class="cart-item"> portion of the template to the following:

<li v-for="cartItem in cartItems" :key="cartItem.id" class="cart-item">

<CartListItem :cartItem="cartItem" />

...

We can also reference the dynamic cartTotal and cartQuantity data in the CartList template.We’ll
reference cartQuantity in the <p> tag that displays ‘Total Quantity’:

Vuex and Servers 193

<p>

Total Quantity:

 {{ cartQuantity }}

</p>

We’ll apply cartTotal to the Checkout button tag:

<button class="button is-primary">

Checkout (${{ cartTotal }})

</button>

With all these changes, the <template> section in the CartList.vue file will be updated to:

vuex/shopping_cart/src/app-3/components/cart/CartList.vue

<template>

<div id="cart">

<div class="cart--header has-text-centered">

<i class="fa fa-2x fa-shopping-cart"></i>

</div>

<li v-for="cartItem in cartItems" :key="cartItem.id" class="cart-item">

<CartListItem :cartItem="cartItem" />

<div class="cart-details">

<p>Total Quantity:

{{ cartQuantity }}

</p>

<p class="cart-remove-all--text">

<i class="fa fa-trash"></i>Remove all

</p>

</div>

<button class="button is-primary">

Checkout (${{ cartTotal }})

</button>

</div>

</template>

Since we’ll be building the CartListItem component within the components/cart folder, we’ll
import it from it’s respective file and reference it in the components property of CartList. The
<script> for CartList will update to reflect this:

Vuex and Servers 194

vuex/shopping_cart/src/app-3/components/cart/CartList.vue

<script>

import {mapGetters} from 'vuex';

import CartListItem from './CartListItem';

export default {

name: 'CartList',

computed: {

...mapGetters(['cartItems', 'cartTotal', 'cartQuantity'])

},

created() {

this.$store.dispatch('getCartItems');

},

components: {

CartListItem

}

};

</script>

We now need to create the CartListItem component. Within components/cart, let’s create a new
CartListItem.vue file:

$ ls src/app/components/cart/

CartList.vue

CartListItem.vue

The <template> of CartListItem will contain the markup for a single cart item. The <script> tag
will explicitly declare the cartItem props for it to be used in the template. We’ll remove the hard-
coded data and appropriately reference the cartItem properties for the item title, price and quantity.

With all this in mind, the completed CartListItem.vue file will be laid out as so:

vuex/shopping_cart/src/app-3/components/cart/CartListItem.vue

<template>

<div>

<p class="cart-item--title is-inline">{{ cartItem.title }}</p>

<div class="is-pulled-right">

<i class="fa fa-arrow-circle-up cart-item--modify"></i>

<i class="fa fa-arrow-circle-down cart-item--modify"></i>

</div>

<div class="cart-item--content">

Vuex and Servers 195

{{ cartItem.price }}$ each

Quantity: {{ cartItem.quantity }}

</div>

</div>

</template>

<script>

export default {

name: 'CartListItem',

props: ['cartItem']

};

</script>

<style scoped>

.cart-item--modify {

cursor: pointer;

margin: 0 1px;

}

</style>

If we save our files and refresh our browser, the cart items and other cart information would now
be dynamically obtained from the server.

Vuex and Servers 196

Dynamic cart data

Interactivity

We’ve managed to set up our application to display dynamic data directly from the server. The last
thing we need to do is enable interactivity in the UI.

The following actions have already been created within our store:

• addCartItem - add an item to the cart list
• removeCartItem - remove an item from the cart list
• removeAllCartItems - remove all items from the cart list

Here’s a diagram that shows where we need to invoke these actions:

Vuex and Servers 197

When these items are clicked, we’ll need to create dispatchers within the components to call the
relevant store actions. The Vuex store takes care of the rest!

ProductListItem

The ‘Add to Cart’ button in a single product item should dispatch the addCartItem action when
clicked.

A single product item is reflected in the ProductListItem component. We’ll create a click listener
on the ‘Add to Cart’ button span, of ProductListItem, to call an addCartItem component method
when triggered. When this method is called, we’ll pass in the productItem prop since this object is
needed in the addCartItem action.

We’ll first create the click listener on the of the ‘Add to Cart’ tag in the ProductListItem.vue
file:

Vuex and Servers 198

<span

@click="addCartItem(productItem)"

class="tag is-primary is-pulled-right has-text-white"

>

Add to Cart

With the click listener created, we can create the addCartItem method in the ProductListItem

component’s method property to perform the dispatching with the productItem payload:

methods: {

addCartItem(productItem) {

this.$store.dispatch('addCartItem', productItem);

}

}

However, just like how Vuex provides the mapGetters helper, we can use a mapActions helper that
directly maps the component method action to the store action. mapActions works similarly to
mapGetters, but also directly passes the intended payload without the need to specify it.

Importing mapActions and using it to map the addCartItem method, the ProductListItem.vue

<script> tag becomes:

vuex/shopping_cart/src/app-complete/components/product/ProductListItem.vue

<script>

import { mapActions } from 'vuex';

export default {

name: 'ProductListItem',

props: ['productItem'],

methods: {

...mapActions([

'addCartItem'

])

}

}

</script>

When we save our files and refresh the browser, we’ll be able to add items from the product list to
the cart:

Vuex and Servers 199

CartListItem

The arrow icons for a single cart item need to allow the user to add or remove cart items within
the cart. Since the CartListItem component references a single cart item, we’ll need to apply these
methods within this component.

Adding and removing cart items are done with the addCartItem and removeCartItem actions
respectively.

We’ll introduce click listeners on the icons of the CartListItem.vue template to call addCartItem
and removeCartItem component methods:

<div class="is-pulled-right">

<i

@click="addCartItem(cartItem)"

class="fa fa-arrow-circle-up cart-item--modify"

></i>

<i

@click="removeCartItem(cartItem)"

class="fa fa-arrow-circle-down cart-item--modify"

></i>

</div>

Vuex and Servers 200

We’ll import mapActions to this component andmap thesemethods to the store actions. The <script>
of CartListItem becomes:

vuex/shopping_cart/src/app-complete/components/cart/CartListItem.vue

<script>

import { mapActions } from 'vuex';

export default {

name: 'CartListItem',

props: ['cartItem'],

methods: {

...mapActions([

'addCartItem',

'removeCartItem'

])

}

}

</script>

Launching the browser after saving the file, we’ll be able to add and remove items from the cart
within the cart component.

Here’s a screenshot of removing all items from the cart:

Vuex and Servers 201

Though not necessary, it might be a good idea to notify the user to start adding items when no cart
items are present. Let’s set this up prior to dispatching the last remaining action, removeAllCartItems.

CartList

In the CartList template, we’ll display a <p> tag that tells the user to ‘Add some items to the cart’
only under the condition that no cart items are present in the shopping cart.

We can do this by conditionally displaying the <p> tag with the v-if directive.We’ll state that the tag
will only be shown when there are no items in CartList (i.e. the length of the cartItems property
is equal to 0).

The <p> element will look something like this:

<p v-if="!cartItems.length" class="cart-empty-text has-text-centered">

Add some items to the cart!

</p>

When this condition is met, we can also hide the ‘Total Quantity’ text and ‘Remove all’ icon within
the cart. We’ll specify to only show this cart information under the condition that at least a single
item exists (v-if="cartItems.length > 0"):

Vuex and Servers 202

<ul v-if="cartItems.length > 0">

<li v-for="cartItem in cartItems" class="cart-item">

<CartListItem :cartItem="cartItem" />

<div class="cart-details">

<p>

Total Quantity:

{{ cartQuantity }}

</p>

<p class="cart-remove-all--text"><i class="fa fa-trash"></i>Remove all</p>

</div>

We can also disable the checkout button if no cart items is present. We’ll ensure this happens by
binding the buttons disabled attribute to !cartItems.length (when this statement is true - the
disabled attribute becomes true):

<button :disabled="!cartItems.length" class="button is-primary">

Checkout ({{ cartTotal }}$)

</button>

Let’s now create the dispatcher to call the last remaining action, removeAllCartItems. We’ll set up
the click listener on the fa-trash icon to call a removeAllCartItems method when clicked:

<p @click="removeAllCartItems" class="cart-remove-all--text">

<i class="fa fa-trash"></i>Remove all

</p>

With all this implemented, the finished <template> of the CartList.vue file looks like the following:

vuex/shopping_cart/src/app-complete/components/cart/CartList.vue

<template>

<div id="cart">

<div class="cart--header has-text-centered">

<i class="fa fa-2x fa-shopping-cart"></i>

</div>

<p v-if="!cartItems.length" class="cart-empty-text has-text-centered">

Add some items to the cart!

</p>

<ul v-if="cartItems.length > 0">

<li v-for="cartItem in cartItems" :key="cartItem.id" class="cart-item">

<CartListItem :cartItem="cartItem" />

Vuex and Servers 203

<div class="cart-details">

<p>Total Quantity:

{{ cartQuantity }}

</p>

<p @click="removeAllCartItems"

class="cart-remove-all--text">

<i class="fa fa-trash"></i>Remove all

</p>

</div>

<button :disabled="!cartItems.length" class="button is-primary">

Checkout (${{ cartTotal }})

</button>

</div>

</template>

To enable the final interactive piece of our application, we’ll import mapActions and map the
component removeAllCartItems method to the store action of the same name. The <script> of
the CartList.vue file will be updated to:

vuex/shopping_cart/src/app-complete/components/cart/CartList.vue

<script>

import {mapGetters, mapActions} from 'vuex';

import CartListItem from './CartListItem';

export default {

name: 'CartList',

computed: {

...mapGetters(['cartItems', 'cartTotal', 'cartQuantity'])

},

created() {

this.$store.dispatch('getCartItems');

},

methods: {

...mapActions(['removeAllCartItems'])

},

components: {

CartListItem

}

};

</script>

Vuex and Servers 204

Let’s save this file and test it in the browser. By adding a list of items to the cart and clicking the
Remove all icon, we should see everything removed from the cart and the expected ‘Add some items’
message displayed!

We’ve implemented everything we intended to build for this application. Our shopping cart has
a fully functioning Vuex integration which persists to a server. This persistence allow changes to
remain between app refreshes.

Vuex and medium to large scale applications

After some initial set-up and complexity with building our Vuex store, our app now neatly isolates
responsibility.

Not only does this make the code easier to read, but it sets us up for scale significantly. Let’s discuss
some of the things we could’ve done differently and ways to now scale from here.

Mutation Types

In our application, we specified our mutations with a string type, and made our actions commit to
these mutations by declaring the same string type:

Vuex and Servers 205

const mutations = {

UPDATE_CART_ITEMS (state, payload) {

state.cartItems = payload;

}

}

const actions = {

getCartItems ({ commit }) {

axios.get('/api/cart').then((response) => {

commit('UPDATE_CART_ITEMS', response.data)

});

},

...

}

For large scale Flux implementations, a common standard is to often define mutation types as
constants and to host them all in a separate file.

Let’s see howwe’d go about doing this. Addressing the cartModule alone, we’d create a mutations-type.js
file within the cart/ folder:

ls store/modules/cart

index.js

mutation-types.js

And have the mutation-types.js file export a const variable attached to a string handler for the
UPDATE_CART_ITEMS mutation:

export const UPDATE_CART_ITEMS = "UPDATE_CART_ITEMS";

In cart/index.js, we can import the mutation-types.js file as types and refer to the exported
constant in our mutations and actions:

import * as types from './mutation-types';

const mutations = {

[types.UPDATE_CART_ITEMS] (state, payload) {

state.cartItems = payload;

}

}

const actions = {

getCartItems ({ commit }) {

Vuex and Servers 206

axios.get('/api/cart').then((response) => {

commit(types.UPDATE_CART_ITEMS, response.data)

});

},

...

}

The [types.UPDATE_CART_ITEMS] declaration in the mutations object is an example of
using ES6 computed property names to initialize object properties from variables.

Using constants for mutation types and keeping them in one file benefits larger applications by
allowing collaborators to track and maintain all mutation types in a single file. The mutations
section of the Vuex docs¹⁰⁰ states that this approach is completely optional and is simply a preference
between different developers/teams.

Checkout feature

If we wanted to add a new action/mutation that constitutes the user checking out with his purchase,
we wouldn’t have to worry about logic as to where this would fit best. We’d initiate a new action in
the cartModule that makes an asynchronous call and passes a payload, if necessary, to a mutation
we’d like to commit.

This could look something like this:

const state = {

...,

checkout: false

}

const mutations = {

...,

CHECKOUT_CART (state) {

state.checkout = true;

}

}

const actions = {

...,

checkoutCart ({ commit }, cart) {

axios.post('/api/cart/checkout').then((response) => {

¹⁰⁰https://next.vuex.vuejs.org/guide/mutations.html#using-constants-for-mutation-types

Vuex and Servers 207

commit('CHECKOUT_CART');

});

}

}

In our CartList component, we’ll simply map the action to a component method on click of the
Checkout button.

<button

@click="checkoutCart"

:disabled="!cartItems.length"

class="button is-primary"

>

Checkout ({{ cartTotal }}$)

</button>

... methods: { ...mapActions([..., 'checkoutCart']) }

This example shows how the initial overhead of setting up a Vuex store becomes profitable when
it’s incredibly easy to create new state changes as an application grows.

File structure

Grouping actions, mutations, getters and state within a single index.js file for the store/cart/

and store/product/ folders suited our application well. However, if the number of state configu-
rations/computations became hard to manage, we could separate the module pieces into separate
files:

store/

modules/

cart/

actions.js

getters.js

index.js // exports cartModule

mutations.js

product/

actions.js

getters.js

index.js // exports productModule

mutations.js

The index.js files would host state, import actions, getters, and mutations, and export the
respective modules (cartModule or productModule).

Vuex and Servers 208

A graphical representation of this:

Saywewanted to add an entirely new piece of state to the system— like a notifications panel.We can
create a notificationsModule that consists of the state, mutations, actions and getters respective
of that domain. For the sake of keeping things consistent, we can group the major notification related
components in a components sub-folder of its own as well:

components/

cart/

notifications/

product/

store/

modules/

cart/

notifications/

product/

This approach isn’t the only way to build a Vuex-powered Vue application. Though this clear
separation of concerns helps greatly in managing the ever growing state of an application, it does
have a few pitfalls - like difficulty in understanding where global functionality should fit in and how
to group similar functionality between modules.

The decision on how Vuex can be integrated to a Vue app fully comes down to how different
teams/developers aim to architect their entire application.

Recap

Let’s recap how our Vuex store is implemented into the shopping cart application:

1. The Vuex store consists of the cartModule and productModule.

Vuex and Servers 209

2. The productModule is primarily responsible in fetching all items in the product list. The
cartModule provides the ability to fetch all items in the shopping cart as well as actions to
add/delete items from the cart.

3. The getProductItems and getCartItems actions are dispatched, on page load, in the ProductList
and CartList components created hooks.

4. The components compute store data with the help of mapGetters which maps component
computed properties to the store getters.

5. The components contain click listeners that dispatch methods to store actions with the
mapActions helper.

Form Handling
Introduction

With the last few chapters, we’ve come to understand how Vue allows us to manage data within
the components of an application. With these concepts, we managed to acquire a strong mindset in
thinking how to architect and scale applications as they grow.

This chapter takes a deep dive on a crucial piece that we’ve come across and used without paying
much attention to - forms. Forms are one of the most important parts of an application. While some
interaction occurs through clicks and mouse moves, it’s really through forms where we’ll get the
majority of rich input from users.

It’s through forms that we often add payment info, search for results, edit profiles, upload photos,
or even send messages. Forms are one of the key items that transform web sites into web apps.

Forms 101

On the surface, forms seem straightforward: we make an input tag, the user fills it out, and hits
submit. How hard could it be? For simple applications, this could very well be the case. Forms,
however, can become very complex very quickly. Here are some reasons why:

• Form inputs are meant to modify data, both on the page and the server.
• Changes often have to be kept in sync with data elsewhere on the page.
• Users can enter unpredictable values, some that we’ll want to modify or reject outright.
• The UI needs to clearly state expectations and errors, if any
• Fields dependent on each other can have complex logic.
• Forms need to be testable, without relying on DOM selectors.

Thankfully, Vue provides us with tools that help with all of these things!

In this chapter, we’ll first start simple and provide examples on how different form inputs are handled
with Vue.We’re then going to explore how to handle some of the challenges stated above by building
a Vuex integrated form.

Preparation

Inside the code download that came with this book, navigate to the form_handling directory:

Form Handling 211

$ cd form_handling

This directory contains all the code examples for this chapter:

$ ls

01-basic-button/

02-basic-button/

03-basic-input/

04-data-input/

05-data-input-list/

06-data-input-multi/

07-basic-form-validation/

08-basic-field-validation/

09-remote-persist/

10-vuex-app/

app/

public/

For the beginning of this chapter, we’ll be focusing solely on building simple form elements
(01-basic-button to 05-data-input-list). The rest of the chapter will involve building out a form,
adding validation to said form, handling errors, persisting data asynchronously, and adapting the
form to the Vuex paradigm.

The app/ directory serves as the starting point for us to work with. Like every other folder, the
directory contains an index.html and main.js file. The index.html file represents a barebones
starting point:

form_handling/app/index.html

<!DOCTYPE html>

<html>

<head>

<link rel="stylesheet" href="../public/semantic.min.css" />

<title>Form App</title>

<style>

.ui.container {

margin: 20px 0;

}

</style>

</head>

<body>

<div id="app" class="ui container">

Form Handling 212

</div>

<script src="https://unpkg.com/vue@next"></script>

<script src="./main.js"></script>

</body>

</html>

For styling in this chapter, we’ll be using Semantic UI¹⁰¹ with which we’ve installed locally in the
public/ folder and referenced in the <head> tag.

The <body> tag contains a div with id of app and two <script> tags that dictate which JavaScript
files need to be loaded. The div with id="app" is where we’ll be mounting our Vue application. The
<script> tags load the latest version of Vue from a CDN and the internal JavaScript file (main.js)
where we’ll be writing all our Vue code.

The main.js file simply declares a new application instance that mounts to the DOM element with
the id of app:

form_handling/app/main.js

Vue.createApp({}).mount('#app')

For simplicity and to avoid unnecessary bloating, none of these code examples involve
running Vue on a Webpack server. Since Vue is simply introduced as a CDN, we’ll have
to right click the index.html file within each code example and select Open With > Google

Chrome to run the example/application.

Great! Let’s get started!

The Basic Button

At their core, forms are a conversation with the user. Fields are the app’s questions, and the values
that the user inputs are the answers.

Let’s ask the user what their favorite Fullstack clothing item is from the shopping cart built in the
previous chapter.

We could present the user with a text box, but we’ll start even simpler. In this example, we’ll constrain
the response to just one of four possible answers. We want the user to pick between the “Hoodie”,
“Tee”, “Fitted Cap” or “Jacket”, and the simplest way to do that is to give them four buttons to choose
from.
¹⁰¹http://semantic-ui.com/

Form Handling 213

Here’s what the first example looks like:

Basic Buttons

To get to this stage, we’ll first have to set-up an HTML template that displays a ui-header title and
a button-row component declaration:

form_handling/01-basic-button/index.html

<div id="app" class="ui container">

<h2 class="ui header">What's your favorite Fullstack clothing item?</h2>

<button-row></button-row>

</div>

The button-row component template needs to display the button elements and be declared in the
application instance’s components property, in the main.js file:

const ButtonRow = {

template: `

<div>

<button @click="onHoodieClick" class="ui button">Hoodie</button>

<button @click="onTeeClick" class="ui button">Tee</button>

<button @click="onFittedCapClick" class="ui button">Fitted Cap</button>

<button @click="onJacketClick" class="ui button">Jacket</button>

</div>`,

};

Vue.createApp({

components: {

"button-row": ButtonRow,

},

}).mount("#app");

So far this looks similar to how a form can be handled with vanilla HTML. The unique part to pay
attention to is the @click (i.e. v-on:click) prop of the button elements. When a button is clicked, if
it has a function set as its @click prop, that function will be called. We’ll use this behavior to know
what our user’s answer is.

Form Handling 214

To know what our user’s answer is, we pass a different function to each button (onHoodieClick,
onTeeClick, etc.). We’ll now need to set up functions within the button-row component’s methods
property to declare which button was clicked.

With this in mind, we’ll create a methods property right after template:

const ButtonRow = {

template: `

<div>

<button @click="onHoodieClick" class="ui button">Hoodie</button>

<button @click="onTeeClick" class="ui button">Tee</button>

<button @click="onFittedCapClick" class="ui button">Fitted Cap</button>

<button @click="onJacketClick" class="ui button">Jacket</button>

</div>`

methods: {}

Within methods, we’ll set-up a console.log for each of the event handlers to log which button was
clicked.

form_handling/01-basic-button/main.js

methods: {

onHoodieClick(evt) {

console.log('The user clicked button-hoodie', evt);

},

onTeeClick(evt) {

console.log('The user clicked button-tee', evt);

},

onFittedCapClick(evt) {

console.log('The user clicked button-fitted-cap', evt);

},

onJacketClick(evt) {

console.log('The user clicked button-jacket', evt);

}

}

Notice that in the @click handlers, we pass the functions like onHoodieClick instead of
onHoodieClick().

What’s the difference?

In the first case (without parens), we’re passing the function onHoodieClick, whereas in the
second case we’re passing the result of calling the function onHoodieClick (which is not
what we want right now).

Form Handling 215

This becomes the foundation of our app’s ability to respond to a user’s input. Our app can do
different things depending on the user’s response. In this case, we log different messages to the
console depending on which button is clicked.

Events and Event Handlers

Note that our @click functions all accept an argument, evt. This is because these functions are event
handlers. We’ve used event handlers in almost all the applications we’ve built thus far.

Event handling plays a central role to working with forms in JavaScript applications. When we
provide a function to an element’s @click prop (or @keyup, @input, etc.), that function becomes an
event handler. The function will be called when that event occurs, and will always receive an event
object as its argument.

In the above example, when the button elements were clicked, the corresponding event handler
functions were called with a mouse click event object being passed in (evt). This object is the
browser’s native MouseEvent, and you’ll be able to use it the same way you would a native DOM
event.

Event objects contain lots of useful information about the action that occurred. A MouseEvent for
example, will let you see the x and y coordinates of the mouse at the time of the click, whether or
not the shift key was pressed, and (most useful for this example) a reference to the element that was
clicked. We’ll use this information to simplify things in the next section.

Instead, if we were interested in mouse movement, we could have created an event handler
and provided it to the onmousemove event. In fact, Vue allows the use of any native event
within the v-on directive: click, dblclick, drag, drop, mousedown, mouseenter, mouseleave,
mousemove, mouseout, mouseover, mouseup, etc.

And those are only the mouse events. There are also clipboard, composition, keyboard, focus,
form, selection, touch, ui, wheel, media, image, animation, and transition event groups. Each
group has its own types of events, and not all events are appropriate for all elements. Here,
we’ll mainly work with the events click, change, submit, and input which are often used
with form and input elements.

Back to the Button

In the previous section, we were able to perform different actions (log different messages) depending
on the action of the user. However, with the way we’ve set it up, we needed to create separate
functions for each action. Instead, it would be much cleaner if we provided the same event handler
to all buttons, and used information from the event itself to determine our response.

To do this, we’ll replace the separate event handlers onHoodieClick, onTeeClick, onFittedCap,
and onJacketClick with a single event handler, onButtonClick. This would make our button-row
component methods property become:

Form Handling 216

form_handling/02-basic-button/main.js

methods: {

onButtonClick(evt) {

const button = evt.target;

console.log(`The user clicked ${button.name}: ${button.value}`);

}

}

Our click handler function receives an event object, evt. evt has an attribute target that is a
reference to the button that the user clicked. This way we can access the button the user clicked
without creating a function for each button. With this we’re able to log the button name and button
value.

With the new onButtonClick event method declared, we need to update the button elements to use
this event handler. In addition, we’ll specify a name and value for each button that is used within
the onButtonClick method to help dictate which button was clicked. This makes the button-row

component template be:

form_handling/02-basic-button/main.js

template: `

<div>

<button @click="onButtonClick"

name="button-hoodie"

value="fullstack-hoodie"

class="ui button">Hoodie</button>

<button @click="onButtonClick"

name="button-tee"

value="fullstack-tee"

class="ui button">Tee</button>

<button @click="onButtonClick"

name="button-fitted-cap"

value="fullstack-fitted-cap"

class="ui button">Fitted Cap</button>

<button @click="onButtonClick"

name="button-jacket"

value="fullstack-jacket"

class="ui button">Jacket</button>

</div>`,

Form Handling 217

The onButtonClick event handler

By taking advantage of the event object and using a shared event handler, we could add 100 new
buttons, and we wouldn’t have to introduce any more methods to our app.

Text Input

In the previous example, we constrained our user’s response to only one of four possibilities. Now
that we know how to take advantage of event objects and handlers, we’re going to accept a much
wider range of responses and move on to a more typical use of forms: text input.

To showcase text input we’ll create an inquiry form to allow the user to record a list of new clothing
items to add to the Fullstack clothing list.

The app presents the user a text field where they can input a new clothing item and hit “Submit”.
When they enter an item, the following should occur:

• The item is added to a list
• The list is displayed/updated below the text input
• The text box is cleared so they can enter a new item.

Form Handling 218

Here’s what that would look like:

Adding to a List

Accessing DOM elements with $refs

To build the inquiry sheet we’ve displayed above, the first thing we need is to be able to read the
contents of the text field when the user submits the form. A simple way to do this is to wait until
the user submits the form, find the text field in the DOM, and finally grab its value.

To begin, we’ll start with creating an HTML template that displays a title and an input-form

component declaration:

form_handling/03-basic-input/index.html

<div id="app" class="ui container">

<h2 class="ui header">Fullstack Clothing Inquiry Sheet</h2>

<input-form></input-form>

</div>

The input-form should display a form that contains a text input and a submit button:

Form Handling 219

const InputForm = {

template: `

<div class="input-form">

<form @submit="submitForm" class="ui form">

<div class="field">

<input ref="newItem" type="text" placeholder="Add an item!">

</div>

<button class="ui button">Submit</button>

</form>

<div>`,

};

Vue.createApp({

components: {

"input-form": InputForm,

},

}).mount("#app");

Though similar to the previous example, we now instead have a form element that contains an input

and button element.

There’s two things to notice here. First, we’ve introduced an @submit event handler to the form

element. Second, we’ve given the text input field a ref prop of ‘newItem’.

The @submit event handler behaves a little differently than the examples we’ve had before. One
change is that this handler is called either by clicking the “Submit” button, or by pressing
“enter”/“return” while the form has focus. This is more user-friendly than forcing the user to click
the “Submit” button.

Because our event handler is tied to the form, the event object argument to the handler is less useful
than it was in the previous example since we’re only interested in the text field’s value.

One way to get the text field value upon submit would be to use the form event handler to look for
a child input within, and find it’s value. Though this may work, there is a simpler way.

Vue allows us to use refs (references) to easily access a DOM element in a component. Above, we
gave our text field a ref property of "newItem". Later when the @submit handler is called, we have
the ability to access this.$refs.newItem to get a reference to that text field. Here’s what that looks
like if we create a onFormSubmit() event handler in the methods property of the component:

Form Handling 220

form_handling/03-basic-input/main.js

methods: {

submitForm(evt) {

evt.preventDefault();

console.log(this.$refs.newItem.value)

}

}

We use preventDefault() with the @submit handler to prevent the browser’s default action
of submitting the form.

With this.$refs.newItem, we gain a reference to our text field element and we can use it to access
its value property. That value property contains the text that was entered into the field.

If we save our changes in main.js and reload the application, we’ll be able to log the text input value
upon form submit:

Logging the input value

Form Handling 221

Using User Input

Though the ref attribute enables us to expose DOM nodes for us to access and use, using ref opts
out of a primary advantage of using Vue. With Vue, we’ll hardly ever find the need to manipulate
the DOM in this manner.

The next few steps of our application involve using the user input to display a list of items that the
user enters. This is where it becomesmore important to rely on Vue’s ability to efficientlymanipulate
the DOM, based on the values in a components/instances data object. This would provide us with
certainty that for any given value in data, we can predict what our component bound elements will
look like.

First and foremost, we’ll change our previous example to use Vue’s v-model directive to get a
reference to the text field element value. The ability of Vue’s v-model directive to create two
data binding between inputs and a data property is an important piece to keeping user input and
application data consistent.

We’ll change our input-form component to use v-model instead of refs to give us the value of the
text input upon submit. In our text input, we’ll change ref="newItem" to v-model="newItem":

<input v-model="newItem" type="text" placeholder="Add an item!" />

We’ll now need to create the newItem data attribute within the components data model. In
input-component, we’ll add a data method that has a newItem property initialized with an empty
string:

form_handling/04-data-input/main.js

data() {

return {

newItem: ''

}

},

It’s a good habit to provide sane defaults for any properties of data that will be used in a
component. Since we probably want the field to be empty when the component is rendered,
we set the default value to be an empty string, ''.

In the @submit event handler, we’ll now console.log the value of the newItem data property upon
submit. Since two way data binding is established, the value of the data property is equal to the
value of the input at all times:

Form Handling 222

form_handling/04-data-input/main.js

methods: {

submitForm(evt) {

evt.preventDefault();

console.log(this.newItem)

}

}

While our app didn’t gain any new features in this section, we’ve both paved the way for better
functionality (like validation and persistence) while also taking greater advantage of native Vue
directives. The result at this point will appear the same:

Logging the input value with v-model

With this, Vue makes it easy to reach our goal of showing a list of all items the user has entered.
We’ll need an array in our data object to hold the items, and in our component template we will
use that array to populate a list.

When our app loads, the array will be empty, and each time the user submits a new name, we will
add it to the array.

Form Handling 223

To do this, first we’ll create an items array in the components data method. We’ll set the initial
value of items to be an empty array.

form_handling/05-data-input-list/main.js

data() {

return {

newItem: '',

items: []

}

},

Next, we’ll modify the component template to show the list. When we think of rendering a list, the
first thing that should come to mind is Vue’s v-for directive.

Below our form element, we’ll create a new div element. The div will contain a heading (h4) and
our items list, a ul parent with a li child for each item. A li child element will be generated for
each item with the help of v-for=item in items:

form_handling/05-data-input-list/main.js

template: `

<div class="input-form">

<form @submit="submitForm" class="ui form">

<div class="field">

<input v-model="newItem" type="text" placeholder="Add an item!">

</div>

<button class="ui button">Submit</button>

</form>

<div class="ui segment">

<h4 class="ui header">Items</h4>

<li v-for="item in items" class="item">{{ item }}

</div>

</div>`,

Notice the form element and accompanying list markup are wrapped within a single div

element. With Vue template declarations, it’s a must to wrap templates in a single root
element.

Now that the template is updated, the submitForm() method needs to update the items data array
with a new item. We also want to clear the text field so that it’s ready to accept additional user input.
Since we have access to the text field via v-model, we can set its value to an empty string to clear it.

This is what submitForm() should look like now:

Form Handling 224

form_handling/05-data-input-list/main.js

methods: {

submitForm(evt) {

this.items.push(this.newItem);

this.newItem = '';

evt.preventDefault();

}

}

At this point, our inquiry-sheet app is functional and displays a list of items submitted. Here’s a
rundown of the application flow:

1. User enters an item and clicks ‘Submit’.
2. submitForm is called.
3. The newItem data value, bound to the text input, is added to the items data array.
4. The text field is cleared so that it is ready for more input.
5. The component re-renders and displays the updated list of items.

Awesome! In the upcoming sections, we’ll be building our form out even further.

Form Handling 225

Multiple Fields

Our inquiry sheet is looking good, but what would happen if we wanted to add more fields? If our
form is like most projects, it’s only a matter of time before we want to add to it.

Let’s explore how we can modify our app to allow for additional inputs in a clean, maintainable
way. To illustrate this, let’s first add an email address field to our inquiry sheet.

In the previous section our text input field had a dedicated property in the data object, newItem. If
we were to do that here, we would add another property, email. To avoid adding a property for each
input on data, let’s instead add a fields object to store the values for all of our fields in one place.
This makes our new data object become:

data() {

return {

fields: {

newItem: '',

email: ''

},

items: []

}

}

The fields object can store data for as many inputs as we’d like. Here we’ve specified that we want
to store data for newItem and email. In the component template, we now need to find those values
at fields.newItem and fields.email instead of simply newItem and email.

In the template, let’s create the new email input field and reference the input values appropriately.
We’ll also introduce label elements to now label each input field to make it evident what each field
is to the user. The form element within the component template will be updated to:

<form @submit="submitForm" class="ui form">

<div class="field">

<label>New Item</label>

<input v-model="fields.newItem" type="text" placeholder="Add an item!" />

</div>

<div class="field">

<label>Email</label>

<input

v-model="fields.email"

type="text"

placeholder="What's your email?"

/>

Form Handling 226

</div>

</form>

Let’s add two more fields to the form that aren’t text input fields. The first field would be a select
dropdown for the user to select the urgency status of his inquiry. He/shewill be able to select between
the options urgent, moderate, and nonessential. This field in our template will look like this:

<div class="field">

<label>Urgency</label>

<select v-model="fields.urgency" class="ui fluid search dropdown">

<option disabled value="">Please select one</option>

<option>Nonessential</option>

<option>Moderate</option>

<option>Urgent</option>

</select>

</div>

Select dropdowns are often set-up with the first option having an empty value, "", since
that option isn’t intended to be selected by the user. With Vue, it’s recommended to set that
empty value as disabled for iOS compatibility. Select - Form Input Bindings¹⁰² in the
Vue docs explains this some more.

We’ll also introduce a checkbox input responsible for the user to accept some terms and conditions:

<div class="field">

<div class="ui checkbox">

<input v-model="fields.termsAndConditions" type="checkbox" />

<label>I accept the terms and conditions</label>

</div>

</div>

As you can see, we’ve used the v-model directive to bind the select and checkbox inputs to
fields.urgency and fields.termsAndConditions data properties respectively. Just like text input
fields, we can use v-model to create data bindings on both select and input type="checkbox

elements.

v-model always picks the correct way to update the element, based on the input type it’s
bound to.

For our application to load successfully, we’ll need to initialize these data properties in the
component’s data object. We’ll set a blank string for the dropdown initial value and since the
checkbox value is a boolean, it’s initial value will be false:
¹⁰²https://v3.vuejs.org/guide/forms.html#select

Form Handling 227

form_handling/06-data-input-multi/main.js

data() {

return {

fields: {

newItem: '',

email: '',

urgency: '',

termsAndConditions: false

},

items: []

}

},

Our form element, in its entirety, becomes:

form_handling/06-data-input-multi/main.js

<form @submit="submitForm" class="ui form">

<div class="field">

<label>New Item</label>

<input v-model="fields.newItem" type="text"

placeholder="Add an item!" />

</div>

<div class="field">

<label>Email</label>

<input v-model="fields.email" type="text"

placeholder="What's your email?" />

</div>

<div class="field">

<label>Urgency</label>

<select v-model="fields.urgency" class="ui fluid search dropdown">

<option disabled value="">Please select one</option>

<option>Nonessential</option>

<option>Moderate</option>

<option>Urgent</option>

</select>

</div>

<div class="field">

<div class="ui checkbox">

<input v-model="fields.termsAndConditions" type="checkbox" />

<label>I accept the terms and conditions</label>

</div>

</div>

Form Handling 228

<button class="ui button">Submit</button>

</form>

Refreshing our application, we’ll see an email input, a dropdown, and a checkbox that currently
have no functionality:

Thanks to the simplicity of v-model, there’s no need for us to concern ourselves with creating
methods to capture each user input separately. v-model makes sure that all data winds up
in the right place by updating the appropriate data properties (newItem for item field, email
for email field, urgency for dropdown, and termsAndConditions for checkbox) whenever
there’s a change to these inputs.

In the next section, we’ll be enabling validation on the newly added fields. Our validations will
prevent the form from being submitted until the relevant form elements are validated appropriately.

Validations

Validation is so central to building forms that it’s rare to have a form without it. Validation can be
both on the level of the individual field and on the form as a whole.

Form Handling 229

When you validate on an individual field, you’re making sure that the user has entered data that
conforms to your application’s expectations and constraints as it relates to that piece of data.

For example, in a form, we’re often expected to enter a password at least some minimum length.
Another example would be making sure that a zip code has exactly five (or nine) numerical
characters.

Validation on the form as a whole is slightly different. Here is where we’ll make sure that all required
fields have been entered. This is also a good place to check for internal consistency between fields.
For example ensuring the ‘password’ and ‘re-type password’ fields are equal.

Additionally, there are trade-offs for “how” and “when” we validate. On some fields we might want
to give validation feedback in real-time. For example, we might want to show password strength
(by looking at length and characters used) while the user is typing. However, if we want to validate
the availability of a username, we might want to wait until the user has finished typing before we
make a request to the server/database to find out.

We also have options for how we display validation errors. We might style the field differently (e.g.
a red outline), show text near the field (e.g. “Please enter a valid email.”), and/or disable the form’s
submit button to prevent the user from progressing with invalid information.

For our app, let’s begin with validation of the form as a whole by:

• Making sure the New Item, Email, and Urgency values are not blank and the terms and
conditions checkbox is checked, upon form submit.

• Making sure that the email is a valid address.

Form Validation

To add form validation to our app, there’s a few things we can do. We’ll address these step by step.

fieldErrors

We’ll first need to add a fieldErrors data object to store validation errors if they exist. In the
component’s data object, we’ll introduce fieldErrorswith an object of undefined values as defaults:

Form Handling 230

form_handling/07-basic-form-validation/main.js

data() {

return {

fields: {

newItem: '',

email: '',

urgency: '',

termsAndConditions: false

},

fieldErrors: {

newItem: undefined,

email: undefined,

urgency: undefined,

termsAndConditions: undefined

},

items: []

}

},

template errors

If an error arises we’ll need to display it in the form. We’ll do this up by showing a validation error
message (if they exist) with red text next to each field.

With each field element in the form, we’ll introduce a validation message like below:

<!-- New Item Field -->

<div class="field">

<label>New Item</label>

<input v-model="fields.newItem" type="text" placeholder="Add an item!" />

{{ fieldErrors.newItem }}

</div>

<!-- Email Field -->

<div class="field">

<label>Email</label>

<input v-model="fields.email" type="text" placeholder="What's your email?" />

{{ fieldErrors.email }}

</div>

<!-- Urgency Field -->

Form Handling 231

<div class="field">

<label>Urgency</label>

<select v-model="fields.urgency" class="ui fluid search dropdown">

<option disabled value="">Please select one</option>

<option>Nonessential</option>

<option>Moderate</option>

<option>Urgent</option>

</select>

{{ fieldErrors.urgency }}

</div>

<!-- Terms and conditions checkbox -->

<div class="field">

<div class="ui checkbox">

<input v-model="fields.termsAndConditions" type="checkbox" />

<label>I accept the terms and conditions</label>

{{ fieldErrors.termsAndConditions }}

</div>

</div>

validateForm

It is after the user submits the form that we will check the validity of their input. So the appropriate
place to begin validation is in the submitForm()method. However, we’ll want to create a standalone
function for that method to call. For that, we’ll create a validateForm()method that takes a fields
object as an argument.

methods: {

submitForm(evt) {

...

},

validateForm(fields) {

}

}

Our validateForm() method will have two goals. First, we want to make sure that the newItem,
email, urgency, and termsAndConditions fields are present. By checking their truthiness we can
know that they are defined and not empty strings. validateForm will either return an empty object
if there are no issues, or if there are issues, it will return an object with keys corresponding to each
field name and values corresponding to each error message:

Form Handling 232

methods: {

submitForm(evt) {

...

},

validateForm(fields) {

const errors = {};

if (!fields.newItem) errors.newItem = "New Item Required";

if (!fields.email) errors.email = "Email Required";

if (!fields.urgency) errors.urgency = "Urgency Required";

if (!fields.termsAndConditions) {

errors.termsAndConditions = "Terms and conditions have to be approved";

}

return errors;

}

}

Second, we want to know that the provided email address looks valid. This is actually a bit
of a thorny issue, so we’ll use a simple regular expression to detect the input is in the form
string@string.string. We’ll keep this regular expression check in a separate method denoted by
isEmail(). With this in mind, our methods become:

methods: {

submitForm(evt) {

...

},

validateForm(fields) {

const errors = {};

if (!fields.newItem) errors.newItem = "New Item Required";

if (!fields.email) errors.email = "Email Required";

if (!fields.urgency) errors.urgency = "Urgency Required";

if (!fields.termsAndConditions) {

errors.termsAndConditions = "Terms and conditions have to be approved";

}

if (fields.email && !this.isEmail(fields.email)) {

errors.email = "Invalid Email";

}

return errors;

},

isEmail(email) {

const re = /\S+@\S+\.\S+/;

Form Handling 233

return re.test(email);

}

}

It’s important to note that email verification is important and the regex expression we’ve
used only applies for very simple validation. Oftentimes, libraries like validator¹⁰³ is used to
validate fields like email.

submitForm

When the form is submitted, we’ll be using the validateFormmethod we’ve created to determine if
the form is valid for submission. If the validation errors object has any keys (Object.keys(fieldErrors).length
> 0) we know there are issues. In this case, we return early to prevent the new information from
being added to the list. With that said, our submitForm() method will be changed to:

submitForm(evt) {

evt.preventDefault();

this.fieldErrors = this.validateForm(this.fields);

if (Object.keys(this.fieldErrors).length) return;

},

However, If there are no validation issues, the logic is the same as in previous sections – we add the
new item information and clear the fields. This makes the submitForm() method become:

form_handling/07-basic-form-validation/main.js

submitForm(evt) {

evt.preventDefault();

this.fieldErrors = this.validateForm(this.fields);

if (Object.keys(this.fieldErrors).length) return;

this.items.push(this.fields.newItem);

this.fields.newItem = '';

this.fields.email = '';

this.fields.urgency = '';

this.fields.termsAndConditions = false;

},

¹⁰³https://github.com/chriso/validator.js

Form Handling 234

Let’s give this a try! Save the main.js file and attempt to submit the form with all fields being empty:

All fields required

Fill out the fields and input an invalid email address:

Form Handling 235

Email Invalid

Awesome! At this point we’ve covered the fundamentals of creating a form with validation in Vue.
In the next section we’ll take things a bit further and show how we can validate in real-time at the
field level.

Field Validation

If you remember, we can employ two different levels of validation, one at the field level, and one at
the form level. Field level validations are often important for two reasons:

• A field could check the format of it’s input while the user types/selects in real-time.
• When the field incorporates its validation error message, it frees the parent form from having
to keep track of it.

We’ll assume the objective of submitForm() will remain the same. It is still responsible for either
adding an item to the list, or preventing that behavior if there are form validation issues (e.g. any of
the form fields are empty or the email input is invalid).

We’ll now introduce two new field level validations:

Form Handling 236

• The new item input has to be under twenty characters.
• Urgency level has to be either Moderate or Urgent.

To invoke these validations, we can use computed properties and the v-if directive.

For the validation involving limiting the number of characters for the newItem input, we’ll create
a computed property called isNewItemInputLimitExceeded that returns true when the input has
twenty or more characters:

computed: {

isNewItemInputLimitExceeded() {

return this.fields.newItem.length >= 20;

}

}

In the newItem field within template, we’ll simply introduce another text error span that’s only
displayed when isNewItemInputLimitExceeded is true. For this we’ll use v-if to conditionally
display the text. We’ll also introduce a new span that tracks fields.newItem.length for the user
to see in the UI. With this in mind, the field for the newItem input will now become:

form_handling/08-basic-field-validation/main.js

<div class="field">

<label>New Item</label>

<input v-model="fields.newItem" type="text"

placeholder="Add an item!" />

{{ fields.newItem.length }}/20

{{ fieldErrors.newItem }}

<span v-if="isNewItemInputLimitExceeded"

style="color: red; display: block">

Must be under twenty characters

</div>

Within the field, we have the field label and input. Right below, we display the length of
fields.newItem in the UI which will update in real-time as the user types in the input. The bottom
two span elements are error messages with the first message only appearing and disappearing upon
a successful submit. The second error message displays automatically when the user exceeds the
input limit (with the help of the v-if directive) and is removed when the character length is less
than the limit.

For the second field validation, we’ll introduce another computed property isNotUrgent that returns
true when fields.urgency is equal to Nonessential:

Form Handling 237

form_handling/08-basic-field-validation/main.js

computed: {

isNewItemInputLimitExceeded() {

return this.fields.newItem.length >= 20;

},

isNotUrgent() {

return this.fields.urgency === 'Nonessential';

}

},

Similar to what we’ve done earlier, we’ll introduce a text errormessagewhen this computed property
returns true, within the Urgency field:

form_handling/08-basic-field-validation/main.js

<div class="field">

<label>Urgency</label>

<select v-model="fields.urgency" class="ui fluid search dropdown">

<option disabled value="">Please select one</option>

<option>Nonessential</option>

<option>Moderate</option>

<option>Urgent</option>

</select>

{{ fieldErrors.urgency }}

<span v-if="isNotUrgent"

style="color: red; display: block">

Must be moderate to urgent

</div>

For our field level validations, we’ll take an extra step and prevent the user from submitting by
disabling the submit button when either of the field error validations is present. To do this, we set
the value of the button disabled prop to the return value of either isNewItemInputLimitExceeded
or isNotUrgent. This updates the form button to:

form_handling/08-basic-field-validation/main.js

<button :disabled="isNewItemInputLimitExceeded || isNotUrgent"

class="ui button">

Submit

</button>

Form Handling 238

Let’s test this out! Typing more than twenty characters in the newItem field and selecting the
Nonessential option in the Urgency dropdown should now automatically display two field level
validation errors and disable the Submit Button.

And that’s it! We’re now using computed properties to do field-level validation on the fly, and we
use form-level validation to display form field errors upon submit.

Though we’ve used computed properties in our v-if directives, we could have very well
achieved the same result using methods to dictate validations and instead have returned the
result of these methods in v-if (e.g. v-if="isNewItemInputLimitExceeded()"). These are
identical except for one strong distinction - computed properties are cached and will only
reevaluate when some of its dependencies have changed. Method invocations, on the
other hand, will always run when component re-rendering happens which can be expensive
if the method functionality performs a lot of computations. For more information on this,
check out the Vue docs¹⁰⁴.

¹⁰⁴https://v3.vuejs.org/guide/computed.html#computed-caching-vs-methods

Form Handling 239

Async Persistence

At this point our app is pretty useful. You could imagine having the app open on a kiosk where people
can come up to it and add new items on a continuous basis. However, there’s one big shortcoming:
if the browser is closed or reloaded, all data is lost.

In most web apps, when a user inputs data, that data should be sent to a server for safekeeping in a
database. When the user returns to the app, the data can be fetched, and the app can pick back up
right where it left off. We saw how server persistence can work for a Vuex-integrated Vue app in
the last chapter, Vuex and Servers.

In this chapter, we won’t be sending the data to a remote server or storing it in a database but we’ll be
using localStorage instead. We’ll cover three aspects of persistence: saving, loading, and handling
errors and treat them as asynchronous operations to illustrate how almost any persistence strategy
could be used.

The localStorageAPI allows you to read andwrite to a key-value store in the user’s browser.
You can store items to localStorage with setItem():

localStorage.setItem('gas', 'pop');

And retrieve them later with getItem():

localStorage.getItem('gas'); // => 'pop'

Note that items stored in localStorage have no expiry.

To persist the items in our inquiry sheet (items), we’ll need to make a few changes to our component.
At a high level they are:

1. Modify data() to keep track of persistence status. Basically, we’ll want to know if the app is
currently loading, is currently saving, or encountered an error during either operation.

2. Make a request using our API client to get any previously persisted data and load it into our
data().

3. Update our submitForm() event handler to trigger a save.
4. Change our component template so that the Submit button reflects the current save status and

prevents the user from performing an unwanted action like a double-save, as well as display a
loading indicator in the items list when data is still being fetched.

If this all doesn’t make sense just yet, don’t worry. We’ll be addressing these step by step!

Modify data()

First, we’ll want to modify our component data() to keep track of our “loading” and “saving” status.
This is useful to both accurately communicate the status of persistence and to prevent unwanted

Form Handling 240

user actions. For example, if we know that the app is in the process of “saving”, we can disable the
submit button. Let’s introduce two new properties, loading and saveStatus, for the component to
keep track of:

form_handling/09-remote-persist/main.js

data() {

return {

fields: {

newItem: '',

email: '',

urgency: '',

termsAndConditions: false

},

fieldErrors: {

newItem: undefined,

email: undefined,

urgency: undefined,

termsAndConditions: undefined

},

items: [],

loading: false,

saveStatus: 'READY'

}

},

saveStatus is initialized with the value “READY”, but we’ll have four possible values: “READY”,
“SAVING”, “SUCCESS”, and “ERROR”. If the saveStatus is “SAVING”, we’ll want to prevent the user from
making an additional save.

created()

Next, when the component has just been created and is about to be added to the DOM, we’ll want
to request any previously saved data. To do this we’ll use the lifecycle hook created() which is
automatically called by Vue at the appropriate time.

To persist and retrieve data; we’ll interact with an apiClient object that we’ll create. We can add
this object at the bottom of the file like so:

Form Handling 241

form_handling/09-remote-persist/main.js

let apiClient = {

loadItems: function () {

return {

then: function (cb) {

setTimeout(() => {

cb(JSON.parse(localStorage.items || '[]'));

}, 1000);

},

};

},

saveItems: function (items) {

const success = !!(this.count++ % 2);

return new Promise((resolve, reject) => {

setTimeout(() => {

if (!success) return reject({ success });

localStorage.items = JSON.stringify(items);

return resolve({ success });

}, 1000);

});

},

count: 1,

}

apiClient is a simple object that holds the responsibility in simulating asynchronous loading and
saving. In the code example above, we can see that the “load” and “save” methods are thin async
wrappers around localStorage that we’ll use to retrieve and persist data.

In the app’s created() hook, we’ll use apiClient to retrieve stored data. Here’s what that looks like:

Form Handling 242

form_handling/09-remote-persist/main.js

created() {

this.loading = true,

apiClient.loadItems().then((items) => {

this.items = items;

this.loading = false;

});

},

Before we start the fetch with apiClient, we set loading to true. We’ll use this in our component
template to show a loading indicator. Once the fetch returns, we update component items with the
previously persisted list and set loading back to false.

If you’re developing in Safari, the browser may throw a SecurityError (DOM Exception

18) when localStorage is attempting to be accessed through a simple HTML file. To work
around this, disable local file restrictionswith Develop > Disable Local File Restrictions.

At this point our app doesn’t yet have a way to persist data so there won’t be any data to load.
However, we can fix that by updating submitForm().

Update submitForm()

As in the previous sections, we’ll want our user to be able to fill out each field and hit “Submit” to
add an item to the list. When they do that, submitForm() is called. We’ll make a change so that we
not only perform the previous behavior (validation, updating items, clearing form fields), but we
also persist that list using apiClient.saveItems():

form_handling/09-remote-persist/main.js

submitForm(evt) {

evt.preventDefault();

this.fieldErrors = this.validateForm(this.fields);

if (Object.keys(this.fieldErrors).length) return;

const items = [...this.items, this.fields.newItem];

this.saveStatus = 'SAVING';

apiClient.saveItems(items)

.then(() => {

this.items = items;

this.fields.newItem = '';

Form Handling 243

this.fields.email = '';

this.fields.urgency = '';

this.fields.termsAndConditions = false;

this.saveStatus = 'SUCCESS';

})

.catch((err) => {

console.log(err);

this.saveStatus = 'ERROR';

});

},

In the previous sections, if the data passed validation, we would just update our items list to include
it. This time we only want to update our component items if apiClient can successfully persist.
The order of operation in submitForm looks like this:

1. We prevent the browser’s default action of submitting the form with preventDefault().
2. If the form has field errors upon submission, we return early to prevent apiClient from being

called.
3. If no field errors exist, we create a new array called items which contains the existing

component items array and the new field.newItem value.
4. We then use apiClient to begin persisting the new items array with apiClient.saveItems().
5. If apiClient is successful, we update the component data with our new items array, empty

fields, and saveStatus: 'SUCCESS'. If apiClient is not successful, we leave everything as is
but set saveStatus to ‘ERROR’.

Put simply, we set the saveStatus to ‘SAVING’ while the apiClient request is ‘in-flight’. If the request
is successful, we set the saveStatus to ‘SUCCESS’ and perform the same actions as before. If not, the
only update is to set saveStatus to ‘ERROR’. This way, our local state does not get out of sync with
our persisted copy. Also, since we don’t clear the fields, we give the user an opportunity to try again
without having to re-input their information.

To test our error use case, we’ve set up the apiClient persistence (apiClient.saveItems())
to error in every 2nd consecutive attempt.

For this example we are being conservative with our UI updates. We only add the new item
to the list if apiClient is successful. This is in contrast to an optimistic update, where we
would add the item to the list locally first, and later make adjustments if there was a failure.

Form Handling 244

Update template

Our last change is to modify the component template so that the UI accurately reflects our status
with respect to loading and saving. As mentioned, we’ll want the user to know if we’re in the middle
of a load or a save, or if there was a problem saving. We can also control the UI to prevent them
from performing unwanted actions such as a double save.

