
Clean C++20
Sustainable Software Development
Patterns and Best Practices
—
Second Edition
—
Stephan Roth

Clean C++20
Sustainable Software Development

Patterns and Best Practices

Second Edition

Stephan Roth

Clean C++20: Sustainable Software Development Patterns and Best Practices

ISBN-13 (pbk): 978-1-4842-5948-1 ISBN-13 (electronic): 978-1-4842-5949-8
https://doi.org/10.1007/978-1-4842-5949-8

Copyright © 2021 by Stephan Roth

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image by Jay Mantri on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.
springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science
+ Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484259481. For more
detailed information, please visit http://www.apress.com/source- code.

Printed on acid-free paper

Stephan Roth
Bad Schwartau, Schleswig-Holstein, Germany

https://doi.org/10.1007/978-1-4842-5949-8

To Caroline and Maximilian: my beloved and marvelous family.

v

Table of Contents

Chapter 1: Introduction��� 1

Software Entropy �� 3

Why C++?�� 4

Clean Code �� 6

C++11: The Beginning of a New Era ��� 6

Who This Book Is For ��� 7

Conventions Used in This Book ��� 8

Sidebars �� 9

Notes, Tips, and Warnings ��� 9

Code Samples �� 9

Companion Website and Source Code Repository �� 11

UML Diagrams ��� 12

Chapter 2: Build a Safety Net �� 13

The Need for Testing ��� 13

Introduction to Testing �� 16

Unit Tests��� 19

What About QA? �� 21

Rules for Good Unit Tests �� 22

Test Code Quality ��� 22

Unit Test Naming ��� 22

About the Author ��� xiii

About the Technical Reviewer ���xv

Acknowledgments ���xvii

vi

Unit Test Independence ��� 24

One Assertion per Test ��� 25

Independent Initialization of Unit Test Environments ��� 26

Exclude Getters and Setters �� 27

Exclude Third-Party Code �� 27

Exclude External Systems ��� 28

What Do We Do with the Database? �� 28

Don’t Mix Test Code with Production Code �� 29

Tests Must Run Fast �� 32

How Do You Find a Test’s Input Data? ��� 33

Test Doubles (Fake Objects) �� 36

Chapter 3: Be Principled ��� 41

What Is a Principle? �� 41

KISS��� 42

YAGNI �� 43

DRY ��� 44

It’s About Knowledge! �� 44

Building Abstractions Is Sometimes Hard ��� 45

Information Hiding �� 48

Strong Cohesion �� 53

Loose Coupling �� 56

Be Careful with Optimizations ��� 60

Principle of Least Astonishment (PLA) �� 61

The Boy Scout Rule ��� 62

Collective Code Ownership �� 63

Chapter 4: Basics of Clean C++ �� 65

Good Names �� 66

Names Should Be Self-Explanatory ��� 68

Use Names from the Domain ��� 70

Choose Names at an Appropriate Level of Abstraction �� 72

Table of ConTenTs

vii

Avoid Redundancy When Choosing a Name �� 73

Avoid Cryptic Abbreviations ��� 74

Avoid Hungarian Notation and Prefixes ��� 75

Avoid Using the Same Name for Different Purposes ��� 76

Comments ��� 77

Let the Code Tell the Story ��� 77

Do Not Comment Obvious Things �� 78

Don’t Disable Code with Comments �� 79

Don’t Write Block Comments ��� 80

The Rare Cases Where Comments Are Useful ��� 84

Functions �� 89

One Thing, No More! �� 93

Let Them Be Small��� 94

Function Naming ��� 96

Use Intention-Revealing Names �� 97

Parameters and Return Values �� 98

About Old C-Style in C++ Projects �� 114

Choose C++ Strings and Streams over Old C-Style char* ��� 115

Avoid Using printf(), sprintf(), gets(), etc� ��� 117

Choose Standard Library Containers over Simple C-Style Arrays ��������������������������������������� 122

Use C++ Casts Instead of Old C-Style Casts ��� 125

Avoid Macros ��� 128

Chapter 5: Advanced Concepts of Modern C++ �� 131

Managing Resources �� 132

Resource Acquisition Is Initialization (RAII)�� 134

Smart Pointers ��� 135

Avoid Explicit New and Delete ��� 144

Managing Proprietary Resources �� 144

We Like to Move It ��� 146

What Are Move Semantics? ��� 146

The Matter with Those lvalues and rvalues ��� 148

Table of ConTenTs

viii

rvalue References�� 150

Don’t Enforce Move Everywhere ��� 152

The Rule of Zero �� 153

The Compiler Is Your Colleague��� 159

Automatic Type Deduction ��� 159

Computations During Compile Time �� 164

Variable Templates �� 167

Don’t Allow Undefined Behavior �� 169

Type-Rich Programming ��� 171

Know Your Libraries �� 182

Take Advantage of <algorithm> �� 183

Take Advantage of Boost ��� 194

More Libraries That You Should Know About ��� 194

Proper Exception and Error Handling �� 196

Prevention Is Better Than Aftercare ��� 197

An Exception Is an Exception, Literally! ��� 202

If You Can’t Recover, Get Out Quickly ��� 204

Define User-Specific Exception Types ��� 205

Throw by Value, Catch by const Reference �� 207

Pay Attention to the Correct Order of Catch Clauses ��� 208

Interface Design �� 209

Attributes ��� 210

Concepts: Requirements for Template Arguments �� 215

Chapter 6: Modularization �� 221

The Basics of Modularization �� 222

Criteria for Finding Modules �� 222

The Whole Enchilada ��� 227

Object-Orientation ��� 227

Object-Oriented Thinking ��� 228

Principles for Good Class Design ��� 230

Table of ConTenTs

ix

Modules �� 281

The Drawbacks of #include ��� 281

Modules to the Rescue �� 283

Under the Hood �� 284

Three Options for Using Modules �� 286

The Impact of Modules �� 290

Chapter 7: Functional Programming �� 293

What Is Functional Programming? �� 295

What Is a Function? ��� 296

Pure vs Impure Functions �� 297

Functional Programming in Modern C++ ��� 299

Functional Programming with C++ Templates �� 299

Function-Like Objects (Functors) �� 302

Binders and Function Wrappers �� 312

Lambda Expressions ��� 315

Generic Lambda Expressions (C++14) �� 318

Lambda Templates (C++20) �� 319

Higher-Order Functions ��� 322

Map, Filter, and Reduce ��� 324

Pipelining with Range Adaptors (C++20) �� 329

Clean Code in Functional Programming �� 333

Chapter 8: Test-Driven Development �� 335

The Drawbacks of Plain Old Unit Testing (POUT) ��� 336

Test-Driven Development as a Game Changer �� 338

The Workflow of TDD ��� 339

TDD by Example: The Roman Numerals Code Kata ��� 342

Preparations �� 343

The First Test ��� 346

The Second Test �� 349

The Third Test and the Tidying Afterward �� 349

Table of ConTenTs

x

More Sophisticated Tests with a Custom Assertion ��� 354

It’s Time to Clean Up Again �� 359

Approaching the Finish Line �� 362

Done! ��� 364

The Advantages of TDD ��� 367

When We Should Not Use TDD �� 369

TDD Is Not a Replacement for Code Reviews �� 371

Chapter 9: Design Patterns and Idioms �� 375

Design Principles vs Design Patterns ��� 376

Some Patterns and When to Use Them ��� 377

Dependency Injection (DI) �� 378

Adapter �� 394

Strategy ��� 396

Command �� 402

Command Processor ��� 407

Composite �� 412

Observer �� 416

Factories �� 422

Facade ��� 425

The Money Class ��� 427

Special Case Object (Null Object) �� 431

What Is an Idiom? ��� 435

Some Useful C++ Idioms��� 436

 Appendix A: Small UML Guide �� 451

 Structural Modeling �� 452

Component �� 452

Class and Object �� 453

Interface �� 457

Association �� 459

Table of ConTenTs

xi

Generalization �� 462

Dependency ��� 463

Template and Template Binding �� 465

 Behavioral Modeling ��� 466

Activity Diagram �� 466

Sequence Diagram �� 469

State Diagram �� 471

 Stereotypes ��� 474

 Bibliography ��� 477

Index ��� 481

Table of ConTenTs

xiii

About the Author

Stephan Roth, born on May 15, 1968, is a passionate

coach, consultant, and trainer for Systems and Software

Engineering with the German consultancy company oose

Innovative Informatik eG, located in Hamburg. Before he

joined oose, Stephan worked for many years as a software

developer, software architect, and systems engineer in

the field of radio reconnaissance and communication

intelligence systems. He has developed sophisticated

applications, especially for distributed systems with

ambitious performance requirements, and graphical user

interfaces using C++ and other programming languages.

Stephan is also a speaker at professional conferences and

the author of several publications. As a member of the

Gesellschaft für Systems Engineering e.V., the German chapter

of the international Systems Engineering organization INCOSE, he is also engaged in the

Systems Engineering community. Furthermore, he is an active supporter of the Software

Craftsmanship movement and concerned with principles and practices of Clean Code

Development (CCD).

Stephan Roth lives with his wife Caroline and their son Maximilian in Bad

Schwartau, a spa in the German federal state of Schleswig-Holstein near the Baltic Sea.

You can visit Stephan’s website and blog about systems engineering, software

engineering, and software craftsmanship via the URL roth-soft.de. Please note that the

articles there are mainly written in German.

On top of that, you can contact him via email or follow him at the networks listed here.

Email: stephan@clean-cpp.com
Twitter: @_StephanRoth (https://twitter.com/_StephanRoth)

LinkedIn: www.linkedin.com/in/steproth

https://twitter.com/_StephanRoth
http://www.linkedin.com/in/steproth

xv

About the Technical Reviewer

Marc Gregoire is a software engineer from Belgium. He graduated from the University of

Leuven, Belgium, with a degree in “Burgerlijk ingenieur in de computer wetenschappen”

(equivalent to a master of science degree in computer engineering). The year after, he

received the cum laude degree of master in artificial intelligence at the same university.

After his studies, Marc started working for a software consultancy company called

Ordina Belgium. As a consultant, he worked for Siemens and Nokia Siemens Networks

on critical 2G and 3G software running on Solaris for telecom operators. This required

working on international teams stretching from South America and the United States

to Europe, the Middle East, and Asia. Currently, Marc works for Nikon Metrology on

industrial 3D laser scanning software.

xvii

Acknowledgments

Writing a book like this one is never just the work of an individual person, the author.

There are always numerous, fabulous people who contribute significantly to such a great

project.

First, there was Steve Anglin of Apress. Steve contacted me in March 2016 for the first

edition of Clean C++. He persuaded me to continue my book project with Apress Media

LLC, which had been self-published at Leanpub. The self-publishing platform Leanpub

served as a kind of "incubator" for a few years, but then I decided to finish and publish

the book with Apress. Steve was also the one who contacted me in 2019 and asked me if

I wanted to release a second edition that would take into account the emerging C++20

language standard. Well, he was obviously quite successful.

Next, I would like to thank Mark Powers, Editorial Operations Manager at Apress, for

his great support during the writing of the manuscript for both editions. Mark was not

only always available to answer questions, but his incessant follow-up on the progress of

the manuscript was a positive incentive for me. I am very grateful to you, dear Mark.

In addition, many thanks also to Matthew Moodie, Lead Development Editor at

Apress, who has provided proper help throughout the whole book development process.

A special thank you goes out to my technical reviewer Marc Gregoire. Marc critically

examined every single chapter of both editions. He found many issues that I probably

would have never found. He pushed me hard to improve several sections, and that was

really valuable to me. Thank you!

Of course, I would also like to say a big thank you to the whole production team at

Apress. They’ve done an excellent job regarding the finalization (copy editing, indexing,

composition/layout, cover design, etc.) of the whole book up to the distribution of the

final print (and eBook) files.

Last but not least, I would like to thank my beloved and unique family, especially

for their understanding that a book project takes a great deal of time. Maximilian and

Caroline, you’re just wonderful.

1
© Stephan Roth 2021
S. Roth, Clean C++20, https://doi.org/10.1007/978-1-4842-5949-8_1

CHAPTER 1

Introduction
“How it is done is as important as having it done.”

—Eduardo Namur

Dear readers, I introduced the first edition of this book with the words: “It is still a sad

reality that many software development projects are in bad condition, and some might

even be in a serious crisis.” That was a little over three years ago, and I am pretty sure that

the general situation has not improved significantly since then.

The reasons that many software development projects are still having difficulties are

manifold. There are a lot of risk factors that can cause software development projects to

fail. Some projects, for example, are afflicted because of lousy project management. In

other projects, the conditions and requirements constantly and rapidly change, but the

development process does not support this high-dynamic environment. Furthermore,

the all-important requirements elicitation and use case analysis is given little space in

some projects. In particular, communication between external stakeholders, such as

between domain experts and developers, can be difficult, leading to misunderstandings

and the development of unnecessary features. And as if all this were not bad enough,

quality assurance measures, such as testing, are given too little importance.

STAKEHOLDER

The term stakeholder in systems and software engineering is commonly used to refer to

individuals or organizations that can potentially contribute requirements to a development

project or that define important constraints for the project.

Usually, a distinction is made between external and internal stakeholders. Examples of

external stakeholders are the customers, all users of the system, domain experts, system

administrators, regulatory authorities, the legislators, etc. Internal stakeholders are those

https://doi.org/10.1007/978-1-4842-5949-8_1#DOI

2

from within the development organization and can be the developers and software architects,

business analysts, product management, requirements engineers, quality assurance,

marketing personnel, etc.

The previously listed points are all typical and well-known problems in professional

software development, but beyond that, another fact exists: In some projects the code
base is poor quality!

That does not necessarily mean that the code is not working correctly. Its external

quality, measured by the quality assurance (QA) department using integration or

acceptance tests, can be pretty high. It can pass QA without complaints, and the test

report might state that they found nothing wrong. The software users might also possibly

be satisfied and happy, and the development may even have been completed on time

and on budget (... which is rare, I know). Everything seems to be fine on first sight …

really, everything?!

Nevertheless, the internal quality of this code, which works correctly, can be very

poor. Often the code is difficult to understand and horrible to maintain and extend.

Countless software units, like classes or functions, are very large, some of them with

thousands of lines of code, making their comprehensibility and adaptability a serious

challenge. Too many dependencies between software units lead to unwanted side effects

if something changes. The software has no perceivable architecture. Its structure seems to

be randomly originated and some developers speak about “historically grown software”

or “architecture by accident.” Classes, functions, variables, and constants have bad and

mysterious names, and the code is littered with lots of comments: some of them are

outdated, just describe obvious things, or are plain wrong. Developers are afraid to change

something or to extend the software because they know that it is rotten and fragile, and

they know that unit test coverage is poor, if there are any unit tests at all. “Never touch a

running system” is a statement that is frequently heard from people working within such

kinds of projects. The implementation of a new feature doesn’t just need a few hours or

days until it is ready for deployment; it takes several weeks or even months.

This kind of bad software is often referred to as a big ball of mud. This term was first

used in 1997 by Brian Foote and Joseph W. Yoder in a paper for the Fourth Conference

on Patterns Languages of Programs (PLoP ’97/EuroPLoP ’97). Foote and Yoder describe

the big ball of mud as “… a haphazardly structured, sprawling, sloppy, duct-tape-and-

baling-wire, spaghetti-code jungle.” Such software systems are costly and time-wasting

maintenance nightmares, and they can bring a development organization to its knees!

ChapTEr 1 InTrodUCTIon

3

The pathological phenomena just described can be found in software projects in all

industrial sectors and domains. The programming language they use doesn’t matter.

You’ll find big balls of mud written in Java, PHP, C, C#, C++, and other more or less

popular languages. Why is that so?

 Software Entropy
First of all, there is the natural law of entropy, or disorder. Just like any other closed and

complex system, software tends to get messier over time. This phenomenon is called

software entropy. The term is based on the second law of thermodynamics. It states that

a closed system’s disorder cannot be reduced; it can only remain unchanged or increase.

Software seems to behave this way. Every time a new function is added or something is

changed, the code gets a little bit more disordered. There are also numerous influencing

factors that can contribute to software entropy:

• Unrealistic project schedules raise the pressure and abet developers

to botch things and to do their work in a bad and unprofessional way.

• The immense complexity of today’s software systems, both

technically and in terms of the requirements to be satisfied.

• Developers with different skill levels and experience.

• Globally distributed, cross-cultural teams, enforcing communication

problems.

• Development mainly pays attention to the functional aspects

(functional requirements and the system’s use cases) of the software,

whereby the quality requirements (non-functional requirements),

such as performance, efficiency, maintainability, availability,

usability, portability, security, etc., are neglected or at worst are fully

ignored.

• Inappropriate development environments and bad tools.

• Management is focused on earning money quickly and doesn’t

understand the value of sustainable software development.

• Quick and dirty hacks and non-design-conformable

implementations (broken windows).

ChapTEr 1 InTrodUCTIon

4

THE BROKEN WINDOW THEORY

The Broken Window Theory was developed in connection with american crime research. The

theory states that a single destroyed window at an abandoned building can be the trigger

for the dilapidation of an entire neighborhood. The broken window sends a fatal signal to the

environment: “Look, nobody cares about this building!” This attracts further decay, vandalism,

and other antisocial behavior. The Broken Window Theory has been used as the foundation for

several reforms in criminal policy, especially for the development of zero-tolerance strategies.

In software development, this theory was taken up and applied to the quality of code. hacks

and bad implementations, which are not compliant with the software design, are called

“broken windows.” If these bad implementations are not repaired, more hacks to deal with

them may appear in their neighborhood. and thus, code dilapidation is set into motion.

don’t tolerate “broken windows” in your code—fix them!

 Why C++?

“C makes it easy to shoot yourself in the foot. C++ makes it harder, but when
you do, you blow away your whole leg!”

—Bjarne Stroustrup, Bjarne Stroustrup’s FAQ: Did you really say that?

First and foremost, phenomena like software entropy, code smells, anti-patterns, and

other problems with the internal software quality, are basically independent of the

programming language. However, it seems to be that C and C++ projects are especially

prone to messiness and tend to slip into a bad state. Even the World Wide Web is full of

bad, but apparently very fast and highly optimized, C++ code examples. They often have

a cruel syntax that completely ignores elementary principles of good design and well-

written code. Why is that?

One reason for this might be that C++ is a multi-paradigm programming language

on an intermediate level; that is, it comprises both high-level and low-level language

features. C++ is like a melting pot that blends many different ideas and concepts

together. With this language, you can write procedural, functional, or object-

oriented programs, or even a mixture of all three. In addition, C++ allows template

metaprogramming (TMP), a technique in which so-called templates are used by a

compiler to generate temporary source code that is merged with the rest of the source

ChapTEr 1 InTrodUCTIon

5

code and then compiled. Ever since the release of ISO standard C++11 (ISO/IEC

14882:2011 [ISO11]) in September 2011, even more ways have been added; for example,

functional programming with anonymous functions are now supported in a very elegant

manner by lambda expressions. As a consequence of these diverse capabilities, C++

has a reputation for being very complex, complicated, and cumbersome. And with each

standard after C++11 (C++14, C++17, and now C++20), a lot of new features were added,

which have further increased the complexity of the language.

Another cause for bad software could be that many developers didn’t have an IT

background. Anyone can begin to develop software nowadays, no matter if they have

a university degree or any other apprenticeship in computer science. A vast majority

of C++ developers are (or were) non-experts. Especially in the technological domains

automotive, railway transportation, aerospace, electrical/electronics, or mechanical

engineering domains, many engineers slipped into programming during the last

decades without having an education in computer science. As the complexity grew

and technical systems contained more and more software, there was an urgent need

for programmers. This demand was covered by the existing workforce. Electrical

engineers, mathematicians, physicists, and lots of people from strictly nontechnical

disciplines started to develop software. They learned to do it mainly by self-education

and hands- on, by simply doing it. And they have done it to their best knowledge and

belief.

Basically, there is absolutely nothing wrong with that. But sometimes just

knowing the tools and the syntax of a programming language is not enough. Software

development is not the same as programming. The world is full of software that was

tinkered together by improperly trained software developers. There are many things on

abstract levels a developer must consider to create a sustainable system, for example,

architecture and design. How should a system be structured to achieve certain quality

goals? What is this object-oriented thing good for and how do I use it efficiently? What

are the advantages and drawbacks of a certain framework or library? What are the

differences between various algorithms, and why doesn’t one algorithm fit all similar

problems? And what the heck is a deterministic finite automaton, and why does it help

to cope with complexity?!

But there is no reason to lose heart! What really matters to a software program’s

ongoing health is that someone cares about it, and clean code is the key!

ChapTEr 1 InTrodUCTIon

6

 Clean Code
What, exactly, is meant by “clean code”?

A major misunderstanding is to confuse clean code with something that can be

called “beautiful code.” Clean code doesn’t have necessarily to be beautiful (...whatever

that means). Professional programmers are not paid to write beautiful or pretty code.

They are hired by development companies as experts to create customer value.

Code is clean if it can be understood and maintained easily by any team member.

Clean code is the basis of fast code. If your code is clean and test coverage is high, it

only takes a few hours or a couple of days to implement, test, and deploy a change or a

new function—not weeks or months.

Clean code is the foundation for sustainable software; it keeps a software

development project running over a long time without accumulating a large amount of

technical debt. Developers must actively tend the software and ensure it stays in shape

because the code is crucial for the survival of a software development organization.

Clean code is also the key to being a happier developer. It leads to a stress-free life. If

your code is clean and you feel comfortable with it, you can keep calm in every situation,

even when facing a tight project deadline.

All of the points mentioned here are true, but the key point is this: Clean code saves
money! In essence, it’s about economic efficiency. Each year, development organizations

lose a lot of money because their code is in bad shape. Clean code ensures that the value

added by the development organization remains high. Companies can earn money from

its clean code for a long time.

 C++11: The Beginning of a New Era
“Surprisingly, C++11 feels like a new language: The pieces just fit together
better than they used to and I find a higher-level style of programming more
natural than before and as efficient as ever.”

—Bjarne Stroustrup, C++11 - the new ISO C++ standard [Stroustrup16]

After the release of the C++ language standard C++11 (ISO/IEC 14882:2011 [ISO11]) in

September 2011, some people predicted that C++ would undergo a renaissance. Some

even spoke of a revolution. They predicted that the idiomatic style of how development

ChapTEr 1 InTrodUCTIon

7

was done with this “modern C++” would be significantly different and not comparable to

the “historical C++” of the early 1990s.

No doubt, C++11 has brought a bunch of great innovations and changed the way

we think about developing software with this programming language. I can say with

full confidence that C++11 has set such changes in motion. With C++11, we got move

semantics, lambda expressions, automatic type deduction, deleted and defaulted

functions, a lot of enhancements of the Standard Library, and many more useful things.

But this also meant that these new features came on top of the already existing

features. It is not possible to remove a significant feature from C++ without breaking

large amounts of existing code bases. This means that the complexity of the language

increased, because C++11 is larger than its predecessor C++98, and thus it is harder to

learn this language in its entirety.

Its successor, C++14, was an evolutionary development with some bug fixes and

minor enhancements. If you plan to switch to modern C++, you should at least start with

this standard and skip C++11.

Three years later, with C++17, numerous new features were added again, but this

revision also removed a few. And in December 2020, the C++ standardization committee

completed and published the new C++20 standard, which is called “the next big thing”

by some people. This standard again adds lots of new features besides many extensions

to the core language, the Standard Library, and other stuff, especially the so-called “big

four”: Concepts, Coroutines, Ranges Library, and Modules.

If we look at C++ development over the past 10 years, we can see that the complexity

of the language has increased significantly. In the meantime, C++23 development

has already begun. I question whether this is the right way to go about things in the

long run. Perhaps it would be appropriate at some point not only to permanently add

functionalities, but also to review the existing features, consolidate them, and simplify

the language again.

 Who This Book Is For
As a trainer and consultant, I have had the opportunity to look at many companies that

are developing software. Furthermore, I observe very closely what is happening in the

developer scene. And I’ve recognized a gap.

My impression is that C++ programmers have been ignored by those promoting

software craftsmanship and clean code development. Many principles and practices,

ChapTEr 1 InTrodUCTIon

8

which are relatively well known in the Java environment and in the hip world of web or

game development, seem to be largely unknown in the C++ world.

This book tries to close that gap a little, because even with C++, developers can write

clean code! If you want to learn about writing clean C++, this book is for you. It is written

for C++ developers of all skill levels and shows by example how to write understandable,

flexible, maintainable, and efficient C++ code. Even if you are a seasoned C++ developer,

there are interesting hints and tips in this book that you will find useful in your work.

This book is not a C++ primer! In order to use the knowledge in this book

efficiently, you should already be familiar with the basic concepts of the language. If

you just want to start with C++ development and still have no basic knowledge of the

language, you should first learn the basic concepts, which can be done with other books

or with a good C++ introduction training. This book also does not discuss every single

new C++20 language feature, or the features of its predecessors, in detail. As I have

already pointed out, the complexity of the language is now relatively high. There are

other very good books that introduce the language from A to Z.

Furthermore, this book doesn’t contain any esoteric hack or kludge. I know that a lot

of nutty and mind-blowing things are possible with C++, but these are usually not in the

spirit of clean code and should not be used to create a clean and modern C++ program.

If you are really crazy about mysterious C++ pointer calisthenics, this book is not for you.

Apart from that, this book is written to help C++ developers of all skill levels. It

shows by example how to write understandable, flexible, maintainable and efficient C++

code. The presented principles and practices can be applied to new software systems,

sometimes called greenfield projects, as well as to legacy systems with a long history,

which are often pejoratively called brownfield projects.

Note please consider that not every C++ compiler currently supports all of the
new language features, especially not those from the latest C++20 standard,
completely.

 Conventions Used in This Book
The following typographical conventions are used in this book:

Italic font is used to introduce new terms and names.

ChapTEr 1 InTrodUCTIon

9

Bold font is used within paragraphs to emphasize terms or

important statements.

Monospaced font is used within paragraphs to refer to program

elements such as class, variable, or function names, statements,

and C++ keywords. This font is also used to show command line

inputs, an address of a website (URL), a keystroke sequence, or the

output produced by a program.

 Sidebars
Sometimes I pass on small bits of information that are tangentially related to the content

around it, which can be considered separate from that content. Such sections are known

as sidebars. Sometimes I use a sidebar to present an additional or contrasting discussion

about the topic around it.

THIS HEADER CONTAINS THE TITLE OF A SIDEBAR

This is the text in a sidebar.

 Notes, Tips, and Warnings
Another kind of sidebar for special purposes is used for notes, tips, and warnings. They

are used to provide some special information, to provide a useful piece of advice, or to

warn you about things that can be dangerous and should be avoided.

Note This is the text of a note.

 Code Samples
Code examples and code snippets appear separately from the text, syntax-highlighted

(keywords of the C++ language are bold), and in a monospaced font. Longer code

sections usually have numbered titles. To reference specific lines of the code example in

the text, code samples sometimes include line numbers (see Listing 1-1).

ChapTEr 1 InTrodUCTIon

10

Listing 1-1. A Line-Numbered Code Sample

01 class Clazz {

02 public:

03 Clazz();

04 virtual ~Clazz();

05 void doSomething();

06

07 private:

08 int _attribute;

09

10 void function();

11 };

To better focus on specific aspects of the code, irrelevant parts are sometimes

obscured and represented by a comment with an ellipsis (…), like in this example:

void Clazz::function() {

 // ...

}

 Coding Style

Just a few words about the coding style I use in this book.

You may get the impression that my programming style has a strong likeness to

typical Java code, mixed with the Kernighan and Ritchie (K&R) style. I’ve spent nearly

20 years as a software developer, and even later in my career, I have learned other

programming languages (for instance, ANSI-C, Java, Delphi, Scala, and several scripting

languages). Hence, I’ve adopted my own programming style, which is a melting pot of

these different influences.

Maybe you will not like my style, and you instead prefer Linus Torvald’s Kernel style,

the Allman style, or any other popular C++ coding standard. This is of course perfectly

okay. I like my style, and you like yours.

ChapTEr 1 InTrodUCTIon

11

 C++ Core Guidelines

You may have heard of the C++ Core Guidelines, found at https://isocpp.github.io/

CppCoreGuidelines/CppCoreGuidelines.html [Cppcore21]. This is a collection of

guidelines, rules, and good practices for programming with modern C++. The project

is hosted on GitHub and released under a MIT-style license. It was initiated by Bjarne

Stroustrup, but has a lot more editors and contributors, e.g., Herb Sutter.

The number of rules and recommendations in the C++ Core Guidelines is pretty

high. There are currently 30 rules on the subject of interfaces alone, about the same

number on error handling, and no less than 55 rules on functions. And that is by no

means the end of the story. Further guidelines exist on topics such as classes, resource

management, performance, and templates.

I first had the idea of linking the topics in my book to the rules from the C++ Core

Guidelines. But that would have led to countless references to the guidelines and might

even have reduced the readability of the book. Therefore, I have largely refrained from

doing so, but would like to explicitly recommend the C++ Core Guidelines at this point.

They are a very good supplement to this book, even though I do not agree with every rule.

 Companion Website and Source Code Repository
This book is accompanied by a companion website: www.clean- cpp.com.

The website includes:

• The discussion of additional topics not covered in this book.

• High-resolution versions of all the figures in this book.

Some of the source code examples in this book, and other useful additions, are

available on GitHub at:

https://github.com/Apress/clean-cpp20

You can check out the code using Git with the following command:

$> git clone https://github.com/clean-cpp/book-samples.git

You can get a .ZIP archive of the code by going to https://github.com/clean- cpp/

book- samples and clicking the Download ZIP button.

ChapTEr 1 InTrodUCTIon

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines.html
http://www.clean-cpp.com
https://github.com/Apress/clean-cpp20
https://github.com/clean-cpp/book-samples
https://github.com/clean-cpp/book-samples

12

 UML Diagrams
Some illustrations in this book are UML diagrams. The Unified Modeling Language (UML)

is a standardized graphical language used to create models of software and other systems.

In its current version, 2.5.1, UML offers 15 diagram types to describe a system entirely.

Don’t worry if you are not familiar with all diagram types; I use only a few of them

in this book. I present UML diagrams from time to time to provide a quick overview of

certain issues that possibly cannot be understood quickly enough by just reading the

code. Appendix A contains a brief overview of the used UML notations.

ChapTEr 1 InTrodUCTIon

13
© Stephan Roth 2021
S. Roth, Clean C++20, https://doi.org/10.1007/978-1-4842-5949-8_2

CHAPTER 2

Build a Safety Net
“Testing is a skill. While this may come as a surprise to some people, it is a
simple fact.:

—Mark Fewster and Dorothy Graham,
Software Test Automation, 1999

That I start the main part of this book with a chapter about testing may be surprising to

some readers, but this is for several good reasons. During the past few years, testing on

certain levels has become an essential cornerstone of modern software development.

The potential benefits of a good test strategy are enormous. All kinds of tests, if well

engineered, can be helpful and useful. In this chapter, I describe why I think that unit tests,

especially, are indispensable to ensure a fundamental level of high quality in software.

Note that this chapter is about what is sometimes called POUT (“plain old unit

testing”) and not the design-supporting tool test-driven development (TDD), which I

cover in Chapter 8.

 The Need for Testing

1962: NASA MARINER 1

The Mariner 1 spacecraft was launched on July 22, 1962, as a Venus flyby mission for planetary

exploration. Due to a problem with its directional antenna, the Atlas-Agena B launching rocket

worked unreliably and lost its control signal from ground control shortly after launch.

This exceptional case had been considered during design and construction of the rocket.

The Atlas-Agena launching vehicle switched to automatic control by the on-board guidance

computer. Unfortunately, an error in the software of that computer led to incorrect control

commands that caused a critical course deviation and made steering impossible. The rocket

was directed toward Earth and pointed to a critical area.

https://doi.org/10.1007/978-1-4842-5949-8_2#DOI

14

At T+293 seconds, the Range Safety Officer sent the destruct command to blow the rocket. A

NASA examination report1 mentions a typo in the computer’s source code, the lack of a hyphen

(-), as the cause of the error. The total loss was $18.5 million, which was a huge amount of

money in those days.

If software developers are asked why tests are good and essential, I suppose that the

most common answer would be the reduction of bugs, errors, or flaws. No doubt this is

basically correct: testing is an elementary part of quality assurance.

Software bugs are usually perceived as an unpleasant nuisance. Users are annoyed

about the wrong behavior of the program, which produces invalid output, or they are

seriously ticked off about regular crashes. Sometimes even odds and ends, such as a

truncated text in a dialog box of a user interface, are enough to significantly bother

software users in their daily work. The consequence may be an increasing dissatisfaction

with the software, and at worst its replacement by another product. In addition to a

financial loss, the image of the software manufacturer suffers from bugs. At worst, the

company gets into serious trouble and many jobs are lost.

But the previously described scenario does not apply to every piece of software. The

implications of bugs can be much more dramatic.

1986: THERAC-25 MEDICAL ACCELERATOR DISASTER

This case is probably the most consequential failure in the history of software development.

The Therac-25 was a radiation therapy device. It was developed and produced from 1982 until

1985 by the state-owned enterprise Atomic Energy of Canada Limited (AECL). Eleven devices

were produced and installed in clinics in the United States and Canada.

Due to bugs in the control software, an insufficient quality assurance process, and other

deficiencies, three patients lost their lives caused due to radiation overdoses. Three other

patients were irradiated and suffered permanent, heavy health problems.

An analysis of this case determined that, among other things, the software was written by only

one person who was also responsible for the tests.

1 NASA National Space Science Data Center (NSSDC): Mariner 1, http://nssdc.gsfc.nasa.gov/
nmc/spacecraftDisplay.do?id=MARIN1, retrieved 2021-0305.

ChApTER 2 BUILD A SAfETy NET

http://nssdc.gsfc.nasa.gov/nmc/spacecraftDisplay.do?id=MARIN1
http://nssdc.gsfc.nasa.gov/nmc/spacecraftDisplay.do?id=MARIN1

15

When people think of computers, they usually have a desktop PC, laptop, tablet, or

smartphone in mind. And if they think about software, they usually think about web

shops, office suites, or business IT systems.

But these kinds of software and computers make up only a very small percentage

of all systems with which we have contact every day. Most software that surrounds us

controls machines that physically interact with the world. Our whole life is managed by

software. In a nutshell: There is no life today without software! Software is everywhere

and an essential part of our infrastructure.

If we board an elevator, our lives are in the hands of software. Aircrafts are controlled

by software, and the entire, worldwide air traffic control system depends on software.

Our modern cars contain a significant amount of small computer systems with software

that communicates over a network, responsible for many safety-critical functions of

the vehicle. Air conditioning, automatic doors, medical devices, trains, automated

production lines in factories ... no matter what we’re doing nowadays, we permanently

come in touch with software. And with the digital revolution and the Internet of Things

(IoT), the relevance of software in our life will again increase significantly. This fact could

not get more evident than with the autonomous (driverless) car.

It is unnecessary to emphasize that any bug in these software-intense systems could

have catastrophic consequences. A fault or malfunction of an important system can be

a threat to lives or physical condition. At worst, hundreds of people could lose their lives

during a plane crash, possibly caused by a wrong if statement in a subroutine of the

Fly-by-Wire subsystem. Quality is under no circumstances negotiable in these kinds of

systems. Never!
But even in systems without functional safety requirements, bugs can have serious

implications, especially if they are subtler in their destructiveness. It is easy to imagine

that bugs in financial software could trigger a worldwide bank crisis. Imagine if the

financial software of an arbitrary big bank completed every posting twice due to a bug,

and this issue was not noticed for a few days.

ChApTER 2 BUILD A SAfETy NET

16

1990: THE AT&T CRASH

On January 15th, 1990, the AT&T long distance telephone network crashed and 75 million

phone calls failed for the following nine hours. The blackout was caused by a single line of

code (a wrong break statement) in a software upgrade that AT&T deployed to all 114 of its

computer-operated electronic switches (4ESS) in December 1989. The problem began the

afternoon of January 15 when a malfunction in AT&T’s Manhattan control center led to a chain

reaction and disabled switches throughout half the network.

The estimated loss for AT&T was $60 million. There were also probably a huge amount of

losses for businesses that relied on the telephone network.

 Introduction to Testing
There are different levels of quality assurance measures in software development

projects. These levels are often visualized in the form of a pyramid—the so-called test

pyramid. The fundamental concept was developed by the American software developer

Mike Cohn, one of the founders of the Scrum Alliance. He described the test automation

pyramid in his book, Succeeding with Agile [Cohn09]. With the aid of the pyramid,

Cohn describes the degree of automation required for efficient software testing. In the

following years, the test pyramid has been further developed by different people. The

one depicted in Figure 2-1 is my version.

ChApTER 2 BUILD A SAfETy NET

17

The pyramid shape, of course, is no coincidence. The message behind it is that you

should have many more low-level unit tests (approximately 100% code coverage) than

any other kind of tests. But why is that?

Experience has shown that the total costs regarding implementation and

maintenance of tests increase toward the top of the pyramid. Large system tests and

manual user acceptance tests are usually complex, often require extensive organization,

and cannot be automated easily. For instance, an automated UI test is hard to write,

often fragile, and relatively slow. Therefore, these tests are often performed manually,

which is suitable for customer approval (acceptance tests) and regular exploratory tests

by QA, but far too time consuming and expensive for everyday use during development.

Furthermore, large system tests, or UI-driven tests, are totally improper to check all

possible paths of execution through the whole system. There’s lots of code in a software

system that deals with alternative paths, exceptions and error-handling, cross-cutting

concerns (security, transaction handling, logging ...), and other auxiliary functions that

are required, but often cannot be reached through the normal user interface.

Figure 2-1. The test pyramid

ChApTER 2 BUILD A SAfETy NET

18

Above all, if a test at the system level fails, the exact cause of the error can be difficult

to locate. System tests typically are based on the system’s use cases. During the execution

of a use case, many components are involved. This means that many hundreds, or even

thousands, of lines of code are executed. Which one of these lines was responsible for

the failed test? This question often cannot be answered easily and requires a time-

consuming and costly analysis.

Unfortunately, in several software development projects you’ll find degenerated

test pyramids, as shown in Figure 2-2. In such projects, enormous effort goes into the

tests on the higher level, whereas the elementary unit tests are neglected (ice cream cone

anti-pattern). In the extreme case, the unit tests are completely missing (cupcake anti-

pattern).

Therefore, a broad base of inexpensive, well-crafted, very fast, regularly maintained,

and fully automated unit tests, supported by a selection of useful component tests, can

be a solid foundation to ensure a pretty high quality of a software system.

Figure 2-2. Degenerated test pyramids (anti-patterns)

ChApTER 2 BUILD A SAfETy NET

19

 Unit Tests

“‘Refactoring’ without tests isn’t refactoring, it is just moving shit around.”

—Corey Haines (@coreyhaines), December 20, 2013, on Twitter

A unit test is a piece of code that executes a small part of your production code base in

a particular context. The test will show you, in a split second, that your code works as

you expect it to work. If unit test coverage is pretty high, and you can check in less than

a minute that all parts of your system under development are working correctly, this will

have numerous advantages:

• Numerous investigations and studies have proven that fixing bugs

after software is shipped is much more expensive than having unit

tests in place.

• Unit tests give you immediate feedback about your entire code

base. Provided that test coverage is sufficiently high (approx. 100%),

developers know in just a few seconds if the code works correctly.

• Unit tests give developers the confidence to refactor their code

without fear of doing something wrong that breaks the code. In fact,

a structural change in a code base without a safety net of unit tests is

dangerous and should not be called refactoring.

• A high coverage with unit tests can prevent time-consuming and

frustrating debugging sessions. The often hour-long searches for the

causation of a bug using a debugger can be reduced dramatically. Of

course, you will never be able to completely eliminate the use of a

debugger. This tool can still be used to analyze subtle problems, or to

find the cause of a failed unit test. But it will no longer be the pivotal

developer tool to ensure the quality of your code.

• Unit tests are a kind of executable documentation because they show

exactly how the code is designed to be used. They are, so to speak,

something of a usage example.

• Unit tests can easily detect regressions; that is, they can immediately

show things that used to work, but have unexpectedly stopped

working after a change was made.

ChApTER 2 BUILD A SAfETy NET

20

• Unit testing fosters the creation of clean and well-formed interfaces.

It can help to avoid unwanted dependencies between units. A design

for testability is also a good design for usability; that is, if a piece of

code can easily be mounted against a test fixture, then it can usually

also be integrated with less effort into the system’s production code.

• Unit testing makes development go faster.

The last item in this list appears to be paradoxical and needs a little bit of

explanation. Unit testing helps development go faster—how can that be? That doesn’t

seem logical.

No doubt about it: writing unit tests takes effort. First and foremost, managers just

see that effort and do not understand why developers should invest time into these

tests. Especially during the initial phase of a project, the positive effect of unit testing on

development speed may not be visible. In these early stages, when the complexity of the

system is relatively low and most everything works fine, writing unit tests seems at first

just to take effort. But times are changing ...

When the system becomes bigger and bigger (+ 100,000 LOC) and the complexity

increases, it becomes more difficult to understand and verify the system (remember

software entropy described in Chapter 1). When many developers on different teams are

working on a huge system, they are confronted with code written by other developers

every day. Without unit tests in place, this can become a very frustrating job. I’m sure

everyone knows those stupid, endless debugging sessions, walking through the code in

single-step mode while analyzing the values of variables again and again and again. This

is a huge waste of time and it will slow down development speed significantly.