First off, we want the submit button to communicate the current save status.

• If no save request is in-flight, we want the button to be enabled if the field data is valid.
• If we are in the process of saving, we want the button to read “Saving…” and to be disabled.
• The user will know that the app is busy, and since the button is disabled, they won’t be able to
submit duplicate save requests.

• Finally, if the save request completes successfully, we use the button text to communicate that.
The button will remain enabled (if the input data is still valid) to allow the user to add more
items.

Here’s how we can conditionally display the Submit button under different save statuses:

form_handling/09-remote-persist/main.js

<button v-if="saveStatus === 'SAVING'"

disabled class="ui button">

Saving...

</button>

<button v-if="saveStatus === 'SUCCESS'"

:disabled="isNewItemInputLimitExceeded || isNotUrgent"

class="ui button">

Saved! Submit another

</button>

<button v-if="saveStatus === 'ERROR'"

:disabled="isNewItemInputLimitExceeded || isNotUrgent"

class="ui button">

Save Failed - Retry?

</button>

<button v-if="saveStatus === 'READY'"

:disabled="isNewItemInputLimitExceeded || isNotUrgent"

class="ui button">

Submit

</button>

What we have here are four different buttons – one for each possible saveStatus. Each button
has a different button text corresponding to its status (e.g. SUCCESS - Saved! Submit Another). The

Form Handling 245

button displayed when the form is saving (saveStatus === 'SAVING') is set to disabled to prevent
a double save. The other buttons all present the user the option to save under the condition the field
level validations (isNewItemInputLimitExceeded and isNotUrgent) are not present.

We’ve used v-if directives for every possible button state. Vue also allows us to perform
conditional rendering with v-else and v-else-if. Though the outcome is usually the
same, the v-else and v-else-if blocks must follow a v-if (or v-else-if) statement in
the template.

The second change we would like to make to the template is a simple loading indicator, within the
items list, to indicate the persisted items are being fetched upon page load. The Semantic UI¹⁰⁵ CSS
library we’re using provides a loading indicator that we can use.We just need to display the indicator
only under the condition that the loading data property is true (i.e. apiClient is still fetching data).
So within the ui segment element, we’ll introduce this indicator in the ul list:

form_handling/09-remote-persist/main.js

<div class="ui segment">

<h4 class="ui header">Items</h4>

<div v-if="loading" class="ui active inline loader"></div>

<li v-for="item in items" class="item">{{ item }}

</div>

And that’s it! Our app currently persists information asynchronously to localStorage and fetches
it upon page load.

¹⁰⁵https://semantic-ui.com

Form Handling 246

Loading Indicator

At this point our inquiry app is a nice illustration of the features and issues that you’ll want to cover
in your own forms using Vue. The next section entails how forms work slightly differently when
using Vuex store data.

Vuex

In this section we’ll see howwe’ll have to modify the form app we’ve built so that it can work within
a larger app using Vuex.

Chronologically we’ve talked about Vuex in the last chapter and the one before. If you’re
unfamiliar with Vuex and you’ve started this chapter before covering the earlier chapters,
hop over to those chapters and come back here to be better prepared.

We’ll adapt our form to fit within the Vuex paradigm. At a high level, this involves moving state
and functionality from our form component to Vuex store and actions/mutations. For example, we
will no longer call API functions from within the form component - we dispatch async actions for

Form Handling 247

that instead. Similarly, data that used to be held as part of the components data() will be held in
the Vuex store.

As we’ve mentioned before in the earlier chapters, when building with Vuex it’s helpful to start by
thinking about the “shape” our state will take. In our case, we have a pretty good idea already since
our functionality has already been built.

For this example, we’ll move all field level information and persisted data properties (fields and
items) to the Vuex store but keep the other data within the component. We’ll assume the field
information and persisted items array is needed for the entirety of the application while validation
errors (fieldErrors), the loading status (loading), and the button save state (saveState) will only
be required within the form component itself.

Let’s set up the Vuex package and create the store before we begin integrating Vuex into our form.
In the body element of the index.html file, we’ll introduce Vuex with a CDN and reference a new
internal store.js file as well:

form_handling/10-vuex-app/index.html

<body>

<div id="app" class="ui container">

<h2 class="ui header">Fullstack Clothing Inquiry Sheet</h2>

<input-form></input-form>

</div>

<script src="https://unpkg.com/vue@next"></script>

<script src="https://unpkg.com/vuex@next"></script>

<script src="./store.js"></script>

<script src="./main.js"></script>

</body>

Within the app/ directory, we’ll create the store.js file:

$ ls app/

index.html

main.js

store.js

In store.js, we’ll establish a blank slate for the different pieces of a Vuex store and globalize the
store with window.store for it to be accessed elsewhere. We’ll also move apiClient to the store since
store actions will now be responsible in calling the apiClient async methods. Our store.js file will
be set up like this:

Form Handling 248

const state = {};

const mutations = {};

const actions = {};

const getters = {};

window.store = Vuex.createStore({

state,

mutations,

actions,

getters,

});

let apiClient = {

loadItems: function () {

return {

then: function (cb) {

setTimeout(() => {

cb(JSON.parse(localStorage.items || "[]"));

}, 1000);

},

};

},

saveItems: function (items) {

const success = !!(this.count++ % 2);

return new Promise((resolve, reject) => {

setTimeout(() => {

if (!success) return reject({ success });

localStorage.items = JSON.stringify(items);

return resolve({ success });

}, 1000);

});

},

count: 1,

};

In main.js, we’ll declare and pass the store property to the application instance, to integrate our

Form Handling 249

soon to be implemented Vuex store to our Vue app:

form_handling/10-vuex-app/main.js

Vue.createApp({

components: {

'input-form': InputForm

}

}).use(store).mount('#app')

We’re now all ready to start building our store. We’ve stated that all field level information and
persisted items should be part of the application state. This makes our state object in store.js

become:

form_handling/10-vuex-app/store.js

const state = {

fields: {

newItem: '',

email: '',

urgency: '',

termsAndConditions: false

},

items: []

}

This leaves our components data() object to involve only fieldErrors, loading, and the saveStatus:

form_handling/10-vuex-app/main.js

data() {

return {

fieldErrors: {

newItem: undefined,

email: undefined,

urgency: undefined,

termsAndConditions: undefined

},

loading: false,

saveStatus: 'READY'

}

},

Form Handling 250

Vuex and v-model

The next thing we may be inclined to do is bind the store data with the appropriate input fields since
we already have the v-model directive set-up. So for instance, with regards to the newItem field; we
may aim to do something like this:

template: `

...

<input v-model="newItem" type="text"

placeholder="Add an item!" />

...

`,

computed: Vuex.mapGetters({

newItem: 'newItem',

})

Though this is the appropriate way of binding input’s in Vue, this won’t work well with Vuex
state. With this, v-model aims to directly mutate the state property it’s bound to. When Vuex is in
it’s strict mode (i.e. can’t modify state directly), it’s a requirement to adhere to a flux-like pattern of
using a mutation to modify the state. So if we aimed to do the above, we’ll generate an error.

With Vuex, there’s often two ways to invoke form binding. One method involves binding the
value of the input to the data property, listening for any changes in the input, and invoking an
action/mutation when a change is made. Something like this:

template: `

...

<input :value="newItem" @input="onInputChange"

type="text" placeholder="Add an item!" />

...

`,

computed: Vuex.mapGetters({

newItem: 'newItem',

}),

methods: {

onInputChange(evt) {

this.$store.commit('UPDATE_INPUT', evt.target.value);

}

}

The other alternative is keeping the use of v-model but instead using a two-way computed property
approach with get() and set():

Form Handling 251

template: `

...

<input v-model="newItem" type="text"

placeholder="Add an item!" />

...

`,

computed: {

newItem: {

get() {

return this.$store.state.fields.newItem;

},

set(val) {

this.$store.commit('UPDATE_INPUT', value);

}

}

}

Both approaches result in the same outcome but the first is often understood to be the “standard”
Vuex way of managing form data, albeit being more verbose. We’ll be using the first approach to
make our form work with Vuex state.

Mutations

Sincewe know mutations have to be created tomanipulate Vuex form data, we can create a mutation
for every input change that needs to be made in the form.

Each mutation handler will receive a payload of the data we’d want to update a particular property
with:

const mutations = {

UPDATE_NEW_ITEM(state, payload) {

state.fields.newItem = payload;

},

UPDATE_EMAIL(state, payload) {

state.fields.email = payload;

},

UPDATE_URGENCY(state, payload) {

state.fields.urgency = payload;

},

UPDATE_TERMS_AND_CONDITIONS(state, payload) {

state.fields.termsAndConditions = payload;

},

};

Form Handling 252

When a form is submitted, we’ll also need a mutation that involves updating the items array with
the newly added item and another mutation that’s responsible in clearing all the fields of the form.
Naming these mutations UPDATE_ITEMS and CLEAR_FIELDS respectively, our mutations object will
be:

form_handling/10-vuex-app/store.js

const mutations = {

UPDATE_NEW_ITEM (state, payload) {

state.fields.newItem = payload;

},

UPDATE_EMAIL (state, payload) {

state.fields.email = payload;

},

UPDATE_URGENCY (state, payload) {

state.fields.urgency = payload;

},

UPDATE_TERMS_AND_CONDITIONS (state, payload) {

state.fields.termsAndConditions = payload;

},

UPDATE_ITEMS (state, payload) {

state.items = payload

},

CLEAR_FIELDS () {

state.fields.newItem = '';

state.fields.email = '';

state.fields.urgency = '';

state.fields.termsAndConditions = false

}

}

We’ll now move towards creating the getters and mapping them to the form prior to creating our
actions.

Getters

We’ll use getters to map all relevant state information to the form like below:

Form Handling 253

form_handling/10-vuex-app/store.js

const getters = {

newItem: state => state.fields.newItem,

newItemLength: state => state.fields.newItem.length,

isNewItemInputLimitExceeded: state => state.fields.newItem.length >= 20,

email: state => state.fields.email,

urgency: state => state.fields.urgency,

isNotUrgent: state => state.fields.urgency === 'Nonessential',

termsAndConditions: state => state.fields.termsAndConditions,

items: state => state.items

}

Instead of only computing data from getters, Vuex also allows us to retrieve store state
directly from within components. We’ve simply conformed to using getters to map all
state information.

Updating the form

With our mutations and getters established, we can update the form to work with these new
changes. First and foremost, let’s update the computed property of our component to now map
directly to the store getters, with the use of the mapGetters helper:

form_handling/10-vuex-app/main.js

computed: Vuex.mapGetters({

newItem: 'newItem',

newItemLength: 'newItemLength',

isNewItemInputLimitExceeded: 'isNewItemInputLimitExceeded',

email: 'email',

urgency: 'urgency',

isNotUrgent: 'isNotUrgent',

termsAndConditions: 'termsAndConditions',

items: 'items'

}),

With the getters now mapped to the component computed properties, we can manually bind each
property to its respective input. Without displaying our entire template code, our form inputs will
be bound like below:

Form Handling 254

<!-- New Item Input -->

<input :value="newItem" type="text" placeholder="Add an item!" />

<!-- Email Input -->

<input :value="email" type="text" placeholder="What's your email?" />

<!-- Urgency Dropdown -->

<select :value="urgency" class="ui fluid search dropdown">

<option disabled value="">Please select one</option>

<option>Nonessential</option>

<option>Moderate</option>

<option>Urgent</option>

</select>

<!-- Terms and Conditions Checkbox -->

<input :checked="termsAndConditions" type="checkbox" />

Notice how we’ve bound the checked attribute for the checkbox, instead of it’s value. The checked
attribute will be the boolean (true/false) that we’ll use to update the termsAndConditions state
property.

With the mutations already created, we now need to create the event handlers for each of these field
items to commit to these mutations when a change occurs.

For the sake of cleanliness, we’ll use a single event handler, onInputChange, to capture the changes
made to each field. Just like we did in the beginning of the chapter, we’ll use the inputs name attribute
to reference which input has been changed. Since our mutation handlers are in all CAPS, we’ll set
the names of each input to follow a similar format. Our input fields now become:

<!-- New Item Input -->

<input

:value="newItem"

@input="onInputChange"

name="NEW_ITEM"

type="text"

placeholder="Add an item!"

/>

<!-- Email Input -->

<input

:value="email"

@input="onInputChange"

name="EMAIL"

type="text"

Form Handling 255

placeholder="What's your email?"

/>

<!-- Urgency Dropdown -->

<select

:value="urgency"

@change="onInputChange"

name="URGENCY"

class="ui fluid search dropdown"

>

<option disabled value="">Please select one</option>

<option>Nonessential</option>

<option>Moderate</option>

<option>Urgent</option>

</select>

<!-- Terms and Conditions Checkbox -->

<input

:checked="termsAndConditions"

@change="onInputChange"

name="TERMS_AND_CONDITIONS"

type="checkbox"

/>

Notice how we’ve used the @input event for the <input type="text" /> elements and the @change
event for the select and <input type="checkbox" /> elements. @input occurs when the text content
of an element is changed while the @change event is fired when the selection or the checked state
change.

Let’s now create the onInputChange method, within the methods property, to commit to the correct
mutation when a field element is changed:

form_handling/10-vuex-app/main.js

onInputChange(evt) {

const element = evt.target;

const value =

element.name === "TERMS_AND_CONDITIONS"

? element.checked

: element.value;

this.$store.commit(`UPDATE_${element.name}`, value);

},

We use a ternary statement to send the input event’s checked value if the checkbox field element is

Form Handling 256

the one that’s been changed. Since all our mutations start with UPDATE_, we use the element name
to commit to the right mutation.

In the previous Vuex related chapters, we followed a strict format of making our com-
ponent’s dispatch actions that then commit to mutations. Since the actions for our input
changes here will only be directly committing to mutations, we’ve omitted them to save
having an extra step.

Actions

We now need to focus on creating the actions that get the items list from the server and persist the
newly added item to the server upon a successful form submit. In both cases, we need to keep the
Vuex state (items) and the server state in sync. When either call is made, we’ll need to commit to
the UPDATE_ITEMS mutation to maintain this synchronicity.

When the page loads, it needs to fetch the persisted items array from the server. For this to happen,
an action has be to created that calls apiClient.loadItems on page load. When this data is fetched,
the UPDATE_ITEMS mutation is then called to update the items application state array. Naming this
action loadItems, our actions object in the store can initially be set-up with:

const actions = {

loadItems(context, payload) {

apiClient.loadItems().then((items) => {

context.commit("UPDATE_ITEMS", items);

});

},

};

The other action we’ll need involves creating the asynchronous call to persist the newly updated
items to the server, upon submission of the form. When this persistence is done successfully, we’ll
also need to update the items application state (to keep the UI in sync) and clear all fields in the
form. As a result, this action (to be named saveItems) will commit to two mutations, UPDATE_ITEMS
for updating the items state, and CLEAR_FIELDS for clearing the field inputs:

Form Handling 257

const actions = {

loadItems(context, payload) {

apiClient.loadItems().then((items) => {

context.commit("UPDATE_ITEMS", items);

});

},

saveItems(context, payload) {

const items = payload;

apiClient.saveItems(payload).then(() => {

context.commit("UPDATE_ITEMS", items);

context.commit("CLEAR_FIELDS");

});

},

};

In our component, let’s dispatch the loadItems action the moment the component is created (i.e.
in the created() hook). Similar to how it was done before, we’ll need to change the component’s
loading status to false after the dispatch is complete:

form_handling/10-vuex-app/main.js

created() {

this.loading = true;

this.$store.dispatch('loadItems')

.then((response) => {

this.loading = false;

})

.catch((error) => {

console.log(error);

})

},

Though this may appear to be okay, it won’t currently work as intended. This is because Vuex actions
are asynchronous as well.

When the component is created, the loadItems action will be called. Prior to the action being
complete, the loading status will change back to false, making it seem like loading was never
true in the first place. We need to let the calling function (this.$store.dispatch) know when the
action is complete by returning a Promise and then resolving it.

Since both of our actions need to behave this way, our actions object will be updated to:

Form Handling 258

form_handling/10-vuex-app/store.js

const actions = {

loadItems (context, payload) {

return new Promise((resolve, reject) => {

apiClient.loadItems().then((items) => {

context.commit('UPDATE_ITEMS', items);

resolve(items);

}, (error) => {

reject(error);

});

});

},

saveItems (context, payload) {

return new Promise((resolve, reject) => {

const items = payload;

apiClient.saveItems(payload).then((response) => {

context.commit('UPDATE_ITEMS', items);

context.commit('CLEAR_FIELDS');

resolve(response);

}, (error) => {

reject(error);

});

});

}

}

The actions now return a Promise object to the dispatcher which then either gets resolved or rejected
depending on the success of the asynchronous server calls. With this, our store dispatcher will set
the component’s loading data to false only after the Promise is resolved successfully.

At this point, everything in our app should work as expected except for a successful submission of
a new item. We need to modify the submitForm() method to dispatch the saveItems action when
the form is submitted. Since the clearing of fields is handled in the Vuex store, our submitForm()
method is simply changed to:

Form Handling 259

form_handling/10-vuex-app/main.js

submitForm(evt) {

evt.preventDefault();

this.fieldErrors = this.validateForm(this.$store.state.fields);

if (Object.keys(this.fieldErrors).length) return;

const items = [

...this.$store.state.items,

this.$store.state.fields.newItem

];

this.saveStatus = 'SAVING';

this.$store.dispatch('saveItems', items)

.then(() => {

this.saveStatus = 'SUCCESS';

})

.catch((err) => {

console.log(err);

this.saveStatus = 'ERROR';

});

},

Just like we’ve done before, we’ve set saveStatus to ‘SUCCESS’ when the request is successful, and
to ‘ERROR’ otherwise.

And that’s it! Our form now fits neatly inside a Vuex-based data architecture. Notice how things are
more verbose when using forms in a Vuex related app?

Form Handling 260

Vuex integrated form

After reading this chapter, you should have a good handle on the fundamentals of forms in Vue. That
said, if you’d like to outsource some portion of your form handling to an external module, there are
several available. Read on for a list of some of the more popular options.

Form Modules

vee-validate

http://vee-validate.logaretm.com/¹⁰⁶

A simple plugin that focuses on input validation on the template (HTML) itself. vee-validate
introduces a v-validate directive that assigns validation rules based on the information given to
the directive.

vee-validate provides more than 20 rules out of the box but also allows the creation of custom
rules.
¹⁰⁶http://vee-validate.logaretm.com/

Form Handling 261

vue-multiselect

This library may not have been updated to be compatible with Vue v3.

https://github.com/vue-generators/vue-form-generator/¹⁰⁷

With no jQuery dependency, vue-multiselect allows for a customizable select box with support
for single select, multiple select, tagging, dropdowns, filtering, etc.

vue-multiselect works by using the Multiselect component from the library and specifying its
data(), methods, and attributes to enable unique features to select elements.

vue-form-generator

This library may not have been updated to be compatible with Vue v3.

https://github.com/vue-generators/vue-form-generator/¹⁰⁸

If the idea of defining forms and fields entirely with JSON sounds useful, vue-form-generatormight
be for you. With vue-form-generator, you sketch out your entire form in a JSON schema. The
schema is a large object where you can define things like labels, validation requirements, and field
types.

vue-form-generator works by declaring a component with VueFormGenerator.component and
passing the JSON schema to the component as a schema prop.

¹⁰⁷https://github.com/vue-generators/vue-form-generator/
¹⁰⁸https://github.com/vue-generators/vue-form-generator/

Routing
What is routing?

In web development, routing often means splitting the application into different areas usually based
on rules that are derived from the current browser URL.

Imagine clicking a link and having the URL go from https://website.com to https://website.com/about/.
That’s routing.

When we visit the / path of a website, we intend to visit the home route of that website. If we visit
/about we want to render the “about page”, and so on.

Many applications can technically be written without routing but this can get messy as an
application grows. Defining routes in an application is useful since one can separate different areas
of an app and protect areas of the app based on certain rules.

URL

A URL is a reference (i.e. address) to a resource on the Internet and is often made up of:

• The protocol identifier.
• The hostname (i.e. domain name).
• A pathname.

Let’s break down a sample URL, for instance:

The protocol and the hostname, combined, help direct us to a certain website. The pathname is
the indicator that helps us reference a specific resource (i.e. location) on that site.

An app often maintains its context state in the URL. For example, let’s consider a fake URL of an
online clothing store:

Routing 263

https://example.com/category/02/item/12

This location refers to a specific clothing item for a particular category (e.g. shoes). The numbers 02
and 12 denote the identifiers for both the category and the specific item:

https://example.com/category/:categoryId/item/:itemId

With the URL we’re now able to refresh the page and keep our location in the app, bookmark to
come back to it later, and share the URL with others. These are some of the benefits of creating
routes within an application.

URL Requests

In a server-driven application, requests to a URL often follow a pattern:

1. The client (i.e. browser) makes a request to the server for the particular page.
2. The server uses the identifiers in the URL pathname to retrieve the relevant data from its

database.
3. The server populates a template (HTML document) with this data.
4. The server returns the template along with other assets like CSS/images to the client.
5. The client renders these assets.

Server-side routing is often set up to retrieve and return different information depending on the
incoming URL. Writing server-side routes with Express.js¹⁰⁹ generally looks like:

const express = require('express');

const router = express.Router();

// define the about route

router.get('/about', function(req, res) {

res.send('About us');

});

Or using Ruby on Rails¹¹⁰, a similar route definition might look like this:

¹⁰⁹http://expressjs.com/en/guide/routing.html
¹¹⁰http://guides.rubyonrails.org/routing.html

Routing 264

routes.rb

get '/about', to: 'pages#about'

PagesController.rb

class PagesController < ActionController::Base

def about

render

end

end

Whether it’s Express.js¹¹¹, Ruby on Rails¹¹², or any other server-side framework, the pattern often
remains the same. The server accepts a request and routes to a controller and the controller runs a
specific action (e.g. return specific information), depending on the path and parameters.

Though client-side routing appears similar in concept, it’s different in implementation. With client-
side routing, we don’t make a request to the server on every URL change. Instead we let the client
handle defining what to present. Client-side routing is where the term Single-page applications (or
SPAs for short) comes in.

Single-page applications

Single-page applications (SPAs) are web apps that load only once (server provides a single template)
and JavaScript is used to dynamically render different pages. Every application we’ve built so far
has been a type of a SPA.

The benefits to SPAs come after the initial page load. Once the initial load is complete, JavaScript is
used to provide a much better user experience. Since the entire application is available, the browser
does not fetch a brand new page with every call to the server. This helps avoid the unpleasant “blink”
between page loads.

¹¹¹http://expressjs.com/en/guide/routing.html
¹¹²http://guides.rubyonrails.org/routing.html

Routing 265

Though the apps we’ve built so far have been fluid and dynamic, they’ve all had a single route (/).

For instance, the shopping cart app we built in Chapter 5 had a single view that displayed the list
of product items and the cart. What if we wanted to move the cart UI to a separate page, with a
location of /cart that can be accessed with the click of a ‘Cart’ button? Let’s visit how this request
flow would look like:

1. A user clicks on the ‘Cart’ button which links to /cart.
2. The browser makes a request to /cart.

Routing 266

3. The server in this case does not care about the pathname. The client already has the same
index.html that includes the full Vue app and static assets.

4. As the Vue app is being created andmounted, it checks the URL and sees that the user is looking
at the /cart page.

5. The top-level Vue component, (e.g. App), will map certain components to certain routes and
will switch the current component to a Cart component based on the URL (/cart).

When the user clicks on the ‘Cart’ button, the browser already contains the full application. There’s
no need to have the browser make a new request to fetch the same app again from the server and
re-mount it. The Vue app just needs to update the URL and render the correct component. This is
the basic functionality of any JavaScript router.

Routing in single-page Vue applications involve two pieces of functionality:

1. modifying the location (URL) of the app
2. determining what Vue component to render at a given location.

To handle this functionality, we’ll be using Vue’s official router plugin, vue-router¹¹³. Since Vue
applications are usually composed of separate components, building an SPA with Vue and Vue
Router is a fairly easy process.

Basic Vue Router

Before we begin diving in to how vue-router works, we’ll first start by building a basic router
from scratch. Our simple client-side router will be fully-functional and will help us gain a good
understanding of how a simple JavaScript router works in a Vue component-driven paradigm.

We’ll then swap out our components for those provided by the vue-router library.

The completed app

All the example code for this chapter is inside the folder routing in the code download. We’ll start
off with the basics app:

$ cd routing/basics

Taking a look inside this directory, we see basics/ is a simple Webpack-configured application:

¹¹³https://github.com/vuejs/vue-router-next

Routing 267

$ ls

README.md

babel.config.js

package-lock.json

package.json

public/

src/

vue.config.js

In basics/, our Vue app lives inside src/:

$ ls src/

app/

main.js

app/ contains each iteration of app.js that we’ll build up throughout this section.

main.js is where the completed app is currently being imported and rendered in the Vue instance:

routing/basics/src/main.js

import { createApp } from 'vue';

import App from './app/app-complete';

import { router } from './app/app-complete';

createApp(App).use(router).mount('#app');

We’re also importing a router object that’s being passed in to the Vue instance.

Let’s install the npm packages:

$ npm i

If we boot the app, we’ll see the completed version at http://localhost:8080/:

$ npm run serve

Routing 268

The app contains three links /dunkirk, /interstellar, and /the-dark-knight-rises. Clicking on a
link displays a description blurb about each particular movie.

Notice that clicking on a link changes the location of the app. Clicking on the link /interstellar, for
example, updates the URL to /interstellar. Importantly, the browser does not make a request
when we click on a link (i.e. there is no page reload). The description about Interstellar simply
appears and the browser’s URL bar updates to /interstellar instantly.

The routing in this app is powered by the vue-router library. We’ll build a version of the app
ourselves by constructing our own simple router before switching over to vue-router.

Building a simple router

Since we’ll be working inside the app.js file, let’s reference app.js as the app that’s mounted in our
Vue instance. We’ll need to import App from ./app/app in line 2 of the main.js file.

Let’s also remove the router import and it’s injection to the Vue instance. We’ll re-add it once we
create our router object. This updates the src/main.js file to:

Routing 269

import { createApp } from "vue";

import App from "./app/app";

createApp(App).mount("#app");

Since our Webpack server is hot-reloaded, our application should automatically update. We’ll notice
the three links are still rendered on the page but with some static text now displayed below. When
we click any of the links, we also notice the browser now makes a page request each time. Though
the URL bar is updated with each request, we can see nothing in the app changes:

At this moment, our app doesn’t care about the state of the URL pathname. No matter what path the
browser requests from our server, the server will return the same index.html with the same exact
JavaScript bundle. This is good since we want our browser to load Vue in the same way in each
location and defer to Vue on what to show and how to render the page.

Let’s have our app render the appropriate movie components based on the location of the app
(/dunkirk, /interstellar, or the-dark-knight-rises). To implement this behaviour, we’ll write
and use a router-view component.

In vue-router, router-view is a component that renders a specified component based on the
app’s location.

Routing 270

Let’s look at how we might use this component before we write it. In the template of the App

component in app/app.js, we’ll remove the static text below the links and reference router-view

like so:

routing/basics/src/app/app-1.js

const App = {

name: 'App',

template: `<div id="app">

<div class="movies">

<h2>Which movie?</h2>

/dunkirk

/interstellar

/the-dark-knight-rises

<router-view></router-view>

</div>

</div>`,

It’s important to remember that router-view is a component, like any other Vue component.
router-view matches the correct component based on a particular route. This matching will be
dictated in a routes array that we’ll create. We’ll create this array right above the App component:

routing/basics/src/app/app-1.js

const routes = [

{

path: '/',

component: {

name: 'index-blurb',

template: `<h2>Pick a Christopher Nolan movie!</h2>`

}

},

{path: '/dunkirk', component: DunkirkBlurb},

{path: '/interstellar', component: InterstellarBlurb},

{path: '/the-dark-knight-rises', component: TheDarkKnightRisesBlurb}

];

We’ve set each movie path to their own respective component and the root path / to a component
that displays a <h2> element stating ‘Pick a Christopher Nolan movie!’.

Movie Blurbs

Before we create our router-view component, let’s set up each of the movie blurb components that
our routes would render. We’ll create these components as simple templates that display a title and
description blurb for each movie.

Routing 271

Let’s create these components above our routes array:

routing/basics/src/app/app-1.js

const DunkirkBlurb = {

name: 'dunkirk-blurb',

template: `<div>

<h2>Dunkirk</h2>

<p class="movies__description">Miraculous evacuation of Allied soldiers from

Belgium, Britain, Canada, and France, who were cut off and surrounded by

the German army from the beaches and harbor of Dunkirk, France, during the

Battle of France in World War II.</p>

</div>`

};

const InterstellarBlurb = {

name: 'interstellar-blurb',

template: `<div>

<h2>Interstellar</h2>

<p class="movies__description">Interstellar chronicles the adventures of a

group of explorers who make use of a newly discovered wormhole to surpass

the limitations on human space travel and conquer the vast distances

involved in an interstellar voyage.</p>

</div>`

};

const TheDarkKnightRisesBlurb = {

name: 'the-dark-knight-rises-blurb',

template: `<div>

<h2>The Dark Knight Rises</h2>

<p class="movies__description">Batman encounters the mysterious Selina Kyle

and the villainous Bane, a new terrorist leader who overwhelms Gotham's

finest. The Dark Knight resurfaces to protect a city that has branded him

an enemy.</p>

</div>`

};

The name property within a component isn’t a hard requirement but is often useful to have
for debugging purposes. Specifying a namewill help in showing more helpful error messages
as well as ensuring the component is displayed appropriately in Vue Devtools.

The Vue docs¹¹⁴ explains this some more.

¹¹⁴https://v3.vuejs.org/api/options-misc.html#name

Routing 272

The components in this application are to have little functionality and are to be more
template-oriented. As a result, we won’t use Single-File components for simplicity and
instead declare components by assigning them to constant variables and using the template
option.

To be able to use the template option, we’ve set up our application to be full-build (i.e.
Runtime + Compiler)¹¹⁵. This was achieved by declaring the runtimeCompiler¹¹⁶ boolean
property to true in the vue.config.js file located in the root of the project directory.

router-view

With our routes and movie blurb components set up, we can begin to create our router-view

component. We’ll build router-view as a constant variable named View which we’ll create right
after our routes array, making our entire app.js file currently laid out like below:

const DunkirkBlurb = {

...

};

const InterstellarBlurb = {

...

};

const TheDarkKnightRisesBlurb = {

...

};

const routes = [

...

];

const View = {

name: 'router-view'

};

const App = {

...

};

export default App;

¹¹⁵https://v3.vuejs.org/guide/installation.html#runtime-compiler-vs-runtime-only
¹¹⁶https://cli.vuejs.org/config/#runtimecompiler

Routing 273

Our router-view component (i.e. View) needs to be built as a mounting point for Dynamic
Components¹¹⁷.

Dynamic components constitute the ability to dynamically change (i.e. switch) between components
based on a data attribute. This can be achieved by binding an is attribute to the reserved <component>
element. To get a better understanding of how this can work, let’s set up router-view (i.e. the View
constant object) like below:

const View = {

name: "router-view",

template: `<component :is="currentView"></component>`,

data() {

return {

currentView: DunkirkBlurb,

};

},

};

We’re using the reserved <component> element as themounting point of our router-view component.
<component> will render whatever component the is attribute is bound to (which is currently
DunkirkBlurb). To test the above functionality, we need to declare the router-view component
property in App:

routing/basics/src/app/app-1.js

const App = {

// ...

components: {

'router-view': View

}

};

After saving the file, our updated app should now display the DunkirkBlurb component regardless
of which link is clicked:
¹¹⁷https://v3.vuejs.org/guide/component-basics.html#dynamic-components

Routing 274

Though our router-view component is appropriately rendered within App, it’s not currently
dynamic. We need router-view to display the correct component based on the URL pathname,
upon page load. To do this, we’ll use the created() hook to filter the routes array and return the
component that has a path that matches the URL path:

const View = {

name: "router-view",

template: `<component :is="currentView"></component>`,

data() {

return {

currentView: {},

};

},

created() {

this.currentView = routes.find(

(route) => route.path === window.location.pathname

).component;

},

};

Routing 275

In data(), we’re now instantiating currentView with an empty object. In the created() hook,
we’re using JavaScript’s native find() method to return the first object from routes that matches
route.path === window.location.pathname. From this we get the componentwith object.component
(where object is the returned object from find()).

Inside a browser environment, window.location is a special object containing the properties
of the browser’s current location. We grab the pathname from this object which is the path
of the URL.

Let’s take a look at the app at this stage.

Save app.js. Ensure theWebpack development server is still running and head to http://localhost:8080.
Notice we’re now rendering the appropriate component when we visit each location:

If a random URL pathname is entered, our app will currently error and present nothing to the view
except for the links. To avoid this, let’s introduce a simple check to display a ‘Not Found’ template
if the URL pathname doesn’t match any path existing in the routes array. We’ll separate out the
find() method to a component method, getRouteObject(), to avoid repetition.

Routing 276

routing/basics/src/app/app-1.js

const View = {

// ...

created() {

if (this.getRouteObject() === undefined) {

this.currentView = {

template: `<h2>Not Found :(. Pick a movie from the list!</h2>`

};

} else {

this.currentView = this.getRouteObject().component;

}

},

methods: {

getRouteObject() {

return routes.find(

route => route.path === window.location.pathname

);

}

}

};

If the getRouteObject() returns undefined, we display the ‘Not Found’ template. If getRouteObject()
returns an object from routes, we bind currentView to the component of that object. Now if a
random URL is entered, the user will be notified:

Routing 277

/inception returns the ‘Not Found’ template

Awesome, our app is now responding to some external state, the location of the browser. router-view
determines which component should be displayed based on the app’s location.

When we click on a link, though the app displays the correct component, we see that the browser
currently does a full page load upon each click:

Clicking on /interstellar triggers a full page load

By default, our browser makes a fresh request to the Webpack development server every time we

Routing 278

click a link. The server returns the index.html and our browser needs to perform the work of
mounting the Vue app again.

As highlighted in the intro, this cycle is unnecessary. When switching between the links, there’s no
need to involve the server. Our client app already has all the components prepared and ready to go.
We just need to swap in the right components for the right links.

What we’ll need to do is construct navigation links that will change the location of the browser
without making a web request. With the location updated, we can re-render our Vue app and rely
on router-view to appropriately determine which component to render.

We’ll label these links as router-link components.

router-link

In web interfaces, we use HTML <a> tags to create links. What we want here is a special type of <a>
tag. When the user clicks on this tag, we’ll want the browser to skip its default routine of making a
web request to fetch the next page. Instead, we just want to manually update the browser’s location.

Most browsers supply an API for managing the history of the current session, window.history. We
encourage trying it out in a JavaScript console inside the browser. It hasmethods like history.back()
and history.forward() that allow you to navigate the history stack. Of immediate interest, it has a
method history.pushState() which allows you to navigate the browser to a desired location.

For more detailed info on the history API, check out the docs on MDN¹¹⁸.

Let’s compose a router-link component that produces an <a> tag with a special click binding.
When the user clicks on the router-link component, we’ll want to prevent the browser frommaking
a request. Instead, we’ll use the history API to update the browser’s location.

Just like we did with router-view, let’s see how we’ll use this component before we build it.

In the template of the App component, let’s replace the <a> tags with our upcoming router-link

component. Rather than using the href attribute, we’ll specify the desired location of the link using
a to attribute. We’ll also declare the upcoming router-link component (as Link) in the components
property of App:

¹¹⁸https://developer.mozilla.org/en-US/docs/Web/API/History_API

Routing 279

routing/basics/src/app/app-2.js

const App = {

// ...

template: `<div id="app">

<div class="movies">

<h2>Which movie?</h2>

<router-link to="/dunkirk"></router-link>

<router-link to="/interstellar"></router-link>

<router-link to="/the-dark-knight-rises"></router-link>

<router-view></router-view>

</div>

</div>`,

components: {

'router-view': View,

'router-link': Link

}

};

Notice how we’ve removed the inner text content within each router-link. Our router-link

component will render the appropriate text based on the given prop, with which we’ll see shortly.

We’ll create the Link object that represents router-link right above the App component:

const View = {

...

};

const Link = {

name: 'router-link',

};

const App = {

...

};

We’ve established the router-link component should always be given a to attribute (i.e. prop) that
has a value of the target location. We can enforce this prop validation requirement like so:

Routing 280

const Link = {

name: "router-link",

props: {

to: {

type: String,

required: true,

},

},

};

If router-link is declared without a to prop or a to prop that is not a string, Vue will emit warnings.

Prop validation doesn’t have to be enforced, but is often useful in maintaining strict
component declarations. You can read more about them in the Vue docs¹¹⁹.

The template of router-link will consist of an <a> tag with an @click handler attribute:

const Link = {

name: "router-link",

props: {

to: {

type: String,

required: true,

},

},

template: `<a @click="navigate" :href="to">{{ to }}`,

};

When a user clicks a traditional <a> tag, the browser uses href to determine the next location to visit.
In the <a> tag of router-link, we’ve bound the href attribute to the value of the to prop. Though
this wouldn’t be used in navigation of our app, this enables a user to hover over our links and see
where they lead:

¹¹⁹https://v3.vuejs.org/guide/component-props.html#prop-validation

Routing 281

Within the <a> tag, we’ve also bound the value of the to prop to the element content text with {{

to }}. This is to simply render the router-link element text as to whatever the target location is.
In our case, this will either be - /dunkirk, /interstellar, or /the-dark-knight-rises.

To finalize our router-link component, we’ll need to create the navigate() handler method that
navigates the browser to the desired location:

routing/basics/src/app/app-2.js

const Link = {

name: 'router-link',

props: {

to: {

type: [String],

required: true

}

},

template: `<a @click="navigate" :href="to">{{ to }}`,

methods: {

navigate(evt) {

evt.preventDefault();

window.history.pushState(null, null, this.to);

Routing 282

}

}

};

Recall that the first argument passed to an @click handler is always the event object. navigate()
first calls preventDefault() on the event object to prevent the browser from making a web request
for the new location. Finally, we’re “pushing” the new location onto the browser’s history stack with
history.pushState().

The history.pushState() method takes three arguments

1. a state object to pass serialized state information
2. a title
3. the target URL

In our case, there is no state information that’s needed to be passed so we leave the first argument
as null. Some browsers (e.g. Firefox) currently ignore the second parameter, title, hence we’ve left
that as null as well.

The target location, the to prop, is passed in to the third and last parameter. Since the to prop contains
the target location in a relative state, it will be resolved relative to the current URL (i.e. in our case,
/dunkirk will resolve to http://localhost:8080/dunkirk).

The MDN Web Docs¹²⁰ explains the pushState() method, as well as the other browser
history methods, in a lot more detail.

If we click any of the links now, we’ll notice our browser updates to the correct locationwithout a full
page reload. However, our app will not update and render the correct component. This unexpected
behaviour happens because when router-link is updating the location of the browser, our Vue
app is not alerted of the change. We’ll need to trigger our app (or simply just the router-view

component) to re-render whenever the location changes.

Though there’s a few ways to accomplish this behaviour, we’ll do this by using a custom Event
Bus. We already have the mitt¹²¹ event emitter library installed in our app which we’ll be using to
implement an event interface (i.e. an Event Bus). At the beginning of the file, we’ll import the mitt
library and create an instance of the emitter with the mitt() function.

¹²⁰https://developer.mozilla.org/en-US/docs/Web/API/History_API#The_pushState()_method
¹²¹https://github.com/developit/mitt

Routing 283

routing/basics/src/app/app-3.js

import mitt from 'mitt'

const emitter = mitt();

Chronologically we’ve talked about custom events and the Event Bus in Chapter 3: Custom
Events.

If you’re unfamiliar with the Event Bus and you’ve started this chapter before covering that
chapter, hop over there and come back here when you get a better understanding.

When a link has been clicked, we need to notify the necessary part of the application (i.e.
router-view) that the user is navigating to a particular route. To do this, we’ll create an event emitter
in the navigate() method of router-link with a name of navigate:

routing/basics/src/app/app-3.js

const Link = {

// ...

methods: {

navigate(evt) {

evt.preventDefault();

window.history.pushState(null, null, this.to);

emitter.emit('navigate');

}

}

};

We can now set the event listener/trigger in the created() hook of router-view. We’ll set the event
trigger outside of the if/else statement.

This makes the created() hook of the View constant become:

routing/basics/src/app/app-3.js

const View = {

// ...

created() {

if (this.getRouteObject() === undefined) {

this.currentView = {

template: `<h2>Not Found :(. Pick a movie from the list!</h2>`

};

} else {

this.currentView = this.getRouteObject().component;

Routing 284

}

// Event listener for link navigation

emitter.on('navigate', () => {

this.currentView = this.getRouteObject().component;

});

},

// ...

};

When the browser’s location changes, this listening functionwill be invoked, re-rendering router-view
to match against the latest URL!

Try it out

Let’s save our updated app.js and visit the app in the browser. Notice that the browser doesn’t
perform any full page loads as we navigate between any of the three routes.

As of now, our app navigates appropriately as we click each of the links. However, if we try to use
the browser back/forward buttons to navigate through the browser history, our application will not

Routing 285

currently re-render correctly. Although unexpected, this occurs because no event notifier is emitted
when the user clicks browser back or browser forward.

To make this work, we’ll use the onpopstate¹²² event handler. The onpopstate event is fired each
time the active history entry changes. A history change is invoked by clicking on the back or forward
buttons (or calling history.back() or history.forward() programmatically).

Right after our emitter is created, let’s set up the onpopstate event listener to emit the navigate

event when a history change is invoked:

routing/basics/src/app/app-3.js

window.addEventListener('popstate', () => {

emitter.emit('navigate');

});

Our application will now respond appropriately even when the browser navigation buttons are used.
Awesome!

Even with the tiny size of our app we can enjoy a noticeable performance improvement. Avoiding a
full page load saves hundreds of milliseconds and prevents our app from “blinking” during the page
change.

Given this superior user experience now, it’s easy to imagine how these benefits scale as the size
and complexity of our app does.

Using vue-router

Now that our basic router works well, we’ll import the components that we want to use from the
vue-router package and remove the ones we’ve written so far.

The vue-router package is already included in this project’s package.json.

The first thingwe’ll do is remove all unnecessary code that vue-routerwill take care of. This involves
the popstate event listener, the custom Event Bus, View, Link, and the components property of App.
In addition, we’ll input the necessary text information within each router-link since vue-router

doesn’t natively display each link with the text in the to prop.

This would make our app.js file be laid out like this:

¹²²https://developer.mozilla.org/en-US/docs/Web/API/WindowEventHandlers/onpopstate

Routing 286

const DunkirkBlurb = {

...

};

const InterstellarBlurb = {

...

};

const TheDarkKnightRisesBlurb = {

...

};

const routes = [

...

];

const App = {

name: 'App',

template: `<div id="app">

<div class="movies">

<h2>Which movie?</h2>

<router-link to="/dunkirk">

/dunkirk

</router-link>

<router-link to="/interstellar">

/interstellar

</router-link>

<router-link to="/the-dark-knight-rises">

/the-dark-knight-rises

</router-link>

<router-view></router-view>

</div>

</div>`

};

export default App;

Let’s add an import statement to import the functions we’ll need from the vue-router library. We’ll
import the createRouter()¹²³ function that will be used to create a router instance and we’ll import
the createWebHistory()¹²⁴ function that will be used to implement an HTML5 history among our

¹²³https://next.router.vuejs.org/api/#createrouter
¹²⁴https://next.router.vuejs.org/api/#createwebhistory

Routing 287

router instance which we’ll talk about shortly.

routing/basics/src/app/app-complete.js

import { createRouter, createWebHistory } from 'vue-router';

In our custom router, our router-view component was able to return a ‘Not Found’ template if the
URL pathname didn’t match any path existing in the routes array. To do this in vue-router, all
we’ll need to do is add the ‘Not Found’ template to a path of a custom param regular expression
where the regexp is specified inside parentheses right after the param. The documentation tells us¹²⁵
we can achieve this with the regexp of '/:pathMatch(.*)*' which we’ll implement in our routes
array:

routing/basics/src/app/app-complete.js

const routes = [

{

path: '/',

component: {

name: 'index-blurb',

template: `<h2>Pick a Christopher Nolan movie!</h2>`

}

},

{path: '/dunkirk', component: DunkirkBlurb},

{path: '/interstellar', component: InterstellarBlurb},

{path: '/the-dark-knight-rises', component: TheDarkKnightRisesBlurb},

{

path: '/:pathMatch(.*)*',

component: {

name: 'not-found-blurb',

template: `<h2>Not Found :(. Pick a movie from the list!</h2>`

}

}

];

As stated in the MDN documentation¹²⁶, regular expressions are just patterns that are used
to match character combinations in strings.

The above regular expression helps dictate that for any route a user specifies that doesn’t
match the routes where we’ve defined components for, should then have the NotFound

component be shown.

Any route entered in the URL that does not exist will return the ‘Not Found’ <h2> element.

¹²⁵https://next.router.vuejs.org/guide/essentials/dynamic-matching.html#catch-all-404-not-found-route
¹²⁶https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions

Routing 288

The only thing now left to do is to inject a router object to the Vue instance to make our whole app
router aware.

The vue-router library provides a declaration for creating a router instance, createRouter({ routes

}). With our routes array already established, we’ll create the router instance object right after App:

const router = createRouter({

routes,

});

One other thing we’ll do is ensure the URLs in our app is HTML5 history based and talk about the
difference between these types of URLs and Hash mode URLs.

Hash mode URLs always contain a hash symbol (#) after the hostname. This basically means our
application routes will be displayed like this - http://localhost:8080/#/dunkirk. The benefit to
this often lies with allowing us to have multiple client side routes without having to provide the
necessary server side fallbacks.

Traditionally, hash links are howweb browsers navigate on a page because everything after the hash
symbol is never sent to the server.

Since our application is a simple client-side app and we don’t want the hash in our URLs, we can
ensure our URLs are to be of HTML5 mode. To remove hashes in our URLs, we’ll specify the history
mode property in our router with the createWebHistory() function.

const router = createRouter({

history: createWebHistory(),

routes,

});

Our routes will now be rendered like we’ve had before - http://localhost:8080/dunkirk.

To make the entire app router-aware, we now need to inject the router instance object to the Vue
instance. First, we’ll need to export our router from the src/app/app.js file:

routing/basics/src/app/app-complete.js

export const router = createRouter({

history: createWebHistory(),

routes

});

Then import and inject router to the Vue instance in main.js:

Routing 289

import { createApp } from "vue";

import App from "./app/app";

import { router } from "./app/app";

createApp(App).use(router).mount("#app");

After saving both the main.js and app.js files, we’ll see that everything is still working as it was
before we switched to using vue-router.

Recap

Though this was a fairly simple introduction, we’re now familiar with the main concepts of
vue-router. We map our components to routes and we let router-view control where to render
them at a given location. router-link gives us the ability to modify the location of the app without
a full-page load.

Though the outcome of the simple router we’ve built matches that of vue-router, vue-router is
built differently and in a more advanced manner. For simplicity, we’ve used the concepts we’ve
already acquired in this book (custom events, lifecycle-hooks, etc.) to demonstrate how a router can
dynamically display components based on the URL route.

The actual vue-router library ensures browser consistency and introduces incredibly useful routing
capabilities with which we’ll see in the next section!

Dynamic Route Matching

In this half of the chapter, we’ll apply all the fundamentals we’ve covered to a more complex
application. We’ll see how vue-router’s fundamental components work together inside of a larger
app, and explore a few different strategies for programming in its unique component-driven routing
paradigm.

The app in this section will be an adaptation/continuation of the shopping cart app built in Chapter
5. The final app will have multiple pages with the main page, /products, only listing the list of
products that can be purchased. The cart screen will now be placed in a different page - /cart. A
user will also be able to select a particular product from the product list to see more information of
said product - /product/:id.

The server that our app communicates with is now protected by a token that requires a login. While
not a genuine authentication flow, the setup will give us a feel for how vue-router can be used
inside of an application that requires users to login.

Though we’ll be refreshing certain concepts in this section, the majority of points involving Vuex
and server persistence will not be repeated for the sake of brevity. Feel free to hop back to Chapter
5 anytime you may need to get a quick refresher!

Routing 290

The completed app

The code for this section is inside routing/shopping_cart. From the root of the book’s code folder,
navigate to that directory:

$ cd routing/shopping_cart

Let’s take a look at this project’s structure:

$ ls

README.md

babel.config.js

package-lock.json

package.json

public/

server-cart-data.json

server-product-data.json

server.js

src/

vue.config.js

This project’s structure is identical to the shopping cart app built in Chapter 5. When in development,
we boot two servers: server.js and the Webpack development server.

• The Webpack development server serves our Vue app.
• Our Vue app interfaces with server.js to fetch data about product items and cart items.
server.js in turn communicates with the two json files to get and persist data.

Communication diagram

Let’s install the dependencies:

$ npm i

We can boot the app with npm run start in the top-level directory. This uses concurrently¹²⁷ to
boot both servers simultaneously:

¹²⁷https://github.com/kimmobrunfeldt/concurrently

Routing 291

$ npm run start

We’ll be able to find the app at http://localhost:8080 in the browser.

The app will prompt you with a login button. If we click login to “log in”, we’ll notice we’re not
prompted for a username or password.

After logging in, we can see a list of product items in the main page:

Clicking on one of these products directs us to a new screen that displays further details of the
product. Furthermore, the URL of the app is updated:

Routing 292

The URL follows the scheme /products/:id where :id is the dynamic part of the URL.

Clicking the “Add to Cart” button in this screen will add the product and direct us to the cart page
at /cart:

Routing 293

At any location, clicking the “Logout” button in the top left will redirect us to the login page at
/login. If we try to manually navigate back to /products or /cart in the logged out state by typing
that address into the URL bar, we are prevented from reaching that page. Instead, we are redirected
back to /login.

Before digging into the Vue app, let’s take a look at the updated server API for this section.

The Server API

POST /login

The server provides an endpoint for retrieving an API token, /login. This token is required for
retrieving information on both endpoints, /products and /cart.

Unlike a real-world login endpoint, the /login endpoint does not require a user name or a password.
server.js will always return a hard-coded API token when this endpoint is requested. That hard-
coded token is a variable inside server.js:

Routing 294

routing/shopping_cart/server.js

// A fake API token our server validates

const API_TOKEN = 'D6W69PRgCoDKgHZGJmRUNA';

To test this endpoint yourself, with the server running you can use curl to make a POST request to
that endpoint:

$ curl -X POST http://localhost:3000/login

{

"success": true,

"token": "D6W69PRgCoDKgHZGJmRUNA"

}

The Vue app stores this API token in localStorage. Our app will include this token in the GET

/products and GET /cart requests to the server. Clicking the “Logout” button in the app removes
the token from localStorage. The user will have to “login” again to access the app.

In real-world applications, an authentication token is often implemented to a majority (if
not all) of API requests to a server. In this application, we’ll only implement authentication
to the /GET calls.

Security and client-side API tokens
Security on the web is a huge topic and managing client-side API tokens is a delicate task.
To build a truly secure web application, it’s important to understand the intricacies of the
topic. Unfortunately, it’s far too easy to miss subtle practices which can end up leaving giant
security holes in your implementation.

While using localStorage to store client-side API tokensworks fine for hobby projects, there
are significant risks. Your users’ API tokens are exposed to cross-site scripting attacks. And
tokens stored in localStorage impose no requirement on their safe transfer. If someone on
your development team accidentally inserts code that makes requests over http as opposed
to https, your tokens will be transferred over the wire exposed.

As a developer, you are obligated to be careful and deliberate when users entrust you
with sensitive data. There are strategies you can use to protect your app and your users,
like using JSON Web Tokens (JWTs) or cookies or both. Should you find yourself in this
fortunate position, take the necessary time to carefully research and implement your token
management solution.

GET /products

The /products endpoint returns a list of all product items from the server-product-data.json file.

The first thing to recognize is the product data within the json file now has additional data properties
like product_type, image_tag, and created_at that didn’t exist in Chapter 5:

Routing 295

{

"id": 1,

"title": "Fullstack Hoodie",

"description": "Lightweight, breathable hoodie with the Fullstack Crest...",

"product_type": "hoodies/jackets",

"image_tag": "hoodie.png",

"created_at": 2017,

"price": 19.99

},

The /products endpoint now also expects the API token to be included as the query param token:

/products?token=<token>

Here’s an example of querying the /products endpoint on the browser:

Without the token, an error object will return stating no token is present:

Routing 296

We’re using the JSONView¹²⁸ Chrome extension to “humanize” the raw JSON on the browser,
for easier readability.

GET /cart

The /carts endpoint works similarly to /products by expecting an API token param as well.

POST /cart, /cart/delete, and /cart/delete/all

The POST calls have remain unchanged from Chapter 5 and are as follows:

POST /cart: Inserts new item object to the cart. If the cart item already exists, this call will increment
the quantity of the existing cart item by 1.

POST /cart/delete: Maps through the cart store and decrements the quantity of the cart item with
the matching id by 1. If the quantity of that item is equal to 1 when the call is made, the cart item
object is removed.

POST /cart/delete/all: Removes all items in the cart.

Starting point of the app

We’ll be writing all the code for the rest of this chapter in routing/shopping_cart/src. Let’s survey
the directories within src/:
¹²⁸https://chrome.google.com/webstore/detail/jsonview/chklaanhfefbnpoihckbnefhakgolnmc

Routing 297

$ ls src/

app/

app-1/

app-2/

app-3/

app-complete/

main.js

app/ constitutes the shopping cart application in the completed state from Chapter 5 and will be the
starting point of this section.

app-complete/ denotes the completed application for this section with each significant step we take
along the way included in app-1/, app-2/ and app-3/.

Before we dive in to app/, we’ll first take a look at the main.js file:

main.js

routing/shopping_cart/src/main.js

import { createApp } from 'vue';

import App from './app-complete/App.vue';

import router from './app-complete/router';

import store from './app-complete/store';

createApp(App).use(router).use(store).mount('#app');

main.js imports the necessary modules of the application (store, router), wires it to the Vue
instance that’s mounted to #app, and renders the App component from the app-complete/ directory.

To not reference app-complete anymore, let’s change the import of App and store from ./app-complete/

to ./app/. Since a router module doesn’t currently exist in app/, we’ll remove it for now. Our
updated main.js file becomes:

import { createApp } from "vue";

import App from "./app/App.vue";

import store from "./app/store";

createApp(App).use(store).mount("#app");

app/

Surveying the folders within app/, we’ll notice a new assets/ folder has been introduced:

Routing 298

$ ls src/app/

assets/

components/

store/

App.vue

assets/ holds the product images, in .png format, with which we’ll be using in our app shortly.

The rest of the application is exactly as it was laid out in Chapter 5. Here’s a quick refresher:

• components/ host the components of the application
• components/ is broken down to the cart/ and product/ domain. Each domain has a List.vue
component and a ListItem.vue component.

• Components get information from the store with the help of getters.
• Components dispatch relevant actions to the store to manipulate store state.
• store/ hosts the Vuex store of the application
• The Vuex store is broken into modules for each domain, cart/ and product/, for easier
maintainability.

• Each module consists of state, mutations, actions, and getters.
• App.vue is the root level parent component of the application

Ensuring that we’ve saved the main.js file after our initial change and that our server is still running,
we’ll head to http://localhost:8080/ to see our application in its starting point:

Routing 299

Functionality works as intended and we’re able to add and remove items from and to the cart. We
can now begin scaling our application with vue-router.

Integrating vue-router

The vue-router package is already included in this project’s package.json. Like we saw in the first
section, we need to explicitly install it with Vue.use(vue-router) and integrate it to the Vue instance.

As an application grows, the number of routes and router configurations often grow to an extent to
warrant having the application router within its own file (or folder). To facilitate this, we’ll create a
router/ directory that contains a single index.js file:

In src/app:

Routing 300

$ ls src/app/

assets/

components/

router/

store/

App.vue

And in src/app/router:

$ ls src/app/router/

index.js

In router/index.js, let’s import the createRouter() and createWebHistory() functions from the
vue-router library:

routing/shopping_cart/src/app-1/router/index.js

import { createRouter, createWebHistory } from 'vue-router';

Since our router will map routes to components, we’ll have to import the two components, CartList
and ProductList that need to be mapped:

routing/shopping_cart/src/app-1/router/index.js

import CartList from '../components/cart/CartList.vue';

import ProductList from '../components/product/ProductList.vue';

As we saw in the first section of the chapter, a vue-router instance is created with createRouter({

routes }) with routes being the array that maps the components to their route paths. Let’s start
creating the router by specifying the router should be in HTML5 history mode (i.e. no hashes in the
URL). We’ll set this router instance to a const variable named router:

const router = createRouter({

history: createWebHistory(),

routes: [],

});

We’ll map the url path /products to the ProductList component and /cart to the CartList

component. This indicates that we want ProductList and CartList to only render when we visit
the app at /products and /cart respectively:

Routing 301

const router = createRouter({

history: createWebHistory(),

routes: [

{

path: "/products",

component: ProductList,

},

{

path: "/cart",

component: CartList,

},

],

});

In this instance, the only two routes in our application will be /products and /cart. Since the root
route (/) is usually the main route users first use to visit an application, let’s specify a redirect from
/ to /products should this happen:

const router = createRouter({

history: createWebHistory(),

routes: [

{

path: "/products",

component: ProductList,

},

{

path: "/cart",

component: CartList,

},

{

path: "/",

redirect: "/products",

},

],

});

This redirect specifies that when the user visits the / path in their browser, he/she will be redirected
to /products.

In vue-router a redirect¹²⁹ is different than an alias¹³⁰. A redirect changes the URL path
and redirects the user to the target path. An alias redirects the user but keeps the URL to
what the original path was intended for.

¹²⁹hhttps://next.router.vuejs.org/guide/essentials/redirect-and-alias.html#redirect
¹³⁰https://next.router.vuejs.org/guide/essentials/redirect-and-alias.html#alias

Routing 302

It’s often good to have a 404 error (or a ‘not found’) page that’s displayed to the user when the user
attempts to access a route that doesn’t map to any of the component paths of the router. Let’s create
a simple component file called NotFound.vue in the components/ folder for this purpose:

$ ls src/app/components/

cart/

product/

NotFound.vue

The NotFound component would be a simple template that displays a title and some text:

routing/shopping_cart/src/app-1/components/NotFound.vue

<template>

<div class="has-text-centered">

<h1 class="title">Sorry. Page Not Found :(</h1>

<p>Use the navigation links above to navigate between the product and

cart screens.</p>

</div>

</template>

<script>

export default {

name: 'NotFound',

}

</script>

<style scoped>

</style>

We can now import the NotFound component in the router/index.js file:

routing/shopping_cart/src/app-1/router/index.js

import NotFound from '../components/NotFound.vue';

And map it to path /:pathMatch(.*)*¹³¹. We’ll also finally export the router from the file:

¹³¹https://next.router.vuejs.org/guide/essentials/dynamic-matching.html#catch-all-404-not-found-route

Routing 303

routing/shopping_cart/src/app-1/router/index.js

const router = createRouter({

history: createWebHistory(),

routes: [

{

path: '/products',

component: ProductList

},

{

path: '/cart',

component: CartList

},

{

path: '/',

redirect: '/products'

},

{

path: '/:pathMatch(.*)*',

component: NotFound

}

]

});

export default router;

We can now inject the router object to the Vue instance to make our whole app router aware. In
src/main.js, we’ll import the newly created router and pass it within the already declared Vue
instance:

import { createApp } from "vue";

import App from "./app/App.vue";

import store from "./app/store";

import router from "./app/router"; // importing router

// injecting router

createApp(App).use(router).use(store).mount("#app");

At this moment, our application should load successfully but will appear to remain unchanged. This
is because we haven’t used vue-router’s router-view component in the template to dictate which
component should render at a given location.

In the template of the parent component App.vue, we’ll remove the use of the <CartList> and
<ProductList> elements and simply use <router-view>. Since we’re not directly referencing the

Routing 304

components anymore, we can also remove the import declaration and components property of the
component. This would make the <template> and <script> elements of App.vue be changed to:

<template>

<div id="app">

<div class="container">

<div class="columns">

<div class="column is-6 column--align-center">

<router-view></router-view>

</div>

</div>

</div>

</div>

</template>

<script>

export default {

name: "App",

};

</script>

As always, the <div> elements and CSS classes throughout the app are present just for
structure and styling. As in other projects in this book, this app uses Bulma¹³².

At this moment, when we launch the app with the root route /, we’ll be redirected to /products

which is responsible in displaying the product list (i.e. ProductList).

¹³²https://bulma.io/

Routing 305

If we change the URL path to /cart, we’ll visit the cart screen (CartList):

Routing 306

Finally, if we enter a random address in the URL bar, we’re presented with the NotFound component.

Routing 307

Currently the user has no means in navigating between the desired components apart from entering
the relevant route paths in the URL. To address this, we’ll create two <router-link> elements in
App.vue . These <router-link> elements would allow the user to navigate to either /products or
/cart:

routing/shopping_cart/src/app-1/App.vue

<template>

<div id="app">

<div class="navigation-buttons">

<div class="is-pulled-right">

<router-link to="/products" class="button">

<i class="fa fa-user-circle"></i>Shop

</router-link>

<router-link to="/cart" class="button is-primary">

<i class="fa fa-shopping-cart"></i>{{ cartQuantity }}

</router-link>

</div>

</div>

<div class="container">

<div class="columns">

Routing 308

<div class="column is-6 column--align-center">

<router-view></router-view>

</div>

</div>

</div>

</div>

</template>

The first <router-link> element we’ve specified displays a button with a fa-user-circle icon and
the text of “Shop”.

The second <router-link> element displays a cart icon and the value of a cartQuantity property.
The aim of this cartQuantity is to show the number of products the user currently has in their cart
without having the need to navigate to the cart screen.

Currently, the cartQuantity property in the <router-link to="/cart"></router-link> element
will generate an error since cartQuantity has not been defined in the App component. We already
have the number of items persisted to the cart as a cartQuantity getter in our Vuex store. We can
use Vuex’s mapGetters helper to map the getter to a component property of the same name:

We’ll update the <script> element of App to reflect this:

<script>

import { mapGetters } from "vuex";

export default {

name: "App",

computed: {

...mapGetters(["cartQuantity"]),

},

};

</script>

This will work as intended which will remove the error generated in our app. However, if we take a
look at our application now, we’ll notice something peculiar. The cartQuantity value in the nav-bar
button will always be zero (and not reflect the actual number of cart items) until we navigate to the
cart screen. This “bug” occurs because the call to the server to get a list of cart items (and update
our Vuex state) doesn’t occur only until the CartList component is created:

Routing 309

We can see that this functionality is reflected in the dispatch('getCartItems') call that only gets
called in the created() hook of the CartList component. Prior to integrating vue-router in our
application, this worked fine because it made sense to contain the call to retrieve the list of cart
items from the server within the component that it mattered to - CartList.

With vue-router however and how our current application is arranged, the <router-view> element
in the parent App dictates which component to render - ProductList or CartList. We need to move
the dispatch('getCartItems') call from the created() hook of the CartList component to the root
App component.

In the CartList.vue file, removing the created() hook will result in our <script> element looking
like this:

routing/shopping_cart/src/app-1/components/cart/CartList.vue

<script>

import { mapGetters, mapActions } from 'vuex';

import CartListItem from './CartListItem';

export default {

name: 'CartList',

computed: {

...mapGetters([

'cartItems',

'cartTotal',

'cartQuantity'

])

},

methods: {

...mapActions([

'removeAllCartItems'

])

},

Routing 310

components: {

CartListItem

}

}

</script>

The <script> of App should be updated to now have the dispatch('getCartItems') in its created()
hook:

<script>

import { mapGetters } from "vuex";

export default {

name: "App",

computed: {

...mapGetters(["cartQuantity"]),

},

created() {

this.$store.dispatch("getCartItems");

},

};

</script>

The cart icon in the navigation bar will now reflect the appropriate number of items in the cart
regardless of which route we’re in.

Similarly, ProductList has the dispatch('getProductItems') call in its created hook. To keep things
consistent, we’ll remove it from ProductList and move it to App as well.

Our ProductList <script> becomes:

routing/shopping_cart/src/app-1/components/product/ProductList.vue

<script>

import { mapGetters } from 'vuex';

import ProductListItem from './ProductListItem';

export default {

name: 'ProductList',

computed: {

...mapGetters([

'productItems'

])

},

Routing 311

components: {

ProductListItem

}

}

</script>

The created() method of App will now also dispatch the action that retrieves the list of products
items from the server and updates the Vuex state (getProductItems):

routing/shopping_cart/src/app-1/App.vue

<script>

import { mapGetters } from 'vuex';

export default {

name: 'App',

computed: {

...mapGetters([

'cartQuantity'

]),

},

created() {

this.$store.dispatch('getCartItems');

this.$store.dispatch('getProductItems');

}

}

</script>

Awesome. Before we move onwards to creating dynamic routes for every product item, let’s update
the UI of each cart list item. This isn’t a hard requirement but more of a style change.

Since the CartListItem component is responsible in the display of every cart item, let’s change its
template. In the CartListItem.vue file, we’ll update the <template> to the following:

<template>

<div class="box">

<div class="cart-item__details">

<p class="is-inline">{{ cartItem.title }}</p>

<div>

{{ cartItem.price }}$ x {{ cartItem.quantity }}

Routing 312

<i

@click="addCartItem(cartItem)"

class="fa fa-arrow-circle-up cart-item__modify"

></i>

<i

@click="removeCartItem(cartItem)"

class="fa fa-arrow-circle-down cart-item__modify"

></i>

</div>

</div>

</div>

</template>

Each cart list item will currently look like this:

Single CartListItem

Since it looks a little bare, let’s introduce an image of the cart item in the right hand side of the
element. As we’ve mentioned earlier, the assets/ directory within app/ hosts the image of each
product. In addition, each product has an image_tag property which we’ll use to help us map every
product to the right image.

In vue-cli Webpack projects, assets are usually handled in two ways:

• Keeping asset files in a static/ folder that is not processed by Webpack and must be referenced
using absolute paths.

• Keeping asset files within the src/ folder and referenced using relative paths.

Since our assets are within src/ we’ll be going with the second approach. In the <template>

of CartListItem, let’s introduce a new <div> element with class="cart-item__image" that’s
responsible in displaying a single tag. As a starting point, we’ll set the src to the image
of the Fullstack Hoodie:

Routing 313

<template>

<div class="box">

<div class="cart-item__details">...</div>

<div class="cart-item__image">

</div>

</div>

</template>

With this, our CartListItem will always display the hoodie.png image regardless of what item it is:

We’ll need to dynamically bind the image src to the right item using a relative path. We’ll achieve
this by using the require call, which would look something like this:

require gets processed appropriately and returns the correctWebpack resolvedURL. Our CartListItem
now displays the correct image for each product item added to the cart:

Routing 314

CartListItem for all product items

Instead of require, we could import the images directly to our component and bind it as a
data value for it to be used in the template. We can also use a url call that gets translated
to require upon application build. In either of these cases, it’s important to note that the
images are treated as modules with which Webpack returns the correct asset path.

For more reading on how Webpack handles static assets in a Vue-Webpack project, check
out the Static Assets Handling¹³³ section of the Vue CLI docs.

Our app is getting somewhere! We’ll introduce dynamic routes for each product item next.

Dynamic Routing

As we saw earlier, our app will have a new screen responsible in displaying all details of a product.
To navigate to this screen, a user would have to click the title of a product in the product list or
navigate to a URL path of /products/:id where id is the product identifier.

Let’s first create a starting point for a new component labelled ProductItem. We’ll create this
component in a ProductItem.vue file within the components/product/ folder:

¹³³https://cli.vuejs.org/guide/html-and-static-assets.html#static-assets-handling

Routing 315

ls src/components/product

ProductItem.vue

ProductList.vue

ProductListItem.vue

Though they are similarly named - ProductItem is a “parent” component that <router-view>
will display depending on the route. ProductListItem is the child item ProductList iterates
over.

Let’s populate the ProductItem.vue file with some initial code:

<template>

<section id="product-item" class="box">

<div class="product-item__details">Product Item</div>

<div class="product-item__image"></div>

</section>

</template>

<script>

export default {

name: "ProductItem",

};

</script>

<style scoped>

#product-item {

display: flex;

width: 100%;

position: relative;

}

.return-icon {

position: absolute;

top: 5px;

left: 10px;

color: #00d1b2;

cursor: pointer;

}

.product-item__details {

max-width: 50%;

padding-left: 10px;

Routing 316

display: flex;

flex-direction: column;

justify-content: center;

}

.product-item__image {

display: flex;

flex-direction: column;

justify-content: center;

}

.product-item__description {

padding-bottom: 10px;

}

.product-item__created_at {

font-size: 12px;

padding-bottom: 10px;

}

.product-item__button {

max-width: 150px;

}

</style>

ProductItem is a simple template as of now. Before we continue updating it, let’s set up the route
path and link that will allow us to navigate to this component.

In router/index.js, let’s import ProductItem:

routing/shopping_cart/src/app-2/router/index.js

import ProductItem from '../components/product/ProductItem.vue';

We can now specify a new route path for ProductItem. Since we want this component to render for
all product items but with different product ids, we need to create a dynamic route path:

Routing 317

routes: [

...,

{

path: '/products/:id',

component: ProductItem

},

...

]

Where we place the route path objects in the routes array will have no effect in how
components get routed.

The path we’re matching for ProductItem is /products/:id. The : is how we indicate to vue-router
that this part of the URL is a dynamic parameter.

Keep in mind, any value will match this dynamic parameter.

Our end goal is to use the id parameter in the URL to display and render the correct product item.
The ProductItem component will access its route params to obtain the id. vue-router allows us to
use the $route object in our component to access params. The other way that’s often advised¹³⁴ is
to instead use props.

vue-router gives us the ability to use props to access URL params dynamically in components. Using
props is sometimes preferred for easier testing and reusability of components. To enable props, we
first have to specify props: true in our route path object:

routes: [

...,

{

path: '/products/:id',

component: ProductItem,

props: true

},

...

]

In ProductItem, we’re now able to access id like any other prop that might be given to it. Let’s
declare the id prop in the <script> element of ProductItem:

¹³⁴https://next.router.vuejs.org/guide/essentials/passing-props.html#passing-props-to-route-components

Routing 318

<script>

export default {

name: "ProductItem",

props: ["id"],

};

</script>

In the template - we’ll bind the id to text to see if everything will work as intended (i.e. we have
access to the id URL param):

<div class="product-item__details">Product Item {{ id }}</div>

If we currently enter an appropriate route that directs us to ProductItem, we will see the component
rendering as intended with the id URL param displayed in the view. The Vue Devtools also tells us
the prop is accessible within the component:

products/1

Now that we have the id prop within ProductItem, we can use it to obtain the appropriate product
item object. Though there’s a few ways we can get access to the product item, we’ll delegate this
task to a new getter method that returns a product item based on an id parameter given.

In the getters object of the productmodule in the Vuex store (i.e. in store/modules/product/index.js),
let’s introduce a new method called productItemFromId:

Routing 319

routing/shopping_cart/src/app-2/store/modules/product/index.js

const getters = {

productItems: state => state.productItems,

productItemFromId: (state) => (id) => {

return state.productItems.find(productItem => productItem.id === id)

}

}

Getters don’t accept payloads except for the state object. What we’ve done above is return a
function in the getter with which we’re able to pass a parameter to! We then use the Array.find()
method to return the first object that has the matching id.

We nowneed tomap a computed propertywithin the productItem component to the productItemFromId
getter method. The Vuex mapGetters helper doesn’t inherently allow us to pass arguments and often
requires some unintuitive syntax to enable this. This is where it’ll be easier to map a computed
property explicitly like this:

<script>

export default {

name: 'ProductItem',

props: ['id'],

computed: {

productItem () {

return this.$store.getters.productItemFromId(Number(this.id));

}

}

</script>

Route param data are often set as strings so we’ve simply converted the string id to a number before
passing it to the getter method.

The productItem property will now return the appropriate product item object. With this, we can
now lay out the template of ProductItem to display all the details of the product:

Routing 320

<template>

<section id="product-item" class="box">

<div class="product-item__details">

<h1 class="title is-4">

<p>{{ productItem.title }}</p>

<span class="tag product-item__tag"

>{{ productItem.product_type }}</span

>

</h1>

<p class="product-item__description">{{ productItem.description }}</p>

<p class="product-item__created_at">

Founded:

 {{ productItem.created_at }}

</p>

<button class="button is-primary product-item__button">

Add to Cart

</button>

</div>

<div class="product-item__image">

</div>

</section>

</template>

We’ve displayed themajority of product information in the <div class="product-item__details"></div>

elementwhile displaying the product item imagewithin the <div class="product-item__image"></div>

element. If we refresh our screen (assuming we’re still on a route that displays productItem), we’ll
now see the updated component template:

Routing 321

products/1

Our productItem component displays all the appropriate information of the product item. As in
most e-commerce websites, we’ve introduced an “Add to Cart” button on the product item screen.
When the user clicks the “Add to Cart” button, we want the item to be added to the cart and the
user to navigate directly to the cart.

Let’s introduce a click listener that calls an addAndGoToCart() method to the “Add to Cart” button.
We’ll pass the productItem property as a parameter:

routing/shopping_cart/src/app-2/components/product/ProductItem.vue

<button

class="button is-primary product-item__button"

@click="addAndGoToCart(productItem)">

Add to Cart

</button>

We’ll set up a methods property in the component with an addAndGoToCart()method that dispatches
the action that involves adding an item to the cart (the addCartItem action) when called:

Routing 322

methods: {

addAndGoToCart(productItem) {

this.$store.dispatch('addCartItem', productItem);

}

}

We could have used mapActions to directly map the component method to the store action to achieve
the above result. However, once the item is added to the cart, we then need to use the router object
to navigate to /cart. To navigate within this method, we’ll employ programmatic navigation¹³⁵.

So far we’ve only used the <router-link> element to navigate between routes. vue-router allows
us to specify navigation programmatically with the application wide $router object. A simple
navigation to a URL with:

<router-link to="/url"></router-link>

Can be rewritten as:

this.$router.push("/url");

Clicking on a <router-link> element calls router.push() internally which pushes a new entry to
the history stack after the browser navigates.

In addition to router.push(), we’re able to use router.go() to navigate forwards/backwards in the
window history stack, or router.replace() to navigate without pushing an entry to the history
stack.

In the addAndGoToCart()method, let’s introduce a router.push() function with a target url of /cart
after the addCartItem action is dispatched:

methods: {

addAndGoToCart(productItem) {

this.$store.dispatch('addCartItem', productItem);

this.$router.push('/cart');

}

}

Clicking on the button will now add the item and navigate us directly to the cart! Everything
works well since the addCartItem action is completed just in time as we arrive to the /cart. If
the asynchronous call to the server took some time longer, the user may navigate to the next screen
before the item gets added. That’s not the best user experience we can hope for.

To avoid the potential of this case happening, we need to navigate the user to /cart only after the
addCartItem action is complete.

¹³⁵https://next.router.vuejs.org/guide/essentials/navigation.html#programmatic-navigation

Routing 323

One way of doing is to modify the addCartItem action in the store to return a Promise with which
upon resolving we’ll then direct the user to /cart.

axios, the http library we’re using, already returns a Promise so we don’t have to create one. In the
cart module of the store (store/modules/cart/index.js), we just need to update the addCartItem

action to return the result of the Promise:

routing/shopping_cart/src/app-2/store/modules/cart/index.js

const actions = {

// ...

addCartItem ({ commit }, cartItem) {

return axios.post('/api/cart', cartItem).then((response) => {

commit('UPDATE_CART_ITEMS', response.data)

});

},

// ...

}

Now in our addAndGoToCart() method in ProductItem, we can specify the change in route to occur
only after the addCartItem action is successfully completed:

routing/shopping_cart/src/app-2/components/product/ProductItem.vue

methods: {

addAndGoToCart(productItem) {

this.$store

.dispatch('addCartItem', productItem)

.then(() => {

this.$router.push('/cart');

});

}

}

For the sake of simplicity, we’re assuming all our async server calls will resolve successfully.
Good practice would involve making store actions commit to unique mutations under the
conditions that server calls fail. These mutations should update the state accordingly which
would display information to the view specifying a call was unsuccessful.

To finalize our ProductItem component, let’s introduce a “back” element to allow the user to navigate
back to where they came from.

To navigate back once in the history stack, we’ll call router.go(-1) with -1 dictating going back by
one record. Since this action is the only one we’d need to perform when the element is clicked, we
can add this functionality directly in the template:

Routing 324

<template>

<section id="product-item" class="box">

<!-- The new return icon element -->

<i class="fa fa-arrow-left is-primary"></i>

<!-- -->

<div class="product-item__details">...</div>

<div class="product-item__image">...</div>

</section>

</template>

Another suitable optionwould involve navigating the user directly to /productswhen the return-icon
is clicked.

Our ProductItem component is now complete! We just need to create the <router-link> element
on the product list to allow the user to navigate to ProductItem from the main page. Since we want
to add the navigation link on each product item list, we’ll alter the ProductListItem component.

In the <template> of the ProductListItem.vue file, we can introduce the <router-link> element on
{{ productItem.title }} like so:

routing/shopping_cart/src/app-2/components/product/ProductListItem.vue

<h2 class="has-text-weight-bold">

<router-link

:to="'/products/' + productItem.id">

{{ productItem.title }}

</router-link>

<span

@click="addCartItem(productItem)"

class="tag is-primary is-pulled-right has-text-white">

Add to Cart

</h2>

Notice howwe’re dynamically binding the target destination, :to, to '/products/' + productItem.id.
The target URL is dependent on the id of the productItem being clicked.

There are different ways we can specify the value of a dynamic :to prop in <router-link>. We
could, for example, pass a location descriptor object instead of a string:

Routing 325

<router-link

:to="{ name: 'products', params: { id: productItem.id }}">

{{ productItem.title }}

</router-link>

The above will only work if we’ve specified a name property of ‘products’ in the route object path.
All the above examples would achieve the same result - /products/:id.

Head over to the <router-link>¹³⁶ section of the vue-router docs to read more on the
different possible value formats of the :to prop.

Each of the product item titles in the main screen, /products, is now a link to the product item
details screen!

Great. When we click the title of a product in the ProductList, we should be directed to the
appropriate ProductItem. If we refresh the page when we’re in the ProductItem screen, data will be
loaded appropriately, but we’ll be given this interesting error:

[Vue warn]: Error in render:

"TypeError: Cannot read property 'title' of undefined"

Vue is telling us that the productItem property is undefined when we refresh the page directly,
though everything is displayed normally.

¹³⁶https://next.router.vuejs.org/api/#router-link-props

Routing 326

Remember, all data in our application is loaded from the server asynchronously. When we load the
page from /products, then click a product item, all product items are appropriately stored in state
and available. However, when we refresh the page directly, by the time the computed property is
accessed - the data is not quite ready (i.e. the async calls have not been completed) and the error is
generated. Only once the async call is complete, the template is then rendered appropriately.

The first thought that may come to mind to resolve this is to change the getProductItems action
(the action that gets the list of product items from the server) call to a Promise and arrange the
productItem property to compute asynchronously only after the Promise is complete. This would
not work since computed properties are entirely synchronous.

Another simpler approach is to wrap the template of the ProductItem component with a v-if

statement:

<template>

<section id="product-item" class="box" v-if="productItem">

...

</section>

</template>

Now, the productItem will only render when the productItem property is available! If we try and

Routing 327

refresh the page when in the /products/:id route, we’ll see no errors.

Recap

We’ve gotten to see some of vue-router’s components at work inside a slightly more complex
interface:

• We created separate routes for /products and /cart

• We created a redirect from / to /products

• We moved our dispatch calls to populate our initial Vuex state to App

• We matched a component against a dynamic URL - /products/:id
• We used programmatic navigation to add an item and navigate the user to cart, in the product
item screen

Let’s take our application a bit further. We’ll now look into implementing a fake authentication
system for our app. We’ll explore a strategy for elegantly preventing a user from accessing certain
locations without logging in first.

Supporting authenticated routes

As we saw when we explored the API endpoint /products earlier, making a GET request to this
endpoint (as well as /cart) requires a token to access. Since we don’t yet have the login and logout
functionality implemented in the app, we’ve been cheating by setting the token manually before
making our requests.

We can see this at the getProductItems action in store/modules/product/index.js:

routing/shopping_cart/src/app-2/store/modules/product/index.js

getProductItems ({ commit }) {

axios.get('/api/products?token=D6W69PRgCoDKgHZGJmRUNA').then((response) => {

commit('UPDATE_PRODUCT_ITEMS', response.data)

});

}

And the getCartItems action in store/modules/cart/index.js:

Routing 328

routing/shopping_cart/src/app-2/store/modules/cart/index.js

getCartItems ({ commit }) {

axios.get('/api/cart?token=D6W69PRgCoDKgHZGJmRUNA').then((response) => {

commit('UPDATE_CART_ITEMS', response.data)

});

},

This token is the same token expected by server.js:

routing/shopping_cart/server.js

const API_TOKEN = 'D6W69PRgCoDKgHZGJmRUNA';

To mimic a more real-world authentication flow, we want to remove the token string literal from
our server requests. Instead, we should have our app make a request to the API’s /login endpoint
to retrieve the authentication token.

We can then store the token locally and use it in subsequent requests. To keep things simple, our
/login API doesn’t require a user name or password.

As we’ve specified in the API proxying section in Chapter 5, we’re proxying requests to
/api/ in the client to http://localhost:3000/ (the server port). Though our server API
calls are set with /products, /cart, and /login, our client makes requests to these calls with
/api/products, /api/cart, and /api/login due to the proxy setup.

login module

Our app currently doesn’t have any functionality associated with logging in/logging out. Since we’ll
be interacting with an api call (/api/login) in a domain that doesn’t match cart or product, we’ll
create a new store module called login to hold this responsibility.

We’ll have the login/ folder set up in store/modules:

ls src/app/store/modules

cart/

login/

product/

login/ will only contain a single index.js file:

Routing 329

$ ls src/app/store/modules/login/

index.js

Just like the other store modules, our login will have all the pieces (state, mutations, actions, and
getters) of a Vuex store. To get things started, let’s establish empty objects for each of these pieces,
wire them to the module and export it. We’ll import the axios library to the file since we’ll need it
to make our api/login request.

With that said, our store/modules/login/index.js file will start with this:

import axios from "axios";

const state = {

// ...

};

const mutations = {

// ...

};

const actions = {

// ...

};

const getters = {

// ...

};

const loginModule = {

state,

mutations,

actions,

getters,

};

export default loginModule;

Before we build our login module, let’s import it to the store/index.js file and introduce it to the
global store instance.

Our Vuex store in store/index.js will now be updated to:

Routing 330

routing/shopping_cart/src/app-3/store/index.js

import { createStore } from 'vuex';

import product from './modules/product';

import cart from './modules/cart';

import login from './modules/login';

export default createStore({

modules: {

product,

cart,

login

}

});

Now we can begin to handle authentication. Our authentication flow will look like this:

• When the app loads for the first time, it will be in the unauthenticated state and the user will
be presented with a login screen.

• When the user logs in, a request will be made to /api/login. The returned token from this
request is stored in localStorage and the Vuex state. The user is then redirected to the
/products screen.

• The calls to retrieve product and cart list data from the server will now have the appropriate
token passed in.

• When the user logs out, the token is removed from localStorage and the user is taken back to
/login.

• If the user aims to access any app route in the unauthenticated state, he/she will be automati-
cally redirected to /login.

We’ll address these one-by-one.

At some point (withwhichwe’ll see shortly) we’re going to need towatch our Vuex state to determine
whether a token has been added/removed from our application. Therefore we need to keep our Vuex
state and localStorage in sync.We’ll add a token property to the state of loginmodule and initialize
it with a value of null:

const state = {

token: null,

};

When we need to update the token property in state, we’ll need to specify a mutation to do so. We’ll
call this mutation SET_TOKEN that directly updates the state token value with a payload provided:

Routing 331

const mutations = {

SET_TOKEN(state, token) {

state.token = token;

},

};

There are going to be two major actions that our components will dispatch with regards to the
login module, login() and logout().

Our login() action performs a request to /api/login, stores the token with localStorage, and
persists the token value to the state. Since we’ll need to know when the async call is complete, we’ll
return the Promise axios returns:

const actions = {

login({ commit }) {

return axios.post("/api/login").then((response) => {

localStorage.setItem("token", response.data.token);

commit("SET_TOKEN", response.data.token);

});

},

};

Our logout() action can be simpler since no api call needs to be made. logout()will simply remove
the token value from localStorage and set the state token value to null. Since this action doesn’t
perform an api call and we’ll need to know when this action is complete, we’ll wrap this action in a
Promise:

const actions = {

login ({ commit }) {

...

},

logout ({ commit }) {

return new Promise((resolve) => {

localStorage.removeItem("token");

commit('SET_TOKEN', null);

resolve();

});

}

}

We’ll have a single getter method that returns a state token value that can be accessed from our
components:

Routing 332

const getters = {

token: (state) => state.token,

};

As mentioned earlier in the book, simple state computations don’t need to be in getters.
Store state can be directly retrieved (or mapped with the use of the mapState¹³⁷ helper).

We’ve conformed to using getters to map all state information to stick to a general pattern.

With our login module established, let’s begin by adding a new login component.

Implementing login

As we saw in the completed version of the app, the login component displays a single “Login” button.
Clicking this button fires off the login process. We also want to display the loading indicator while
the login is in process:

Clicking the “Login” button

For this, we’re going to create a new component named LoginBox. We’ll create this component in a
LoginBox.vue file contained in a new components/login folder.

In components/:

$ ls src/app/components

cart/

login/

product/

In components/login:

¹³⁷https://vuex.vuejs.org/en/state.html#the-mapstate-helper

Routing 333

$ ls src/app/components/login

LoginBox.vue

Let’s create a simple static scaffold as a starting point for LoginBox by adding the following code to
the LoginBox.vue file:

<template>

<div id="login" class="box has-text-centered">

<h2 class="title">Fullstack Clothing</h2>

<button class="button is-primary">Login</button>

</div>

</template>

<script>

export default {

name: "LoginBox",

};

</script>

<style scoped>

.box {

padding: 30px;

}

</style>

Let’s now create the route path that maps to this component. In router/index.js, we’ll import
LoginBox and specify that this component should be rendered with a route path of /login.

We’ll import LoginBox at the top of of the router/index.js file:

routing/shopping_cart/src/app-3/router/index.js

import LoginBox from '../components/login/LoginBox.vue';

We can then specify the desired route path in the routes array of our router instance:

Routing 334

routes: [

...,

{

path: '/login',

component: LoginBox

},

...

]

When we enter http://localhost:8080/login, we’ll now be presented with the login screen!

When the “Login” button is clicked, we want a request to be made to /api/login and upon success,
redirect the user to the main page - /products. Let’s add a component method called login() to
handle the login button.

Let’s attach a click listener, to call the login() method when fired, in the <button> element of the
LoginBox component:

<button @click="login" class="button is-primary">Login</button>

We’ll now create the login()method in a components methods property to dispatch the login action,
and subsequently redirect the user:

Routing 335

routing/shopping_cart/src/app-3/components/login/LoginBox.vue

methods: {

login() {

this.$store.dispatch("login").then(() => {

this.$router.push({ path: '/products' });

});

}

}

Clicking on the “Login” button will now direct us from the /login screen to /products. If we take a
look at the Vuex section of our Vue Devtools, we’ll also see that the token value in state is populated
with the token value.

This verifies that our login() action appropriately calls api/login and sets the return token to our
Vuex state. We should now be able to use the token in our GET /products and /cart server calls.

In the created() hook of the parent component App, let’s introduce the token value as a parameter
to each of the dispatch calls made (getCartItems and getProductItems). In this case, we’ll retrieve
the token from localStorage instead of our Vuex state. We’ll explain why shortly.

The created() hook in our App.vue file becomes:

Routing 336

created() {

const token = localStorage.getItem("token");

if (token) {

this.$store.dispatch('getCartItems', token);

this.$store.dispatch('getProductItems', token);

}

}

When the app loads, App tries to load the token from localStorage. If the token exists in
localStorage, the token is passed to the dispatch calls that need it. The token is kept in localStorage
indefinitely and has no expiry.

It’s important to note the token in this case needs to be retrieved from localStorage, not our Vuex
state. When App is created for the first time (i.e. the application is launched), the token in our state
is always initialized with null. Only when the user logs in, does the token value in our state get
updated.

In our getProductItems() and getCartItems() actions, we can now remove the hard coded token
value in our query and reference the appropriate payload provided.

Updating getProductItems() action in store/modules/product/index.js:

routing/shopping_cart/src/app-3/store/modules/product/index.js

getProductItems ({ commit }, token) {

axios.get(`/api/products?token=${token}`).then((response) => {

commit('UPDATE_PRODUCT_ITEMS', response.data)

});

}

And updating getCartItems() in store/modules/cart/index.js:

routing/shopping_cart/src/app-3/store/modules/cart/index.js

getCartItems ({ commit }, token) {

axios.get(`/api/cart?token=${token}`).then((response) => {

commit('UPDATE_CART_ITEMS', response.data)

});

},

If we refresh our app in the /products and /cart routes, our appwill render normally. This behaviour
tells us the token from localStorage is being passed correctly to the actions upon app load.

Let’s add the logout button to our application to give the user the ability to log out and log in at will.
In the template of App.vue, we’ll introduce a new button in the <div class="navigation-buttons"></div>

element that calls a logout() method when clicked:

Routing 337

<div id="app">

<div class="navigation-buttons">

<button @click="logout" class="button is-text is-pulled-left">

Logout

</button>

<!-- ... -->

</div>

<!-- ... -->

</div>

We’ll now introduce the logout() method to the component. This method dispatches the logout()
action then subsequently directs the user back to the /login route. We’ll add the following to the
<script> section of the App component:

methods: {

logout() {

this.$store.dispatch("logout").then(() => {

this.$router.push("/login")

}).catch((error) => {

console.log(error);

});

}

}

When the user clicks the logout button, the token stored in localStorage will be removed and the
user will be navigated back to the login screen. If we save our files, refresh our browser; we’ll be
able to log back in and forth.

However if we log out, refresh our browser and then log in; we’ll be presented with an app with no
data despite having no errors:

Routing 338

This unexpected behaviour happens because our App created() hook only gets called once when
the app is loaded for the first time. The created() hook of App is where we dispatch the actions
necessary to populate Vuex state.

When the user launches the application in the login page, the created() hook runs. Since no token
exists in localStorage, the dispatch calls don’t get fired.

When the user logs in, despite persisting the token and storing it in our state, our dispatch
actions don’t get fired again. This case is where it becomes important to sync the Vuex state with

Routing 339

localStorage. localStorage is not reactive, so Vue is unable to pick up changes that happen there.
The Vuex state however can be watched with the help of a Vue watch property.

Vue Watchers

Vue Watchers¹³⁸ allow us to react in response to data changes. Let’s see how this would work in
our case.

Though it’s possible to ‘watch’ the store token value directly from App, it’s not advisable to do so.
Just like how store state should never be mutated directly, store state properties should never be
watched directly. We’ll instead watch a mapped component property.

In App, let’s map a token computed property to the token getter in our store:

We’ll do this within the mapGetters helper in the App.vue file:

computed: {

...mapGetters([

'token', // new computed property

'cartQuantity'

])

},

We’ll now introduce a new property labelled watch to our component. In our watch property, we’ll
watch the token data value in our component:

name: 'App',

computed: {

...mapGetters([

'token',

'cartQuantity'

])

},

created() {

...

},

watch: {

token() {

}

},

methods: {

¹³⁸https://v3.vuejs.org/guide/computed.html#watchers

Routing 340

...

}

Watch properties provide a payload of the new value upon change and the old value prior to the
change:

watch: {

token(newVal, oldVal) {

// ...

}

}

We don’t need access to the old value, and the new value in this case is the token computed property.
In this instance we don’t need to use any of these parameters.

Now that our watchwatches for changes in the computed token property, all we need to do is specify
that when a change occurs and the token value exists; call the dispatchers that will update our Vuex
cartItems and productItems state:

watch: {

token() {

if (this.token) {

this.$store.dispatch('getCartItems', this.token);

this.$store.dispatch('getProductItems', this.token);

}

}

}

Since we’re repeating these dispatchers in both the created() hook and the watch property, we can
delegate this to a component method that takes a token parameter. Our component created(), watch,
and methods property now all look like this:

routing/shopping_cart/src/app-3/App.vue

created() {

const token = localStorage.getItem("token");

if (token) {

this.updateInitialState(token);

}

},

watch: {

token() {

if (this.token) {

this.updateInitialState(this.token);

Routing 341

}

}

},

methods: {

logout() {

this.$store.dispatch("logout").then(() => {

this.$router.push("/login")

});

},

updateInitialState(token) {

this.$store.dispatch('getCartItems', token);

this.$store.dispatch('getProductItems', token);

}

}

Let’s try it out

Save App.vue. With the app running, log out, and head back to /login. If we refresh from here then
click “Login”, we’ll be directed to the /products page with all data populated appropriately.

Routing 342

The dispatchers in created() will only run when the app is refreshed in the /products or /cart
state and the user is in the authenticated state. The dispatchers in the watch property however will
only run when the user moves from the unauthenticated state to the authenticated state (i.e. logs
in).

Though the watch property allows us to react to data changes, oftentimes a Vue computed

property will do the job just fine. Certain cases like we’ve just seen, it becomes imperative
when a custom watcher is necessary.

pending login and navigation buttons

There are a few things left to make our login process how we want it. First, we don’t need the
“Logout” button when the user is logged out. Neither do we want the user to click either the “Shop”
or “Cart” buttons when he/she is logged out.

Since the “Logout”, “Shop”, and “Cart” buttons are within the <div class="navigation-buttons">

</div> element, we can safely say we don’t want this entire element to render when the user is
logged out. We’ll use v-if to state this <div> element should only render if the route.params is not
equal to /login.

In App, we’ll specify the v-if clause in the class="navigation-buttons" <div>:

<template>

<div id="app">

<div v-if="$route.path !== '/login'" class="navigation-buttons"></div>

<div class="container">

<!-- ... -->

</div>

</div>

</template>

Now, the user is unable to see the navigation buttons when logged out:

Routing 343

Perfect. We’ll add another improvement to the login flow by introducing a simple loading indicator
at the moment when the user is attempting to login and the asynchronous call is still being made.

To keep track of when the async /api/login call is being made, we’ll add a few new items to the
login module. First, we’ll introduce a loading property to the state of our login module. This will
be the property our LoginBox component will use to determine if the loading indicator should be
displayed.

In store/modules/login, we’ll initialize this loading state property with false:

routing/shopping_cart/src/app-3/store/modules/login/index.js

const state = {

token: null,

loading: false

}

We’ll then create two mutations, one that sets the loading property to true and the other to set it
back to false. We’ll label these mutations LOGIN_PENDING and LOGIN_SUCCESS respectively:

Routing 344

routing/shopping_cart/src/app-3/store/modules/login/index.js

const mutations = {

SET_TOKEN (state, token) {

state.token = token;

},

LOGIN_PENDING (state) {

state.loading = true;

},

LOGIN_SUCCESS (state) {

state.loading = false;

}

}

In our login() action, we can commit to the LOGIN_PENDINGmutation just before the api/login call
is made. When the call gets resolved successfully, we’ll then commit to the LOGIN_SUCCESSmutation:

routing/shopping_cart/src/app-3/store/modules/login/index.js

login ({ commit }) {

commit('LOGIN_PENDING'); // login pending

return axios.post('/api/login').then((response) => {

localStorage.setItem("token", response.data.token);

commit('SET_TOKEN', response.data.token);

commit('LOGIN_SUCCESS'); // login success

});

},

Now when the login() action is first called, the loading property will be set to true. Only when
the call is successful, will loading be set back to false.

For the sake of simplicity, we won’t create additional mutations and/or state properties
to handle when logging in becomes unsuccessful. However, in a real production scale
application - unsuccessful login attempts should be appropriately addressed.

We can now just introduce a loading getter that returns the value of the state property to be
accessed from the LoginBox component:

Routing 345

routing/shopping_cart/src/app-3/store/modules/login/index.js

const getters = {

token: state => state.token,

loading: state => state.loading

}

In the LoginBox component we’ll import the mapGetters helper and map the loading getter to a
computed property of the same name:

This makes the <script> element of LoginBox now be entirely laid out like this:

routing/shopping_cart/src/app-3/components/login/LoginBox.vue

<script>

import { mapGetters } from 'vuex';

export default {

name: 'Login',

computed: {

...mapGetters([

'loading',

])

},

methods: {

login() {

this.$store.dispatch("login").then(() => {

this.$router.push({ path: '/products' });

});

}

}

}

</script>

Bulma¹³⁹ offers an is-loading class as one of it’s button states¹⁴⁰. is-loading displays a loading
spinner within a button, which is pretty much what we need right now.

In the <template> of LoginBox, we’re going to specify a conditional class binding¹⁴¹ to the Login
button:

¹³⁹https://bulma.io/
¹⁴⁰https://bulma.io/documentation/elements/button/#states
¹⁴¹https://v3.vuejs.org/guide/class-and-style.html#class-and-style-bindings

Routing 346

routing/shopping_cart/src/app-3/components/login/LoginBox.vue
<button @click="login"

:class="[{'is-loading': loading}, 'button is-primary']">

Login

</button>

We’ve specified that the presence of the is-loading class depends on the truthiness of the loading
computed property. The button and is-primary classes, however, will always be present.

Give it a try! If we log out and try to log back in, we’ll be presented with the loading indicator on
the “Log In” button for a brief period of time.

Loading indicator

We’ve almost finished tying everything together! Our login/logout flow works just as we intended.
The last important piece left is to use vue-router to guard the authenticated pages from unauthen-
ticated users.

Navigation Guards

If the user tries to visit a page on the site they can’t access because they’re not logged in, we need
to redirect them to /login. In essence, we aim to guard navigations based on whether the user is
authenticated or not.

Routing 347

vue-router allows us to specify navigation guards in three ways:

• Globally¹⁴² - for all navigation routes
• Per-route¹⁴³ - for a single route
• Within components¹⁴⁴

We’re going to be using the first two in our application.

Global Route Guard

Global route navigation guards can be set up by specifying a beforeEach function on the entire
router instance. All route navigation guard functions have access to three arguments.

1. to - the target route object.
2. from - the current route object.
3. next() - the function that must be invoked to complete routing the user.

The Vue Router documentation¹⁴⁵ explicitly states that the next() function available as the
third argument from every guard function must only be called exactly once in any given
pass through a navigation guard.

In router/index.js, let’s create a global guard on our router object prior to the export being made:

const router = createRouter({

...

});

// The global route guard

router.beforeEach((to, from, next) => {});

export default router;

Like beforeEach, an afterEach hook can be specified as well. afterEach occurs after a
navigation is made and thus doesn’t represent a navigation guard.

Our guard needs to specify that if the user is unauthenticated (i.e. token is null) and aims to access
any route, he/she should be redirected back to /login. Once again, we’ll be retrieving token from
localStorage and not the Vuex state:
¹⁴²https://next.router.vuejs.org/guide/advanced/navigation-guards.html#global-before-guards
¹⁴³https://next.router.vuejs.org/guide/advanced/navigation-guards.html#per-route-guard
¹⁴⁴https://next.router.vuejs.org/guide/advanced/navigation-guards.html#in-component-guards
¹⁴⁵https://next.router.vuejs.org/guide/advanced/navigation-guards.html#optional-third-argument-next

Routing 348

router.beforeEach((to, from, next) => {

const token = localStorage.getItem("token");

if (!token) next("/login");

else next();

});

The next() function dictates how we want the hook to resolve. next() specifies to continue to the
route the user intended to access while next(/login) forces the user to the /login route.

If we launched our application in the /login screen, we may see an error along the lines of Maximum
call stack size exceeded. This is because our global navigation guard is being run on every

route, including /login. In /login, an endless loop occurs since vue-router aims to redirect the
user to /login over and over.

We just need to use the to parameter to dictate that the forced change in route should not occur
when the user aims to access /login:

routing/shopping_cart/src/app-complete/router/index.js

router.beforeEach((to, from, next) => {

const token = localStorage.getItem("token");

if (!token && to.path !== '/login') next('/login');

else next();

});

Let’s verify that our navigation guard works as intended:

1. With the app open, click the “Logout” button.
2. If we attempt to visit /products, /products/:id, or /cart; we’ll notice we’re automatically

redirected to /login each time.
3. When we do login, we’re directed to /products appropriately.

Note, instead of having a global guard and specifying a check to see that the target route
is not /login, we could’ve added individual route guards to everything but /login. The
outcome will be the same.

Beautiful. Let’s now create an additional navigation guard in the opposite sense. If the user is
authenticated and aims to access the /login screen, he/she will be directed to /products.

/login route guard

We intend on specifying a single route guard on the /login route. To do this, we’ll attach a
beforeEnter guard directly on the /login route path object:

Routing 349

const router = createRouter({

history: createWebHistory(),

routes: [

...,

{

path: '/login',

component: LoginBox,

beforeEnter: (to, from, next) => {

}

},

...

]

});

Similar to our global guard, we’ll aim to retrieve the token from localStorage. If the token exists,
we’ll redirect the user to /products. If not, we’ll let the route continue as intended to /login:

routing/shopping_cart/src/app-complete/router/index.js

{

path: '/login',

component: LoginBox,

beforeEnter: (to, from, next) => {

const token = localStorage.getItem("token");

if (token) next('/products');

else next();

}

},

Let’s try it out.

1. With the app open and in the logged in state, let’s attempt to visit /login in the browser. We’ll
notice we’re being automatically redirected to /products.

2. Click the ‘Logout’ button and attempt to visit /login in the browser (or refresh the page). We’re
not redirected and we continue (or remain) in the /login route.

We’re almost there! There’s one other route navigation guard we should handle before our app is
complete.

/products/:id route guard

Our dynamic product item route, /products/:id works well when we enter a URL with an id that
matches any of the products in our product list (i.e. id between 1 and 4). If we enter a URL of an id
that doesn’t match any of the products in our product item list, we’re presented with a blank screen:

Routing 350

How is it that we’re presented with a blank screen (apart from the navigation buttons) with no
errors?

First, we’re not being directed to the NotFound component because regardless of what id is specified,
our dynamic route will be recognized as a route within our router instance.

Secondly, no errors are being displayed because we’ve added the clause (v-if="productItem") to
only render the ProductItem component when the productItem object exists. In this instance, we’re
not able to retrieve a product item from a non recognizable id.

To avoid this, let’s introduce a navigation guard to the /products/:id route. We’ll be able to get the
id URL params from the to route object:

const router = createRouter({

history: createWebHistory(),

routes: [

...,

{

path: '/products/:id',

component: ProductItem,

props: true,

beforeEnter: (to, from, next) => {

const id = to.params.id;

Routing 351

}

},

...

]

});

Our guard needs to specify that if the id doesn’t match any of the ids that exist (i.e. 1, 2, 3, or 4), we
can direct the user to the NotFound component. The NotFound component doesn’t have a particular
route attached to it but is instead rendered if a route that doesn’t match any of the existing routes
is accessed. So for this, we’ll use a route like /not-found to be explicit:

routing/shopping_cart/src/app-complete/router/index.js

{

path: '/products/:id',

component: ProductItem,

props: true,

beforeEnter: (to, from, next) => {

const id = to.params.id;

if (![1, 2, 3, 4].includes(Number(id))) next('/not-found');

else next();

}

},

We’re using ES6’s includes()¹⁴⁶ method to determine whether the id param exists in the array of
existing id’s. If it doesn’t, we direct them to the /not-found route.

Let’s give it a try. With the app open and in the logged in state, if we visit a dynamic products route
with an id that doesn’t match any existing product id (e.g. http://localhost:8080/products/5),
we’ll be directed to the /not-found route and hence shown the NotFound component:

¹⁴⁶https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/includes

Routing 352

Great work! Our application is now complete!

Recap and further reading

In this chapter, we saw how we can use components from vue-router to provide fast, JavaScript-
powered navigation in our web apps. We can prevent the user’s browser from doing full page loads
when navigating around our site. We can build user-friendly URLs that are shareable. And the added
complexity to our application is minimal.

Though we’ve obtained a good understanding of routing within Vue’s component-driven paradigm,
the vue-router¹⁴⁷ docs contain even further advanced patterns of router configurations. At the
time of writing, these features include transitions¹⁴⁸, data fetching¹⁴⁹ and lazy loading¹⁵⁰. All those
examples build on the foundations established in this chapter.

¹⁴⁷https://next.router.vuejs.org/guide/
¹⁴⁸https://next.router.vuejs.org/guide/advanced/transitions.html
¹⁴⁹https://next.router.vuejs.org/guide/advanced/data-fetching.html
¹⁵⁰https://next.router.vuejs.org/guide/advanced/lazy-loading.html

Unit Testing
Though we’ve yet to address testing in this book, the importance of testing in front end web
development can’t be stressed enough.

Testing can help reveal bugs before they appear, instill confidence in your web application, and make
it easy to onboard new developers on an existing codebase. As an upfront investment, testing often
pays dividends over the lifetime of a system.

The development community often specify test-driven development (i.e. writing tests first then
building the implementation) as the appropriate way to handle testing. Whether we employ test-
driven development or build tests to validate code that has already beenwritten, focusing on building
testable code is the vital aspect to always remember.

Testing individual pieces of code that are likely to change can double or triple the amount of work
it takes to keep them up. In contrast, building applications in small components and keeping large
amounts of functionality broken into several methods allows us to test the functionality of a part of
the larger picture. This type of code is what we mean when we say testable code.

The decision of what to test will always be up to you and your team. We’ll focus on how to test your
Vue applications in this chapter.

End-to-end vs. Unit Testing

Application testing is often broken down into two main buckets: end-to-end testing or unit testing.