Particularly in the mid-to-late stages of development, and in the maintenance phase

after product delivery, good unit tests become very valuable. The greatest time savings

from unit testing comes a few months or years after a test is written, when a unit or its

API needs to be changed or extended.

If test coverage is high, it’s nearly irrelevant whether a piece of code that is edited

by a developer was written by himself or by another developer. Good unit tests help

developers understand a piece of code written by another person quickly, even if it

was written three years ago. If a test fails, it exactly shows where the behavior is broken.

Developers can trust that everything still works correctly if all tests pass. Lengthy and

annoying debugging sessions become a rarity, and the debugger serves mainly to find

the cause of a failed test quickly if this cause is not obvious. And that’s great because it’s

fun to work that way. It’s motivating, and it leads to faster and better results. Developers

ChApTER 2 BUILD A SAfETy NET

21

will have greater confidence in the code base and will feel comfortable with it. Changing

requirements or new feature requests? No problem, because they can ship the new

product quick and often, and with excellent quality.

UNIT TEST FRAMEWORKS

There are several different unit test frameworks available for C++ development, for example,

CppUnit, Boost.Test, CUTE, Google Test, Catch respectively Catch2, and a couple more.

In principle, all these frameworks follow the basic design of so-called xUnit, which is a

collective name for several unit test frameworks that derive their structure and functionality

from Smalltalk’s SUnit. Apart from the fact that the content of this chapter is not fixated on

a specific unit test framework, because its content is applicable to unit testing in general, a

full and detailed comparison of all available frameworks is beyond the scope of this book.

furthermore, choosing a suitable framework is dependent on many factors. for instance, if it is

very important to you to be able to add new tests with a minimal amount of work quickly, this

might be knock-out criteria for certain frameworks.

 What About QA?
A developer might have the following attitude: “Why should I test my software? We have

testers and a QA department, it’s their job.”

The essential question is this: Is software quality a sole concern of the quality

assurance department?

The simple and clear answer: No!
It would be extremely unprofessional to hand over a piece of software to QA

knowing that it contains bugs. Professional developers never foist off the responsibility

for a system’s quality on other departments. On the contrary, professional software

craftspeople build productive partnerships with the people from QA. They should work

closely together and complement each other.

Of course, it is a very ambitious goal to deliver 100% defect-free software. From

time to time, QA will find something wrong. And that’s good. QA is our second safety

net. They check whether the previous quality assurance measures were sufficient and

effective.

ChApTER 2 BUILD A SAfETy NET

22

We can learn from our mistakes and get better. Professional developers remedy those

quality deficits immediately by fixing the bugs found by QA, and by writing automated

unit tests to catch them in the future. Then they should carefully think about this: “How

could it happen that we’ve overlooked this issue?” The result of this retrospective should

serve as feedback to improve the development process.

 Rules for Good Unit Tests
I’ve seen many unit tests that are pretty unhelpful. Unit tests should add value to your

project. To achieve this goal, you need to follow some essential rules, which I describe in

this section.

 Test Code Quality
The same high-quality requirements for the production code have to be valid for the unit

test code. I’ll go even further. Ideally, there should be no distinction between production

and test code—they are equal. If we say that there is production code on the one hand

and test code on the other, we separate things that belong together. Don’t do that!

Thinking about production and test code in two categories lays the foundation to neglect

tests later in the project.

 Unit Test Naming
If a unit test fails, the developer wants to know immediately:

• What is the name of the unit; whose test failed?

• What was tested, and what was the environment of the test (the test

scenario)?

• What was the expected test result, and what was the actual test result

of the failed test?

Hence an expressive and descriptive naming standard for your unit tests is very

important. My advice is to establish naming standards for all tests.

First of all, it’s good practice to name the unit test module (depending on the unit test

framework, they are called test harnesses or test fixtures) in such a way so that the tested

unit can be easily derived from it. They should have a name like <Unit_under_Test>Test,

ChApTER 2 BUILD A SAfETy NET

23

whereby the placeholder <Unit_under_Test> is substituted with the name of the test

subject. For instance, if your system under test (SUT) is the unit Money, the corresponding

test fixture that attaches to that unit and contains all unit test cases should be named

MoneyTest (see Figure 2-3).

Beyond that, unit tests must have expressive and descriptive names. It is not helpful

when unit tests have meaningless names like testConstructor(), test4391(), or

sumTest(). Here are two suggestions for finding good names for them.

For general, multipurpose classes that can be used in different contexts, an

expressive name could contain the following parts:

• The precondition of the test scenario, that is, the state of the SUT

before the test was executed.

• The tested part of the unit under test, typically the name of the tested

procedure, function, or method (API).

• The expected test result.

That leads to a name template for unit test procedures/methods like this one:

<PreconditionAndStateOfUnitUnderTest>_<TestedPartOfAPI>_<ExpectedBehavior>

Listing 2-1 shows a few examples.

Listing 2-1. Examples of Good and Expressive Unit Test Names

void CustomerCacheTest::cacheIsEmpty_addElement_sizeIsOne();

void CustomerCacheTest::cacheContainsOneElement_removeElement_sizeIsZero();

void ComplexNumberCalculatorTest::givenTwoComplexNumbers_add_Works();

Figure 2-3. The system under test, (SUT) Money and its test fixture, MoneyTest

ChApTER 2 BUILD A SAfETy NET

24

void MoneyTest:: givenTwoMoneyObjectsWithDifferentBalance_Inequality

Comparison_Works();

void MoneyTest::createMoneyObjectWithParameter_getBalanceAsString_

returnsCorrectString();

void InvoiceTest::invoiceIsReadyForAccounting_getInvoiceDate_returnsToday();

Another possible approach to building expressive unit test names is to manifest

a specific requirement in the name. These names typically reflect requirements

of the application’s domain. For instance, they could be derived from stakeholder

requirements. See Listing 2-2.

Listing 2-2. More Examples of Unit Test Names that Verify Domain-Specific

Requirements

void UserAccountTest::creatingNewAccountWithExisting

EmailAddressThrowsException();

void ChessEngineTest::aPawnCanNotMoveBackwards();

void ChessEngineTest::aCastlingIsNotAllowedIfInvolvedKingHasBeenMovedBefore();

void ChessEngineTest::aCastlingIsNotAllowedIfInvolvedRookHasBeenMovedBefore();

void HeaterControlTest::ifWaterTemperatureIsGreaterThan92DegTurnHeaterOff();

void BookInventoryTest::aBookThatIsInTheInventoryCanBeBorrowedByAuthorized

People();

void BookInventoryTest::aBookThatIsAlreadyBorrowedCanNotBeBorrowedTwice();

As you read these test method names, it should become clear that even if the

implementation of the tests and the test methods are not shown here, a lot of useful

information can be easily derived. This is also a great advantage if such a test fails. All

known unit test frameworks either output the name of a failed test via stdout on the

command-line interface or list it in a special output window of the IDE. Thus, error

location is greatly facilitated.

 Unit Test Independence
Each unit test must be independent of all the others. It would be fatal if tests had to be

executed in a specific order because one test was based on the result of the previous one.

Never write a unit test whose result is the prerequisite for a subsequent test. Never leave

the unit under test in an altered state, which is a precondition for the following tests.

ChApTER 2 BUILD A SAfETy NET

25

Major problems can be caused by global states, for example, the usage of Singletons

or static members in your unit under test. Not only do Singletons increase the coupling

between software units, they also often hold a global state that circumvents unit test

independence. For instance, if a certain global state is the precondition for a successful

test, but the previous test has mutated that global state, this can cause serious trouble.

Especially in legacy systems, which are often littered with Singletons, this begs the

question: how can you get rid of all those nasty dependencies to those Singletons and

make your code more easily testable? Well, that’s an important question I discuss in the

section entitled “Dependency Injection” in Chapter 6.

DEALING WITH LEGACY SYSTEMS

If you are confronted with so-called legacy systems and you are facing many difficulties

while trying to add unit tests, I recommend the book Working Effectively with Legacy Code

[feathers07] by Michael C. feathers. feathers’s book contains many strategies for working

with large, untested legacy code bases. It also includes a catalogue of 24 dependency-

breaking techniques. These strategies and techniques are beyond the scope of this book.

 One Assertion per Test
My advice is to limit a unit test to one assertion only, as shown in Listing 2-3. I know that

this is a controversial topic, but I will try to explain why I think this is important.

Listing 2-3. A Unit Test that Checks the not-equal-Operator of a Money Class

void MoneyTest::givenTwoMoneyObjectsWithDifferentBalance_

InequalityComparison_Works() {

 const Money m1(-4000.0);

 const Money m2(2000.0);

 ASSERT_TRUE(m1 != m2);

}

One could now argue that you could also check whether other comparison operators

(e.g., Money::operator==()) are working correctly in this unit test. It would be easy to do

that, by simply adding more assertions, as shown in Listing 2-4.

ChApTER 2 BUILD A SAfETy NET

26

Listing 2-4. Question: Is It a Good Idea to Check All Comparison Operators in

One Unit Test?

void MoneyTest::givenTwoMoneyObjectsWithDifferentBalance_

testAllComparisonOperators() {

 const Money m1(-4000.0);

 const Money m2(2000.0);

 ASSERT_TRUE(m1 != m2);

 ASSERT_FALSE(m1 == m2);

 ASSERT_TRUE(m1 < m2);

 ASSERT_FALSE(m1 > m2);

 // ...more assertions here...

}

I think the problems with this approach are obvious:

• If a test can fail for several reasons, it can be difficult for developers

to find the cause of the error quickly. Above all, an early assertion

that fails obscures additional errors, that is, it hides subsequent

assertions, because the execution of the test is stopped.

• As explained in the section “Unit Test Naming,” we should name a

test in a precise and expressive way. With multiple assertions, a unit

test tests many things (which is, by the way, a violation of the single

responsibility principle; see Chapter 6), and it would be difficult to

find a good name for it. The ...testAllComparisonOperators()

name is not precise enough.

 Independent Initialization of Unit Test Environments
This rule is somewhat akin to unit test independence. When a cleanly implemented

test completes, all states related to that test must disappear. In more specific terms,

when running all unit tests, each test must be an isolated partial instantiation of an

application. Each test has to set up and initialize its required environment completely on

its own. The same applies to cleaning up after the execution of the test.

ChApTER 2 BUILD A SAfETy NET

27

 Exclude Getters and Setters
Don’t write unit tests for usual getters and setters of a class, as shown in Listing 2-5.

Listing 2-5. A Simple Setter and Getter

void Customer::setForename(const std::string& forename) {

 this->forename = forename;

}

const std::string& Customer::getForename() const {

 return forename;

}

Do you really expect that something could go wrong with such straightforward

methods? These member functions are typically so simple that it would be foolish to

write unit tests for them. Furthermore, usual getters and setters are implicitly tested by

other and more important unit tests.

Attention, I just wrote that it is not necessary to test usual and simple getters and

setters. Sometimes, getters and setters are not that simple. According to the information

hiding principle (see the section about information hiding in Chapter 3) that we will

discuss later, it should be hidden from the client if a getter is simple and stupid, or if it

has to make complex things to determine its return value. Therefore, it can sometimes be

useful to write an explicit test for a getter or setter.

 Exclude Third-Party Code
Don’t write tests for third-party code! We don’t have to verify that libraries or frameworks

do work as expected. For example, we can assume with a clear conscience that the used

member function std::vector::push_back() from the C++ Standard Library works

correctly. On the contrary, we can expect that third-party code comes with its own unit

tests. It can be a wise architectural decision to not use libraries or frameworks in your

project that don’t have their own unit tests and whose quality is doubtful.

ChApTER 2 BUILD A SAfETy NET

28

 Exclude External Systems
The same is true for external systems. Don’t write tests for external systems that are part

of the context of your system to be developed, and thus are not in your responsibility. For

instance, if your financial software uses an existing, external currency conversion system

that is connected via the Internet, you should not test this. Besides the fact that such

a system cannot provide a defined answer (the conversion factor between currencies

varies minute by minute), and that such a system might be impossible to reach due to

network issues, we are not responsible for the external system.

My advice is to mock (see the section “Test Doubles (Fake Objects)” later in this

chapter) these things out and to test your code, not theirs.

 What Do We Do with the Database?
Many IT systems contain (relational) databases nowadays. They are required to persist

huge amounts of objects or data into longer-term storage, so that these objects or data

can be queried in a comfortable way and survive a system shutdown.

An important question is this: what do you do with the database during unit testing?

“My first and overriding piece of advice on this subject is: When there is any
way to test without a database, test without the database!”

—Gerard Meszaros, xUnit Test Patterns

Databases can cause diverse and sometimes subtle problems during unit testing. For

instance, if many unit tests use the same database, the database tends to become a large

central storage that those tests must share for different purposes. This sharing may adversely

affect the independence of the unit tests I discussed earlier in this chapter. It could be

difficult to guarantee the required precondition for each unit test. The execution of a single

unit test can cause unwanted side effects for other tests via the commonly used database.

Another problem is that databases are basically slow. They are much slower than access

to local computer memory. Unit tests that interact with the database tend to run magnitudes

slower than tests that can run entirely in memory. Imagine you have a few hundred unit

tests, and each test needs an extra time span of 500ms on average, caused by the database

queries. In sum, all the tests take several minutes longer than without a database.

My advice is to mock out the database (see the section about test doubles/mock

objects later in this chapter) and execute all the unit tests solely in memory. Don’t worry:

the database, if it exists, will be involved at the integration and system testing level.

ChApTER 2 BUILD A SAfETy NET

29

 Don’t Mix Test Code with Production Code
Sometimes developers come up with the idea to equip their production code with test

code. For example, a class might contain code to handle a dependency to a collaborating

class during a test in the manner shown in Listing 2-6.

Listing 2-6. One Possible Solution to Deal with a Dependency During Testing

#include <memory>

#include "DataAccessObject.h"

#include "CustomerDAO.h"

#include "FakeDAOForTest.h"

using DataAccessObjectPtr = std::unique_ptr<DataAccessObject>;

class Customer {

public:

 Customer() = default;

 explicit Customer(const bool testMode) : inTestMode(testMode) {}

 void save() {

 DataAccessObjectPtr dataAccessObject = getDataAccessObject();

 // ...use dataAccessObject to save this customer...

 }

 // ...

private:

 DataAccessObjectPtr getDataAccessObject() const {

 if (inTestMode) {

 return std::make_unique<FakeDAOForTest>();

 } else {

 return std::make_unique<CustomerDAO>();

 }

 }

 // ...more operations here...

 bool inTestMode{ false };

 // ...more attributes here...

};

ChApTER 2 BUILD A SAfETy NET

30

DataAccessObject is the abstract base class of specific DAOs, in this case,

CustomerDAO and FakeDAOForTest. The last one is a so-called fake object, which is

simply a test double (see the section about test doubles later in this chapter). It is

intended to replace the real DAO, since we do not want to test it, and we don’t want to

save the customer during the test (remember my advice about databases). The Boolean

data member inTestMode determines which one of the DAOs is used.

Well, this code would work, but the solution has several disadvantages.

First of all, the production code is cluttered with test code. Although it does not

appear dramatically at first sight, it can increase complexity and reduce readability. We

need an additional member to distinguish between the test mode and production usage

of our system. This Boolean member has nothing to do with a customer, not to mention

with our system’s domain. And it’s easy to imagine that this kind of member is required

in many classes in our system.

Moreover, the Customer class has dependencies to CustomerDAO and

FakeDAOForTest. You can see it in the list of includes at the top of the source code. This

means that the test dummy FakeDAOForTest is also part of the system in the production

environment. It is to be hoped that the code of the test double is never called in

production, but it is compiled, linked, and deployed.

Of course, there are more elegant ways to deal with these dependencies and to keep

the production code free from test code. For instance, we can inject the specific DAO as a

reference parameter in Customer::save(). See Listing 2-7.

Listing 2-7. Avoiding Dependencies to Test Code (1)

class DataAccessObject;

class Customer {

public:

 void save(DataAccessObject& dataAccessObject) {

 // ...use dataAccessObject to save this customer...

 }

 // ...

};

Alternatively, this can be done while constructing instances of type Customer. In

this case, we must hold a reference to the DAO as an attribute of the class. Furthermore,

we have to suppress the automatic generation of the default constructor through the

ChApTER 2 BUILD A SAfETy NET

31

compiler, because we don’t want any user of Customer to be able to create an improperly

initialized instance of it. See Listing 2-8.

Listing 2-8. Avoiding Dependencies to Test Code (2)

class DataAccessObject;

class Customer {

public:

 Customer() = delete;

 explicit Customer(DataAccessObject& dataAccessObject) :

dataAccessObject_(dataAccessObject) {}

 void save() {

 // ...use member dataAccessObject to save this customer...

 }

 // ...

private:

 DataAccessObject& dataAccessObject_;

 // ...

};

DELETED FUNCTIONS

In C++, the compiler automatically generates the so-called special member functions (default

constructor, copy constructor, copy-assignment operator, and destructor) for a type if it does

not declare its own [C++11]. Since C++11, this list of special member functions is extended

by the move constructor and move-assignment operator. C++11 (and higher) provides an

easy and declarative way to suppress the automatic creation of any special member function,

as well as normal member functions and non-member functions: you can delete them. for

instance, you can prevent the creation of a default constructor this way:

class Clazz {

public:

 Clazz() = delete;

};

ChApTER 2 BUILD A SAfETy NET

32

And another example: you can delete the new operator to prevent classes from being

dynamically allocated on the heap:

class Clazz {

public:

 void* operator new(std::size_t) = delete;

};

A third alternative could be that the specific DAO is created by a factory (see the

section entitled “Factory” in Chapter 9 about design patterns) that the Customer knows.

This factory can be configured from the outside to create the kind of DAO that is required

if the system runs in a test environment. No matter which one of these possible solutions

you choose, the Customer is free of test code. There are no dependencies to specific

DAOs in Customer.

 Tests Must Run Fast
In large projects, one day you will reach the point where you have thousands of unit

tests. This is great in terms of software quality. But an awkward side effect might be that

people will stop running these tests before they’re doing a check-in into the source code

repository, because they take too long.

It is easy to imagine that there is a strong correlation between the time it takes to run

tests and a team’s productivity. If running all unit tests takes 15 minutes, 1/2 hour, or

more, developers are impeded in doing their work and waste their time waiting for the

test results. Even if the execution of each unit test takes “only” half a second on average,

it takes more than eight minutes to carry out 1,000 tests. That means that the execution

of the whole test suite 10 times a day will result in almost 1.5 hours of waiting time. As a

result, developers will run the tests less often.

My advice is: Tests must run fast! Unit tests should establish a rapid feedback loop

for developers. The execution of all unit tests for a large project should not last longer

than about three minutes, and rather less time than that. For a faster, local test execution

(a few seconds) during development, the test framework should provide an easy way to

temporarily turn off irrelevant groups of tests.

On the automated build system, all tests must be executed without exception

continuously every time before the final product will be built. The development team

should get an immediate notification if one or more tests fail on the build system. For

ChApTER 2 BUILD A SAfETy NET

33

instance, this can be done via email or with the help of an optical visualization (e.g.,

due to a flat screen on the wall, or a “traffic light” controlled by the build system) in a

prominent place. If even just one test fails, under no circumstances should you release

and ship the product!

 How Do You Find a Test’s Input Data?
A piece of software can react very differently depending on the data used as input. If unit

tests should add value to your project, you may come quickly to the question: How do I

find all test cases that are necessary to ensure good fault detection?

On the one hand, you want to have a very high, ideally complete test coverage. On

the other hand, economic aspects such as project duration and budget must also be kept

in mind. That means that it is often not possible to perform extensive testing for each set

of test data, especially when there is a large set of input combinations and you will end

up with an almost infinite number of test cases.

To find a sufficient number of test cases, there are two central and important

concepts in the quality assurance of software: equivalence partitioning, sometimes also

called equivalence class partitioning (ECP), and the boundary value analysis.

 Equivalence Partitioning

An equivalence partition, sometimes also called equivalence class, is a set or portion of

input data for which a piece of software, both in a test environment and in its operational

environment, should exhibit similar behavior. In other words, the behavior of a

system, component, class, or function/method is assumed to be the same, based on its

specification.

The result of an equivalence partitioning can be used to derive test cases from these

partitions of similar input data. In principle, the test cases are designed so that each

partition is covered at least once.

As a specification-driven approach, the technique of equivalence partitioning is

properly speaking a blackbox test design technique, i.e. the innards of the software to

be tested are usually not known. However, it is also a very useful approach for whitebox

testing techniques, i.e. unit testing and test-first approaches like TDD (see Chapter 8).

Let’s look at an example. Suppose we have to test a C++ class that calculates the

interest on a bank account. According to the requirements specification, the account

should exhibit the following behavior:

ChApTER 2 BUILD A SAfETy NET

34

• The bank charges 4 percent penalty interest on overdrafts.

• The bank offers 0.5 percent interest for the first 5,000 USD savings.

• The bank offers 1 percent interest for the next 5,000 USD savings.

• The bank offers 2 percent interest for the rest.

• Interest is calculated on a daily basis.

According to these specifications, the interest calculator’s API therefore has two

parameters: the amount of money and, as interest is calculated on a daily basis, the

number of days for which this amount is valid. This means we have to build equivalence

classes for two input parameters.

The equivalence partitioning for the amount of money is depicted in Figure 2-4.

The equivalence classes for the validity period in days are a bit simpler and are

depicted in Figure 2-5.

What insights can we now derive from this for test case creation?

First of all, note that the input parameter for the monetary amount allows infinitely

large positive or infinitely large negative values. In contrast, negative values for the

number of days are not allowed.

This is the moment when it would be advisable to involve the business stakeholders

and the domain experts.

First, it should be clarified whether the upper or lower limit for the amount of money

is really infinite. The answer to this question not only affects the test cases, but also the

Figure 2-4. The equivalence classes of the input parameter for the monetary
amount

Figure 2-5. The equivalence classes of the input parameter for the number of days

ChApTER 2 BUILD A SAfETy NET

35

data type to be used for this parameter. Furthermore, the specification does not clarify

what should happen if a negative value is used for the number of days. A negative value

would be invalid, yes, but what kind of reaction should the interest calculator show?

Another question that could be answered by such an analysis would be, for example,

whether the interest rates are really as fixed (constants) as the specification requires.

Perhaps the interest rates are variable, and possibly also the amounts of money

associated with them.

However, test cases can now be systematically derived from this analysis. The idea

behind equivalence partitioning is that it is enough to pick only one value from each

partition for testing. The hypothesis behind this technique is that if one condition/value
in a partition passes a test, all others in the same partition will also pass. Likewise, if

one condition/value in a partition fails, all other conditions/values in that partition will

also fail. If there is more than one parameter, as in our case, appropriate combinations

should be formed.

 Boundary Value Analysis
“Bugs lurk in corners and congregate at boundaries.”

—Boris Beizer, Software Testing Techniques [Beizer90]

Many software bugs can be traced back to difficulties in the border areas of the

equivalence classes, for example at the transition between two valid equivalence classes,

between a valid and an invalid equivalence class, or due to an extreme value that was

not taken into account. Therefore, building equivalence classes is complemented by

boundary value analysis.

In the discipline of testing, boundary value analysis is a technique that finds the switch-

over points between equivalence classes and deals with extreme values. The result of such

an analysis is useful to select the input values of a numerical parameter for the tests:

• Exactly on its minimum.

• Just above the minimum.

• A nominal value taken somewhere from the middle of the

equivalence partition.

• Just below the maximum.

• Exactly on its maximum.

ChApTER 2 BUILD A SAfETy NET

36

These values can also be depicted on a number line, as shown in Figure 2-6.

If the boundary values are determined and tested for each equivalence partition,

then very good test coverage can be achieved in practice with relatively little effort.

 Test Doubles (Fake Objects)
Unit tests should only be called “unit tests” if the units to be tested are completely

independent from collaborators during test execution, that is, the unit under test

does not use other units or external systems. For instance, while the involvement of a

database during an integration test is uncritical and required, because that’s the purpose

of an integration test, access (e.g., a query) to this database during a real unit test is

proscribed (see the section “What Do We Do with the Database?” earlier in this chapter).

Thus, dependencies of the unit to be tested with other modules or external systems

should be replaced with so-called test doubles, also known as fake objects, or mock-ups.

In order to work in an elegant way with such test doubles, we should strive for loose

coupling of the unit under test (see the section entitled “Loose Coupling” in Chapter 3).

For instance, an abstraction (e.g., an interface in the form of a pure abstract class) can be

introduced at the access point to an unwanted collaborator, as shown in Figure 2-7.

Figure 2-6. The input parameters derived from a boundary value analysis

ChApTER 2 BUILD A SAfETy NET

37

Let’s assume that you want to develop an application that uses an external web

service for real-time currency conversions. During a unit test you cannot use this

external service naturally, because it delivers different conversion factors every minute.

Furthermore, the service is queried via the Internet, which is basically slow and can fail.

And it is impossible to simulate borderline cases. Hence, you have to replace the real

currency conversion with a test double during the unit test.

First, we have to introduce a variation point in the code to be able to replace the

module that communicates with the currency conversion service with a test double. This

can be done with the help of an interface, which in C++ is an abstract class with solely

pure virtual member functions. See Listing 2-9.

Listing 2-9. An Abstract Interface for Currency Converters

class CurrencyConverter {

public:

 virtual ~CurrencyConverter() { }

 virtual long double getConversionFactor() const = 0;

};

The access to the currency conversion service via the Internet is encapsulated in a

class that implements the CurrencyConverter interface. See Listing 2-10.

Figure 2-7. An interface makes it easy to replace the LowLevelModule with a test
double

ChApTER 2 BUILD A SAfETy NET

38

Listing 2-10. The Class that Accesses the Realtime Currency Conversion Service

class RealtimeCurrencyConversionService : public CurrencyConverter {

public:

 virtual long double getConversionFactor() const override;

 // ...more members here that are required to access the service...

};

For testing purposes, a second implementation exists: The

CurrencyConversionServiceMock test double. Objects of this class will return a defined

and predictable conversion factor as it is required for unit testing. Furthermore, objects

of this class provide the capability to set the conversion factor from the outside, for

example, to simulate borderline cases. See Listing 2-11.

Listing 2-11. The Test Double

class CurrencyConversionServiceMock : public CurrencyConverter {

public:

 virtual long double getConversionFactor() const override {

 return conversionFactor;

 }

 void setConversionFactor(const long double value) {

 conversionFactor = value;

 }

private:

 long double conversionFactor{0.5};

};

At the place in the production code where the currency converter is used,

the interface is now used to access the service. Due to this abstraction, it is totally

transparent to the client’s code which kind of implementation is used during runtime—

either the real currency converter or its test double. See Listings 2-12 and 2-13.

Listing 2-12. The Header of the Class that Uses the Service

#include <memory>

class CurrencyConverter;

ChApTER 2 BUILD A SAfETy NET

39

class UserOfConversionService {

public:

 UserOfConversionService() = delete;

 explicit UserOfConversionService(const std::shared_

ptr<CurrencyConverter>& conversionService);

 void doSomething();

 // More of the public class interface follows here...

private:

 std::shared_ptr<CurrencyConverter> conversionService_;

 //...internal implementation...

};

Listing 2-13. An Excerpt from the Implementation File

UserOfConversionService::UserOfConversionService (const std::shared_

ptr<CurrencyConverter>& conversionService) :

 conversionService_(conversionService) { }

void UserOfConversionService::doSomething() {

 long double conversionFactor = conversionService_->getConversionFactor();

 // ...

}

In a unit test for the UserOfConversionService class, the test case can now pass in

the mock object through the initialization constructor. On the other hand, during normal

operations, the real service can be passed through the constructor. This technique

is a design pattern called dependency injection, which is discussed in detail in the

eponymous section of Chapter 9. See Listing 2-14.

Listing 2-14. UserOfConversionService Gets its Required CurrencyConverter

Object

auto serviceToUse =

 std::make_shared</* name of the desired class here */>();

UserOfConversionService user(serviceToUse);

// The instance of UserOfConversionService is ready for use...

user.doSomething();

ChApTER 2 BUILD A SAfETy NET

41
© Stephan Roth 2021
S. Roth, Clean C++20, https://doi.org/10.1007/978-1-4842-5949-8_3

CHAPTER 3

Be Principled
“I would advise students to pay more attention to the fundamental ideas
rather than the latest technology. The technology will be out-of-date before
they graduate. Fundamental ideas never get out of date.”

—David L. Parnas

In this chapter, I introduce the most important and fundamental principles of well-

designed and well-crafted software. What makes these principles special is the fact

that they are not tied to certain programming paradigms or programming languages.

Some of them are not even specific to software development. For instance, the

discussed KISS principle, an acronym for “keep it simple, stupid,” can be relevant

to many areas of life. Generally speaking, it is not a bad idea to make everything as

simple in life as possible—not only software development.

This means that you should not learn the following principles once and then forget

them. I strongly recommend you internalize them. These principles are so important

that they should ideally become second nature to every developer. Many of the more

concrete principles I discuss later in this book have their roots in these basic principles.

 What Is a Principle?
In this book you will find various principles for better C++ code and well-designed

software. But what is a principle in general?

Many people have principles that guide them through their life. For example, if

you’re against eating meat for several reasons, that would be a principle. If you want

to protect your child, you give him principles along the way, guiding him to make the

right decisions on their own, for example “Be careful and don’t talk to strangers!” With

this principle in mind, the child can deduce the correct behavior in certain specific

situations.

https://doi.org/10.1007/978-1-4842-5949-8_3#DOI

42

A principle is a kind of rule, belief, or idea that guides you. Principles are often

directly coupled to values or a value system. For instance, we don’t need to be told that

cannibalism is wrong because humans have an innate value regarding human life. And

as a further example, the well-known “Manifesto for Agile Software Development”

[Beck01] contains 12 principles that guide project teams in uncovering better ways to

develop software.

Principles are not irrevocable laws. They are not carved in stone. Willful violations of

principles are sometimes necessary in programming. If you have very good reasons to

violate principles, do so, but do so very carefully! It should be an exception.

Some of the following basic principles are, at various points later in the book,

revisited and deepened.

 KISS
“Everything should be made as simple as possible, but not simpler.”

—Albert Einstein, theoretical physicist, 1879 - 1955

KISS is an acronym for “keep it simple, stupid” or “keep it simple and stupid” (okay, I

know, there are other meanings for this acronym, but these two are the most common

ones). In eXtreme Programming (XP), this principle is represented by a practice called

“do the simplest thing that could possibly work” (DTSTTCPW). The KISS principle states

that simplicity should be a major goal in software development, and that unnecessary

complexity should be avoided.

I think that KISS is one of those principles that developers often forget when they are

developing software. Software developers tend to write code in some elaborate way and

make things more complicated than they should be. I know we are all excellently skilled

and highly motivated developers, and we know everything about design and architecture

patterns, frameworks, technologies, tools, and other cool and fancy stuff. Crafting cool

software is not just our 9-to-5 job—it is our mission and we achieve fulfillment through

our work.

But we have to keep in mind that any software system has an intrinsic complexity

that is already challenging in itself. No doubt, complex problems often require complex

code. The intrinsic complexity cannot be reduced. This kind of complexity is just

there, due to the requirements to be fulfilled by the system. But it would be fatal to

Chapter 3 Be prinCipled

43

add unnecessary, homemade complexity to this intrinsic complexity. Therefore, it is

advisable not to use every fancy feature of your language or cool design patterns just

because you can. On the other hand, do not overplay simplicity. If 10 decisions are

necessary in a switch-case statement and there is no better, alternative solution, that’s

just how it is.

Keep your code as simple as you can! Of course, if there are high prioritized quality

requirements about flexibility and extensibility, you have to add complexity to fulfill

these requirements. For instance, you can use the well-known strategy pattern (see

Chapter 9 about design patterns) to introduce a flexible variation point into your code

when requirements demand it. But be careful and add only the amount of complexity

that makes such things easier.

“Focusing on simplicity is probably one of the most difficult things for a
programmer to do. And it is a life long learning experience.”

—Adrian Bolboaca (@adibolb), April 3, 2014, on Twitter

 YAGNI
“Always implement things when you actually need them, never when you
just foresee that you need them.”

—Ron Jeffries, You’re NOT gonna need it! [Jeffries98]

This principle is tightly coupled to the previously discussed KISS principle. YAGNI is an

acronym for “you aren’t gonna need it!” or is sometimes translated to “you ain’t gonna

need it!”. YAGNI is the declaration of war against speculative generalization and over-

engineering. It states that you should not write code that is not necessary at the moment,

but might be in the future.

Probably every developer knows these kinds of tempting impulses in their daily

work: “Maybe we could use it later…”, or “We’re going to need…” No, we aren’t gonna
need it! We should under all circumstances avoid producing anything today for an

uncertain and speculative future. In most cases, this code is simply not needed. But if we

have implemented that unnecessary thing, we’ve wasted our precious time and the code

gets more complicated than it should be! And of course, we also violate the previously

discussed KISS principle. Even worse, these code pieces could be buggy and could cause

serious problems!

Chapter 3 Be prinCipled

44

My advice is this: Trust in the power of refactoring and build things only when you

know that they are actually necessary, not before.

 DRY
“Copy and paste is a design error.”

—David L. Parnas

Although this principle is one of the most important, I’m quite sure that it is often

violated, unintentionally or intentionally. DRY is an acronym for “don’t repeat yourself!”

and states that we should avoid duplication, because duplication is evil. Sometimes this

principle is also referred to as “once and only once” (OAOO).

The reason that duplication is very dangerous is obvious: when one piece is

changed, its copies must be changed accordingly. And don’t have high hopes. It is a safe

bet that change will occur. I think it’s unnecessary to mention that any copied piece will

be forgotten sooner or later and we can say hello to bugs.

Okay, that’s it—nothing more to say? Wait, there is still something and we need

to go deeper. In fact, I believe that the DRY principle is often misunderstood and

also construed too pedantically by many developers! Thus, we should refresh our

understanding of this principle.

 It’s About Knowledge!

“Don’t Repeat Yourself (or DRY) is probably one of the most misunderstood
parts of the book.”

—Dave Thomas, Orthogonality and the DRY Principle, 2003

In their brilliant book, The Pragmatic Programmer [Hunt99], Dave Thomas and Andy

Hunt state that applying the DRY principle means that we have to ensure that “every

piece of knowledge must have a single, unambiguous, authoritative representation

within a system.” It is noticeable that Dave and Andy did not explicitly mention the code,

but they talk about the knowledge.

First of all, a system’s knowledge is far broader than just its code. For instance, the

DRY principle is also valid for business processes, requirements, database schemes,

Chapter 3 Be prinCipled

45

documentation, project plans, test plans, or the system’s configuration data. DRY affects

everything! Perhaps you can imagine that strict compliance with this principle is not as

easy as it might seem at first sight.

 Building Abstractions Is Sometimes Hard
Moreover, an exaggerated application of the DRY principle at all costs in a code base

can lead to some fiddly problems. The reason is that creating an adequate common

abstraction from duplicated code pieces can quickly become a tricky task, sometimes

deteriorating the readability and comprehensibility of the code.

The annoyance becomes really big if there are requirement changes or functional

enhancements that affect only one locus of usage of a multiple used abstraction, as the

following example demonstrates.

Let’s look at the following two (simplified) classes (Listings 3-1 and 3-2) from

software for an online mail order business.

Listing 3-1. The Class for the Shopping Cart

#include "Product.h"

#include <algorithm>

#include <vector>

class ShoppingCart {

public:

 void addProduct(const Product& product) {

 goods.push_back(product);

 }

 void removeProduct(const Product& product) {

 std::erase(goods, product);

 }

private:

 std::vector<Product> goods;

};

Chapter 3 Be prinCipled

46

Listing 3-2. The Class Used to Ship the Ordered Products

#include "Product.h"

#include <algorithm>

#include <vector>

class Shipment {

public:

 void addProduct(const Product& product) {

 goods.push_back(product);

 }

 void removeProduct(const Product& product) {

 std::erase(goods, product);

 }

private:

 std::vector<Product> goods;

};

I’m pretty sure you would agree that these two classes are duplicated code and that

they therefore violate the DRY principle. The only difference is the class name; all other

lines of code are identical.

THE ERASE-REMOVE IDIOM (UNTIL C++20)

Before C++20, if developers wanted to eliminate elements from a container, such as a

std::vector, they often applied the so-called erase-remove idiom on that container.

in this idiom, two steps were successively applied to the container. First, the algorithm

std::remove was used to move those elements that did not match the removal criteria, to

the front of the container. the name of this function is misleading, as no elements are actually

removed by std::remove, but are shifted to the front of the container.

after that, std::remove returns an iterator pointing to the first element of the tail elements

in the container. this iterator, as well as the container’s end iterator, have then been passed

to the std::vector::erase member function of the container to physically remove the tail

elements. applied to an arbitrary vector named vec, it looked like this:

Chapter 3 Be prinCipled

47

// Removing all elements that match 'value' from a vector before C++20:

vec.erase(std::remove(begin(vec), end(vec), value), end(vec));

Since C++20, the remove-erase idiom is no longer necessary for this purpose. instead,

the two template functions std::erase and std::erase_if, both defined in header

<vector>, can do the job. these functions not only physically delete the elements that match

the deletion criteria, but can also be used easier because it is not necessary anymore to pass

two iterators. instead, the entire container can be passed, like this:

// Removing all elements that match 'value' from a vector since C++20:

std::erase(vec, value);

A suitable solution to get rid of the duplicated code seems to be to refactor the

code and create a common abstraction, for instance by using inheritance, as shown in

Listing 3-3.

Listing 3-3. The Base Class ProductContainer, from which ShoppingCart and

Shipment Is Derived

#include "Product.h"

#include <algorithm>

#include <vector>

class ProductContainer {

public:

 void addProduct(const Product& product) {

 products.push_back(product);

 }

 void removeProduct(const Product& product) {

 std::erase(goods, product);

 }

private:

 std::vector<Product> products;

};

class ShoppingCart : public ProductContainer { };

class Shipment : public ProductContainer { };

Chapter 3 Be prinCipled

48

Alternative solutions would be to use C++ templates, or to use composition instead

of inheritance, i.e., ShoppingCart and Shipment use ProductContainer for their

implementation (see the section entitled “Favor Composition over Inheritance” in

Chapter 6).

So, the code for the shopping cart and for the shipment of goods has been identical,

and we have removed the duplication now … but wait! Maybe we should stop and ask

ourselves the question: Why was the code identical?!
From the perspective of the business stakeholders, there may be very good reasons

for making a very clear distinction between the two domain-specific concepts of a

shopping basket and the product shipment. It is therefore highly recommended to ask

the business people what they think of our idea to map the shopping basket and product

shipping to the same piece of code. They might say, “ Well, yes, on first sight a nice idea,

but remember that customers can order certain products by any number, but for safety

reasons we have to make sure that we never ship more than a certain number of these

products with the same delivery.”

By sharing the same code for two (or more) different domain concepts, we have

coupled them very closely together. Often there are additional requirements to fulfill,

which only affect one of both usages. In such a case, exceptions and special case

handlings must be implemented for the several uses of the ProductContainer class.

This can become a very tedious task, the readability of the code can suffer, and the initial

advantage of the shared abstraction is quickly lost.

The conclusion is this: Reusing code is not basically a bad thing. But overzealous

de-duplication of code creates the risk that we reuse code that only “accidentally” or

“superficially” behaves the same, but that in fact has different meanings in the different

places it is used. Mapping different domain concepts to the same piece of code is

dangerous, because there are different reasons that this code needs to be changed.

The DRY principle is only marginally about code. In fact, it’s about knowledge.

 Information Hiding
Information hiding is a long-known and fundamental principle in software

development. It was first documented in the seminal paper “On the Criteria to Be Used

in Decomposing Systems Into Modules,” [Parnas72] written by David L. Parnas in 1972.

Chapter 3 Be prinCipled

49

The principle states that one piece of code that calls another piece of code should

not “know” the internals about that other piece of code. This makes it possible to change

internal parts of the called piece of code without being forced to change the calling piece

of code accordingly.

David L. Parnas describes information hiding as the basic principle for decomposing

systems into modules. Parnas argued that system modularization should concern the

hiding of difficult design decisions or design decisions that are likely to change. The

fewer internals a software unit (e.g., a class or component) exposes to its environment,

the lesser is the coupling between the implementation of the unit and its clients. As a

result, changes in the internal implementation of a software unit will not be propagated

to its environment.

There are numerous advantages of information hiding:

• Limitation of the consequences of changes in modules

• Minimal influence on other modules if a bug fix is necessary

• Significantly increasing the reusability of modules

• Better testability of modules

Information hiding is often confused with encapsulation, but it’s not the same. I

know that both terms have been used in many noted books synonymously, but I don’t

agree. Information hiding is a design principle for aiding developers in finding good

modules. The principle works at multiple levels of abstraction and unfolds its positive

effect, especially in large systems.

Encapsulation is often a programming-language dependent technique for restricting

access to the innards of a module. For instance, in C++ you can precede a list of class

members with the private keyword to ensure that they cannot be accessed from outside

the class. But just because we use these guards for access control, we are still far away

from getting information hiding automatically. Encapsulation facilitates, but does not

guarantee, information hiding.

The code example in Listing 3-4 shows an encapsulated class with poor information

hiding.

Chapter 3 Be prinCipled

50

Listing 3-4. A Class for Automatic Door Steering (Excerpt)

class AutomaticDoor {

public:

 enum class State {

 closed = 1,

 opening,

 open,

 closing

 };

private:

 State state;

 // ...more attributes here...

public:

 State getState() const;

 // ...more member functions here...

};

This is not information hiding, because parts of the internal implementation of the

class are exposed to the environment, even if the class looks well encapsulated. Note the

type of the return value of getState. The enumeration class State is required by clients

using this class, as Listing 3-5 demonstrates.

Listing 3-5. An Example of How AutomaticDoor Must Be Used to Query the

Door’s Current State

#include "AutomaticDoor.h"

int main() {

 AutomaticDoor automaticDoor;

 AutomaticDoor::State doorsState = automaticDoor.getState();

 if (doorsState == AutomaticDoor::State::closed) {

 // do something...

 }

 return 0;

}

Chapter 3 Be prinCipled

51

ENUMERATION CLASS (STRUCT) [C++11]

With C++11 there has also been an innovation on enumerations types. For downward

compatibility to earlier C++ standards, there is still the well-known enumeration with its

keyword enum. Since C++11, there are also the enumeration classes.

One problem with those old C++ enumerations is that they export their enumeration literals to

the surrounding namespace, causing name clashes, such as in the following example:

const std::string bear;

// ...and elsewhere in the same namespace...

enum Animal { dog, deer, cat, bird, bear }; // error: 'bear' redeclared as

different kind of symbol

Furthermore, old C++ enums implicitly convert to int, causing subtle errors when such a

conversion is not expected or wanted:

enum Animal { dog, deer, cat, bird, bear };

Animal animal = dog;

int aNumber = animal; // Implicit conversion: works

these problems no longer exist when using enumeration classes, also called “new enums” or

“strong enums.” their enumeration literals are local to the enumeration, and their values do

not implicitly convert to other types (like to another enumeration or an int).

const std::string bear;

// ...and elsewhere in the same namespace...

enum class Animal { dog, deer, cat, bird, bear }; // No conflict with the

string named 'bear'

Animal animal = Animal::dog;

int aNumber = animal; // Compiler error!

it is strongly recommended to use enumeration classes instead of plain old enums for a

modern C++ program, because it makes the code safer. and because enumeration classes are

also classes, they can be forward declared.

What will happen if the internal implementation of AutomaticDoor must be changed

and the enumeration class State is removed from the class? It is easy to see that this will

have a significant impact on the client’s code. It will result in changes everywhere that

member function AutomaticDoor::getState() is used.

Chapter 3 Be prinCipled

52

Listings 3-6 and 3-7 show an encapsulated AutomaticDoor with good information hiding.

Listing 3-6. A Better Designed Class for Automatic Door Steering

class AutomaticDoor {

public:

 bool isClosed() const;

 bool isOpening() const;

 bool isOpen() const;

 bool isClosing() const;

 // ...more operations here...

private:

 enum class State {

 closed = 1,

 opening,

 open,

 closing

 };

 State state;

 // ...more attributes here...

};

Listing 3-7. An Example of How Elegant Class AutomaticDoor Can Be Used After

it Was Changed

#include "AutomaticDoor.h"

int main() {

 AutomaticDoor automaticDoor;

 if (automaticDoor.isClosed()) {

 // do something...

 }

 return 0;

}

Chapter 3 Be prinCipled

53

Now it’s much easier to change the innards of AutomaticDoor. The client code

does not depend on internal parts of the class anymore. You can remove the State

enumeration and replace it with another kind of implementation without users of the

class noticing this.

 Strong Cohesion
A general piece of advice in software development is that any software entity (i.e.,

module, component, unit, class, function, etc.) should have a strong (or high) cohesion.

In very general terms, cohesion is strong when the module does a well-defined job.

To dive deeper into this principle, let’s look at two examples where cohesion is weak,

starting with Figure 3-1.

Figure 3-1. MyModule has too many responsibilities, and this leads to many
dependencies from and to other modules

Chapter 3 Be prinCipled

54

In this illustration of the modularization of an arbitrary system, three different

aspects of the business domain are placed inside one single module. Aspects A, B, and

C have nothing, or nearly nothing, in common, but all three are placed inside MyModule.

Looking at the module’s code could reveal that the functions of A, B, and C are operating

on different, and completely independent, pieces of data.

Now look at all the dashed arrows in that picture. Each of them is a dependency. The

element at the tail of such an arrow requires the element at the head of the arrow for its

implementation. In this case, any other module of the system that wants to use services

offered by A, or B, or C will make itself dependent from the whole module MyModule. The

major drawback of such a design is obvious: it will result in too many dependencies and

the maintainability goes down the drain.

To increase cohesion, the aspects of A, B, and C should be separated from each other

and moved into their own modules (Figure 3-2).

Figure 3-2. High cohesion: The previously mixed aspects A, B, and C have been
separated into discrete modules

Chapter 3 Be prinCipled

55

Now it is easy to see that each of these modules has far fewer dependencies than the

old MyModule. It is clear that A, B, and C have nothing to do with each other directly. The

only module that depends on all three modules A, B, and C is Module 1.

Another form of weak cohesion is called the shot gun anti-pattern. I think it is

generally known that a shot gun is a firearm that shoots a huge amount of small

spherical pellets. The weapon typically has a large scatter. In software development, this

metaphor is used to express that a certain domain aspect, or single logical idea, is highly

fragmented and distributed across many modules. Figure 3-3 depicts such a situation.

Even with this form of weak cohesion, many unfavorable dependencies arise.

The distributed fragments of Aspect A must work closely together. That means that

every module that implements a subset of Aspect A must interact at least with one

other module containing another subset of Aspect A. This leads to a large number of

dependencies crosswise through the design. At worst, it can lead to cyclic dependencies,

like between Modules 1 and 3, or between Modules 6 and 7. This has, once again, a

negative impact on the maintainability and extendibility. Furthermore, the testability is

also very poor due to this design.

Figure 3-3. Aspect A is scattered over five modules

Chapter 3 Be prinCipled

56

This kind of design will lead to something that is called shotgun surgery. A certain

type of change regarding Aspect A leads to making lots of small changes to many

modules. That’s really bad and should be avoided. We have to fix this by pulling all the

parts of the code that are fragments of the same logical aspect together into a single

cohesive module.

There are certain other principles—for instance, the single responsibility principle

(SRP) of object-oriented design (see Chapter 6)—that foster high cohesion. High

cohesion often correlates with loose coupling and vice versa.

 Loose Coupling
Consider the small example in Listing 3-8.

Listing 3-8. A Switch That Powers a Lamp On and Off

class Lamp {

public:

 void on() {

 //...

 }

 void off() {

 //...

 }

};

class Switch {

private:

 Lamp& lamp;

 bool state {false};

public:

 Switch(Lamp& lamp) : lamp(lamp) { }

 void toggle() {

 if (state) {

 state = false;

 lamp.off();

Chapter 3 Be prinCipled

57

 } else {

 state = true;

 lamp.on();

 }

 }

};

Basically, this piece of code will work. You can first create an instance of the Lamp

class. Then this is passed by reference when instantiating the Switch class. Visualized

with UML, this small example would look like Figure 3-4.

What’s the problem with this design?

The problem is that the Switch contains a direct reference to the concrete class Lamp.

In other word, the switch knows that there is a lamp.

Maybe you would argue, “Well, but that’s the purpose of the switch. It has to power

on and off lamps.” That’s true if that is the one and only thing the switch should do.

If that’s the case, this design might be adequate. But go to a DIY store and look at the

switches that you can buy there. Do they know that lamps exist?

And what do you think about the testability of this design? Can the switch be tested

independently as it is required for unit testing? No, this is not possible. And what will we

do when the switch has to power on not only a lamp, but also a fan or an electric roller

blind?

In this example, the switch and the lamp are tightly coupled.

In software development, a loose coupling (also known as low or weak coupling)

between modules is best. That means that you should build a system in which each of its

modules has, or makes use of, little or no knowledge of the definitions of other separate

modules.

The key to achieve loose coupling in object-oriented software designs is to use

interfaces. An interface declares publicly accessible behavioral features of a class without

Figure 3-4. A class diagram of Switch and Lamp

Chapter 3 Be prinCipled

58

committing to a particular implementation of that class. An interface is like a contract.

Classes that implement an interface are committed to fulfill the contract, that is, these

classes must provide implementations for the method signatures of the interface.

In C++, interfaces are implemented using abstract classes, as shown in Listing 3-9.

Listing 3-9. The Switchable Interface

class Switchable {

public:

 virtual void on() = 0;

 virtual void off() = 0;

};

The Switch class doesn’t contain a reference to the lamp any more. Instead, it holds

a reference to our new interface class called Switchable, as shown in Listing 3-10.

Listing 3-10. The Modified Switch Class, Whereby Lamp Is Gone

class Switch {

private:

 Switchable& switchable;

 bool state {false};

public:

 Switch(Switchable& switchable) : switchable(switchable) {}

 void toggle() {

 if (state) {

 state = false;

 switchable.off();

 } else {

 state = true;

 switchable.on();

 }

 }

};

Chapter 3 Be prinCipled

59

The Lamp class implements our new interface, as shown in Listing 3-11.

Listing 3-11. The Lamp Class Implements the Switchable Interface

class Lamp : public Switchable {

public:

 void on() override {

 // ...

 }

 void off() override {

 // ...

 }

};

Expressed in UML, the new design looks like Figure 3-5.

The advantages of such a design are obvious. Switch is completely independent

from concrete classes that will be controlled by it. Furthermore, Switch can be tested

independently by providing a test double implementing the Switchable interface. You

want to control a fan instead of a lamp? No problem, as this design is open for extension.

Just create a Fan class or other classes representing electrical devices that implement the

Switchable interface, as depicted in Figure 3-6.

Figure 3-5. Loosely coupled Switch and Lamp via an interface

Chapter 3 Be prinCipled

60

Attention to loose coupling can provide a high degree of autonomy for individual

modules of a system. The principle can be effective at different levels: both at the

smallest modules, as well as on the system’s architecture level for large components.

High cohesion fosters loose coupling, because a module with a clearly defined

responsibility usually depends on fewer collaborators.

 Be Careful with Optimizations
“Premature optimization is the root of all evil (or at least most of it) in
programming.”

—Donald E. Knuth, American computer scientist [Knuth74]

I’ve seen developers starting time-wasting optimizations just with vague ideas of

overhead, but not really knowing where the performance is lost. They often fiddled with

individual instructions or tried to optimize small, local loops, to squeeze out even the

last drop of performance. Just as a footnote, one of these programmers I’m talking about

was me.

The success of these activities is generally marginal. The expected performance

advantages usually do not arise. In the end it’s just a waste of precious time. On the

contrary, often the understandability and maintainability of the allegedly optimized

Figure 3-6. Via an interface, a Switch can control different classes for electrical
devices

Chapter 3 Be prinCipled

61

code suffers drastically. Particularly bad is that sometimes it even happens that bugs are

subtly slipped into the code during such optimization measures. My advice is this: As
long as there are no explicit performance requirements to satisfy, keep your hands
off optimizations.

The comprehensibility and maintainability of our code should be our first goal.

And as I explain in the section “But the Call Time Overhead!” in Chapter 4, compilers

are nowadays very good at optimizing code. Whenever you feel a desire to optimize

something, think about YAGNI.

You should spring into action only when explicit performance requirements

(requested by a stakeholder) are not satisfied. First carefully analyze where the

performance gets lost. Don’t make any optimizations on the basis of a gut feeling. For

instance, you can use a profiler to find out where the bottlenecks are. After using such a

tool, developers are often surprised to find that the performance gets lost at a completely

different location than where they assumed it to be.

Note a profiler is a tool for dynamic program analysis. it measures, among
other metrics, the frequency and duration of function calls. the gathered profiling
information can be used to aid program optimization.

 Principle of Least Astonishment (PLA)
The principle of least astonishment (POLA/PLA), also known as the principle of

least surprise (POLS), is well known in user interface design and ergonomics. The

principle states that the user should not be surprised by unexpected responses of the

user interface. The user should not be puzzled by appearing or disappearing controls,

confusing error messages, unusual reactions on established keystroke sequences or

other unexpected behavior. For example, Ctrl+C is the de facto standard for the Copy

command on Windows operating systems, and not to exit a program.

This principle can also be well transferred to API design in software development.

Calling a function should not surprise the caller with unexpected behavior or mysterious

side effects. A function should do exactly what its function name implies (see the section

entitled “Function Naming” in Chapter 4). For instance, calling a getter on an instance of

a class should not modify the internal state of that object.

Chapter 3 Be prinCipled

62

 The Boy Scout Rule
This principle is about you and your behavior. It reads as follows: Always leave the
campground cleaner than you found it.

Boy scouts are very principled. One of their principles states that they should clean

up a mess or pollution in the environment immediately, once they’ve found such issues.

As responsible software craftspeople, we should apply this principle to our daily work.

Whenever we find something in a piece of code that needs to be improved, or that’s a bad

code smell, we should do one of two things. We should fix it immediately if it is a simple

change (e.g., renaming a bad named variable). Or we should create a ticket in the issue

tracker if it would result in a major refactoring, for example, in the case of a design or

architecture problem. It does not matter who the original author of this piece of code was.

The advantage of this behavior is that we continuously prevent code dilapidation.

If we all behave this way, the code simply cannot rot. The tendency of growing software

entropy has little chance to dominate our system. And the improvement doesn’t have to

be a big deal. It may be a very small cleanup, such as these:

• Renaming a poorly named class, variable, function, or method (see

the sections “Good Names” and “Function Naming” in Chapter 4).

• Cutting the innards of a large function into smaller pieces (see the

section entitled “Let Them Be Small” in Chapter 4).

• Deleting a comment by making the commented piece of code

self- explanatory (see the section entitled “Avoid Comments” in

Chapter 4).

• Cleaning up a complex and puzzling if-else compound.

• Removing a small bit of duplicated code (see the section about the

DRY principle in this chapter).

Since most of these improvements are code refactorings, a solid safety net consisting

of good unit tests, as described in Chapter 2, is essential. Without unit tests in place, you

cannot be sure that you won’t break something.

Besides good unit test coverage, we still need a special culture on our team: collective

code ownership.

Chapter 3 Be prinCipled

63

 Collective Code Ownership
This principle was first formulated in the context of the eXtreme Programming (XP)

movement and addresses the corporate culture as well as the team culture. Collective

code ownership means that we should work as a community. Every team member, at any

time, is allowed to make a change or extension to any piece of code. There should be no

attitude like “this is Sheila’s code, and that’s Fred’s module. I don’t touch them!” It should

be considered valueable that other people can easily take over the code we wrote. A set

of well-crafted unit tests (see Chapter 2) supports this, as it allows safe refactorings and

thus takes away the fear of change. Nobody on a real team should be afraid, or have to

obtain permission, to clean up code or add new features to it. With a culture of collective

code ownership, the Boy Scout rule explained in the previous section works fine.

Chapter 3 Be prinCipled

65
© Stephan Roth 2021
S. Roth, Clean C++20, https://doi.org/10.1007/978-1-4842-5949-8_4

CHAPTER 4

Basics of Clean C++
As I have explained in Chapter 1, lots of C++ code out there is not clean. In many

projects, software entropy has gotten the upper hand. Even if you are dealing with an

ongoing development project, for example, with a piece of software under maintenance,

large parts of the code base are often very old. The code looks as if it were written in the

last century. This is not surprising, since most of that code was literally written in the

last century! There are many projects with a long lifecycle, and they have their roots in

the 1990s or even the 1980s. Furthermore, many programmers copy code snippets out of

legacy projects and modify them to get things done in their daily work.

Some programmers treat the language just like one of many tools. They see no

reason to improve something, because what they cobble together works somehow. It

should not be that way because this approach will quickly lead to increased software

entropy, and the project will turn into a big mess quicker than you think.

In this chapter, I describe the general basics of clean C++. These are universal topics

that are often programming language independent. For example, paying attention to

good names for any kind of software unit is essential in all programming languages.

Several other aspects, like const correctness, using smart pointers, or the great

advantages of move semantics, are specific for C++.

But before I discuss specific topics, I want to point out a general piece of advice,

which is to use the latest version of C++ if at all possible.

Tip If you are not already doing so, start to develop your software using modern
C++ now. Skip C++11 and start right away with C++14, C++17, or even better:
C++20!

Why should you skip C++11? Well, C++11 was a big hit, no doubt, but it was also not

perfect and in certain areas a bit flawed. For instance, C++11 lacked generic and variadic

lambdas and didn’t support full auto return type deduction. Thus, it is reasonable and

https://doi.org/10.1007/978-1-4842-5949-8_4#DOI

66

advisable to start with C++14, which was essentially a bugfix release of C++11, or even

start with a higher standard right away.

Now let’s explore the key elements of clean and modern C++, step by step.

 Good Names
“Programs must be written for people to read, and only incidentally for
machines to execute.”

—Hal Abelson and Gerald Jay Sussman, 1984

The following piece of source code is taken from Apache OpenOffice version 3.4.1, a

well- known open source office software suite. Apache OpenOffice has a long history,

which dates back to the year 1984. It descends from Oracle’s OpenOffice.org (OOo),

which was an open sourced version of the earlier StarOffice. In 2011, Oracle stopped

the development of OpenOffice.org, fired all developers, and contributed the code and

trademarks to the Apache Software Foundation. Therefore, be tolerant and keep in mind

that the Apache Software Foundation has inherited a nearly 30-year-old ancient beast

and vast technical debt.

Listing 4-1. An Excerpt from Apache’s OpenOffice 3.4.1 Source Code

// Building the info struct for single elements

SbxInfo* ProcessWrapper::GetInfo(short nIdx)

{

 Methods* p = &pMethods[nIdx];

 // Wenn mal eine Hilfedatei zur Verfuegung steht:

 // SbxInfo* pResultInfo = new SbxInfo(Hilfedateiname, p->nHelpId);

 SbxInfo* pResultInfo = new SbxInfo;

 short nPar = p->nArgs & _ARGSMASK;

 for(short i = 0; i < nPar; i++)

 {

 p++;

 String aMethodName(p->pName, RTL_TEXTENCODING_ASCII_US);

 sal_uInt16 nInfoFlags = (p->nArgs >> 8) & 0x03;

Chapter 4 BaSICS of Clean C++

67

 if(p->nArgs & _OPT)

 nInfoFlags |= SBX_OPTIONAL;

 pResultInfo->AddParam(aMethodName, p->eType, nInfoFlags);

 }

 return pResultInfo;

}

I have a simple question for you: What does this function do?
It seems easy to give an answer at first sight, because the code snippet is small (less

than 20 LOC) and the indentation is okay. But in fact, it is not possible to say at a glance

what this function really does, and the reason for this is not only the domain of office

software, which is possibly unknown to us.

This short code snippet has many bad smells (e.g., commented-out code, comments

in German, magic literals like 0x03, etc.), but a major problem is the poor naming. The

function’s name GetInfo() is very abstract and gives us at most a vague idea of what this

function actually does. Also the namespace name ProcessWrapper is not very helpful.

Perhaps you can use this function to retrieve information about a running process? Well,

wouldn’t RetrieveProcessInformation() be a much better name for it? The comment

on the first line (“Building the info struct...”) indicates that something is created.

After an analysis of the function’s implementation you will also notice that the

name is misleading, because GetInfo() is not just a simple getter as you might suspect.

There is also something created with the new operator. In other words, the call site

will receive a resource that was allocated on the heap and the caller must take care

of it. To emphasize this fact, wouldn’t a name like CreateProcessInformation() or

BuildProcessInfoFromIndex() be much better?

Next, take a look at the parameter and the return value of the function. What is

SbxInfo? What is nIdx? Maybe the argument nIdx holds a value that is used to access an

element in a data structure (that is, an index), but that would just be a guess. In fact, we

don’t know exactly.

Developers very often read source code, usually more often even than they write

new code. Therefore, source code should be readable, and good names are a key factor

of readability. If you are working on a project with multiple people, good naming is

essential so that you and your teammates can understand the code quickly. If you have

to edit or read a piece of code you wrote a few weeks or months later, good module, class,

method, and variable names will help you recall what you meant.

Chapter 4 BaSICS of Clean C++

68

Note any entity in a source code base, e.g., files, modules, namespaces, classes,
templates, functions, arguments, variables, constants, type aliases, etc., should
have meaningful and expressive names.

When I’m designing software or write code, I spend a lot of time thinking about

names. I am convinced that it is well-invested time to think about good names, even if

it’s sometimes not easy and takes five minutes or longer. I seldom find the perfect name

for a thing immediately. Therefore, I rename often, which is easy with a good editor or an

Integrated Development Environment (IDE) with refactoring capabilities.

If finding a proper name for a variable, function, or class seems to be difficult or

nearly impossible, that might indicate that something else is wrong. Perhaps a design

issue exists and you should find and solve the root cause of your naming problem.

The next section includes a few bits of advice for finding good names.

 Names Should Be Self-Explanatory
I’ve committed myself to the concept of self-explanatory code. Self-explanatory code is

code when no comments are required to explain its purpose (see the following section

on comments and how to avoid them). Self-explanatory code requires self-explanatory

names for its namespaces, modules, classes, variables, constants, and functions. See

Listing 4-2.

Tip Use simple but descriptive and self-explaining names.

Listing 4-2. Some Examples of Bad Names

unsigned int num;

bool flag;

std::vector<Customer> list;

Product data;

Variable naming conventions can often turn into a religious war, but I am very sure

that there is broad agreement that num, flag, list, and data are really bad names. What

is data? Everything is data. This name has absolutely no semantics. It’s as if you boxed

Chapter 4 BaSICS of Clean C++

69

your goods into moving boxes and, instead of writing on them what they really contain,

for example, “cookware,” you wrote write the word “things” on every single carton. When

the cartons arrive at the new house, this information is completely useless.

Listing 4-3 shows an example of how we could better name the four variables in the

previous code example.

Listing 4-3. Some Examples of Good Names

unsigned int numberOfArticles;

bool isChanged;

std::vector<Customer> customers;

Product orderedProduct;

One can now argue that names are better the longer they are. Consider the example

in Listing 4-4.

Listing 4-4. A Very Exhaustive Variable Name

unsigned int totalNumberOfCustomerEntriesWithIncompleteAddressInformation;

No doubt, this name is extremely expressive. Even without knowing where this code

comes from, the reader knows quite well what this variable is used for. However, there

are problems with names like this. For example, you cannot easily remember such long

names. And they are difficult to type if you don’t use an IDE that has auto completion. If

such extremely verbose names are used in expressions, the readability of the code may

even suffer, as shown in Listing 4-5.

Listing 4-5. Naming Chaos, Caused By Too Verbose Names

totalNumberOfCustomerEntriesWithIncompleteAddressInformation =

 amountOfCustomerEntriesWithIncompleteOrMissingZipCode +

 amountOfCustomerEntriesWithoutCityInformation +

 amountOfCustomerEntriesWithoutStreetInformation;

Too long and verbose names are not appropriate or desirable when trying to make our

code clean. If the context is clear in which a variable is used, shorter and less descriptive

names are possible. If the variable is a member (attribute) of a class, for instance, the

class’s name usually provides sufficient context for the variable. See Listing 4-6.

Chapter 4 BaSICS of Clean C++

70

Listing 4-6. The Class’s Name Provides Enough Context Information for the

Attribute

class CustomerRepository {

private:

 unsigned int numberOfIncompleteEntries;

 // ...

};

“You’re creating a vocabulary, not writing a program. Be a poet for a
moment. The simple, the punchy, the easily remembered will be far more
effective in the long run than some long name that says it all, but in such a
way that no one wants to say it at all.”

—Kent Beck, Smalltalk Best Practice Patterns, 1995

 Use Names from the Domain
Maybe you have already heard of software design methodologies like object-oriented

analysis and design (OOAD) or domain-driven design (DDD)? OOAD was first described

by Peter Coad and Edward Yourdon in the early 1990s. It was one of the first software

design methodologies in which the so-called domain of the system to be developed

plays a central role. More than 10 years later, Eric Evans coined the term “domain-driven

design” in his eponymous book from 2004 [Evans04]. Like OOAD, DDD is an approach

in the complex object-oriented software development that primarily focuses on the core

domain and domain logic.

WHAT IS A DOMAIN?

a domain in the realm of systems and software engineering commonly refers to the subject

area—the sphere of knowledge, influence, or activity—in which a system of interest is intended

to be used. Some examples of domains are automotive, Medical, healthcare, agriculture, Space

and aviation, online Shopping, Music production, railway-transportation, energy economy, etc.

When a system of interest is operated just in a subarea of a domain, this is called a

subdomain. for instance, subdomains of the Medical domain are Intensive Care Medicine, and

imaging techniques like radiography or magnetic resonance imaging (MrI).

Chapter 4 BaSICS of Clean C++

71

Simply put, both methodologies (OOAD and DDD) are about trying to make your

software a model of a real-life system by mapping business domain things and concepts

into the code. For instance, if the software to be developed will support the business

processes in a car rental, then things and concepts of car rental (e.g., rented car, car

pool, rentee, rental period, rental confirmation, car usage report, accounting, etc.)

should be discoverable in the design of this software. If, on the other hand, the software

is developed for a certain area in the aerospace industry, things and concepts from this

domain should be reflected in it.

The advantages of such an approach are enormous: the use of terms from the

domain facilitates, above all, the communication between the developers and other

stakeholders. DDD helps the software development team create a common model

between the business and IT stakeholders in the company that the team can use to

communicate about the business requirements, data entities, and process models.

A detailed introduction to OOAD and DDD is far beyond the scope of this book.

If you are interested, I recommend a good, practice-oriented training to learn these

methodologies.

However, it is basically always a very good idea to name modules, classes, and

functions in a way that elements and concepts from the application’s domain can

be rediscovered. This enables you to communicate software designs as naturally as

possible. It will make code more understandable to anyone involved in solving a

problem, for example, a tester or a business expert.

Take, for example, the aforementioned car rental. The class that is responsible for the

use case of the reservation of a car for a certain customer could be as shown in Listing 4-7.

Listing 4-7. The Interface of a Use Case Controller Class to Reserve a Car

class ReserveCarUseCaseController {

public:

 Customer identifyCustomer(const UniqueIdentifier& customerId);

 CarList getListOfAvailableCars(const Station& atStation,

 const RentalPeriod& desiredRentalPeriod) const;

 ConfirmationOfReservation reserveCar(const UniqueIdentifier& carId,

 const RentalPeriod& rentalPeriod) const;

private:

 Customer& inquiringCustomer;

};

Chapter 4 BaSICS of Clean C++

72

Now take a look at all those names used for the class, the methods, the arguments,

and return types. They represent things that are typical for the car rental domain. If you

read the methods from top to bottom, these are the individual steps that are required to

rent a car. This is C++ code, but there is a great chance that nontechnical stakeholders

with domain knowledge can also understand it.

Note Software developers should speak the language of their stakeholders and
use domain-specific terms in their code whenever possible.

 Choose Names at an Appropriate Level of Abstraction
To keep the complexity of today’s software systems under control, these systems are usually

hierarchically decomposed. Hierarchical decomposition of a software system means that

the entire problem is broken down and partitioned into smaller parts as subtasks, until

developers get the confidence that they can manage these smaller parts. I will deepen this

topic again in Chapter 6, when covering modularization of a software system.

With such decomposition, software modules are created at different levels of abstraction:

starting from large components or subsystems down to very small building blocks like

classes. The task, which a building block at a higher abstraction level fulfills, should be

fulfilled by an interaction of the building blocks on the next lower abstraction level.

The abstraction levels introduced by this approach also have an impact on naming.

Every time we go one step deeper down the hierarchy, the names of the elements get

more concrete.

Imagine a web shop. On the top level there might exist a large component whose

single responsibility is to create invoices. This component could have a short and

descriptive name like Billing. Usually, this component consists of further smaller

components or classes. For instance, one of these smaller modules could be responsible

for calculating a discount. Another module could be responsible for creating invoice

line items. Thus, good names for these modules could be DiscountCalculator

and LineItemFactory. If we now dive deeper into the decomposition hierarchy,

the identifiers for components, classes, and functions or methods become more

and more concrete, verbose, and thus also longer. For example, a small method

in a class at the deepest level could have a very detailed and elongated name, like

calculateReducedValueAddedTax().

Chapter 4 BaSICS of Clean C++

73

Note always choose names that reflect the level of abstraction of the module,
class, or (member-) function you are working in. look to it that all instructions
within a function are on the same abstraction level.

 Avoid Redundancy When Choosing a Name
It is redundant to pick up a class name or other names that provide a clear context and

use them as a part to build the name of a member variable. Listing 4-8 shows an example

of this.

Listing 4-8. Don’t Repeat the Class’s Name in its Attributes

#include <string>

class Movie {

private:

 std::string movieTitle;

 // ...

};

Don’t do that! It is an, albeit, only very tiny violation of the DRY principle we

discussed in Chapter 3. Instead, just name it title. The member variable is in the

namespace of class Movie, so it’s clear without ambiguity whose title is meant: the

movie’s title!

Listing 4-9 shows another example of redundancy.

Listing 4-9. Don’t Include the Attribute’s Type in its Name

#include <string>

class Movie {

 // ...

private:

 std::string stringTitle;

};

Chapter 4 BaSICS of Clean C++

74

It is the title of a movie, so obviously it is a string and not an integer! Do not include

the type of a variable or constant in its name. In a following section on Hungarian

notation, I will take up this topic again.

 Avoid Cryptic Abbreviations
When choosing a name for your variables or constants, use full words instead of cryptic

abbreviations. There should only be rare exceptions to this rule and only in the case that

an abbreviation is very well known in a certain domain, for example, IBAN (short for

International Bank Account Number) in the financial world.

The reason is obvious: cryptic abbreviations reduce the readability of your code

significantly. Furthermore, when developers talk about their code, variable names

should be easy to pronounce.

Remember the variable named nPar on Line 8 from our OpenOffice code snippet?

Neither is its meaning clear, nor can it be pronounced in a good manner.

Listing 4-10 shows a few more examples of Dos and Don’ts.

Listing 4-10. Some Examples of Good and Bad Names

std::size_t idx; // Bad!

std::size_t index; // Good; might be sufficient in some cases

std::size_t customerIndex; // To be preferred, especially in situations where

 // several objects are indexed

Car rcar; // Bad!

Car rentedCar; // Good

Polygon ply1; // Bad!

Polygon firstPolygon; // Good

unsigned int nBottles; // Bad!

unsigned int bottleAmount; // Better

unsigned int bottlesPerHour; // Ah, the variable holds a work value,

 // and not an absolute number. Excellent!

const double GOE = 9.80665; // Bad!

const double gravityOfEarth = 9.80665; // More expressive, but misleading.

The constant is

Chapter 4 BaSICS of Clean C++

75

// not a gravitation, which would be a force in physics.

const double gravitationalAccelerationOnEarth = 9.80665; // Good.

constexpr Acceleration gravitationalAccelerationOnEarth = 9.80665_ms2;

// Wow!

Look at the last line, which I have commented with “Wow!” That looks pretty

convenient, because it is a familiar notation for scientists. It looks almost like teaching

physics at school. And yes, that’s really possible in C++, as you will learn in one of the

sections about type-rich programming in Chapter 5.

 Avoid Hungarian Notation and Prefixes
Do you know Charles Simonyi? He is a Hungarian-American computer software expert

who worked as a Chief Architect at Microsoft in the 1980s. Maybe you remember his

name in a different context. Charles Simonyi is a space tourist and has made two trips to

space, one of them to the International Space Station (ISS).

He also developed a notation convention for naming variables in computer software,

named the Hungarian notation, which has been widely used inside Microsoft and later

also by other software manufacturers.

When using Hungarian notation, the type, and sometimes also the scope, of a

variable are used as a naming prefix for that variable. Listing 4-11 shows a few examples.

Listing 4-11. Some Examples of Hungarian Notation with Explanations

bool fEnabled; // f = a boolean flag

int nCounter; // n = number type (int, short, unsigned, ...)

char* pszName; // psz = a pointer to a zero-terminated string

std::string strName; // str = a C++ stdlib string

int m_nCounter; // The prefix 'm_' marks that it is a member variable,

 // i.e. it has class scope.

char* g_pszNotice; // That's a global(!) variable. Believe me, I've seen

 // such a thing.

int dRange; // d = double-precision floating point. In this case

it's

 // a stone-cold lie!

Chapter 4 BaSICS of Clean C++

76

Note Do not use hungarian notation, or any other prefix-based notation, by
encoding the type of a variable in its name!

Hungarian notation was potentially helpful in a weakly typed language like C. It may

have been useful at a time when developers used simple editors for programming, and

not IDEs that have a feature like “IntelliSense.”

Modern and sophisticated development tools today support the developer very

well and show the type and scope of a variable. There are no good reasons anymore to

encode the type of a variable in its name. Far from it, such prefixes can impede the train

of readability of the code.

At worst, it may even happen that during development the type of a variable is

changed without adapting the prefix of its name. In other words, the prefixes tend to turn

into lies, as you can see from the last variable in the previous example. That’s really bad!

Another problem is that in object-oriented languages that support polymorphism, the

prefix cannot be specified easily, or a prefix can even be puzzling. Which Hungarian prefix

is suitable for a polymorphic variable that can be an integer or a double? idX? diX? How

do we determine a suitable and unmistakable prefix for an instantiated C++ template?

By the way, meanwhile even Microsoft’s so-called general naming conventions stress

that one should not use Hungarian notation anymore.

If you want to mark the member variables of a class, I recommend you use an

appended underscore instead of prefixes like the widely used m_..., as in this example:

#include <string>

class Person {

 //...

private:

 std::string name_;

};

 Avoid Using the Same Name for Different Purposes
Once you’ve introduced a meaningful and expressive name for any kind of software

entity (e.g., a class or component), a function, or a variable, you should ensure that its

name is never used for any other purpose.

Chapter 4 BaSICS of Clean C++

77

I think it is pretty obvious that using the same name for different purposes can be

puzzling and can mislead readers. Don’t do that. That’s all I have to say about that topic.

 Comments
“If the code and the comments disagree, then both are probably wrong.”

—Norm Schryer, Computer Scientist and Division
Manager at AT&T Labs Research

Do you remember your beginnings as a professional software developer? Do you still

remember the coding standards of your company during those days? Maybe you’re

still young and not long in business, but the older ones will confirm that most of those

standards contained a rule that professional code must always be properly commented.

The absolutely comprehensible reasoning for this rule was so that any other developer,

or a new team member, could easily understand the intent of the code.

On first sight, this rule seems like a good idea. In many companies, the code was

therefore commented extensively. In some projects, the ratio between productive lines

of code and comments was almost 50:50.

Unfortunately, it was not a good idea. On the contrary: This rule was an absolutely
bad idea!

It is completely wrong in several respects, because comments are a code smell

in most cases. Comments are necessary when there is need for explanation and

clarification. And that often means that the developer was not able to write simple and

self-explanatory code.

Do not misunderstand: there are some reasonable use cases for comments. In some

situations, a comment might actually be helpful. I present a few of these rather rare cases

at the end of this section. But for any other case, this rule should apply, and that’s also

the heading of the next section: “Let the Code Tell the Story”.

 Let the Code Tell the Story
Just imagine watching a movie that’s only understandable when individual scenes are

explained using a textual description below the picture. This film would certainly not be

a success. On the contrary, the critics would pick it to pieces. No one would watch such

a bad movie. Good films are therefore successful because they tell a gripping story only

through the pictures and the dialogues of the actors.

Chapter 4 BaSICS of Clean C++

78

Storytelling is basically a successful concept in many domains, not only in film

production. When you think about building a great software product, you should think

about it as telling the world a great and enthralling story. It’s not surprising that Agile project

management frameworks like Scrum use phrases called “user stories” as a way to capture

requirements from the perspective of the user. And as I’ve explained in a section about

preferring domain-specific names, you should talk to stakeholders in their own language.

Note Code should tell a story and be self-explanatory. Comments must be
avoided whenever possible.

Comments are not subtitles. Whenever you feel the desire to write a comment in

your code because you want to explain something, you should think about how you

can write the code better so that it is self-explanatory and the comment is therefore

superfluous. Modern programming languages like C++ have everything that’s

necessary to write clear and expressive code. Good programmers take advantage of that

expressiveness to tell stories.

“Any fool can write code that a computer can understand. Good program-
mers write code that humans can understand.”

—Martin Fowler, 1999

 Do Not Comment Obvious Things
Once again, we take a look at a small and typical piece of source code that was

commented extensively. See Listing 4-12.

Listing 4-12. Are These Comments Useful?

customerIndex++; // Increment index

Customer* customer = getCustomerByIndex(customerIndex); // Retrieve the customer

at the given index

CustomerAccount* account = customer->getAccount(); // Retrieve the

customer's account

account->setLoyaltyDiscountInPercent(discount); // Grant a 10% discount

Chapter 4 BaSICS of Clean C++

79

Please don’t insult the reader’s intelligence! It is obvious that these comments are

totally useless. The code itself is largely self-explanatory. They don’t add new or relevant

information. Much worse is that these useless comments are a kind of duplication of the

code. They violate the DRY principle discussed in Chapter 3.

Maybe you’ve noticed another detail. Take a look at the last line. The comment

speaks literally of a 10% discount, but in the code there is a variable or constant named

discount that is passed into the function or method setLoyaltyDiscountInPercent().

What has happened here? Remember the quote by Norm Schryer from the beginning

of this section? A reasonable suspicion is that this comment has turned into a lie

because the code was changed, but the comment was not adapted. That’s really bad and

misleading.

Comments defy any quality assurance measure. You cannot write a unit test for a

comment. Thus, they can become misleading and outright wrong very quickly without

anyone noticing.

 Don’t Disable Code with Comments
Sometimes comments are used to disable a bunch of code that should not be translated

by the compiler. A reason often mentioned by developers for this practice is that one

could possibly use this piece of code again later. They think, “Maybe one day ... we’ll

need it again.” What could happen then is that from time to time you’ll find a stone-old

piece of code from ancient times, commented out and forgotten for years, as shown in

Listing 4-13.

Listing 4-13. An Example of Commented-Out Code

// This function is no longer used (John Doe, 2013-10-25):

/*

double calcDisplacement(double t) {

 const double goe = 9.81; // gravity of earth

 double d = 0.5 * goe * pow(t, 2); // calculation of distance

 return d;

}

*/

A major problem with commented-out code is that it adds confusion with no real

benefit. Just imagine that the disabled function in the example in Listing 4-13 is not the

Chapter 4 BaSICS of Clean C++

80

only one, but one of many places where code has been commented out. The code will

soon turn into a big mess and the commented-out code snippets will add a lot of noise

that impedes readability. Furthermore, commented-out code snippets are not quality

assured, that is, they are not translated by the compiler, not tested, and not maintained.

Note except for the purpose to try out something quickly, don’t use comments to
disable code. there is a version control system!

If code is no longer used, simply delete it. Let it go. You have a “time machine” to get

it back, if necessary: your version control system. However, it often turns out that this

case is very rare. Just take a look at the timestamp the developer added in the example

in Listing 4-13. This piece of code is age old. What is the likelihood that it will ever be

needed again?

To try out something quickly during development, such as when searching for the

cause of a bug, it is of course helpful to comment out a code section temporarily. But it

must be ensured that such modified code is not checked into the version control system

and accidentally comes into production.

 Don’t Write Block Comments
Comments like the ones shown in Listing 4-14 are found in many projects.

Listing 4-14. An Example of Block Comments

#ifndef _STUFF_H_

#define _STUFF_H_

// -------------------------------------

// stuff.h: the interface of class Stuff

// John Doe, created: 2007-09-21

// -------------------------------------

class Stuff {

public:

 // ----------------

 // Public interface

 // ----------------

Chapter 4 BaSICS of Clean C++

81

 // ...

protected:

 // -------------

 // Overrideables

 // -------------

 // ...

private:

 // ------------------------

 // Private member functions

 // ------------------------

 // ...

 // ------------------

 // Private attributes

 // ------------------

 // ...

};

#endif

These kinds of comments (and I do not mean the ones I used to obscure irrelevant

parts) are called “block comments,” or “banners.” They are often used to add a summary

about the content at the top of a source code file. Or they are used to mark a special

position in the code. For instance, they introduce a code section where all private

member functions of a class can be found.

These kinds of comments are mostly pure clutter and should be deleted

immediately!

There are very few exceptions where such comments could have a benefit. In

some rare cases, a bunch of functions of a special category can be gathered together

underneath such a comment. But then you should not use noisy character trains

consisting of hyphens (-), slashes (/), number signs (#), or asterisks (*) to envelop them.

A comment like the one in Listing 4-15 is absolutely sufficient to introduce such a region.

Chapter 4 BaSICS of Clean C++

82

Listing 4-15. Sometimes Useful: a Comment to Introduce a Category of

Functions

private:

 // Event handlers:

 void onUndoButtonClick();

 void onRedoButtonClick();

 void onCopyButtonClick();

 // ...