End-to-End Testing

End-to-end testing is a top-down approach where tests are written to determine whether an
application has been built appropriately from start to finish. We write end-to-end tests as though
we are a user’s movement through our application.

Though different suites can be used, Nightwatch¹⁵¹ is an end-to-end testing suite that is often used
with Vue applications. Nightwatch¹⁵² is Node.js based and allows us to write tests that mimic how
a user interacts with an application.

End-to-end tests are often labeled as integration tests since multiple modules or parts of
a software system are often tested together.

¹⁵¹http://nightwatchjs.org/
¹⁵²http://nightwatchjs.org/

Unit Testing 354

Unit Testing

Unit testing is a confined approach that involves isolating each part of an application and testing
it in isolation. Tests are provided a given input and an output is often evaluated to make sure it
matches expectations.

In this chapter, we’ll be focusing solely on unit testing.

Testing tools

Though numerous unit test environments/suites exist, we’ll primarily use two popular tools:
Mocha¹⁵³ and Chai¹⁵⁴.

Mocha and Chai

Mocha is a framework forwriting JavaScript tests. It allows us to specify our test suites with describe
and it blocks. We use the describe function to segment each logical unit of tests and inside that
we can use the it function for each expectation we’d want to assert.

For instance, let’s assume we wanted to test two methods, sum() and subtract(), in a Calculator

object. With Mocha, we’ll set it up like this:

describe("Calculator", () => {

it("sums 1 and 1 to 2", () => {

// assertion for the sum() method

});

it("subtracts 5 and 3 to 2", () => {

// assertion for the subtract() method

});

});

Though Mocha creates the scaffold for us to write tests, it doesn’t have a built-in assertion library.
For writing assertions, we’ll use the Chai library.

Chai is an assertion library that can be paired with any JavaScript testing framework. Chai provides
three interfaces for creating assertions:

1. should
2. expect
3. assert
¹⁵³https://mochajs.org/
¹⁵⁴http://chaijs.com/

Unit Testing 355

should and expect assertions follow a more behavioural aspect to testing by allowing us to chain
together assertions.

Since we’ll be employing a behaviour-driven approach to writing tests, we’ll use the expect interface
in this chapter.

Let’s see how a Chai expect assertion works. In the example given above, an expect assertion for
the sum() method of the Calculator object can look like this:

describe("Calculator", () => {

it("sums 1 and 1 to 2", () => {

var calc = new Calculator();

expect(calc.sum(1, 1)).to.equal(2);

});

// ...

});

In the test, we’re expecting that sum(1,1) will return a value of 2. Similarly, we can test that the
subtract() method does as intended as well:

describe("Calculator", () => {

it("sums 1 and 1 to 2", () => {

var calc = new Calculator();

expect(calc.sum(1, 1)).to.equal(2);

});

it("subtracts 5 and 3 to 2", () => {

var calc = new Calculator();

expect(calc.subtract(5, 3)).to.equal(2);

});

});

Specifying a new it block for every expectation we want to assert isn’t a hard rule. On occasion,
we’ll write an it block to contain several expectations.

Our Calculator object is simple enough for us to use one describe block for the whole class and
one it block for each method. With more complex methods that produce different outcomes, it’s
often suitable to have nested describe functions: one for the object and one for each method. For
example:

Unit Testing 356

describe('Calculator', () => {

describe('#sum', () => {

it('sums 1 and 1 to 2', () => {

...

});

it('called at least twice', () => {

...

});

}

describe('#subtract', () => {

it('subtracts 5 and 3 to 2', () => {

...

});

it('called only once', () => {

...

});

}

});

We’ll be looking at a lot of describe and it blocks throughout this chapter which might help clear
up any confusion with this setup.

For more information, be sure to check out the documentation pages for Mocha¹⁵⁵ and
Chai¹⁵⁶.

Testing a basic Vue component

To understand how units tests can be made in Vue, we’re going to start by testing a basic single-file
Vue component.

Setup

The example code for this entire chapter is in the testing/ folder in the code download. Within
testing/, there exists a basics/ folder that we’ll be looking at first. basics/ is aWebpack configured
Vue app created with the Vue CLI¹⁵⁷.

¹⁵⁵https://mochajs.org/#getting-started
¹⁵⁶http://chaijs.com/guide/styles/#expect
¹⁵⁷https://cli.vuejs.org/

Unit Testing 357

Let’s cd into testing/basics:

$ cd testing/basics

And install the necessary packages:

$ npm i

If we take a look at the project directory, we’ll notice the project structure mimics the Webpack
configured Vue applications we’ve built throughout the book with the exception of a newly
introduced tests/ folder:

$ ls

README.md

babel.config.js

node_modules/

package.json

public/

src/

tests/

We’ll be focusing entirely in the src/ and tests/ directories. Let’s first take a look at the files within
the src/ directory:

$ ls src/

App.vue

main.js

We have a single component, App.vue, and a main.js file. The App.vue file is the component we’ll
be testing. Since the component is already in it’s completed state, we won’t be making any edits or
changes to it.

App.vue

When we open App.vue, we’ll see a fairly straightforward single-file component. We’ll first take a
look at the <template> portion of the file:

Unit Testing 358

testing/basics/src/App.vue

<template>

<div id="app" class="ui text container">

<div class="ui text container">

<table class="ui selectable structured large table">

<thead>

<tr>

<th>Items</th>

</tr>

</thead>

<tbody class="item-list">

<tr v-for="(item, index) in items" :key="index">

<td>{{ item }}</td>

</tr>

</tbody>

<tfoot>

<tr>

<th>

<form class="ui form" @submit="addItem">

<div class="field">

<input v-model="item"

type="text"

class="prompt"

placeholder="Add item..." />

</div>

<button type="submit"

class="ui button" :disabled="!item">Add</button>

<span @click="removeAllItems"

class="ui label">Remove all

</form>

</th>

</tr>

</tfoot>

</table>

</div>

</div>

</template>

The <template> is a <div> element that contains an HTML table with the following details:

• The table has a title of ‘Items’ specified in the header (<thead>).

Unit Testing 359

• The body of the table, <tbody>, displays a list of items from an items array stored in the
components data, with the help of the v-for directive.

• The footer consists of a form that upon submit calls an addItem()method. In the form exists an
input field that is bound to an item data property. A <button class="ui button"></button>

element is used to submit the form while a element invokes
a removeAllItems() method on click.

Taking a look at the components <script> section, we’ll see the data values and methods that are
being used in the <template>:

testing/basics/src/App.vue

<script>

export default {

name: 'app',

data() {

return {

item: '',

items: []

};

},

methods: {

addItem(evt) {

evt.preventDefault();

this.items.push(this.item);

this.item = '';

},

removeAllItems() {

this.items = [];

}

}

};

</script>

item and items are initialized with an empty string and a blank array respectively. item is the data
property tied to the controlled input while items is the list of items displayed in the table.

In methods, addItem() pushes a new item to the items data value and clears item. At the beginning
of this method, evt.preventDefault() is called to prevent the default browser refresh upon form
submit.

The removeAllItems() method simply sets the items array to empty, which clears all submitted
items.

Unit Testing 360

<style> consists of two simple custom CSS modifications. Like some of the chapters in this book,
we’re using Semantic UI¹⁵⁸ as the backbone of our application styling.

main.js

The main.js file imports and specifies App as the mounting point of our application:

testing/basics/src/main.js

import { createApp } from 'vue';

import App from './App.vue';

createApp(App).mount('#app');

Let’s see the application in the browser. We’ll boot the app with:

$ npm run serve

And head over to http://localhost:8080:

The app is simple. There is a field coupled with a button that adds items to a list. The “Remove all”
label removes all items from the list when clicked.
¹⁵⁸https://semantic-ui.com/

Unit Testing 361

tests/

Before we begin writing tests for the App component, let’s take a brief look at the files within the
tests/ directory. The tests/ directory contains a single folder labelled unit/:

$ ls tests/

unit/

The unit/ folder hosts the spec file we’ll be working from, App.spec.js, as well as completed
iterations along the way, App.1.spec.js to App.complete.spec.js.

$ ls tests/unit/

App.spec.1.js

App.spec.2.js

App.spec.3.js

App.spec.4.js

App.spec.5.js

App.spec.complete.js

App.spec.js

In addition, a hidden .eslintrc.js file exists within the tests/unit folder of our application.
.eslintrc.js is a configuration file that ESLint provides to allow us to specify linting configuration
for a specific directory (and its subdirectories).

The .eslintrc.js file of this application’s tests/unit folder looks like the following:

module.exports = {

env: {

mocha: true,

},

};

The env option allows us to declare a specific environment in which our linter should be accustomed
to. In the env option, we’ve declared mocha: true which predefines global variables unique for the
Mocha environment. As a result, our linter will now recognize and not error with keywords such as
describe and it.

Note: This application setup was established by scaffolding a new Vue CLI project and selecting the
Mocha + Chai unit testing solution. If we had selected Jest as a testing framework, we would see a
very similar but slightly different initial scaffold.

Unit Testing 362

Testing App

In package.json, we have a test script that runs the tests located within the App.spec.js file. We
currently have a dummy test set up for us in App.spec.js. Let’s execute our Mocha test runner from
inside testing/basics and see what happens:

$ npm run test

After the steps our runner takes to boot up, we can see information on the describe and it blocks
that were run for the dummy test. In addition, we’re given a summary of the overall test status at
the end:

A separate script in package.json, test:watch, allows us to run the tests in the App.spec.js file in
watch mode:

Unit Testing 363

testing/basics/package.json

"test:watch": "vue-cli-service test:unit tests/unit/App.spec.js --watch",

In this mode, our runner does not quit after the test suite finishes. Instead, it watches the whole file
for changes. When a change is detected, it re-runs the test suite.

To execute tests from the App.spec.js file in watch mode, we can run the following command in
our terminal:

$ npm run test:watch

Throughout this chapter, we’ll continue to mention to execute the test suite with npm run

test. However, you can just keep a console window open with the tests running in watch
mode if you’d like.

The Vue CLI project was scaffolded with the npm run test:unit script, which is the script
that runs the unit tests for all test files in our project. We’ve introduced the other two scripts
(npm run test and npm run test: watch) which contain additional options to give us the
ability to run tests only for the App.spec.js file and to be able to do so in watch mode.

Writing our first spec

Let’s take a look at the App.spec.js file and replace the existing dummy test with something more
useful.

If we open App.spec.js, we’ll see that it’s currently laid out like this:

testing/basics/tests/unit/App.spec.js

import { expect } from 'chai';

describe('App.vue', () => {

it('should run this dummy test', () => {

expect('Dummy' + ' Test!').to.equal('Dummy Test!');

});

});

In the first line, we’re importing the expect assertion from chai. Taking a look at our test, we can
see we’ve titled our describe block after the module under test, App.vue. Let’s remove the dummy
test and create an actual test.

For our first spec, we’ll assert that the application should render the correct expected content :

Unit Testing 364

Test initial data

We’ll introduce a new spec that’s responsible in asserting the component sets the correct default
data:

describe("App.vue", () => {

it("should set correct default data", () => {

// our assertion will go here

});

});

The term “spec” is often used in JavaScript unit testing to refer to the specification (i.e. details
of a feature) that must be fulfilled.

Since we’ll be testing the App component, we’ll need to import it at the beginning of our test file.
Though we can import App using the relative file path destination:

import App from "../../src/App";

We’re able to import relatively from src anywhere in our app, as set up by our Webpack
configuration:

import App from "@/App";

Using the @ character helps in readability when an application has a large number of import

declarations.

This makes all the import statements of our test file be as follows:

import App from "@/App";

import { expect } from "chai";

The data property in components is a function that returns an object of key value pairs. We can
access the component data by invoking said function. We’ll do this and set the returned result to an
initialData variable:

it("should set correct default data", () => {

const initialData = App.data();

});

We can now create our assertions about the data. Our two assertions would expect that the item

value and items array, in initialData, are a blank string and an empty array respectively:

Unit Testing 365

testing/basics/tests/unit/App.1.spec.js

it('should set correct default data', () => {

const initialData = App.data();

expect(initialData.item).to.equal('');

expect(initialData.items).to.deep.equal([]);

});

Notice howwe’re specifying a deep.equal check for the initialData.items? Arrays are objects, and
thus a simple equality operator checks if two arrays are the same object. Since we’re only checking
if the two arrays are equivalent (not identical), we use the deep¹⁵⁹ equality check.

Let’s run our test suite again and verify that our new test passes:

$ npm run test

Our spec passes

For the following test, we’ll address a way of how we can think about asserting if the component
renders the correct template content. You don’t have to follow along here. The following snippet
of code we’ll share was how we were able to achieve this with Vue 2 while in Vue 3 is a little harder
to do.

If wewere to create a new spec to test if the component renders the expected content, we’ll establish
our unit test as:

¹⁵⁹http://chaijs.com/api/bdd/#method_deep

Unit Testing 366

describe("App.vue", () => {

it("should render correct contents", () => {

// our assertion will go here

});

});

In Vue 2, we were able to programmatically mount a component through fairly simple means. This
was achieved by first extending the App module like so:

describe("App.vue", () => {

it("should render correct contents", () => {

const Constructor = Vue.extend(App);

});

});

With our constructor extended, we were then able to mount our component with the $mount()

method:

describe("App.vue", () => {

it("should render correct contents", () => {

const Constructor = Vue.extend(App);

const vm = new Constructor().$mount();

});

});

To reiterate, this was how we were able to programmatically mount a component in Vue 2. In Vue
3, its a little more difficult and unnecessary for us to go since we’re going to scrap the work we’re
doing here shortly. With the above code, vm would reference the mounted component that we can
use to access rendered HTML. We could inspect the rendered output and determine if the content
matches what we expect.

To “look” for certain elements in the component template, we could have used CSS selectors with
the native JavaScript querySelector()¹⁶⁰ method. Asserting the various different elements in our
template would have our test look like the following:

¹⁶⁰https://developer.mozilla.org/en-US/docs/Web/API/Document/querySelector

Unit Testing 367

it("should render correct contents", () => {

const Constructor = Vue.extend(App);

const vm = createApp(App).mount();

expect(

vm.$el.querySelector(".ui.selectable thead tr th").textContent

).to.contain("Items");

expect(vm.$el.querySelector(".ui.button").textContent).to.contain("Add");

expect(vm.$el.querySelector(".ui.label").textContent).to.contain(

"Remove all"

);

});

CSS selectors

CSS files use selectors to specify which HTML elements a set of styles refers to. JavaScript
applications also use this syntax to select HTML elements on a page.

Check out this MDN section¹⁶¹ for more info on CSS selectors.

If we had written our second spec like the above, we would notice that our specs at this point assert
that our component is initialized as expected. These fundamental specs assert that the elements we
will be interacting with are present on the page to begin with.

Before we continue onwards however, we’re going to refactor the current specs we have to use Vue’s
official unit testing library, vue-test-utils¹⁶².

vue-test-utils

Though the way we’ve been writing our tests work just fine, there are significant advantages to
using Vue’s utility library, vue-test-utils.

The library provides us with useful methods that we can use to write our assertions. In general, these
helper methods help us traverse and select elements on the rendered DOM more easily.

For instance, vue-test-utils allows us to mount a component in isolation simply using a mount()

method. Here’s an example of creating a wrapper using mount():

const wrapper = mount(Component);

In the testing environment with vue-test-utils, a wrapper is an object that contains a mounted
component and the accompanying methods to help test the component.

With the wrapper object, we’re able to access the Vue instance with vm:
¹⁶¹https://developer.mozilla.org/en-US/docs/Learn/CSS/Introduction_to_CSS/Selectors
¹⁶²https://vue-test-utils.vuejs.org/v2/guide/introduction.html

Unit Testing 368

const vm = wrapper.vm;

We’re also able to retrieve a component’s HTML with the html() helper method:

const html = wrapper.html();

We could use the find() helper to return a wrapper for selected HTML elements:

const button = wrapper.find("button");

These are only some of the helper methods that mount() provides, while there are much more
available.

In addition, vue-test-utils also allows us to mount a component without rendering its children
(by stubbing them) using the shallowMount() method:

const wrapper = shallowMount(Component);

This wrapper now contains the shallow-rendered component. There are two primary advantages to
shallow rendering:

It tests components in isolation

Isolated tests are preferable for unit tests. When we are writing tests for a parent component, we
don’t have to worry about dependencies on child components.

A change made to a child component might break the child component’s unit tests but it won’t break
that of any parents.

It’s faster

Components that contain many child components can have an extremely large rendered tree. With
shallow rendering, we avoid rendering all child components.

Let’s see how the vue-test-utils library works in practice.

Refactoring the current specs

We’ll start off with refactoring the current existing specs. Since we already have the vue-test-utils
library installed in our application, let’s import the shallowMount() method in App.spec.js. We
won’t have the need to use the vue library anymore so our import statements will now simply be:

Unit Testing 369

testing/basics/tests/unit/App.2.spec.js

import App from '@/App';

import { shallowMount } from '@vue/test-utils';

import { expect } from 'chai';

Using beforeEach

Since we would need to shallow render the component (and declare a wrapper constant) in almost
all it blocks, this would lead to some repetitive code. To avoid this repetition, the first thing that
may come to mind is creating the wrapper at the top of the describe block:

describe("App.vue", () => {

let wrapper = shallowMount(App);

// specs

});

This approach works as expected since wrapper would now be available in each of our it blocks
thanks to JavaScript’s scoping rules.

However, if one of our tests needs to modify the shallow rendered component (e.g. changing the
component’s data or simulating an event), this would cause state to leak between specs. At the
start of the next spec, our component’s data would be unpredictable.

Instead, it is preferable to re-render the shallow component between each spec, ensuring that each
spec is working with the component in a predictable, fresh state. We’ll use a beforeEach function to
set up this fresh state before every test:

beforeEach is a block of code, that exists in all popular JavaScript test frameworks, that will run
before each it block.

We’ll set up a beforeEach function like so:

describe("App.vue", () => {

let wrapper;

beforeEach(() => {

wrapper = shallowMount(App);

});

// specs

});

Unit Testing 370

We declare wrapper using a let declaration at the top of the describe block to ensure it’s in scope
for all of our assertions. If we declared wrapper inside the beforeEach block, it would not have been
in scope for our specs.

Since our application only consists of a single component with fairly simple functionality,
the mount() method works just as well in this case.

Now, let’s refactor our first spec. Since our component is already rendered, we can remove
Vue.extend() and the subsequent mounting. To determine whether the correct content has been
rendered, we’ll use the wrapper html() helper:

testing/basics/tests/unit/App.2.spec.js

describe('App.vue', () => {

// ...

it('should render correct contents', () => {

expect(wrapper.html()).to.contain('<th>Items</th>');

expect(wrapper.html()).to.contain(

'<input type="text" class="prompt" placeholder="Add item...">'

);

expect(wrapper.html()).to.contain(

'<button type="submit" class="ui button" disabled="">Add</button>'

);

expect(wrapper.html()).to.contain(

'Remove all'

);

});

// ...

});

html() returns the entire HTML of the component as a string. We’ve simply created our assertions to
determine if the rendered template contains the expectedmarkup elements. Though slightly different
than testing for text content, the outcome is equivalent.

For our second spec (“should set correct default data”), we can access the data properties directly
from the actual Vue instance with wrapper.vm:

Unit Testing 371

testing/basics/tests/unit/App.2.spec.js

it('should set correct default data', () => {

expect(wrapper.vm.item).to.equal('');

expect(wrapper.vm.items).to.deep.equal([]);

});

Try it out

Let’s run our tests again to see that our new tests pass.

$ npm run test

Awesome. We’ll continue to explore the vue-test-utils API as we write more assertions.

More assertions for App.vue

Our next spec will involve asserting the components ‘Add’ button is disabled upon page load.

We’ll specify this new assertion in a new it block. The first thing we’ll need to do is “find” the button
element. We’ll use the find() helper with the appropriate button CSS selector to select this button
element:

Unit Testing 372

it('should have the "Add" button disabled', () => {

const addItemButton = wrapper.find(".ui.button");

});

While the Vue instance wrapper contains a vm object, all elements returned by find() have an
element property. Remember, .find() returns the wrapper of the DOM node. element will return
the DOM node for us to access. As a result, we’ll make an assertion on the element’s disabled

attribute:

testing/basics/tests/unit/App.2.spec.js

it('should have the "Add" button disabled', () => {

const addItemButton = wrapper.find('.ui.button');

expect(addItemButton.element.disabled).to.be.true;

});

Try it out

Save App.spec.js. Run the test suite:

$ npm run test

The specs we’ve written set the foundation for our next set of specs.

Unit Testing 373

By asserting the presence of certain elements in the initial render as we have so far, we’re asserting
what the user will see on the page when the app loads. We have asserted that there will be a table
header, an input, and a disabled button. We also asserted the initial values (item and items) in our
template.

For our remaining assertions, we’re going to use a behavior-driven style to drive how we lay out
our describe and it blocks. With this style, we’ll simulate interactions with the component much
like we were a user navigating the interface.

After loading the app, the first thing we’d envision a user would do is fill in the input. When the
input is filled, they will click the “Add” button. We would then expect the new item to be stored in
the component data and on the page.

Populating the text input

The first interaction a user can have with our app is populating the input field to add a new item.
We want to simulate this behavior in the next set of specs.

Since the next few specs we write fall within a particular group of tests, we can declare another
describe block inside of our current one to group these together:

describe("App.vue", () => {

// the assertions we've written so far

describe("the user populates the text input field", () => {

// our new assertions

});

});

Our assertions in the new describe block all involve simulating how a user populates the text input
DOM element. To avoid the repetition of finding the input, updating the value, and triggering an
event in each test; we can extrapolate this set-up to a beforeEach:

describe("App.vue", () => {

// the assertions we've written so far

describe("the user populates the text input field", () => {

let inputField;

beforeEach(() => {

inputField = wrapper.find("input");

inputField.element.value = "New Item";

inputField.trigger("input");

});

Unit Testing 374

// our new assertions

});

});

The beforeEach that we write for our inner describe will be run after the beforeEach declared in
the outer context. Therefore, the wrapper object will already be shallow rendered by the time this
beforeEach function is executed. As expected, this beforeEach will only be run for it blocks inside
our inner describe block.

In the beforeEach, we’re doing a few things to simulate how a user will create an input event:

1. We first find the input wrapper with .find(). Since our component has a single input, we’re
able to use the actual input element as our selector.

2. We then set the value of the input DOM element to ‘New Item’.
3. Finally, we use trigger() to simulate the actual user interaction.

The trigger() method accepts two arguments:

1. The event to simulate (e.g. input, click, etc.). This determines which Event handler gets
dispatched (e.g. oninput, onclick).

2. An event object which is optional.

To manipulate the value of a DOM element, we can’t set the value of the event target in the
optional event object argument. We need to set the value prior to calling trigger like we’ve done
above (inputField.element.value = 'New Item').

Vue asynchronously updates the DOM based on changes to data while test runners like Mocha run
synchronously. As a result, we’ll want to make sure component under test has been updated after
the trigger() before our assertions are run. To do this, we can use the async/await¹⁶³ syntax to
await for the trigger() function to run. This would have our beforeEach look like the following:

describe("App.vue", () => {

// the assertions we've written so far

describe("the user populates the text input field", () => {

let inputField;

beforeEach(async () => {

inputField = wrapper.find("input");

inputField.element.value = "New Item";

await inputField.trigger("input");

¹⁶³https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous/Async_await

Unit Testing 375

});

// our new assertions

});

});

With this setup written, we can now write specs related to the context where the user has just
populated the input field. For this context, we’ll write two new tests:

testing/basics/tests/unit/App.3.spec.js

describe('the user populates the text input field', () => {

let inputField;

beforeEach(async () => {

inputField = wrapper.find('input');

inputField.element.value = 'New Item';

await inputField.trigger('input');

});

it('should update the "text" data property', () => {

expect(wrapper.vm.item).to.equal('New Item');

});

it('should enable the "Add" button when text input is populated', () => {

const addItemButton = wrapper.find('.ui.button');

expect(addItemButton.element.disabled).to.be.false;

});

});

In the first test, we grab the item data property with wrapper.vm.item and simply test if it matches
the input value after the event is triggered.

In the second, we find the ‘Add’ button like we’ve done earlier and test if the disabled attribute of
the button is false (i.e the button is enabled).

To convey the behaviour-driven manner of our tests, at this moment we can envision our component
in the following state:

Unit Testing 376

Before we run our test suite, let’s write a test to determine how the button reacts when the user
clears the input field.

Clearing the input field

When the user clears an input field that has been filled out, we expect the button to become disabled
again. We can build on the context of the “the user populates text input field” describe by nesting
a new describe inside of it.

Our entire describe hierarchy will now look like this:

describe("App.vue", () => {

// ...

describe("the user populates the text input field", () => {

// ...

describe("and then clears the input", () => {

// assert the add item button is disabled

});

});

});

To create the scenario that the user clears the input field, we’ll set the input element value to a
blank string before calling trigger(). We’ll find the ‘Add’ button and test the value of its disabled
attribute like we’ve done before. In our test, we’ll also ensure we await for the trigger to complete
before having our assertion be run.

Unit Testing 377

Since we’ll have a single test in this describe block, we’ll forego the use of a beforeEach and create
our set-up within the test:

describe("the user populates the text input field", () => {

// ...

describe("and then clears the input", () => {

it('should disable the "Add" button', async () => {

const addItemButton = wrapper.find(".ui.button");

inputField.element.value = "";

await inputField.trigger("input");

expect(addItemButton.element.disabled).to.be.true;

});

});

});

At the moment, we can envision this test in the following scenario of our application:

Try it out

Now will be a good time to verify the status of our test suite. We’ll save App.spec.js and run the
tests again:

Unit Testing 378

$ npm run test

Our tests pass. Let’s now move to creating tests for when the user submits the form.

Submitting the form

When a user submits the form we need to verify that:

1. The newly added item is in the data property items and is displayed in the rendered table.
2. The item data value is reverted to a blank string and the input field is cleared out.
3. The ‘Add’ button is disabled once again.

Each of these points will be a test spec of its own. These tests will live in a context inside the “the
user populates the text input field” describe as a sibling to the “and then clears the input” describe.
We’ll name the new describe block with a title of “and then submits the form”:

Unit Testing 379

describe("App.vue", () => {

// ...

describe("the user populates the text input field", () => {

// ...

describe("and then clears the input", () => {

// ...

});

describe("and then submits the form", () => {

// assertions for submitting the form

});

});

});

Since we’ll be having multiple tests in this context that share a similar setup, we’ll establish a
beforeEach to mimic form submission.

To simulate a valid form submission, we need to click the add item button, “Add”, (i.e. submit the
form) with text present in the input field.

In this case, instead of simulating the input element value and calling trigger(), we’ll directly
update the item data value with the setData()method. Though this will achieve the same outcome,
we’ll use setData() to see how we can manipulate the component’s data properties without always
having to trigger events on template DOM nodes:

describe("and then submits the form", () => {

let addItemButton;

beforeEach(async () => {

wrapper.setData({ item: "New Item" });

addItemButton = wrapper.find(".ui.button");

await addItemButton.trigger("submit");

});

});

setData() is a wrappermethod that force updates the wrapper vm data object to set the item value to
‘New Item’. This is equivalent to manipulating the input element value and calling trigger(). We
then find the add item button and trigger a submit event on the button to simulate form submission.

With our setup in place, our first test will involve asserting that the new item is added to the items
data property and the item is rendered in the table.

We’ll create this test (and the following tests) within the “and then submits the form” describe block:

Unit Testing 380

it('should add a new item to the "items" data property', () => {

const itemList = wrapper.find(".item-list");

expect(wrapper.vm.items).to.contain("New Item");

expect(itemList.html()).to.contain("<td>New Item</td>");

});

We use find() to find the table body element from its CSS class .item-list. We check that the items
array has a new item and the table body element contains the rendered item <td>New Item<td>.

Next, let’s assert the item data property and the input element value is cleared out in the conceived
template:

it('should set the "item" data property to a blank string', () => {

const inputField = wrapper.find("input");

expect(wrapper.vm.item).to.equal("");

expect(inputField.element.value).to.equal("");

});

Finally, we’ll assert that the add item button is again disabled:

it('should disable the "Add" button', () => {

expect(addItemButton.element.disabled).to.be.true;

});

In its entirety, the “and then submits the form” describe block will be laid out like this:

describe("and then submits the form", () => {

let addItemButton;

beforeEach(async () => {

wrapper.setData({ item: "New Item" });

addItemButton = wrapper.find(".ui.button");

await addItemButton.trigger("submit");

});

it('should add a new item to the "items" data property', () => {

let itemList = wrapper.find(".item-list");

expect(wrapper.vm.items).to.contain("New Item");

expect(itemList.html()).to.contain("<td>New Item</td>");

});

Unit Testing 381

it('should set the "item" data property to a blank string', () => {

let inputField = wrapper.find("input");

expect(wrapper.vm.item).to.equal("");

expect(inputField.element.value).to.equal("");

});

it('should disable the "Add" button', () => {

expect(addItemButton.element.disabled).to.be.true;

});

});

At this point, it might appear we have a minor refactor we can do. We can move all .find()
declarations to the beforeEach method to simplify our specs:

testing/basics/tests/unit/App.5.spec.js

describe('and then submits the form', () => {

let addItemButton;

let itemList;

let inputField;

beforeEach(async () => {

addItemButton = wrapper.find('.ui.button');

itemList = wrapper.find('.item-list');

inputField = wrapper.find('input');

wrapper.setData({item: 'New Item'});

await addItemButton.trigger('submit');

});

it('should add a new item to the "items" data property', () => {

expect(wrapper.vm.items).to.contain('New Item');

expect(itemList.html()).to.contain('<td>New Item</td>');

});

it('should set the "item" data property to a blank string', () => {

expect(wrapper.vm.item).to.equal('');

expect(inputField.element.value).to.equal('');

});

it('should disable the "Add" button', () => {

expect(addItemButton.element.disabled).to.be.true;

Unit Testing 382

});

});

At this point, we’re asserting how our app behaves in this condition:

Try it out

Let’s test our suite with our new describe context:

$ npm run test

Unit Testing 383

Our tests pass. The last context we’ll test involves asserting that clicking the “Remove all” label will
remove all submitted items.

Removing all items

This particular context will live in its own describe block as a sibling to “the user populates the text
input field” describe:

describe("App.vue", () => {

// ...

describe("the user populates the text input field", () => {

// ...

});

describe('the user clicks the "Remove all" label', () => {

// assertion for removing all items

});

});

Unit Testing 384

To create a spec for this particular context, we first need to have items submitted in the form as a
starting point. We’ll create this setup in the beforeEach of the new describe block:

describe('the user clicks the "Remove all" label', () => {

beforeEach(() => {

wrapper.setData({ items: ["Item #1", "Item #2", "Item #3"] });

});

});

To simulate having three items already submitted in the form, we’re using the setData()method to
update the items data property directly with ‘Item #1’, ‘Item #2’, and ‘Item #3’. With setData() we
don’t need to invoke a trigger() on the ‘Add’ button multiple times to ensure all three items are
added to the items array.

Since we’re using a beforeEach method for this context, let’s establish the find() calls here as well.
In the upcoming test, we’ll need to have access to the item list body and the ‘Remove all’ label
wrappers:

describe('the user clicks the "Remove all" label', () => {

let itemList;

let removeItemsLabel;

beforeEach(() => {

itemList = wrapper.find(".item-list");

removeItemsLabel = wrapper.find(".ui.label");

wrapper.setData({ items: ["Item #1", "Item #2", "Item #3"] });

});

});

With our setup established, our test will simply involve triggering a click event on the ‘Remove All’
label and asserting that no items remain in the form. To assert no items exist, we’ll verify that the
items data property is a blank array and the rendered HTML does not contain any of the item cells
in the table.

Our entire describe context will be:

Unit Testing 385

testing/basics/tests/unit/App.complete.spec.js

describe('the user clicks the "Remove all" label', () => {

let itemList;

let removeItemsLabel;

beforeEach(() => {

itemList = wrapper.find('.item-list');

removeItemsLabel = wrapper.find('.ui.label');

wrapper.setData({items: ['Item #1', 'Item #2', 'Item #3']});

});

it('should remove all items from the "items" data property', async () => {

await removeItemsLabel.trigger('click');

expect(wrapper.vm.items).to.deep.equal([]);

expect(itemList.html()).to.not.contain('<td>Item #1</td>');

expect(itemList.html()).to.not.contain('<td>Item #2</td>');

expect(itemList.html()).to.not.contain('<td>Item #3</td>');

});

});

Try it out

Let’s make sure our new test passes successfully.

$ npm run test

Unit Testing 386

Everything passes! We can try breaking various parts of the App component and witness the test
suite catch these failures.

Our test suite for App is pretty comprehensive. We’ve established layers of context based on real-
world workflows and with each context asserted the component’s desired behavior.

We’ve managed to understand how a behavioural-driven approach to writing tests can be done with
the Mocha testing library and Chai assertions. We’ve covered the benefits to using vue-test-utils

and the importance of shallow rendering.

In the next section, we’ll advance our understanding of writing Vue tests by looking into how tests
can be done for an application that relies on a web request to an API and is integrated with Vuex
and Vue Router.

Writing tests for a weather app

In this section, we’re going to be writing tests for a weather application that tells us the current
day’s weather forecast in certain cities across the world (New York, Buenos Aires, Moscow, Tokyo,
Sydney, and Lagos).

Unit Testing 387

Though we’ll be describing the app’s layout and structure, we won’t be going into heavy
detail on how Vuex and Vue Router was used to construct the app.

If you’re reading this chapter and are unfamiliar with these concepts, we discuss Vuex in
depth in Chapters 4 and 5 and we cover routing in detail in Chapter 7.

Like the previous section, we’ll be writing tests for an already completed application. To get into this
app directory from the testing/basics folder, run the following command:

$ cd ../weather

We’ll install the npm packages:

$ npm install

And start up the app with:

Unit Testing 388

$ npm run start

Let’s head over http://localhost:8080 to find the running application. The first screen we’ll be
presented with will look like the following:

Clicking any of the links at the foot of the screen will rerender the ‘Pick a city…’ message to display
weather details of the selected city:

Unit Testing 389

Let’s understand how the app is broken down into components at a high-level:

Unit Testing 390

• App: The parent container for the application.
• WeatherContainer: The child component that displays weather details of a certain location
based on the URL route

The links at the foot of the application are <router-link> elements that upon click direct the user
to a new route, which subsequently updates WeatherContainer with the weather details of the new
location.

The “Pick a city…” message is the “Home” component (HomeContainer) that’s displayed to the user
when the URL route is at the root path, /. If we type an unknown pathname in the URL bar (e.g.
/not-found), we’ll be presented with the NotFoundContainer component instead:

Unit Testing 391

This shows how vue-router is being used in our application. We’ll get a better understanding of this
when we look through the existing code.

App structure

The structure of the application matches that of the app we tested in the first section:

$ ls

README.md

babel.config.js

node_modules/

package.json/

public/

server.js

src/

tests/

vue.config.js

The main difference with this application is the coexistence of a Node server and the client Webpack
server. This Node server, which lives in server.js provides a single API call to the client:

Unit Testing 392

testing/weather/server.js

app.get("/weather", (req, res) => {

const id = Number(req.query.id);

axios.get(`https://www.metaweather.com/api/location/${id}/`)

.then(response => {

res.setHeader("Cache-Control", "no-cache");

res.json(response.data);

})

.catch(error => {

console.log(error); // eslint-disable-line no-console

});

});

When the /weather api call is made from the client side, the id from the request query is used to
fetch real weather information with the help of the MetaWeather¹⁶⁴ API.

MetaWeather is a weather data aggregator that calculates the most likely outcome from predictions
of different forecasters. Though they provide several endpoints to their API¹⁶⁵, we’re only using the
location¹⁶⁶ endpoint:

/api/location/(woeid)/

WOEID, or Where On Earth ID¹⁶⁷, is a location identifier that allows us find details about a
specific location. For more detail on how exactly the MetaWeather API works, feel free to
take a closer look at the documentation¹⁶⁸.

concurrently

Whenwe start the application, the concurrently utility runs both the client at http://localhost:8080/
and the server at http://localhost:3000/ at the same time.

All API calls from the client to the server are proxied with /api/ (for example, a call to /api/weather
from the client is proxied to http://localhost:3000/weather).

App.vue

In the application code, let’s first take a quick look at how the parent container, App is constructed.
If we open the App.vue file, we’ll notice the component’s <template> and <script> elements
constructed like so:
¹⁶⁴https://www.metaweather.com/
¹⁶⁵https://www.metaweather.com/api/
¹⁶⁶https://www.metaweather.com/api/#location
¹⁶⁷https://developer.yahoo.com/geo/geoplanet/guide/concepts.html
¹⁶⁸https://www.metaweather.com/api/

Unit Testing 393

testing/weather/src/App.vue

<template>

<div id="app" class="flex-align has-text-centered">

<p class="app__date has-text-weight-bold">{{ date }}</p>

<router-view></router-view>

<div class="app__cities" v-if="!loading">

<router-link

v-for="city in cities"

:to="'/weather/' + city.id"

:key="city.id">{{ city.name }}</router-link>

</div>

</div>

</template>

<script>

import { mapGetters } from 'vuex';

export default {

name: 'app',

data() {

return {

cities: [

{ id: 2459115, name: 'New York City, New York' },

{ id: 468739, name: 'Buenos Aires, Argentina' },

{ id: 2122265, name: 'Moscow, Russia' },

{ id: 1118370, name: 'Tokyo, Japan' },

{ id: 1105779, name: 'Sydney, Australia' },

{ id: 1398823, name: 'Lagos, Nigeria' }

]

}

},

computed: {

date() {

return (new Date()).toDateString();

},

...mapGetters([

'loading'

])

},

}

</script>

Unit Testing 394

In the template, date is the computed property that simply gets the current day’s date in a readable
format. The <router-view> element declaration is where the child components are hoisted (e.g.
WeatherContainer) depending on the URL route.

In the <div class="app__cities"></div> element, we’re using the v-for directive to render a list
of <router-link> elements from the component data array, cities.

<div class="app__cities" v-if="!loading">

<router-link v-for="city in cities" :to="'/weather/' + city.id" :key="city.id"

>{{ city.name }}</router-link

>

</div>

Each link has a target URL of /weather/:id and is rendered to display as the name of the city from
the cities array. A v-if statement is used on the wrapper <div /> element to dictate that every link
should not be displayed if the computed property loading is true. This loading property is mapped
from a store getter with the help of the Vuex mapGetters helper.

Before we take a dive into the components/ folder, let’s first take a look at the main.js, router.js,
and store.js files.

main.js

The main.js file integrates the vuex store and the vue-router router instance to the entire application.
The application instance renders the parent component App, and is mounted on to an element with
the id of #app:

testing/weather/src/main.js

import { createApp } from 'vue';

import App from './App.vue';

import router from './router';

import store from './store';

createApp(App).use(store).use(router).mount('#app');

router.js

The router.js file creates and exports the application router instance. The router instance object
within the file looks like this:

Unit Testing 395

testing/weather/src/router.js

const router = createRouter({

history: createWebHistory(process.env.BASE_URL),

routes: [

{

path: '/',

component: HomeContainer

},

{

path: '/weather/:id',

component: WeatherContainer,

props: true,

beforeEnter: (to, from, next) => {

const id = to.params.id;

if (

![

2459115,

468739,

2122265,

1118370,

1105779,

1398823

].includes(Number(id))

) {

next("/not-found");

} else {

next();

}

}

},

{

path: '/:pathMatch(.*)*',

component: NotFoundContainer

}

]

});

In the routes array, the HomeContainer component is set to the root URL index /. The WeatherContainer
component is displayed dynamically based on the id param of the URL route /weather/:id. To
handle this dynamic route, we’ve added a beforeEnter guard to redirect the user to a /not-found

route if the id param doesn’t match any of the possible application ids.

Unit Testing 396

Finally, the NotFoundContainer component is displayed if a URL route not present in the routes

array is used.

store.js

If we open up the store.js file, we’ll see a simple Vuex store with each store piece (state, mutations,
actions, and getters) created in separate objects.

The state object of the store initializes the weather properties that’s needed in the WeatherContainer
component:

testing/weather/src/store.js

const state = {

location: '',

weatherDescription: '',

imageAbbr: '',

weatherTemp: 0,

loading: false

};

Our store mutations specify the methods that update the state properties with the payloads provided:

testing/weather/src/store.js

const mutations = {

UPDATE_LOCATION(state, payload) {

state.location = payload;

},

UPDATE_WEATHER_DETAILS (state, payload) {

state.weatherDescription = payload.weather_state_name;

state.imageAbbr = payload.weather_state_abbr + '.png';

state.weatherTemp = payload.the_temp.toFixed();

},

LOADING_PENDING (state) {

state.loading = true;

},

LOADING_COMPLETE (state) {

state.loading = false;

}

};

The actions object has a single action labelled fetchWeather:

Unit Testing 397

testing/weather/src/store.js

const actions = {

fetchWeather ({ commit }, id) {

commit('LOADING_PENDING');

axios.get(`/api/weather`, {

params: {

id: id

}

}).then((response) => {

const weather = response.data.consolidated_weather[0];

commit('UPDATE_LOCATION', response.data.title);

commit('UPDATE_WEATHER_DETAILS', weather);

commit('LOADING_COMPLETE');

});

},

};

When the fetchWeather action is dispatched, it goes through the following steps:

• It first commits to the LOADING_PENDINGmutation which sets the state loading property to true.
This property is picked up in the view to display the loading indicator.

• A GET call is made to the server at /api/weather passing in an id param, which was provided
to the action as a payload.

• When the asynchronous call is successful, commits are made to the relevant mutations passing
in the necessary data from the response.

• It finally commits to the LOADING_COMPLETE mutation which resets the loading state to false.

The getters object creates the getter functions that return the necessary state properties:

testing/weather/src/store.js

const getters = {

location: state => state.location,

weatherDescription: state => state.weatherDescription,

imageAbbr: state => state.imageAbbr,

weatherTemp: state => state.weatherTemp,

loading: state => state.loading

};

src/components/

With a good understanding of how the application store and router has been set up, let’s survey the
component files within components/:

Unit Testing 398

$ ls src/components/

HomeContainer.vue

NotFoundContainer.vue

WeatherContainer.vue

The HomeContainer.vue and NotFoundContainer.vue component files are simple static templates
that display a single <h1> element.

The HomeContainer.vue file:

testing/weather/src/components/HomeContainer.vue

<template>

<h1 class="subtitle is-size-3">Pick a city below to see the weather!</h1>

</template>

<script>

export default {

name: 'HomeContainer',

}

</script>

And the NotFoundContainer.vue file:

testing/weather/src/components/NotFoundContainer.vue

<template>

<h1 class="subtitle is-size-3">Sorry, this route does not exist :(</h1>

</template>

<script>

export default {

name: 'NotFoundContainer',

}

</script>

The WeatherContainer.vue file sets up the weather component by rendering the weather state data
from the application store. Here are the <template> and <script> elements of the WeatherContainer.vue
file:

Unit Testing 399

testing/weather/src/components/WeatherContainer.vue
<template>

<div>

<div v-if="!loading" class="weather container">

<h1 class="subtitle weather__city">{{ location }}</h1>

<p class="weather__description">{{ weatherDescription }}</p>

<p class="weather__temperature">{{ weatherTemp }} ºC</p>

</div>

<div v-if="loading" class="loader"></div>

</div>

</template>

<script>

import { mapGetters } from 'vuex';

export default {

name: 'WeatherContainer',

props: ['id'],

computed: {

...mapGetters([

'location',

'weatherDescription',

'imageAbbr',

'weatherTemp',

'loading'

])

},

watch: {

id() {

this.fetchWeather();

}

},

created() {

this.fetchWeather();

},

methods: {

fetchWeather() {

this.$store.dispatch('fetchWeather', Number(this.id));

}

}

}

</script>

Unit Testing 400

In the <template>, we can see we have two <div> elements that are conditionally displayed
based on the loading state value in the store. When loading is false, the appropriate weather
details (<div class="weather container></div>) is shown. When loading is true, the <div

class="loader"></div> element is shown which is the large loading indicator we notice in the
middle of the screen.

The watch and created() properties of WeatherContainer both call an internal this.fetchWeather()
method when invoked:

testing/weather/src/components/WeatherContainer.vue

watch: {

id() {

this.fetchWeather();

}

},

created() {

this.fetchWeather();

},

methods: {

fetchWeather() {

this.$store.dispatch('fetchWeather', Number(this.id));

}

}

The watch property specifies a watch on the component id prop. The id prop is dynamically linked
to the route id param. So in essence, the watch states that when any changes to the route occurs,
the this.fetchWeather() method will be called.

Unit Testing 401

The created() hook invokes the same fetchWeather()method when the WeatherContainer compo-
nent loads for the first time.

The this.fetchWeather() method dispatches the fetchWeather store action while passing in the
route id as a payload.

When the WeatherContainer component loads for the first time, the created() hook is fired
and the fetchWeather action is dispatched.

As the user routes to different URLS (i.e. clicks a <router-link> to navigate to another city),
the created() hook does not fire again. This is the reason why we establish a watch option
to watch for changes in the URL.

tests/

In the tests/ directory, all test files are contained within the tests/unit/ folder. Similar to the app
in the first half of this chapter, an .eslintrc.js file is also present to predefine all Mocha testing
global variables.

$ ls tests/unit/

weather/

weather-1/

weather-2/

weather-3/

weather-complete/

weather/ is the test subfolder that we’ll be working directly from. weather-1/ to weather-complete/
represents every iteration along the way.

We have three scripts in the package.json file responsible in running the tests of our application:

testing/weather/package.json

"test": "vue-cli-service test:unit tests/unit/weather",

"test:watch": "vue-cli-service test:unit tests/unit/weather --watch",

"test:unit": "vue-cli-service test:unit"

The test script will run the tests from the folder we’ll be working from (tests/unit/weather) with
test:watch doing the same but in watch mode. test:unit will run every test from all the different
test folders.

If we take a look at the files within tests/unit/weather/, we’ll see that test files have been created
for all the components in our application.

Unit Testing 402

tests/unit/weather/

components/

HomeContainer.spec.js

NotFoundContainer.spec.js

WeatherContainer.spec.js

App.spec.js

Each component will be tested as an isolated unit. For each component, we’ll feed the necessary
inputs and assert the responses that we expect in the tests.

As a starting point, a single test has already been written in both the HomeContainer.spec.js and
NotFoundContainer.spec.js files. Since these files are simple static components with no data, our
tests just assert if the components render the expected <h1> elements.

The HomeContainer.spec.js file is set up like this:

testing/weather/tests/unit/weather/components/HomeContainer.spec.js

import HomeContainer from '@/components/HomeContainer';

import {shallowMount} from '@vue/test-utils';

import { expect } from 'chai';

describe('HomeContainer.vue', () => {

it('should display the appropriate index message', () => {

const wrapper = shallowMount(HomeContainer);

expect(

wrapper.html()

).to.contain(

'<h1 class="subtitle is-size-3">Pick a city below to see the weather!</h1>'

);

});

});

The HomeContainer component, the shallowMount()method from @vue/test-utils, and the expect
assertion from chai is imported at the top of the file. In the single existing test, we shallow render
the component and then assert the component rendered template contains the expected element.

The NotFoundContainer.spec.js file is laid out in the same way:

Unit Testing 403

testing/weather/tests/unit/weather/components/NotFoundContainer.spec.js

import NotFoundContainer from '@/components/NotFoundContainer';

import {shallowMount} from '@vue/test-utils';

import { expect } from 'chai';

describe('NotFoundContainer.vue', () => {

it('should display the appropriate not found message', () => {

const wrapper = shallowMount(NotFoundContainer);

expect(

wrapper.html()

).to.contain(

'<h1 class="subtitle is-size-3">Sorry, this route does not exist :(</h1>'

);

});

});

Let’s run our test suite to verify that our initial tests run correctly:

$ npm run test

Our initial tests pass. Let’s start writing tests for the App.spec.js file.

Unit Testing 404

App.spec.js

There’s a few things we’d want to assert for the App component:

• It correctly displays the current day’s date.
• It should display the <router-link> elements when the application is not loading.
• It should not display the <router-link> elements when the application is loading.

We’ll take each of these points and craft a test for each one.

Notice how we’re not looking to test how the <router-view> component behaves under different
route paths. The <router-view> component is a separate component and our focus is solely on how
the App component behaves with different data values.

This concept of knowing where the boundaries of our application components start and end is
important to start to develop as it will oftentimes determine the amount of extra work we’ll accrue
as we maintain our test suite. This skill becomes easier the more often we write tests.

Let’s open the App.spec.js file and import the libraries/functions we would need:

import { createStore } from "vuex";

import App from "@/App";

import { shallowMount } from "@vue/test-utils";

import { expect } from "chai";

describe("App.vue", () => {

// Our tests go here

});

We’re importing the shallowMount() method from @vue/test-utils. We’re also importing the
createStore() function from the Vuex plugin and the chai expect assertion.

Our first test is a simple assertion that the component renders the current day’s date correctly. With
that said, let’s write out the test and see how our test suite behaves:

import { createStore } from "vuex";

import App from "@/App";

import { shallowMount } from "@vue/test-utils";

import { expect } from "chai";

describe("App.vue", () => {

let wrapper;

beforeEach(() => {

Unit Testing 405

wrapper = shallowMount(App);

});

it("should display the current day's date", () => {

const formattedDate = new Date().toDateString();

expect(wrapper.html()).to.contain(formattedDate);

});

});

We shallow render the App component in the beforeEach hook. Our test simply asserts if the
components rendered html contains today’s date in the formatted state we expect.

Let’s run our suite:

$ npm run test

Like the first section of this chapter, we’ll declare npm run test with every step we take but
you can use npm run test:watch to keep the tests in watch mode.

Unit Testing 406

Our test fails. Through a series of test logs, we can see that the main message given to us is Cannot
read property 'getters' of undefined.

Our test suite currently doesn’t recognize the store instance being used in the App component. In
order to test anything within App, we need to create a mock store.

Mock Store

The only thing the App component uses from the application store is the store getters (precisely the
loading getter from the store).

In essence, when we create a mock store object, we only need to mock the loading getter in that
store object. The App component doesn’t care about any other properties in the store.

To create a mock store, we’ll first declare a store and getters variable in our test:

describe("App.vue", () => {

let wrapper;

let store;

let getters;

beforeEach(() => {

wrapper = shallowMount(App);

});

it("should display the current day's date", () => {

const formattedDate = new Date().toDateString();

expect(wrapper.html()).to.contain(formattedDate);

});

});

In the beforeEach hook, we can now create a getters object that has a loading() method within.
We’ll also setup a Vuex store that has the getters object passed in:

describe("App.vue", () => {

let wrapper;

let store;

let getters;

beforeEach(() => {

getters = {

loading: () => {

return false;

},

Unit Testing 407

};

store = createStore({

getters,

});

wrapper = shallowMount(App);

});

it("should display the current day's date", () => {

const formattedDate = new Date().toDateString();

expect(wrapper.html()).to.contain(formattedDate);

});

});

Aswe shallow render the component, we nowneed to pass in the store. The shallowMount()method
call takes arguments in the format of shallowMount(component, {options}). In the options object
of the argument, there exists a global property where we’re able to configure the Vue application
component in our test.

Since Vuex is often recognized as a separate plugin, we’ll have to declare the store within a
global.plugins¹⁶⁹ property.

In the beforeEach, our shallowMount() call can now be updated to:

describe("App.vue", () => {

let wrapper;

let store;

let getters;

beforeEach(() => {

getters = {

loading: () => {

return false;

},

};

store = createStore({

getters,

});

wrapper = shallowMount(App, {

global: {

¹⁶⁹https://vue-test-utils.vuejs.org/v2/api/#global-plugins

Unit Testing 408

plugins: [store],

},

});

});

it("should display the current day's date", () => {

const formattedDate = new Date().toDateString();

expect(wrapper.html()).to.contain(formattedDate);

});

});

Though we’ve made no changes to our actual test, running our test suite should have all our tests
pass.

$ npm run test

Though our tests all pass; we may see the following console warnings in our test logs:

Unit Testing 409

ERROR LOG: '[Vue warn]: Unknown custom element: <router-view> - did you register the\

component correctly?...'

ERROR LOG: '[Vue warn]: Unknown custom element: <router-link> - did you register the\

component correctly?...'

The error log is telling us that the router-link and router-view elements are unregisteredwithin our
Vue component under test. Similar to howwe’ve integrated a Vuex store to our component, we could
look to do the same with Vue Router to register the <router-link> and router-view components.
However, this might add a little overhead to what we aim to achieve.

We need to mock the loading getter in the Vuex store since the loading value will play a role in our
upcoming tests. We don’t necessarily need to mock a Router instance since we’re not going to test
how the router-view and router-link elements behave. Our tests will only involve asserting the
presence of the router-link elements in the component template. As a result, the path we’ll take is
to simply stub both the router-link and router-view components in our tests.