#PRAGMA REGION/#PRAGMA ENDREGION

So-called #pragma directives provide a way to specify compiler-, machine-, and operating

system-specific functionality while maintaining overall compatibility with the C++ language.

for example, many C++ compilers support the #pragma once directive, which ensures that

a (header) file is included only once and thus offers an alternative to macro-based include

guards.

Using the #pragma region <name-of-region> directive and its corresponding #pragma

endregion directive, developers can specify a block of code that can be expanded or

collapsed when the IDe has a so-called folding editor that supports it. the code example from

listing 4-15 would then look like this:

#pragma region EventHandler

void onUndoButtonClick();

void onRedoButtonClick();

void onCopyButtonClick();

#pragma endregion

In some projects the coding standards say that big headers with copyright and

license text at the top of any source code file are mandatory. They can look like

Listing 4-16.

Chapter 4 BaSICS of Clean C++

83

Listing 4-16. The License Header in Any Source Code File of Apache

OpenOffice 3.4.1

/**

 *

 * Licensed to the Apache Software Foundation (ASF) under one

 * or more contributor license agreements. See the NOTICE file

 * distributed with this work for additional information

 * regarding copyright ownership. The ASF licenses this file

 * to you under the Apache License, Version 2.0 (the

 * "License"); you may not use this file except in compliance

 * with the License. You may obtain a copy of the License at

 *

 * http://www.apache.org/licenses/LICENSE-2.0

 *

 * Unless required by applicable law or agreed to in writing,

 * software distributed under the License is distributed on an

 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

 * KIND, either express or implied. See the License for the

 * specific language governing permissions and limitations

 * under the License.

 *

 ***/

First, I want to say something fundamental about copyrights. You don’t need to add

comments about the copyright, or do anything else, to have copyright over your works.

According to the Berne Convention for the Protection of Literary and Artistic Works

[Wipo1886] (or Berne Convention in short), such comments have no legal meaning.

There were times where such comments were required. Before the United States

had signed the Berne Convention in 1989, such copyright notices were mandatory if

you wanted to enforce your copyright in the United States. But that is a thing of the past.

Nowadays these comments are no longer needed.

My advice is to simply omit them. They are just cumbersome and useless baggage.

However, if you want to, or even need to offer copyright and license information in your

Chapter 4 BaSICS of Clean C++

84

project, you better write them in separate files, like license.txt and copyright.txt. If

a software license requires under all circumstances that license information has to be

included in the head area of every source code file, you can hide these comments if your

IDE has a so-called folding editor.

 Don’t Use Comments to Substitute Version Control

Sometimes—and this is extremely bad—banner comments are used for a change log, as

shown in Listing 4-17.

Listing 4-17. Managing the Change History in the Source Code File

// ###

// Change log:

// 2016-06-14 (John Smith) Change method rebuildProductList to fix bug #275

// 2015-11-07 (Bob Jones) Extracted four methods to new class ProductListSorter

// 2015-09-23 (Ninja Dev) Fixed the most stupid bug ever in a very smart way

// ###

Don’t do this! One of the main tasks of your version control system is tracking the

change history of every file in your project. If you are using Git for example, you can

use git log -- [filename] to get the history of file changes. The programmers who

wrote the comments above are more than likely those who always leave the Check-In

Comments box empty on their commits.

 The Rare Cases Where Comments Are Useful
Of course, not all source code comments are basically useless, false, or bad. There are

some cases where comments are important or even indispensable.

In a few very specific cases it may happen that, even if you used perfect names for

all your variables and functions, some sections of your code need further explanation

to support the reader. For example, a comment is justified if a section of the code has a

high degree of inherent complexity and cannot be understood easily by anyone without

deep expert knowledge. This can be the case, for example, when using a sophisticated

mathematical algorithm or formula. Or the software system deals with an uncommon

(business) domain, i.e., an area or field of application that is not easily comprehensible

to everyone. This could include areas such as experimental physics, complex simulations

Chapter 4 BaSICS of Clean C++

85

of natural phenomena, or ambitious ciphering methods. In such cases, some well-

written comments explaining things can be very valuable.

Another good reason to write a comment is when you’re deliberately deviating from

a good design principle. For example, the DRY principle (see Chapter 3) is, of course,

valid in most circumstances. However, there may be some very rare cases in which you

willfully duplicate a piece of code, such as to meet certain quality requirements. This

justifies a comment explaining why you have violated the principle; otherwise, your

teammates may not be able to comprehend your decision.

The challenge is this: Good and meaningful comments are hard to write. It can be

more difficult than writing the code. Just as not every member of a development team

is good at designing a user interface, not everyone is good at writing either. Technical

writing is a skill for which usually there are specialists.

So, here are a few bits of advice for writing useful and necessary comments:

• Make sure that your comments add value to the code. Value in this

context means that comments add important pieces of information

for other human beings (usually other developers) that are not

evident from the code itself.

• Always explain the why, not the how. How a piece of code works

should be pretty clear from the code itself, and meaningful names

for variables and functions are the keys to achieve this goal. Use

comments solely to explain why a certain piece of code exists. For

example, you can provide a rationale for why you chose a particular

algorithm or method.

• Try to be as short and expressive as possible. Choose short and

concise comments, ideally one-liners, and avoid long and garrulous

texts. Always keep in mind that comments need to be maintained.

It is actually much easier to keep short comments up to date than

extensive and wordy explanations.

Tip In integrated development environments (IDe) with syntax coloring, the text
color for comments is usually preconfigured to something like light green or teal.
You should change this color to loud red! a comment in the source code should be
something special, and it should attract the attention of the developers.

Chapter 4 BaSICS of Clean C++

86

 Documentation Generation from Source Code

A special form of comments is an annotation that can be extracted by a documentation

generator. An example of such a tool is Doxygen (https://doxygen.org). It’s widespread

in the C++ world and is published under a GNU General Public License (GPLv2). Such

a tool parses the annotated C++ source code and can create documentation in the

form of a readable and printable document (e.g., PDF), or a set of cross-referenced and

navigable web documents (HTML) that can be viewed with a browser. In combination

with a visualization tool, Doxygen can even generate class diagrams, include

dependency graphs, and call graphs. Thus, Doxygen can also be used for static code

analysis.

In order for such a tool to generate meaningful documentation, the source code

must be annotated intensely with specific comments. Listing 4-18 shows a not-so-good

example with annotations in Doxygen style.

Listing 4-18. A Class Annotated with Documentation Comments for Doxygen

//! Objects of this class represent a customer account in our system.

class CustomerAccount {

 // ...

 //! Grant a loyalty discount.

 //! @param discount is the discount value in percent.

 void grantLoyaltyDiscount(unsigned short discount);

 // ...

};

What? Objects of class CustomerAccount represent customer accounts? Oh really?!

And grantLoyaltyDiscount grants a loyalty discount? You don’t say!

But seriously folks! For me, this form of documentation cuts both ways.

On the one hand, it may be very useful to annotate, especially the public interface

(API) of a C++ module, a library or a framework with these comments and to generate

documentation from them. Particularly if the clients of the software are unknown (the

typical case with publically available libraries and frameworks), such documentation can

be very helpful if they want to use the software in their projects.

On the other hand, such comments add a huge amount of noise to your code. The

ratio of code to comment lines can quickly reach 50:50. As seen in Listing 4-18, such

Chapter 4 BaSICS of Clean C++

https://doxygen.org

87

comments also tend to explain obvious things (remember the earlier section in this

chapter, “Do Not Comment Obvious Things”). Finally, the best documentation ever—an

“executable documentation”—is a set of well-crafted unit tests (see the section about

unit tests in Chapter 2 and the section about test-driven development in Chapter 8) that

exactly show how the module’s or library’s API has to be used.

Anyway, I have no final opinion about this topic. If you want to, or have to, annotate

the public API of your software components with Doxygen-style comments at all

costs, then, for God’s sake, do it. If it is well done, and those comments are regularly

maintained, it can be pretty helpful. I strongly advise you to pay sole attention to your

public API headers! For all other parts of your software, for instance, internally used

modules, or private functions, I recommend that you not equip them with Doxygen

annotations.

The previous example can be significantly improved if terms and explanations from

the application’s domain are used, as shown in Listing 4-19.

Listing 4-19. A Class Annotated with Comments from a Business Perspective for

Doxygen

//! Each customer must have an account, so bookings can be made. The account

//! is also necessary for the creation of monthly invoices.

//! @ingroup entities

//! @ingroup accounting

class CustomerAccount {

 // ...

 //! Regular customers can get a discount on their purchases.

 void grantDiscount(const PercentageValue& discount);

 // ...

};

Maybe you’ve noticed that I do not comment the method’s parameter with

Doxygen’s @param tag anymore. Instead, I changed its type from a meaningless unsigned

short to a const reference of a custom type named PercentageValue. Due to this,

the parameter is now self-explanatory. Why this is a much better approach than any

comment, you can read in a section about type-rich programming in Chapter 5.

Chapter 4 BaSICS of Clean C++

88

Here are a few final tips for Doxygen-style annotations in source code:

• Don’t use Doxygen’s @file [<name>] tag to write the name of the

file somewhere into the file itself. For one, this is useless, because

Doxygen reads the name of the file automatically. In addition,

it violates the DRY principle (see Chapter 3). It is redundant

information, and if you have to rename the file, you must remember

to rename the @file tag as well.

• Do not edit the @version, @author, and @date tags manually, because

your version control system can manage and keep track of this

information a lot better than any developer who would edit them

manually. If such management information should appear in the

source code file under all circumstances, these tags should be filled

automatically by the version control system. In all other cases, I

would do without them entirely.

• Do not use the @bug or @todo tags. Instead, either fix the bug

immediately, or use an issue-tracking software to file bugs for later

troubleshooting or to manage open points.

• It is strongly recommended to provide a descriptive project home

page using the @mainpage tag (ideally in a separate header file just

for this purpose), since such a home page serves as a getting started

guide and orientation aid for new developers. Comprehensive

concepts and high-level architecture decisions can also be

documented here.

• The interface of a class or library consists not only of method

signatures with their parameters and return values. There are more

things that belong to an interface but may not be visible to its users:

preconditions, postconditions, exceptions, and invariants. Especially

if a library is delivered in binary format and users have only header

files, such properties of an interface should be documented. For this

purpose, Doxygen offers the following tags:

• @pre for the preconditions of an entity.

• @invariant for a description of the properties that remain stable

throughout the lifetime of an entity.

Chapter 4 BaSICS of Clean C++

89

• @post for the postconditions of an entity.

• @throws to document the exception object an entity can throw

and the reasons for the exception.

• I would not use the @example tag to provide a comment block

containing a source code example about how to use an API. As

mentioned, such comments add a lot of noise to the code. Instead, I

would offer a suite of well-crafted unit tests (see Chapter 2 about unit

tests and Chapter 8 about test-driven development), as these are the

best examples of use—executable examples! In addition, unit tests

are always correct and up to date, as they must be adjusted when the

API changes (otherwise the tests will fail). A comment with a usage

example, on the other hand, can become wrong without anyone

noticing it.

• Once a project has been grown to a particular size, it is advisable to

pool certain categories of software units with the help of Doxygen’s

grouping mechanisms (Tags: @defgroup <name>, @addtogroup

<name>, and @ingroup <name>). This is, for example, very useful when

you want to express the fact that certain software units belong to a

cohesive module on a higher level of abstraction (e.g., a component

or subsystem). This mechanism also allows certain categories of

classes to be grouped together, for example all entities, all adapters

(see the section entitled “Adapter Pattern” in Chapter 9), or all object

factories (see the section entitled “Factory Pattern” in Chapter 9).

The CustomerAccount class from the previous code example is, for

instance, in the group of entities (a group that contains all business

objects), but it is also part of the accounting component.

 Functions
Functions (methods, procedures, services, operations) are the heart of any software

system. They represent the first organizational unit above the lines of code. Well-written

functions foster the readability and maintainability of a program considerably. For this

reason, they should be well crafted in a careful manner. In this section, I give several

important clues for writing good functions.

Chapter 4 BaSICS of Clean C++

90

However, before I explain the things that I consider to be important for

well-crafted functions, let’s examine a deterrent example again, taken from

Apache’s OpenOffice 3.4.1. See Listing 4-20.

Listing 4-20. Another Excerpt from Apache’s OpenOffice 3.4.1 Source Code

1780 sal_Bool BasicFrame::QueryFileName(String& rName, FileType nFileType,

sal_Bool bSave)

1781 {

1782 NewFileDialog aDlg(this, bSave ? WinBits(WB_SAVEAS) :

1783 WinBits(WB_OPEN));

1784 aDlg.SetText(String(SttResId(bSave ? IDS_SAVEDLG : IDS_LOADDLG

)));

1785

1786 if (nFileType & FT_RESULT_FILE)

1787 {

1788 aDlg.SetDefaultExt(String(SttResId(IDS_RESFILE)));

1789 aDlg.AddFilter(String(SttResId(IDS_RESFILTER)),

1790 String(SttResId(IDS_RESFILE)));

1791 aDlg.AddFilter(String(SttResId(IDS_TXTFILTER)),

1792 String(SttResId(IDS_TXTFILE)));

1793 aDlg.SetCurFilter(SttResId(IDS_RESFILTER));

1794 }

1795

1796 if (nFileType & FT_BASIC_SOURCE)

1797 {

1798 aDlg.SetDefaultExt(String(SttResId(IDS_NONAMEFILE)));

1799 aDlg.AddFilter(String(SttResId(IDS_BASFILTER)),

1800 String(SttResId(IDS_NONAMEFILE)));

1801 aDlg.AddFilter(String(SttResId(IDS_INCFILTER)),

1802 String(SttResId(IDS_INCFILE)));

1803 aDlg.SetCurFilter(SttResId(IDS_BASFILTER));

1804 }

1805

1806 if (nFileType & FT_BASIC_LIBRARY)

1807 {

Chapter 4 BaSICS of Clean C++

91

1808 aDlg.SetDefaultExt(String(SttResId(IDS_LIBFILE f)));

1809 aDlg.AddFilter(String(SttResId(IDS_LIBFILTER)),

1810 String(SttResId(IDS_LIBFILE)));

1811 aDlg.SetCurFilter(SttResId(IDS_LIBFILTER));

1812 }

1813

1814 Config aConf(Config::GetConfigName(Config::GetDefDirectory(),

1815 CUniString("testtool")));

1816 aConf.SetGroup("Misc");

1817 ByteString aCurrentProfile = aConf.ReadKey("CurrentProfile",

"Path");

1818 aConf.SetGroup(aCurrentProfile);

1819 ByteString aFilter(aConf.ReadKey("LastFilterName"));

1820 if (aFilter.Len())

1821 aDlg.SetCurFilter(String(aFilter, RTL_TEXTENCODING_UTF8));

1822 else

1823 aDlg.SetCurFilter(String(SttResId(IDS_BASFILTER)));

1824

1825 aDlg.FilterSelect(); // Selects the last used path

1826 // if (bSave)

1827 if (rName.Len() > 0)

1828 aDlg.SetPath(rName);

1829

1830 if(aDlg.Execute())

1831 {

1832 rName = aDlg.GetPath();

1833 /* rExtension = aDlg.GetCurrentFilter();

1834 var i:integer;

1835 for (i = 0 ; i < aDlg.GetFilterCount() ; i++)

1836 if (rExtension == aDlg.GetFilterName(i))

1837 rExtension = aDlg.GetFilterType(i);

1838 */

1839 return sal_True;

1840 } else return sal_False;

1841 }

Chapter 4 BaSICS of Clean C++

92

Question: What did you expect when you saw the member function named

QueryFileName() the first time?

Would you expect that a file selection dialog box is opened (remember the principle

of least astonishment discussed in Chapter 3)? Probably not, but that is exactly what is

done here. The user is obviously asked to interact with the application, so a better name

for this member function would be AskUserForFilename().

But that’s not enough. If you look at the first lines in detail, you will see that there is a

Boolean parameter bSave used to distinguish between a file dialog box for opening, and

a file dialog box for saving files. Did you expect that? And how does the term Queryf in

the function name match that fact? So, a better name for this member function may be

AskUserForFilenameToOpenOrSave(). And while looking at this more expressive method

name, it should immediately strike you that this method does at least two things and

thus violates the single responsibility principle (discussed in detail in Chapter 6).

The following lines deal with the function’s argument nFileType. Apparently,

three different file types are distinguished. The nFileType parameter is masked out

with something named FT_RESULT_FILE, FT_BASIC_SOURCE, and FT_BASIC_LIBRARY.

Depending on the result of this bitwise AND operation, the file dialog box is configured

differently, for example, filters are set. As the Boolean parameter bSave has done before,

the three if statements introduce alternative paths. That increases what is known as the

cyclomatic complexity of the function.

CYCLOMATIC COMPLEXITY

the quantitative software metric cyclomatic complexity was developed by thomas J. McCabe,

a U.S. mathematician, in 1976.

the metric is a direct count of the number of linearly independent paths through a section of

source code, for example, a function. If a function contains no if or switch statement, and

no for or while loop, there is just one single path through the function and its cyclomatic

complexity is 1. If the function contains one if statement representing a single decision point,

there are two paths through the function and the cyclomatic complexity is 2.

If cyclomatic complexity is high, the affected piece of code is typically more difficult to

understand, test, and modify, and thus more prone to bugs.

Chapter 4 BaSICS of Clean C++

93

The three if statements raise another question: Is this function the right place to do

such configurations? Definitely not! This does not belong over here.

The following lines (starting from 1814) are taking access to additional configuration

data. It cannot be determined exactly, but it looks as if the last used file filter

(LastFilterName) is loaded from a source that contains configuration data, either

a configuration file or the Windows registry. Especially confusing is that the already

defined filter, which was set in the previous three if blocks (aDlg.SetCurFilter(...)),

will always be overwritten at this place (see lines 1820-1823). So, what is the sense of

setting this filter in the three if blocks before?

Shortly before the end, the reference parameter rName comes into play. Hold it ...

name of what, please?! It is probably the filename, yes, but why is it not named filename

to exclude all possibilities of doubt? And why is the filename not the return value of this

function? (The reason you should avoid so-called output arguments is a topic that is

discussed later in this chapter.)

As if this were not bad enough, the function also contains commented-out code.

This function consists of only about 50 lines, but it has many bad code smells. The

function is too long, has a high cyclomatic complexity, mixes different concerns, has

many arguments, and contains dead code. The function name QueryFileName() is

unspecific and can be misleading. Who is queried? A database? AskUserForFilename()

would be much better, because it emphasizes the interaction with the user. Most of the

code is hard to read and difficult to understand. What does nFileType & FT_BASIC_

LIBRARY mean?

But the essential point is that the task to be performed by this function (filename

selection) justifies an own class, because the class BasicFrame, which is part of the

application’s UI, is definitely not responsible for such things.

Enough of that. Let’s take a look at what has to be considered by a software crafter

while designing good functions.

 One Thing, No More!
A method or function should have a very precisely defined task represented by its

significant name. In other words, a function or method should do exactly one logical

thing.

Chapter 4 BaSICS of Clean C++

94

You may ask now: But how do I know when a function does too many things? Here

are some possible indications:

• The function is too long, that is, it contains too many lines of code

(see the following section about small functions).

• You try to find a meaningful and expressive name for the function

that exactly describes its purpose, but you cannot avoid using

conjunctions, such as “and” or “or,” to build the name. (See one of the

following sections on names.)

• The code in the body of a method or function has been grouped by

its developer using blank lines. These code groups represent the

individual process steps that make up the method. Often these groups

are also introduced with comments that are like headlines. In other

words, the developer already thought that the method would consist

of partial steps without introducing sub-methods for these steps.

• The cyclomatic complexity is high. That means it has deeply nested

control structures. The function contains many if, else, or switch-

case statements.

• The function has many arguments (see the section about arguments

and return values later in this chapter), especially one or more flag

arguments of type bool.

The indicator mentioned in the first bullet point, that the method or function

contains too many lines of code, leads us directly to the topic in the following section.

 Let Them Be Small
A central question regarding functions is this: What is the maximum length of a

function? (When I talk about functions in the following section, I also mean methods.)

There are many rules of thumb and heuristics for the length of a function. For

example, some say that a function should fit on the screen vertically. Okay, at first glance

that seems to be a not-so-bad rule. If a function fits on the screen, there is no need for the

developer to scroll. On the other hand, should the height of my screen really determine

the maximum size of a function? Screen heights are not all the same. So, I personally

don’t think that it is a good rule.

Chapter 4 BaSICS of Clean C++

95

Note functions or methods should be pretty small. Ideally 4–5 lines, maximum
12–15 lines, but not more.

Panic! I can already hear the outcry of many developers: “Lots of tiny functions? ARE

YOU SERIOUS?!”

Yes, I am serious.

Large functions usually have a high complexity. Developers often cannot tell at a

glance what such a function does. If a function is too large, it typically has too many

responsibilities (see the previous section) and does not do only one thing. The larger a

function is, the harder it is to understand and maintain. Such functions often contain

many, mostly nested decisions (if, else, or switch) and loops. This is also known as

high cyclomatic complexity.

Of course, as with any rule, there can be few justified exceptions. For instance,

a function that contains a single large switch statement might be acceptable if it is

extremely clean and straightforward to read. You can have a 400-line switch statement

in a function (sometimes required to handle different kinds of incoming data in

telecommunication systems), and it is perfectly okay.

 “But the Call Time Overhead!”

People now might raise the objection that many small functions reduce the execution

speed of a program. They might argue that any function call is costly.

Let me explain why I think that these fears are unfounded in most cases.

Yes, there were times when C++ compilers were not very good at optimizing, and

CPUs were comparatively slow. It was at a time when the myth was spread that C++ is

generally slower than C. Such myths were propagated by individuals who did not know

the language very well. And the times have changed.

Nowadays, modern C++ compilers are very good at optimizing. For instance, they

can perform manifold local and global speed-up optimizations. They can reduce many

C++ constructs, like loops or conditional statements, to functionally similar sequences

of very efficient machine code. And they are now smart enough to inline functions

automatically, if those functions can be basically inlined (... of course, sometimes it is not

possible to do that).

And even the Linker can perform optimizations. For example, many modern C++

compilers nowadays offer a feature such as whole program optimization (Microsoft

Chapter 4 BaSICS of Clean C++

96

Visual-Studio Compiler/Linker) and link-time optimization (gcc or LLVM/Clang), which

allows the compiler and linker to perform global optimizations with information on all

modules in the program. And with another Visual-Studio feature called profile-guided

optimizations, the compiler optimizes a program using gathered data from profiling test

runs of the .EXE or .DLL file.

Even if we do not want to use the optimization options of the compiler, what are we

talking about when we consider a function call?

An Intel Core i7 2600K CPU can perform 128,300 million instructions per second

(MIPS) at a clock speed of 3.4GHz. Ladies and gentleman, when we are talking about

function calls, we are talking about a few nanoseconds! Light travels approximately 30cm

in one nanosecond (0.000000001 sec). Compared to other operations on a computer, like

memory access outside of the cache, or hard disk access, a function call is magnitudes

faster.

Developers should rather spend their precious time on real performance issues,

which usually have their roots in bad architecture and design. Only under very special

circumstances do you have to worry about function call overhead.

 Function Naming
In general, it can be said that the same naming rules that apply to variables and

constants are also applicable to functions and methods. Function names should be

clear, expressive, and self-explanatory. You should not have to read the body of a

function to know what it does. Because functions define the behavior of a program, they

typically have a verb in their name. Some special kinds of functions are used to provide

information about a state. Their names often start with “is ...” or “has...”.

Tip the name of a function should start with a verb. predicates, that is,
statements about an object that can be true or false, should start with “is” or
“has.”

Listing 4-21 shows some examples of expressive method names.

Chapter 4 BaSICS of Clean C++

97

Listing 4-21. A Few Examples of Expressive and Self-Explanatory Names for

Member Functions

void CustomerAccount::grantDiscount(DiscountValue discount);

void Subject::attachObserver(const Observer& observer);

void Subject::notifyAllObservers() const;

int Bottling::getTotalAmountOfFilledBottles() const;

bool AutomaticDoor::isOpen() const;

bool CardReader::isEnabled() const;

bool DoubleLinkedList::hasMoreElements() const;

 Use Intention-Revealing Names
Take a look at the following line of code, which is, of course, just a small excerpt from a

larger program:

std::string head = html.substr(startOfHeader, lengthOfHeader);

This line of code looks good in principle. There is a C++ string (header <string>)

named html, containing a piece of HTML (Hypertext Mark-Up Language) obviously.

When this line is executed, a copy of a substring of html is retrieved and assigned to a

new string named head. The substring is defined by two parameters: one that sets the

starting index of the substring and another that defines the number of characters to

include in the substring.

Okay, I’ve just explained in detail how the header from a piece of HTML is extracted.

Listing 4-22 shows another version of the same code.

Listing 4-22. After Introducing an Intention-Revealing Name the Code Is More

Understandable

std::string ReportRenderer::extractHtmlHeader(const std::string& html) {

 return html.substr(startOfHeader, lengthOfHeader);

}

// ...

std::string head = extractHtmlHeader(html);

Chapter 4 BaSICS of Clean C++

98

Can you see how much clarity a small change like this could bring to your code? We

introduced a small member function that explains its intention by its semantic name.

And at the place where the string operation originally could be found, we’ve replaced the

direct invocation of std::string::substr() by a call of the new function.

Note the name of a function should express its intention/purpose, and not
explain how it works.

How the job is done—that’s what you should learn from the code in the function’s

body. Don’t explain the how in a function’s name. Instead, express the purpose of the

function from a business perspective.

In addition, we have another advantage. The partial functionality of how the header

is extracted from the HTML page has been quasi-isolated and is now more easily

replaceable without fumbling around at those places where the function is called.

 Parameters and Return Values
After we discussed function names in detail, there is another aspect that is important for

good and clean functions: the function’s parameters and return values. These both also

contribute significantly to the fact that a function or method can be well understood and

is easily usable by clients.

 Number of Parameters

How many parameters should a function or method have at most? Two? Three? Or just

one?

Well, methods of a class often have no parameter at all. The explanation for this

is that these always have an additional implicit “argument” available: this! The this

pointer represents the context of execution. With the help of this, a member function

can access the attributes of its class, read, or manipulate them. In other words, from the

perspective of a member function, attributes of a class feel like global variables.

When we think of a function in the pure mathematical sense (y = f(x)), it always has

at least one parameter (see Chapter 7 about functional programming).

But why are too many parameters bad?

Chapter 4 BaSICS of Clean C++

99

First, every parameter in a function’s parameter list can lead to a dependency, with

the exception of parameters of standard built-in types like int or double. If you use a

complex type (e.g., a class) in a function’s parameter list, your code depends on that type.

The header file containing the used type must be included.

Furthermore, every parameter must be processed somewhere inside of a function

(if not, it is unnecessary and should be deleted immediately). Three parameters can

lead to a relatively complex function, as we have seen by example of member function

BasicFrame::QueryFileName() from Apache’s OpenOffice.

In procedural programming it may sometimes be very difficult not to exceed

three parameters. In C, for instance, you will often see functions with more parameters.

A deterrent example is the hopelessly antiquated Windows Win32 API, as shown in

Listing 4-23.

Listing 4-23. The Win32 CreateWindowEx Function to Create Windows

HWND CreateWindowEx

(

 DWORD dwExStyle,

 LPCTSTR lpClassName,

 LPCTSTR lpWindowName,

 DWORD dwStyle,

 int x,

 int y,

 int nWidth,

 int nHeight,

 HWND hWndParent,

 HMENU hMenu,

 HINSTANCE hInstance,

 LPVOID lpParam

);

Well, this ugly code comes from ancient times, obviously. I’m pretty sure that if

it were designed nowadays, the Windows API would not look like that any more. Not

without reason, there are numerous frameworks, such as Microsoft Foundation Classes

(MFC), Qt (https://www.qt.io), and wxWidgets (https://www.wxwidgets.org), that

wrap this creepy interface and offer simpler and more object-oriented ways to create a

graphical user interface (UI).

Chapter 4 BaSICS of Clean C++

https://www.qt.io
https://www.wxwidgets.org

100

And there are few possibilities to reduce the number of parameters. You could

combine x, y, nWidth, and nHeight to a new structure named Rectangle, but then there

are still nine parameters. An aggravating factor is that some of the parameters of this

function are pointers to other complex structures, which for their part are composed of

many attributes.

In good object-oriented designs, such long parameter lists are usually not required.

But C++ is not a pure object-oriented language, such as Java or C#. In Java, everything

must be embedded in a class, which sometimes leads to much boilerplate code. In C++

this is not required. You are allowed to implement free-standing functions in C++, that is,

functions that are not members of a class. And that’s quite okay.

Tip Methods and functions should have as few parameters as possible. one
parameter is the ideal number. Member functions (methods) of a class sometimes
have no parameters at all. Usually those functions manipulate the internal state of
the object, or they are used to query something from the object.

 Avoid Flag Parameters

A flag parameter is a kind of parameter that tells a function to perform a different

operation depending on its value. Flag parameters are mostly of type bool, and

sometimes even an enumeration. See Listing 4-24.

Listing 4-24. A Flag Parameter to Control the Level of Detail on an Invoice

Invoice Billing::createInvoice(const BookingItems& items, const bool

withDetails) {

 if (withDetails) {

 //...

 } else {

 //...

 }

}

The basic problem with flag parameters is that you introduce two (or sometimes

even more) paths through your function and hence increase its cyclomatic complexity.

Chapter 4 BaSICS of Clean C++

101

The value of such a parameter is typically evaluated somewhere inside the function in

an if or switch/case statement. It is used to determine whether to take a certain action.

It means that the function is not doing one thing exactly right, as it should be (see the

section “One Thing, No More,” earlier in this chapter). It’s a case of weak cohesion (see

Chapter 3) and violates the single responsibility principle (see Chapter 6 about object

orientation).

And if you see the function call somewhere in the code, you do not know exactly

what a true or false means without analyzing the Billing::createInvoice()function

in detail. See Listing 4-25.

Listing 4-25. Baffling: What Does the True in the Argument List Mean?

Billing billing;

Invoice invoice = billing.createInvoice(bookingItems, true);

My advice is that you should simply avoid flag parameters. Such kinds of parameters

are always necessary if the concern of performing an action is not separated from its

configuration.

One solution could be to provide separate, well-named functions instead, as shown

in Listing 4-26.

Listing 4-26. Easier to Comprehend: Two Member Functions with Intention-

Revealing Names

Invoice Billing::createSimpleInvoice(const BookingItems& items) {

 //...

}

Invoice Billing::createInvoiceWithDetails(const BookingItems& items) {

 Invoice invoice = createSimpleInvoice(items);

 //...add details to the invoice...

}

Another solution is a specialization hierarchy of billings, as shown in Listing 4-27.

Chapter 4 BaSICS of Clean C++

102

Listing 4-27. Different Levels of Details for Invoices, Realized the

Object-Oriented Way

class Billing {

public:

 virtual Invoice createInvoice(const BookingItems& items) = 0;

 // ...

};

class SimpleBilling : public Billing {

public:

 Invoice createInvoice(const BookingItems& items) override;

 // ...

};

class DetailedBilling : public Billing {

public:

 Invoice createInvoice(const BookingItems& items) override;

 // ...

private:

 SimpleBilling simpleBilling;

};

The private member variable of type SimpleBilling is required in the

DetailedBilling class to be able to first perform a simple invoice creation without code

duplication, and to add the details to the invoice afterward.

OVERRIDE SPECIFIER [C++11]

Since C++11, it can explicitly be specified that a virtual function should override a base class

virtual function. for this purpose, the override identifier has been introduced.

If override appears immediately after the declaration of a member function, the compiler

will check that the function is virtual and is overriding a virtual function from a base class.

thus, developers are protected from subtle errors that can arise when they merely think that

they have overridden a virtual function, but in fact they have altered/added a new function, for

example, due to a typo.

Chapter 4 BaSICS of Clean C++

103

 Avoid Output Parameters

An output parameter, sometimes also called a result parameter, is a function parameter

that is used for the function’s return value.

One of the frequently mentioned benefits of using output parameters is that functions

that use them can pass back more than one value at a time. Here is a typical example:

bool ScriptInterpreter::executeCommand(const std::string& name,

 const std::vector<std::string>& arguments,

 Result& result);

This member function of the ScriptInterpreter class returns not only a bool.

The third parameter is a non-const reference to an object of type Result, which

represents the real result of the function. The Boolean return value determines whether

the execution of the command was successful by the interpreter. A typical call of this

member function might look like this:

ScriptInterpreter interpreter;

// Many other preparations...

Result result;

if (interpreter.executeCommand(commandName, argumentList, result)) {

 // Continue normally...

} else {

 // Handle failed execution of command...

}

Tip avoid output parameters at all costs.

Output parameters are unintuitive and can lead to confusion. The caller can

sometimes not determine whether a passed object is treated as an output parameter and

will possibly be mutated by the function.

Furthermore, output parameters complicate the easy composition of expressions. If

functions have only one return value, they can be interconnected quite easily to chained

function calls. In contrast, if functions have multiple output parameters, developers

are forced to prepare and handle all the variables that will hold the resultant values.

Therefore, the code that calls these functions can turn into a mess quickly.

Chapter 4 BaSICS of Clean C++

104

Especially if immutability should be fostered and side effects must be reduced,

output parameters are an absolutely terrible idea. Unsurprisingly, it is still impossible to

pass an immutable object (see Chapter 9) as an output parameter.

If a method should return something to its callers, let the method return it as the

method’s return value. If the method must return multiple values, redesign it to return a

single instance of an object that holds the values.

Alternatively, the class template std::pair can be used. The first member variable

is assigned the Boolean value indicating success or fail, and the second member

variable is assigned the real return value. However, both std::pair and its “big brother”

std::tuple (available since C++11) are, from my point of view, always a design smell.

A std::pair<bool, Result> is not really a speaking name. If you decide to use

something like that, and I would not recommend it anyway, you should at least

introduce a meaningful alias name with the help of the using declaration.

Another possibility is to use a std::optional, a class template that is defined in the

<optional> header and available since C++17. As its name suggest, objects of this class

template can manage an optional contained value, i.e., a value that may or may not be

present.

In addition to the aforementioned solutions, there is one more. You can use the

so- called special case object pattern to return an object representing an invalid result.

Since this is a object-oriented design pattern, I introduce it in Chapter 9.

Here is my final advice about how to deal with return parameters: As mentioned,

avoid output parameters. If you want to return multiple values from a function or

method, introduce a small class with well-named member variables to bundle all the

data that you want to return to the call site. You may find after a short while that this class

should have existed anyway and you can put some logic in it.

 Don’t Pass or Return 0 (NULL, nullptr)

THE BILLION DOLLAR MISTAKE

Sir Charles antony richard hoare, commonly known as tony hoare or C. a. r. hoare, is a

famous British computer scientist. he is primarily known for the Quick Sort algorithm. In

1965, tony hoare worked with the Swiss computer scientist niklaus e. Wirth on the further

development of the programming language alGol. he introduced null references in the

programming language alGol W, which was the predecessor of paSCal.

Chapter 4 BaSICS of Clean C++

105

More than 40 years later, tony hoare regrets this decision. In a talk at the QCon 2009

Conference in london, he said that the introduction of null references had probably been a

billion dollar mistake. he argued that null references have caused so many problems in the

past decades that the cost could be approximated at $USD 1 billion.

In C++, pointers can point to NULL or 0. Concretely, this means that the pointer

points to the memory address 0. NULL is just a macro definition:

#define NULL 0

Since C++11, the language provides the new keyword called nullptr, which is of

type std::nullptr_t.

Sometimes I see functions like this one:

Customer* findCustomerByName(const std::string& name) const {

 // Code that searches the customer by name...

 // ...and if the customer could not be found:

 return nullptr; // ...or NULL;

}

Receiving NULL or nullptr as a return value from a function can be confusing.

(Starting from here, I will only use nullptr in the following text, because the C-style

macro NULL has no place in modern C++ anymore.) What should the caller do with it?

What does it mean? In the previous example, it might be that a customer with the given

name does not exist. But it can also mean that there has been a critical error. A nullptr

can mean failure, can mean success, and can mean almost anything.

Note If it is inevitable to return a regular pointer as the result from a function or
method, do not return nullptr!

In other words, if you’re forced to return a regular pointer as the result from a

function (we will see later that there may be better alternatives), ensure that the pointer

you’re returning always points to a valid address. Here are my reasons why I think this is

important.

The main rationale why you should not return nullptr from a function is that you

shift the responsibility to decide what to do to your callers. They have to check it. They

Chapter 4 BaSICS of Clean C++

106

have to deal with it. If functions can potentially return nullptr, this leads to many null

checks, like this:

Customer* customer = findCustomerByName("Stephan");

if (customer != nullptr) {

 OrderedProducts* orderedProducts = customer->getAllOrderedProducts();

 if (orderedProducts != nullptr) {

 // Do something with orderedProducts...

 } else {

 // And what should we do here?

 }

} else {

 // And what should we do here?

}

Many null checks reduce the readability of the code and increase its complexity. And

there is another visible problem that leads us directly to the next point.

If a function can return a valid pointer or nullptr, it introduces an alternative flow

path that needs to be continued by the caller. And it should lead to a reasonable and

sensible reaction. This is sometimes quite problematic. What would be the correct,

intuitive response in our program when our pointer to Customer is not pointing to a valid

instance, but nullptr? Should the program abort the running operation with a message?

Are there any requirements that a certain type of program continuation is mandatory in

such cases? These questions sometimes cannot be answered well. Experience has shown

that it is often relatively easy for stakeholders to describe all the so-called happy day

cases of their software, which are the positive cases during normal operation. It is much

more difficult to describe the desired behavior of the software during the exceptions,

errors, and special cases.

The worst consequence may be this: If any null check is forgotten, this can lead to

critical runtime errors. Dereferencing a null pointer will lead to a segmentation fault and

your application will crash.

In C++ there is still another problem to consider: object ownership.

For the caller of the function, it is unclear what to do with the resource pointed to by

the pointer after its usage. Who is its owner? Is it required to delete the object? If yes, how

is the resource to be disposed? Must the object be deleted with delete, because it was

allocated with the new operator somewhere inside the function? Or is the ownership of

Chapter 4 BaSICS of Clean C++

107

the resource object managed differently, so that a delete is forbidden and will result in

undefined behavior (see the section “Don’t Allow Undefined Behavior” in Chapter 5)?

Is it perhaps even an operating system resource that has to be handled in a very special

manner?

According to the information hiding principle (see Chapter 3), this should have no

relevance for the callers, but in fact we’ve imposed the responsibility for the resource

to them. And if the callers do not handle the pointer correctly, it can lead to serious

bugs, for example, memory leaks, double deletion, undefined behavior, and sometimes

security vulnerabilities.

 Strategies for Avoiding Regular Pointers

Choose simple object construction on the stack instead of on the heap

The simplest way to create a new object is simply by creating it on the stack, like so:

#include "Customer.h"

// ...

Customer customer;

In this example, an instance of the Customer class (defined in the Customer.h

header) is created on the stack. The line of code that creates the instance can usually be

found somewhere inside a function’s or method’s body. That means that the instance

is destroyed automatically if the function or method runs out of scope, which happens

when we return from the function or method.

So far, so good. But what shall we do if an object that was created in a function or

method must be returned to the caller?

In old-style C++, this challenge was often coped with in such a way that the object

was created on the heap (using the new operator) and then returned from the function as

a pointer to this allocated resource.

Customer* createDefaultCustomer() {

 Customer* customer = new Customer();

 // Do something more with customer, e.g. configuring it, and at the end...

 return customer;

}

Chapter 4 BaSICS of Clean C++

108

The comprehensible reason for this approach is that, if we are dealing with a large

object, an expensive copy construction can be avoided this way. But we have already

discussed the drawbacks of this solution in the previous section. For instance, what will

the caller do if the returned pointer is nullptr? Furthermore, the caller of the function is

forced to be in charge of the resource management (e.g., deleting the returned pointer in

the correct manner).

COPY ELISION

almost all, especially commercial-grade C++ compilers today, support so-called copy elision

techniques. these are optimizations to prevent extra copies of objects in certain situations

(depending on optimization settings; as of C++17, copy elision is guaranteed when an object

is returned directly).

on the one hand, this is great, because we can get more performant software with less to no

effort this way. and it makes returning by value or passing by value large and costly objects,

apart from some exceptions, much simpler in practice. these exceptions are limitations of

copy elision where this optimization won’t be able to kick in, such as having multiple exit

points (return statements) in a function returning different named objects.

on the other hand, we have to keep in mind that copy elision—depending on the compiler and

its settings—can influence the program’s behavior. If the copying an object is optimized away,

any copy constructor that may be present is also not executed. furthermore, if fewer objects

are created, you can’t rely on a specific number of destructors being called. You shouldn’t put

critical code inside copy- or move-constructors or destructors, as you can’t rely on them being

called. (You will learn that you should avoid implementing these so-called special member

functions by hand anyway, in Chapter 5, in the section “the rule of Zero”!)

Common forms of copy elision are return value optimization (rVo) and named return value
optimization (nrVo).

Chapter 4 BaSICS of Clean C++

109

Named Return Value Optimization

nrVo eliminates the copy constructor and destructor of a named stack-based object that

is returned. for instance, a function could return an instance of a class by value like in this

simple example:

class SomeClass {

public:

 SomeClass();

 SomeClass(const SomeClass&);

 SomeClass(SomeClass&&);

 ~SomeClass();

};

SomeClass getInstanceOfSomeClass() {

 SomeClass object;

 return object;

}

rVo happens if a function returns a nameless temporary object, as with this modified form of

the getInstanceOfSomeClass() function:

SomeClass getInstanceOfSomeClass() {

 return SomeClass ();

}

Important: even when copy elision takes place and the call of a copy-/move-constructor

is optimized away, they must be present and accessible, either hand-crafted or compiler-

generated; otherwise, the program is considered ill-formed!

Good news: Since C++11, we can simply return large objects as values without being

worried about a costly copy construction.

Customer createDefaultCustomer() {

 Customer customer;

 // Do something with customer, and at the end...

 return customer;

}

Chapter 4 BaSICS of Clean C++

110

The reason that we no longer have to worry about resource management in this case

are the so-called move semantics, which are supported since C++11. Simply speaking,

the concept of move semantics allows resources to be “moved” from one object to

another instead of copying them. The term “move” means, in this context, that the

internal data of an object is removed from the old source object and placed into a new

object. It is a transfer of ownership of the data from one object to another object, and

this can be performed extremely fast. (C++11 move semantics are discussed in detail in

Chapter 5.)

With C++11, all Standard Library container classes have been extended to support

move semantics. This not only has made them very efficient, but also much easier to

handle. For instance, you can return a large vector containing strings from a function in a

very efficient manner, as shown in the example in Listing 4-28.

Listing 4-28. Since C++11, a Locally Instantiated and Large Object Can Be Easily

Returned by Value

#include <vector>

#include <string>

using StringVector = std::vector<std::string>;

const StringVector::size_type AMOUNT_OF_STRINGS = 10'000;

StringVector createLargeVectorOfStrings() {

 StringVector theVector(AMOUNT_OF_STRINGS, "Test");

 return theVector; // Guaranteed no copy construction here!

}

The exploitation of move semantics is one very good way to get rid of lots of regular

pointers. But we can do much more...

In a function’s argument list, use (const) references instead of pointers

Instead of writing...

void function(Type* argument);

...you should use C++ references, like this:

void function(Type& argument);

Chapter 4 BaSICS of Clean C++

111

The main advantage of using references instead of pointers for arguments is that

there’s no need to check that the reference is not a nullptr. The simple reason for this is

that references are never "NULL." (Okay, I know that there are some subtle possibilities

where you can still end up with a null reference, but these presuppose a very foolish or

amateurish programming style.)

And another advantage is that you don’t need to dereference anything inside the

function with the help of the dereference operator (*). That will lead to cleaner code. The

reference can be used inside the function as it has been created locally on the stack. Of

course, if you don’t want to have any side effects, you should make it a const reference

(see the upcoming section about const correctness).

If it is inevitable to deal with a pointer to a resource, use a smart one

If you cannot avoid using a pointer because the resource must be created on the

heap, you should wrap it immediately and take advantage of the so-called RAII idiom

(resource acquisition is initialization).

Customer* customer1 = new Customer(); // Bad! Don’t do that.

auto customer2 = std::make_unique<Customer>(); // Good: the heap-allocated

customer is owned by a smart pointer

That means that you should use a smart pointer for it. Since smart pointers and the

RAII idiom play an important role in modern C++, there is a section dedicated to this

topic in Chapter 5. Always follow rule R.3 from the C++ Core Guidelines [Cppcore21]: A

raw pointer (a T*) is non-owning.

If an API returns a raw pointer...

..., well, then we have an “it-depends-problem.”

Pointers are often returned from APIs that are more or less out of our hands. Typical

examples are third-party libraries.

In the lucky case that we are confronted with a well-designed API that provides

factory methods to create resources and provides methods to hand them back to the

library for safe and proper disposal, we have won. In this case we can once again take

advantage of the RAII idiom (resource acquisition is initialization; see Chapter 5). We

can create a custom smart pointer to wrap the regular pointer, whose allocator and

deallocator could handle the managed resource as expected by the third-party library.

Chapter 4 BaSICS of Clean C++

112

 The Power of const Correctness

const correctness is a powerful approach to better and safer code in C++. The use of

const can save a lot of trouble and debugging time, because violations of const cause

compile-time errors. And as a kind of side effect, the use of const can also support

the compiler in applying some of its optimization algorithms. That means that the

proper use of this qualifier is also an easy way to raise the execution performance of the

program a little bit.

Unfortunately, many developers don’t appreciate the benefits of an intense use of

const.

Tip pay attention to const correctness. Use const as much as possible,
and always choose a proper declaration of variables or objects as mutable or
immutable.

In general, the const keyword in C++ prevents objects from being mutated by the

program. But const can be used in different contexts. This keyword has many faces.

Its simplest use is to define a variable as a constant:

const long double PI = 3.141592653589794;

MATHEMATICAL CONSTANTS [C++20]

Since C++20, the C++ numerics library has been extended, among others by a number

of mathematical constants, which are defined in the <numbers> header. here is a small

selection:

#include <numbers>

auto pi = std::numbers::pi; // the Archimedes constant aka PI:

3.141592653589794

auto e = std::numbers::e; // Euler's number: 2.718281828459045

auto phi = std::numbers::phi; // the golden ratio Φ constant:

1.618033988749895

the C-style defined mathematical constants in the <cmath> header, which had to be made

accessible by defining _USE_MATH_DEFINES before including the header, are thus obsolete.

Chapter 4 BaSICS of Clean C++

113

Another use of const is to prevent parameters that are passed into a function from

being mutated. Since there are several variations, it often leads to confusion. Here are

some examples:

unsigned int determineWeightOfCar(Car const* car); // 1

void lacquerCar(Car* const car); // 2

unsigned int determineWeightOfCar(Car const* const car); // 3

void printMessage(const std::string& message); // 4

void printMessage(std::string const& message); // 5

• The pointer car points to a constant object of type Car, that is, the

Car object (the “pointee”) cannot be modified.

• The pointer car is a constant pointer of type Car, that is, you can

modify the Car object, but you cannot modify the pointer (e.g., assign

a new instance of Car to it).

• In this case, both the pointer and the pointee (the Car object) cannot

be modified.

• The argument message is passed by reference-to-const to the

function, that is, the string variable being referenced is not allowed to

be changed inside the function.

• This is just an alternative notation for a const reference argument. It

is functionally equivalent to line 4 (...which I prefer, by the way).

Tip there is a simple rule of thumb to read const qualifiers in the right manner.
If you read them from right to left, then any appearing const qualifier modifies the
thing to the left of it. Exception: If there is nothing on the left, for example, at the
beginning of a declaration, then const modifies the thing to its right.

Another use of the const keyword is to declare a (non-static) member-function of a

class as const, like in this example on line 5:

01 #include <string>

02

03 class Car {

Chapter 4 BaSICS of Clean C++

114

04 public:

05 const std::string& getRegistrationCode() const;

06 void setRegistrationCode(const std::string& registrationCode);

07 // ...

08

09 private:

10 std::string registrationCode_;

11 // ...

12 };

As opposed to the setter on line 6, the getRegistrationCode member function on

line 5 cannot modify member variables of the Car class. The following implementation of

getRegistrationCode will cause a compiler error, because the function tries to assign a

new string to registrationCode_:

const std::string& Car::getRegistrationCode() {

 std::string toBeReturned = registrationCode_;

 registrationCode_ = "foo"; // Compile-time error!

 return toBeReturned;

}

 About Old C-Style in C++ Projects
If you take a look at relatively new C++ programs (for example, on GitHub or

SourceForge), you will be surprised at how many of these allegedly “new” programs still

contain countless lines of old C code. Well, C is still a subset of the C++ language. This

means that the language elements of C are still available. Unfortunately, many of these

old C constructs have significant drawbacks when it comes to writing clean, safe, and

modern code. And there are clearly better alternatives.

Therefore, a basic piece of advice is to quit using those old and error-prone

C constructs wherever better C++ alternatives exist. And there are many of these

possibilities. Nowadays you can nearly completely do without C programming in

modern C++.

Chapter 4 BaSICS of Clean C++

115

 Choose C++ Strings and Streams over Old C-Style char*
A so-called C++ string is part of the C++ Standard Library and is of type std::string,

std::wstring, std::u8string, std::u16string, or std::u32string (all defined in

the <string> header). In fact, all are type aliases of the std::basic_string<T> class

template and are (simplified) defined this way:

using string = basic_string<char>;

using wstring = basic_string<wchar_t>;

using u8string = basic_string<char8_t>;

using u16string = basic_string<char16_t>;

using u32string = basic_string<char32_t>;

Note to simplify things, from now on I will only speak about C++ strings in
general, by which I mean all the previously mentioned, different string types.

To create such a string, an object of one of these two templates must be instantiated,

for example, with the initialization constructor:

std::string name("Stephan");

Compared to this, a so-called C-style string is simply an array of characters (type

char or wchar_t) that ends with a so-called zero terminator (sometimes also called a

null terminator). A zero terminator is a special character ('\0', ASCII code 0) used to

indicate the end of the string. A C-style string can be defined this way:

char name[] = "Stephan";

In this case, the zero terminator is automatically added at the end of the string, that

is, the length of the string is eight characters. An important point is that we have to keep

in mind that we’re still dealing with an array of characters. This means, for instance, that

it has a fixed size. You can change the content of the array using the index operator, but

no characters can be added to the end of the array. And if the zero terminator at the end

is accidentally overwritten, this can cause various issues.

Chapter 4 BaSICS of Clean C++

116

The character array is often used with the help of a pointer pointing to the first

element, for example, when it is passed as a function argument:

char* pointerToName = name;

void function(char* pointerToCharacterArray) {

 //...

}

However, in many C++ programs as well as in textbooks, C strings are still frequently

used. Are there any good reasons to use C-style strings in C++ nowadays?

Yes, there are some situations where you can still use C-style strings. I will present

a few of these exceptions later. Apart from that, the vast majority of strings in a modern

and clean C++ program should be implemented using C++ strings. Objects of type

std::string, as well as all the other C++ string types, provide numerous advantages

compared to old C-style strings:

• C++ string objects manage their memory by themselves, so you can

copy, create, and destroy them easily. That means that they free you

from managing the lifetime of the string’s data, which can be a tricky

and daunting task using C-style character arrays.

• They are mutable. The string can be manipulated easily in various

ways: adding strings or single characters, concatenating strings,

replacing parts of the string, etc.

• C++ strings provide a convenient iterator interface. As with all other

Standard Library container types, std::string and std::wstring

allow you to iterate over their elements (i.e., over their characters).

This also means that all suitable algorithms that are defined in the

<algorithm> header can be applied to the string.

• C++ strings work perfectly together with C++ I/O streams (e.g.,

ostream, stringstream, fstream, etc.) so you can take advantage of

all those useful stream facilities easily.

Chapter 4 BaSICS of Clean C++

117

• Since C++11, the Standard Library uses move semantics extensively.

Many algorithms and containers are now move-optimized. This also

applies to C++ strings. For example, an instance of a std::string can

simply be returned as the return value of a function. The formerly still

necessary approaches with pointers or references to efficiently return

large string objects from a function—that is, without costly copying of

the string’s data—are no longer required.

Note apart from a few exceptions, strings in modern C++ programs should be
represented by C++ strings taken from the Standard library.

So, what are the few exceptions that justify the use of old C-style strings?

On the one hand, there are string constants, that is, immutable strings. If you just

need a fixed array of fixed characters, then std::string provides little advantage. For

instance, you can define such a string constant this way:

const char* const PUBLISHER = "Apress Media LLC";

In this case, neither the value being pointed to nor the pointer itself can be modified

(see the section about const correctness).

Another reason to work with C strings is compatibility with C-style API’s libraries.

Many third-party libraries often have low-level interfaces to ensure backward

compatibility and to keep their area of application as broad as possible. Strings are

often expected as C-style strings by such an API. However, even in this case, the use of

the C-style strings should be locally limited to the handling of this interface. Follow rule

CPL.3 of the C++ Core Guidelines [Cppcore20]: If you must use C for interfaces, use C++

in the calling code using such interfaces.

 Avoid Using printf(), sprintf(), gets(), etc.
printf(), which is part of the C library to perform input/output operations (defined

in the <cstdio> header), prints formatted data to standard output (stdout). Some

developers still use a lot of printfs for tracing/logging purposes in their C++ code. They

often argue that printf is ... no ... it must be much faster than C++ I/O streams, since the

whole C++ overhead is missing.

Chapter 4 BaSICS of Clean C++

118

First, I/O is a bottleneck anyway, no matter if you’re using printf() or std::cout.

To write anything on standard output is generally slow, with magnitudes slower than

most of the other operations in a program. Under certain circumstances, std::cout can

be slightly slower than printf(), but in relation to the general cost of an I/O operation,

those few microseconds are usually negligible. At this point I would also like to remind

everyone to be careful with (premature) optimizations (remember the section “Be

Careful with Optimizations” in Chapter 3).

Second, printf() is fundamentally type-unsafe and thus prone to error. The

function expects a sequence of non-typed arguments that are related to a C string filled

with format specifiers, which is the first argument. Functions that cannot be used safely

should never be used, because this can lead to subtle bugs, undefined behavior (see the

section about undefined behavior in Chapter 5), and security vulnerabilities.

TEXT FORMATTING LIBRARY [C++20]

With the new standard C++20, a text formatting library is available that offers a safe, faster,

and more extensible alternative to the outdated and potentially dangerous printf family of

functions. the header file of this library is <format>. the style of formatting looks very similar

to string formatting in the python programming language.

Unfortunately, it is also one of the new libraries that’s currently not supported by any C++

compiler while I’m writing this book. a temporary and good alternative, which was also the

template for the new C++20 library, is the open source library called {fmt} (https://

github.com/fmtlib/fmt), which provides, among other features, a C++20 compatible

implementation of std::format.

here are some usage examples:

#include "fmt/format.h" // Can be replaced by <format> when available.

#include <numbers>

#include <iostream>

int main() {

 // Note: replace namespace fmt:: by std:: once the compiler supports <format>.

 const auto theAnswer = fmt::format("The answer is {}.", 42); std::cout <<

theAnswer << "\n";

Chapter 4 BaSICS of Clean C++

https://github.com/fmtlib/fmt
https://github.com/fmtlib/fmt

119

 // Many different format specifiers are possible.

 const auto formattedNumbers =

 fmt::format("Decimal: {:f}, Scientific: {:e}, Hexadecimal: {:X}",

 3.1415, 0.123, 255);

 std::cout << formattedNumbers << "\n";

 // Arguments can be reordered in the created string by using an index {n:}:

 const auto reorderedArguments =

 fmt::format("Decimal: {1:f}, Scientific: {2:e}, Hexadecimal: {0:X}",

 255, 3.1415, 0.123);

 std::cout << reorderedArguments << "\n";

 // The number of decimal places can be specified as follows:

 const auto piWith22DecimalPlaces = fmt::format("PI = {:.22f}",

 std::numbers::pi);

 std::cout << piWith22DecimalPlaces << "\n";

 return 0;

}

the output of this small demo program is as follows:

The answer is 42.

Decimal: 3.141500, Scientific: 1.230000e-01, Hexadecimal: FF

Decimal: 3.141500, Scientific: 1.230000e-01, Hexadecimal: FF

PI = 3.1415926535897931159980

Third, unlike printf, C++ I/O streams allow complex objects to be easily streamed

by providing a custom insertion operator (operator<<). Suppose we have a class called

Invoice (defined in a header file named Invoice.h) that looks like Listing 4-29.

Listing 4-29. An Excerpt from the Invoice.h File with Line Numbers

01 #ifndef INVOICE_H_

02 #define INVOICE_H_

03

04 #include <chrono>

05 #include <memory>

06 #include <ostream>

07 #include <string>

08 #include <vector>

Chapter 4 BaSICS of Clean C++

120

09

10 #include "Customer.h"

11 #include "InvoiceLineItem.h"

12 #include "Money.h"

13 #include "UniqueIdentifier.h"

14

15 using InvoiceLineItemPtr = std::shared_ptr<InvoiceLineItem>;

16 using InvoiceLineItems = std::vector<InvoiceLineItemPtr>;

17

18 using InvoiceRecipient = Customer;

19 using InvoiceRecipientPtr = std::shared_ptr<InvoiceRecipient>;

20

21 using DateTime = std::chrono::system_clock::time_point;

22

23 class Invoice {

24 public:

25 explicit Invoice(const UniqueIdentifier& invoiceNumber);

26 void setRecipient(const InvoiceRecipientPtr& recipient);

27 void setDateTimeOfInvoicing(const DateTime& dateTimeOfInvoicing);

28 Money getSum() const;

29 Money getSumWithoutTax() const;

30 void addLineItem(const InvoiceLineItemPtr& lineItem);

31 // ...possibly more member functions here...

32

33 private:

34 friend std::ostream& operator<<(std::ostream& outstream, const

Invoice& invoice);

35 std::string getDateTimeOfInvoicingAsString() const;

36

37 UniqueIdentifier invoiceNumber;

38 DateTime dateTimeOfInvoicing;

39 InvoiceRecipientPtr recipient;

40 InvoiceLineItems invoiceLineItems;

41 };

42 // ...

Chapter 4 BaSICS of Clean C++

121

The class has dependencies to an invoice recipient (which in this case is an alias for

the Customer defined in the Customer.h header; see line 18), and it uses an identifier

(type UniqueIdentifier) representing an invoice number that is guaranteed to be

unique among all invoice numbers. Furthermore, the invoice uses a data type that can

represent money amounts (see the section entitled “Money Class” in Chapter 9 about

design patterns), as well as a dependency to another data type that represents a single

invoice line item. The latter is used to manage a list of invoice items inside the invoice

using a std::vector (see lines 16 and 41). To represent the time of invoicing, we use the

data type time_point from the Chrono library (defined in the <chrono> header), which

has been available since C++11.

Now let’s imagine that we also want to stream the entire invoice with all its data

to standard output. Wouldn’t it be pretty simple and convenient if we could write

something like this:

std::cout << instanceOfInvoice;

Well, that’s possible with C++. The insertion operator (<<) for output streams can

be overloaded for any class. We just have to add an operator<< function to our class

declaration in the header. It is important to make this function a friend of the class in our

case (see line 34) because it accesses private member variables directly. See Listing 4-30.

Listing 4-30. The Insertion Operator for the Invoice Class

43 // ...

44 std::ostream& operator<<(std::ostream& outstream, const Invoice& invoice) {

45 outstream << "Invoice No.: " << invoice.invoiceNumber << "\n";

46 outstream << "Recipient: " << *(invoice.recipient) << "\n";

47 outstream << "Date/time: " << invoice.getDateTimeOfInvoicingAsString()

<< "\n";

48 outstream << "Items:" << "\n";

49 for (const auto& item : invoice.invoiceLineItems) {

50 outstream << " " << *item << "\n";

51 }

52 outstream << "Amount invoiced: " << invoice.getSum() << std::endl;

53 return outstream;

54 }

55 // ...

Chapter 4 BaSICS of Clean C++

122

All structural components of the Invoice class are written into an output stream inside

the function. This is possible, because the UniqueIdentifier, InvoiceRecipient, and

InvoiceLineItem classes also have their own insertion operator functions (not shown here)

for output streams. To print all line items in the vector, a C++11 range-based for loop is used.

And to get a textual representation of the date of invoicing, we use an internal helper method

named getDateTimeOfInvoicingAsString() that returns a well- formatted date/time string.

Tip avoid using printf() and other unsafe C functions, such as sprintf(),
puts(), scanf(), sscanf(), etc.

 Choose Standard Library Containers over
Simple C-Style Arrays
Instead of using C-style arrays, you should use the std::array<TYPE, N> template has

been available since C++11 (in the <array> header). Instances of std::array<TYPE, N>

are fixed-size sequence containers and are as efficient as ordinary C-style arrays.

The problems with C-style arrays are more or less the same as with C-style strings

(see the previous section). C arrays are bad because they are passed around as raw

pointers to their first element. This could be potentially dangerous, because there are no

bound checks that protect users of that array to access nonexistent elements. Arrays built

with std::array are safer, because they don’t decay to pointers (see the section entitled

“Strategies to Avoid Regular Pointers,” earlier in this chapter).

An advantage of using std::array is that it knows its size (number of elements).

When working with arrays, the size of the array is important information that is often

required. Ordinary C-style arrays don’t know their own size. Thus, the size of the

array must often be handled as an additional piece of information, for example, in an

additional variable. For example, the size must be passed as an additional argument to

function calls like in the following example.

const std::size_t arraySize = 10;

MyArrayType cStyleArray[arraySize];

void function(MyArrayType const* pArray, const std::size_t arraySize) {

 // ...

}

Chapter 4 BaSICS of Clean C++

123

Strictly speaking, in this case the array and its size don’t form a cohesive unit (see

the section entitled “Strong Cohesion” in Chapter 3). Furthermore, we already know

from a previous section about parameters and return values that the number of function

arguments should be as small as possible.

In contrast, instances of std::array carry their size and any instance can be queried

about it. Thus, the parameter lists of functions or methods don’t require additional

parameters about the array’s size:

#include <array>

using MyTypeArray = std::array<MyArrayType, 10>;

void function(const MyTypeArray& array) {

 const std::size_t arraySize = array.size();

 //...

}

Another noteworthy advantage of std::array is that it has a Standard Library

compatible interface. The class template provides public member functions so it

looks like every other container in the Standard Library. For example, users of an

array can get an iterator pointing to the beginning and the end of the sequence using

std::array::begin() and std::array::end(), respectively. This also means that

algorithms from the <algorithm> header can be applied to the array (see the section

about algorithms in the following chapter).

#include <array>

#include <algorithm>

using MyTypeArray = std::array<MyArrayType, 10>;

MyTypeArray array;

void doSomethingWithEachElement(const MyArrayType& element) {

 // ...

}

std::for_each(std::cbegin(array), std::cend(array),

doSomethingWithEachElement);

Chapter 4 BaSICS of Clean C++

124

NON-MEMBER STD::BEGIN() AND STD::END() [C++11/14]

every C++ Standard library container has a begin() and cbegin() and an end() and

cend() member function to retrieve iterators and const-iterators for that container. apart

from some some exceptions, many containers also provide corresponding const and non-

const reverse iterators (rbegin()/rend() and crbegin()/crend()).

C++11 has introduced free non-member functions for that purpose:

std::begin(<container>) and std::end(<container>). With C++14, the

still missing functions std::cbegin(<container>), std::cend(<container>),

std::rbegin(<container>), std::rend(<container>),

std::crbegin(<container>), and std::crend(<container>) have been added.

Instead of using the member functions, it is now recommended to use these non-member

functions (all defined in the <iterator> header) to get iterators and const-iterators for a

container, like so:

#include <vector>

std::vector<AnyType> aVector;

auto iter = std::begin(aVector); // ...instead of 'auto iter = aVector.

begin();'

the reason is that those free functions allow a more flexible and generic programming style.

for instance, many user-defined containers don’t have a begin() and end() member

function, which makes them impossible to use with the Standard library algorithms (see

the section about algorithms in Chapter 5) or any other user-defined template function that

requires iterators. the non-member functions to retrieve iterators are extensible in the sense

of that they can be overloaded for any type of sequence, including old C-style arrays. In other

words, non-Standard-library-compatible (custom) containers can be retrofitted with iterator

capabilities.

for instance, assume that you have to deal with a C-style array of integers, like this one:

int fibonacci[] = { 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 };

this type of array can now be retrofitted with a Standard library-compliant iterator interface.

for C-style arrays, such functions are already provided in the Standard library, so you do not

have to program them yourself. they look more or less like this:

Chapter 4 BaSICS of Clean C++

125

template <typename Type, std::size_t size>

constexpr Type* begin(Type (&cArray)[size]) noexcept {

 return cArray;

}

template <typename Type, std::size_t size>

constexpr Type* end(Type (&cArray)[size]) noexcept {

 return cArray + size;

}

to insert all elements of the array into an output stream, for example, to print them on

standard output, we can now write:

using namespace std;

int main() {

 for (auto it = begin(fibonacci); it != end(fibonacci); ++it) {

 std::cout << *it << ", ";

 }

 std::cout << std::endl;

 return 0;

}

providing overloaded begin() and end() functions for custom container types, or old C-style

arrays, enables the application of all Standard library algorithms to these types.

Furthermore, std::array can access elements including bound checks with the

help of the std::array::at(size_type n) member function. If the given index is out of

bounds, an exception of type std::out_of_bounds is thrown.

 Use C++ Casts Instead of Old C-Style Casts
Before a false impression emerges, I would first like to state an important warning.

Warning type casts are basically bad and should be avoided whenever possible!
they are a trustworthy indication that there must be, albeit a relatively tiny, design
problem.

Chapter 4 BaSICS of Clean C++

126

However, if a type cast cannot be avoided in a certain situation, then under no

circumstances should you use a C-style cast:

double d { 3.1415 };

int i = (int)d;

In this case, the double is demoted to an integer. This explicit conversion is

accompanied with a loss of precision since the decimal places of the floating-

point number are thrown away. The explicit conversion with the C-style cast says

something like this: “The programmer who wrote this line of code was aware about the

consequences.”

Well, this is certainly better than an implicit type conversion. Nevertheless, instead

using old C-style casts, you should use C++ casts for explicit type conversions, like this:

int i = static_cast<int>(d);

The simple explanation for this advice is, with the exception of the dynamic_cast<T>,

the compiler checks C++ style casts during compile time! C-style casts are not checked

this way and thus they can fail at runtime, which may cause ugly bugs or application

crashes. For instance, an improvident used C-style cast can cause a corrupted stack, like

in the following case.

int32_t i { 200 }; // Reserves and uses 4 byte memory

int64_t* pointerToI = (int64_t*)&i; // Pointer points to 8 byte

*pointerToI = 9223372036854775807; // Can cause run-time error through

stack corruption

Obviously, in this case it is possible to write a 64-bit value into a memory area that

is only 32 bits in size. The problem is that the compiler cannot draw our attention to this

potentially dangerous piece of code. The compiler translates this code, even with very

conservative settings (g++ -std=c++17 -pedantic -pedantic-errors -Wall -Wextra

-Werror -Wconversion), without complaints. This can lead to very insidious errors

during program execution.

Now let’s see what will happen if we use a C++ static_cast on the second line

instead of the old and bad C-style cast:

int64_t* pointerToI = static_cast<int64_t*>(&i); // Pointer points to 8 byte

Chapter 4 BaSICS of Clean C++

127

The compiler can now spot the problematic conversion and report a corresponding

error message:

error: invalid static_cast from type 'int32_t* {aka int*}' to type

'int64_t* {aka long int*}'

Another reason that you should use C++ casts instead of old C-style casts is that

C-style casts are very hard to spot in a program. In addition, developers cannot easily

discover them, nor can they search them conveniently using an ordinary editor or

word processor. In contrast, it is very easy to search for terms such as static_cast<>,

const_cast<>, or dynamic_cast<>.

At a glance, here is the advice regarding type conversions for a modern and

well- designed C++ program:

• Try to avoid type conversions (casts) under all circumstances.
Instead, try to eliminate the underlying design error that forces you to

use the conversion.

• If an explicitly type conversion cannot be avoided, use C++ style
casts (static_cast<> or const_cast<>) only, because the compiler

checks these casts. Never use old and bad C-style casts.

• Notice that dynamic_cast<> should also never be used because it
is considered bad design. The need of a dynamic_cast<> is a reliable

indication that something is wrong within a specialization hierarchy.

(This topic will be deepened in Chapter 6 about object orientation.)

• Do not use reinterpret_cast<> under any circumstances.
This kind of type conversion marks an unsafe, non-portable, and

implementation-dependent cast. Its long and inconvenient name is

a broad hint to make you think about what you’re currently doing.

If you have to interpret an object bit by bit as another object, use

std::bit_cast<> (new since C++20) instead of reinterpret_cast<>

or std::memcpy(). std::bit_cast<> (defined in the <bit> header)

can be evaluated at compile-time (constexpr) and requires that the

objects involved be trivially copied and be the same size.

Chapter 4 BaSICS of Clean C++

128

 Avoid Macros
Maybe one of the severest legacies of the C language is macros. A macro is a code

fragment that can be identified by a name. If the so-called preprocessor finds the name

of a macro in the program’s source code while compiling, the name is replaced by its

related code fragment.

One kind of macro is the object-like macro often used to give symbolic names to

numeric constants, as shown in Listing 4-31.

Listing 4-31. Two Examples of Object-Like Macros

#define BUFFER_SIZE 1024

#define PI 3.14159265358979

Other typical examples of macros are shown in Listing 4-32.

Listing 4-32. Two Examples of Function-Like Macros

#define MIN(a,b) (((a)<(b))?(a): (b))

#define MAX(a,b) (((a)>(b))?(a): (b))

MIN and MAX compare two values and returns the smaller and larger one, respectively.

Such macros are called function-like macros. Although these macros look almost like

functions, they are not. The C preprocessor merely substitutes the name with the related

code fragment (in fact, it is a textual find-and-replace operation).

Macros are potentially dangerous. They often do not behave as expected and can have

unwanted side effects. For instance, let’s assume that you defined a macro like this one:

#define DANGEROUS 1024+1024

And somewhere in your code you write this:

int value = DANGEROUS * 2;

Probably someone expects that the variable value contains 4096, but actually it

would be 3072. Remember the order of mathematical operations, which tells us that

division and multiplication, from left to right, should happen first.

Another example of unexpected side effects due to using a macro is using MAX in the

following way:

int maximum = MAX(12, value++);

Chapter 4 BaSICS of Clean C++

129

The preprocessor will generate the following:

int maximum = (((12)>(value++))?(12):(value++));

As can easily be seen now, the post-increment operation on value will be performed

twice. This was certainly not the intention of the developer who wrote the piece of code.

Don’t use macros anymore! At least since C++11, they are almost obsolete. With

some very rare exceptions, macros are simply no longer necessary and should no

longer be used in a modern C++ program. Maybe the introduction of so-called reflection

(i.e., the ability of a program to examine, introspect, and modify its own structure and

behavior at runtime) as a possible part of a future C++ standard can help to get rid of

macros entirely. But until the time comes, macros are still currently needed for some

special purposes, for example, when using a unit test or logging framework.

STD::SOURCE_LOCATION [C++20]

Since C++20, it is also possible to do without the probably well-known C macros __FILE__

and __LINE__. as a reminder: the preprocessor expands the macro __FILE__ to the

filename of the source code file and the macro __LINE__ to the current line number.

Both macros were typically used when log statements and error messages intended for

programmers were generated.

With C++20 we now get a modern replacement in the form of a class: std::source_

location (defined in the <source_location> header). the class has a static factory

method called std::source_location::current(), which is designed as a so-called

immediate function (consteval). It can be used to create a new std::source_location

object at compile-time that contains information corresponding to the location of the call site:

#include <source_location>;

// ...and somewhere in the code:

const auto& location = std::source_location::current();

the class provides four public member functions (file_name(), function_name(), column(),

and line()), which can then be used to retrieve the information for output or logging purposes.

std::cout << "Filename: " << location.file_name()

 << ", Function: " << location.function_name()

 << ", Line/Column: (" << location.line() << "," << location.column() << ")\n";

Chapter 4 BaSICS of Clean C++

130

Instead of object-like macros, use constant expressions to define constants:

constexpr int HARMLESS = 1024 + 1024;

And instead of function-like macros, simply use true functions, for example, the

function templates std::min or std::max, which are defined in the <algorithm> header

(see the section about the <algorithm> header in Chapter 5):

#include <algorithm>

// ...

int maximum = std::max(12, value++);

Chapter 4 BaSICS of Clean C++

131
© Stephan Roth 2021
S. Roth, Clean C++20, https://doi.org/10.1007/978-1-4842-5949-8_5

CHAPTER 5

Advanced Concepts
of Modern C++
In Chapters 3 and 4, we discussed the basic principles and practices that build a solid

foundation for clean and modern C++ code. With these principles and rules in mind,

a developer can raise the internal C++ code quality of a software project and, thus

often its external quality, significantly. The code becomes more understandable, more

maintainable, more easily extensible, and less susceptible to bugs. This leads to a better

life for any software crafter, because it is more fun to work with a sound code base. In

Chapter 2, we learned that, above all, a well-maintained suite of well-crafted unit tests

can further improve the quality of the software as well as the development efficiency.

But can we do better? Of course we can.

As I explained in this book’s introduction, the good old dinosaur C++ has

experienced some considerable improvements during the last decade. The C++11

language standard (short for ISO/IEC 14882:2011) has fundamentally revolutionized

the way developers think about C++ programming. After the rather evolutionary

developments C++14 and C++17, and now with C++20, the standard contains many

innovations and changes.

I have used a few of the C++ standards and features in the previous chapters and

explained them in sidebars. Now it is time to dive deeper into some of them and explore

how they can help you write exceptionally sound and modern C++ code. Of course, it is

not possible to discuss all the language features of the newer C++ standards completely.

That would go far beyond the scope of this book, leaving aside the fact that this is

covered by numerous other books. Furthermore, it should not be the goal to use every

fancy feature of the new C++ standards in every program. Always think about the KISS

principle described in Chapter 3. Therefore, I have selected a few topics that I believe

support the goal of writing clean C++ code very well.

https://doi.org/10.1007/978-1-4842-5949-8_5#DOI

132

 Managing Resources
Managing resources is the bread-and-butter business of software developers. A

multitude of miscellaneous resources must be regularly allocated, used, and returned

after use. These include the following:

• Memory (either on the stack or on the heap)

• File handles that are required to access files (read/write) on hard disk

or other media

• Network connections (e.g., to a server, a database, etc.)

• Threads, locks, timers, and transactions

• Other operational system resources, like GDI handles on Windows

operating systems1

The proper handling of resources can be a tricky task. Consider the example in

Listing 5-1.

Listing 5-1. Dealing with a Resource That Was Allocated on the Heap

void doSomething() {

 ResourceType* resource = new ResourceType();

 try {

 // ...do something with resource...

 resource->foo();

 } catch (...) {

 delete resource;

 throw;

 }

 delete resource;

}

What’s the problem here? Perhaps you’ve noticed the two identical delete

statements. The catch-all exception handling mechanism introduces at least two

possible paths in our program. This also means that we have to ensure that the resource

1 GDI stands for Graphics Device Interface. GDI is a core operating system component of
Microsoft Windows and is responsible for representing graphical objects.

Chapter 5 advanCed ConCepts of Modern C++

133

is freed in two places. Under normal circumstances such catch-all exception handlers

are frowned upon. But in this case, we have no other chance than to catch all possible

occurring exceptions here, because we must free the resource first, before we throw the

exception object further to treat it elsewhere (e.g., at the call site of the function).

I this simplified example, we have only two paths. In real programs, significantly

more execution paths can exist. The probability that one delete is forgotten is much

higher. Any forgotten delete will result in a dangerous resource leakage.

Warning do not underestimate resource leaks! resource leaks are a
serious problem, particularly for long-lived processes, and for processes that
rapidly allocate many resources without deallocating them after usage. If an
operating system has a lack of resources, this can lead to critical system states.
furthermore, resource leaks can be a security issue, because they can be exploited
by assaulters during denial-of-service attacks.

The simplest solution for our small example could be that we allocate the resource

on the stack, instead of allocating it on the heap, as shown in Listing 5-2.

Listing 5-2. Much Easier: Dealing with a Resource on the Stack

void doSomething() {

 ResourceType resource;

 // ...do something with resource...

 resource.foo();

}

With this change the resource is safely removed in any case. But sometimes it is not

possible to allocate everything on the stack, as we’ve discussed in the section “Don’t Pass

or Return 0 (nullptr)” in Chapter 4. What about file handles, OS resources, etc.?

The central question is this: How can we guarantee that allocated resources are
always freed?

Chapter 5 advanCed ConCepts of Modern C++

134

 Resource Acquisition Is Initialization (RAII)
Resource acquisition is initialization (RAII) is an idiom (see Chapter 9 about idioms)

that can help cope with resources in a safe way. The idiom is also known as constructor

acquires, destructor releases (CADRe) and scope-based resource management (SBRM).

RAII takes advantage of the symmetry of a class between its constructor and its

corresponding destructor. We can allocate a resource in the constructor of a class, and

we can deallocate it in the destructor. If we create such a class as a template, it can be

used for different types of resources. See Listing 5-3.

Listing 5-3. A Very Simple Class Template That Can Manage Several Types of

Resources

template <typename RESTYPE>

class ScopedResource final {

public:

 ScopedResource() { managedResource = new RESTYPE(); }

 ~ScopedResource() { delete managedResource; }

 RESTYPE* operator->() const { return managedResource; }

 RESTYPE& operator*() const { return *managedResource; }

private:

 RESTYPE* managedResource;

};

Now we can use the class template called ScopedResource, as shown in Listing 5-4.

Listing 5-4. Using ScopedResource to Manage an Instance of ResourceType

#include "ScopedResource.h"

#include "ResourceType.h"

void doSomething() {

 ScopedResource<ResourceType> resource;

 try {

 // ...do something with resource...

 resource->foo();

Chapter 5 advanCed ConCepts of Modern C++

135

 } catch (...) {

 // Perform error handling here...

 }

}

As it can be easily seen, no new or delete is required. If resource runs out of scope,

which can happen at various points in this method, the wrapped instance of type

ResourceType is deleted automatically through the destructor of ScopedResource.

But there is usually no need to reinvent the wheel and to implement such a wrapper,

which is also called a smart pointer.

 Smart Pointers
Since C++11, the Standard Library offers different, efficient smart-pointer-

implementations for easy use. These pointers have been developed over a long period

within the well-known Boost library project before they were introduced into the

C++ standard, and can be regarded as foolproof as possible. Smart pointers reduce

the likelihood of memory leaks. Furthermore, their reference counter mechanism is

designed to be thread-safe.

This section provides a brief overview.

 Unique Ownership with std::unique_ptr<T>

The class template std::unique_ptr<T> (defined in the <memory> header) manages a

pointer to an object of type T. As the name suggests, this smart pointer provides unique

ownership, that is, an object can be owned by only one instance of std::unique_ptr<T>

at a time, which is the main difference of the std::shared_ptr<T>, which is explained

next. This also means that copy construction and copy assignment are not allowed.

Its use is pretty simple:

#include <memory>

class ResourceType {

 //...

};

//...

std::unique_ptr<ResourceType> resource1 { std::make_unique<ResourceType>() };

Chapter 5 advanCed ConCepts of Modern C++

136

// ... or shorter with type deduction ...

auto resource2 { std::make_unique<ResourceType>() };

After this construction, resource can be used very much like a regular pointer to an

instance of ResourceType. (std::make_unique<T> is explained in the section entitled

“Avoid new and delete”). For example, you can use the * and -> operators for dereferencing:

resource->foo();

Of course, if resource runs out of scope, the contained instance of type

ResourceType is freed safely. But the best part is that resource can be easily put into

containers, for example, in a std::vector:

#include "ResourceType.h"

#include <memory>

#include <vector>

using ResourceTypePtr = std::unique_ptr<ResourceType>;

using ResourceVector = std::vector<ResourceTypePtr>;

//...

ResourceTypePtr resource { std::make_unique<ResourceType>() };

ResourceVector aCollectionOfResources;

aCollectionOfResources.push_back(std::move(resource));

// IMPORTANT: At this point, the instance of 'resource' is empty!

Note that we ensure that std::vector::push_back() calls the move constructor

and the move assignment operator of std::unique_ptr<T> (see the section about move

semantics in the next chapter). As a consequence, resource does not manage an object

anymore and is denoted as empty.

As mentioned, copy construction of std::unique_ptr<T> is not allowed. However,

the exclusive ownership of the managed resource can be transferred to another instance

of std::unique_ptr<T>, using move semantics (we will discuss move semantics in detail

in a later section) in the following way:

std::unique_ptr<ResourceType> pointer1 { std::make_unique<ResourceType>() };

std::unique_ptr<ResourceType> pointer2; // pointer2 owns nothing yet

pointer2 = std::move(pointer1); // Now pointer1 is empty, pointer2

is the new owner

Chapter 5 advanCed ConCepts of Modern C++

137

 Shared Ownership with std::shared_ptr<T>

Instances of class template std::shared_ptr<T> (defined in the <memory> header) can

take ownership of a resource of type T and can share this ownership with other instances

of std::shared_ptr<T>. In other words, the ownership for a single instance of type T,

and thus the responsibility for its deletion, can be taken over by many shared owners.

std::shared_ptr<T> provides something like simple limited garbage collector

functionality. The smart pointer’s implementation has a reference counter that monitors

how many pointer instances owning the shared object still exist. It releases the managed

resource if the last instance of the pointer is destroyed.

Figure 5-1 depicts a class diagram, as well as an object diagram. The lower area of the

figure, where the object diagram can be seen, depicts a situation (snapshot) in a running

system where three anonymous instances of the class Client share the same resource

(:Resource) using three std::shared_ptr instances. The _M_use_count attribute

represents the reference counter of std::shared_ptr.