We’ll stub router-link and router-view by introducing a stubs¹⁷⁰ property in the global options
object of our shallowMount method.

testing/weather/tests/unit/weather-1/App.spec.js

wrapper = shallowMount(App, {

global: {

plugins: [store],

stubs: ['router-link', 'router-view']

},

});

The components stubbed with the stubs option will return a stubbed version along the lines of
<${component name}-stub>. At this moment, we won’t see any console warnings in our test logs.

¹⁷⁰https://vue-test-utils.vuejs.org/v2/api/#global-stubs

Unit Testing 410

Awesome! We can nowmove onwards to creating tests that actually depend upon the loading getter
value.

The second test we’ll create will assert that when the application is not loading, the footer
<router-link> elements should be displayed. We’ll create this test as a sibling to the previous test:

describe("App.vue", () => {

// ...

it("should display the current day's date", () => {

// ...

});

it("should display the footer links when application is not loading", () => {

// assertion for the presence of footer links

});

});

Our loading getter currently returns a value of false so our test is already prepared. To create our
test, we can find the footer links wrapper and assert whether this wrapper element contains the
<router-link-stub> elements we expect. Remember, we’re stubbing the <router-link> component
to be <router-link-stub> in our tests.

Unit Testing 411

it("should display the footer links when application is not loading", () => {

const footerLinks = wrapper.find(".app__cities");

expect(footerLinks.html()).to.contain(

'<router-link-stub to="/weather/2459115"></router-link-stub>'

);

expect(footerLinks.html()).to.contain(

'<router-link-stub to="/weather/468739"></router-link-stub>'

);

expect(footerLinks.html()).to.contain(

'<router-link-stub to="/weather/2122265"></router-link-stub>'

);

expect(footerLinks.html()).to.contain(

'<router-link-stub to="/weather/1118370"></router-link-stub>'

);

expect(footerLinks.html()).to.contain(

'<router-link-stub to="/weather/1105779"></router-link-stub>'

);

expect(footerLinks.html()).to.contain(

'<router-link-stub to="/weather/1398823"></router-link-stub>'

);

});

Since our router-link component has been stubbed, the text content within each
<router-link /> tag may not be rendered in our test. This is why our assertions above
simply assert the presence of the <router-link-stub /> elements without determining
the text content that is to be rendered in each element.

Though we can abbreviate the test by only asserting the presence of one (or few) stubbed
<router-link> elements, we’re being explicit by asserting the presence of every single link.

Before we run our test suite, let’s create the test in the opposite scenario - asserting that the footer
links are not displayed when the application is loading.

Unit Testing 412

describe("App.vue", () => {

// ...

it("should display the current day's date", () => {

// ...

});

it("should display the footer links when application is not loading", () => {

// ...

});

it("should not display footer links when application is loading", () => {

// assertion for the absence of footer links

});

});

In this test, we need to assert the component behaviour when the store loading getter value is true.
However, in our beforeEach hook, we’ve simply always assigned loading to return false.

There are a fewways we can handle passing different loading state values to separate tests. A simple
way to pass different values will be removing the beforeEach hook and using a method of our own,
called setUpWrapper that takes a loading parameter and returns this parameter in the loading getter.

To see how our expectations can work, let’s change the beforeEach to wrap this functionality into
a setUpWrapper function instead:

describe("App.vue", () => {

let wrapper;

let store;

let getters;

const setUpWrapper = (loading) => {

getters = {

loading: () => {

return loading;

},

};

store = createStore({

getters,

});

wrapper = shallowMount(App, {

global: {

Unit Testing 413

plugins: [store],

stubs: ["router-link", "router-view"],

},

});

};

// ...

});

Unlike the beforeEach hook, the setUpWrapper method would not automatically run prior to each
test. We’ll have to invoke the method in the beginning of each test.

Let’s call setUpWrapper while passing in a boolean of false in the beginning of the first two tests.
In our third test, we’ll call setUpWrapper(true):

describe("App.vue", () => {

//..

it("should display the current day's date", () => {

setUpWrapper(false);

// ...

});

it("should display the footer links when application is not loading", () => {

setUpWrapper(false);

// ...

});

it("should not display footer links when application is loading", () => {

setUpWrapper(true);

});

});

Now in our third test, we can test for the absence of the footer links. Since the parent <div /> element
of the iterated link elements is not shown when the application is loading, we’ll assert that the entire
wrapper does not contain this <div /> element.

Unit Testing 414

testing/weather/tests/unit/weather-2/App.spec.js

it('should not display footer links when application is loading', () => {

setUpWrapper(true);

const footerLinks = wrapper.find('.app__cities');

expect(wrapper).to.not.contain(footerLinks);

});

Let’s run our test suite!

$ npm run test

Our tests for the App component pass.

We’ve created assertions and expectations on how the App component should behave in slightly
different conditions (when the loading getter is true or false).

For the purpose of these tests, we’re not concerned with how the getters are established or what
the store even looks like. We just need to know that our component is rendered correctly depending
on what the loading getter returns. In essence, we’re testing the App component in isolation.

We’ll be using this same thinking process as we create tests for the WeatherContainer component:

Unit Testing 415

WeatherContainer.spec.js

Let’s list the expectations we have for the WeatherContainer component:

• It should display the appropriate weather content when the loading getter is equal to false.
• It should display the loading indicator when the loading getter is equal to true.
• It should fire the fetchWeather action from the store, when the component is created.
• It should fire the fetchWeather action from the store, when the URL route changes.

Each of these points can be asserted in a test of its own. Let’s write these tests.

Since the WeatherContainer component uses both store actions and getters, we’re going to need
to mock a Vuex store that has mock getters and actions in the test file. Let’s create this mock
store in a setUpWrapper function that takes a loading argument, similar to how we wrote one in
App.spec.js.

Here’s our entire starting point for WeatherContainer.spec.js:

import { createStore } from "vuex";

import WeatherContainer from "@/components/WeatherContainer";

import { shallowMount } from "@vue/test-utils";

import { expect } from "chai";

import sinon from "sinon";

describe("WeatherContainer.vue", () => {

let wrapper;

let getters;

let actions;

let store;

const setUpWrapper = (loading) => {

getters = {

location: () => "New York",

weatherDescription: () => "Light Cloud",

imageAbbr: () => "lc.png",

weatherTemp: () => -10.0,

loading: () => loading,

};

actions = {

fetchWeather: sinon.stub(),

};

Unit Testing 416

store = createStore({

getters,

actions,

});

wrapper = shallowMount(WeatherContainer, {

global: {

plugins: [store],

},

});

};

});

Let’s step through what we’re doing above step-by-step:

We’re importing the WeatherContainer component, the necessary test helpermethods, the createStore()
function from Vuex, sinon¹⁷¹, and the expect chai assertion at the top of the file. We’ve declared the
variables we’ll be using in the setUpWrapper function (wrapper, getters, etc.) in the beginning of
the test describe block.

We’ve created a setUpWrapper function that takes a loading argument. Before we shallow render
the wrapper, we’ve set up a store that consists of a mock getters and actions objects. The methods
in the mock getters object return data that we can expect from the MetaWeather api call.

In the mock actions object, we’re using sinon.stub() to specify an anonymous stub function for
the fetchWeather store action.

Sinon¹⁷² is a testing library that gives us the ability to spy on, stub, and mock external dependencies
and functions within our code. The benefits to using Sinon comes from reducing effort by allowing
us to test what we only need to test, and allowing Sinon to mock any external dependency (Ajax
requests, timeouts, database dependencies, etc.).

In our case, we’re using sinon.stub() to create a mock function for fetchWeather since we’ll only
assert whether the action was called in certain scenarios. We’re not concerned with what the
action actually does, but only whether the WeatherContainer component calls the action when we
expect it to.

Though we won’t have the need to do so in this case, the Sinon stubs¹⁷³ documentation
highlight several ways to manipulate how a function behaves in a test.

Finally, we’ve wired the store as part of the global.plugins value of the options within our
shallowMount() method call. We can now begin to write our tests.

¹⁷¹(http://sinonjs.org/)
¹⁷²http://sinonjs.org/
¹⁷³http://sinonjs.org/releases/v1.17.7/stubs/

Unit Testing 417

Our first two tests will simply assert whether the component renders the expected content when the
application is or isn’t loading. We’ll create these tests side-by-side:

describe("WeatherContainer.vue", () => {

// ...

it("should render the correct content when the app is loading", () => {

// assertion for rendering correct weather content when not loading

});

it("should render the correct content when the app is not loading", () => {

// assertion for rendering the loading indicator when loading

});

});

We’ll declare setUpWrapper(true) in the beginning of the first test and setUpWrapper(false) in the
beginning of the second to provide different loading getter values to each test. Like we’ve done so
far, we’ll use the html() wrapper function to retrieve the rendered HTML and assert whether the
template contains the content we expect:

testing/weather/tests/unit/weather-3/components/WeatherContainer.spec.js

it('should render the correct content when the app is loading', () => {

setUpWrapper(true);

expect(

wrapper.html()

).to.contain('<div class="loader"></div>');

expect(

wrapper.html()

).to.not.contain('<h1 class="subtitle weather__city">New York</h1>');

expect(

wrapper.html()

).to.not.contain('<p class="weather__description">Light Cloud</p>');

expect(

wrapper.html()

).to.not.contain('<p class="weather__temperature">-10 ºC</p></div>');

});

// ...

it('should render the correct content when the app is not loading', () => {

setUpWrapper(false);

expect(

wrapper.html()

Unit Testing 418

).to.contain('<h1 class="subtitle weather__city">New York</h1>');

expect(

wrapper.html()

).to.contain('<p class="weather__description">Light Cloud</p>');

expect(

wrapper.html()

).to.contain('<p class="weather__temperature">-10 ºC</p></div>');

expect(

wrapper.html()

).to.not.contain('<div class="loader"></div>');

});

When the application is loading, we assert the presence of the only element that exists in that case
- the loading indicator, and the absence of any elements that are responsible for displaying weather
details.

When the application finishes loading, we expect to see the rendered content that displays the
weather details from our mock getters. In addition, we expect that no loading indicator is displayed
in this scenario.

fetchWeather

Now that we’ve created tests for how our component renders content appropriately, we can begin
to test whether the fetchWeather store action gets fired when we want it to.

The first test we’ll write in this case is assert that the fetchWeather action is called once when the ap-
plication loads. If we remember, we dispatch the action in the created hook of the WeatherContainer
component:

import { mapGetters } from "vuex";

export default {

name: "WeatherContainer",

props: ["id"],

// ...,

created() {

this.fetchWeather();

},

methods: {

fetchWeather() {

this.$store.dispatch("fetchWeather", Number(this.id));

},

},

};

Unit Testing 419

So we’ll want to test this actually occurs. In WeatherContainer.spec.js, we’ll create the “should
call the fetchWeather action once when created” test as a sibling to the previous tests:

describe("WeatherContainer.vue", () => {

// ...

it('should call the "fetchWeather" action once when created', () => {

// assertion that fetchWeather is called once

});

});

To assert the number of times the action is called, we’ll use Sinon-Chai specific assertions¹⁷⁴. To be
able to use a Sinon-Chai assertion, we’ll need to import the chai and sinon-chai libraries as well
and declare chai.use(sinonChai). Since these libraries are already installed into our application, all
chai, sinon, and sinon-chai imports will look the following:

...

import chai from 'chai';

import sinon from 'sinon';

import sinonChai from 'sinon-chai';

import { expect } from 'chai';

chai.use(sinonChai);

When we create the wrapper, the WeatherContainer component is shallow rendered (i.e. created) so
the test is already prepared at that point. Our test will involve calling setUpWrapper() and asserting
whether the fetchWeather action is called once, with the help of Sinon-Chai’s calledOnce method.

It won’t matter what boolean we pass in the setUpWrapper call since the action is dispatched
regardless of the value of the loading getter:

testing/weather/tests/unit/weather-complete/components/WeatherContainer.spec.js

it('should call the "fetchWeather" action once when created', () => {

setUpWrapper(false);

expect(actions.fetchWeather).to.have.been.calledOnce;

});

Before we run our test suite, let’s introduce the last test. The only other test we need to make
is asserting that the fetchWeather action is called when the id prop of the component changes
(i.e. when the route changes). We need to watch for this event because we’ve established the store
dispatcher to occur in a watch id property.

¹⁷⁴http://www.chaijs.com/plugins/sinon-chai/

Unit Testing 420

When we declared our route, we used the props option to specify how the id param of the URL can
be accessed in the WeatherContainer component. We can see this declaration in the routes array of
the router instance, in the src/router.js file:

routes: [

// ...,

{

path: "/weather/:id",

component: WeatherContainer,

props: true,

beforeEnter: (to, from, next) => {

// ...

},

},

// ...

];

This gave us the ability to simply watch the id prop within the WeatherContainer component, with
which we’re able to see in the src/component/WeatherContainer.vue file:

<script>

import { mapGetters } from "vuex";

export default {

name: "WeatherContainer",

props: ["id"],

// ...,

watch: {

id() {

this.fetchWeather();

},

},

// ...,

methods: {

fetchWeather() {

this.$store.dispatch("fetchWeather", Number(this.id));

},

},

};

</script>

This separation greatly simplifies testing since the component is now decoupled from the router.
We just need to test the fetchWeather action is called when the id prop changes.

Unit Testing 421

Let’s create the test for this as a sibling to the other tests:

describe("WeatherContainer.vue", () => {

// ...

it('should also call the "fetchWeather" action when "id" is changed', () => {

// assertion that fetchWeather action is also called when id prop is changed

});

});

To test that the fetchWeather action is also called when the id prop is changed, we can simply assert
that the fetchWeather action will be called twice in total; once for when the component is rendered,
and the second time when the id prop is manipulated.

To change the component’s id data value, we can use the wrapper’s setData() function to force
update the wrapper vm data object. Our new test will be laid out like so:

it('should also call the "fetchWeather" action when "id" is changed', () => {

setUpWrapper(false);

wrapper.setData({ id: "1398823" });

expect(actions.fetchWeather).to.have.been.calledTwice;

});

It doesn’t matter what value we use to update id since the watch call gets fired as long as the id

prop has changed. We’ve simply used the id string value for Lagos, Nigeria above. Though the
above works just fine, we might be presented with a warning message that states that we should
Avoid mutating a prop directly since the value will be overwritten whenever the parent

component re-renders.

Unit Testing 422

The abovemessage is a genuine Vuewarning since we should usually always avoid directlymutating
prop values¹⁷⁵ in Vue components. However, it would be useful if we could directly change the id
prop in out test to mimic a change in URL route. There’s a few ways we can go about doing this
without triggering the console warning. One way is to directly trigger the watcher without explicitly
changing the id prop value. We can achieve this, with the following:

¹⁷⁵https://vuejs.org/v2/guide/components-props.html#One-Way-Data-Flow

Unit Testing 423

testing/weather/tests/unit/weather-complete/components/WeatherContainer.spec.js

it('should also call the "fetchWeather" action when "id" is changed', () => {

setUpWrapper(false);

wrapper.vm.$options.watch.id.call(wrapper.vm);

expect(actions.fetchWeather).to.have.been.calledTwice;

});

By running the call() method within vm.$options.watch.id, we’re able to trigger the watcher
without directly mutating the id prop. With this last established test, here’s a summary of all the
tests we’ve written for WeatherContainer.spec.js:

testing/weather/tests/unit/weather-complete/components/WeatherContainer.spec.js

it('should render the correct content when the app is loading', () => {

setUpWrapper(true);

expect(

wrapper.html()

).to.contain('<div class="loader"></div>');

expect(

wrapper.html()

).to.not.contain('<h1 class="subtitle weather__city">New York</h1>');

expect(

wrapper.html()

).to.not.contain('<p class="weather__description">Light Cloud</p>');

expect(

wrapper.html()

).to.not.contain('<p class="weather__temperature">-10 ºC</p></div>');

});

// ...

it('should render the correct content when the app is not loading', () => {

setUpWrapper(false);

expect(

wrapper.html()

).to.contain('<h1 class="subtitle weather__city">New York</h1>');

expect(

wrapper.html()

).to.contain('<p class="weather__description">Light Cloud</p>');

expect(

wrapper.html()

).to.contain('<p class="weather__temperature">-10 ºC</p></div>');

Unit Testing 424

expect(

wrapper.html()

).to.not.contain('<div class="loader"></div>');

});

// ...

it('should call the "fetchWeather" action once when created', () => {

setUpWrapper(false);

expect(actions.fetchWeather).to.have.been.calledOnce;

});

// ...

it('should also call the "fetchWeather" action when "id" is changed', () => {

setUpWrapper(false);

wrapper.vm.$options.watch.id.call(wrapper.vm);

expect(actions.fetchWeather).to.have.been.calledTwice;

});

Let’s verify that all our tests pass.

Try it out

Save WeatherContainer.spec.js and let’s run the test suite:

$ npm run test

Unit Testing 425

We see that everything passes!

The tests for WeatherContainer involved asserting whether the correct content was rendered in the
template and whether the fetchWeather action was called when we expect it.

We don’t care about how the store looks like or what the actions inherently do. We just need to
verify the actions are fired at the right times and the template renders the right content from the
store.

We’ve covered how to test how each of our application’s components work under different
scenarios/situations. We’ve tested each component in isolation by feeding the necessary inputs and
asserting the responses that we expect in each of the tests.

As we’ve seen, testing Vue components require us to traverse and select elements on the rendered
DOM for us to make our assertions. This case highlights the benefits of using the vue-test-utils
library. Though we won’t be writing any more tests, we’ll investigate and discuss how tests can be
written for the pieces in a Vuex store.

Store

Though the Vuex store itself can be tested in isolation, writing tests for the store is different. Unlike
Vue components, we’re now not concerned with rendering and DOM manipulation.

Unit Testing 426

In the Vuex docs¹⁷⁶, it’s specified that mutations and actions of a Vuex store are the main pieces of
a store that should often be tested.

Mutations

Mutations are the most straightforward functions to test in the Vuex store. mutations are just simple
methods that rely on the parameters given.

For example let’s look at the UPDATE_LOCATION mutation in the Vuex store of the weather app. It
simply assigns the location property in state to the value of the payload provided.

UPDATE_LOCATION(state, payload) {

state.location = payload;

}

We can create a test with a mock state object and assert that the location of the object is updated
with the payload provided:

// import the mutation

const updateLocation = mutations.UPDATE_LOCATION;

// test the mutation

it("UPDATE_LOCATION", () => {

const state = { location: "" };

updateLocation(state, "New York");

expect(state.location).to.equal("New York");

});

In this example, we’re directly importing the specific mutation we want to test, UPDATE_LOCATION.
In the test, we create a mock state object, call the mutation on that object, and assert that the object
has updated. All mutation tests are as similar and straightforward as this.

Actions

Creating tests for actions involve asserting whether the expected mutations, with the correct
payloads, have been committed. For basic actions this is simple.

However, if an external API call is made within an action, it’s not as straightforward. In this case,
testing actions will involve mocking the API call made with a stub, resolving the API promise, and
then asserting that the expected mutations are called.

Let’s provide an example for the fetchWeather action in our application:

¹⁷⁶https://next.vuex.vuejs.org/guide/testing.html

Unit Testing 427

fetchWeather ({ commit }, id) {

commit('LOADING_PENDING');

axios.get(`/api/weather`, {

params: {

id: id

}

}).then((response) => {

const weather = response.data.consolidated_weather[0];

commit('UPDATE_LOCATION', response.data.title);

commit('UPDATE_WEATHER_DETAILS', weather);

commit('LOADING_COMPLETE');

});

}

The Testing Actions¹⁷⁷ section of the Vuex docs specifies a helper method to test an async action.
Here is a summarized version of this helper method:

const testAction = (action, expectedMutations, done) => {

let count = 0;

const commit = (type) => {

const mutation = expectedMutations[count];

try {

expect(mutation.type).to.equal(type);

} catch (error) {

assert.fail(mutation.type, type, error.message);

done();

}

count++;

if (count >= expectedMutations.length) {

done();

}

};

action({ commit });

};

This testAction helper method takes the expected action to test, an array of expectedmutations, and
the done callback as the helper arguments. A mock commit function is set up which iterates over the

¹⁷⁷https://next.vuex.vuejs.org/guide/testing.html#testing-actions

Unit Testing 428

number of mutations within the expectedMutations array. For every mutation the function asserts
the expectation that the mutation.type is equal to the type specified within the actual action. If not,
assert.fail()¹⁷⁸ is fired which fails the test and generates the error message as to why.

A test for fetchWeather would involve importing the store actions object and the axios library,
stubbing the axios.get call to resolve successfully, and using the testAction helper to assert the
mutations we expect the action to commit to:

import { actions } from "@/store";

import axios from "axios";

const testAction = (action, expectedMutations, done) => {

// testAction helper

};

describe("actions", () => {

it("fetchWeather", (done) => {

sinon

.stub(axios, "get")

.resolves

// expected payload

();

testAction(

actions.fetchWeather,

[

{ type: "LOADING_PENDING" },

{ type: "UPDATE_LOCATION" },

{ type: "UPDATE_WEATHER_DETAILS" },

{ type: "LOADING_COMPLETE" },

],

() => {

done();

}

);

});

});

In the example above, the testAction helper is called with the fetchWeather action, the array
of mutations we expect, and a callback function that when invoked tells our test suite that our
asynchronous logic is complete.

¹⁷⁸http://chaijs.com/api/assert/#method_fail

Unit Testing 429

This is a simple way of how to test Vuex actions and may not be a fully acceptable test for a
production ready application. This is because:

• Our example test only involves asserting whether the types of the expected mutations have
been called. We should also be asserting whether the correct payloads are passed to committed
mutations.

• The api call within the fetchWeather store action doesn’t have a catch() clause to handle what
happens when the call fails. For strong testing, we would also need to create accompanying
tests that handle the failure cases of the API request.

The Vuex docs¹⁷⁹ provides amore detailed example for how to test actions in amore effectivemanner.

Getters

Store getters should be tested if complex manipulation is performed prior to returning computed
store state. These tests are fairly straightforward since assertions will only be made as to whether
the intended computations are done correctly.

In our weather application, the store getters are simple functions that directly return store values:

testing/weather/src/store.js

const getters = {

location: state => state.location,

weatherDescription: state => state.weatherDescription,

imageAbbr: state => state.imageAbbr,

weatherTemp: state => state.weatherTemp,

loading: state => state.loading

};

As a result, tests for our application store getters would not really be needed. The Vuex docs does
give an example of testing a getter that performs some calculation¹⁸⁰.

Further reading

In this chapter, we:

1. Demystified JavaScript testing frameworks by building from the ground up.
2. Introduced Mocha, a testing framework that allows us to categorize our tests in describe and

it blocks.
¹⁷⁹https://next.vuex.vuejs.org/guide/testing.html#testing-actions
¹⁸⁰https://next.vuex.vuejs.org/guide/testing.html#testing-getters

Unit Testing 430

3. Introduced Chai, an assertion library which gives us handy features like expect.
4. Learned how to organize and create tests in a behavior-driven style.
5. Introduced vue-test-utils, the official Vue library for working with Vue components in a

testing environment.

Armed with this knowledge, we’re now prepared to isolate Vue components in a variety of different
contexts and effectively write unit tests for them.

A few resources outside of this chapter will aid you greatly as you compose unit tests:

vue-test-utils¹⁸¹

We explored a few methods for traversing the virtual DOM (e.g. find()) and making assertions on
the virtual DOM’s contents. vue-test-utils has many more methods/options that you may find
useful:

• setValue¹⁸²: an option that helps directly set a value to DOM elements.
• emitted()¹⁸³: a wrapper method that returns an object containing the custom events previously
emitted by the wrapper.

• findComponent¹⁸⁴: a wrapper method that finds a Vue component instance and returns a
wrapper when found.

Chai¹⁸⁵

The chai docs provide, in detail, the various assertions that can be made. We’ve used some handy
matchers in this chapter, like contain and equal. Here are a few more examples:

• .exists¹⁸⁶: asserts that an item is neither undefined or null.
• .isOk¹⁸⁷: asserts that an item is truthy.
• .property¹⁸⁸: asserts that an item contains a particular property.

Jest¹⁸⁹

Though we’ve opted to use Mocha + Chai in this chapter, Jest is another testing framework that’s
widely used in the developer commmunity. Jest often comes as a testing framework that includes
an assertion library and a suite of other testing tools (e.g. mocking capability, snapshot testing, etc.)
which helps avoid the need to install these utilities separately.

¹⁸¹https://vue-test-utils.vuejs.org/v2/
¹⁸²https://vue-test-utils.vuejs.org/v2/api/#setvalue
¹⁸³https://vue-test-utils.vuejs.org/v2/api/#emitted
¹⁸⁴https://vue-test-utils.vuejs.org/v2/api/#findcomponent
¹⁸⁵http://facebook.github.io/jest/docs/api.html
¹⁸⁶http://chaijs.com/api/assert/#exists
¹⁸⁷http://chaijs.com/api/assert/#method_isok
¹⁸⁸http://www.chaijs.com/api/bdd/#method_property
¹⁸⁹https://jestjs.io/

Composition API
We’ve covered a wide range of topics on how to build applications with Vue.js. In the first half
of the book, we saw how we can handle user interaction, work with single-file components,
understand state management, and understand how custom events work.

We then moved towards more advanced concepts that we’ll often see used in larger production
applications. This included how to integrate Vuex to a server-persisted app, manage rich forms,
build a multi-page app that uses client-side routing, and finally how unit tests can be written with
Vue’s official unit testing library.

With this chapter, we’re going to introduce a new and more advanced way of writing Vue
applications. We’re going to walk through and see how we can build Vue applications with Vue’s
Composition API.

Why do need the Composition API?

We’ve come to understand how Vue helps us build user interfaces in an approachable, versatile, and
performant manner. Vue is easy to get started with and scales considerably well to build complex
user interaction.

We’ve learned how Vue provides us the capability to build components which are self-contained
modules of markup (HTML), logic (JS), and styles (CSS). Reusability and maintainability are some
of the main reasons why components are especially important.

A headline feature of Vue is single-file components, components where the HTML/CSS and JS of
a component are all defined within a single .vue file.

appendix/components/MyComponent.vue

<template>

<h2>{{ getGreeting }}</h2>

<p>This is the Hello World component.</p>

</template>

<script>

export default {

name: 'MyComponent',

data () {

return {

reversedGreeting: '!dlrow olleH'

Composition API 432

}

},

computed: {

getGreeting() {

return this.reversedGreeting.split("").reverse().join("");

}

}

}

</script>

<style lang="scss" scoped>

h2 {

width: 100%;

text-align: center;

}

</style>

As more and more developers have begun to use Vue to build considerably large applications (i.e.
applications that have several hundred or more components), developers and the Vue community
have noted how complex components have become hard to maintain and reason about over time.
The main cause of this is how Vue’s existing APIs constrain us to organize component logic within
specific options.

<!-- Template -->

<script>

export default {

name: "MyComponent",

props: {

// props

},

data() {

// data

},

computed: {

// computed properties

},

watch: {

// properties to watch

},

methods: {

// methods

Composition API 433

},

created() {

// lifecyle methods like created

},

// ...

};

</script>

<!-- Styles -->

Being required to define component logic within specific options can make large components hard
to read and understand, and can make it very difficult to extract and reuse common logic between
components.

This is the primary motivation behind the Composition API¹⁹⁰, a feature introduced in Vue v3.

What is the Composition API?

It may be hard to recognize the benefits of what the Composition API offers/supports at
first glance. Things should start to make more sense as we proceed through the chapter
and build our app.

With that being said, the benefits of using the Composition API is often best understood
when working within considerably large applications. Though the app we’ll work on is
fairly small, we’ll do our best to illustrate how the Composition API helps make creating
reusable component logic easier.

setup()

The Composition API can be explained as an API that exposes Vue’s core capabilities as
standalone functions. The one place we’re expected to utilize these standalone functions in a
component is a single setup() option.

¹⁹⁰https://v3.vuejs.org/api/composition-api.html#setup

Composition API 434

<!-- Template -->

<script>

export default {

name: "MyComponent",

setup() {

// the setup function

},

};

</script>

<!-- Styles -->

The setup() function is executed before a component is created and when the props of the
component are available. The setup() function takes two arguments¹⁹¹:

• props: Data that is passed down from a parent component.
• context: An object that exposes three different component properties - attributes, slots, and
emit events.

<!-- Template -->

<script>

export default {

name: "MyComponent",

setup(props, context) {

// allows us to access props and context

},

};

</script>

<!-- Styles -->

At the end of the setup() function, we return an object where the properties of the object can then
be accessed in the component template.

¹⁹¹https://v3.vuejs.org/guide/composition-api-setup.html#arguments

Composition API 435

<template>

<h2>{{ getGreeting }}</h2>

<p>This is the Hello World component.</p>

</template>

<script>

export default {

name: "MyComponent",

setup() {

return {

getGreeting: "Hello World!", // this is a non-reactive value

};

},

};

</script>

<!-- Styles -->

Almost everything we’d want to handle in the JS of Vue component, we now can import functions
to help us achieve what we would like to do!

ref()

In the very first chapter of the book, we highlighted how Vue allows us to handle state/data in a
reactive manner.

Reactive state is one of the key differences that makes Vue unique. State (i.e. data) management is
often intuitive and easy to understand since modifying state often directly causes the view to update.
Traditionally, we would use the data() option to establish reactive data in a component:

<template>

<h2>{{ getGreeting }}</h2>

<p>This is the Hello World component.</p>

</template>

<script>

export default {

name: "MyComponent",

data() {

return {

getGreeting: "Hello World!",

};

},

Composition API 436

};

</script>

<!-- Styles -->

To achieve the same for standalone primitive values in the compositional setting, we can use the
ref() function¹⁹² like the following:

<template>

<h2>{{ getGreeting }}</h2>

<p>This is the Hello World component.</p>

</template>

<script>

// import the ref function

import { ref } from "vue";

export default {

name: "MyComponent",

setup() {

// create reactive ref property

const getGreeting = ref("Hello World!");

return {

getGreeting, // this is a reactive value

};

},

};

</script>

<!-- Styles -->

ref() accepts a single primitive value (e.g. string, number, etc.) and returns a reactive/mutable object.
When the ref object is returned in the setup() function, the value of the ref can be accessed directly
in the template.

However, if we were interested in accessing the value of the ref object within the setup() function,
we’ll access it from the property .value:

¹⁹²https://v3.vuejs.org/guide/reactivity-fundamentals.html#creating-standalone-reactive-values-as-refs

Composition API 437

<template>

<h2>{{ getGreeting }}</h2>

<p>This is the Hello World component.</p>

</template>

<script>

import { ref } from "vue";

export default {

name: "MyComponent",

setup() {

const getGreeting = ref("Hello World!");

// access the value of the ref in setup() with .value

console.log(getGreeting.value);

return {

getGreeting,

};

},

};

</script>

<!-- Styles -->

If we had a method in the template that when triggered would change the ref getGreeting value, the
template would automatically update to reflect the change. With the options API, we had to define
methods within a methods() property. With the composition API, we’re able to define methods as
we would define normal JavaScript methods.

Here’s an example of having a method responsible for changing the getGreeting ref value in the
template. Note how we have to return both the getGreeting ref object and the method to have them
both be available in the template.

<template>

<h2>{{ getGreeting }}</h2>

<button @click="updateGreeting">Update greeting!</button>

</template>

<script>

import { ref } from "vue";

export default {

Composition API 438

name: "MyComponent",

setup() {

const getGreeting = ref("Hello World!");

// method responsible for updating the getGreeting ref value

const updateGreeting = () => {

return (getGreeting.value = "Welcome to the app!");

};

return {

getGreeting,

updateGreeting,

};

},

};

</script>

<!-- Styles -->

The Composition API focuses solely on how the options/JS of a component can be written
differently. How we define template attributes, access data properties in the template, and
define the styles of a component remains unchanged.

reactive()

The ref() function allows us to define reactivity in standalone values. If we wanted to establish
reactivity for an object, we would instead use the reactive()¹⁹³ function available to us.

Here’s an example of using the reactive() function to define a reactive object where both properties
are accessed in the template.

¹⁹³https://v3.vuejs.org/guide/reactivity-fundamentals.html#declaring-reactive-state

Composition API 439

<template>

<h2>{{ greeting.message }}</h2>

<p>{{ greeting.description }}</p>

</template>

<script>

// import the reactive function

import { reactive } from "vue";

export default {

name: "MyComponent",

setup() {

// define reactive object

const greeting = reactive({

message: "Hello World!",

description: "Welcome to the app!",

});

// return reactive object for it to be available in the template

return {

greeting,

};

},

};

</script>

<!-- Styles -->

Unlike the objects returned from the ref() function, we can directly update the properties in a
reactive object without having to access a .value property.

<template>

<h2>{{ greeting.message }}</h2>

<p>{{ greeting.description }}</p>

<button @click="updateGreeting">Update greeting!</button>

</template>

<script>

import { reactive } from "vue";

export default {

name: "MyComponent",

setup() {

Composition API 440

const greeting = reactive({

message: "Hello World!",

description: "Welcome to the app!",

});

// method responsible for updating the getGreeting ref value

const updateGreeting = () => {

greeting.message = "Hello Hello!";

greeting.description = "Welcome Welcome!";

};

return {

greeting,

updateGreeting,

};

},

};

</script>

<!-- Styles -->

What’s the difference between ref() and reactive()?

ref() and reactive() lead to the same outcome with minor differences between them.

1. ref() is intended to be used to create reactivity of a single primitive value, while reactive()

is intended to be used to create reactivity of a JavaScript object.

2. The object created in a reactive() function cannot be destructured or spread. This would
lead the consumer (i.e. component) to lose the reference to the returned reactive object.

<template>

<h2>{{ greeting.message }}</h2>

<p>{{ greeting.description }}</p>

</template>

<script>

import { reactive } from "vue";

export default {

name: "MyComponent",

setup() {

const greeting = reactive({

Composition API 441

message: "Hello World!",

description: "Welcome to the app!",

});

// if we destructure these values, these values lose reactivity!

const { message, description } = greeting;

// if we use spread operator to return values, we lose reactivity!

return {

...greeting,

};

},

};

</script>

<!-- Styles -->

If one wanted to use the reactive() function and destructure or spread the values of the reactive
object created, they could achieve this by using the toRefs()¹⁹⁴ function which converts a reactive
object to a plain object where every property is a reactive ref value.

<template>

<h2>{{ greeting.message }}</h2>

<p>{{ greeting.description }}</p>

</template>

<script>

import { reactive, toRefs } from "vue";

export default {

name: "MyComponent",

setup() {

const greeting = reactive({

message: "Hello World!",

description: "Welcome to the app!",

});

// create object where properties are corresponding ref values

const greetingRefs = toRefs(greeting);

// these properties are now reactive refs where

¹⁹⁴https://v3.vuejs.org/api/refs-api.html#torefs

Composition API 442

// value can be accessed with .value in the setup() function!

const { message, description } = greetingRefs;

// we can use the spread operator and the properties returned

// are reactive!

return {

...greetingRefs,

};

},

};

</script>

<!-- Styles -->

The ref vs. reactive¹⁹⁵ section of the original Composition API RFC documentation highlights two
styles one can adopt in their app.

1. Use ref() to declare reactive values for standalone properties (i.e. a string, a number, etc.) and
reactive() to declare reactive objects.

2. Alternatively, use reactive() whenever you can but remember to use the toRefs() helper
function to return values from composition functions.

Other component functions

Practically everything else we’re familiar with when declaring the options of a component, we can
find a suitable function alternative.

computed()

We can directly import and use a computed() functionwhich takes a function and returns a computed
value.

¹⁹⁵https://composition-api.vuejs.org/#ref-vs-reactive

Composition API 443

<template>

<h2>{{ getGreeting }}</h2>

<p>This is the Hello World component.</p>

</template>

<script>

import { ref, computed } from "vue";

export default {

name: "MyComponent",

setup() {

const reversedGreeting = ref("!dlrow olleH");

// declare getGreeting computed value

const getGreeting = computed(() => {

return reversedGreeting.value.split("").reverse().join("");

});

return {

getGreeting,

};

},

};

</script>

<!-- Styles -->

Lifecycle Hooks

We can use the onMounted(), onUpdated(), and onUnmounted() functions that all receive a callback
to help run functionality at separate lifecycle instances of a component.

<template>

<h2>{{ greeting }}</h2>

<p>This is the Hello World component.</p>

</template>

<script>

import { onMounted, onUpdated, onUnmounted } from "vue";

export default {

name: "MyComponent",

Composition API 444

setup() {

const greeting = ref("Hello World!");

onMounted(() => console.log("Component mounted!"));

onUpdated(() => console.log("Component updated!"));

onUnmounted(() => console.log("Component unmounted!"));

return {

greeting,

};

},

};

</script>

<!-- Styles -->

A few things to keep in mind when using lifecycle methods within the setup() function.

1. With Vue 3, the destroyed() and beforeDestroy() lifecycle methods no longer exist and have
now been renamed to unmounted() and beforeUnmount() respectively.

2. There exists a few new lifecycle Hooks in Vue 3 such as errorCaptured(), renderTracked()
and renderTriggered(). The Vue API - Lifecycle hooks¹⁹⁶ documentation highlights in more
details what these new methods provide.

3. When using the setup() function, one does not need to declare the beforeCreate() or
created() lifecycle methods. This is because the setup() function is run before the component
is created and any functionality that needs to be done at this point can simply be declared in
the setup() function itself.

Composable functions

At this moment, one might still wonder how the setup() function offers any advantage to
development since it appears that it just requires us to declare component options within a single
function.

One of the fantastic benefits of adopting the composition API is the capability to extract and reuse
shared logic between components. This is driven by the fact that we can simply declare functions
of our own that use Vue’s globally available composition functions and have our functions be easily
used in multiple components to achieve the same outcome.

¹⁹⁶https://v3.vuejs.org/api/options-lifecycle-hooks.html#lifecycle-hooks

Composition API 445

Here’s an example of code we’re going to write shortly in our upcoming app. Assume we wanted to
implement a simple notifications feature within an app where we could have components publish
notifications at separate points in time.

We can create a function called useNotification that declares a reactive data object and has a
method responsible for updating the data object which will be used to determine if a notification
exists.

import { reactive } from "vue";

// reactive notification data object

const data = reactive({

message: "",

active: false,

});

const useNotification = () => {

// function that would update data object above

const setNotification = (newMessage) => {

data.message = newMessage;

return (data.active = true);

};

// composition function returns notification data

// and function for components to access

return {

notification: data,

setNotification,

};

};

export default useNotification;

Note how in the above example, we’re creating this function in a standalone format outside of
the context of components. useNotification() is a simple JavaScript function that utilizes Vue’s
reactive() function to create and manipulate a reactive data object.

In a component, we can import and use the useNotification() function to return notification data
and the function that can be used to update said notification data.

Composition API 446

<template>

<!-- Component Template -->

</template>

<script>

import useNotification from "./hooks/useNotification";

export default {

name: "MyComponent",

setup() {

// destruct notification data and setNotification function

const { notification, setNotification } = useNotification();

return {

// ...

};

},

};

</script>

<!-- Styles -->

At any point that we’d like, we can use the setNotification() function to update the notification
data kept outside of the context of the component. For example, we can run the setNotification()
function when the component mounts for the first time.

<template>

<!-- Component Template -->

</template>

<script>

import { onMounted } from "vue";

import useNotification from "./hooks/useNotification";

export default {

name: "MyComponent",

setup() {

// destruct notification data and setNotification function

const { notification, setNotification } = useNotification();

// run setNotification() when component has mounted

onMounted(() => {

setNotification("Component has mounted!");

Composition API 447

});

return {

// ...

};

},

};

</script>

<!-- Styles -->

In the component template, we can perhaps render a <Notification /> component that receives the
notification data object and renders a notification element based on the presence of the .message
and .active properties of the notification.

<template>

<!-- Notification component that receives notification data as props -->

<Notification :notification="notification" />

<div>

<!-- Rest of the component template -->

</div>

</template>

<script>

import { onMounted } from "vue";

import Notification from "./Notification";

import useNotification from "./hooks/useNotification";

export default {

name: "MyComponent",

setup() {

// destruct notification data and setNotification function

const { notification, setNotification } = useNotification();

// run setNotification() when component has mounted

onMounted(() => {

setNotification("Component has mounted!");

});

// return notification data object

return {

notification,

Composition API 448

};

},

};

</script>

<!-- Styles -->

How cool is that? We were able to compose and isolate functionality with how notifications can be
set in a separate composable function called useNotifications(). Furthermore, the setup() function
in our component makes it incredibly easy to plug-in and use this shared logic.

Something like this can be achieved with the standard options API but we’re confined to declaring
our functionality in specific options available to us. The compositional nature of Vue’s composition
API allows us to do the above more cleanly and clearly!

If interested, the Logic Extraction and Reuse¹⁹⁷ section of the Composition API RFC explains this
some more.

Building a simple listings app

We’ll now build an app that surfaces a single web page responsible for displaying a list of listings.
We’ll start by previewing a completed implementation of the app.

The example code for this entire chapter is in the composition-api/ folder in the code download. In
the terminal, let’s change into the composition-api/ directory using the cd command:

$ cd composition-api

We’ll use npm to install all the application’s dependencies:

$ npm install

When all dependencies have been installed, we’ll boot the application with npm run start:

$ npm run start

We’ll see something similar to the following in our terminal:

¹⁹⁷https://composition-api.vuejs.org/#logic-extraction-and-reuse

Composition API 449

$ npm run start

Compiled successfully in ####ms

App running at:

- Local: http://localhost:8080

- Network: http://##.##.##.###:8080

We’ll now be able to visit http://localhost:8080 to see our app running in the browser:

NewlineBnB

We’ll quickly talk about the features of the app before discussing the code folder prepared.

When the page loads, a request is made to surface the listings to the user.

Composition API 450

If interested, the user can remove a listing by clicking the Remove button in the list item. When a
listing is deleted, another request is made to query the updated list of listings, and the deleted listing
is now removed from the list.

When a listing has been removed, the user can Reset the list back to its original state. Through
certain actions in the app, a notification message is shown at the top of the list to notify the user
that certain actions have been made.

Composition API 451

Lastly, the user can select a button labeled Dark Mode to switch the appearance of the app to dark
mode.

Composition API 452

Setup

In the terminal, let’s run ls to see the projectâ€™s layout:

$ ls

README.md

babel.config.js

node_modules/

package.json

public/

server-listings-data.json

server-listings-original.json

server.js

src/

vue.config.js

We notice the project structure mimics the Webpack configured Vue applications weâ€™ve built
throughout the book. As a result, we won’t go into detail in all the files within the project except for
a few.

Composition API 453

server-listings-data.json - server-listings-original.json

The server-listings-data.json file is the root data file needed in the application server (server.js).
This file gets manipulated by the user where specific items in the list can be removed from the listings
data array.

composition-api/server-listings-data.json

[

{

"id": "001",

"title": "Toronto",

"description": "Clean and fully furnished apartment. 5 min away from CN Tower \

and close to all downtown activities.",

"image": "https://res.cloudinary.com/tiny-house/image/upload/v1560641352/mock/\

Toronto/toronto-listing-1_exv0tf.jpg",

"address": "3210 Scotchmere Dr W, Toronto, ON, CA",

"price": 10000,

"numOfGuests": 2,

"numOfBeds": 1,

"numOfBaths": 2,

"rating": 5

},

{

"id": "002",

"title": "Los Angeles",

"description": "Luxurious home with private pool. Located in the beautiful Hol\

lywood Hills.",

"image": "https://res.cloudinary.com/tiny-house/image/upload/v1560645376/mock/\

Los%20Angeles/los-angeles-listing-1_aikhx7.jpg",

"address": "100 Hollywood Hills Dr, Los Angeles, California",

"price": 15000,

"numOfGuests": 2,

"numOfBeds": 1,

"numOfBaths": 1,

"rating": 4

},

{

"id": "003",

"title": "San Fransisco",

"description": "Single bedroom located in the heart of downtown San Fransisco",

"image": "https://res.cloudinary.com/tiny-house/image/upload/v1560646219/mock/\

San%20Fransisco/san-fransisco-listing-1_qzntl4.jpg",

"address": "200 Sunnyside Rd, San Fransisco, California",

Composition API 454

"price": 25000,

"numOfGuests": 3,

"numOfBeds": 2,

"numOfBaths": 2,

"rating": 3

}

]

server-listings-original.json is a copy of server-listings-data.json which is used to reset
the server-listings-data.json file back to its original state when the user decides to reset the list
of listings.

server.js

server.js is a Node.js server specifically designed for our app.

You don’t have to know anything about Node.js or servers, in general, to work with the
server we’ve supplied.

We’ll provide the guidance that you need.

server.js uses the server-listings-data.json file to read and write to persist data. These are the
following calls that can bemade to the server to interact with the data in the server-listings-data.json
file.

GET /listings

Returns a list of all listing items.

POST /listings/delete

Accepts a JSON body with the attribute id. The server iterates through the listings data store and
removes the listing with the matching id. This endpoint then returns the remaining set of listings.

POST /listings/reset

Resets the listings in the server-listings-data.json file back to their original state and finally
returns the original list of listings.

We’ll be focusing entirely in the src/ directory. Let’s first take a look at the files within the src/

directory:

Composition API 455

$ ls src/

app/

app-1/

app-2/

app-complete/

main.js

app/ constitutes the starting point of the application. app-complete/ denotes the completed appli-
cation for this section with each significant step we take along the way included in app-1/ and
app-2/.

Let’s first take a look at the main.js file:

main.js

composition-api/src/main.js

import { createApp } from 'vue';

import App from './app-complete/App.vue';

import store from './app-complete/store';

createApp(App).provide('store', store).mount('#app');

main.js imports the necessary modules of the application (store), wires it to the Vue instance that’s
mounted to the DOM element of id="app", and renders the App component from the app-complete/
directory.

To not reference app-complete/ anymore, we’ll change the import of App and store from ./app-complete/

to ./app/. Furthermore, we won’t use a provide() method which is something we’ll only do when
wiring the store from the app-complete/ folder. Instead, we’ll have the store be installed with the
.use() function like we’ve seen before.

import { createApp } from "vue";

import App from "./app/App.vue";

import store from "./app/store";

createApp(App).use(store).mount("#app");

If we were to take a look at the running application at http://localhost:8080, we’ll see that the
app looks practically the same. This is because, in this chapter, we won’t be building the app from
scratch. Instead, we’re going to start from an almost complete state where all our components define
their logic with the options API we’ve seen throughout the book. By the end of the chapter, we’ll
redefine this component logic with the composition API!

Before we start to make any changes, we’ll spend some time looking through the existing Vue code
that we have.

Composition API 456

app/

Let’s survey the folders and files within app/.

$ ls src/app/

components/

store/

App.vue

App.vue

When we open App.vue, we’ll see a fairly straightforward single-file component. We’ll first take a
look at the <template> portion of the file:

composition-api/src/app/App.vue

<template>

<div class="app" :class="{ 'has-background-black': isDark }">

<div class="container is-max-desktop py-6 px-4">

<div v-if="loading">

<progress class="progress is-small is-info" max="100">60%</progress>

</div>

<div v-if="!loading">

<ListingsList :listings="listings" :isDark="isDark" />

</div>

<button class="button is-small is-pulled-right my-4"

@click="toggleDarkMode">

{{ darkModeButtonText }}

</button>

</div>

</div>

</template>

The <template> has the following details:

• A conditional class, 'has-background-black', is applied to the parent <div /> element when
an isDark data property is true.

• Two v-if statements exist which render two different elements under the condition of a
loading property. When loading is true, a <progress /> element is shown and when loading

is not true, a custom <ListingsList /> component is rendered that accepts listings and
isDark as props.

• A button is rendered that triggers a toggleDarkMode() function when clicked. The text content
of the button is computed from a property labeled darkModeButtonText.

Composition API 457

Taking a look at the components <script> section, we’ll see the data values and methods that are
being used in the <template>:

composition-api/src/app/App.vue

<script>

import { mapGetters } from 'vuex';

import ListingsList from './components/ListingsList';

export default {

name: 'App',

data() {

return {

isDark: false,

}

},

computed: {

...mapGetters([

'listings',

'loading'

]),

darkModeButtonText() {

return this.isDark ? 'Light Mode' : 'Dark Mode';

}

},

methods: {

toggleDarkMode() {

this.isDark = !this.isDark;

}

},

created() {

this.$store.dispatch('getListings');

},

components: {

ListingsList

}

}

</script>

• We’re importing the mapGetters helper from vuex and the <ListingsList /> component from
its respective file.

• isDark is a component data property initialized with false.

Composition API 458

• Three computed properties are being used by the component. listings and loading are two
that are being mapped from getters that exist in our application store. darkModeButtonText
returns text based on the truthiness of the isDark data property in the component.

• The toggleDarkMode() method toggles the value of the isDark property when triggered.
• In the created() lifecycle hook of the component, a getListings action is dispatched.

<style> consists of a few simple custom CSS modifications. As in some of the chapters in this book,
we’re using Bulma¹⁹⁸ as the backbone of our application styling.

store.js

The store.js file hosts the Vuex store of the application.

composition-api/src/app/store.js

import { createStore } from 'vuex';

import axios from 'axios';

const state = {

listings: [],

loading: false

};

const mutations = {

UPDATE_LISTINGS(state, payload) {

state.listings = payload;

},

LOADING_PENDING (state) {

state.loading = true;

},

LOADING_COMPLETE (state) {

state.loading = false;

}

};

const actions = {

getListings({ commit }) {

commit('LOADING_PENDING');

return axios.get('/api/listings').then((response) => {

commit('UPDATE_LISTINGS', response.data);

commit('LOADING_COMPLETE');

});

},

removeListing({ commit }, listing) {

¹⁹⁸https://bulma.io/documentation/

Composition API 459

return axios.post('/api/listings/delete', listing).then((response) => {

commit('UPDATE_LISTINGS', response.data)

});

},

resetListings({ commit }) {

return axios.post('/api/listings/reset').then((response) => {

commit('UPDATE_LISTINGS', response.data)

});

},

};

const getters = {

listings: state => state.listings,

loading: state => state.loading

};

export default createStore({

state,

mutations,

actions,

getters

});

The Vuex store prepared in this app is very similar to the Vuex storeswe’ve prepared in other chapters
of the book.

• There exists a listings and loading state properties. listings aims to contain the list of
listings returned from the server while loading is a boolean that dictates the status of the
request being made. These state properties are returned through getters that are then accessed
from components.

• Three separate actions exist to allow components to conduct three different requests - getListings(),
removeListing(), and resetListings().

components/

ListingsList.vue

The <ListingsList /> component file renders a list of listing items.

Composition API 460

composition-api/src/app/components/ListingsList.vue

<template>

<div id="listings">

<Notification :notification="notification" :isDark="isDark" />

<div v-for="listing in listings" :key="listing.id">

<ListingsListItem :listing="listing" :isDark="isDark" />

</div>

<button

class="button is-light"

:class="{ 'is-primary': isDark, 'is-info': !isDark }"

@click="resetListings"

:disabled="listings.length === 3">

Reset

</button>

</div>

</template>

It receives a listings array and an isDark boolean as props. In the template, it uses the listings

array to render a list of <ListingsListItem /> components and it uses the isDark boolean to
conditionally apply certain classes within its template.

In the <script /> of the component, it defines a notification data property in the mounting step
of the component (i.e. in the mounted() function), it sets the notification to a specific value and has
a timeout to set the notification back to null after a short period.

composition-api/src/app/components/ListingsList.vue

<script>

import { mapActions } from 'vuex';

import ListingsListItem from './ListingsListItem';

import Notification from './Notification';

export default {

name: 'ListingsList',

props: ['listings', 'isDark'],

data() {

return {

notification: null,

}

},

methods: {

...mapActions([

'resetListings'

])

Composition API 461

},

components: {

ListingsListItem,

Notification

},

mounted() {

this.notification = "Welcome to NewlineBnB!";

setTimeout(() => {

this.notification = null;

}, 1000);

}

}

</script>

The notification data value is passed down as a prop to the <Notification /> component also
rendered in the template.

Additionally, the component maps the resetListings() action from the store which is used in the
template as the method triggered when the user clicks the Reset button.

ListingsListItem.vue

The <ListingsListItem /> component is mostly presentational and renders a template for each
listing item. Listing data is available from the listing prop passed into the component. The
component also accepts an isDark prop that it uses to conditionally apply different classes at certain
points in the template.

The component provides access to the removeListing() action in the store that is triggered in the
template when the user clicks the Remove button.

composition-api/src/app/components/ListingsListItem.vue

<template>

<article class="media mb-5">

<figure class="media-left">

<p class="image is-128x128 is-hidden-mobile">

</p>

</figure>

<div class="media-content">

<div class="content">

<p :class="{ 'has-text-white': isDark }">

<strong :class="{ 'has-text-white': isDark }">

{{ listing.title }}

Composition API 462

<small class="pl-1"

:class="{ 'has-text-primary': isDark, 'has-text-info': !isDark }">

{{ listing.address }}

</small>

{{ listing.description }}

<small class="has-text-weight-bold"

:class="{ 'has-text-primary': isDark, 'has-text-info': !isDark }">

${{ listing.price/100 }}/day · Rating: {{ listing.rat\

ing }}/5

</small>

</p>

</div>

</div>

<div class="media-right">

<button class="button is-light is-small"

:class="{ 'is-primary': isDark, 'is-info': !isDark }" @click="removeListing(\

listing)">

Remove

</button>

</div>

</article>

</template>

<script>

import { mapActions } from 'vuex';

export default {

name: 'ListingsListItem',

props: ['listing', 'isDark'],

methods: {

...mapActions([

'removeListing'

])

}

}

</script>

Notification.vue

The <Notification /> component is mostly presentational as well and receives a notification prop
that it uses to render the template for a notification. If the value of the notification prop is null or

Composition API 463

undefined, nothing is to be rendered (due to v-if="notification" attribute).