Chapter 5 advanCed ConCepts of Modern C++

138

In contrast to the previously discussed std::unique_ptr<T>, std::shared_ptr<T> is

of course copy-constructible as expected. But you can ensure that the managed resource

is moved by using std::move<T>:

std::shared_ptr<ResourceType> pointer1 { std::make_shared<ResourceType>() };

std::shared_ptr<ResourceType> pointer2;

pointer2 = std::move(pointer1); // The reference count does not get

modified, pointer1 is empty

In this case, the reference counter is not modified, but you must be careful when using

the variable pointer1 after the move, because it is empty, that is, it holds a nullptr. Move

semantics and the utility function std::move<T> are discussed in a later section.

Figure 5-1. Three clients are sharing one resource through smart pointers

Chapter 5 advanCed ConCepts of Modern C++

139

 No Ownership, but Secure Access with std::weak_ptr<T>

Sometimes it is necessary to have a non-owning pointer to a resource that is owned

by one or more shared pointers. At first you might say, okay, but what’s the problem? I

simply can obtain the raw pointer from an instance of std::shared_ptr<T> at any time

by calling its get() member function. See Listing 5-5.

Listing 5-5. Retrieving the Regular Pointer from an Instance of std::shared_ptr<T>

std::shared_ptr<ResourceType> resource {

std::make_shared<ResourceType>() };

// ...

ResourceType* rawPointerToResource { resource.get() };

Watch your step! This could be dangerous. What will happen if the last instance

of std::shared_ptr<ResourceType> gets destroyed somewhere in your program and

this raw pointer is still in usage somewhere? The raw pointer will point to No-Man’s-

Land and using it can cause serious problems (remember my warning about undefined

behavior in the previous chapter). You have absolutely no chance to determine that the

raw pointer points to a valid address of a resource, or to an arbitrary location in memory.

If you need a pointer to the resource without having ownership, you should use

std::weak_ptr<T> (defined in the <memory> header), which has no influence on the

resource’s lifetime. std::weak_ptr<T> merely “observes” the managed resource and can

be interrogated that it is valid. See Listing 5-6.

Listing 5-6. Using std::weak_ptr<T> to Deal with Resources That Are Not Owned

01 #include <memory>

02

03 void doSomething(const std::weak_ptr<ResourceType>& weakResource) {

04 if (! weakResource.expired()) {

05 // Now we know that weakResource contains a pointer to a valid object

06 std::shared_ptr<ResourceType> sharedResource = weakResource.lock();

07 // Use sharedResource...

08 }

09 }

10

Chapter 5 advanCed ConCepts of Modern C++

140

11 int main() {

12 auto sharedResource{ std::make_shared<ResourceType>() };

13 std::weak_ptr<ResourceType> weakResource{ sharedResource };

14

15 doSomething(weakResource);

16 sharedResource.reset(); // Deletes the managed instance of ResourceType

17 doSomething(weakResource);

18

19 return 0;

20 }

As you can see on Line 4 in Listing 5-6, we can interrogate the weak pointer object

if it manages a valid resource. This is done by calling its expired() member function.

std::weak_ptr<T> does not provide dereference operators, like *, or ->. If we want to

use the resource, we first must call the lock() function (see line 6) to obtain a shared

pointer object from it.

You might be asking yourself now what the use cases of this smart pointer type

are. Why is it necessary, because you could readily also take a std::shared_ptr<T>

everywhere a resource is needed?

First of all, with std::shared_ptr<T> and std::weak_ptr<T>, you are able to

distinguish between owners of a resource and users of a resource in a software design.

Not every software unit that requires a resource just for a certain and time-limited task

wants to become its owner. As we can see in the function doSomething() in the previous

example, sometimes it is sufficient just to “promote” a weak pointer to a strong pointer

for a limited amount of time.

A good example would be an object cache that for the purpose of performance

efficiency keeps recently accessed objects in memory for a certain amount of time.

The objects in the cache are held with std::shared_ptr<T> instances, together with a

last- used timestamp. Periodically, a kind of garbage collector process is running that

scans the cache and decides to destroy those objects that have not been used for a

defined time span.

At those places where the cached objects are used, instances of std::weak_ptr<T>

are used to hold non-owning pointers to these objects. If the expired() member

function of those std::weak_ptr<T> instances returns true, the garbage collector process

has cleared the objects from the cache. In the other case, the std::weak_ptr<T>::lock()

function can be used to retrieve a std::shared_ptr<T> from it. Now the object can be

Chapter 5 advanCed ConCepts of Modern C++

141

safely used, even if the garbage collector process gets active. The process could evaluate

the usage counter of the std::shared_ptr<T> and ascertain that the object has currently

at least one user outside the cache. As a consequence, the object’s lifetime would be

extended. Or the process could delete the object from the cache, which does not interfere

with its users.

Another example is to deal with circular dependencies. For instance, if you have

a class A that needs a pointer to another class B and vice versa, you will end up with a

circular dependency. If you use std::shared_ptr<T> to point to the respective class,

as shown in Listing 5-7, you can end up with a memory leak. The reason for this is that

the usage counter in the respective shared pointer instance will never count down to 0.

Thus, the objects will never be deleted.

Listing 5-7. The Problem with Circular Dependencies Caused Through Careless

Use of std::shared_ptr<T>

#include <memory>

class B; // Forward declaration

class A {

public:

 void setB(std::shared_ptr& pointerToB) {

 myPointerToB = pointerToB;

 }

private:

 std::shared_ptr myPointerToB;

};

class B {

public:

 void setA(std::shared_ptr<A>& pointerToA) {

 myPointerToA = pointerToA;

 }

private:

 std::shared_ptr<A> myPointerToA;

};

Chapter 5 advanCed ConCepts of Modern C++

142

int main() {

 { // Curly braces build a scope

 auto pointerToA = std::make_shared<A>();

 auto pointerToB = std::make_shared();

 pointerToA->setB(pointerToB);

 pointerToB->setA(pointerToA);

 }

 // At this point, one instance each of A and B is "lost in space"

(memory leak!)

 return 0;

}

If the std::shared_ptr<T> member variables in the classes are replaced with

non- owning weak pointers (std::weak_ptr<T>) to the respective other class, the issue

with the memory leak is solved. See Listing 5-8.

Listing 5-8. Circular Dependencies Implemented the Right Way with

std::weak_ptr<T>

class B; // Forward declaration

class A {

public:

 void setB(std::shared_ptr& pointerToB) {

 myPointerToB = pointerToB;

 }

private:

 std::weak_ptr myPointerToB;

};

class B {

public:

 void setA(std::shared_ptr<A>& pointerToA) {

 myPointerToA = pointerToA;

 }

Chapter 5 advanCed ConCepts of Modern C++

143

private:

 std::weak_ptr<A> myPointerToA;

};

// ...

Basically, circular dependencies are bad design in application code and should be

avoided whenever possible. There might be a few exceptions in low-level libraries where

circular dependencies cause no serious issues. But apart from that, you should follow the

acyclic dependency principle, which is discussed in a dedicated section in Chapter 6.

 Atomic Smart Pointers

As I mentioned briefly, the implementations of std::shared_ptr<T> and std::weak_

ptr<T> are thread-safe by design. But this only applies to the reference count block of the

pointers, not to the resource that is managed and shared by them! std::shared_ptr<T>

guarantees that counting up and down the reference counter, as well as deleting the

managed resource if necessary, are atomic operations.

ATOMIC OPERATION

In computer science and software development, an atomic operation is a compound of single

operations that can be seen as one undividable logical unit. this means that they can only be

successful or fail as a whole. atomic operations play an important role in database changes

(so-called transaction safety), as well as in the implementation of locking mechanisms to avoid

data races in parallel programming.

In contrast, these pointers cannot guarantee that the uses of the resources they

manage are atomic, nor that non-const method calls (e.g., assigning a new resource)

invoked on them are atomic (and thus thread-safe). The second problem is now solved

by the two new partial specializations of std::atomic<T> introduced with C++20:

std::atomic<std::shared_ptr<T>> and std::atomic<std::weak_ptr<U>> (both

defined in the <memory> header). To prevent data races and undefined behavior in a

concurrent environment with the standard smart pointers, atomic, smart pointer types

should be used instead. However, be careful: You should always keep in mind that the

managed resource is still not protected from data races even with these atomic pointers!

Chapter 5 advanCed ConCepts of Modern C++

144

 Avoid Explicit New and Delete
In a modern C++ program, when writing application code you should avoid calling

new and delete explicitly. Why? Well, the simple and short explanation is this: new and

delete increase complexity.

The more detailed answer is this: every time when it is inevitable to call new and

delete, one has to deal with an exceptional, non-default situation, a situation that

requires special treatment. To understand these exceptional cases, let’s take a look on

the default cases—the situations any C++ developer should strive for.

Explicit calls of new and/or delete can be avoided using the following measures:

• Use allocations on the stack wherever possible. Allocations on the

stack are simple (remember the KISS principle discussed in Chapter 3)

and safe. It’s impossible to leak any of that memory that was allocated

on the stack. The resource will be destroyed once it goes out of

scope. You can even return the object from a function by value, thus

transferring its contents to the calling function.

• To allocate a resource on the heap, use “make functions.” Use

std::make_unique<T> or std::make_shared<T> to instantiate the

resource and wrap it immediately into a manager object that takes

care of the resource, a smart pointer.

• Use containers (Standard Library, Boost, or others) wherever
appropriate. These well-designed containers are bullet-proof and

manage the storage space for their elements in the correct manner.

Instead, in the case of self-developed data structures and sequences,

you are forced to implement the entire storage management on your

own, which can be a complex and error-prone task.

• Provide wrappers for resources from proprietary third-party libraries

that require a specific memory management (see the next section).

 Managing Proprietary Resources
As mentioned in the introduction to this section about resource management,

sometimes other resources need to be managed that are not allocated or deallocated on

the heap using the default new or delete operator. Examples of such kinds of resources

Chapter 5 advanCed ConCepts of Modern C++

145

are opened files from a file system, database connections, a dynamically loaded module

(e.g., a Dynamic Link Library [DLL] on Windows operating systems), or platform-specific

objects of a graphical user interface (e.g., Windows, Buttons, Text input fields, etc.).

Often these kinds of resources are managed through something that is called a

handle. A handle is an abstract and unique reference to an operational system resource.

On Windows, the data type HANDLE is used to define such handles. In fact, this data type

is defined as follows in the WinNT.h header, a C-style header file that defines various

Win32 API macros and types:

typedef void *HANDLE;

For instance, if you want to access a running Windows process with a certain

process ID, you can retrieve a handle to this process using the Win32 API function called

OpenProcess().

#include <windows.h>

// ...

const DWORD processId = 4711;

HANDLE processHandle = OpenProcess(PROCESS_ALL_ACCESS, FALSE, processId);

After you are finished with the handle, you have to close it by using the

CloseHandle() function:

BOOL success = CloseHandle(processHandle);

Hence, we have symmetry similar to the new operator and its corresponding delete

operator. It should therefore also be possible to take advantage of the RAII idiom and

use smart pointers for such resources. First, we just have to exchange the default deleter

(which calls delete) by a custom deleter that calls CloseHandle():

#include <windows.h> // Windows API declarations

class Win32HandleCloser {

public:

 void operator()(HANDLE handle) const {

 if (handle != INVALID_HANDLE_VALUE) {

 CloseHandle(handle);

 }

 }

};

Chapter 5 advanCed ConCepts of Modern C++

146

Be careful! If you define a type alias by writing something like the following, the

std::shared_ptr<T> will manage something that is of type void**, because HANDLE is

defined as a void-pointer:

using Win32SharedHandle = std::shared_ptr<HANDLE>; // Caution!

Therefore, smart pointers for the Win32 HANDLE must be defined as follows:

using Win32SharedHandle = std::shared_ptr<void>;

using Win32WeakHandle = std::weak_ptr<void>;

Note You cannot define a std::unique_ptr<void> in C++! this is because
std::shared_ptr<T> implements type-erasure, while std::unique_ptr<T>
does not. If a class supports type-erasure, it means that it can store objects of an
arbitrary type and destruct them correctly.

If you want to use the shared handle, you have to pay attention that you pass an

instance of the custom deleter Win32HandleCloser as a parameter during construction:

const DWORD processId = 4711;

Win32SharedHandle processHandle { OpenProcess(PROCESS_ALL_ACCESS, FALSE,

processId),

 Win32HandleCloser() };

 We Like to Move It
If someone asked me which C++11 feature has the most profound impact on how

modern C++ programs are written now and in the future, I would clearly nominate move

semantics. I discussed C++ move semantics briefly in Chapter 4, in the section about

strategies to avoid regular pointers. But I think that they are so important that I want to

deepen this language feature here.

 What Are Move Semantics?
In many cases where the old C++ language forced us to use a copy constructor, we

actually did not really want to create a deep copy of an object. Instead, we simply wanted

Chapter 5 advanCed ConCepts of Modern C++

147

to “move the object’s payload.” An object’s payload is nothing else than the embedded

data that the object carries around with it, so nothing else than other objects or member

variables of primitive types like int.

These cases where we had to copy an object instead of moving it were, for example,

the following:

• Returning a local object instance as a return value from a function or

method. To prevent the copy construction in these cases prior C++11,

pointers were frequently used.

• Inserting an object into a std::vector or other containers.

• The implementation of the std::swap<T> template function.

In many of the before-mentioned situations, it is unnecessary to keep the source

object intact, that is, to create a deep, and in terms of runtime efficiency often costly,

copy so that the source objects remains usable.

C++11 introduced a language feature that makes moving an object’s embedded data

a first-class operation. In addition to the copy constructor and copy assignment operator,

the class’s developer can now implement move constructors and move assignment

operators (we will see later why we actually should not do that!). The move operations

are usually very efficient. In contrast to a real copy operation, the source object’s data

is just handed over to the target object, and the argument (the source object) of the

operation is put into a kind of “empty” or initial state.

The example in Listing 5-9 shows an arbitrary class that explicitly implements both

types of semantics: copy constructor (line 6) and assignment operator (line 8), as well as

move constructor (line 7) and assignment operator (line 9).

Listing 5-9. An Example Class That Explicitly Declares Special Member

Functions for Copy and Move

01 #include <string>

02

03 class Clazz {

04 public:

05 Clazz() noexcept; // Default constructor

06 Clazz(const Clazz& other); // Copy constructor

07 Clazz(Clazz&& other) noexcept; // Move constructor

08 Clazz& operator=(const Clazz& other); // Copy assignment operator

Chapter 5 advanCed ConCepts of Modern C++

148

09 Clazz& operator=(Clazz&& other) noexcept; // Move assignment operator

10 virtual ~Clazz() noexcept; // Destructor

11

12 private:

13 // ...

14 };

Note the noexcept specifier specifies whether a function can throw exceptions
or not and is explained in more detail in the section entitled “the no-throw
Guarantee” later in this chapter.

As you will see later in the section “The Rule of Zero,” it should be a major goal of any

C++ developer to not declare and define such constructors and assignment operators

explicitly.

The move semantics are closely related to something that is called rvalue references

(see the next section). The constructor or assignment operator of a class is called a

“move constructor” or a “move assignment operator,” respectively, when it takes an

rvalue reference as a parameter. An rvalue reference is marked through the double

ampersand operator (&&). For better distinction, the ordinary reference with its single

ampersand (&) is now also called an lvalue reference.

 The Matter with Those lvalues and rvalues
The lvalues and rvalues are historical terms (inherited from language C), because lvalues

could usually appear on the left side of an assignment expression, whereas rvalues could

usually appear on the right side of an assignment expression. In my opinion, a much

better explanation for lvalue is that it is a locator value. This makes it clear that an lvalue

represents an object that occupies a location in memory (i.e., it has an accessible and

identifiable memory address).

In contrast, rvalues are all those objects in an expression that are not lvalues. They

are temporary objects, or subobjects thereof. Hence, it is not possible to assign anything

to an rvalue.

Chapter 5 advanCed ConCepts of Modern C++

149

Although these definitions come from the old C world, and C++11 still has

introduced more categories (xvalue, glvalue, and prvalue) to enable move semantics,

they are pretty good for everyday use.

The simplest form of an lvalue expression is a variable declaration:

Type var1;

The expression var1 is an lvalue of type Type. The following declarations represent

lvalues too:

Type* pointer;

Type& reference;

Type& function();

An lvalue can be the left operand of an assignment operation, like the integer-

variable theAnswerToAllQuestions in this example:

int theAnswerToAllQuestions = 42;

The assignment of a memory address to a pointer also makes clear that the pointer is

an lvalue:

Type* pointerToVar1 = &var1;

The literal “42” instead is an rvalue. It doesn’t represent an identifiable location

in memory, so it is not possible to assign anything to it (of course, rvalues also occupy

memory in the data section on the stack, but this memory is allocated temporarily and

released immediately after completion of the assignment operation):

int number = 23; // Works, because 'number' is an lvalue

42 = number; // Compiler error: lvalue required as left operand of

assignment

You don’t believe that function() on the third line from the above generic examples

is an lvalue? It is! You can write the following (without doubt, some kind of weird) piece

of code and the compiler will compile it without complaints:

int theAnswerToAllQuestions = 42;

int& function() {

 return theAnswerToAllQuestions;

}

Chapter 5 advanCed ConCepts of Modern C++

150

int main() {

 function() = 23; // Works!

 return 0;

}

 rvalue References
As mentioned, C++11 move semantics are closely related to something that is called

rvalue references. These rvalue references make it possible to address the memory

location of rvalues. In the following example, temporary memory is assigned to an rvalue

reference and thus makes it “permanent.” You can even retrieve a pointer pointing to

this location and manipulate the memory referenced by the rvalue reference using this

pointer.

int&& rvalueReference = 25 + 17;

int* pointerToRvalueReference = &rvalueReference;

*pointerToRvalueReference = 23;

By introducing rvalue references, these can of course also appear as parameters in

functions or methods. Table 5-1 shows the possibilities.

Table 5-1. Different Function and Method Signatures and Their Allowed

Parameter Types

Function/Method Signature Allowed Parameter Types

void function(Type param)

void X::method(Type param)

Both lvalues and rvalues can be passed

as parameters.

void function(Type& param)

void X::method(Type& param)

only lvalues can be passed as parameters.

void function(const Type& param)

void X::method(const Type& param)

Both lvalues and rvalues can be passed

as parameters.

void function(Type&& param)

void X::method(Type&& param)

only rvalues can be passed as

parameters.

Chapter 5 advanCed ConCepts of Modern C++

151

Table 5-2 shows the situation for return types of a function or method and what is

permitted for the function’s/method’s return statement.

Although, of course, rvalue references are allowed to be used for parameters in any

function or method, their predestined field of application is in move constructors and

move assignment operators. See Listing 5-10.

Listing 5-10. A Class That Explicitly Defines Both Copy and Move Semantics

#include <utility> // std::move<T>

class Clazz {

public:

 Clazz() noexcept = default;

 Clazz(const Clazz& other) {

 // Classical copy construction for lvalues

 }

 Clazz(Clazz&& other) noexcept {

 // Move constructor for rvalues: moves content from 'other' to this

 }

 Clazz& operator=(const Clazz& other) {

 // Classical copy assignment for lvalues

 return *this;

 }

Table 5-2. Possible Return Types of Functions and Methods

Function/Method Signature Possible Data Types Returned by the return Statement

Type function()

Type X::method()

[const] int, [const] int&, or [const] int&&.

Type& function()

Type& X::method()

non-const int or int&.

Type&& function()

Type&& X::method()

Literals (e.g., return 42), or a rvalue reference (obtained with

std::move()) to an object with a lifetime longer than the

function’s or method’s scope.

Chapter 5 advanCed ConCepts of Modern C++

152

 Clazz& operator=(Clazz&& other) noexcept {

 // Move assignment for rvalues: moves content from 'other' to this

 return *this;

 }

 // ...

};

int main() {

 Clazz anObject;

 Clazz anotherObject1(anObject); // Calls copy constructor

 Clazz anotherObject2(std::move(anObject)); // Calls move constructor

 anObject = anotherObject1; // Calls copy assignment

operator

 anotherObject2 = std::move(anObject); // Calls move assignment

operator

 return 0;

}

 Don’t Enforce Move Everywhere
Maybe you’ve noticed the use of the helper function std::move<T>() (defined in the

<utility> header) in the code example to force the compiler to use move semantics.

First of all, the name of this small helper function is misleading. std::move<T>()

doesn’t move anything. It is more or less a cast that produces an rvalue reference to an

object of type T.

In most cases, it is not necessary to do that. Under normal circumstances, the

selection between the copy and the move versions of constructors or assignment

operators is done automatically at compile time through overload resolution. The

compiler ascertains whether it is confronted with an lvalue or an rvalue, and then selects

the best fitting constructor or assignment operator accordingly. The container classes

of the C++ Standard Library also take into account the level of exception safety that is

guaranteed by the move operations (we will discuss this topic in more detail later in the

section entitled “Prevention Is Better Than Aftercare”).

Note this especially—don’t write code like the example in Listing 5-11.

Chapter 5 advanCed ConCepts of Modern C++

153

Listing 5-11. Improper Use of std::move()

#include <string>

#include <utility>

#include <vector>

using StringVector = std::vector<std::string>;

StringVector createVectorOfStrings() {

 StringVector result;

 // ...do something that the vector is filled with many strings...

 return std::move(result); // Bad and unnecessary, just write "return

result;"!

}

Using std::move<T>() with the return statement is completely unnecessary,

because the compiler knows that the variable is a candidate to be moved out of

the function (since C++11, move semantics is supported by all Standard Library

containers as well as by many other classes of the Standard Library, like std::string).

A possibly even worse impact could be that it can interfere with the RVO (return value

optimization), a special form of copy elision performed by nearly all compilers nowadays.

RVO allows compilers to optimize a costly copy construction when returning values from

a function or method (remember the sidebar about copy elision in Chapter 4).

Think always about the important principle from Chapter 3: Be careful with
optimizations! Don’t mess up your code with std::move<T>() statements everywhere,

just because you think that you can be smarter than your compiler with the optimization

of your code. You are not! The readability of your code will suffer with all those

std::move<T>() everywhere, and your compiler might not be able to perform its

optimization strategies properly.

 The Rule of Zero
As an experienced C++ developer, you may know the Rule of Three and the Rule of Five.

The Rule of Three [Koenig01], originally coined by Marshall Cline in 1991, states that if

a class defines a destructor explicitly, it should almost always define a copy constructor

and a copy assignment operator. With the advent of C++11 this rule was extended and

Chapter 5 advanCed ConCepts of Modern C++

154

became the Rule of Five, because the move constructor and the move assignment

operator were added to the language, and these two special member functions must be

defined as well if a class defines a destructor.

The reason that the Rule of Three and the Rule of Five were good pieces of advice for

a long time in C++ class design is that subtle errors can occur when developers are not

considering them, as demonstrated in the intentionally bad code example in Listing 5-12.

Listing 5-12. An Improper Implementation of a String Class

#include <cstring>

class MyString {

public:

 explicit MyString(const std::size_t sizeOfString) : data { new

char[sizeOfString] } { }

 MyString(const char* const charArray) {

 data = new char[strlen(sizeOfArray) + 1];

 strcpy(data, charArray);

 }

 virtual ~MyString() { delete[] data; };

 char& operator[](const std::size_t index) {

 return data[index];

 }

 const char& operator[](const std::size_t index) const {

 return data[index];

 }

 // ...

private:

 char* data;

};

This is indeed a very amateurish implemented string class with some flaws, for

example, a missing check that not a nullptr is passed into the initialization constructor,

and totally ignoring the fact that strings can grow and shrink. Of course, no one has to

implement a string class nowadays, and thus reinvent the wheel. With std::string, a

Chapter 5 advanCed ConCepts of Modern C++

155

bullet-proofed string class is available in the C++ Standard Library. On the basis of this

example, however, it is very easy to demonstrate why adhering to the Rule of Five is

important.

In order that the memory allocated by the initialization constructors for the internal

string representation is freed safely, an explicit destructor must be defined and has to be

implemented to do this. In the previous class, however, the Rule of Five is violated and

the explicit copy/move constructors, as well as the copy/move assignment operators, are

missing.

Now, let’s assume that we’re using the MyString class in the following way:

int main() {

 MyString aString("Test", 4);

 MyString anotherString { aString }; // Uh oh! :-(

 return 0;

}

Due to the fact that the MyString class does not explicitly define a copy or move

constructor, the compiler will synthesize these special member functions; that is, the

compiler will generate a default copy constructor and a default move constructor.

These default implementations only create a shallow copy of the member variables of

the source object. In our case, the address value stored in the character pointer data is

copied, but not the area in memory where this pointer points.

That means the following: after the automatically generated default copy constructor

has been called to create anotherString, both instances of MyString share the same

data, as it can easily be seen in a debugger’s variables view shown in Figure 5-2.

Figure 5-2. Both character pointers are pointing to the same memory address

Chapter 5 advanCed ConCepts of Modern C++

156

This will result in double deletion of the internal data if the string objects are

destroyed, which can cause critical issues, like segmentation faults or undefined

behavior.

Under normal circumstances, there is no reason to define an explicit destructor for a

class. Every time you are compelled to define a destructor, this is a noticeable exception,

because it indicates that you need to do something special with resources at the end

of the lifetime of an object that requires considerable effort. A non-trivial destructor

is usually required to deallocate resources, for example, memory on the heap. As a

consequence, you also need to define explicit copy/move constructors and copy/move

assignment operators in order to handle these resources correctly while copying or

moving. That’s what the Rule of Five implies.

There are different approaches to dealing with this problem. For instance, we can

provide explicit copy/move constructors and copy/move assignment operators to

handle the allocated memory correctly, for example, by creating a deep copy of the

memory area the pointer is pointing to, or by moving the ownership of the memory from

the source object to the target object.

Another approach would be to prohibit copying and moving, and prevent the

compiler from generating default versions of these functions. This can be done since

C++11 by deleting these special member functions so that any use of a deleted function

is ill formed, that is, the program will not compile. See Listing 5-13.

Listing 5-13. A Modified MyString Class That Explicitly Deletes the Copy

Constructor and Copy Assignment Operators

class MyString {

public:

 explicit MyString(const std::size_t sizeOfString) : data { new

char[sizeOfString] } { }

 MyString(const char* const charArray) {

 data = new char[strlen(sizeOfArray) + 1];

 strcpy(data, charArray);

 }

 virtual ~MyString() { delete[] data; };

 MyString(const MyString&) = delete;

 MyString(MyString&&) = delete;

 MyString& operator=(const MyString&) = delete;

Chapter 5 advanCed ConCepts of Modern C++

157

 MyString& operator=(MyString&&) = delete;

 // ...

};

The problem is that by deleting the special member functions, the class now has a

very limited area of use. For instance, MyString cannot be used in a std::vector now,

because std::vector requires that its element type T implements move semantics

and some operations of a vector also require that it is copy-assignable and copy-

constructible.

Okay, it’s time now to choose a different approach and to think differently. What we

have to do is get rid of the destructor that frees the allocated resource. If this succeeds, it

is also not necessary, according to the Rule of Five, to provide the other special member

functions explicitly. See Listing 5-14.

Listing 5-14. Replacing the char Pointer with a Vector of Char Makes an Explicit

Destructor Superfluous

#include <vector>

class MyString {

public:

 explicit MyString(const std::size_t sizeOfString) {

 data.resize(sizeOfString, ' ');

 }

 MyString(const char* const charArray, const size_t sizeOfArray) :

MyString(sizeOfArray) {

 if (charArray != nullptr) {

 for (size_t index = 0; index < sizeOfArray; index++) {

 data[index] = charArray[index];

 }

 }

 }

 char& operator[](const std::size_t index) {

 return data[index];

 }

Chapter 5 advanCed ConCepts of Modern C++

158

 const char& operator[](const std::size_t index) const {

 return data[index];

 }

 // ...

private:

 std::vector<char> data;

};

Once again: I know that this is an impractical and amateurish implementation of a

self-made string, but it is for demonstration purposes only.

What has changed now? Well, we’ve replaced the private member of type char*

with a std::vector of element type char. Thus, we do not need an explicit destructor

anymore, because we have nothing to do if an object of our type MyString is destroyed.

There is no need to deallocate any resource. As a result, the compiler-generated special

member functions, like the copy/move constructor or the copy/move assignment

operator, do the right things automatically if they are used, and we do not have to define

them explicitly. And that’s good news, because we’ve followed the KISS principle (see

Chapter 3).

That leads us to the Rule of Zero! The Rule of Zero was coined by R. Martinho

Fernandes in a blog post in 2012 [Fernandes12]. The rule was also promoted by ISO

standard committee member Prof. Peter Sommerlad in a conference talk on Meeting C++

2013 [Sommerlad13].

Note the rule of Zero states: Write your classes in a way that you do not need
to declare/define neither a non-virtual destructor (exception: Base classes of
an inheritance hierarchy should define a public virtual destructor or a protected
non-virtual destructor; see rule C.35 of the C++ Core Guidelines [Cppcore21]!),
not a copy/move constructor or copy/move assignment operator. Use C++ smart
pointers and standard Library classes and containers for managing resources.

In other words, the Rule of Zero states that your classes should be designed in a way

that the compiler-generated member functions for copying, moving, and destruction

automatically do the right things. This makes your classes easier to understand (think

always of the KISS principle from Chapter 3), less error prone, and easier to maintain.

The principle behind it is doing more by writing less code.

Chapter 5 advanCed ConCepts of Modern C++

159

 The Compiler Is Your Colleague
As I have written elsewhere, the advent of the C++11 language standard fundamentally

changed the way that modern and clean C++ programs are designed. Styles, patterns,

and idioms that programmers are using while writing modern C++ code are totally

different than before. Besides the fact that the newer C++ standards offer many useful

new features to write C++ code that is well maintainable, understandable, efficient, and

testable, something else has still changed: the role of the compiler!
In former times, the compiler was just a tool to translate the source code into

executable machine instructions (object code) for a computer; but now it is increasingly

becoming a tool to support the developer on different levels. The three guiding

principles for working with a C++ compiler are the following:

• Everything that can be done at compile time should be done at

compile time.

• Everything that can be checked at compile time should be checked at

compile time.

• Everything the compiler can know about a program should be

determined by the compiler.

In former chapters and sections, you’ve experienced in some spots how the compiler

can support you. For instance, in the section about move semantics, we’ve seen that

modern C++ compilers are able to perform manifold sophisticated optimizations (e.g.,

copy elision) that we don’t have to care about anymore. In the following sections, I show

you how the compiler can support developers and make many things much easier.

 Automatic Type Deduction
Do you remember the meaning of the C++ keyword auto before C++11? I’m pretty sure

that it was probably the least-known and used keyword in the language. Maybe you

remember that auto in C++98 or C++03 was a so-called storage class specifier and has

been used to define that a local variable has “automatic duration,” that is, the variable

is created at the point of definition and destroyed when the block it was part of is

exited. Since C++11, all variables have automatic duration per default unless otherwise

specified. Thus, the previous semantics of auto were becoming useless, and the keyword

got a completely new meaning.

Chapter 5 advanCed ConCepts of Modern C++

160

Nowadays, auto is used for automatic type deduction, sometimes also called type

inference. If it is used as a type specifier for a variable, it specifies that the type of the

variable that is being declared will be automatically deduced (or inferred) from its

initializer, like in the following examples:

auto theAnswerToAllQuestions = 42;

auto iter = begin(myMap);

const auto gravitationalAccelerationOnEarth = 9.80665;

constexpr auto sum = 10 + 20 + 12;

auto strings = { "The", "big", "brown", "fox", "jumps", "over", "the",

"lazy", "dog" };

auto numberOfStrings = strings.size();

ARGUMENT DEPENDENT NAME LOOKUP (ADL)

Argument Dependent (Name) Lookup (adL), also known as Koenig Lookup (named after the

american computer scientist andrew Koenig), is a compiler technique to look up an unqualified

function name (that is, a function name without a prefixed namespace qualifier) depending on

the types of the arguments passed to the function at its call site.

suppose you have a std::map<K, T> (defined in the <map> header) like the following one:

#include <map>

#include <string>

std::map<unsigned int, std::string> words;

due to adL, it is not necessary to specify the namespace std if you use the begin() or

end() function to retrieve an iterator from the container. You can simply write:

auto wordIterator = begin(words);

the compiler does not just look at the local scope, but also the namespaces that contain

the argument’s type (in this case, the namespace of map<K, T>, which is std). thus, in

the previous example, the compiler finds a fitting begin() function for maps in the std-

namespace.

In some cases, you need to explicitly define the namespace, for example, if you want to use

std::begin() and std::end() with a simple C-style array.

Chapter 5 advanCed ConCepts of Modern C++

161

On first sight, using auto instead of a concrete type seems to be a convenience

feature. Developers are no longer forced to remember a type’s name. They simply write

auto, const auto, auto& (for references), or const auto& (for const references), and the

compiler does the rest, because it knows the type of the assigned value. Automatic type

deduction can of course also be used in conjunction with constexpr (see the section

about computations at compile time).

Do not be afraid to use auto (or auto& and const auto&) as much as possible.

The code is still statically typed, and the types of the variables are clearly defined.

For instance, the type of the variable strings from the previous example

is std::initializer_list<const char*>, the type of numberOfStrings is

std::initializer_list<const char*>::size_type.

The only thing that developers should be aware of is that auto will strip const and

reference qualifiers, and hence a careless use of it can result in unwanted copies being

made. Especially in range-based for loops, this can easily be overlooked:

#include <string>

#include <vector>

// And somewhere in the code...

std::vector<std::string> aLotOfStrings { };

for (auto str : aLotOfStrings) {

 // Attention: A copy of each string will be made!

}

for (const auto& str : aLotOfStrings) {

 // Copies are avoided.

}

STD::INITIALIZER_LIST<T> [C++11]

In former days (prior C++11), if we wanted to initialize a standard Library container using

literals, we had to do the following:

std::vector<int> integerSequence;

integerSequence.push_back(14);

integerSequence.push_back(33);

integerSequence.push_back(69);

// ...and so on...

Chapter 5 advanCed ConCepts of Modern C++

162

since C++11, we can simply do it this way:

std::vector<int> integerSequence { 14, 33, 69, 104, 222, 534 };

the reason for this is that std::vector<T> has an overloaded constructor that accepts a so-

called initializer list as a parameter. an initializer list is an object of type std::initializer_

list<T> (defined in the <initializer_list> header).

an instance of type std::initializer_list<T> is automatically constructed when you

use a list of comma-separated literals that are surrounded with a pair of curly braces, a

so-called braced-init-list. You can equip your own classes with constructors that can accept

initializer lists, as shown in this example:

#include <string>

#include <vector>

using WordList = std::vector<std::string>;

class LexicalRepository {

public:

 explicit LexicalRepository(const std::initializer_list<const char*>& words) {

 wordList.insert(begin(wordList), begin(words), end(words));

 }

 // ...

private:

 WordList wordList;

};

int main() {

LexicalRepository repo { "The", "big", "brown", "fox", "jumps", "over",

"the", "lazy", "dog" };

 // ...

 return 0;

}

Note this initializer list should not be confused with a class of its constructor
member initializer list!

Chapter 5 advanCed ConCepts of Modern C++

163

Since C++14, the automatic return type deduction for functions is also supported.

This is especially helpful when a return type has a difficult-to-remember or unutterable

name, which is often the case when dealing with complex non-standard data types as

return types.

auto function() {

 std::vector<std::map<std::pair<int, double>, int>> returnValue;

 // ...fill 'returnValue' with data...

 return returnValue;

}

We haven’t discussed lambda expressions until now (they will be discussed in

detail in Chapter 7), but C++11 and higher lets you store lambda expressions in named

variables:

auto square = [](const int x) { return x * x; };

Maybe you’re wondering why, in Chapter 4, I told you that an expressive and good

name is important for the readability of the code and should be a major goal for every

professional programmer. Now I promote the use of the keyword auto, which makes it

more difficult to recognize the type of a variable quickly just by reading the code. Isn’t

that a contradiction?

My clear answer is this: no, quite the contrary! Apart from a few exceptions, auto can

raise the readability of the code. Look at the two alternatives of a variable assignment in

Listing 5-15.

Listing 5-15. Which One of the Following Two Versions Would You Prefer?

// 1st version: without auto

std::shared_ptr<controller::CreateMonthlyInvoicesController>

createMonthlyInvoicesController =

 std::make_shared<controller::CreateMonthlyInvoicesController>();

// 2nd version: with auto:

auto createMonthlyInvoicesController =

 std::make_shared<controller::CreateMonthlyInvoicesController>();

From my point of view, the version using auto is easier to read. There is no need

to repeat the type explicitly, because it is pretty clear from its initializer what type

Chapter 5 advanCed ConCepts of Modern C++

164

createMonthlyInvoicesController will be. By the way, repeating the explicit type

would also be a kind of violation of the DRY principle (see Chapter 3). And if you think

of the lambda expression named square, whose type is a unique, unnamed non-union

class type, how can such a type be explicitly defined?

Tip If it doesn’t obscure the intent of your code, use auto wherever possible!

 Computations During Compile Time
Fans of high-performance computing (HPC)—as well as developers of embedded

software and programmers who prefer to use static, constant tables to separate data and

code—want to compute as much as possible at compile time. The reasons for this are

very easy to comprehend: everything that can be computed or evaluated at compile time

does not have to be computed or evaluated at runtime. In other words, the computation

of as much as possible at compile time is low-hanging fruit to raise the runtime

efficiency of your program. This advantage is sometimes accompanied by a drawback,

which is the more or less increasing time that it takes to compile the code.

Since C++11, the constexpr (constant expression) specifier makes it possible to

evaluate the value of a function or a variable at compile time. With the subsequent

standard C++14, some of the stringent restrictions for constexpr were lifted. For

instance, a constexpr-specified function was allowed to have exactly one return

statement only. This restriction has been abolished since C++14.

One of the simplest examples is that a variable’s value is calculated from literals by

arithmetic operations at compile time, like this:

constexpr int theAnswerToAllQuestions = 10 + 20 + 12;

The theAnswerToAllQuestions variable is also a constant if it was declared with

const; thus, you cannot manipulate it during runtime:

int main() {

 // ...

 theAnswerToAllQuestions = 23; // Compiler error: assignment of read-only

variable!

 return 0;

}

Chapter 5 advanCed ConCepts of Modern C++

165

There are also constexpr functions:

constexpr int multiply(const int multiplier, const int multiplicand) {

 return multiplier * multiplicand;

}

Such functions can be called at compile time, but they can also be used like ordinary

functions with non-const arguments at runtime. This is necessary to test those functions

with the help of unit tests (see Chapter 2).

constexpr int theAnswerToAllQuestions = multiply(7, 6);

Unsurprisingly, constexpr specified functions can also be called recursively, as

shown in the example in Listing 5-16, which shows a function that calculates factorials.

Listing 5-16. Calculating the Factorial of a Non-Negative Integer ‘n’ at

Compile Time

01 #include <iostream>

02

03 constexpr unsigned long long factorial(const unsigned short n) {

04 return n > 1 ? n * factorial(n - 1) : 1;

05 }

06

07 int main() {

08 unsigned short number = 6;

09 auto result1 = factorial(number);

10 constexpr auto result2 = factorial(10);

11

12 std::cout << "result1: " << result1 << ", result2: " << result2 <<

std::endl;

13 return 0;

14 }

The previous example works under C++11. The factorial() function consists

of only one statement, and recursion was allowed from the beginning in constexpr

functions. The main() function contains two calls of the factorial() function. It is

worth it to take a closer look at these two function calls.

Chapter 5 advanCed ConCepts of Modern C++

166

The first call on line 9 uses the variable number as the argument for the function’s

parameter n, and its result is assigned to a non-const variable result1. The second

function call on line 10 uses a number literal as the argument, and its result is assigned

to a variable with a constexpr specifier. The difference between these two function calls

at runtime can best be seen in the disassembled object code. Figure 5-3 shows the object

code at the key spot in the Disassembly window of Eclipse CDT.

The first function call on line 9 results in five machine instructions. The fourth of

these instructions (callq) is the jump to the function factorial() at memory address

0x5555555549bd. In other words, it is obvious that the function is called at runtime. In

contrast, we see that the second call of factorial() at line 10 results in just one simple

machine instruction. The movq instruction copies a quadword from the source operand

to the destination operand. There is no costly function call at runtime. The result of

factorial(10), which is 0x375f00 in hexadecimal and 3,628,800 in decimal, has been

calculated at compile time and is available like a constant in the object code.

As I mentioned earlier, some restrictions for contexpr specified functions in C++11

have been repealed since C++14. For instance, a constexpr specified function can now

have more than one return statement; it can have conditionals like if-else-branches,

local variables of “literal” type, or loops. Basically, almost all C++ statements are allowed

if they do not presuppose or require something that is only available in the context

of a runtime environment, for example, allocating memory on the heap, or throwing

exceptions.

Figure 5-3. The disassembled object code

Chapter 5 advanCed ConCepts of Modern C++

167

 Variable Templates
I think it is less surprising that constexpr can also be used in templates, as shown in the

example in Listing 5-17.

Listing 5-17. A Variable Template for the Mathematical Constant pi

#include <concepts>

template<typename T>

concept FloatingPoint = std::floating_point<T>;

template <typename T> requires FloatingPoint<T>

constexpr T pi = T(3.1415926535897932384626433L);

For the moment, we ignore the first lines of code in Listing 5-17 and focus on the last

two lines only. What we can see there is known as a variable template. It is a good and

flexible alternative to the archaic style of constant definitions using #define macros (see

the section entitled “Avoid Macros” in Chapter 4). Depending on its usage context during

template instantiation, the mathematical constant pi is typed as float, double, or long

double. See Listing 5-18.

Listing 5-18. Calculating a Circle’s Circumference at Compile Time Using the

Variable Template pi

template <typename T>

constexpr T computeCircumference(const T radius) requires FloatingPoint<T>

{

 return 2 * radius * pi<T>;

}

int main() {

 constexpr long double radius { 10.0L };

 constexpr long double circumference = computeCircumference(radius);

 std::cout << circumference << std::endl;

 return 0;

}

Okay, but what do the other lines of code before the variable template pi in

Listing 5-17 mean? Well, I’ve used a new and long-awaited feature of the C++20 language

Chapter 5 advanCed ConCepts of Modern C++

168

standard called concepts. Concepts are an extension to the C++ template mechanism

that define requirements or constraints for template parameters. In this case I’ve defined

a concept to enforce users of the variable template pi as well as the function template

computeCircumference to instantiate both with a floating-point data type, otherwise the

compiler will report an error. I will give a bit more detailed insight into C++20 concepts

later in this chapter.

Last but not least, it is noteworthy that you can also use classes in computations at

compile time. You can define constexpr constructors and member functions for classes.

See Listing 5-19.

Listing 5-19. Rectangle Is a constexpr Class

#include <cmath>

#include <iostream>

class Rectangle {

public:

 constexpr Rectangle() = delete;

 constexpr Rectangle(const double width, const double height) :

 width { width }, height { height } { }

 constexpr double getWidth() const { return width; }

 constexpr double getHeight() const { return height; }

 constexpr double getArea() const { return width * height; }

 constexpr double getLengthOfDiagonal() const {

 return std::sqrt(std::pow(width, 2.0) + std::pow(height, 2.0));

 }

private:

 double width;

 double height;

};

int main() {

 constexpr Rectangle americanFootballPlayingField { 48.76, 110.0 };

 constexpr double area = americanFootballPlayingField.getArea();

 constexpr double diagonal = americanFootballPlayingField.getLengthOfDiagonal();

Chapter 5 advanCed ConCepts of Modern C++

169

 std::cout << "The area of an American Football playing field is " <<

 area << "m^2 and the length of its diagonal is " << diagonal <<

 "m." << std::endl;

 return 0;

}

constexpr classes can be used at compile time and at runtime. In contrast to

ordinary classes, however, you cannot define virtual member functions (there is no

polymorphism at compile time), and a constexpr class must not have an explicitly

defined destructor.

Note the code example in Listing 5-19 could fail to compile on some C++
compilers. By today’s standards, the C++ standard does not specify common
mathematical functions from the numerics library (the <cmath> header) as
constexpr, like std::sqrt() and std::pow(). Compiler implementations are
free to do it anyway, but it’s not required.

However, how should these computations at compile time have been judged from a

clean code perspective? Is it basically a good idea to add constexpr to anything that can

possibly have it?

Well, my opinion is that constexpr does not reduce the readability of the code. The

specifier is always in front of variables and constants definitions or in front of function

or method declarations. Hence, it does not disturb so much. On the other hand, if I

definitely know that something will never be evaluated at compile time, I should also

renounce the specifier.

 Don’t Allow Undefined Behavior
In C++ (and in some other programming languages too), the language specification

does not define the behavior in any possible situation. In some places the specification

says that the behavior of a certain operation is undefined under certain circumstances.

In such a situation, you cannot predict what will happen, because the behavior of the

program depends on compiler implementation, the underlying operating system, or

special optimization switches. That’s really bad! The program could either crash or

silently generate incorrect results.

Chapter 5 advanCed ConCepts of Modern C++

170

Here is an example of undefined behavior, an incorrect use of a smart pointer:

const std::size_t NUMBER_OF_STRINGS { 100 };

std::shared_ptr<std::string> arrayOfStrings(new std::string[NUMBER_OF_

STRINGS]);

Let’s assume that this std::shared_ptr<T> object is the last one pointing to the

string array resource and it runs out of scope somewhere. What will happen?

The destructor of std::shared_ptr<T> decrements the number of shared owners

and the counter reaches 0. As a consequence, the resource managed by the smart

pointer (the array of std::string) is destroyed by calling its destructor. But it will do it

wrong, because when you allocate the managed resource using new[], you need to call

the array form delete[], and not delete, to free the resource, and the default deleter of

std::shared_ptr<T> uses delete.

Deleting an array with delete instead of delete[] results in undefined behavior. It is

not specified what happens. Maybe it results in a memory leak, but that’s just a guess.

Caution avoid undefined behavior! It is a bad mistake and ends up with
programs that silently misbehave.

There are several solutions to let the smart pointer delete the string array correctly.

For example, you can provide a custom deleter as a function-like object (also known as a

functor; see Chapter 7):

template <typename T>

struct CustomArrayDeleter {

 void operator() (T const* pointer) {

 delete [] pointer;

 }

};

Now you can use your own deleter as follows:

const std::size_t NUMBER_OF_STRINGS { 100 };

std::shared_ptr<std::string> arrayOfStrings(new std::string[NUMBER_OF_

STRINGS], CustomArrayDeleter<std::string>());

Chapter 5 advanCed ConCepts of Modern C++

171

In C++11, there is a default deleter for array types defined in the <memory> header:

const std::size_t NUMBER_OF_STRINGS { 100 };

std::shared_ptr<std::string> arrayOfStrings(new std::string[NUMBER_OF_

STRINGS], std::default_delete<std::string[]>());

Depending on the requirements to satisfy, you should consider whether using a

std::vector or std::array is not the best solution to implement an “array of things.”

And since C++20, you can avoid the explicit new for heap allocation and do it clean and

simple like this:

auto arrayOfStrings{ std::make_shared<std::string[]>(NUMBER_OF_STRINGS) };

 Type-Rich Programming
“Don’t trust names.

Trust types.

Types don’t lie.

Types are your friends!”

—Mario Fusco (@mariofusco), April 13, 2016, on Twitter

On September 23, 1999, NASA lost its Mars Climate Orbiter I, a robotic space probe,

after a 10-month journey to the fourth planet of our solar system (Figure 5-4). As the

spacecraft went into orbital insertion, the transfer of important data failed between the

propulsion team at Lockheed Martin Astronautics in Colorado and the NASA mission

navigation team in Pasadena (California). This error pushed the spacecraft too close to

the atmosphere of Mars, where it burned immediately.

Chapter 5 advanCed ConCepts of Modern C++

172

The cause for the failed data transfer was that the NASA mission navigation team

used the International System of Units (SI), while Lockheed Martin’s navigation software

used English units (the Imperial Measurement System). The software used by the

mission navigation team sent values in pound-force-seconds (lbf·s), but the Orbiter’s

navigation software expected values in newton-seconds (N·s). NASA’s total financial

loss was 328 million in U.S. dollars. The lifetime work of around 200 good spacecraft

engineers was destroyed in a few seconds.

This failure is not a typical example of a simple software bug. Both systems by

themselves may have worked correctly. But it reveals an interesting aspect in software

development. It seems that communication and coordination problems between the

engineering teams to be the elementary reason for this failure. It is obvious: there were

no joint system tests with both subsystems, and the interfaces between both subsystems

had not been properly designed.

Figure 5-4. Artist’s rendering of the Mars Climate Orbiter (Author: NASA/JPL/
Corby Waste2)

2 https://solarsystem.nasa.gov/resources/2246/mars-climate-orbiter-artists-concept/;
https://www.nasa.gov/multimedia/guidelines/index.html

Chapter 5 advanCed ConCepts of Modern C++

https://solarsystem.nasa.gov/resources/2246/mars-climate-orbiter-artists-concept/
https://www.nasa.gov/multimedia/guidelines/index.html

173

“People sometimes make errors. The problem here was not the error, it was
the failure of NASA’s systems engineering, and the checks and balances in
our processes to detect the error. That’s why we lost the spacecraft.”

—Dr. Edward Weiler, NASA Associate Administrator for
Space Science [JPL99]

In fact, I don’t know anything about Mars Climate Orbiter’s system software. But

according to the examination report of the failure, I’ve understood that one piece of

software produced results in an “English system” unit, while the other piece of software

that used those results expected them to be in metric units.

I think everybody knows C++ member function declarations that look like the one in

the following class:

class SpacecraftTrajectoryControl {

public:

 void applyMomentumToSpacecraftBody(const double impulseValue);

};

What does the double stand for? Of what unit is the value that is expected by the

member function named applyMomentumToSpacecraftBody? Is it a value measured in

Newtons (N), newton-seconds (N·s), pound-force-seconds (lbf·s), or any other unit? In fact,

we don’t know. The double can be anything. It is, of course, a type, but it is not a semantic

type. Maybe it has been documented somewhere, or we could give the parameter a more

meaningful and verbose name like impulseValueInNewtonSeconds, which would be better

than nothing. But even the best documentation or parameter name cannot guarantee that

a client of this class passes a value of an incorrect unit to this member function.

Can we do it better? Of course we can.

What we really want to have to define an interface properly, with rich semantics, is

something like this:

class SpacecraftTrajectoryControl {

public:

 void applyMomentumToSpacecraftBody(const Momentum& impulseValue);

};

In mechanics, momentum is measured in newton-seconds (Ns). One newton-

second (1 Ns) is the force of one Newton (which is 1 kg m/s2 in SI base units) acting on a

body (a physical object) for one second.

Chapter 5 advanCed ConCepts of Modern C++

174

To use a type like Momentum instead of the unspecific floating-point type double, we

have to introduce that type first. In the first step we define a template that can be used to

represent physical quantities on the base of the MKS system of units. The abbreviation

MKS stands for meter (length), kilogram (mass), and seconds (time). These three

fundamental units can be used to express many physical measurements. See Listing 5- 20.

Listing 5-20. A Class Template to Represent MKS Units

#include <type_traits>

template <int M, int K, int S>

struct MksUnit {

 enum { metre = M, kilogram = K, second = S};

};

You might wonder about why the Type Traits library (the <type_traits> header) is

included on the first line? Well, type traits can be used to inspect the properties of types.

TYPE TRAITS [C++11]

Type traits can be regarded as one of the pillars of C++ template metaprogramming. When

developers define a C++ template, the concrete types used to instantiate this template can

theoretically be almost anything. for instance, when they define a class template like this:

template <typename T>

class MyClassTemplate {

 // ...

};

the template argument T can be substituted during instantiation with an int, a double, a

std::string, or any other arbitrary data type that is defined by itself.

Using type traits, developers can let the compiler inspect which concrete data type is intended

for the generic T during instantiation and can use the result of this check for conditional

compiling. from a technical point of view, a type trait is a simple template struct, like this one:

template <typename T>

struct is_integral : bool_constant<> {

 // ...

};

Chapter 5 advanCed ConCepts of Modern C++

175

this type trait checks whether T is an integral type (bool, char, int, unsigned int, ...).

after its instantiation with a concrete data type for the template parameter T, the type trait

holds a Boolean member constant, usually named value, containing the result of the check.

this value can then be directly accessed (std::is_integral<T> ::value), but the more

compact variant std::is_integral_v<T> is more common:

#include <type_traits>

template <typename T>

class MyClassTemplate {

 static_assert(std::is_integral_v<T> , "T must be an integral type!");

};

int main() {

 MyClassTemplate<char8_t> foo; // OK!

 MyClassTemplate<float> bar; // error: static assertion failed: T must be

an integral type!

 return 0;

}

another category of type traits are those that alter the passed concrete type for template

parameter T. for instance, the type trait std::remove_reference<T> transforms a

reference type T& into T. the result of this transformation can be accessed through a member

type alias usually named type.

In our case we need the Type Traits library to define a constraint with the help of C++

concepts. See Listing 5-21.

Listing 5-21. A C++ Concept to Check Whether a Type Is an Instantiation of the

MksUnit Template

template <typename T>

struct IsMksUnitType : std::false_type { };

template <int M, int K, int S>

struct IsMksUnitType<MksUnit<M, K, S>> : std::true_type { };

template <typename T>

concept MksUnitType = IsMksUnitType<T>::value;

Chapter 5 advanCed ConCepts of Modern C++

176

STD::TRUE_TYPE AND STD::FALSE_TYPE (SINCE C++11)

since C++11, there is a class template std::integral_constant (defined in the

<type_traits> header) available that takes an integral type and an integral value as

template parameters. two type aliases, std::true_type and std::false_type, are also

defined in the <type_traits> header for the common case where the template parameter T

of std::integral_constant is of type bool. In simplified terms, they are defined like this:

using true_type = integral_constant<bool, true>;

using false_type = integral_constant <bool, false>;

these two aliases are used to represent the Boolean values true and false as types and

serve as the base classes for many type traits. they can be used for so-called tag dispatching,

which is a technique to select an implementation of a function from a set of overloaded

functions that suits a given type. here is a small example:

#include <type_traits>

template <typename T>

auto calculateImpl(T value, std::true_type) {

 // Implementation for arithmetic value types

}

template <typename T>

auto calculateImpl(T value, std::false_type) {

 // Implementation for non-arithmetic value types

}

template <typename T>

auto calculate(T value) {

 return calculateImpl(value, std::is_arithmetic<T>{});

}

depending on whether the data type used to call the calculate() function is an

arithmetic type (that is, an integral type or a floating-point type) or not, the appropriate

calculateImpl() function template is selected at compile time.

Chapter 5 advanCed ConCepts of Modern C++

177

With this concept (I discuss C++20 concepts in more detail later), we want to ensure

under all circumstances that the template class Value presented in Listing 5-22 is always

instantiated with a proper instantiated template class, MksUnit.

Listing 5-22. A Class Template to Represent Values of MKS Units

template <typename T> requires MksUnitType<T>

class Value {

public:

 explicit Value(const long double magnitude) noexcept :

magnitude(magnitude) {}

 long double getMagnitude() const noexcept {

 return magnitude;

 }

private:

 long double magnitude{ 0.0 };

};

Next, we can use both class templates to define type aliases for concrete physical

quantities. Here are some examples:

using DimensionlessQuantity = Value<MksUnit<0, 0, 0>>;

using Length = Value<MksUnit<1, 0, 0>>;

using Area = Value<MksUnit<2, 0, 0>>;

using Volume = Value<MksUnit<3, 0, 0>>;

using Mass = Value<MksUnit<0, 1, 0>>;

using Time = Value<MksUnit<0, 0, 1>>;

using Speed = Value<MksUnit<1, 0, -1>>;

using Acceleration = Value<MksUnit<1, 0, -2>>;

using Frequency = Value<MksUnit<0, 0, -1>>;

using Force = Value<MksUnit<1, 1, -2>>;

using Pressure = Value<MksUnit<-1, 1, -2>>;

// ... etc. ...

Chapter 5 advanCed ConCepts of Modern C++

178

It is also possible to define the Momentum, which is required as the parameter type for

our applyMomentumToSpacecraftBody member function:

using Momentum = Value<MksUnit<1, 1, -1>>;

After we’ve introduced the type alias Momentum, the following code will not

compile, because there is no suitable constructor to convert from double to

Value<MksUnit<1,1,-1>>:

SpacecraftTrajectoryControl control;

const double someValue = 13.75;

control.applyMomentumToSpacecraftBody(someValue); // Compile-time error!

The next example will also lead to compile-time errors, because a variable of type

Force must not be used like a Momentum, and an implicit conversion between these

different dimensions must be prevented:

SpacecraftTrajectoryControl control;

Force force { 13.75 };

control.applyMomentumToSpacecraftBody(force); // Compile-time error!

But this will work fine:

SpacecraftTrajectoryControl control;

Momentum momentum { 13.75 };

control.applyMomentumToSpacecraftBody(momentum);

The units can also be used to define constants. For this purpose, we need to slightly

modify the class template Value. We add the keyword constexpr (see the section entitled

“Computations During Compile Time” earlier in this chapter) to the initialization

constructor and the getMagnitude() member function. This allows us to create compile-

time constants of Value that don’t have to be initialized during runtime. As you will see

later, we can also perform computations with our physical values during compile time

now.

template <typename T> requires MksUnitType<T>

class Value {

public:

 constexpr explicit Value(const long double magnitude) noexcept :

magnitude { magnitude } {}

Chapter 5 advanCed ConCepts of Modern C++

179

 constexpr long double getMagnitude() const noexcept {

 return magnitude;

 }

private:

 long double magnitude { 0.0 };

};

Thereafter, constants of different physical units can be defined, as in the following

example:

constexpr Acceleration gravitationalAccelerationOnEarth { 9.80665 };

constexpr Pressure standardPressureOnSeaLevel { 1013.25 };

constexpr Speed speedOfLight { 299792458.0 };

constexpr Frequency concertPitchA { 440.0 };

constexpr Mass neutronMass { 1.6749286e-27 };

Furthermore, computations between units are possible if the necessary operators

are implemented. For instance, these are the addition, subtraction, multiplication,

and division operator templates that perform different calculations with two values of

different MKS units:

template <int M, int K, int S>

constexpr Value<MksUnit<M, K, S>> operator+

 (const Value<MksUnit<M, K, S>>& lhs, const Value<MksUnit<M, K, S>>& rhs)

noexcept {

 return Value<MksUnit<M, K, S>>(lhs.getMagnitude() + rhs.getMagnitude());

}

template <int M, int K, int S>

constexpr Value<MksUnit<M, K, S>> operator-

 (const Value<MksUnit<M, K, S>>& lhs, const Value<MksUnit<M, K, S>>& rhs)

noexcept {

 return Value<MksUnit<M, K, S>>(lhs.getMagnitude() - rhs.getMagnitude());

}

template <int M1, int K1, int S1, int M2, int K2, int S2>

constexpr Value<MksUnit<M1 + M2, K1 + K2, S1 + S2>> operator*

Chapter 5 advanCed ConCepts of Modern C++

180

 (const Value<MksUnit<M1, K1, S1>>& lhs, const Value<MksUnit<M2, K2, S2>>&

rhs) noexcept {

 return Value<MksUnit<M1 + M2, K1 + K2, S1 + S2>>(lhs.getMagnitude() *

rhs.getMagnitude());

}

template <int M1, int K1, int S1, int M2, int K2, int S2>

constexpr Value<MksUnit<M1 - M2, K1 - K2, S1 - S2>> operator/

 (const Value<MksUnit<M1, K1, S1>>& lhs, const Value<MksUnit<M2, K2, S2>>&

rhs) noexcept {

 return Value<MksUnit<M1 - M2, K1 - K2, S1 - S2>>(lhs.getMagnitude() /

rhs.getMagnitude());

}

Now you could write something like this:

constexpr Momentum impulseValueForCourseCorrection = Force { 30.0 } * Time

{ 3.0 };

SpacecraftTrajectoryControl control;

control.applyMomentumToSpacecraftBody(impulseValueForCourseCorrection);

That’s obviously a significant improvement over a multiplication of two meaningless

doubles and assigning the result to another meaningless double. It’s pretty expressive.

And it’s safer, because you cannot assign the result of the multiplication to something

different than a variable of type Momentum.

And the best part is this: the type safety is ensured during compile time! There is

no overhead during runtime, because a C++11 (and higher)-compliant compiler can

perform all the necessary type compatibility checks.

Let’s go one step further. Would it not be very convenient and intuitive if we could

write something like the following?

constexpr Acceleration gravitationalAccelerationOnEarth { 9.80665_ms2 };

Even that is possible with modern C++. Since C++11, we can provide custom suffixes

for literals by defining special functions—so-called literal operators—for them:

constexpr Force operator"" _N(long double magnitude) {

 return Force(magnitude);

}

Chapter 5 advanCed ConCepts of Modern C++

181

constexpr Acceleration operator"" _ms2(long double magnitude) {

 return Acceleration(magnitude);

}

constexpr Time operator"" _s(long double magnitude) {

 return Time(magnitude);

}

constexpr Momentum operator"" _Ns(long double magnitude) {

 return Momentum(magnitude);

}

// ...more literal operators here...

USER-DEFINED LITERALS [C++11]

Basically, a literal is a compile-time constant whose value is specified in the source file.

since C++11, developers can produce objects of user-defined types by defining user-defined

suffixes for literals. for instance, if a constant should be initialized with a literal of U.s.

$145.67, this can be done by writing the following expression:

constexpr Money amount = 145.67_USD;

In this case, _USD is the user-defined suffix (Important: they must always begin with an

underscore!) for floating-point literals that represent money amounts. so that a user-defined

literal can be used, a function that is known as a literal operator must be defined:

constexpr Money operator"" _USD (const long double amount) {

 return Money(amount);

}

Once we’ve defined user-defined literals for our physical units, we can work with

them in the following manner:

Force force = 30.0_N;

Time time = 3.0_s;

Momentum momentum = force * time;

Chapter 5 advanCed ConCepts of Modern C++

182

This notation is familiar to physicists and other scientists and it’s even safer. With

type-rich programming and user-defined literals, you are protected against assigning a

literal expressing a value of seconds to a variable of type Force.

Force force1 = 3.0; // Compile-time error!

Force force2 = 3.0_s; // Compile-time error!

Force force3 = 3.0_N; // Works!

It is, of course, also possible to use user-defined literals together with automatic type

deduction and/or constant expressions:

auto force = 3.0_N;

constexpr auto acceleration = 100.0_ms2;

That’s pretty convenient and quite elegant, isn’t it? So, what follows is my advice for

public interface design.

Tip Create interfaces (apIs) that are strongly typed.

With other words, you should largely avoid general, low-level built-in types, like int,

double, or—at worst—void*, in public interfaces and APIs. Such non-semantic types are

dangerous under certain circumstances, because they can represent just about anything.

Tip there are some template-based libraries available that provide types for
physical quantities, including all sI units. a well-known example is Boost.Units (part
of Boost since version 1.36.0; see http://www.boost.org). and with the UnIts
project, a header-only library developed by nic holthaus is available on Github
(https://github.com/nholthaus/units) that provides a set of data types,
containers, and traits for physical quantities.

 Know Your Libraries
Have you ever heard of the “Not invented here” (NIH) syndrome? It is an organizational

anti-pattern. The NIH syndrome is a derogatory term for a stance in many development

organizations that describes the ignoring of existing knowledge or tried-and-tested

solutions based on their place of origin. It is a form of “reinventing the wheel,” that

Chapter 5 advanCed ConCepts of Modern C++

http://www.boost.org
https://github.com/nholthaus/units

183

is, reimplementing something (a library or a framework) that is available somewhere

else. The reasoning behind this attitude is often the belief that in-house developments

must be better in several respects. They are often mistakenly regarded as cheaper,

more secure, more flexible, and more controllable than existing and well-established

solutions.

In fact, only a few companies succeed in developing a truly equivalent, or even better

alternative, to a solution that exists on the market. Often, the enormous effort of such

developments does not justify the low benefit. And not infrequently is the self-developed

library or framework clearly worse in quality compared to existing and mature solutions

that have existed for years.

Over the past decades, many excellent libraries and frameworks have emerged in the

C++ environment. These solutions had the chance to mature over a long time, and have

been used successfully in tens of thousands of projects. There is no need to reinvent the

wheel. Good software craftspeople should know about these libraries. It is not required to

know every tiny detail about these libraries and their APIs. It is just good to know, however,

that there are tried-and-tested solutions for certain fields of application, which are worth

looking at to take into a narrower selection for your software development project.

 Take Advantage of <algorithm>

“If you want to improve the code quality in your organization, replace all
your coding guidelines with one goal: No raw loops!”

—Sean Parent, principal software architect with Adobe,
at CppCon 2013

Fiddling with collections of elements is everyday business in programming. Regardless

of whether we are dealing with collections of measurement data, with emails, strings,

records from a database, or other elements, software must filter them, sort them, delete

them, manipulate them, and more.

In many programs, we can find “raw loops” (e.g., hand-crafted for loops or while

loops) for visiting some or all elements in a container, or sequence, in order to do

something with them. A simple example is to reverse an order of integers stored in a

std::vector this way:

#include <vector>

std::vector<int> integers { 2, 5, 8, 22, 45, 67, 99 };

Chapter 5 advanCed ConCepts of Modern C++

184

// ...somewhere in the program:

std::size_t leftIndex = 0;

std::size_t rightIndex = integers.size() - 1;

while (leftIndex < rightIndex) {

 int buffer = integers[rightIndex];

 integers[rightIndex] = integers[leftIndex];

 integers[leftIndex] = buffer;

 ++leftIndex;

 --rightIndex;

}

Basically this code will work. But it has several disadvantages. It is difficult to see

immediately what this piece of code is doing (in fact, the first three lines inside the while

loop could be substituted with std::swap from the <utility> header). Furthermore,

writing code this way is very tedious and error prone. Just imagine that, for any reason,

we violate the boundaries of the vector and try to access an element at a position out of

range. Unlike member function std::vector::at(), std::vector::operator[] does

not raise a std::out_of_range exception then. It will lead to undefined behavior.

The C++ Standard Library provides more than 100 useful algorithms that can be

applied to containers or sequences for searching, counting, and manipulating elements.

They are collected in the <algorithm> header.

For example, to reverse the order of elements in any kind of Standard Library

container, for example, in a std::vector, we can simply use std::reverse:

#include <algorithm>

#include <vector>

std::vector<int> integers = { 2, 5, 8, 22, 45, 67, 99 };

// ...somewhere in the program:

std::reverse(begin(integers), end(integers));

// The content of 'integers' is now: 99, 67, 45, 22, 8, 5, 2

Unlike our self-written solution before, this code is much more compact, less error

prone, and easier to read. Since std::reverse is a function template (like all other

algorithms too), it is universally applicable to all Standard Library sequence containers,

Chapter 5 advanCed ConCepts of Modern C++

185

associative containers, unordered associative containers, std::string, and primitive

arrays (which, by the way, should not be used anymore in a modern C++ program;

see the section “Prefer Standard Library Containers over Simple C-Style Arrays” in

Chapter 4). See Listing 5-23.

Listing 5-23. Applying std::reverse to a C-Style Array and a String

#include <algorithm>

#include <string>

// Works, but primitive arrays should not be used in a modern C++ program

int integers[] = { 2, 5, 8, 22, 45, 67, 99 };

std::reverse(begin(integers), end(integers));

std::string text { "The big brown fox jumps over the lazy dog!" };

std::reverse(begin(text), end(text));

// Content of 'text' is now: "!god yzal eht revo spmuj xof nworb gib ehT"

The reverse algorithm can be applied, of course, also to sub-ranges of a container or

sequence, as shown in Listing 5-24.

Listing 5-24. Only a Sub-Area of the String Is Reversed

std::string text { "The big brown fox jumps over the lazy dog!" };

std::reverse(begin(text) + 13, end(text) - 9);

// Content of 'text' is now: "The big brown eht revo spmuj xof lazy dog!"

 Easier Parallelization of Algorithms Since C++17

“Your free lunch will soon be over.”

—Herb Sutter [Sutter04]

The previous quote, which was addressed to software developers all over the world, is

taken from an article published by Herb Sutter, member of the ISO C++ standardization

committee, in 2004. It was at a time when the clock rates of processors stopped

increasing from year to year. In other words, serial-processing speed has reached a

physical limit. Instead, processors were increasingly equipped with more cores. This

development in processor architectures leads to a heavy consequence: developers can

Chapter 5 advanCed ConCepts of Modern C++

186

no longer take advantage of ever-increasing processor performance by clock rates—the

“free lunch” that Herb was talking about—but they will be forced to develop massively

multithreaded programs as a way to better utilize modern multi-core processors. As a

result, developers and software architects now need to consider parallelization in their

software architecture and design.

Before the advent of C++11, the C++ standard supported only single-threaded

programming, and you have to use third-party libraries (e.g., Boost.Thread) or compiler

extensions (e.g., Open Multi-Processing—OpenMP) to parallelize your programs. Since

C++11, the Thread Support Library is available to support multithreaded and parallel

programming. This extension of the Standard Library has introduced threads, mutual

exclusions, condition variables, and futures.

Parallelizing a section of code requires good problem knowledge and must be

considered in the software design accordingly. Otherwise, subtle errors caused by race

conditions can occur that could be very difficult to debug. Especially for the algorithms

of the Standard Library, which often have to operate on containers that are filled with a

huge number of objects, the parallelization should be simplified for developers in order

to exploit today’s modern multi-core processors.

Starting with C++17, parts of the Standard Library have been redesigned according to

the Technical Specification for C++ Extensions for Parallelism (ISO/IEC TS 19570:2015),

also known as the Parallelism TS (TS stands for technical specification). In other words,

with C++17 these extensions became part of the mainline ISO C++ standard. Their main

goal is to relieve developers a bit from the complex task of fiddling around with those

low-level language features from the Thread Support Library, such as std::thread,

std::mutex, etc.

In fact that means that about 70 well-known algorithms were overloaded and are

now also available in one or more versions accepting an extra template parameter for

parallelization called ExecutionPolicy. Some of these algorithms are, for instance,

std::for_each, std::transform, std::copy_if, or std::sort. Furthermore, seven

new algorithms have been added that can also be parallelized, like std::reduce,

std::exclusive_scan, or std::transform_reduce. These new algorithms are

particularly useful in functional programming, which is why I discuss them in Chapter 7.

Chapter 5 advanCed ConCepts of Modern C++

187

EXECUTION POLICIES [C++17/C++20]

With the appearance of the standard C++17, a majority of algorithm templates from the

<algorithm> header have been overloaded and are also available in a parallelizable version.

for example, in addition to the existing template for the std::find function, another version

has been defined that takes an additional template parameter to specify the execution policy:

// Standard (single-threaded) version:

template< class InputIt, class T >

constexpr InputIt find(InputIt first, InputIt last, const T& value);

// Additional version with user-definable execution policy (since C++17):

template< class ExecutionPolicy, class ForwardIt, class T >

ForwardIt find(ExecutionPolicy&& policy, ForwardIt first, ForwardIt last,

const T& value);

the four standard policy tags that are available in C++20 for the template parameter

ExecutionPolicy are:

• std::execution::seq (since C++17). an execution policy type that defines

that a parallel algorithm’s execution may be sequentially. hence, it is more or

less the same as you would use the single-threaded standard version of the

algorithm template function without an execution policy.

• std::execution::par (since C++17.) an execution policy type that

defines that a parallel algorithm’s execution may be parallelized. It permits the

implementation to execute the algorithm on multiple threads. Important: the

parallel algorithms do not automatically protect against critical data races or

deadlocks! You are responsible for ensuring that no data race conditions can

occur while executing the function.

• std::execution::par_unseq (since C++17). an execution policy type that

defines that a parallel algorithm’s execution may be vectorized, parallelized,

or migrated across threads. vectorization takes advantage of the sIMd (Single
Instruction, Multiple Data) command set of modern CpUs. sIMd means

that a processor can perform the same operation on multiple data points

simultaneously.

Chapter 5 advanCed ConCepts of Modern C++

188

• std::execution::unseq (since C++20). an execution policy type that

defines that a parallel algorithm’s execution may be vectorized, i.e., the

algorithm takes advantage of sIMd and can perform the same operation on

multiple data elements simultaneously.

of course, it makes absolutely no sense to sort a small vector with a few elements in parallel.

the overhead for thread management would be much higher than the gain on performance.

thus, an execution policy should also be selectable dynamically during runtime, for example,

by taking the size of the vector into consideration. Unfortunately, as it was the case when the

C++17 standard was adopted, so-called dynamic execution policies are also not included in

C++20.

A full discussion of all available algorithms is way beyond the scope of this book. But

after this short introduction to the <algorithm> header and the advanced possibilities

of parallelization with C++20, let’s look at a few examples of what can be done with

algorithms.

 Sorting and Output of a Container

The following example uses two templates from the <algorithm> header: std::sort

and std::for_each. Internally, std::sort is using the quicksort algorithm. By default,

the comparisons inside std::sort are performed with the operator< function of the

elements. This means that if you want to sort a sequence of instances of one of your own

classes, you have to ensure that operator< is properly implemented on that type. See

Listing 5-25.

Listing 5-25. Sorting a Vector of Strings and Printing Them on stdout

#include <algorithm>

#include <iostream>

#include <string>

#include <string_view>

#include <vector>

void printCommaSeparated(std::string_view text) {

 std::cout << text << ", ";

}

Chapter 5 advanCed ConCepts of Modern C++

189

int main() {

 std::vector<std::string> names = { "Peter", "Harry", "Julia", "Marc",

"Antonio", "Glenn" };

 std::sort(begin(names), end(names));

 std::for_each(begin(names), end(names), printCommaSeparated);

 return 0;

}

But couldn’t this be even easier? Yes it could!

 More Convenience with Ranges

Maybe you have sometimes also asked yourself why there is no more comfortable API

for the algorithms than always calling them with two iterators of a container, usually the

start and the end iterator. After all, applying an algorithm to all elements in a container

or sequence is probably the most common use case.

Maybe you’ve heard about the so-called Range Library for C++14/17/20, written by

Eric Niebler, a member of the ISO C++ Standardization Committee. Eric’s library code

became the basis of a formal proposal to add range support to the C++ Standard Library.

It was merged into the C++20 working drafts in November 2018 and finally became part

of the C++20 standard.

C++20 Ranges is a header-only library that simplifies the dealing with containers of

the C++ Standard Library or containers from other libraries (e.g., Boost). With the help

of this library, you can get rid of the sometimes tricky juggling with iterators in various

situations. For instance, instead of writing:

std::sort(std::begin(container), std::end(container));

you can simply write:

std::ranges::sort(container);

With the help of ranges, the example in Listing 5-25 can be implemented more

simply and becomes much more readable, as shown in Listing 5-26.

Chapter 5 advanCed ConCepts of Modern C++

190

Listing 5-26. Sorting and Printing a Vector of Strings with the Help of Ranges

#include <algorithm>

#include <iostream>

#include <ranges>

#include <string>

#include <string_view>

#include <vector>

void printCommaSeparated(std::string_view text) {

 std::cout << text << ", ";

}

int main() {

 std::vector<std::string> names = { "Peter", "Harry", "Julia", "Marc",

"Antonio", "Glenn" };

 std::ranges::sort(names);

 std::ranges::for_each(names, printCommaSeparated);

 return 0;

}

For many algorithms from the <algorithm> header that require iterators as

parameters, there is a corresponding alternative with this simplified interface in the

std::ranges namespace. But C++20 Ranges offers even more: Views!

 Non-Owning Ranges with Views

Containers from the C++ Standard Library are owners of their elements. For instance, if

you delete a std::vector, all the elements stored in it are also deleted.

In contrast, views are a category of ranges that do not own any element. Views

can be applied to other ranges, or to subareas of these ranges, and provide a kind of

“transformed view” onto the elements in the underlying range. These “transformed

views” are generated by algorithms or operations.

It is important to know that views are lazy-evaluated, i.e. whatever transformation

they apply to the underlying range, they do so at the moment users request an element,

not when the view is created! In other words, applying the std::reverse algorithm on

a container manipulates the ordering of its elements immediately, whereas applying

std::views::reverse on the same container doesn’t change it in this moment:

Chapter 5 advanCed ConCepts of Modern C++

191

#include <iostream>

#include <ranges>

#include <vector>

std::vector<int> integers = { 2, 5, 8, 22, 45, 67, 99 };

auto view = std::views::reverse(integers); // does not change 'integers'

The proof that the view does not manipulate the underlying range can be provided

by outputting the first element of the view and vector to stdout:

std::cout << *view.begin() << ", " << *integers.begin() << '\n';

The output is as follows:

99, 2

It must be emphasized again that the computation that the first element of the view

view corresponds to the last element of the vector named integers is done on demand.

This also reveals something that needs to be considered when using views: if the same

element is requested again, the same transformation has to be performed again! This

can lead to performance losses, especially with complex transformations.

That’s all for now; you will learn about a few more features of ranges in Chapter 7 on

functional programming.

 Comparing Two Sequences

The example in Listing 5-27 compares two sequences of strings using std::equal.

Listing 5-27. Comparing Two Sequences of Strings

#include <algorithm>

#include <iostream>

#include <string>

#include <vector>

int main() {

 const std::vector<std::string> names1 { "Peter", "Harry", "Julia",

"Marc", "Antonio", "Glenn" };

Chapter 5 advanCed ConCepts of Modern C++

192

 const std::vector<std::string> names2 { "Peter", "Harry", "Julia",

"John", "Antonio", "Glenn" };

const bool isEqual = std::equal(begin(names1), end(names1), begin(names2),

end(names2));

 if (isEqual) {

 std::cout << "The contents of both sequences are equal.\n";

 } else {

 std::cout << "The contents of both sequences differ.\n";

 }

 return 0;

}

By default, std::equal compares elements using operator==. But you can define

“equalness” as you want. The standard comparison can be replaced with a custom

comparison operation, as shown in Listing 5-28.

Listing 5-28. Comparing Two Sequences of Strings Using a Custom Predicate

Function

#include <algorithm>

#include <iostream>

#include <string>

#include <vector>

bool compareFirstThreeCharactersOnly(const std::string& string1,

 const std::string& string2) {

 return (string1.compare(0, 3, string2, 0, 3) == 0);

}

int main() {

 const std::vector<std::string> names1 { "Peter", "Harry", "Julia",

"Marc", "Antonio", "Glenn" };

 const std::vector<std::string> names2 { "Peter", "Harold", "Julia",

"Maria", "Antonio","Glenn" };

Chapter 5 advanCed ConCepts of Modern C++

193

 const bool isEqual = std::equal(begin(names1), end(names1),

begin(names2),

 end(names2), compareFirstThreeCharactersOnly);

 if (isEqual) {

 std::cout << "The first three characters of all strings in both

sequences are equal.\n";

 } else {

 std::cout << "The first three characters of all strings in both

sequences differ.\n";

 }

 return 0;

}

If no reusability is required for the comparison function

compareFirstThreeCharactersOnly(), the line where the comparison takes place can

also be implemented using a lambda expression, like this:

 // Compare just the first three characters of every string to ascertain

equalness:

 const bool isEqual =

 std::equal(begin(names1), end(names1), begin(names2), end(names2),

 [](const auto& string1, const auto& string2) {

 return (string1.compare(0, 3, string2, 0, 3) == 0);

 });

We discuss lambda expressions in more detail in Chapter 7. This alternative may

appear more compact, but it does not necessarily contribute to the readability of the

code. The explicit function compareFirstThreeCharactersOnly() has a semantic

name that expresses very clearly what is compared (not the how; see the section “Use

Intention-Revealing Names” in Chapter 4). What exactly is compared cannot necessarily

be seen at first sight from the version with the lambda expression. Always keep in mind

that the readability of our code should be one of our first goals. Also keep in mind that

source code comments are basically a code smell and not suitable to explain hard-to-

read code (remember the section about comments in Chapter 4).

Chapter 5 advanCed ConCepts of Modern C++

194

 Take Advantage of Boost
I can’t give a broad introduction into the famous Boost library (www.boost.org,

distributed under the Boost Software License, Version 1.0) here. The library (in fact, it is

a library of libraries) is too big and too powerful, and discussing it in detail is beyond the

scope of this book. Furthermore, there are numerous good books and tutorials about

Boost.

But I think that it is very important to know about this library and its content. Many

problems and challenges that C++ developers face in their daily work can be pretty well

solved with libraries from Boost.

Beyond that, Boost is a kind of “incubator” for several libraries that are sometimes

accepted to become part of the C++ language standard, if they have a certain level of

maturity. Be careful, that does not necessarily mean that they are fully compatible! For

instance, std::thread (part of the standard since C++11) is partially equal to Boost.

Thread, but there are some differences. For example, the Boost implementation supports

thread cancellation, something that is available in the Standard Library only since C++20

(std::jthread). On the other hand, C++11 supports std::async, but Boost does not.

From my perspective, it is worth it to know the libraries from Boost, and to

remember when you have a suitable problem that can be properly solved by them.

 More Libraries That You Should Know About
Apart from Standard Library containers, <algorithm>, Ranges, and Boost, there are

some more libraries out there that you might take into consideration when writing

your code. Here is an incomplete list of libraries that are worth looking at when you are

confronted with a certain suitable problem:

• Atomic types (<atomic>): A collection of templates and types

available since C++11 that different threads can simultaneously

operate on without raising undefined behavior (data races; see

the sidebar about “Atomic Operations” in the section about smart

pointers). The central element is the class template std::atomic<T>,

which can be used to define atomic types. For all integral data types,

corresponding aliases are predefined, for example atomic_int32_t

for std::atomic<int32_t>.

Chapter 5 advanCed ConCepts of Modern C++

http://www.boost.org

195

• Date and time utilities (<chrono>): Since C++11, the language

provides a collection of types to represent clocks, time points,

and durations. And with the latest standard C++20, dates and

time zones have also been added. For instance, you can represent

time intervals with the help of std::chrono::duration. And with

std::chrono::system_clock, a system-wide real-time clock is

available. You can use the library since C++11 by just including the

<chrono> header.

• Pseudo-random number generator library (<random>): A library

available since C++11 that provides classes for generating random

and pseudo-random numbers. This library is a much better,

more modern, and more powerful alternative to the old C library

function combination srand() with rand(). With the <random>

header, developers get a selection of Random Number Generators

(RNG) with different engines (Minimum standard, 32-bit and 64-

bit Mersenne Twister, etc.) and distributions (Normal, Uniform,

Bernoulli, etc.) at hand.