Similar to the other components, <Notification /> accepts an isDark boolean prop to determine if
certain conditional classes should be applied.

composition-api/src/app/components/Notification.vue

<template>

<div v-if="notification"

class="notification is-light py-3 px-3 is-size-7"

:class="{ 'is-primary': isDark, 'is-info': !isDark }">

{{ notification }}

</div>

</template>

<script>

export default {

name: 'Notification',

props: ['notification', 'isDark']

}

</script>

Now that we have a good understanding of the existing code, let’s start making some changes!

Updating <App />

Before we attempt to improve certain parts of our app, we’ll begin by first updating each component
in our app to move from using the standard options API to the composition API. We’ll begin with
the <App /> component.

In the script section of the <App /> component file, we can see all the different options defined in
the component.

composition-api/src/app/App.vue

<script>

import { mapGetters } from 'vuex';

import ListingsList from './components/ListingsList';

export default {

name: 'App',

data() {

return {

isDark: false,

}

Composition API 464

},

computed: {

...mapGetters([

'listings',

'loading'

]),

darkModeButtonText() {

return this.isDark ? 'Light Mode' : 'Dark Mode';

}

},

methods: {

toggleDarkMode() {

this.isDark = !this.isDark;

}

},

created() {

this.$store.dispatch('getListings');

},

components: {

ListingsList

}

}

</script>

We’ll remove all the options where we can instead use the compositional variants. This will have
the name and components options still be kept where everything else is removed and a single setup()
function would now exist.

import { mapGetters } from "vuex";

import ListingsList from "./components/ListingsList";

export default {

name: "App",

setup() {

// where we'll now define our component logic

},

components: {

ListingsList,

},

};

The first thing we’ll do is attempt to create the reactive isDark data property. Since isDark is a single

Composition API 465

primitive value, we’ll import and use the ref() function to create this property with an initial value
of false.

import { ref } from "vue";

import { mapGetters } from "vuex";

import ListingsList from "./components/ListingsList";

export default {

name: "App",

setup() {

// reactive data properties

const isDark = ref(false);

},

components: {

ListingsList,

},

};

Next, we’ll look to define the computed properties our component uses. We’ll use the globally avail-
able computed() function to create our darkModeButtonText property. In this computed function,
we’ll access the value of the isDark ref with isDark.value.

import { ref, computed } from "vue";

import { mapGetters } from "vuex";

import ListingsList from "./components/ListingsList";

export default {

name: "App",

setup() {

// reactive data properties

const isDark = ref(false);

// computed properties

const darkModeButtonText = computed(() => {

return isDark.value ? "Light Mode" : "Dark Mode";

});

},

components: {

ListingsList,

},

};

Composition API 466

With our component in its original state, we were able to map the getters from our Vuex store to
computed properties in our component with the help of the mapGetters Vuex helper. We’re unable
to use the mapGetters helper within the setup() function of a component.

Instead, Vuex allows us to access the store from a compositional function labeled useStore. We’ll
import and use the useStore() function and then create computed properties from the getters that
exist in the store. This would look something like the following:

import { ref, computed } from "vue";

import { useStore } from "vuex";

import ListingsList from "./components/ListingsList";

export default {

name: "App",

setup() {

// access the store

const store = useStore();

// reactive data properties

const isDark = ref(false);

// computed properties

const darkModeButtonText = computed(() => {

return isDark.value ? "Light Mode" : "Dark Mode";

});

const listings = computed(() => store.getters.listings);

const loading = computed(() => store.getters.loading);

},

components: {

ListingsList,

},

};

Earlier on, we had a toggleDarkMode() method to toggle the value of the isDark data property in
our component. We can simply create this method as a normal JavaScript method that manipulates
the value of the isDark ref property.

Composition API 467

import { ref, computed } from "vue";

import { useStore } from "vuex";

import ListingsList from "./components/ListingsList";

export default {

name: "App",

setup() {

// access the store

const store = useStore();

// reactive data properties

const isDark = ref(false);

// computed properties

const darkModeButtonText = computed(() => {

return isDark.value ? "Light Mode" : "Dark Mode";

});

const listings = computed(() => store.getters.listings);

const loading = computed(() => store.getters.loading);

// methods

const toggleDarkMode = () => {

isDark.value = !isDark.value;

};

},

components: {

ListingsList,

},

};

Finally, we want to have getListings() action in our store fired in the created lifecycle stage of
the component (i.e. when the component is being created). As we’ve mentioned earlier, the setup()
function is run before the component is created and any functionality that needs to be done at the
created stage can simply be declared in the setup() function itself.

With that being said, we’ll simply dispatch the getListings() action in our store at the end of our
setup() function.

Composition API 468

import { ref, computed } from "vue";

import { useStore } from "vuex";

import ListingsList from "./components/ListingsList";

export default {

name: "App",

setup() {

// access the store

const store = useStore();

// reactive data properties

const isDark = ref(false);

// computed properties

const darkModeButtonText = computed(() => {

return isDark.value ? "Light Mode" : "Dark Mode";

});

const listings = computed(() => store.getters.listings);

const loading = computed(() => store.getters.loading);

// methods

const toggleDarkMode = () => {

isDark.value = !isDark.value;

};

// fire off actions for component created lifecycle stage

store.dispatch("getListings");

},

components: {

ListingsList,

},

};

We’ve defined everything we’ve wanted to do in our component within a single setup() function.
The only thing left for us to do is have our setup() function return the properties we would want
the component to access in the template. With this change, the <script> of our component will now
look like the following:

Composition API 469

composition-api/src/app-1/App.vue

<script>

import { ref, computed } from 'vue';

import { useStore } from 'vuex';

import ListingsList from './components/ListingsList';

export default {

name: 'App',

setup() {

// access the store

const store = useStore();

// reactive data properties

const isDark = ref(false);

// computed properties

const darkModeButtonText = computed(() => {

return isDark.value ? 'Light Mode' : 'Dark Mode';

});

const listings = computed(() => store.getters.listings);

const loading = computed(() => store.getters.loading);

// methods

const toggleDarkMode = () => {

isDark.value = !isDark.value;

}

// fire off actions for component created lifecycle stage

store.dispatch('getListings');

// return properties for component to access

return {

isDark,

darkModeButtonText,

listings,

loading,

toggleDarkMode,

}

},

components: {

ListingsList

}

Composition API 470

}

</script>

If we were to refresh our app at this moment, our app would work just like before!

Updating <ListingsList />

We’ll move towards updating the <script> of the <ListingsList /> component to a more
compositional setting.

The <script> of the <ListingsList /> component currently looks like the following:

composition-api/src/app/components/ListingsList.vue

<script>

import { mapActions } from 'vuex';

import ListingsListItem from './ListingsListItem';

import Notification from './Notification';

export default {

name: 'ListingsList',

props: ['listings', 'isDark'],

data() {

return {

notification: null,

}

},

methods: {

...mapActions([

'resetListings'

])

},

components: {

ListingsListItem,

Notification

},

mounted() {

this.notification = "Welcome to NewlineBnB!";

setTimeout(() => {

this.notification = null;

}, 1000);

}

Composition API 471

}

</script>

We’ll remove every option that would be handled in a setup() function. This would leave the name,
props, and components options to remain.

import { mapActions } from "vuex";

import ListingsListItem from "./ListingsListItem";

import Notification from "./Notification";

export default {

name: "ListingsList",

props: ["listings", "isDark"],

setup() {

// ...

},

components: {

ListingsListItem,

Notification,

},

};

To define a reactive data property labeled notification, we’ll import and use the ref() function to
initialize the value of this ref with null.

import { ref } from "vue";

import { mapActions } from "vuex";

import ListingsListItem from "./ListingsListItem";

import Notification from "./Notification";

export default {

name: "ListingsList",

props: ["listings", "isDark"],

setup() {

// reactive data properties

const notification = ref(null);

},

components: {

ListingsListItem,

Notification,

},

};

Composition API 472

To declare a resetListings() component method that dispatches the resetListings() action in
our store, we’ll import and use the useStore() function from Vuex to first access the store. We’ll
then define the resetListings() method to call the appropriate store action when triggered.

import { ref } from "vue";

import { useStore } from "vuex";

import ListingsListItem from "./ListingsListItem";

import Notification from "./Notification";

export default {

name: "ListingsList",

props: ["listings", "isDark"],

setup() {

// access the store

const store = useStore();

// reactive data properties

const notification = ref(null);

// methods

const resetListings = () => store.dispatch("resetListings");

},

components: {

ListingsListItem,

Notification,

},

};

In the mounted lifecycle method before, we had the notification data property be updated and a
timeout be set to reset the value of notification to null after a small period of time. To achieve
this in the setup() function, we’ll simply replicate the functionality we had before in a onMounted()
function that we’ll import from the vue library.

import { ref, onMounted } from "vue";

import { useStore } from "vuex";

import ListingsListItem from "./ListingsListItem";

import Notification from "./Notification";

export default {

name: "ListingsList",

props: ["listings", "isDark"],

setup() {

// access the store

Composition API 473

const store = useStore();

// reactive data properties

const notification = ref(null);

// methods

const resetListings = () => store.dispatch("resetListings");

// mounted lifecyle hook

onMounted(() => {

notification.value = "Welcome to NewlineBnB!";

setTimeout(() => {

notification.value = null;

}, 1000);

});

},

components: {

ListingsListItem,

Notification,

},

};

In our setup() function, we’ll nowneed to return the notification data property and resetListings()
function for the component template to be able to access these properties. With these changes, this
would have the <script> of our <ListingsList /> component look like the following:

composition-api/src/app-1/components/ListingsList.vue

<script>

import { ref, onMounted } from 'vue';

import { useStore } from 'vuex';

import ListingsListItem from './ListingsListItem';

import Notification from './Notification';

export default {

name: 'ListingsList',

props: ['listings', 'isDark'],

setup() {

// access the store

const store = useStore();

// reactive data properties

const notification = ref(null);

Composition API 474

// methods

const resetListings = () => store.dispatch('resetListings');

// mounted lifecyle hook

onMounted(() => {

notification.value = "Welcome to NewlineBnB!";

setTimeout(() => {

notification.value = null;

}, 1000);

});

// return properties for component to access

return {

notification,

resetListings

}

},

components: {

ListingsListItem,

Notification

}

}

</script>

Updating <ListingsListItem />

The <script> of the <ListingsListItem /> component involves preparing a removeListing()

function in the component that when triggered from the template, dispatches the removeListing()
action in the store:

Composition API 475

composition-api/src/app/components/ListingsListItem.vue

<script>

import { mapActions } from 'vuex';

export default {

name: 'ListingsListItem',

props: ['listing', 'isDark'],

methods: {

...mapActions([

'removeListing'

])

}

}

</script>

To achieve the same outcome within the setup() function, we’ll first import and use the useStore()
utility from Vuex to access the store. We’ll then declare and return a removeListing() method that
dispatches the appropriate store action when triggered.

We’ll need to access and pass the listing prop to the removeListing() store action. We’ll access
this prop from the props object available as the first argument of the setup() function.

composition-api/src/app-1/components/ListingsListItem.vue

<script>

import { useStore } from 'vuex';

export default {

name: 'ListingsListItem',

props: ['listing', 'isDark'],

setup(props) {

// access the store

const store = useStore();

// methods

const removeListing = () => store.dispatch('removeListing', props.listing);

// return properties for component to access

return {

removeListing

}

}

}

</script>

Composition API 476

We won’t make any changes to the <Notification /> component since this component is purely
presentational and only receives props.

With all the above changes we’ve made, our application should continue to work the same as before.

Notifications

We’ve successfully moved all the JS logic within our components to utilize the compositional API
that Vue v3 now provides.

We’ve mentioned earlier how one of the main benefits of the composition API is the capability to
extract and reuse shared logic between components, which we haven’t seen yet. At this moment,
we’ll look to prepare some shared functionality that any component in our app can utilize.

The first piece of work we’ll look to do is improve the notifications system in our app. To keep things
simple, we’ll look to implement a capability where any component in our app can fire a notification
at any moment.

As of now, our app doesn’t support this. All we currently have is a <Notification /> component that
is rendered in the <ListingsList /> component. Furthermore, the <ListingsList /> component
simply creates a notification for a brief moment in time when the component mounts.

Composition API 477

<template>

<div id="listings">

<Notification :notification="notification" :isDark="isDark" />

<!-- ... -->

</div>

</template>

<script>

// ...

import Notification from "./Notification";

export default {

name: "ListingsList",

// ...,

setup() {

// ...

const notification = ref(null);

// ...

onMounted(() => {

notification.value = "Welcome to NewlineBnB!";

setTimeout(() => {

notification.value = null;

}, 1000);

});

return {

notification,

// ...

};

},

// ...

};

</script>

The above functionality can’t be adopted by other components without making some changes. To
create a shared notification system in our app, there are some different ways we can achieve this.

1. We can look to render the <Notification /> component in every parent component that needs
to fire a notification and we can have each of these parent components be responsible for

Composition API 478

creating their own notification data property and methods.
2. We can use Vuex to hoist notification data as shared application data where components can

query and mutate this store notification data.
3. We can utilize custom events and/or an Event Bus to have components emit and subscribe

notifications between each other.

useNotification()

Though each of the above approaches has its advantages and disadvantages, the approach we’ll take
will be very different. We’ll create a reusable and composable function that components can easily
import and use to set notifications. We’ll create this function in a useNotification.js file that we’ll
keep in a src/app/hooks/ folder.

src/

app/

components/

hooks/

useNotification.js

App.vue

store.js

The first thing we’ll need to think about is some form of data that encapsulates the information kept
in a notification. We’ll like to have two properties:

• message: the actual message string the notification should display.
• active: a boolean to dictate whether a notification should be shown or not.

We can create both of these properties within a data object. Since we’ll want this object to be reactive,
we’ll import and use the reactive() function from Vue to create this data.

composition-api/src/app-2/hooks/useNotification.js

import { reactive } from 'vue';

const data = reactive({

message: '',

active: false

});

Next, we’ll create a function that components in our app can use to retrieve and/or set notifications.
We’ll call this function useNotification().

Composition API 479

import { reactive } from "vue";

const data = reactive({

message: "",

active: false,

});

const useNotification = () => {

// ...

};

In this function, we’ll encapsulate two separate functions we’ll want components to be able to run.

1. setNotification() - a function responsible in setting a notification.
2. toggleNotification() - a function responsible in toggling the presence of the notification.

We’ll have the setNotification() function take an argument that it would use to update the message
property in our notification data. Additionally, the function will set the value of the active property
in our data to true to dictate that the notification should be shown.

The toggleNotification() function will simply toggle the value of the active data property.

import { reactive } from "vue";

const data = reactive({

message: "",

active: false,

});

const useNotification = () => {

const setNotification = (newMessage) => {

data.message = newMessage;

return (data.active = true);

};

const toggleNotification = () => {

data.active = !data.active;

};

};

Finally, at the end of the useNotification() function, we can return the properties and functions
we’ll want components to be able to access. We’ll return the data as a notification object and we’ll
also return the setNotification() and toggleNotification() functions.

Composition API 480

With these changes and ensuringwe export the useNotification() function, our useNotification.js
file will look like the following.

composition-api/src/app-2/hooks/useNotification.js

import { reactive } from 'vue';

const data = reactive({

message: '',

active: false

});

const useNotification = () => {

const setNotification = (newMessage) => {

data.message = newMessage;

return data.active = true;

};

const toggleNotification = () => {

data.active = !data.active;

};

return {

notification: data,

setNotification,

toggleNotification

};

}

export default useNotification;

Notice how the data property is created in the useNotification.js file? The notification data is
created outside of the scope of the useNotification() function and outside of the scope of any
component. By doing so, we have a reactive data property that any component in our app can
access and mutate!

Updating <ListingsList />

Let’s make some changes to our components starting with the <ListingsList /> component. For our
notification system, we’ll have the <ListingsList /> component be the only component responsible
for rendering the <Notification /> component that takes a notification data object as props.

Composition API 481

<template>

<div id="listings">

<Notification :notification="notification" :isDark="isDark" />

<!-- ... -->

</div>

</template>

<script>

// ...

</script>

As long as the notification data prop changes, regardless of how this change is made, the
<Notification /> component will re-render and show the new notification.

We want to keep the functionality of having a welcome notification be shown to the user when the
application first loads. To achieve this, we can attempt to set a notification when the <ListingsList
/> component first mounts. We’ll remove the timeout set to have the notification be removed after
a short period.

We’ll do a few different things to achieve this with our new shared useNotification() hook.

1. We’ll import the useNotification() Hook and destruct the properties we’ll want the compo-
nent to access - notification, setNotification(), and toggleNotification().

2. We’ll remove the local notification ref data property that was created in the <ListingsList
/> component.

3. In the onMounted() lifecycle Hook, we’ll run the setNotification() function and pass the
notification message that we’ll want at this moment - 'Welcome to NewlineBnB!'.

4. In the <ListingsList /> setup() function, we’ll return the notification data property
and toggleNotification() function. We’ll then ensure the notification data property and
toggleNotification() function are passed down as props to the <Notification /> component.

With these changes, our <ListingsList /> component will now look like the following:

<template>

<div id="listings">

<Notification

:notification="notification"

:toggleNotification="toggleNotification"

:isDark="isDark"

/>

<div v-for="listing in listings" :key="listing.id">

<ListingsListItem :listing="listing" :isDark="isDark" />

</div>

Composition API 482

<button

class="button is-light"

:class="{ 'is-primary': isDark, 'is-info': !isDark }"

@click="resetListings"

:disabled="listings.length === 3"

>

Reset

</button>

</div>

</template>

<script>

import { onMounted } from "vue";

import { useStore } from "vuex";

import ListingsListItem from "./ListingsListItem";

import Notification from "./Notification";

import useNotification from "../hooks/useNotification";

export default {

name: "ListingsList",

props: ["listings", "isDark"],

setup() {

const store = useStore();

const {

notification,

setNotification,

toggleNotification,

} = useNotification();

const resetListings = () => store.dispatch("resetListings");

onMounted(() => {

setNotification("Welcome to NewlineBnB!");

});

return {

notification,

toggleNotification,

resetListings,

};

},

components: {

Composition API 483

ListingsListItem,

Notification,

},

};

</script>

We’ll need to make some minor changes in the <Notification /> component itself. In the
Notification.vue file, we’ll update the <template> of the component to check for the value of
the .active property in the notification object. We’ll update the template content to reflect the
message of the notification will be shown from the .message property of the notification object.

<template>

<div

v-if="notification.active"

class="notification is-light py-3 px-3 is-size-7"

:class="{ 'is-primary': darkMode, 'is-info': !darkMode }"

>

{{ notification.message }}

</div>

</template>

<script>

// ...

</script>

Additionally, we’ll introduce a <button /> element to the template that when clicked will trigger
the toggleNotification() function available as props in the component. We’ll also need to make
sure the toggleNotification() function is declared as a prop of the component.

<template>

<div

v-if="notification.active"

class="notification is-light py-3 px-3 is-size-7"

:class="{ 'is-primary': darkMode, 'is-info': !darkMode }"

>

<button class="delete" @click="toggleNotification"></button>

{{ notification.message }}

</div>

</template>

<script>

export default {

Composition API 484

name: "Notification",

props: ["notification", "toggleNotification"],

};

</script>

If we were to refresh our app, we’ll notice the notification with the message "Welcome to

NewlineBnB!" appear at the top of our app.

What if we wanted to have a notification be set when a user resets the listings back to their
original state by clicking the Reset button? This would be straightforward to achieve. In the
setup() of the <ListingsList /> component, we’ll use setNotification() to set a new notification
labeled "Listings have been reset!" in the function responsible in resetting the list of listings -
resetListings().

We can have the notification be set just before the appropriate store action is dispatched.

Composition API 485

composition-api/src/app-2/components/ListingsList.vue

const resetListings = () => {

setNotification("Listings have been reset!");

return store.dispatch('resetListings')

};

Now, when a user is to click the Reset button in our app, they’ll be presented with a notification
notifying them that listings have been reset.

Updating <ListingsListItem />

Another notification we can consider to implement is a notification to notify the user that a listing
is being removed. The work to have a listing be removed is kept within the <ListingsListItem />

component so we’ll make changes to that component file.

The changes we’ll make will be very similar to the changes above. All we’ll need to do is
import the useNotification() function, destruct the setNotification() function, and have the
setNotification() function be triggered in the removeListing() function responsible in dispatch-
ing the action to remove a listing.

Composition API 486

This will look like the following:

<template>

<!-- Template for ListingsListItem -->

</template>

<script>

import { useStore } from "vuex";

import useNotification from "../hooks/useNotification";

export default {

name: "ListingsListItem",

props: ["listing", "isDark"],

setup(props) {

const store = useStore();

const { setNotification } = useNotification();

const removeListing = () => {

setNotification("Listing is to be deleted");

return store.dispatch("removeListing", props.listing);

};

return {

removeListing,

};

},

};

</script>

If we were to now remove a listing from the list, we’ll be presented with a notification notifying us
the listing is to be deleted.

Composition API 487

Another approach we can do is have a notification be fired only when the removeListing() action
in our store has been completed successfully. To do this, we can import the useNotification() hook
in the store.js file and trigger the setNotification() when the axios call in the removeListing()
action is successful.

import { createStore } from "vuex";

import axios from "axios";

import useNotification from "./hooks/useNotification";

const { setNotification } = useNotification();

const state = {

// ...

};

const mutations = {

// ...

};

Composition API 488

const actions = {

getListings({ commit }) {

// ...

},

removeListing({ commit }, listing) {

return axios.post("/api/listings/delete", listing).then((response) => {

commit("UPDATE_LISTINGS", response.data);

setNotification("Listing has been deleted");

});

},

resetListings({ commit }) {

// ...

},

};

const getters = {

// ...

};

export default createStore({

state,

mutations,

actions,

getters,

});

Now, we’ll be presented with a notification that notifies the user a listing has been deleted when the
removal is successful.

Composition API 489

Notice how easy it is to set a notification anywhere in our app? Whether it be a store action or a
component method, this illustrates the significant advantage of how much easier it is to compose
and use reusable logic with Vue’s composition API.

Granted, the notification system we’ve set up is very straightforward and we could achieve the
implementation we’ve established with traditional Vue implementations (e.g. Vuex, custom events,
component data and props). The composition API, however, is geared towards making the sharing
of this reusable logic a lot easier by allowing us to collocate code related to the same logical concern.

Dark Mode

We’ll now move towards improving the dark mode feature of the app where a user can toggle the
presentation of the UI from light mode to dark mode and vice versa.

We already have an implementation in place that involves having an isDark ref property be created
in the parent <App /> component. A toggleDarkMode()method also exists in the <App /> component
that when triggered toggles the value of the isDark ref property.

Composition API 490

<template>

<div class="app" :class="{ 'has-background-black': isDark }">

<div class="container is-max-desktop py-6 px-4">

<!-- Additional Template -->

<button

class="button is-small is-pulled-right my-4"

@click="toggleDarkMode"

>

{{ darkModeButtonText }}

</button>

</div>

</div>

</template>

<script>

// ...

export default {

name: "App",

setup() {

// ...

const isDark = ref(false);

// ...

const toggleDarkMode = () => {

isDark.value = !isDark.value;

};

// ...

return {

isDark,

toggleDarkMode,

// ...

};

},

};

</script>

The isDark ref property is then passed down to every child component in our app as props. Each
child component checks for the truthiness of the boolean to determine if certain classes should be

Composition API 491

applied to certain elements.

In an actual production application, it would be strongly encouraged to not have to have conditional
classes be applied to so many different templates in different components. This can be probably be
achieved in a more appropriate manner like taking advantage of CSS variables¹⁹⁹ which can directly
be referenced and modified with JavaScript (Here’s an example article²⁰⁰ that showcases how this
can be done!).

For the sake of simplicity and since our app is fairly small, we’ll continue to have conditional classes
be applied in different templates/components to dictate how dark mode is applied. However, we’ll
look to improve how the isDark data property can be accessed in the different components of our
app.

If we were to continue to build our app, we would have to continue passing the isDark data value
as a prop to every component. This level of prop-drilling would become cumbersome very quickly.
Since isDark is a value we’d want global in our app, an improvement can be made by hoisting the
value up to a Vuex store where components can directly query and mutate.

With the help of the composition API, we can achieve this in a more straightforward manner.
We’ll create another hook labeled useDarkMode() in a file called useDarkMode.js that is kept in
the src/app/hooks/ directory.

src/

app/

components/

hooks/

useDarkMode.js

useNotification.js

App.vue

store.js

In the useDarkMode() hook, we’ll look to manipulate a single primitive data value. We’ll use the
ref() function to create this ref property that we’ll call darkModeActive with an initial value of
false.

import { ref } from "vue";

const darkModeActive = ref(false);

const useDarkMode = () => {

// ...

};

¹⁹⁹https://developer.mozilla.org/en-US/docs/Web/CSS/Using_CSS_custom_properties
²⁰⁰https://dev.to/ananyaneogi/create-a-dark-light-mode-switch-with-css-variables-34l8

Composition API 492

Our useDarkMode() hook will be straightforward and simply return an object that contains a
property labeled darkMode that has the darkModeActive value. Additionally, we’ll also return a
function called toggleDarkMode() that can be used to toggle this value.

import { ref } from "vue";

const darkModeActive = ref(false);

const useDarkMode = () => {

const toggleDarkMode = () => {

darkModeActive.value = !darkModeActive.value;

};

return {

darkMode: darkModeActive,

toggleDarkMode,

};

};

It would be great to have a notification be set in the UI to notify the user when dark mode has been
enabled or disabled. To achieve this, all we’ll have to do is import the useNotification() hook and
run the setNotification() function available to us to set a notification. The text content of the
notification will depend on whether the user is enabling or disabling dark mode.

Finally, having the useDarkMode() function be exported will have our useDarkMode.js file look like
the following in its complete state.

composition-api/src/app-2/hooks/useDarkMode.js

import { ref } from 'vue';

import useNotification from './useNotification';

const darkModeActive = ref(false);

const useDarkMode = () => {

const { setNotification } = useNotification();

const toggleDarkMode = () => {

darkModeActive.value = !darkModeActive.value;

const type = darkModeActive.value ? 'Dark Mode' : 'Light Mode';

return setNotification(`${type} turned on!`);

};

Composition API 493

return {

darkMode: darkModeActive,

toggleDarkMode

};

}

export default useDarkMode;

Updating <App />

In the parent <App /> component, we can now remove the local isDark ref property and utilize the
useDarkMode() hook we’ve just created. We’ll destruct the darkMode and toggleDarkMode() function
and have it returned from the setup() function of the <App /> component. We’ll update the template
to utilize the newly named darkMode property instead of isDark and not pass the darkMode property
as props to the <ListingsList /> component.

With these changes, the <template> and <script> of the <App /> component will look like the
following.

composition-api/src/app-2/App.vue

<template>

<div class="app" :class="{ 'has-background-black': darkMode }">

<div class="container is-max-desktop py-6 px-4">

<div v-if="loading">

<progress class="progress is-small is-info" max="100">60%</progress>

</div>

<div v-if="!loading">

<ListingsList :listings="listings" />

</div>

<button class="button is-small is-pulled-right my-4"

@click="toggleDarkMode">

{{ darkModeButtonText }}

</button>

</div>

</div>

</template>

<script>

import { computed } from 'vue';

import { useStore } from 'vuex';

import ListingsList from './components/ListingsList';

Composition API 494

import useDarkMode from './hooks/useDarkMode';

export default {

name: 'App',

setup() {

const store = useStore();

const { darkMode, toggleDarkMode } = useDarkMode();

const darkModeButtonText = computed(() => {

return darkMode.value ? 'Light Mode' : 'Dark Mode';

});

const listings = computed(() => store.getters.listings);

const loading = computed(() => store.getters.loading);

store.dispatch('getListings');

return {

darkMode,

darkModeButtonText,

listings,

loading,

toggleDarkMode,

}

},

components: {

ListingsList

}

}

</script>

Updating <ListingsList />

Our child components are only concerned about accessing the value of the darkMode property. To
have this property be accessible, we’ll simply need to destruct the darkMode property from the object
returned in the useDarkMode() hook.

In the <ListingsList /> component, we can do the above, return the darkMode property in the
setup() function, and use it in the template. We’ll also avoid passing the darkMode property down
as props to the <Notification /> and <ListingsListItem /> components.

With these changes, our <ListingsList /> component will look like the following:

Composition API 495

composition-api/src/app-2/components/ListingsList.vue
<template>

<div id="listings">

<Notification :notification="notification" :toggleNotification="toggleNotificati\

on" />

<div v-for="listing in listings" :key="listing.id">

<ListingsListItem :listing="listing" />

</div>

<button

class="button is-light"

:class="{ 'is-primary': darkMode, 'is-info': !darkMode }"

@click="resetListings"

:disabled="listings.length === 3">

Reset

</button>

</div>

</template>

<script>

import { onMounted } from 'vue';

import { useStore } from 'vuex';

import ListingsListItem from './ListingsListItem';

import Notification from './Notification';

import useDarkMode from '../hooks/useDarkMode';

import useNotification from '../hooks/useNotification';

export default {

name: 'ListingsList',

props: ['listings'],

setup() {

const store = useStore();

const { darkMode } = useDarkMode();

const { notification, setNotification, toggleNotification } = useNotification();

const resetListings = () => {

setNotification("Listings have been reset!");

return store.dispatch('resetListings')

};

onMounted(() => {

setNotification("Welcome to NewlineBnB!");

});

Composition API 496

return {

darkMode,

notification,

toggleNotification,

resetListings

}

},

components: {

ListingsListItem,

Notification

}

}

</script>

Updating <ListingsListItem />

We can update the <ListingsListItem /> component to now also depend on the useDarkMode()

hook to return the value of the global darkMode ref.

composition-api/src/app-2/components/ListingsListItem.vue

<template>

<article class="media mb-5">

<figure class="media-left">

<p class="image is-128x128 is-hidden-mobile">

</p>

</figure>

<div class="media-content">

<div class="content">

<p :class="{ 'has-text-white': darkMode}">

<strong :class="{ 'has-text-white': darkMode}">

{{ listing.title }}

<small class="pl-1"

:class="{ 'has-text-primary': darkMode, 'has-text-info': !darkMode}">

{{ listing.address }}

</small>

{{ listing.description }}

Composition API 497

<small class="has-text-weight-bold"

:class="{ 'has-text-primary': darkMode, 'has-text-info': !darkMode}">

${{ listing.price/100 }}/day · Rating: {{ listing.rat\

ing }}/5

</small>

</p>

</div>

</div>

<div class="media-right">

<button class="button is-light is-small"

:class="{ 'is-primary': darkMode, 'is-info': !darkMode}" @click="removeListi\

ng(listing)">

Remove

</button>

</div>

</article>

</template>

<script>

import { useStore } from 'vuex';

import useDarkMode from '../hooks/useDarkMode';

import useNotification from '../hooks/useNotification';

export default {

name: 'ListingsListItem',

props: ['listing'],

setup(props) {

const store = useStore();

const { darkMode } = useDarkMode();

const { setNotification } = useNotification();

const removeListing = () => {

setNotification("Listing is to be deleted");

return store.dispatch('removeListing', props.listing);

}

return {

darkMode,

removeListing

}

}

}

Composition API 498

</script>

Updating <Notification />

Finally, we can update the <Notification /> component to use the useDarkMode() hook as well.

composition-api/src/app-2/components/Notification.vue

<template>

<div v-if="notification.active"

class="notification is-light py-3 px-3 is-size-7"

:class="{ 'is-primary': darkMode, 'is-info': !darkMode }">

<button class="delete" @click="toggleNotification"></button>

{{ notification.message }}

</div>

</template>

<script>

import useDarkMode from '../hooks/useDarkMode';

export default {

name: 'Notification',

props: ['notification', 'toggleNotification'],

setup() {

const { darkMode } = useDarkMode();

return {

darkMode

}

}

}

</script>

If we were to save all our changes and check our running app at http://localhost:8080, we’ll
notice toggling dark mode in our app continues to work as intended. When dark mode is enabled or
disabled, a notification is also shown to notify the user that the action was conducted successfully!

Composition API 499

The Store

Awesome work so far! With the help of composable functions, we were able to neatly compose
separate hooks that helped allow us to establish notifications and dark mode within our app.

In both of these hooks, we notice that by placing our reactive data object or ref value outside of the
scope of the hook and outside of the scope of components, we essentially created data that can be
shared by any component in our app.

useDarkMode():

Composition API 500

import { ref } from "vue";

const darkModeActive = ref(false);

const useDarkMode = () => {

// ...

};

export default useDarkMode;

useNotification():

import { reactive } from "vue";

const data = reactive({

message: "",

active: false,

});

const useNotification = () => {

// ...

};

export default useNotification;

This begs the question - could we not simply use the reactive() function to create the data in our
store.js file and not have to rely on Vuex to do so? We very much can!

To see this in action, we’ll update the store.js with the following minor changes:

• We’ll remove the import and use of the createStore() function from Vuex.
• We’ll use the reactive() function to create our reactive state data object.
• We’ll have our mutations and actions be objects that contain function properties for the
mutations and actions we’ve already created.

• Instead of having a getters() object that doesn’t do any computation to the state values we
return. We’ll simply return the state object directly. Since we would still want to adhere to a
flux-like style of data management (i.e. components should never mutate store state directly
but should fire actions that commit to mutations), we’ll return our state object within a
readonly()²⁰¹ function available to us from the vue library. readonly()²⁰² is a function that
takes an object and returns a readonly proxy to the original where the original can’t be changed.

With these changes, our store.js file will now look like the following.

²⁰¹https://v3.vuejs.org/api/basic-reactivity.html#readonly
²⁰²https://v3.vuejs.org/api/basic-reactivity.html#readonly

Composition API 501

composition-api/src/app-complete/store.js

import { reactive, readonly } from 'vue';

import axios from 'axios';

const state = reactive({

listings: [],

loading: false

});

const mutations = {

updateListings: (payload) => state.listings = payload,

loadingPending: () => state.loading = true,

loadingComplete: () => state.loading = false,

}

const actions = {

getListings: () => {

mutations.loadingPending();

return axios.get('/api/listings').then((response) => {

mutations.updateListings(response.data);

mutations.loadingComplete();

});

},

removeListing: (listing) => {

return axios.post('/api/listings/delete', listing).then((response) => {

mutations.updateListings(response.data);

});

},

resetListings: () => {

return axios.post('/api/listings/reset').then((response) => {

mutations.updateListings(response.data);

});

},

};

export default {

state: readonly(state),

mutations,

actions

};

The remaining changes we’ll need to make is how our components access our newly established

Composition API 502

store.

provide/inject

Since our store is being exported from the store.js file, we can have any component directly import
it. However, we’ll go through a different approach to have our components be able to access the store.
We’ll use the provide/inject²⁰³ pattern.

provide/inject is an approach where a parent component can simply provide data to any child
component that needs to access it without the need to have it drilled down as props through the
component hierarchy.

With the standard options setting, this can be achieved by first providing a value in the provide

option of a component.

<template>

<!-- Template -->

</template>

<script>

export default {

name: "ParentComponent",

// provide option

provide: {

greeting: "Hello World!",

},

};

</script>

Child components anywhere in the component tree (e.g. a child component nested 5 levels deep) can
access the provided value with the inject option.

<template> {{ greeting }} </template>

<script>

export default {

name: "ChildComponent",

// inject option

inject: [greeting],

};

</script>

²⁰³https://v3.vuejs.org/guide/component-provide-inject.html#provide-inject

Composition API 503

Like any other option that exists in a Vue component, we can use the utility provide()²⁰⁴ and
inject()²⁰⁵ functions to achieve the same outcome within a setup() function.

Parent Component

<template>

<!-- Template -->

</template>

<script>

import { provide } from "vue";

export default {

name: "ParentComponent",

setup() {

// first argument - property name - e.g. greeting

// second argument - property value - e.g. "Hello World!"

provide("greeting", "Hello World!");

return {

// ...

};

},

};

</script>

Child Component

<template>

<div>{{ greeting }}</div>

</template>

<script>

import { inject } from "vue";

export default {

name: "ParentComponent",

setup() {

inject("greeting");

return {

²⁰⁴https://v3.vuejs.org/guide/composition-api-provide-inject.html#using-provide
²⁰⁵https://v3.vuejs.org/guide/composition-api-provide-inject.html#using-inject

Composition API 504

greeting,

};

},

};

</script>

For the provide/inject pattern to work, the child component must be a direct descendant of the
parent component. Though this pattern works well, it should only be used for data that a distant
child component may need from a parent. Otherwise, props should be the standard to have data be
passed from parent to child.

The store we’ve created outside of the context of Vuex is a great example of data we would like any
child component within our app to access. As a result, we’ll use the provide/inject pattern to have
the store be widely available.

Though we could have the provide() function established in the parent <App /> component, we’ll
go ahead and have the .provide() function be established where our application is being mounted
on the DOM.We’ll have this be set in the main.js file and provide the store to a property also labeled
store.

import { createApp } from "vue";

import App from "./app/App.vue";

import store from "./app/store";

createApp(App).provide("store", store).mount("#app");

In any component of our app, we’ll now be able to access the store with the inject() capability!
We’ll first update the <script> of the parent <App /> component to obtain access to the store with
the inject() method. Additionally, we’ll access the listings and loading property in the store
directly from the state object and we’ll run the getListings() action method directly from the
store.actions object.

composition-api/src/app-complete/App.vue

<script>

import { computed, inject } from 'vue';

import ListingsList from './components/ListingsList';

import useDarkMode from './hooks/useDarkMode';

export default {

name: 'App',

setup() {

const store = inject('store');

const { darkMode, toggleDarkMode } = useDarkMode();

Composition API 505

const darkModeButtonText = computed(() => {

return darkMode.value ? 'Light Mode' : 'Dark Mode';

});

const listings = computed(() => store.state.listings);

const loading = computed(() => store.state.loading);

store.actions.getListings();

return {

darkMode,

darkModeButtonText,

listings,

loading,

toggleDarkMode,

}

},

components: {

ListingsList

}

}

</script>

We’ll then update the <script> of the <ListingsList /> component to have the store be injected
into the component. We’ll have the resetListings() function be run from the store.actions object
as well.

composition-api/src/app-complete/components/ListingsList.vue

<script>

import { inject, onMounted } from 'vue';

import ListingsListItem from './ListingsListItem';

import Notification from './Notification';

import useDarkMode from '../hooks/useDarkMode';

import useNotification from '../hooks/useNotification';

export default {

name: 'ListingsList',

props: ['listings'],

setup() {

const store = inject('store');

const { darkMode } = useDarkMode();

Composition API 506

const { notification, setNotification, toggleNotification } = useNotification();

const resetListings = () => {

setNotification("Listings have been reset!");

return store.actions.resetListings();

};

onMounted(() => {

setNotification("Welcome to NewlineBnB!");

});

return {

darkMode,

notification,

toggleNotification,

resetListings

}

},

components: {

ListingsListItem,

Notification

}

}

</script>

Finally, we’ll update the <script> of the <ListingsListItem /> component to access the store with
the inject() method. We’ll have the removeListing() function be run from the store.actions

object as well.

composition-api/src/app-complete/components/ListingsListItem.vue

<script>

import { inject } from 'vue';

import useDarkMode from '../hooks/useDarkMode';

import useNotification from '../hooks/useNotification';

export default {

name: 'ListingsListItem',

props: ['listing'],

setup(props) {

const store = inject('store');

const { darkMode } = useDarkMode();

const { setNotification } = useNotification();

Composition API 507

const removeListing = () => {

setNotification("Listing is to be deleted");

return store.actions.removeListing(props.listing);

}

return {

darkMode,

removeListing

}

}

}

</script>

That’s it! We’ve just recreated the store of our app without the need to use Vuex! If we save our
changes and take a look at our running app, everything should continue to work as expected.

Do the capabilities of the composition API completely replace the need for us to use the Vuex library?
Not necessarily. There are advantages and disadvantages to both.

Composition API 508

Some of the advantages of using Vuex is how well it integrates with Vue’s official devtools²⁰⁶ to
provide ‘time-travel’ debugging. However, if one wanted to create a simple global store where
components adhere to a flux-like pattern of managing data, they could achieve this by creating
their custom compositional store.

Conclusion

The goal of this chapter was to present a very different approach to building Vue applications with
the help of the composition API. A lot of the concepts we’ve learned throughout the book (e.g. single-
file components, template attributes, component options, etc.) remain the same but the composition
API allows us to prepare our component logic in a more reusable and compositional manner.

If one was building a large-scale Vue application (i.e. an app with dozens if not hundreds of
Vue components) where the need to compose and share logic is something important, using the
compositional API can be more advantageous. On the other hand, if one was to focus on building
a small to medium-sized Vue app where there wouldn’t be much of a need to share logic between
components, sticking with the standard options API would work well here.

A few resources outside of this chapter that may be helpful:

• Vue Composition API RFC²⁰⁷
• Vue Documentation | Basic Reactivity APIs²⁰⁸
• Vue Documentation | Composition API²⁰⁹

In the next chapter, we’ll investigate another advantage of using the composition API - better type
inference!
²⁰⁶https://github.com/vuejs/vue-devtools
²⁰⁷https://composition-api.vuejs.org/#basic-example
²⁰⁸https://v3.vuejs.org/api/basic-reactivity.html#reactive
²⁰⁹https://v3.vuejs.org/api/composition-api.html#setup

TypeScript
In the last chapter, we saw how Vue allows us to build components differently with the Composition
API. The Composition API exposes Vue’s core capabilities as standalone functions and the main
advantage of building Vue apps with this API is being able to prepare component logic in a more
reusable and compositional manner.

Another advantage to building apps with the Composition API is better type inference. Since
the Composition API helps us handle our component logic with variables and standard JavaScript
functions, it becomes a lot easier to build large-scale Vue applications with a static type system like
TypeScript!

As mentioned in the RFC documentation²¹⁰ for the Composition API, Vue’s traditional options API
was not designed with type inference in mind. This posed challenges to developers interested in
working on large Vue projects with TypeScript (e.g. Reddit thread²¹¹).

Tomitigate some of the difficulties of using Vuewith TypeScript, the vue-class-component²¹² library
was created by the Vue team to help allow developers to author components as TypeScript classes²¹³.

<template>

<div>

{{ greeting }}

<button @click="changeGreeting">Click</button>

</div>

</template>

<script>

import Vue from "vue";

import Component from "vue-class-component";

// Use the @Component decorator to make a class a Vue component

@Component

export default class Counter extends Vue {

// Class properties are automatically component data

greeting = "Hello World!";

// Class prototype method are component methods

changeGreeting() {

²¹⁰https://composition-api.vuejs.org/#better-type-inference
²¹¹https://www.reddit.com/r/vuejs/comments/czme8n/switching_to_vue_typescript_makes_it_hard_wait/
²¹²https://github.com/vuejs/vue-class-component
²¹³https://www.typescriptlang.org/docs/handbook/classes.html#classes

TypeScript 510

this.greeting = "Welcome to the app!";

}

}

</script>

Though the vue-class-component library does allow for easier TypeScript development, developers
need to familiarize themselves with creating components in a Class setting as well as understand
and use a TypeScript feature known as decorators²¹⁴. This requires a bit of a mental shift from
construcing components with the options API.

Additionally, the Composition API RFC documentation²¹⁵ highlights some other issues that exist
with having TypeScript support with a Class-based API.

In this chapter, we’ll introduce the concept of TypeScript within a Vue app that utilizes the
Composition API.

Note: This chapter only aims to be an introduction for the use of TypeScript with Vue
components built with the Composition API. TypeScript and static typing is a broad
subject that covers a large number of topics, many we won’t be able to cover here.

The main goals of this chapter is to introduce what TypeScript is, understand the benefits
with using a static type system, and learn how TypeScript can be used in a Vue app.

This chapter builds on top of the work we did in the previous chapter titled Composition
API. We encourage you to read through that chapter first before continuing here.

What is TypeScript?

JavaScript is considered a weakly typed language whichmeans that in JavaScript, we have the ability
to assign one data type to a variable and later on assign another data type to that same variable.

Assume we were to create constant variables labeled one and two that have the numerical values of
1 and 2 respectively.

const one = 1;

const two = 2;

Shortly after we’ve instantiated our constant variables, assume we decided to reassign the two

variable to be a string with a value of 'two'. Since we’re reassigning the value of a variable - we
can change how we instantiate the variable by using the let keyword²¹⁶.

²¹⁴https://www.typescriptlang.org/docs/handbook/decorators.html#decorators
²¹⁵https://composition-api.vuejs.org/#type-issues-with-class-api
²¹⁶https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let

TypeScript 511

const one = 1;

let two = 2;

two = "two";

With the above code, JavaScript will execute without any errors or warnings. This is because
JavaScript is considered a weakly typed language! It doesn’t keep track of the types of variables we
create in our apps.

This is why TypeScript²¹⁷ was created. TypeScript is a strongly-typed superset of JavaScript that
was introduced in 2012 by Microsoft. It is designed to:

• make code easier to read and understand.
• avoid painful bugs that developers commonly run into when writing JavaScript.
• ultimately save developers time and effort.

It’s important to note that TypeScript is not a completely different language. It’s a typed
extension of JavaScript. The key difference between Static vs. Dynamic typing (i.e. JavaScript vs.
TypeScript) has to do with when the types of the written program are checked. In statically-typed
languages (TypeScript), types are checked at compile-time (i.e. when the code is being compiled).
In dynamically-typed languages (JavaScript), types are checked at run-time (when the code is being
run).

TypeScript is a development tool. Clients and servers don’t recognize TypeScript codewhen run. This
is why the static types that can be specified in TypeScript are stripped away during a compilation
process that transforms TypeScript code into valid JavaScript.

The typescript npm library²¹⁸ provides a compiler that helps allow the compiling of
TypeScript code into JavaScript.

Static Typing

The headline feature of TypeScript is static typing. Instead of having our variables in the example
above be inferred as numbers, we can statically annotate the type of our variables as number with
the syntax : number.

const one: number = 1;

const two: number = 2;

If we were to try the above example of changing the value of a variable to a different type:

²¹⁷https://www.typescriptlang.org/
²¹⁸https://code.visualstudio.com/docs/typescript/typescript-tutorial#_install-the-typescript-compiler

TypeScript 512

const one: number = 1;

let two: number = 2;

two = "two";

TypeScript will error by telling us “Type ‘string’ is not assignable to type ‘number’”!

Feel free to run the above example in the TypeScript Playground²¹⁹ maintained by the
TypeScript team.

TypeScript allows us to use and annotate many different basic types²²⁰.

const three: boolean = false;

const three: string = "one";

const three: null = null;

const three: undefined = undefined;

const three: any = {};

There are other basic types as well such as the array type²²¹, the enum type²²², the void type²²³, etc.

When we explicitly define the type of variable, we have to provide a value that matches that type.
The any type²²⁴ in TypeScript is unique since it allows us to define a variable with any type. Variables
with the any type don’t give us the capability TypeScript provides and should be used sparingly.

We’ll learn other TypeScript concepts as we proceed with developing our app.

Vue & TypeScript

The easiest way to get started with a Vue + TypeScript project is to use the Vue CLI²²⁵.

While creating a new project with the vue create {name_of_project} command in the terminal,
the CLI will scaffold a Vue + TypeScript project if we select TypeScript as a feature we want in our
project.

²¹⁹https://www.typescriptlang.org/play?#code/MYewdgzgLgBOCmAuGYCuBbARvATjAvDAIwDcAsAFAA28sUA7iMmlrgTAEzkWUMjsAiPgJJA
²²⁰https://www.typescriptlang.org/docs/handbook/basic-types.html
²²¹https://www.typescriptlang.org/docs/handbook/basic-types.html#array
²²²https://www.typescriptlang.org/docs/handbook/basic-types.html#enum
²²³https://www.typescriptlang.org/docs/handbook/basic-types.html#void
²²⁴https://www.typescriptlang.org/docs/handbook/basic-types.html#any
²²⁵https://cli.vuejs.org/

TypeScript 513

If we’re prompted to select a version of Vue, we’ll select version 3.x to build a Vue app with the
Composition API.

If during the set-up process for the project, we’re prompted to confirm a class-style component
syntax, we can answer with No to ensure we have TypeScript be established in our app without the
use of the vue-class-component library.

TypeScript 514

The example code for this entire chapter is already scaffolded with the help of the Vue CLI and lives
in the typescript/ directory in the code download. In the terminal, let’s change into the typescript/
directory using the cd command:

$ cd typescript

We’ll use npm to install all the application’s dependencies:

$ npm install

When all dependencies have been installed, we’ll boot the application with npm run start:

$ npm run start

We’ll see something similar to the following in our terminal:

$ npm run start

Compiled successfully in ####ms

App running at:

- Local: http://localhost:8080

- Network: http://##.##.##.###:8080

TypeScript 515

We’ll now be able to visit http://localhost:8080 to see our app running in the browser:

NewlineBnB

The app we’ll be working with is the application we built in the last chapter. To get an understanding
of how the app is built and the client-server interaction, refer to the previous chapter titled
Composition API. For the sake of brevity, we won’t be repeating the details behind how the app
is built and/or structured.

For developing in a TypeScript setting, we recommend using the Visual Studio Code²²⁶
editor since it provides very useful configuration, out-of-the-box, for TypeScript.

We also recommend installing the Vetur Extension²²⁷ in your VS Code editor which helps
provide TypeScript editor inference for our Vue components.

Lastly, we encourage you to install the VSCode ESLint extension²²⁸. The VSCode ESLint
extension allows us to integrate ESLint into VSCode to help provide warnings, issues, and
errors right in our editor.

²²⁶https://code.visualstudio.com/
²²⁷https://github.com/vuejs/vetur
²²⁸https://marketplace.visualstudio.com/items?itemName=dbaeumer.vscode-eslint

TypeScript 516

Since we’ve now replicated the project in a TypeScript setting, the Vue CLI has helped scaffold some
additional files in our project directory that we’ll go over.

tsconfig.json

In the root of our project directory, we’ll notice a tsconfig.json file is present.

typescript/

...

tsconfig.json

The tsconfig.json file is a TypeScript configuration file²²⁹. The TypeScript configuration file is a
JSON file that needs to be created at the root of a TypeScript project and helps indicate the parent
directory is a TypeScript project. This configuration file is where we can customize our TypeScript
configuration and guide our TypeScript compiler with options required to compile the project.

There are a large number of options that have already been added to our tsconfig.json file from the
Vue CLI. A list of each option and what it provides can be seen in the TypeScript handbook²³⁰. We’re
not going to go through all the options that have been added but instead highlight just a couple.

You do not need to know the details behind each of the options listed in the TypeScript
configuration file to get started. We’ll only describe a few options for those who may be
interested in learning what these options entail.

target

The target option specifies the target JavaScript version the compiler will output. A target output
of es5 is specified in our TypeScript project.

typescript/tsconfig.json

"target": "es5",

module

The module option refers to the module manager to be used in the compiled JavaScript output. A
module of esnext is specified.

²²⁹https://www.typescriptlang.org/docs/handbook/tsconfig-json.html
²³⁰https://www.typescriptlang.org/docs/handbook/compiler-options.html

TypeScript 517

typescript/tsconfig.json

"module": "esnext",

strict

The strict option is applied which enables a series of strict type checking options such as
noImplicitAny, noImplicitThis, strictNullChecks, and so on.

typescript/tsconfig.json

"strict": true,

jsx

jsx allows us to state the support of JSX within TypeScript files. The preserve option states that JSX
can be supported within TypeScript JSX files.

typescript/tsconfig.json

"jsx": "preserve",

moduleResolution

moduleResolution refers to the strategy used to resolve module declaration files (i.e. the type
definition files for external JavaScript code). With the node approach, theyâ€™re simply loaded
from the node_modules/ folder.

typescript/tsconfig.json

"moduleResolution": "node",

skipLibCheck

skipLibCheck skips type checking of all declaration files.

typescript/tsconfig.json

"skipLibCheck": true,

esModuleInterop | allowSyntheticDefaultImports

esModuleInterop and allowSyntheticDefaultImports combined gives us the ability to allow default
imports of modules that have no default export.

TypeScript 518

typescript/tsconfig.json

"esModuleInterop": true,

"allowSyntheticDefaultImports": true,

lib

lib indicates the list of library files to be included in the compilation. lib is important because
it helps us decouple the compile target and the library support we would want. For example, the
Promise keyword doesn’t exist in ES5 and if we intend to use it, TypeScript would display a warning
since our compile target is es5. By specifying a lib option of esnext, we can still have our compiler
compile down to ES5 while using the Promise keyword with no issues.

typescript/tsconfig.json

"lib": [

"esnext",

"dom",

"dom.iterable",

"scripthost"

]

include | exclude

The include and exclude options allow to us specify an array of filenames or patterns to include or
exclude in the TypeScript program.

typescript/tsconfig.json

"include": [

"src/**/*.ts",

"src/**/*.tsx",

"src/**/*.vue",

"tests/**/*.ts",

"tests/**/*.tsx"

],

"exclude": [

"node_modules"

]

eslintrc.json

In the root of our project directory, there also exists a .eslintrc.json file.

TypeScript 519

typescript/

...

.eslintrc.json

The .eslintrc.json file is a configuration file that we’ve introduced after our scaffoled project was
created with the Vue CLI. .eslintrc.json helps dictate the ESLint set up of our application.

Linting (i.e. code checking) is a process that analyzes code for potential errors. When it
comes to linting JavaScript and/or TypeScript code, ESLint²³¹ is the most popular library
to do so. It’s configurable, easy to introduce, and comes with a set of default rules.

To advantage of noticing lint errors in our code editor, we recommend installing the
VSCode ESLint extension²³².

Through our Vue CLI setup, we’ve selected we’re interested in having linting be established. As a re-
sult, in the package.json file, we’ll notice a fewESLint specific packages (eslint, eslint-plugin-vue,
and @vue/cli-plugin-eslint among others) that have already been installed which helps allow for
the lint checking of .vue files in our Vue code.

We’ve created a custom .eslintrc.json file to simply help disable certain ESLint rules that we feel
don’t need to be enforced.

extends

The extends option in .eslintrc.json allows us to extend linting rules from a certain plugin. We’ve
specified an array value of ["plugin:vue/essential", "eslint:recommended", "@vue/typescript"]

which dictates we want each of these configurations where the configurations extend the preceding
configurations.

"extends": [

"plugin:vue/essential",

"eslint:recommended",

"@vue/typescript"

],

rules

rules is where we can declare individual ESLint rules we want in our app. Here is where we override
the rules from the packages we’ve extended above.

²³¹https://eslint.org/
²³²https://marketplace.visualstudio.com/items?itemName=dbaeumer.vscode-eslint

TypeScript 520

"rules": {

"no-unused-vars": "off",

"no-return-assign": "off",

"comma-dangle": "off",

"quotes": "off",

"semi": "off",

"arrow-body-style": "off",

"max-len": [

"error",

{ "code": 100 }

],

"@typescript-eslint/no-unused-vars": "error"

}

The rules we’ve customized was done purely from a preference standpoint. You’re welcome to
edit/customize any of the ESLint rules as you see fit.

https://eslint.org/docs/rules/²³³ documents the details behind all of the different ESLint rules.

src/

We’ll be focusing entirely in the src/ directory so we’ll take a look at the files within the src/

directory:

$ ls src/

app/

app-1/

app-complete/

main.ts

shims-vue.d.ts

app/ constitutes the starting point of the application. app-complete/ denotes the completed applica-
tion for this section and app-1/ is a significant step we take in between.

Let’s first take a look at the shims-vue.d.ts file kept within our src/ directory.

shims-vue.d.ts

The shims-vue.d.ts file has a unique file extension, .d.ts.

²³³https://eslint.org/docs/rules/

TypeScript 521

• .ts is the file extension used to denote TypeScript files that will be compiled to JavaScript.
We’ll explain this point some more shortly.

• The .d.ts file extension are declaration files²³⁴, files that describe the typings of a JavaScript
file that exists elsewhere.

We’ll quickly highlight what declaration files are in TypeScript before continuing to understand the
purpose of the shims-vue.d.ts file.

Declaration Files

Though we won’t have the need to create any declaration files or install any additional third-party
libraries in our project, the concept of declaration files is important to know.

TypeScript allows for the creation and use of declaration files²³⁵ that describe the shape of existing
JavaScript code. The most common case for using declaration files is working with an npm package
that has no types.

Though we could attempt to write custom declaration files for any external JavaScript library we
may need, this would be a tedious task. In the TypeScript community, there exists a DefinitelyTyped
repository²³⁶ that holds TypeScript declaration files for a large number of packages and is entirely
community-driven!

As an example, if we were to install the express and node packages into a TypeScript project, we’ll
notice that these projects are not TypeScript libraries (they’re written entirely in JavaScript).

$: npm install -D node express

To install the accompanying TypeScript declaration file packages from the DefinitelyTyped Github
Repository, we’ll install the packages under @types/.

$: npm install -D @types/node @types/express

To reiterate, wewon’t be installing any additional libraries and accompanying typings in this chapter.
The above section aims to simply explain the above as useful information. Just like we can install
declaration files from other libraries, we can also create declaration files of our own.

.ts files contain TypeScript code that is compiled down to JavaScript. Declaration files only
serve the purpose to contain type information. They are only used for type-checking and
are not compiled down to JavaScript.

The shims-vue.d.ts file is a declaration file scaffolded by the Vue CLI and its purpose is to have
our TypeScript Webpack application recognize the presence of .vue component modules.

²³⁴https://www.typescriptlang.org/docs/handbook/declaration-files/introduction.html
²³⁵https://www.typescriptlang.org/docs/handbook/declaration-files/introduction.html
²³⁶https://github.com/DefinitelyTyped/DefinitelyTyped

TypeScript 522

typescript/src/shims-vue.d.ts

declare module '*.vue' {

import type { DefineComponent } from 'vue'

const component: DefineComponent<{}, {}, any>

export default component

}

There are no changes we’ll need to do to the file. With the presence of the shims-vue.d.ts file, we’ll
be able to create our Vue components in .vue files and have them imported specifically with the
extension .vue.

We’ll now take a look at the main.ts file in our src/ directory.

main.ts

typescript/src/main.ts

import { createApp } from 'vue';

import App from './app-complete/App.vue';

import store from './app-complete/store';

createApp(App).provide('store', store).mount('#app');

main.ts imports the store, wires it with the provide/inject pattern to the Vue instance that is
mounted to the DOM element of id="app", and renders the App component from the app-complete/
directory. This is the main mounting file from the state we’ve completed our project in the last
chapter.

However, we notice this file is denoted with the .ts extension, not .js. .ts is the file extension
used to denote TypeScript files that will be compiled to JavaScript. All TypeScript specific files
that are not Vue components and contain standard TypeScript code (e.g. no JSX) will need to have
the .ts file extension.

To not reference app-complete/ anymore, we’ll change the import of App and store from ./app-complete/

to ./app/.

import { createApp } from "vue";

import App from "./app/App.vue";

import store from "./app/store";

createApp(App).provide("store", store).mount("#app");

If we were to take a look at the running application at http://localhost:8080, we’ll see that our
app has failed to compile and we’re presented with an error!

TypeScript 523

If we were to take a look at our terminal, we’ll also be presented with a list of TypeScript errors we’ll
need to resolve.

These errors are the errors that occur when our TypeScript code is being compiled to JavaScript for
our local development. The app/ folder in our src/ directory denotes the point where we left off in
our previous chapter. Since we’ve moved the app/ to a TypeScript project that needs to be compiled,
there are TypeScript errors we’ll need to resolve!

TypeScript 524

We’ll now get started with resolving these errors.

Updating component imports with .vue

One of the errors that we notice provides us with the following information:

Failed to compile.

src/app/App.vue:20:26

TS2307: Cannot find module './components/ListingsList' ...

18 | <script lang="ts">

19 | import { defineComponent, computed, inject } from 'vue';

> 20 | import ListingsList from './components/ListingsList';

| ^^^^^^^^^^^^^^^^^^^^^^^^^^^

21 |

22 | import useDarkMode from './hooks/useDarkMode';

This error arises from the fact that when we import our Vue components without denoting the
.vue file extension, the import expects to happen from a file with the .ts extension. Given that our
project now can expect the presence of .vue file components (with the declaration established in
the shims-vue.d.ts file), we’ll go into all our component files and make sure we’re importing our
components explicitly with .vue.

We’ll update the import of /ListingsListItem and /Notification in the ListingsList.vue compo-
nent file:

typescript/src/app-1/components/ListingsList.vue

import ListingsListItem from './ListingsListItem.vue';

import Notification from './Notification.vue';

We’ll update the import of /ListingsList in the App.vue component file:

typescript/src/app-1/components/ListingsList.vue

import ListingsListItem from './ListingsListItem.vue';

Though this would have already been changed, we’ll ensure the import of /App in the main.ts is
also updated:

TypeScript 525

// ...

import App from "./app/App.vue";

// ...

defineComponent and <script lang="ts">

In the <script /> section of any component in our app, we’ll notice two unique statements.

We can notice that in the <script /> opening tag, we label a lang attribute with a value of "ts".

<script lang="ts">

// ...

</script>

To be able to use TypeScript in the <script /> of our components, we need to set the lang option
to a value of "ts".

The other statement we can notice is the use of a defineComponent() function that encapsulates the
options of a component.

<script lang="ts">

import { defineComponent } from "vue";

// ...

export default defineComponent({

// ...

});

</script>

defineComponent() returns the object passed into it and lets TypeScript properly infer types inside
Vue component options²³⁷. Since we’ll want type inference as we define the script of our components,
we’ll have all components be defined with the defineComponent() method.

Updating the store

Wwe inject the store in a few components of our app so that these components can query for store
state or dispatch actions to have state be changed. At this moment, we’ll be presented with the
following error in our components that inject the store.

²³⁷https://v3.vuejs.org/guide/typescript-support.html#defining-vue-components

TypeScript 526

Failed to compile.

src/app/App.vue:33:37

TS2571: Object is of type 'unknown'.

31 | return darkMode.value ? 'Light Mode' : 'Dark Mode';

32 | });

> 33 | const listings = computed(() => store.state.listings);

| ^^^^^

34 | const loading = computed(() => store.state.loading);

35 |

36 | store.actions.getListings();

The error tells us that the store object is of type unknown. The unknown²³⁸ type behaves similar to
the any type with some minor differences.

Our TypeScript configuration is set to raise an error when an implicit unknown or any is detected. This
is to warn us that our TypeScript app is unable to recognize the typings of a certain object/property
and as a result the code in this warning is not type safe.

We want our components to recognize the type and information kept within the store. As a result,
we’ll need to make some changes to update how our store is created. The store is created and kept
within the store.ts file and at this moment looks something like the following:

import { reactive, readonly } from "vue";

import axios from "axios";

const state = reactive({

// ...

});

const mutations = {

// ...

};

const actions = {

// ...

};

export default {

state: readonly(state),

mutations,

actions,

};

²³⁸https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-0.html#new-unknown-top-type

TypeScript 527

Since our store has a series of objects where the type of each property is important to track, we’ll
look to define the type definitions of these different store properties.

We’ll begin with the state of our store. To have our Vue code recognize the type of data being
returned from our server, we’ll want to define the shape of this data.

Interfaces

In TypeScript, there are two common ways we can describe the shape of a single object. A type
alias²³⁹ or an interface²⁴⁰.

// Type Alias

type Listing = {};

// Interface

interface Listing {}

A type alias or an interface can be used with minor differences between them²⁴¹. We’ll resort to
using an interface since the TypeScript team has historically used interfaces to describe the shape
of objects²⁴².

We’ll create an interface to describe the shape of a single listing object that is returned from our
server. We’ll have this as a Listing interface created at the top of our store.js file.

import { reactive, readonly } from "vue";

import axios from "axios";

interface Listing {

// ...

}

// ...

From the source data established in our server (server-listings-data.json), we can expect each
listing object to have:

• An id, title, description, url, and address fields of type string.
• price, numOfGuests, numOfBeds, numOfBaths, and rating fields of type number.

Knowing this, our Listing interface will look like the following:

²³⁹https://www.typescriptlang.org/docs/handbook/advanced-types.html#type-aliases
²⁴⁰https://www.typescriptlang.org/docs/handbook/interfaces.html
²⁴¹https://www.typescriptlang.org/docs/handbook/advanced-types.html#interfaces-vs-type-aliases
²⁴²https://www.typescriptlang.org/docs/handbook/advanced-types.html#interfaces-vs-type-aliases

TypeScript 528

import { reactive, readonly } from "vue";

import axios from "axios";

interface Listing {

id: string;

title: string;

description: string;

image: string;

address: string;

price: number;

numOfGuests: number;

numOfBeds: number;

numOfBaths: number;

rating: number;

}

// ...

With an interface created to describe the shape of a single listing, we can then look to create an
interface to describe the shape of the state object in our store.

import { reactive, readonly } from "vue";

import axios from "axios";

interface Listing {

id: string;

title: string;

description: string;

image: string;

address: string;

price: number;

numOfGuests: number;

numOfBeds: number;

numOfBaths: number;

rating: number;

}

interface State {

// ...

}

// ...

state in our store is to have two properties:

TypeScript 529

• listings: an array of listing objects.
• loading: a boolean value.

We define an Array type²⁴³ in TypeScript by specifying the type of element followed by the [] syntax.
We’ll specify the type of the listings state property as Listing[] and we’ll define the loading state
property as the basic boolean type.

typescript/src/app-1/store.ts

import { reactive, readonly, DeepReadonly } from 'vue';

import axios from 'axios';

interface Listing {

id: string;

title: string;

description: string;

image: string;

address: string;

price: number;

numOfGuests: number;

numOfBeds: number;

numOfBaths: number;

rating: number;

}

interface State {

listings: Listing[];

loading: boolean;

}

In TypeScript, the one other way we can define an array type is to use the array generic
type²⁴⁴ - e.g. Array<Listing>.

With the shape of our store state defined, we’ll want to apply this type definition to the creation of
our state object. If we recall, we can see that the state object is constructed with the help of Vue’s
reactive()²⁴⁵ function.

²⁴³https://www.typescriptlang.org/docs/handbook/basic-types.html#array
²⁴⁴https://www.typescriptlang.org/docs/handbook/basic-types.html
²⁴⁵https://v3.vuejs.org/api/basic-reactivity.html#reactive

TypeScript 530

typescript/src/app/store.ts

const state = reactive({

listings: [],

loading: false

});

The Vue documentation²⁴⁶ tells us that the typing of the reactive() function is a generic that looks
like the following:

function reactive<T extends object>(target: T): UnwrapNestedRefs<T>;

We’ll spend a little time explaining what generics are in TypeScript before setting the type of the
state object with the interface we’ve created.

TypeScript Generics

TypeScript generics²⁴⁷ is one piece of TypeScript that often confuses newcomers since it makes
TypeScript code appear a lot more complicated than it actually is.

First and foremost, generics²⁴⁸ is a tool/programming method that exists in languages like C# and
Java and is geared to help create reusable components that can work with a variety of different
types. Generics make this possible by allowing the abstraction of types used in functions or variables.
TypeScript adopts this pattern by allowing us to create code that can work with different types.

We’ll go through a simple example extrapolated from the TypeScript documentation²⁴⁹ to illustrate
the basics of generics. Assume we had a function called identity() that received an argument and
returned said argument. Since it’s expected to return what it receives, we can specify the type of the
argument and the value returned by the function to be the same (e.g. number).

const identity = (arg: number): number => {

return arg;

};

identity(5); // arg type and return type = number

identity("5"); // ERROR

If we tried to change the return type of the function, TypeScript will display a warning and rightly
so since it infers the type of the parameter being returned from the function.

²⁴⁶https://v3.vuejs.org/api/basic-reactivity.html#reactive
²⁴⁷https://www.typescriptlang.org/docs/handbook/generics.html
²⁴⁸https://en.wikipedia.org/wiki/Generic_programming
²⁴⁹https://www.typescriptlang.org/docs/handbook/generics.html

TypeScript 531

What if we wanted the identity() function to be reusable for different types? One thing we could
try to do is specify Union Types²⁵⁰ where the argument type and returned type could be one of many
types. For example, we could say the function argument can accept a number or a string and return
either a number or a string.

const identity = (arg: number | string): number | string => {

return arg;

};

identity(5); // arg type and return type = number

identity("5"); // arg type and return type = string

Though this would work in certain cases, the example above won’t be reusable especially if we don’t
know the type of the argument we’ll pass in.

Another approach we could take that would work for all types is to use the any type.

const identity = (arg: any): any => {

return arg;

};

identity(5); // arg type and return type = number

identity("5"); // arg type and return type = string

Using any would work but it isn’t ideal since we won’t be able to constrain what arguments the
function accepts or infer what the function is to return.

Here is where generics and the capability of passing a type variable comes in. Just like how we’ve
said identity() can accept an argument, we can also say that identity() is to accept a type variable,
or in other words a type parameter or type argument. In TypeScript, we can pass type variables with
the angle brackets syntax - <>. Here’s an example of having the identity() function accept a type
variable denoted with the letter T.

const identity = <T>(arg: any): any => {

return arg;

};

Just like how the value argument is available in the function, the type argument is available in the
function as well. We could say that whatever type variable is passed will be the type of the argument
and the return type of the function.

²⁵⁰https://www.typescriptlang.org/docs/handbook/advanced-types.html#union-types

TypeScript 532

const identity = <T>(arg: T): T => {

return arg;

};

identity<number>(5); // arg type and return type = number

identity<string>("5"); // arg type and return type = string

identity<any>({ fresh: "kicks" }); // arg type and return type = any

In the example above, TypeScript will be smart enough to recognize the value of the type
variable T, without always specifying a type value (e.g. <any>). This only works in simple
cases. In more complicated cases, we’ll need to ensure type variables are being passed in.

Definining the shape of our store properties

The reactive() function in Vue is a generic function that accepts a type variable. The type variable
passed in is used to describe the shape of the reactive object being created. Since we’ve created the
State interface to describe the shape of our store state, we’ll pass this interface down as the type
variable.

Our state object creation will now look like the following:

typescript/src/app-1/store.ts

const state = reactive<State>({

listings: [],

loading: false

});

Our state object is now appropriately type defined. If we were to provide a value for one of our
state properties that doesn’t match its type, TypeScript will give us an error.

TypeScript 533

We’ll nowmove towards making sure the parameters in the functions of our actions and mutations

objects are appropriately typed.

In our mutations object, we have one function that expects a payload, updateListings(). updateListings()
takes a payload of listing objects that it then uses to update the listings state property. As a result,
we’ll specify the payload of the updateListings() function to be of the Listing[] type.

typescript/src/app-1/store.ts

const mutations = {

updateListings: (payload: Listing[]) => state.listings = payload,

loadingPending: () => state.loading = true,

loadingComplete: () => state.loading = false,

};

For our actions, the only action function that expects to receive a payload is the removeListing()
function where the payload is to be the listing object that is to be deleted. As a result, we’ll update
this function to state that it should expect a listing of type Listing.

TypeScript 534

const actions = {

getListings: () => {

mutations.loadingPending();

return axios.get("/api/listings").then((response) => {

mutations.updateListings(response.data);

mutations.loadingComplete();

});

},

removeListing: (listing: Listing) => {

return axios.post("/api/listings/delete", listing).then((response) => {

mutations.updateListings(response.data);

});

},

resetListings: () => {

return axios.post("/api/listings/reset").then((response) => {

mutations.updateListings(response.data);

});

},

};

Each of our action functions use axios to fire either a GET or POST request to our server. Based on
the data received from our requests, do we then trigger mutation functions.

The axios.get() and axios.post() functions are generic methods that allow us to pass in a type
variable to describe the shape of the response.data that is to be returned from our server requests.
All of our server requests return the same format of data regardless of the changes made - an array
of listing objects. With that said, we’ll specify Listing[] as the type variable for each of our axios
methods.

typescript/src/app-1/store.ts

const actions = {

getListings: () => {

mutations.loadingPending();

return axios.get<Listing[]>('/api/listings').then((response) => {

mutations.updateListings(response.data);

mutations.loadingComplete();

});

},

removeListing: (listing: Listing) => {

return axios.post<Listing[]>('/api/listings/delete', listing).then((response) =>\

{

mutations.updateListings(response.data);

});

TypeScript 535

},

resetListings: () => {

return axios.post<Listing[]>('/api/listings/reset').then((response) => {

mutations.updateListings(response.data);

});

},

};

The last thing we’ll do in our store is create an interface to describe the shape of the store object
that is to be exported from our file. We’ll create this interface near the top of the file and label it
Store. We’ll have this interface be exported since we’ll want to import it in other parts of our app
shortly.

import { reactive, readonly } from "vue";

import axios from "axios";

interface Listing {

// ...

}

interface State {

// ...

}

export interface Store {

// the store interface

}

// ...

Our store object exports three properties - state, mutations, and actions.

We’ve defined an interface to describe our state object however when we create our store object,
we specify the exported state to be a readonly object with the help of Vue’s readonly()²⁵¹ function.

²⁵¹https://v3.vuejs.org/api/basic-reactivity.html#readonly

TypeScript 536

typescript/src/app/store.ts

export default {

state: readonly(state),

mutations,

actions

};

To help describe the shape of a readonly object, we can import and use the DeepReadOnly generic
type from Vue.

typescript/src/app-1/store.ts

import { reactive, readonly, DeepReadonly } from 'vue';

The DeepReadOnly generic receives a type variable to describe the shape of the object that is used to
create a readonly proxy. In our Store interface, we’ll state the state property of our exported store
is to be DeepReadOnly<State>.

export interface Store {

state: DeepReadonly<State>;

}

We’ve already helped define the shape of parameters to be passed in to our mutation and action
functions. In the Store interface, we’ll define the shape of these functions and explicitly dictate
what the return type of these functions are.

Our mutations property in the store will have the following type definition.

export interface Store {

state: DeepReadonly<State>;

mutations: {

updateListings: (payload: Listing[]) => Listing[];

loadingPending: () => boolean;

loadingComplete: () => boolean;

};

}

In our mutations property, we can see we’re returning Listing[] or boolean values for our mutation
functions. This is because of how we structured the functions like the following:

TypeScript 537

const mutations = {

updateListings: (payload: Listing[]) => (state.listings = payload),

loadingPending: () => (state.loading = true),

loadingComplete: () => (state.loading = false),

};

We have our mutation functions return assignments. Returning state.loading = true, for example,
has the assignment be set in place as well as returns a boolean value from the function.We don’t need
to have any of our mutation functions return anything since the goal of these functions is to simply
update state. Therefore, we could have our mutation functions be formatted like the following:

const mutations = {

updateListings: (payload: Listing[]) => {

state.listings = payload;

},

loadingPending: () => {

state.loading = true;

},

loadingComplete: () => {

state.loading = false;

},

};

The above will achieve the same outcome for our mutations however in this case, we would need to
state the return type of these functions as void.

export interface Store {

// ...

mutations: {

updateListings: (payload: Listing[]) => void;

loadingPending: () => void;

loadingComplete: () => void;

};

// ...

}

void²⁵² is a TypeScript type that represents the absence of having any type at all. And as the
TypeScript documentation²⁵³ states, void is often used as the return type of functions that do not
return a value.
²⁵²https://www.typescriptlang.org/docs/handbook/basic-types.html#void
²⁵³https://www.typescriptlang.org/docs/handbook/basic-types.html#void

TypeScript 538

Either of the above scenarios would work fine. We’ll keep the original setup where we had our
mutation functions either return Listing[] or boolean values return assignments by returning
assignments.

All our action functions return a Promise since each of the axios request calls are asynchronous.
When any of the action function Promise’s are resolved successfully, nothing is returned from the
result - we simply have the action functions trigger the appropriate mutation function. As a result,
we can define each of our action functions to have a return type of Promise<void>.

With the type definitions of our actions defined, our Store interface will look like the following:

typescript/src/app-1/store.ts

export interface Store {

state: DeepReadonly<State>,

mutations: {

updateListings: (payload: Listing[]) => Listing[];

loadingPending: () => boolean;

loadingComplete: () => boolean;

},

actions: {

getListings: () => Promise<void>;

removeListing: (listing: Listing) => Promise<void>;

resetListings: () => Promise<void>;

}

}

In TypeScript, Promise is a generic type where the type variable passed in is the non-error
return type of the Promise function.

The only thing left for us to do is assign the returned object from our store.ts file with the Store
interface. At the end of our store.ts file, we’ll create a store object, assign its type as the Store

interface, and have it exported from the file.

typescript/src/app-1/store.ts

const store: Store = {

state: readonly(state),

mutations,

actions

};

export default store;

With all the changes we’ve made, our store.ts file will look like the following in its entirety.

TypeScript 539

typescript/src/app-1/store.ts
import { reactive, readonly, DeepReadonly } from 'vue';

import axios from 'axios';

interface Listing {

id: string;

title: string;

description: string;

image: string;

address: string;

price: number;

numOfGuests: number;

numOfBeds: number;

numOfBaths: number;

rating: number;

}

interface State {

listings: Listing[];

loading: boolean;

}

export interface Store {

state: DeepReadonly<State>,

mutations: {

updateListings: (payload: Listing[]) => Listing[];

loadingPending: () => boolean;

loadingComplete: () => boolean;

},

actions: {

getListings: () => Promise<void>;

removeListing: (listing: Listing) => Promise<void>;

resetListings: () => Promise<void>;

}

}

const state = reactive<State>({

listings: [],

loading: false

});

const mutations = {

updateListings: (payload: Listing[]) => state.listings = payload,

TypeScript 540

loadingPending: () => state.loading = true,

loadingComplete: () => state.loading = false,

};

const actions = {

getListings: () => {

mutations.loadingPending();

return axios.get<Listing[]>('/api/listings').then((response) => {

mutations.updateListings(response.data);

mutations.loadingComplete();

});

},

removeListing: (listing: Listing) => {

return axios.post<Listing[]>('/api/listings/delete', listing).then((response) =>\

{

mutations.updateListings(response.data);

});

},

resetListings: () => {

return axios.post<Listing[]>('/api/listings/reset').then((response) => {

mutations.updateListings(response.data);

});

},

};

const store: Store = {

state: readonly(state),

mutations,

actions

};

export default store;

With our store.ts file being appropriately type defined, our components at this moment still won’t
recognize the shape of the store that’s being injected.

TypeScript 541

We concluded the last chapter by seeing how we can use the provide/inject²⁵⁴ pattern to have our
store available in all our components.

The inject()²⁵⁵ function is a generic that accepts a type variable to describe the shape of the data
being injected in the component. In all of our components that inject the store, we can import the
Store interface and pass it in as the type variable of the inject() function.

Updating <App />

In the parent <App /> component, we’ll import the Store interface:

typescript/src/app-1/App.vue

import { Store } from './store';

And pass in the Store interface as a type variable of the inject() function.

typescript/src/app-1/App.vue

const store = inject<Store>('store');

The type definition of the inject() function is to either return the type variable passed in (i.e. an
object of type Store in our case) or to return undefined under the condition the inject() function

²⁵⁴https://v3.vuejs.org/guide/component-provide-inject.html#working-with-reactivity
²⁵⁵https://v3.vuejs.org/api/composition-api.html#provide-inject

TypeScript 542

isn’t able to inject data. Because of this, we may receive TypeScript warnings that notify us that the
store may be undefined.

To be strict, we can always define conditions in code to behave when the value we’re interacting
with may be undefined. In this case however, we’re fairly confident the store should be defined
so we’ll simply use the optional chaining²⁵⁶ operator to read the values of the property in the store
knowing it’ll unlikely ever be undefined. When we fire the getListings() action from our store,
we’ll declare an if() statement to first check if the store is defined.

typescript/src/app-1/App.vue

const listings = computed(() => store?.state.listings);

const loading = computed(() => store?.state.loading);

if (store) store.actions.getListings();

Updating <ListingsList />

In the <ListingsList /> component, we’ll import the Store interface:

typescript/src/app-1/components/ListingsList.vue

import { Store } from '../store';

And pass in the Store interface as a type variable of the inject() function.

²⁵⁶https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Optional_chaining

TypeScript 543

typescript/src/app-1/components/ListingsList.vue

const store = inject<Store>('store');

When accessing a property in the store, we’ll use the optional chaining operator.

typescript/src/app-1/components/ListingsList.vue

return store?.actions.resetListings();

Updating <ListingsListItem />

In the <ListingsListItem /> component, we’ll import the Store interface:

typescript/src/app-1/components/ListingsListItem.vue

import { Store } from '../store';

And pass in the Store interface as a type variable of the inject() function.

typescript/src/app-1/components/ListingsListItem.vue

const store = inject<Store>('store');

When accessing a property in the store, we’ll use the optional chaining operator.

typescript/src/app-1/components/ListingsListItem.vue

return store?.actions.removeListing(props.listing);

At this point, our store is appropriately type-defined and our components that depend on the store
now recognize the shape of the store.

Updating parameter used in useNotification() hook

With the changes made to our store, most of the TypeScript errors we noticed before has been
resolved. One remaining error exists prompting us to provide a type for the parameter that is to be
passed in to the setNotification() function of the useNotification() hook.

TypeScript 544

Failed to compile.

src/app/hooks/useNotification.ts:9:28

TS7006: Parameter 'newMessage' implicitly has an 'any' type.

7 |

8 | const useNotification = () => {

> 9 | const setNotification = (newMessage) => {

| ^^^^^^^^^^

10 | data.message = newMessage;

11 | return data.active = true;

12 | };

Since we’ll only want properties of type string to be passed in to the setNotification() function,
we’ll specify the type of the newMessage parameter as string.

typescript/src/app-1/hooks/useNotification.ts

const setNotification = (newMessage: string) => {

data.message = newMessage;

return data.active = true;

};

With this change made, we would resolve all the TypeScript errors that existed and our app should
now compile successfully.

TypeScript 545

Annotating Props

We’ll move towards making some other changes to our components.

If we were to take a look at the <script /> of a certain component file, we’ll notice that other
than using the Store interface in the inject() function, we haven’t written much more TypeScript
specific code.

As an example, here’s the <script /> of the <App /> component:

TypeScript 546

typescript/src/app-1/App.vue

<script lang="ts">

import { defineComponent, computed, inject } from 'vue';

import ListingsList from './components/ListingsList.vue';

import useDarkMode from './hooks/useDarkMode';

import { Store } from './store';

export default defineComponent({

name: 'App',

setup() {

const store = inject<Store>('store');

const { darkMode, toggleDarkMode } = useDarkMode();

const darkModeButtonText = computed(() => {

return darkMode.value ? 'Light Mode' : 'Dark Mode';

});

const listings = computed(() => store?.state.listings);

const loading = computed(() => store?.state.loading);

if (store) store.actions.getListings();

return {

darkMode,

darkModeButtonText,

listings,

loading,

toggleDarkMode,

}

},

components: {

ListingsList

}

});

</script>

At initial glance, we may feel like we need to explicitly type annotate all the variables and properties
being created in the component. We won’t have to do this due to how our Vue TypeScript can infer
the types in several places.

As an example, if we were to take advantage of VSCode’s TypeScript language support²⁵⁷, we can
see how TypeScript can infer the types of many of the properties being created in the component.

²⁵⁷https://code.visualstudio.com/docs/languages/typescript

TypeScript 547

As an example, the darkMode ref boolean from our useDarkMode() is inferred to be of type
Ref<boolean>.

The listings computed property in the component is inferred to be of type ComputedRef<> where
the type variable in the generic is either a readonly version of Listing[] or undefined.

TypeScript 548

And so on! If we wanted to be more explicit with our typings, we can explicitly attempt to specify
the types of certain properties that would otherwise be inferred. For example, in our computed()
functions, we can use the fact that the computed() function is a generic that accepts a type variable
that describes the shape of the computed property.

// ...

// ...

export default defineComponent({

name: "App",

setup() {

// ...

// explicitly defining the types of these computed properties

const darkModeButtonText = computed<string>(() => {

return darkMode.value ? "Light Mode" : "Dark Mode";

});

const listings = computed<Listing[] | undefined>(

() => store?.state.listings

);

const loading = computed<boolean | undefined>(() => store?.state.loading);

// ...

},

// ...

});

Explicitly annotating types can be important in certain areas where we want to notify TypeScript
about how certain properties should be typed. However, in most cases, we generally avoid having
to define types explicitly if the inferred types are appropriate.

The one area remaining where TypeScript is unable to infer the types of properties is the props being
passed down to certain components. For example, if wewere to take a look at the <ListingsListItem
/> component, we’ll notice the listing prop to have an any type.

TypeScript 549

We’ll go ahead and explicitly define the types of props for all components that receive props
in our app. Before we do this, we’ll export type definitions of the data being established in the
useDarkMode() and useNotification() hooks in case a component needs to know this information.

useDarkMode() hook

The useDarkMode() hook returns an object with two properties:

• darkMode: A ref boolean value to dictate if dark mode is enabled in the app.
• toggleDarkMode: A function to toggle the dark mode in the app.

The dark mode ref has an initial value of false.

typescript/src/app-complete/hooks/useDarkMode.ts

const darkModeActive = ref(false);

The toggleDarkMode() function toggles the value of the dark mode reference before calling the
setNotification() function. This function doesn’t explicitly return a value so we can say this
function returns null.

TypeScript 550

typescript/src/app-complete/hooks/useDarkMode.ts

const toggleDarkMode = () => {

darkModeActive.value = !darkModeActive.value;

const type = darkModeActive.value ? 'Dark Mode' : 'Light Mode';

return setNotification(`${type} turned on!`);

};

We can create an interface to describe the shape of the object returned from the hook. We’ll use the
Ref<> generic available to use to dictate the darkMode property is a ref of boolean value. We’ll also
state that the toggleDarkMode() function doesn’t receive any parameters and returns void.

typescript/src/app-complete/hooks/useDarkMode.ts

export interface DarkModeInfo {

darkMode: Ref<boolean>;

toggleDarkMode: () => void;

}

We’ll finally set the type of the darkModeData object being returned from the hook as the interface
we’ve just created. With these changes, our useDarkMode.ts file in its entirety will look like the
following:

typescript/src/app-complete/hooks/useDarkMode.ts

import { ref, Ref } from 'vue';

import useNotification from './useNotification';

const darkModeActive = ref(false);

export interface DarkModeInfo {

darkMode: Ref<boolean>;

toggleDarkMode: () => void;

}

const useDarkMode = () => {

const { setNotification } = useNotification();

const toggleDarkMode = () => {

darkModeActive.value = !darkModeActive.value;

const type = darkModeActive.value ? 'Dark Mode' : 'Light Mode';

return setNotification(`${type} turned on!`);

TypeScript 551

};

const darkModeData: DarkModeInfo = {

darkMode: darkModeActive,

toggleDarkMode

};

return darkModeData;

};

export default useDarkMode;

useNotification() hook

The useNotification() hook returns an object with three properties:

• notification: A data object that contains a message string property and an active boolean
property.

• setNotification: A function that sets a notification.
• toggleNotification: A function to toggle the presence of a notification.

We’ll first create an interface to describe the shape of the notification data object.

typescript/src/app-complete/hooks/useNotification.ts

interface Notification {

message: string;

active: boolean;

}

We’ll then pass the above interface as a type variable to the reactive() function used to create this
reactive notification data.

typescript/src/app-complete/hooks/useNotification.ts

const data = reactive<Notification>({

message: '',

active: false,

});

Next, we’ll create an interface to describe the shape of the object that is to be exported from the
hook. The notification property in the object will have a shape of the Notification interface,
the setNotification() function will receive a string parameter and return a boolean, and the
toggleNotification() function will only return void.

TypeScript 552

typescript/src/app-complete/hooks/useNotification.ts

export interface NotificationInfo {

notification: Notification;

setNotification: (newMessage: string) => boolean;

toggleNotification: () => void;

}

Finally, we’ll set the type of the notificationData object being returned from the hook as the
NotificationInfo interface we’ve just created. With these changes, our useNotification.ts file
in its entirety will look like the following:

typescript/src/app-complete/hooks/useNotification.ts

import { reactive } from 'vue';

interface Notification {

message: string;

active: boolean;

}

export interface NotificationInfo {

notification: Notification;

setNotification: (newMessage: string) => boolean;

toggleNotification: () => void;

}

const data = reactive<Notification>({

message: '',

active: false,

});

const useNotification = () => {

const setNotification = (newMessage: string) => {

data.message = newMessage;

return data.active = true;

};

const toggleNotification = () => {

data.active = !data.active;

};

const notificationData: NotificationInfo = {

notification: data,

TypeScript 553

setNotification,

toggleNotification

};

return notificationData;

};

export default useNotification;

Annotating props in <ListingsList />

The <ListingsList /> component expects to receive a listings prop that it uses in the template to
render a list of listing elements.

typescript/src/app-1/components/ListingsList.vue

props: ['listings'],

Though the listings prop is only being used in the template of this component, we’ll still look to
annotate its type.

Without the use of TypeScript, Vue allows us to declare the types of props²⁵⁸ with a syntax like the
following:

// props option

props: {

message: String,

rating: Number,

// ...

}

The following type check helps document the component better and warns us through the JavaScript
console if a prop doesn’t match its expected type. With TypeScript, we can take this a step further
and specify the types of props with the custom typings we define in our app. To achieve this in
TypeScript, the Vue documentation²⁵⁹ tells us we can have prop types be provided to TypeScript by
using the type keyword and asserting the constructor as PropType. Let’s see how this would look.

We already have the shape of a single listing defined in the store.ts file (i.e. the Listing interface)
so we’ll import this interface from the store.ts file:

²⁵⁸https://v3.vuejs.org/guide/component-props.html#prop-types
²⁵⁹https://v3.vuejs.org/guide/typescript-support.html#annotating-props

TypeScript 554

typescript/src/app-complete/components/ListingsList.vue

import { Listing, Store } from '../store';

And we’ll make sure the Listing interface is being exported from our store.

// ...

export interface Listing {

// ...

}

// ...

In the <ListingsList /> component, we’ll import the PropType generic from vue:

typescript/src/app-complete/components/ListingsList.vue

import { defineComponent, inject, onMounted, PropType } from 'vue';

To describe the shape of the listings prop array, we’ll say it is an Array that is asserted to the type
of PropType<Listing[]>.

typescript/src/app-complete/components/ListingsList.vue

props: {

listings: {

type: Array as PropType<Listing[]>

}

},

Type assertions²⁶⁰ are a TypeScript capability where one can override the types that TypeScript either
infers or analyzes. There are two ways of type asserting - either using the as syntax or using the
angle brackets syntax.

let message: string = "This is a string";

return <number>message; // type assertion with angle brackets syntax

return message as number; // type assertion with (as) syntax

²⁶⁰https://www.typescriptlang.org/docs/handbook/basic-types.html#type-assertions

TypeScript 555

To have prop types be available in a Vue TypeScript project, the Vue documentation encourages us
to assert the type of the prop with the PropType interface available to us from the vue library. Array
as PropType<Listing[]> can be read as - we expect the prop type of the listings prop to be an
array that is to have a shape of Listing[].

Type assertions should be used sparingly because it’s easy to type assert informationwithout
specifying the properties that are needed in the type. Most of the time we’ll assign types
normally but only in cases we know better than the compiler - do we assert.

Annotating props in <ListingsListItem />

We’ll move towards annotating the type of the listing object prop that is received in the
<ListingsListItem /> component. We’ll import the PropType generic from the vue library.

typescript/src/app-complete/components/ListingsListItem.vue

import { defineComponent, inject, PropType } from 'vue';

We’ll import the Listing interface from the store.

typescript/src/app-complete/components/ListingsListItem.vue

import { Listing, Store } from '../store';

We’ll then annotate the listing prop as an object of prop type Listing.

typescript/src/app-complete/components/ListingsListItem.vue

props: {

listing: {

type: Object as PropType<Listing>

}

},

Annotating props in <Notification />

Finally, we’ll annotate the two props received in the <Notification /> component - the notification
object and the toggleNotification() function.

We’ll first import the PropType generic from vue.

TypeScript 556

typescript/src/app-complete/components/Notification.vue

import { defineComponent, PropType } from 'vue';

And the NotificationInfo interface created in the useNotification() hook.

typescript/src/app-complete/components/Notification.vue

import { NotificationInfo } from '../hooks/useNotification';

The notification object and toggleNotification() function to be received as props is to resemble
the types of the notification and toggleNotification properties in the NotificationInfo inter-
face.

typescript/src/app-complete/hooks/useNotification.ts

export interface NotificationInfo {

notification: Notification;

setNotification: (newMessage: string) => boolean;

toggleNotification: () => void;

}

To get the type of a property within an interface, we can achieve this with lookup types (also called
indexed access types) in TypeScript²⁶¹.

The syntax for declaring a lookup type is very similar to how properties in an object can be accessed
with the bracket notation²⁶².

interface NotificationInfo {

notification: Notification,

setNotification: (newMessage: string) => boolean;

toggleNotification: () => void;

}

// type set as type of notification property in NotificationInfo

let notificationVar: NotificationInfo['notification'] = // ...

// type set as type of setNotification property in NotificationInfo

let setNotificationFunc: NotificationInfo['setNotification'] = // ...

With that said, we’ll specify the notification and setNotification props of the <Notification />

component as an Object and Function respectively that is cast as the types of the corresponding
properties in the NotificationInfo interface.

²⁶¹https://www.typescriptlang.org/docs/handbook/release-notes/typescript-2-1.html#keyof-and-lookup-types
²⁶²https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Property_accessors#Bracket_notation

TypeScript 557

typescript/src/app-complete/components/Notification.vue

props: {

notification: Object as PropType<NotificationInfo['notification']>,

toggleNotification: Function as PropType<NotificationInfo['toggleNotification']>

},

There we have it! We’ve helped define types in our app such that our Vue code is now appropriately
type-defined! If we were to continue to build our app and introduce new features, TypeScript will
help ensure our code is better documented and less likely to have bugs moving forward.

Conclusion

The goal of this chapter was to gradually introduce how TypeScript can help make our Vue
applications more type defined. In this chapter, we:

1. Recognized how the Vue CLI can help us quickly scaffold a Vue/TypeScript project.
2. Learned how the composable/functional nature of the Composition API helps allow for better

type inference within a Vue application.
3. Converted the app we built in the previous chapter to a TypeScript setting.
4. Learned TypeScript features such as Basic Types²⁶³, Interfaces²⁶⁴, Type Aliases²⁶⁵, Generics²⁶⁶,

Lookup Types²⁶⁷, etc.
5. Understood how the many different functions of Vue’s Composition API allow us to pass in

type variables of our own to define the types of the results of these functions.

Here are a few other resources outside of this chapter that may be useful:

• Vue Documentation | TypeScript Support²⁶⁸
• TypeScript Handbook²⁶⁹

In the next chapter, we’ll investigate a different approach to how data can be queried from a server.
We’ll investigate how Vue applications can query and mutate data from a GraphQL API!

²⁶³https://www.typescriptlang.org/docs/handbook/basic-types.html
²⁶⁴https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#interfaces
²⁶⁵https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#type-aliases
²⁶⁶https://www.typescriptlang.org/docs/handbook/generics.html#hello-world-of-generics
²⁶⁷https://www.typescriptlang.org/docs/handbook/2/indexed-access-types.html
²⁶⁸https://v3.vuejs.org/guide/typescript-support.html#defining-vue-components
²⁶⁹https://www.typescriptlang.org/docs/handbook/intro.html

Vue Apollo & GraphQL
In many applications we’ve built in this book, we’ve come to see how a Vue client-side application
can interact with a REST API. With traditional REST APIs, the client can often interact with the
server by accessing various endpoints to GET, POST, PUT, or DELETE data while leveraging the HTTP
protocol.

As an example, in the last two chapters, we worked on an app that surfaced a list of home listings. To
get all the listings in our app, we had to make a request to the /listings endpoint. If we wanted our
server to serve data for just one listing, we could implement a /listing/:id endpoint (where :id is
the dynamic id value of a certain listing). If we wanted to build our application further and introduce
the concept of users, we could implement a /users endpoint to return all users or a /user/:id

endpoint to serve user data for a certain user.

Now, letâ€™s consider an example scenario. What if a client app needs to display some user
information plus all the listings for that user. This client doesnâ€™t have to be ours, someone else
could have developed a web or mobile app that interacts with our API. How could this scenario play
out with REST?

With an example REST API, the client could make a request to a /user/:id endpoint to fetch the
initial user data.

1. /user/:id # to fetch certain user data

Then the client could make a second request to something like a /user/:id/listings endpoint to
return all the listings for that user.

1. /user/:id # to fetch certain user data

2. /user/:id/listings # to fetch listings for certain user

This won’t be too difficult since we’ll only be making two requests. However, we can already see that
in a standard RESTful setting, we have to make requests to different endpoints to get different
information from the server.

GraphQL

In this chapter, we’re going to explore GraphQL, a specific API protocol developed by Facebook that
is different from REST APIs.

Vue Apollo & GraphQL 559

GraphQL²⁷⁰ is a query language for making requests to APIs. With GraphQL, the client tells the
server exactly what it needs and the server responds with the data that has been requested.

Here’s an example query of attempting to retrieve some user information of a certain id.

query User($id: ID!) {

user(id: $id) {

id

name

listings {

id

title

}

}

}

When querying the user with the example above, we can specify what fields we want to be
returned from our API. Above, we’ve stated we’re interested in receiving the id, name, and listings

information of the user. For the listings that are to be returned, we’re only interested in receiving
the id and title of each listing.

GraphQL is a typed language. Before we tell our GraphQL API how we want each field in our API
to be resolved, we’ll need to tell GraphQL the type of each of the fields.

type User {

id: ID!

name: String!

listings: [Listing!]!

}

GraphQL allows for some significant benefits. GraphQL APIs are:

• Intuitive: The client can specify exactly what data it needs thus making the code intuitive and
easy to understand.

• Performant: Since no useless data needs to be transferred, reduced latency will make an app
feel faster which is especially important for slower internet connections.

• Typed: GraphQL uses a type system of its own to validate requests. This integrates beautifully
with TypeScript to create a robust statically typed application.

GraphQL APIs are also:

• self-documenting.
²⁷⁰https://graphql.org/

Vue Apollo & GraphQL 560

• encourage the use of GraphQL IDEs²⁷¹.
• and consist of a single endpoint.

GraphQL isn’t tied to any specific technology. This is because GraphQL is a specification²⁷², not a
direct implementation. The community has created server implementations and client libraries to
create and consume a GraphQL API for a variety of different technologies.

Consuming GraphQL

There are two sides to using GraphQL: as an author of a client or front-end web application, and as
an author of a GraphQL server. In this chapter, we’re going to focus entirely on the former - how a
client or front-end web application can consume a GraphQL API.

If we’re retrieving data from a server using GraphQL - whether it’s with Vue, another JavaScript
library, or a native iOS app - we think of that as a GraphQL “client.” This means we’ll be writing
GraphQL queries and sending them up to the server.

The application we’re going to work on in this chapter is the same application we’ve seen in the last
two chapters - a single web page responsible for displaying a list of listings.

²⁷¹https://github.com/prisma/graphql-playground
²⁷²https://graphql.github.io/graphql-spec/

Vue Apollo & GraphQL 561

NewlineBnB

Our goal in this chapter is to reproduce the application above (with minor differences) with a Vue
app that interacts with a GraphQL API.

The example code for this entire chapter is already scaffolded with the help of the Vue CLI and lives
in the vue-apollo/ directory in the code download. In the terminal, let’s change into the vue-apollo/
directory using the cd command:

$ cd vue-apollo

We’ll use npm to install all the application’s dependencies:

$ npm install

There exists both a REST and GraphQL API in the vue-apollo/ directory under the server-rest/

and server-graphql/ directories respectively.

Vue Apollo & GraphQL 562

vue-apollo/

...

server-graphql/

server-rest/

...

Though we won’t be working with the server-rest/ directory in this chapter, the server-rest/

directory contains the REST API we’ve worked on in the previous two chapters.

The GraphQL API we’ll be working with

The server-graphql/ directory is a Node/TypeScript project that contains the server code that builds
a GraphQL API that we’ll be working with. Wewon’t go through the server-graphql/ code in detail
but in summary, in the server-graphql/ directory:

• The src/index.ts file is where the Node/Express application is instantiated.
• The src/listings.ts file is where the mock listings data lives.
• The src/graphql/typeDefs.ts file is where the type definitions of the GraphQL API is defined.
• The src/graphql/resolvers.ts file is where the resolver functions of the GraphQL API are
defined that are responsible for turning a GraphQL operation into data.

The code in the server-graphql/ project represents the GraphQL API built in the
following course - The newline Guide to Building Your First GraphQL Server with Node
and TypeScript²⁷³. If you’re interested in understanding how the API is built from scratch,
feel free to go through the course linked above - it’s free!

With that being said, in this chapter, we’re focused primarily on how the client interacts
with the API. As a result, we won’t be going through the server-graphql/ code in detail.
Below, we’ll continue by explaining what are the different requests that can be made to
the API and how those requests should be shaped before moving towards working in our
Vue app.

Let’s run our GraphQL server API. In a separate terminal, we’ll navigate into the server-graphql/
directory within our vue-apollo/ directory.

$ cd vue-apollo/server-graphql

And install the application’s dependencies.

²⁷³https://www.newline.co/courses/the-newline-guide-to-building-your-first-graphql-server-with-node-and-typescript

Vue Apollo & GraphQL 563

$ npm install

We can then start our GraphQL server with the start script.

$ npm run start

Our GraphQL server runs on port http://localhost:3000 where the API itself is placed under
the /api path. If we were to visit the route http://localhost:3000/api in our browser while our
GraphQL server is running, we’ll be presented with a Graphical User Interface (GUI) that we can
use to interact with our API!

The following IDE is the GraphQL Playground²⁷⁴, an in-browser IDE (Integrated Development
Environment) for exploring GraphQL APIs.

GraphQL Playground is intended to be a sophisticated IDE by giving us capabilities such as looking
through query history, automatic schema reloading, the configuration of HTTP headers, and so
on. The vast majority of the time, however, we’ll often find ourselves interacting with our API by
surveying the documentation of our GraphQL schema and running queries/mutations to verify our
API works as intended without having to use curl or tools like Postman.

On the right-hand pane of the IDE, we can select the Docs tab to see the documentation of the
GraphQL API we’ll be working with.

²⁷⁴https://github.com/prisma/graphql-playground

Vue Apollo & GraphQL 564

There are two different requests we can make to our API, one is a query and the other is a mutation.

• Queries in GraphQL are requests we can make to query data that we want from an API. (This
is similar to a GET request in a REST API).

• Mutations in GraphQL are requests we can make to mutate objects. (This is similar to PUT,
POST, or DELETE requests in a REST API).

A query operation is read-only - when you send a query, you’re asking the server to give you some
data. A mutation is intended to be a write followed by a fetch; in other words, “Change this data,
and then give me some other data”.

In our GraphQL API, we have the following query and mutation:

• listings query: a query to request all the listings from our server.
• deleteListing mutation: a mutation to delete a certain listing from our server.

In the Docs tab, we can continue to see further information on the specific fields that the query and
mutation are expected to return.

Vue Apollo & GraphQL 565

listings query

In the GraphQL Playground, let’s write our first query. We’ll query for the root listings field on
the left side of the playground and we’ll only declare an id field within to be the field we want data
to be returned for.

query {

listings {

id

}

}

Upon hitting the play button in our playground, we get the id for each of the mock listings
available in our server.

Vue Apollo & GraphQL 566

In our query, we’ll then specify that we also want the title of each listing to be queried.

query {

listings {

id

title

}

}

Upon hitting the play button in our playground, we get the id and title for each of the mock
listings available in our server.

Vue Apollo & GraphQL 567

Notice something interesting? We get only what we ask for!

If we want to get all the information for all the listings in our app, we can request for every available
field in a listing GraphQL object.

query {

listings {

id

title

image

address

price

numOfGuests

numOfBeds

numOfBaths

rating

}

}

Upon hitting the play button in our playground, we get all the information available to us for the
different listings.

Vue Apollo & GraphQL 568

deleteListing mutation

We’ll now attempt to see how we can trigger the deleteListing mutation request available in our
API. The mutation expects an id argument equal to the id of the listing that is to be deleted. Upon
successful completion, the mutation returns the listing object that has been deleted.

Vue Apollo & GraphQL 569

If we were to create the mutation request, we can query for any field from the deleted listing object.

mutation {

deleteListing {

only return the id and title of the deleted listing

id

title

}

}

The above mutation request will not work. This is because the deleteListing mutation expects an
id argument of the listing to be deleted. The ids of our mock listings are "001", "002", and "003". If
we wanted to delete the first listing in our mock data array, we’ll pass an id value of "001" to the
mutation request.

mutation {

deleteListing(id: "001") {

id

title

}

}

If we were to declare the above mutation in the GraphQL Playground and run the mutation, upon
success, we would see the id and title of the mutation that has just been deleted.

Vue Apollo & GraphQL 570

When attempting to query for all the listings again, we’ll notice that only two of the original three
listings are returned.

Unlike how our REST server example in the previous chapters persisted changes to a file-based
system, our GraphQL server depends on hard-coded data from a src/listings.ts file in the
server-graphql/ directory. If we were to restart our server, the code in src/listings.ts is reloaded
into our computer memory and we’ll be presented with the original list of listings.

Vue Apollo & GraphQL 571

Whether we’re querying for listings or conducting a mutation to delete a listing, we can see that
we’re making these requests to a single endpoint -> http://localhost:3000/api.

With an understanding of how we can conduct the listings query and deleteListing mutation
from our API, we’ll now move towards working on our Vue application.

Vue Apollo

While our GraphQL server is still running, we’ll look to start up our Vue Webpack server from the
vue-apollo/ directory to see the complete application we’ll be working towards to.

$ npm run serve

We’ll see something similar to the following in our terminal:

Vue Apollo & GraphQL 572

$ npm run serve

Compiled successfully in ####ms

App running at:

- Local: http://localhost:8080

- Network: http://##.##.##.###:8080

When visiting the client application at http://localhost:8080, we’ll see the listings application
we’re familiar with from the previous chapters.

The app is identical to the app we’ve worked on in the previous chapters with some minor changes.

In the app, we’re able to:

• See a list of listings being queried when the app is launched.
• Remove a certain listing.
• Toggle between dark mode and light mode.

The minor changes in this version of the app are:

Vue Apollo & GraphQL 573

• Removal of listings is not persisted. When we exit and restart our GraphQL server, we’ll see
any listings that have been removed return.

• No Reset button exists that when clicked will reset the listings back to their original state.

There are no other significant changes in the app. Our main goal for the rest of this chapter is to have
our Vue client application not interact with the original REST API but instead query and mutate
data from our GraphQL server API.

Running both the server and the client

In previous chapters of the book, we’ve used the concurrently²⁷⁵ npm library to help run both our
server and client from a single npm command. In this chapter, we won’t use the concurrently library
and will need to run both the server and client code in separate terminals.

• TheGraphQL server can be runwith the npm run start command from the vue-apollo/server-graphql/
directory.

• The Vue Webpack server can be run with the npm run serve command from the vue-apollo/
directory.

src/

Since we’ll be focusing entirely in the src/ directory, we’ll first take a look at the files within the
src/ directory:

²⁷⁵https://github.com/kimmobrunfeldt/concurrently#readme

Vue Apollo & GraphQL 574

$ ls src/

app/

app-complete/

main.js

app/ constitutes the starting point of the application and app-complete/ denotes the completed
application for this section.

The app/ directory (i.e. the starting point) represents the complete application we built in the
chapter titled Composition API. This app is a Vue app that is not TypeScript based but utilizes
the Composition API for all the functionality kept in the app. We encourage you to read through
the Composition API chapter first before continuing here.

Let’s take a look at the main.js file:

main.js

vue-apollo/src/main.js

import { createApp } from 'vue';

import { ApolloClient, createHttpLink, InMemoryCache } from '@apollo/client/core';

import { DefaultApolloClient } from '@vue/apollo-composable';

import App from './app-complete/App.vue';

const httpLink = createHttpLink({

uri: 'http://localhost:3000/api',

});

const cache = new InMemoryCache();

const apolloClient = new ApolloClient({

link: httpLink,

cache,

});

createApp(App)

.provide(DefaultApolloClient, apolloClient)

.mount('#app');

main.js renders the App component from the app-complete/ directory on the DOM element with
the id of #app. Additionally, there’s other work already done to create the client instance that allows
us to interact with our GraphQLAPI. This is work we’ll be doing shortly. In the meantime, let’s bring
our main.js file back to the state we’ve seen before.

We’ll import the store, we’ve created in the Composition API chapter, from the src/app/store.js
file. We’ll also have the store be provided everywhere in our app with the property of the same

Vue Apollo & GraphQL 575

name through the .provide() function of the Vue instance. We’ll remove any code associated with
creating a GraphQL Apollo client.

This will have our main.js function look like the following:

import { createApp } from "vue";

import App from "./app/App.vue";

import store from "./app/store";

createApp(App).provide("store", store).mount("#app");

At this moment, our Vue applicationwill not render appropriately at http://localhost:8080. This is
because the code in the app/ directory expects to interact with a RESTAPI at http://localhost:3000/api.

If we were to exit our server-graphql/ folder, enter the server-rest/ folder within our vue-apollo/
directory, and run npm run start to start our REST API - our client application will load
appropriately and render the client app we’ve familiar with.

We won’t need to run the REST API any longer since we now plan to work towards having our Vue
client interact with the GraphQL API we’ve seen in the above section. We’ll exit the REST API and
instead ensure our GraphQL server is running moving forward.

Vue Apollo & GraphQL 576

to be run at `vue-apollo/server-graphql/`

$ npm run start

Vue Apollo

Making a GraphQL request with HTTP

The most straightforward method of having a client application make a request to a GraphQL API
is to simply invoke an HTTP method.

For example, we can:

• Invoke an HTTP POST method. GraphQL supports both the POST and GET methods with
some requirements in each²⁷⁶ but most GraphQL clients use the POST HTTP method to both
retrieve and persist data.

• Specify the content type of our POST request as application/json and pass our GraphQL
documents (i.e. queries) as a JSON object.

• And reference the URL of the API endpoint (http://localhost:3000/api) when we make our
request.

In a pseudo-code setting, this can be represented in a component with something like the following:

<template>

<div @click="fetchListings">Click here to get listings!</div>

</template>

<script>

// Create the GraphQL query document

const LISTINGS = `

query Listings {

listings {

id

title

}

}

`;

export default {

name: "Component",

setup() {

const fetchListings = async () => {

²⁷⁶https://graphql.org/learn/serving-over-http/#http-methods-headers-and-body

Vue Apollo & GraphQL 577

// make request to server /api endpoint

const result = await fetch("/api", {

method: "POST", // specify method is POST

headers: {

"Content-Type": "application/json", // specify appropriate content-type

},

body: JSON.stringify({ query: LISTINGS }), // pass GraphQL query as JSON o\

bject

});

// access data returned from API

return result.data;

};

return {

fetchListings,

};

},

};

</script>

Though we’re able to have our components make HTTP requests to interact with our GraphQL API,
there are limitations to a custom approach like the above. For a large production application, we’ll
have to consider and handle complicated cases that may require us to:

• Have queries and mutations fired in different lifecycle stages of a component.
• Cache and save the results of our queries in a state management solution.
• Refetch queries and mutations at different moments in time.
• etc.

This is where the Apollo Client and the Vue Apollo library comes in.

Apollo Client²⁷⁷ is a complete state management library built by the Apollo GraphQL²⁷⁸ team. It
allows us to fetch data and structure our code in a predictable and declarative format that’s consistent
with modern practices. Some of the features it provides are declarative data fetching, an excellent
developer experience, and it being designed for modern JavaScript libraries.

The original Apollo Client library is created to be used for the React JavaScript library²⁷⁹. However,
a Vue.js integration is built and maintained²⁸⁰ by Guillaume Chau²⁸¹ - a core Vue.js developer.

²⁷⁷https://www.apollographql.com/docs/react/
²⁷⁸https://www.apollographql.com/
²⁷⁹https://reactjs.org/
²⁸⁰https://www.apollographql.com/docs/react/integrations/integrations/#vue
²⁸¹https://github.com/Akryum

Vue Apollo & GraphQL 578

We’ll look to use the Vue Apollo²⁸² library to integrate GraphQL in our Vue application. The Vue
Apollo library provides a set of tools from Apollo that we can integrate into our Vue components.

Creating our Apollo Client

There are a few things we’ll need to do to create and use an Apollo client in our Vue application.
As per the instructions listed in the Vue Apollo documentation²⁸³, we’ll need to first install a few
separate libraries.

We’ll first need to install the following packages:

$ npm install --save graphql graphql-tag @apollo/client

• graphql²⁸⁴ is the GraphQL JavaScript library which will be needed to help parse our GraphQL
queries.

• graphql-tag²⁸⁵ is a utility library that provides a gql helper method to allow us to write
GraphQL in our code by having strings be parsed as a GraphQL Abstract Syntax Tree.

• @apollo/client²⁸⁶ is the Apollo client library.

The vue-apollo/ project already has the above libraries installed so you won’t have to individually
install them again. In the project’s package.json file, we’ll be able to see the libraries listed as
application dependencies.

@apollo/client:

vue-apollo/package.json

"@apollo/client": "^3.3.6",

graphql and graphql-tag:

vue-apollo/package.json

"graphql": "^15.4.0",

"graphql-tag": "^2.11.0",

With the above libraries installed, we can proceed to create our Apollo Client instance. We’ll do this
in src/main.js file which will allow us to connect our client with the entire Vue application. We’ll
be following the instructions listed in the Vue Apollo documentation²⁸⁷.

In the src/main.js file, we’ll import the ApolloClient, createHttpLink, and InMemoryCache

constructors from @apollo/client/core.
²⁸²https://v4.apollo.vuejs.org/
²⁸³https://v4.apollo.vuejs.org/guide/installation.html#manual-installation
²⁸⁴https://github.com/graphql/graphql-js
²⁸⁵https://github.com/apollographql/graphql-tag#readme
²⁸⁶https://github.com/apollographql/apollo-client
²⁸⁷https://v4.apollo.vuejs.org/guide/installation.html#manual-installation

Vue Apollo & GraphQL 579

vue-apollo/src/main.js

import { ApolloClient, createHttpLink, InMemoryCache } from '@apollo/client/core';

At the top of the main.js file, we’ll use the createHttpLink() constructor to declare the HTTP
connection to our GraphQL API. We’ll create this connection in a constant labeled httpLink and
reference the endpoint for our GraphQL API - http://localhost:3000/api. The Vue Apollo²⁸⁸
documentation states that we should reference the absolute GraphQL API URL.

vue-apollo/src/main.js

const httpLink = createHttpLink({

uri: 'http://localhost:3000/api',

});

We’ll then use the InMemoryCache constructor to specify the cache implementation we’ll like from
our Apollo client. We’ll adhere to a default cache setting and simply run the constructor without
providing any options.

vue-apollo/src/main.js

const cache = new InMemoryCache();

Lastly, we’ll create the Apollo Client with the ApolloClient() constructor and provide values of the
HTTP link and cache we’ve created.

vue-apollo/src/main.js

const apolloClient = new ApolloClient({

link: httpLink,

cache,

});

With our Apollo client created, we’ll now want to have the client be available everywhere in our
Vue app. The Vue Apollo documentation tells us we can achieve this by providing a default Apollo
Client instance from the @vue/apollo-composable library.

First, we’ll need to ensure we have the @vue/apollo-composable installed as a dependency in our
app.

$ npm install --save @vue/apollo-composable

In our scaffolded project, we already have the @vue/apollo-composable library installed by having
it listed as an application dependency.

²⁸⁸https://v4.apollo.vuejs.org/guide/installation.html#manual-installation

Vue Apollo & GraphQL 580

vue-apollo/package.json

"@vue/apollo-composable": "^4.0.0-alpha.12",

In the main.js file, we’ll import DefaultApolloClient from @vue/apollo-composable.

vue-apollo/src/main.js

import { DefaultApolloClient } from '@vue/apollo-composable';

Where we have our Vue app be mounted, we’ll use the provide() function to provide the Apollo
client we’ve created as the default Apollo client for our app. With this change and making sure we’re
importing the <App /> component from the app/ directory, our main.js file in its completed state
will look like the following:

import { createApp } from "vue";

import {

ApolloClient,

createHttpLink,

InMemoryCache,

} from "@apollo/client/core";

import { DefaultApolloClient } from "@vue/apollo-composable";

import App from "./app/App.vue";

import store from "./app/store";

const httpLink = createHttpLink({

uri: "http://localhost:3000/api",

});

const cache = new InMemoryCache();

const apolloClient = new ApolloClient({

link: httpLink,

cache,

});

createApp(App)

.provide(DefaultApolloClient, apolloClient)

.provide("store", store)

.mount("#app");

Our application is now prepared to start using Vue Apollo to make GraphQL Requests!

Vue Apollo & GraphQL 581

useQuery()

The first GraphQL request we’ll look to make is the query for listings.

To request listings in our earlier implementation, we had the parent <App /> component dispatch a
store action responsible for fetching listings from our API. This store action dispatch occurs as the
<App /> component is being created.

<script>

import { computed, inject } from "vue";

// ...

export default {

name: "App",

setup() {

const store = inject("store");

// ...

store.actions.getListings();

// ...

},

// ...

};

</script>

We’ll continue to have the <App /> component be responsible for fetching listings from our API but
we’ll now have it be changed to make the query from the GraphQL API instead.

The main composition function, provided to us from Vue Apollo, to execute queries is the
useQuery()²⁸⁹ function. We’ll import this function from the '@vue/apollo-composable' library
before we use it.

²⁸⁹https://v4.apollo.vuejs.org/guide-composable/query.html#usequery

Vue Apollo & GraphQL 582

<script>

// ...

import { useQuery } from "@vue/apollo-composable";

// ...

export default {

name: "App",

setup() {

// ...

},

// ...

};

</script>

The useQuery() function can be run in setup() and takes the GraphQL document we’ll want to
execute as the first argument. Upon success, useQuery() returns a result object that is a Ref that
contains the data from our query.

<script>

// ...

import { useQuery } from "@vue/apollo-composable";

// ...

export default {

name: "App",

setup() {

const { result } = useQuery(/* GraphQL Document */);

},

// ...

};

</script>

Let’s define our GraphQL document. We’ll have our GraphQL documents be established in a
graphql/ folder kept in the app/ directory.

src/

app/

...

graphql/

...

In the src/app/graphql/ folder, we’ll create a ListingsQuery.js file that will be responsible for
creating and exporting the GraphQL document for the listings query.

Vue Apollo & GraphQL 583

src/

app/

...

graphql/

ListingsQuery.js

...

In the ListingsQuery.js file, we’ll first import the gql tag from the graphql-tag library.

vue-apollo/src/app-complete/graphql/ListingsQuery.js

import gql from 'graphql-tag';

The useQuery() function from Vue Apollo expects the GraphQL document argument passed in to
be created as abstract trees with the help of the gql template tag. In the ListingsQuery.js file, we’ll
create a constant labeled ListingsQuery that will contain the GraphQL document for the listings
query we’ll make. We’ll specify that we would want all fields from the query to be returned and
we’ll export the const as a default value at the end of the file.

This would have the ListingsQuery.js file look like the following:

vue-apollo/src/app-complete/graphql/ListingsQuery.js

import gql from 'graphql-tag';

const ListingsQuery = gql`

query Listings {

listings {

id

title

description

image

address

price

numOfGuests

numOfBeds

numOfBaths

rating

}

}

`;

export default ListingsQuery;

Vue Apollo & GraphQL 584

gql is a function that takes a string as an argument. The string argument has to be constructed with
template literals. You might be wondering why this function appears a little strange since its use
involves the placement of a template string beside the gql reference. This is an ES6 feature known as
“tagged template literals” which isn’t commonly used but allows for the capability to parse strings
with a preprocessor. The main takeaway here is that gql is a tag (i.e. function) where the argument
is derived from the template literal applied alongside it. It takes the string and returns a GraphQL
Tree.

By using the gql tag, it helps us manipulate the GraphQL document by making it easier to
add/remove fields and perform more complicated functionality like merging queries. This is
most apparent when we install and use an accompanying editor extension like the VSCode’s
Apollo GraphQL Extension²⁹⁰. When installed, we’ll get appropriate syntax highlighting for all our
GraphQL documents created with the gql tag!

With our listings query document created, we’ll import the ListingsQuery constant that represents
this document in the <App /> component.

vue-apollo/src/app-complete/App.vue

import ListingsQuery from './graphql/ListingsQuery';

We can then pass the ListingsQuery constant as the first argument of the useQuery() function.

²⁹⁰https://marketplace.visualstudio.com/items?itemName=apollographql.vscode-apollo

Vue Apollo & GraphQL 585

<script>

// ...

import { useQuery } from "@vue/apollo-composable";

import ListingsQuery from "./graphql/ListingsQuery";

// ...

export default {

name: "App",

setup() {

const { result } = useQuery(ListingsQuery);

},

// ...

};

</script>

In addition to the useQuery() function returning the result of the query, it also returns loading and
error values. loading tracks the loading status of the request²⁹¹ and error helps contain any error
that might occur during the request²⁹².

<script>

// ...

import { useQuery } from "@vue/apollo-composable";

import ListingsQuery from "./graphql/ListingsQuery";

// ...

export default {

name: "App",

setup() {

const { result, loading, error } = useQuery(ListingsQuery);

},

// ...

};

</script>

Since the result is a Ref, we can access the data from the successful query with result.value.

²⁹¹https://v4.apollo.vuejs.org/guide-composable/query.html#loading-state
²⁹²https://v4.apollo.vuejs.org/guide-composable/query.html#error

Vue Apollo & GraphQL 586

<script>

// ...

import { useQuery } from "@vue/apollo-composable";

import ListingsQuery from "./graphql/ListingsQuery";

// ...

export default {

name: "App",

setup() {

const { result, loading, error } = useQuery(ListingsQuery);

// get GraphQL data

const data = result.value;

},

// ...

};

</script>

Since our listings query is to return a set of listings, we can access this listings array from the
data returned. At this point, we’ll be able to return the listings in our setup() function for our
template to access.

<script>

// ...

import { useQuery } from "@vue/apollo-composable";

import ListingsQuery from "./graphql/ListingsQuery";

// ...

export default {

name: "App",

setup() {

const { result, loading, error } = useQuery(ListingsQuery);

// get GraphQL data

const data = result.value;

// get listings from GraphQL data

const { listings } = data;

return {

// ...

Vue Apollo & GraphQL 587

listings,

// ...

};

},

// ...

};

</script>

useResult()

Alternatively, Vue Apollo provides a useResult()²⁹³ composition function to help pick the result we
look for in our GraphQL data.

As per the documentation, we can extract the listings object by using the useResult() function,
passing in the result object as the first parameter, and passing in a function to extract the listings
object in the third parameter.

<script>

// ...

import { useQuery, useResult } from "@vue/apollo-composable";

import ListingsQuery from "./graphql/ListingsQuery";

// ...

export default {

name: "App",

setup() {

const { result, loading, error } = useQuery(ListingsQuery);

// get listings from GraphQL data

const listings = useResult(result, null, (data) => data.listings);

return {

// ...

listings,

// ...

};

},

// ...

};

</script>

²⁹³https://v4.apollo.vuejs.org/guide-composable/query.html#useresult

Vue Apollo & GraphQL 588

If there is only a single object in the result, like how we only have a single object containing the
listings array, useResult() will automatically pick the relevant data if we were to only provide
the result of our query.

<script>

// ...

import { useQuery, useResult } from "@vue/apollo-composable";

import ListingsQuery from "./graphql/ListingsQuery";

// ...

export default {

name: "App",

setup() {

const { result, loading, error } = useQuery(ListingsQuery);

// get listings from GraphQL data

const listings = useResult(result);

return {

// ...

listings,

// ...

};

},

// ...

};

</script>

This is the approach of how we’ll have listings queried from the API be available in the template.
Since loading is determined from the useQuery() function, we’ll no longer need to send a loading

value determined from our store. In fact, we’ll no longer rely on the store at all to query and
receive listings from our API. The <script> of our <App /> component will depend entirely on
the useQuery() function to return listings and the loading status of the request. Additionally, we’ll
also have the error property be returned in our setup() function.

This will have the <script> of <App /> look like the following:

Vue Apollo & GraphQL 589

<script>

import { computed } from "vue";

import { useQuery, useResult } from "@vue/apollo-composable";

import ListingsList from "./components/ListingsList";

import ListingsQuery from "./graphql/ListingsQuery";

import useDarkMode from "./hooks/useDarkMode";

export default {

name: "App",

setup() {

const { result, loading, error } = useQuery(ListingsQuery);

const listings = useResult(result);

const { darkMode, toggleDarkMode } = useDarkMode();

const darkModeButtonText = computed(() => {

return darkMode.value ? "Light Mode" : "Dark Mode";

});

return {

darkMode,

darkModeButtonText,

listings,

loading,

error,

toggleDarkMode,

};

},

components: {

ListingsList,

},

};

</script>

In the <template> of <App />, we’ll utilize the v-if and v-if-else attributes to conditionally render
different elements.

• If loading is true, we’ll show the progress bar.
• Else if error exists, we’ll display text telling the user something went wrong.
• Else if listings is present and listings.length is truthy, we’ll show the <ListingsList />

component and pass the listings down as props.
• Else if listings is present and listings.length is falsy (i.e. when no listings remain), we’ll
display text telling the user there doesn’t appear to be any listings left.

Vue Apollo & GraphQL 590

This will have the <template /> of <App /> look like the following:

<template>

<div class="app" :class="{ 'has-background-black': darkMode }">

<div class="container is-max-desktop py-6 px-4">

<div v-if="loading">

<progress class="progress is-small is-info" max="100">60%</progress>

</div>

<div v-else-if="error">

<p>

Uh oh something went wrong. We couldn't query for listings - try again

later!

</p>

</div>

<div v-else-if="listings && listings.length">

<ListingsList :listings="listings" />

</div>

<div v-else-if="listings && !listings.length">

<p>There doesn't appear to be any listings left!</p>

</div>

<button

class="button is-small is-pulled-right my-4"

@click="toggleDarkMode"

>

{{ darkModeButtonText }}

</button>

</div>

</div>

</template>

With our changes saved, if we were to see our running application at http://localhost:8080, we’ll
be presented with a very brief progress bar when our request is in flight.

Vue Apollo & GraphQL 591

When our request is complete and successful, we’ll see the list of listings!

Vue Apollo & GraphQL 592

If our request was to ever error for some reason, we’ll be presented with an error message.

Vue Apollo & GraphQL 593

Lastly, if we were to manually remove all listings (this will be possible when we build out the
mutation capability in the <ListingsListItem /> component shortly), we’ll be presented with a
message stating that no listings remain.

Vue Apollo & GraphQL 594

useMutation()

We’ll now look to see how can trigger the deleteListing() mutation available in our API. Like
we’ve constructed a ListingsQuery GraphQL document, we’ll construct a DeleteListingMutation

GraphQL document in a file labeled DeleteListingMutation.js under the graphql/ folder.

src/

app/

...

graphql/

DeleteListingMutation.js

ListingsQuery.js

...

In the DeleteListingMutation.js file, we’ll import the gql tag, create a DeleteListingMutation

constant that is to be the deleteListing mutation GraphQL document, and have the constant be
exported.

The deleteListingmutation is different from the listings query in that it expects an id argument.
Keeping this in mind, the DeleteListingMutation.js file in its entirety will look like the following:

Vue Apollo & GraphQL 595

vue-apollo/src/app-complete/graphql/DeleteListingMutation.js

import gql from 'graphql-tag';

const DeleteListingMutation = gql`

mutation DeleteListing($id: ID!) {

deleteListing(id: $id) {

id

}

}

`;

export default DeleteListingMutation;

The $id: ID! declaration states that the DeleteListing GraphQL document we’re
constructing expects a variable called id of type ID. ID is a scalar type²⁹⁴ in GraphQL
used to represent a unique identifier (i.e. not intended to be human-readable) but gets
serialized as String. Additionally, the ! denotes that this $id argument is required.

The id: $id declaration on the deleteListing field dictates the $id argument passed in
the mutation is the value of the id argument the deleteListing mutation expects.

For more information on how GraphQL requests can receive dynamic variables, be sure
to check out the Variables section²⁹⁵ of the GraphQL documentation.

The <ListingsListItem /> component is the component where the action to delete a listing is in
place. In the ListingsListItem.vue file, we’ll import the DeleteListingMutation document we’ve
created.

vue-apollo/src/app-complete/components/ListingsListItem.vue

import DeleteListingMutation from '../graphql/DeleteListingMutation';

Vue Apollo provides a useMutation()²⁹⁶ function to allow mutations to be conducted in Vue
components. We’ll import the useMutation() function from the '@vue/apollo-composable' library
before we use it.

²⁹⁴https://graphql.org/learn/schema/#scalar-types
²⁹⁵https://graphql.org/learn/queries/#variables
²⁹⁶https://v4.apollo.vuejs.org/guide-composable/mutation.html#executing-a-mutation

Vue Apollo & GraphQL 596

<script>

// ...

import { useMutation } from "@vue/apollo-composable";

// ...

export default {

name: "ListingsListItem",

// ...

setup() {

// ...

},

};

</script>

Like the useQuery() function, the useMutation() function receives theGraphQLmutation as the first
argument. It returns a mutate() function that can be used anywhere in our component to trigger
the mutation.

<script>

// ...

import { useMutation } from "@vue/apollo-composable";

// ...

export default {

name: "ListingsListItem",

// ...

setup() {

const { mutate } = useMutation(/* GraphQL document */);

// ...

},

};

</script>

In the <ListingsListItem /> component, we’ll use the useMutation() function to extract a mutate()
function. As the Vue Apollo documentation recommends, we’ll rename the destructured mutate()

function to express the action being conducted (deleteListing()).

Vue Apollo & GraphQL 597

<script>

// ...

import { useMutation } from "@vue/apollo-composable";

// ...

export default {

name: "ListingsListItem",

// ...

setup() {

const { mutate: deleteListing } = useMutation(/* GraphQL document */);

// ...

},

};

</script>

The removeListing() function in the setup() of the component is triggered when a user clicks
the remove button in a specific list item. In this function, we’ll have the deleteListing() mutate
function be triggered on the return. This mutate function accepts a variables object. As we call the
mutate function, we’ll pass the id of the listing (available as props) as the id variable the mutation
expects.

vue-apollo/src/app-complete/components/ListingsListItem.vue

const removeListing = () => {

setNotification("Listing is to be deleted");

return deleteListing({ id: props.listing.id});

}

The Vue Apollo documentation²⁹⁷ tells us that another approach to passing variables to a
mutation is to use the options property of the useMutation() function itself.

We’ll notice that the component no longer needs to utilize the Vuex store we’ve created before. We’ll
remove any reference/import of the storewhichwill have the <script /> of our <ListingsListItem
/> component look like the following:

²⁹⁷https://v4.apollo.vuejs.org/guide-composable/mutation.html#variables

Vue Apollo & GraphQL 598

<script>

import { useMutation } from "@vue/apollo-composable";

import DeleteListingMutation from "../graphql/DeleteListingMutation";

import useDarkMode from "../hooks/useDarkMode";

import useNotification from "../hooks/useNotification";

export default {

name: "ListingsListItem",

props: ["listing", "refetchListings"],

setup(props) {

const { mutate: deleteListing } = useMutation(DeleteListingMutation);

const { darkMode } = useDarkMode();

const { setNotification } = useNotification();

const removeListing = () => {

setNotification("Listing is to be deleted");

return deleteListing({ id: props.listing.id });

};

return {

darkMode,

removeListing,

};

},

};

</script>

With these changes saved, we’ll notice something peculiar in our running application. If we were to
attempt to trigger a deletion from the UI, our network tab gives us information that our mutation
request was successful. However, we’ll still be presented with the listing item in the list.

Vue Apollo & GraphQL 599

NewlineBnB

Only when we refresh the app, do we see the listings list be updated to reflect a listing has been
removed. Why does this happen?

Vue Apollo Cache

Vue Apollo, by extension of Apollo Client, doesn’t only give us useful methods to conduct data
fetching but also sets up an in-memory intelligent cache without any configuration on our part.

When wemake requests to retrieve data with the Apollo Client, Apollo Client under the hood caches
the data. The next time we return to a page that we’ve just visited, Apollo Client is smart enough
to say - “Hey, we already have this data in the cache. Let’s just provide the data from the cache
directly without needing to make another request to the server”. This saves time and helps avoid the
unnecessary re-request of data from the server that we’ve already requested before.

When a mutation like deleteListing is successful, data is modified on the server. Since this data
now exists on the cache, the cache may also need to be updated.

The Vue Apollo documentation tells that if a single entity is being updated directly²⁹⁸ - Apollo Client
is smart enough to automatically update the cache with no other work needed from us. However, if

²⁹⁸https://v4.apollo.vuejs.org/guide-composable/mutation.html#updating-a-single-existing-entity

Vue Apollo & GraphQL 600

a mutation modifies multiple entities or creates or deletes one or many entities, Apollo Client will
not automatically update the cache²⁹⁹.

Since we remove a listing, we need to notify the cache that the listing has been removed to have
our client app reflect the updated status of our server. To update the cache directly, Vue Apollo
documentation tells us³⁰⁰ that we can use an update() method in the mutate() function. This will
look something like the following:

<script>

import { useMutation } from "@vue/apollo-composable";

import DeleteListingMutation from "../graphql/DeleteListingMutation";

// ...

export default {

name: "ListingsListItem",

// ...

setup(props) {

const { mutate: deleteListing } = useMutation(DeleteListingMutation);

// ...

const removeListing = () => {

setNotification("Listing is to be deleted");

return deleteListing(

{ id: props.listing.id },

{

update: (cache, { data: { deleteListing } }) => {

// first parameter is the cache that we can read/update

// second parameter is the result from our GraphQL mutation

},

}

);

};

// ...

},

};

</script>

Though updating the cache directly can be done, there’s an easier way to have the cache be updated.
Instead of updating the cache directly, we can request that the initial query we conducted (query

²⁹⁹https://v4.apollo.vuejs.org/guide-composable/mutation.html#making-all-other-cache-updates
³⁰⁰https://v4.apollo.vuejs.org/guide-composable/mutation.html#making-all-other-cache-updates

Vue Apollo & GraphQL 601

for listings) is refetched when the deleteListing mutation is successful. By refetching the query,
we make a network request to the server to retrieve the updated information from our server. When
this refetch is complete, the cache will then automatically be updated to reflect the new change.

We’ll go with the easier approach of refetching the query. Conveniently, the useQuery() function
allows us to destruct a refetch() function that can be used to refetch the original query at any
moment in time. We’ll destruct this function from where our useQuery() is declared in the <App />

component. As we destruct the function, we’ll label it with the name of refetchListings().

vue-apollo/src/app-complete/App.vue

const { result, loading, error, refetch: refetchListings } = useQuery(ListingsQu\

ery);

We’ll then have the <App /> component return the refetchListings() function from its setup.

setup() {

// ...

return {

// ...

refetchListings

// ...

}

}

We’ll want this refetchListings() function to be accessible from the <ListingsListItem />

component. We’ll achieve this by having the function passed down as props from <App /> to
<ListingsList /> and then to <ListingsListItem />.

We’ll first have <App /> pass refetchListings() as props to <ListingsList />.

vue-apollo/src/app-complete/App.vue

<ListingsList :listings="listings" :refetchListings="refetchListings" />

We’ll have the <ListingsList /> component state that it is to receive the refetchListings()

function prop.

vue-apollo/src/app-complete/components/ListingsList.vue

props: ['listings', 'refetchListings'],

We’ll then have <ListingsList /> pass refetchListings() as props to <ListingsListItem />.

Vue Apollo & GraphQL 602

vue-apollo/src/app-complete/components/ListingsList.vue

<ListingsListItem :listing="listing" :refetchListings="refetchListings" />

We’ll have the <ListingsListItem /> component state that it is to receive the refetchListings()
function prop.

vue-apollo/src/app-complete/components/ListingsListItem.vue

props: ['listing', 'refetchListings'],

With the refetchListings() function available in <ListingsListItem />, we can look to see how
we can trigger this function only when the mutation is successful.

Vue Apollo’s useMutation() function conveniently provides an onDone()³⁰¹ event hook that we can
use to trigger functionality only when a mutation is deemed successful. We’ll destruct the onDone

function from useMutation().

vue-apollo/src/app-complete/components/ListingsListItem.vue

const { mutate: deleteListing, onDone } = useMutation(DeleteListingMutation);

The useMutation() function also conveniently provides an onError()³⁰² event hook that can
be used to trigger functionality when an error occurs during a mutation.

We can have the onDone() function declared in the component setup() and state that the
refetchListings() function should be triggered. Furthermore, we’ll use the setNotification()

function available in the component to trigger a notification that says "Listing has been deleted".
With this change, the <script /> of <ListingsListItem /> will look like the following:

vue-apollo/src/app-complete/components/ListingsListItem.vue

<script>

import { useMutation } from '@vue/apollo-composable';

import DeleteListingMutation from '../graphql/DeleteListingMutation';

import useDarkMode from '../hooks/useDarkMode';

import useNotification from '../hooks/useNotification';

export default {

name: 'ListingsListItem',

props: ['listing', 'refetchListings'],

³⁰¹https://v4.apollo.vuejs.org/guide-composable/mutation.html#ondone
³⁰²https://v4.apollo.vuejs.org/guide-composable/mutation.html#onerror

Vue Apollo & GraphQL 603

setup(props) {

const { mutate: deleteListing, onDone } = useMutation(DeleteListingMutation);

const { darkMode } = useDarkMode();

const { setNotification } = useNotification();

const removeListing = () => {

setNotification("Listing is to be deleted");

return deleteListing({ id: props.listing.id});

}

onDone(() => {

props.refetchListings();

setNotification("Listing has been deleted");

});

return {

darkMode,

removeListing

}

}

}

</script>

Now, when we delete a listing from our list, we’ll see the UI automatically update to reflect the
change!

Vue Apollo & GraphQL 604

Refetching a query after a mutation often has the advantage of being much simpler than
updating the cache directly. This however does involve making an additional network call
to the server which may have performance implications in larger and more complicated
situations.

Removing the button

In our GraphQL API, we don’t have functionality that allows the client to reset the listings app back
to its original state when listings have been removed. With that said, we’ll no longer need the Reset
button shown in the <ListingsList /> component.

The <template> and <script> of the <ListingsList /> component will look like the following when
the Reset element functionality has been removed.

Vue Apollo & GraphQL 605

vue-apollo/src/app-complete/components/ListingsList.vue
<template>

<div id="listings">

<Notification :notification="notification" :toggleNotification="toggleNotificati\

on" />

<div v-for="listing in listings" :key="listing.id">

<ListingsListItem :listing="listing" :refetchListings="refetchListings" />

</div>

</div>

</template>

<script>

import { onMounted } from 'vue';

import ListingsListItem from './ListingsListItem';

import Notification from './Notification';

import useDarkMode from '../hooks/useDarkMode';

import useNotification from '../hooks/useNotification';

export default {

name: 'ListingsList',

props: ['listings', 'refetchListings'],

setup() {

const { darkMode } = useDarkMode();

const { notification, setNotification, toggleNotification } = useNotification();

onMounted(() => {

setNotification("Welcome to NewlineBnB!");

});

return {

darkMode,

notification,

toggleNotification

}

},

components: {

ListingsListItem,

Notification

}

}

</script>

Vue Apollo & GraphQL 606

Removing the store

We can see we’re no longer using the Vuex store we created in a previous chapter in any component
of our app. This is because our components can now depend on useful utility methods from Vue
Apollo to interact with our GraphQL API. Additionally, since the Apollo Client stores the results of
API calls in its cache, we can rely on Apollo to be the source of truth for any state information about
our GraphQL requests.

Since we no longer use the store, we can remove it’s import and use within the root main.js file.
This will have the main.js file in its final state look like the following:

import { createApp } from "vue";

import {

ApolloClient,

createHttpLink,

InMemoryCache,

} from "@apollo/client/core";

import { DefaultApolloClient } from "@vue/apollo-composable";

import App from "./app/App.vue";

const httpLink = createHttpLink({

uri: "http://localhost:3000/api",

});

const cache = new InMemoryCache();

const apolloClient = new ApolloClient({

link: httpLink,

cache,

});

createApp(App).provide(DefaultApolloClient, apolloClient).mount("#app");

Finally, we can delete the store.js file from our application directory. The src/ directory of our
complete app will look like the following:

Vue Apollo & GraphQL 607

src/

app/

components/

hooks/

App.vue

Conclusion

In this chapter, we’ve come to understand the basics around GraphQL and some of the benefits
it provides when compared with traditional REST APIs. We’ve also introduced and used the
Vue Apollo library as the main tool to help conduct GraphQL queries and mutations from our
components.

There’s a lot more to learn about GraphQL and its use in a client application. A few resources outside
of this chapter that may be helpful if you’re interested in learning more:

• GraphQL³⁰³ - the official GraphQL documentation.
• The newline Guide to Building Your First GraphQL Server with Node and TypeScript³⁰⁴
- A free course built by my colleague and I to teach how to build a GraphQL server with Node
and TypeScript.

• Vue Apollo³⁰⁵ - the official documentation for Vue Apollo.
• Apollo Client³⁰⁶ - the official documentation for Apollo Client.

³⁰³https://graphql.org/learn/
³⁰⁴https://www.newline.co/courses/the-newline-guide-to-building-your-first-graphql-server-with-node-and-typescript
³⁰⁵https://v4.apollo.vuejs.org/
³⁰⁶https://www.apollographql.com/docs/react/

Fullstack Vue Screencast

The screencast was originally produced prior to the launch of Vue v3. As a result, all code
shown in the screencast and in the provided code sample for the screencast is in Vue v2.

In December 2018, v1 of the CoinMarketCap API that this screencast uses was depre-
cated in favor of a new and more robust API³⁰⁷. We’ve created a new project folder
(simple-coin-cap-updated-api/) that displays the usage of the new and up-to-date Coin-
MarketCap API.

Since the main takeaways of the screencast remains the same, we’ve opted to not re-record
portions of the screencast but instead highlight the changes made to comply with the new
API in this chapter. We begin this chapter by discussing the topics that is to be covered in
the screencast before highlighting the changes made to comply with the new up-to-date
API³⁰⁸. Like always, if you have any questions, you are always welcome to reach out to us
at us@fullstack.io³⁰⁹.

Building SimpleCoinCap

The Fullstack Vue Screencast involves building and deploying an entire Vue.js application. The
screencast is broken down to several parts with the outcome involve building and deploying
SimpleCoinCap, an app that displays the market cap rankings, price, details and more for the top
100 largest cryptocurrencies based on overall market cap.

³⁰⁷https://coinmarketcap.com/api/
³⁰⁸https://coinmarketcap.com/api/
³⁰⁹us@fullstack.io

Fullstack Vue Screencast 609

SimpleCoinCap

We can currently view the entire application at https://simple-coin-cap.herokuapp.com/³¹⁰ or https://www.simplecoincap.com/³¹¹.

The Fullstack Vue Screencast is available to customers of the Full Package and higher.

If you’d like to upgrade your Basic package and get instant access to the the screencast,
click here³¹²

Application Details

Without going into too much detail; cryptocurrencies are digital currencies in which encryption
techniques are used to regulate the generation of digital units. Bitcoin/Ethereum are the more
popular cryptocurrencies; though a large number exists. Like any other stock or investment;
investors often aim to stay up to date with their investments by seeing their portfolio’s performance
over time.
³¹⁰https://simple-coin-cap.herokuapp.com/
³¹¹https://www.simplecoincap.com/
³¹²https://gumroad.com/l/vue-full/vue-basic-upgrade-r7

Fullstack Vue Screencast 610

SimpleCoinCap aggregates the data and information of the top 100 largest cryptocurrencies to
present to the user. All the data in the application will be retrieved from another popular aggregator
called CoinMarketCap³¹³ with the use of their public facing API³¹⁴.

Whether you’re familiar or not familiar with cryptocurrencies won’t matter much. This
screencast is going to be a tutorial in mapping a large number of tools in the Vue ecosystem
to build and deploy an application.

Agenda

The screencast is broken down into four separate videos. The source code for this screencast can be
found in the simple-coin-cap-screencast/ directory located within the book’s code package.

Introduction

The Introduction is a short 5 min segment that encapsulates what’s mostly stated here.

Setting Up

Setting Up will involve establishing the application scaffold to be ready for development:

• We’ll scaffold a new Vue - Webpack development environment with the help of the Vue
Command Line Interface³¹⁵.

• We’ll set up a Node/Express server that’s responsible in making all application API calls and
be used for deployment.

• We’ll establish a proxy³¹⁶ to have our Webpack Server proxy requests intended for our API
server, with no issues.

The simple-coin-cap/ folder represents the application state after this segment is complete (i.e. after
we’ve finished setting up our application).

³¹³https://coinmarketcap.com/
³¹⁴https://coinmarketcap.com/api/
³¹⁵https://github.com/vuejs/vue-cli
³¹⁶(#api_proxying)

Fullstack Vue Screencast 611

Building the Application

This represents the largest section of the screencast and involves building the entire Vue application:

• We’ll build the Vuex store of the app that’ll host the application’s state and be responsible in
syncing with the API server.

• We’ll set up the routes of our application with Vue Router.
• We’ll finally build and lay out all application views (i.e. components).

This segment should be started with the simple-coin-cap-1/ folder. simple-coin-cap-1/ is similar
to the simple-coin-cap/ directory but with all custom CSS styling in the application prepared.

The simple-coin-cap-complete/ folder represents the application state after this segment is com-
plete.

In this segment, we’ll be introducing a large amount of markup and CSS styling. Similar to
how the applications in the rest of the book were built - we won’t spend our effort explaining
how markup and CSS styles are laid out. If you’re interested in coding along within this
segment of the screencast; refer to the simple-coin-cap-complete/ folder to see completed
versions of components and application views.

Deployment

The final segment of the screencast will involve the deployment of our entire application. For
deployment; we’ll be using Heroku³¹⁷, a cloud platform as a service.

The simple-coin-cap-deployed/ folder represents the application in it’s completed state and
prepared for deployment.

If you’re ready to get started and have already covered this (or the video) introduction; you can
begin with the Setting Up segment!

Updates with the new API

The CoinMarketCap API was updated in December 2018 to be more powerful, flexible, and robust.
This doesn’t play a big role in our SimpleCoinCap application since our app makes two fairly simple
queries to retrieve the necessary cryptocurrency data.

Since interactionwith the API (i.e. the actual GET requests) plays a small role in the screencast, we’ve
opted to not update the screencast recordings and instead detail the changes that are to be made to in-
teract with the new API. These changes can also be seen in the new simple-coin-cap-updated-api/

project folder.

³¹⁷https://www.heroku.com/

Fullstack Vue Screencast 612

New Authenticated Endpoint

The most prevalent change in the API is the requirement for all HTTP requests to now be
authenticated with a valid API Key³¹⁸. Since all applications will require their own unique API
key, you will need to generate your own to interact with the CoinMarketCap API.

Different tiers are available for different use cases, but one can get started without cost with the Free
Basic plan. You can find more details of the different pricing plans in the Pricing section³¹⁹ of the
API documentation.

With an API key generated, we’re able to make authenticated requests to endpoints by either
passing the value of the API key as a custom header or a query string parameter. In the
simple-coin-cap-updated-api/ project folder, we’ve taken the preferred approach³²⁰ and have
passed the API Key to the requests via a custom header named X-CMC_PRO_API_KEY.

It is always important to secure API or secret keys away from public access. The conventional way
of securing secret variables is often the use of environment variables³²¹ and in Node.js, we’re able
to access environment variables through process.env³²². Though there are a few ways to declare

³¹⁸https://coinmarketcap.com/api/documentation/v1/#section/Authentication
³¹⁹https://coinmarketcap.com/api/pricing/
³²⁰https://coinmarketcap.com/api/documentation/v1/#section/Authentication
³²¹https://docs.microsoft.com/en-us/windows/desktop/procthread/environment-variables
³²²https://nodejs.org/api/process.html#process_process_env

Fullstack Vue Screencast 613

environment variables, dotenv³²³ is a popular package that loads variables from a .env file for Node.js
projects.

In the updated project folder provided (simple-coin-cap-updated-api/), the dotenv package is
installed as a dependency in the package.json file.

{ "name": "simple-coin-cap", ... "dependencies": { ... "dotenv": "^6.2.0", ... }

... }

In the server.js file kept within the root of the project, the dotenv library is required and configured.

const dotenv = require('dotenv');

...

dotenv.config();

By configuring the dotenv library with dotenv.config(), environment variables kept within a .env
file is read and can then be accessed. In the server.js file, we’ve also prepared the updated URL
endpoints the new CoinMarketCap API provides.

const baseUrl = "https://pro-api.coinmarketcap.com/v1/";

const listingsUrl = `${baseUrl}cryptocurrency/listings/latest?limit=100`;

const globalMetricsUrl = `${baseUrl}global-metrics/quotes/latest`;

• baseUrl is the base URL path that our all API endpoints build upon.
• listingsUrl lists all cryptocurrencies in order of market cap³²⁴ by default. We’ve provided a
query parameter of limit=100 to ensure we return only 100 results for our application.

• globalMetricsUrl gets the latest quote of aggregate market metrics³²⁵.

In our updated GET requests, we now interact with the new API endpoints while supplying an
API_KEY via a custom header named X-CMC_PRO_API_KEY:

³²³https://github.com/motdotla/dotenv
³²⁴https://coinmarketcap.com/api/documentation/v1/#operation/getV1CryptocurrencyListingsLatest
³²⁵https://coinmarketcap.com/api/documentation/v1/#operation/getV1GlobalmetricsQuotesLatest

Fullstack Vue Screencast 614

app.get("/api/coins", (req, res) => {

axios

.get(listingsUrl, {

headers: { "X-CMC_PRO_API_KEY": process.env.API_KEY },

})

.then((response) => {

res.setHeader("Cache-Control", "no-cache");

res.json(response.data);

})

.catch((error) => {

console.log("api call failed :(", error);

});

});

app.get("/api/market_data", (req, res) => {

axios

.get(globalMetricsUrl, {

headers: { "X-CMC_PRO_API_KEY": process.env.API_KEY },

})

.then((response) => {

res.setHeader("Cache-Control", "no-cache");

res.json(response.data);

})

.catch((error) => {

console.log("api call failed :(", error);

});

});

process.env.API_KEY refers to an API_KEY environment variable declared in a .env file. .env files
are often discouraged from ever being pushed into a repository since environment variables are often
sensitive data. Sincewe’re aligningwith this convention, there is currently no .env file available in
the simple-coin-cap-updated-api/ project folder. For you to pull the code and run it successfully,
you will need to:

1. Create a new unique API_KEY for your project³²⁶. Thankfully, the CoinMarketCap API
provides a Free Tier to get started quickly.

2. Declare the API_KEY environment variable in a .env file kept within the root of the project.

New Authenticated Endpoint - Deployment

Since the .env file is never committed alongside the project, we also have to specify environment
specific variables in our deployment pipeline. Heroku makes this easy with config vars³²⁷ - environ-
³²⁶https://coinmarketcap.com/api/
³²⁷https://devcenter.heroku.com/articles/config-vars#managing-config-vars

Fullstack Vue Screencast 615

ment variables that can be added with the Heroku CLI³²⁸ or directly with the Heroku Dashboard³²⁹.

If you’re interested in having your application deployed with Heroku, you’ll need to have the API_-
KEY configuration variable declared either through the CLI³³⁰ or the dashboard³³¹.

Heroku CLI

$ heroku config:set API_KEY=...

Heroku Dashboard

Client-specific changes - Data

The majority of changes that were done to comply with the new CoinMarketCap API involved
interacting with the new endpoints while authenticating our requests. Some of the minor changes
done on the client side (i.e. Vue specific code) involved interacting with small variations of how data
is returned from the new API.

Here’s a small list of changes in the returned data fields.

Coin Listings Data

• The pricing details from each coin object are now kept within coin.quote.USD as opposed to
coin.quotes.USD.

• The market ranking of each coin is found in coin.cmc_rank as opposed to coin.rank.
• The appropriate URL slugs for each coin is under the coin.slug property instead of coin.website_-
slug.

Global Market Cap Data

• The total market cap information is found within data.quote.USD instead of data.quotes.USD.
• The percentagemarket cap of bitcoin is now the data.btc_dominance property, not data.bitcoin_-
percentage_of_market_cap.

³²⁸https://devcenter.heroku.com/articles/config-vars#using-the-heroku-cli
³²⁹https://devcenter.heroku.com/articles/config-vars#using-the-heroku-dashboard
³³⁰https://devcenter.heroku.com/articles/config-vars#using-the-heroku-cli
³³¹https://devcenter.heroku.com/articles/config-vars#using-the-heroku-dashboard

Fullstack Vue Screencast 616

The new API returns some of the data listed above in a more accurate format (i.e. higher degree of
decimal placement). In some of the Vue components in the simple-coin-cap-updated-api/ project,
we’ve used the utility formatCurrency() and formatNumber() methods in more locations to have
some of this accurate data be more presentable in the view.

Client-specific changes - Miscellaneous

The only other primary change that has been made involves the images generated for each
cryptocurrency. Originally, we’ve used the slug of each coin object with another public/open
API to generate images for each particular coin. That API appears to have recently been out
of commission, so we’ve simply introduced a stock cryptocurrency image for each coin. These
images are stored in the src/assets folder of the project as virtual-currency-large.png and
virtual-currency-small.png respectively, and appears as follows:

The new API provides a metadata³³² endpoint that returns metadata for one or more
cryptocurrencies such as name, logo, symbol, etc. Though not covered in the screencast,
a good follow up exercise would be interacting with this new endpoint and attempting to
populate the appropriate logo for each cryptocurrency.

Conclusion

Though there are minor changes to have to be made to comply with the new API, the main
teaching points of the screencast remains the same. We scaffold a new Vue - Webpack development
environment with the Vue CLI, we set up a Node/Express server that’s responsible in making the API
calls, we build the Vuex store of our app to host our application’s state, and so on. As the screencast
proceeds, I’ll be displaying small alerts summarizing the main areas of change with the new API.

At any moment in time, you’re always able to see what changes need to be made with the new API
in this chapter or directly from the simple-coin-cap-updated-api/ project folder.

³³²https://coinmarketcap.com/api/documentation/v1/#operation/getV1CryptocurrencyInfo

Changelog
Revision 13 - 2021-02-01

Updated the book to Vue 3!

Added chapters on:

• Vue’s Composition API
• TypeScript and Vue
• Apollo and GraphQL

Revision 12 - 2020-06-01

• Updated packages for shopping cart vuex, testing, weather, cart, routing, calendar app

Revision 11 - 2020-05-26

• Added a link to the sample code

Revision 10 - 2020-01-13

• Updated npm packages

Revision 9 - 2019-03-15

• Documentation and addition of newly added simple-coin-cap-screencast/simple-coin-cap-updated-api
project folder to display usage of the new and up-to-date CoinMarketCap API for Fullstack Vue
Screencast.

• Updating code/index.json to Fullstack Vue Code Samples.
• Update packages for all Webpack projects. (edited)

Revision 8 - 2019-01-08

• Minor bug fixes and grammar improvements.
• Migrating all Webpack application scaffolds to Vue CLI 3.0
• Using the moved scoped Vue Test Utils package (@vue/test-utils).

Revision 7 - 2018-05-19

Added screencast chapter for Full Package customers

	Table of Contents
	Book Revision
	Get the Code
	Join Our Discord Server!
	Bug Reports
	Be notified of updates via Twitter
	We'd love to hear from you!
	Foreword
	How to Get the Most Out of This Book
	Overview
	Vue 3.x
	Running Code Examples
	Code Blocks and Context
	Instruction for Windows users
	Live online community
	Getting Help
	Emailing Us
	Get excited!

	Your first Vue.js Web Application
	Building UpVote!
	Development environment setup
	JavaScript ES6/ES7
	Getting started
	Setting up the view
	Making the view data-driven
	List rendering
	Sorting
	Event handling (our app's first interaction)
	Components
	v-bind and v-on shorthand syntax
	Congratulations!

	Single-file components
	Introduction
	Setting up our development environment
	Getting started
	Single-File Components
	Breaking the app into components
	Managing data between components
	Simple State Management
	Steps to building Vue apps from scratch
	Step 1: A static version of the app
	Step 2: Breaking the app into components
	Step 3: Hardcode Initial States
	Step 4: Create state mutations (and corresponding component actions)
	The Calendar App
	Methodology review

	Custom Events
	Introduction
	JavaScript Custom Events
	Vue Custom Events
	Event Bus
	Custom events and managing data
	Summary

	Introduction to Vuex
	Recap
	What is Flux?
	Flux implementations
	Vuex
	Refactoring the note-taking app
	Vuex Store
	Building the components

	Vuex and Servers
	Introduction
	Preparation
	The Server API
	Playing with the API
	Client and server
	Preparing the application
	The Vuex Store
	productModule
	cartModule
	Interactivity
	Vuex and medium to large scale applications
	Recap

	Form Handling
	Introduction
	Forms 101
	Preparation
	The Basic Button
	Text Input
	Multiple Fields
	Validations
	Async Persistence
	Vuex
	Form Modules

	Routing
	What is routing?
	URL
	Single-page applications
	Basic Vue Router
	Dynamic Route Matching
	The Server API
	Starting point of the app
	Integrating vue-router
	Supporting authenticated routes
	Implementing login
	Vue Watchers
	Navigation Guards
	Recap and further reading

	Unit Testing
	End-to-end vs. Unit Testing
	Testing tools
	Testing a basic Vue component
	Setup
	Testing App
	vue-test-utils
	More assertions for App.vue
	Writing tests for a weather app
	Store
	Further reading

	Composition API
	Why do need the Composition API?
	What is the Composition API?
	Building a simple listings app
	app/
	Updating <App />
	Updating <ListingsList />
	Updating <ListingsListItem />
	Notifications
	Dark Mode
	The Store
	Conclusion

	TypeScript
	What is TypeScript?
	Vue & TypeScript
	Annotating Props
	Conclusion

	Vue Apollo & GraphQL
	GraphQL
	Consuming GraphQL
	The GraphQL API we'll be working with
	Vue Apollo

	Fullstack Vue Screencast
	Building SimpleCoinCap
	Agenda
	Updates with the new API

	Changelog