• Regular expressions library (<regex>): Since C++11, a regular

expressions library is available that can be used to perform pattern

matching within strings. Also the replacement of text within a string

based on regular expressions is supported. You can use the library

since C++11 by just including the <regex> header.

• Filesystem library (<filesystem>): Since C++17, the Filesystem

library has become part of the standard. Before it became part of

the mainline C++ standard, it was a technical specification (ISO/

IEC TS 18822:2015). The operational system independent library

provides various facilities for performing operations on file systems

and their components. With the help of <filesystem> you can create

directories, copy files, iterate over directory entries, retrieve the size

of a file, etc. You can use the library since C++17 by just including the

<filesystem> header.

Tip If you are currently not working according to the C++17 standard or higher,
Boost.Filesystem could be an alternative.

Chapter 5 advanCed ConCepts of Modern C++

196

• Concurrent data structures (libcds): A mostly header-only C++

template library written by Max Khizhinsky, this provides lock-free

algorithms and concurrent data structure implementations for

parallel high-performance computing. The library is written using

modern C++ (C++11 and higher) and published under a BSD license.

libcds and its documentation can be found on SourceForge at

http://libcds.sourceforge.net.

 Proper Exception and Error Handling
Maybe you have heard the term cross-cutting concerns? This expression includes

all those things that are difficult to address through a modularization concept and

therefore require special treatment by software architecture and design. One of these

typical cross-cutting concerns is security. If you have to take care of data security and

access restrictions in your software system, because it is demanded by certain quality

requirements, it is a sensitive topic that pervades the whole system. You have to deal

with it nearly everywhere, in virtually every component.

Another cross-cutting concern is transaction handling. Especially in software

applications that use databases, you have to ensure that a so-called transaction, which is

a coherent series of single operations, must succeed or fail as a complete logical unit; it

can never be only partially complete.

And as another example, logging is also a cross-cutting concern. Logging is

typically needed everywhere in a software system. Sometimes the domain-specific and

productive code is littered with log statements, which is detrimental to the readability

and understandability of the code.

If the software architecture does not take care of these cross-cutting concerns, this

could lead to inconsistent solutions. For instance, two different logging frameworks

could be used in the same project, because two development teams working on the

same system decided to choose different frameworks.

The exception and error handling is another cross-cutting concern. Dealing with

errors and unpredictable exceptions that require special responses and treatments is

mandatory in every software system. And, of course, the system-wide error-handling

strategies should be uniform and consistent. Hence, it is very important that the people

responsible for the software’s architecture have to design and develop an error-handling

strategy quite early in the project.

Chapter 5 advanCed ConCepts of Modern C++

http://libcds.sourceforge.net

197

Well, but what are the principles that guide us in developing a good error-handling

strategy? When is it justified to throw an exception? How do I deal with thrown

exceptions? And for what purposes should exceptions never be used? What are the

alternatives?

The following sections present some rules, guidelines, and principles that help C++

programmers design and implement a good error-handling strategy.

 Prevention Is Better Than Aftercare
A fundamentally good basic strategy for dealing with errors and exceptions is to

generally avoid them. The reason for this is obvious: everything that cannot happen does

not have to be treated.

Maybe you will say now, well, this is a truism. Of course it is much better to avoid

errors or exceptions, but sometimes it is not possible to prevent them. You’re right,

it sounds banal at first glance. And yes, especially when using third-party libraries,

accessing databases, or accessing an external system, unforeseeable things can happen.

But for your own code, meaning the parts of the system that you can design as you want,

you can take appropriate measures to avoid exceptions as far as possible.

David Abrahams, an American programmer, former ISO C++ standardization

committee member, and a founding member of Boost C++ Libraries, created an

understanding of what is called exception safety and presented it in a paper [Abrahams98]

in 1998. The set of contractual guidelines formulated in this paper, which are also known

as the “Abrahams Guarantees,” had a significant influence on the design of the C++

Standard Library and how this library deals with exceptions. But these guidelines are not

only relevant to low-level library implementers. They can also be considered by software

developers who are writing the application code on higher abstraction levels.

Exception safety is part of the interface design. An interface (API) does not only

consist of function signatures, that is, a function’s parameters and return types. The

exceptions that might be thrown if a function is invoked are also part of its interface.

Furthermore, there are three more aspects that must be considered:

• Precondition: A condition that must always be true before a function

or a class’s method is invoked. If a precondition is violated, no

guarantee can be given that the function call leads to the expected

result. The function call may succeed, may fail, can cause unwanted

side effects, or show undefined behavior.

Chapter 5 advanCed ConCepts of Modern C++

198

• Invariant: A condition that must always be true during the execution

of a function or method. In other words, it is a condition that is true at

the beginning and at the end of a function’s execution. A special form

of an invariant in object-orientation is a class invariant. If such an

invariant is violated, the object (instance) of the class is left behind in

an incorrect and inconsistent state after a method call.

• Postcondition: A condition that must always be true immediately

after the execution of a function or method. If a postcondition

is violated, an error must have occurred during execution of the

function or method.

The idea behind exception safety is that functions, or a class and its methods, give

their clients a kind of promise, or a guarantee, about invariants, postconditions, and

about exceptions that might be thrown or not thrown. There are four levels of exception

safety. In the following subsections, I discuss them shortly in increasing order of safety.

 No Exception Safety

With this lowest level of exception safety—literally, no exception safety—absolutely

nothing is guaranteed. Any occurring exception can have disastrous consequences. For

instance, invariants and postconditions of the called function or method are violated,

and a portion of your code, for example, an object, is possibly left behind in a corrupted

state.

I think that there is no doubt that the code written by you should never ever offer
this inadequate level of exception safety! Just pretend that there is no such thing as “no

exception safety.” That’s all; there’s nothing more to say about that.

 Basic Exception Safety

The basic exception safety guarantee is the guarantee that any piece of code should offer

at least. It is also the exception safety level that can be achieved with relatively little

implementation effort. This level guarantees the following:

• If an exception is thrown during a function or method call, it is

ensured that no resources are leaked! This guarantee includes memory

resources as well as other resources. This can be achieved by applying

RAII pattern (see the section about RAII and smart pointers).

Chapter 5 advanCed ConCepts of Modern C++

199

• If an exception is thrown during a function or method call, all

invariants are preserved.

• If an exception is thrown during a function or method call, there will

be no corruption of data or memory afterward, and all objects are in

a healthy and consistent state. However, it is not guaranteed that the

data content is the same as before the function or method has been

called.

Tip the strict rule is this: design your code, especially your classes, such that
they guarantee at least the basic exception safety. this should always be the
default exception-safety level!

It is important to know that the C++ Standard Library expects all user types to give at

least the basic exception guarantee.

 Strong Exception Safety

The strong exception safety guarantees everything that is also guaranteed by the basic

exception safety level, but also ensures that in case of an exception, the data is recovered

exactly as before the function or method was called. In other words, with this exception-

safety level, we get commit or rollback semantics like in transaction handling on

databases.

It is easy to comprehend that this exception-safety level leads to a higher

implementation effort and can be costly at runtime. An example of this additional effort

is the so-called copy-and-swap idiom that must be used to ensure strong exception safety

for copy assignment.

Equipping your whole code with strong exception safety without any good reasons

would violate the KISS and YAGNI principles (see Chapter 3). Hence, the guideline

regarding this is in the following tip.

Tip Issue the strong exception safety guarantee for your code only if it is
absolutely required or if the implementation efforts are small compared to the
benefits you get (see the Copy-and-swap idiom discussed in Chapter 9).

Chapter 5 advanCed ConCepts of Modern C++

200

Of course, if there are certain quality requirements regarding data integrity and data

correctness that have to be satisfied, you have to provide the rollback mechanism that is

guaranteed through strong exception safety.

 The No-Throw Guarantee

This is the highest exception-safety level, also known as failure transparency. Simply

speaking, this level means that as a caller of a function or method, you don’t have to

worry about exceptions. The function or method call will succeed. Always! It will never

throw an exception, because everything is properly handled internally. There will never

be violated invariants and postconditions.

This is the all-round carefree package of exception safety, but it is sometimes very

difficult or even impossible to achieve, especially in C++. For instance, if you use any

kind of dynamic memory allocation inside a function, like operator new, either directly or

indirectly (e.g., via std::make_shared<T>), you have absolutely no chance to end up with

a successfully processed function after an exception was encountered.

Here are the cases where the no-throw guarantee is either absolutely mandatory or

at least explicitly advised:

• Destructors of classes must guarantee to be no-throw under
all circumstances! The reason is that, among other situations,

destructors are also called while stack unwinding after an exception

has been encountered. It would be fatal if another exception would

occur during stack unwinding, because the program would terminate

immediately.

As a consequence, any operation inside a destructor that deals with

allocated resources and tries to close them, like opened files or

allocated memory on the heap, must not throw.

• Move operations (move constructors and move assignment operators;

see the earlier section about move semantics) should guarantee to be
no-throw. If a move operation throws an exception, the probability is

enormously high that the move has not taken place. Hence, it should

be avoided at all costs that implementations of move operations

allocate resources via resource allocation techniques that can throw

exceptions. Furthermore, it is important to give the no- throw guarantee

for types that are intended to be used with the C++ Standard Library

Chapter 5 advanCed ConCepts of Modern C++

201

containers. If the move constructor for an element type in a container

doesn’t give a no-throw guarantee (i.e., the move constructor is not

declared with the noexcept specifier), then the container will prefer

using the copy operations rather than the move operations.

• Default constructors should be preferably no-throw. Basically,

throwing an exception in a constructor is not desirable, but it is the

best way to deal with constructor failures. A “half-constructed object”

does highly likely violate invariants. And an object in a corrupt state

that violates its class invariants is useless and dangerous. Therefore,

there is nothing speaking against throwing an exception in a default

constructor when it is unavoidable. However, it is a good design

strategy to largely avoid it. Default constructors should be simple. If a

default constructor can throw, it is probably doing too many complex

things. Hence, when designing a class, you should try to avoid

exceptions in the default constructor.

• A swap function must guarantee to be no-throw under all
circumstances! An expertly implemented swap() function should

not allocate any resources (e.g., memory) using memory allocation

techniques that potentially can throw exceptions. It would be fatal if

swap() can throw, because it can end up with an inconsistent state.

The best way to write an exception-safe operator=() is using a non-

throwing swap() function for its implementation (see the Copy-and-

Swap idiom in Chapter 9).

NOEXCEPT SPECIFIER AND OPERATOR [C++11]

prior to C++11, the throw keyword could be in a function’s declaration. It was used to list all

exception types in a comma-separated list that a function might directly or indirectly throw,

known as the dynamic exception specification. The usage of throw(exceptionType,
exceptionType, ...) is deprecated since C++11 and has been finally removed
from the standard in C++17! What was still available, but also marked as deprecated

since C++11, was the throw() specifier without an exception type list. This has now also
been removed from the standard with C++20. Its semantics are now the same as the

noexcept(true) specifier.

Chapter 5 advanCed ConCepts of Modern C++

202

the noexcept specifier in a function’s signature declares that the function may not throw any

exceptions. the same is valid for noexcept(true), which is just a synonym for noexcept.

Instead, a function that is declared with noexcept(false) is potentially throwing, that is, it

may throw exceptions. here are some examples:

void nonThrowingFunction() noexcept;

void anotherNonThrowingFunction() noexcept(true);

void aPotentiallyThrowingFunction() noexcept(false); // The default if nothing

has been specified.

there are two good reasons for using noexcept: first, exceptions that a function or method

could throw (or not) are parts of the function’s interface. It is about semantics, and helps a

developer who’s reading the code to know what might happen and what not might happen.

noexcept tells developers that they can safely use this function in their own non-throwing

functions. hence, the presence of noexcept is somewhat akin to const.

second, it can be used by the compiler for optimizations. noexcept potentially allows a

compiler to compile the function without adding the runtime overhead that was formerly

required by the removed throw(...); that is, the object code that was necessary to call

std::unexpected() when an exception that was not listed was thrown.

for template implementers, there is also a noexcept operator, which performs a compile-

time check that returns true if the expression is declared to not throw any exceptions:

constexpr auto isNotThrowing = noexcept(nonThrowingFunction());

Note constexpr functions (see the section entitled “Computations during
Compile time”) can also throw when evaluated at runtime, so you may also need
noexcept for some of those.

 An Exception Is an Exception, Literally!
In Chapter 4, we discussed in the section “Do Not Pass or Return 0 (NULL, nullptr),” that

you should not return nullptr as a return value from a function. As a code example, we

had a small function that should perform a lookup for a customer by name, which of

Chapter 5 advanCed ConCepts of Modern C++

203

course leads to no result if this customer cannot be found. Someone could now come up

with the idea that we could throw an exception for a non-found customer, as shown in

the following code example.

#include "Customer.h"

#include <string>

#include <exception>

class CustomerNotFoundException : public std::exception {

private:

 const char* what() const noexcept override {

 return "Customer not found!";

 }

};

// ...

Customer CustomerService::findCustomerByName(const std::string& name) const {

 // Code that searches the customer by name...

 // ...and if the customer could not be found:

 throw CustomerNotFoundException();

}

Now let’s take a look at the invocation site of this function:

 Customer customer;

 try {

 customer = findCustomerByName("Non-existing name");

 } catch (const CustomerNotFoundException& ex) {

 // ...

 }

 // ...

At first sight, this seems to look like a feasible solution. If we have to avoid returning

nullptr from the function, we can throw a CustomerNotFoundException instead. At the

invocation site, we are now able to distinguish between the happy case and the bad case

with the help of a try-catch construct.

In fact, it is a really bad solution! Not finding a customer just because its name does

not exist is definitely no exceptional case. These are things that will happen normally.

Chapter 5 advanCed ConCepts of Modern C++

204

Just think about a search function for users of a software application that deals with

customers and allows a free text search.

What has been done in the previous example is an abuse of exceptions. Exceptions

are not there to control the normal program flow. Exceptions should be reserved for
what’s truly exceptional!

What does “truly exceptional” mean? Well, it means that there is nothing you can do

about it, and you cannot really handle that exception. For instance, let’s assume that you

are confronted with a std::bad_alloc exception, which means that there was a failure

to allocate memory. How should the program continue now? What was the root cause

for this problem? Does the underlying hardware system have a lack of memory? Well,

then we have a really serious problem! Is there any meaningful way to recover from this

serious exception and resume the program’s execution? Can we still take responsibility if

the program simply continues running as if nothing happened?

These questions cannot be answered easily. Perhaps the real trigger for this problem

was a dangling pointer, which has been used inexpertly millions of instructions before

we’ve encountered the std::bad_alloc exception. All of this can seldom be reproduced

at the time of the exception.

Tip throw exceptions only in very exceptional cases. do not misuse exceptions
to control the normal program flow.

You might wonder now, it is bad to use nullptr and NULL as a return value, and

exceptions are also undesired, then what should I do instead? In the section entitled

“Special Case Object (Null Object)” in Chapter 9 about design patterns, I present a

feasible solution to handle these cases in a proper way.

 If You Can’t Recover, Get Out Quickly
If you are confronted with an exception from which you cannot recover, it is often the

best approach to log the exception (if possible), or to generate a crash dump file for later

analyzing purposes, and to terminate the program immediately. A good example where

a quick termination can be the best reaction is a failed memory allocation. If a system

lacks memory, well, what should you do in the context of your program?

The principle behind this strict handling strategy for some critical exceptions and

errors is called “Dead Programs Tell No Lies” and is described in the book Pragmatic

Programmer [Hunt99].

Chapter 5 advanCed ConCepts of Modern C++

205

Nothing is worse than continuing after a serious error as if nothing had happened,

and to produce, for example, tens of thousands of erroneous bookings, or to send the lift

for the hundredth time from the cellar to the top floor and back. Instead, get out before

too much consequential damage occurs.

 Define User-Specific Exception Types
Although you can throw whatever you want in C++, like an int or a const char*, I would

not recommend it. Exceptions are caught by types; hence it is a very good idea to create

your custom exception classes for certain, mostly domain-specific, exceptions. As I

explained in Chapter 4, good naming is crucial for the readability and the maintainability

of the code, and exception types should have good names. Further principles, which are

valid for designing the “normal” program code, are of course also valid for exception

types (we discuss these principles in detail in the Chapter 6 about object orientation).

To provide your own exception type, you can simply create your own class and derive

them from std::exception (defined in the <stdexcept> header):

#include <stdexcept>

class MyCustomException : public std::exception {

public:

 const char* what() const noexcept override {

 return "Provide some details about what was going wrong here!";

 }

};

By overriding the virtual what() member function inherited from std::exception,

we can provide some information to the caller about what went wrong. Furthermore,

deriving our own exception class from std::exception will make it catchable by a

generic catch clause (which, by the way, should only be regarded as the very last

possibility to catch an exception), like this one:

#include <iostream>

// ...

try {

 doSomethingThatThrows();

Chapter 5 advanCed ConCepts of Modern C++

206

} catch (const std::exception& ex) {

 std::cerr << ex.what() << std::endl;

}

Basically, exception classes should have a simple design, but if you want to provide

more details about the cause of the exception, you can also write more sophisticated

classes, like the one in Listing 5-29.

Listing 5-29. A Custom Exception Class for Divisions by Zero

class DivisionByZeroException : public std::exception {

public:

 DivisionByZeroException() = delete;

 explicit DivisionByZeroException(const int dividend) {

 buildErrorMessage(dividend);

 }

 const char* what() const noexcept override {

 return errorMessage.c_str();

 }

private:

 void buildErrorMessage(const int dividend) {

 errorMessage = "A division with dividend = ";

 errorMessage += std::to_string(dividend);

 errorMessage += ", and divisor = 0, is not allowed (Division by Zero)!";

 }

 std::string errorMessage;

};

Note that due to its implementation, the private member function

buildErrorMessage() can only guarantee strong exception safety, that is, it may throw

due to the use of std::string::operator+=()! Hence, the initialization constructor

cannot give the no-throw guarantee. That’s why exception classes generally should

have a pretty simple design.

Chapter 5 advanCed ConCepts of Modern C++

207

Here is a small example of the DivisionByZeroException class:

int divide(const int dividend, const int divisor) {

 if (divisor == 0) {

 throw DivisionByZeroException(dividend);

 }

 return dividend / divisor;

}

int main() {

 try {

 divide(10, 0);

 } catch (const DivisionByZeroException& ex) {

 std::cerr << ex.what() << std::endl;

 return 1;

 }

 return 0;

}

 Throw by Value, Catch by const Reference
Sometimes I’ve seen exception objects allocated on the heap with the help of new and

thrown as a pointer, like in this example:

try

{

 CFile f(_T("M_Cause_File.dat"), CFile::modeWrite);

 // If "M_Cause_File.dat" does not exist, the constructor of CFile throws

an exception

 // this way: throw new CFileException()

}

catch(CFileException* e)

{

 if(e->m_cause == CFileException::fileNotFound)

 TRACE(_T("ERROR: File not found\n"));

 e->Delete();

}

Chapter 5 advanCed ConCepts of Modern C++

208

Perhaps you have recognized this C++ coding style: throwing and catching

exceptions in this manner can be found in the good old MFC (Microsoft Foundation

Classes) library galore. And it is important that you don’t forget to call the Delete()

member function at the end of the catch clause; otherwise you can say “Hello!” to

memory leaks.

Well, throwing exceptions with new and catching them as a pointer is possible in

C++, but it is bad design. Don’t do it! If you forget to delete the exception object, it will

result in a memory leak. Throw the exception object by value, and catch them by const

reference, as can be seen in all the previous examples.

 Pay Attention to the Correct Order of Catch Clauses
If you provide more than one catch clause after a try block, for example to distinguish

between different types of exceptions, it is important that you do so in the correct order.

Catch clauses are evaluated in the order they appear. This means that the catch clauses

for the more specific exception types must come first. In the example in Listing 5-30,

exception classes DivisionByZeroException and CommunicationInterruptedException

are both derived from std::exception.

Listing 5-30. The More Specific Exceptions Must Be Handled First

try {

 doSomethingThatCanThrowSeveralExceptions();

} catch (const DivisionByZeroException& ex) {

 // ...

} catch (const CommunicationInterruptedException& ex) {

 // ...

} catch (const std::exception& ex) {

 // Handle all other exceptions here that are derived from std::exception

} catch (...) {

 // The rest...

}

The reason is obvious, I think: let’s assume that the catch clause for the general

std::exception would be the first one, what would happen? The more specific ones

below would never get a chance because they are “hidden” by the more general one.

Therefore, developers must be sure to put them in the correct order.

Chapter 5 advanCed ConCepts of Modern C++

209

 Interface Design
“Since changing interfaces breaks clients, you should consider them as
immutable once you’ve published them.”

—Erich Gamma, Design Principles from Design Patterns, 2005

In our daily work as software craftspeople, we are constantly confronted with interfaces,

either because we have to use them (e.g., from a library), or because we have to design

them (e.g., when creating a class or a module). Probably one of the most demanding

tasks in software design is to design good interfaces and APIs. But what makes a “good

interface”?

Well, in previous chapters, you learned some principles and practices that can help

you create well-designed interfaces:

• Easy to use, even without documentation. Think about the

KISS principle from Chapter 3. An interface should not be too

complicated. Furthermore, a good and expressive naming is

important; if an interface is hard to name, that’s generally a bad sign.

Good names also make it easier to learn an interface. The API can

quickly be memorized by developers who work with it constantly.

• Users of an interface/API should not be surprised by unexpected
behavior. Avoid unexpected side effects! Think about the principle of

least astonishment, discussed in Chapter 3.

• An interface should be as small as possible. Do not offer more

services than necessary. You won’t be able to please everyone

anyway. You can always add something, but you can never remove it!

If something has to be added, it should be done in a way that existing

parts of the interface are not changed.

• A well-designed interface/API hides the implementation.
Changes in the implementation of a software module should not be

propagated outside via its interface. Think about the information

hiding principle from Chapter 3. Make classes and their members as

private as possible, because it fosters loose coupling.

Chapter 5 advanCed ConCepts of Modern C++

210

• Hard to misuse. Use appropriate parameter and return types and

avoid long parameter lists (see the section entitled “Arguments and

Return Values” in Chapter 4). If values have semantics, strongly typed

parameters instead of primitive data types (int, double, ...) should be

used for them, as described in the section “Type-Rich Programming”

in this chapter. Don’t use a string if a better type exists.

• Don’t forget that exceptions are also part of an interface. Throw

exceptions only to indicate true exceptional conditions, i.e. don’t

force users of your interface to use exceptions for normal control

flow. This aspect has been discussed in detail in the previous section

entitled “Proper Exception and Error Handling.”

• Provide a suite of well-crafted unit tests for your API. As discussed

in Chapter 2, a suite of good tests is not only a sign of the quality

awareness of the developers, but they are also good examples for

users that can show how to use the API.

In addition to these general good practices for interface design, modern C++ offers

further possibilities to specify interfaces, which I briefly discuss in the following and last

sections of this chapter:

• Attributes (since C++11)

• Concepts (new since C++20)

 Attributes
C++ Attributes were introduced with C++11 and regularly extended with the following

language standards. Maybe you know a very similar concept in programming language

Java, which is called annotations. Some attributes are part of the C++ language standard,

others are compiler-specific.

In simple terms, an attribute is an expression surrounded with double square

brackets to give instructions to the compiler, like this:

[[attr]]

Multiple attributes can be specified as a comma-separated list:

[[attr1, attr2, attr3]]

Chapter 5 advanCed ConCepts of Modern C++

211

Specific kinds of attributes can also have an argument:

[[attr(argument)]]

With attributes, software developers can specify additional information or

instructions for the compiler, e.g., to enforce constraints (conditions), optimize certain

sections of code, or do some specific code generations. Basically, attributes can be

applied to almost every C++ programming language construct, e.g., types, variables,

functions/methods, names, code blocks, and so on. However, certain attributes only

make sense for very specific parts of the code. And they can also be very useful to design

interfaces.

In the following sections, I introduce some of the attributes that are defined in the

C++ standard and that can be used in interface design.

 noreturn (since C++11)

The attribute [[noreturn]] can be used to mark a function from which the program flow

does not return.

[[noreturn]] void function() {

 while (true) {

 // ... do something ...

 }

}

Perhaps you might wonder what this is good for? Well, if you implement a function

that should intentionally not return (e.g., an endless loop to process events), but does so

anyway due to a programming error, you’ll get a compiler warning:

warning: 'noreturn' function does return

 deprecated (since C++14)

Sometimes it is necessary to take back parts of an already published interface. As

mentioned, ideally this should not happen, because users of an interface have made

themselves dependent on it. At the same time, it is sometimes unavoidable in reality.

A good idea is not to remove the published part of the interface immediately, but to

prepare the users that this could happen in the future. In other words, it is advisable to

Chapter 5 advanCed ConCepts of Modern C++

212

give your API users a grace period. Therefore, you can mark such entities as deprecated,

meaning their use is allowed, but discouraged for some reason.

class SomeType {

public:

 [[deprecated]] void doSomething() {

 // ...

 }

};

It is also possible to specify a rationale as a string-literal to explain why the use is

discouraged:

class SomeType {

public:

 [[deprecated("This function will be removed in future versions, "

 "use SomeType::doSomethingNew() instead!")]]

 void doSomething() {

 // ...

 }

 void doSomethingNew() {

 // ...

 }

};

 nodiscard (since C++17)

With the help of the [[nodiscard]] attribute interface, designers can indicate that a

return value of a function shouldn’t be ignored. If the return value is ignored at the call

site, the compiler generates a warning. Since C++20, you can also specify a rationale

as a string-literal to explain to users why ignoring the return value is discouraged. See

Listing 5-31.

Chapter 5 advanCed ConCepts of Modern C++

213

Listing 5-31. The [[nodiscard]] Attribute Reminds Users to Accept the Return Value

#include <memory>

class SomeType { };

using SomeTypePtr = std::shared_ptr<SomeType>;

class ObjectFactory {

public:

 [[nodiscard]] SomeTypePtr createInstance() const {

 return std::make_shared<SomeType>();

 }

};

int main() {

 ObjectFactory factory;

 auto instance = factory.createInstance(); // OK!

 factory.createInstance(); // Compiler warning!

 return 0;

}

 maybe_unused (since C++17)

This attribute can be used to mark entities that might not be used. Thus, a compiler

warning can be suppressed, which is generated when variables, parameters of functions

or methods, data types, and other entities are declared, but not used.

For instance, depending on the configured warning level of your compiler, the

following piece of code will produce a warning like "'param2': unreferenced formal

parameter":

int function(const int param1, const int param2) {

 return param1 + param1;

}

int main() {

 function(10, 20);

 return 0;

}

Chapter 5 advanCed ConCepts of Modern C++

214

With the attribute [[maybe_unused]], this parameter can be marked so that the

compiler warning is suppressed.

int function(const int param1, [[maybe_unused]] const int param2) {

 return param1 + param1;

}

You might be wondering how you’d use this attribute. You might ask yourself, who

intentionally introduces a function parameter that is not used inside the function?

Think about conditional compiling with C++ templates. Listing 5-32 shows a simple

example.

Listing 5-32. If Only Param1 Is Needed, You’ll Get No Warning

#include <type_traits>

template<typename T, typename U>

void function(T param1, [[maybe_unused]] U param2) {

 if constexpr (std::is_floating_point<U>::value) {

 // ...code that uses 'param1' and 'param2'...

 } else {

 // ...code that uses 'param1' only...

 }

}

int main() {

 function(10, 20.0);

 function(10, 20);

 return 0;

}

In the main() function, we see two instantiations of the template function(): the first

with one int and one double, and the second one with two ints. In the implementation

of function(), we can see a constexpr if, or in other words, a compile-time-if, a new

language feature that was introduced with C++17. This feature allows template designers

to discard branches of an if statement at compile-time based on a constant expression

condition. In our case, it is a type trait (defined in the <type_traits> header) that

inspects the type U of param2 and returns true if it is a floating- point type. So, instantiating

the template with two ints would result in an unused param2.

Chapter 5 advanCed ConCepts of Modern C++

215

 Concepts: Requirements for Template Arguments
The C++ template mechanism is a Turing Complete metalanguage for generic

programming, which calculates types and values at compile time. There is nothing

comparable in other programming languages, which only come close to the power of

C++ templates.

On the downside, data type independent (generic) programming with templates

is inherently complex and demanding. Just take a look at an outstanding example, the

template code of the C++ Standard Library, and you know what I mean. You will be

confronted with code that in many ways does not conform to the clean code guidelines

I’ve presented in this book. On the contrary, it looks complex and cumbersome.

Many developers who write domain-specific application code are often very

intensive users of template libraries, but they rarely come into a situation to write a

template class or template function. But even as a user of templates, you often get into a

situation where you have instantiated a template with one or more concrete data types

for its template arguments, and were confronted with a very long and verbose list of

cryptic error messages.

Just an example: earlier in this chapter, in the section about the <algorithm> header,

I presented a small code example (see Listing 5-25) where a std::vector<T> filled with

strings was sorted and then printed on stdout. In Listing 5-33, I modify this example a

little bit by using a std::list<T> instead of a std::vector<T>.

Listing 5-33. Using a std::list Instead of a std::vector for names

#include <algorithm>

#include <iostream>

#include <string>

#include <string_view>

#include <list> // formerly: <vector>

void printCommaSeparated(std::string_view text) {

 std::cout << text << ", ";

}

int main() {

 std::list<std::string> names = { "Peter", "Harry", "Julia", "Marc",

"Antonio", "Glenn" };

Chapter 5 advanCed ConCepts of Modern C++

216

 std::sort(begin(names), end(names));

 std::for_each(begin(names), end(names), printCommaSeparated);

 return 0;

}

If you now compile this example, the compiler confronts you with a long list of

sometimes hard-to-understand error messages. Then you are faced with the question:

What the heck went wrong? I only exchanged the container type; can’t a std::list<T>

be sorted?

The reason for that bunch of errors is that a std::list<T> only offers a bidirectional

iterator; that is, an iterator that can be used to access the sequence of elements in both

directions. However, the algorithm std::sort requires a random access iterator, i.e. an

iterator that can be used to access elements at an arbitrary offset position relative to the

element it points to.

The basic problem is that a template instantiation is first of all only an obtuse,

textual replacement of the template arguments by concrete types. The compiler can only

determine whether the template is at all suitable to work correctly with this type when it

compiles the instantiated template. In addition, it is almost impossible to implement a

function or class template in such a way that it fits every conceivable concrete data type.

With the new C++20 standard, template designers get a long-awaited feature:

Concepts! Concepts are named sets of semantic requirements or constraints that can

be applied on template parameters and are evaluated at compile-time. Thus, they

become part of the template’s interface. We also get improved error messages, because

the compiler can check if the requirements specified in a concept are satisfied by the

concrete template arguments.

A C++ concept can be specified completely by yourself (I’ve done this in some

code examples in this chapter before), but there is also a collection of predefined

core concepts in the <concepts> header. These can be combined to build higher-

level concepts. Furthermore, several concepts are also defined in other headers of the

Standard Library, such as in <iterator> and <ranges>.

Chapter 5 advanCed ConCepts of Modern C++

217

 Specifying a Concept

Let’s assume that we want to develop a function template named function() whose one

and only template parameter must be copyable. The corresponding C++ concept looks

like this:

#include <concepts>

template<typename T>

concept Copyable =

 std::copy_constructible<T> &&

 std::movable <T> &&

 std::assignable_from<T&, const T&> && &&

 std::assignable_from<T&, const T&> &&

 std::assignable_from<T&, const T>;

Note the previous code snippet is for demonstration purposes only. It is not
necessary to define a concept like Copyable by yourself, because it is included in
the <concept>: std::copyable<T> header.

The specified requirement that a template parameter T should be copyable

corresponds to a logical AND of five core concepts from the <concepts> header. Our new

concept also got a good, semantic name: Copyable.

Another way to specify a concept is using the requires expression:

template<typename T>

concept Addable = requires (T x) { x + x; };

In this case, we have specified that a concrete type for template argument T can be

added.

 Applying a Concept

Now we apply the concept Copyable<T> by specifying the requirements for the template

parameter T of a function, as shown in Listing 5-34.

Chapter 5 advanCed ConCepts of Modern C++

218

Listing 5-34. Using a C++20 Concept to Specify Requirements That T Must Satisfy

class CopyableType { };

class NonCopyableType {

public:

 NonCopyableType() = default;

 NonCopyableType(const NonCopyableType&) = delete;

 NonCopyableType& operator=(const NonCopyableType&) = delete;

};

template<typename T>

void function(T& t) requires Copyable<T> {

 // ...

};

int main() {

 CopyableType a;

 function(a); // OK!

 NonCopyableType b;

 function(b); // Compiler error!

 return 0;

}

Because I deleted the copy constructor and copy assignment operator of the

NonCopyableType class, we get the following expressive error message (excerpt;

compiler: Clang 13.0.0):

prog.cc:28:3: error: no matching function for call to 'function'

 function(b); // Compiler error!

 ^~~~~~~~

prog.cc:20:6: note: candidate template ignored: constraints not satisfied

[with T = NonCopyableType]

void function(T& t) requires Copyable<T> {

 ^

prog.cc:20:30: note: because 'NonCopyableType' does not satisfy 'Copyable'

void function(T& t) requires Copyable<T> {

 ^

[...]

Chapter 5 advanCed ConCepts of Modern C++

219

I highlighted the relevant line with bold font: The data type NonCopyableType does

not satisfy the requirements of our concept named Copyable<T>. In the following lines

of this error output (intentionally omitted here and replaced by an ellipsis: [...]), the

compiler tells us which partial requirement of the concept was not satisfied. This is a

significant improvement compared to those cryptic error messages from former times.

By the way, the function from Listing 5-34 can be written much more compact and

elegant without the requires clause:

template<Copyable T>

void function(T& t) {

 // ...

};

Or even better, using the C++20 abbreviated function template syntax:

void function(Copyable auto& t) {

 // ...

};

Templates, concepts, and metaprogramming during compile time are extremely

powerful features of modern C++ whose primary target group is clearly library

developers. They justify a much more detailed introduction. Unfortunately, a deep dive

into these language constructs is far beyond the scope of this book.

Chapter 5 advanCed ConCepts of Modern C++

221
© Stephan Roth 2021
S. Roth, Clean C++20, https://doi.org/10.1007/978-1-4842-5949-8_6

CHAPTER 6

Modularization
“I have absolutely no idea about space exploration. I’m a software guy. But
because I’m a non-expert, I’ve been able to bring the software concept of
modularity into the space sector, which was never done before.”

—Naveen Jain, software engineer, entrepreneur and founder,
May 12, 2015

This quote is from a blog article [Jain15] by Naveen Jain, one of the three founders of

the Florida-based private company Moon Express Inc., which was founded in 2010. The

business objective of Moon Express (MoonEx) is to mine natural resources of economic

value, such as ore, on the moon. For this purpose, MoonEx engineers designed a family

of flexible and scalable robotic explorers based on modular spacecraft architecture.

The foundation for their modular architecture is NASA’s Modular Common Spacecraft

Bus (MCSB), which is a general-purpose spacecraft platform that can be configured as

landers or orbiters. The MCSB not only reduces costs; NASA states that an uncrewed

space mission that is built on the MCSB platform is roughly one-tenth the price of a

conventional mission. Furthermore, by using a modular platform, NASA will no longer

“reinvent the wheel,” by being able to reuse many components.

Since the early days of software development, developers strove for well- modularized

software. The reason for this is obvious: Once a piece of software has reached a certain

size, it gets more and more difficult for humans to grasp it in its entirety. We do not

modularize for the computer. A computer doesn’t need a modularized version of the

code to run it. It’s our own cognitive limitations that force us to break down a software

system in smaller pieces.

In addition, people expect further positive effects from well modularized software:

reusable modules, better maintainability, and easier extensibility. Creating a scalable,

configurable, and flexible product family like MoonEx did with its robotic space probes

is the goal. Furthermore, modules with minimal interdependencies and well-designed

interfaces are easier to test.

https://doi.org/10.1007/978-1-4842-5949-8_6#DOI

222

This chapter covers the fundamentals and some good approaches to finding a

suitable modularization for a software system. Furthermore, it also deals with the topic

of object-orientation and covers a promising packaging mechanism called modules,

introduced with C++20.

 The Basics of Modularization
In general, modularization is an approach to divide a software system into multiple

discrete and, ideally, independent building blocks (modules). Each module is expected

to carry out a specific task of the software independently.

So far, so good, but of course this definition raises many more questions. Which

properties must a module have to be considered a well-defined one? Is a module the

same as a component, another term often used in software development? And what

about classes, aren’t they the same as modules? What criteria do we use to break down

an entire software system into these modules? And if these modules should ideally be

independent of each other, how can we then put them back together to build a running

system?

 Criteria for Finding Modules
Identifying or finding modules is usually part of the software design and architecture

processes, and we know some important guiding principles for modularization from

Chapter 3:

• Information hiding

• Strong cohesion

• Loose coupling

Perhaps these three fundamental principles are good, but not sufficient to achieve

an appropriate modularization for a complex software system. The question is, which

further criteria should be used?

Chapter 6 Modularization

223

 Focus on the Domain of Your Software

In some of the projects that I looked at, the development team focused far too early on

technical issues, such as the look of the UI, the database and its schemata, frameworks,

libraries, network protocols, and other IT-specific topics. The consequence was that the

modularization reflected this. The modules that were identified by the development

team were mainly of a technical nature: central control unit, database interface, Internet

communication module, logging, and similar stuff.

The problem with this is that virtually every software system in the world has

something that could be called a “central control unit” in the broadest sense. It is a very

unspecific term. What is a central control unit? What exactly is its responsibility? How

does the central control unit of System A differ from the central control unit of System B?

On the other hand, how do you talk to external stakeholders about all this technical

stuff? Normally, they are not IT experts. How can communication with these people

work if the development team uses technical jargon? How can requirements be elicited,

discussed, and clarified with these people if they have no clue about this weird thing

called the “central control unit”? Have you ever heard financial experts, salespersons,

farmers, or doctors talk about “central control units” when they discuss software that

they use in their daily work?

A much better approach to a well-formed modularization is a domain-centered or
domain-driven approach. You may remember that in Chapter 4, I recommended you name

components, classes, and functions in a way that reflects the elements and concepts from

the application’s domain. I also mentioned two well-known software design methodologies

there, OOAD and DDD, which focus on the domain of the system being developed.

One of the great benefits of domain-driven approaches is that they lead very clearly

and directly to a meaningful modularization. In the domain model, that usually is one

of the key results of these approaches, everything is considered as an object, and will,

therefore, be quite modular and encapsulated. This means that a modular software design

can be derived from it very easily, even though it must be enriched by further technical

and architecture-motivated objects in order to build an executable software system.

Furthermore, with an early focus on the system’s domain, teams will often find

communication throughout the entire development process, especially the important

communication with non-technical stakeholders and domain experts, to be much

easier. Using terms from the system’s domain reduces technical and IT-specific jargon

when discussing requirements and other aspects of the system of interest. This enables

developers to talk to the domain experts at eye level.

Chapter 6 Modularization

224

 Abstraction

While performing an analysis of the domain, as recommended in the previous section,

we should of course be careful not to model a reproduction of the entire real world. We

should confine ourselves only to those things that must be represented in our software

system to satisfy stakeholder needs and requirements. We only need an excerpt from

the real world, reduced to the details that are relevant to realize the system’s use cases.

This reduction to those details that are necessary to satisfy requirements is called

abstraction.
For instance, if we want to represent a customer in a bookstore system, it is of no

interest which blood type this customer has. On the other hand, for a software system

from the medical domain, for example a patient management system, blood type can be

a very important detail.

 Choose a Hierarchical Decomposition

Let’s consider a well-known physical system from the automotive domain: a car. A car

is a composition of several parts, for example, the body, engine, gears, wheels, seats,

etc. Each of these parts consists of smaller parts. Take for instance the car’s engine (let’s

assume that it is a combustion engine, and not an electric motor). The engine consists of

the cylinder block, the gasoline ignition pump, the driving shaft, the camshaft, pistons,

an engine control unit (ECU), a coolant subsystem, etc. The coolant subsystem again

consists of a heat exchanger, coolant pump, coolant reservoir, fan, thermostat, and the

heater core. The decomposition of the car can theoretically be continued to the smallest

screw. And every identified subsystem or part has a well-defined responsibility. Only

when you have all parts together, assembled in the right way, do you have a car that

provides the services that drivers expect.

Complex software systems can be considered in the same way. They can be

decomposed hierarchically into coarse-to-fine-grained modules. That helps developers

cope with the system’s complexity, provides more flexibility, and fosters reusability,

maintainability, and testability. A generalized decomposition of such a software system

is depicted in Figure 6-1.

Chapter 6 Modularization

225

You may also have noticed the areas separated by horizontal, dashed grey lines in

Figure 6-1. These are the levels of abstraction. The whole software system is on the

highest abstraction level. This system is formed by interconnecting and orchestrating

modules of the next lower level of abstraction, in this example designated as “Part 1,”

“Part 2,” etc. These parts are again assembled from smaller modules of the next level of

abstraction, just as it happened with our car example.

If one applies this hierarchical breaking down over different levels of abstraction

to a software system, it is noticeable that the elements on the higher levels represent

concepts of the domain, e.g. pure business logic, whereas it becomes more and more

technical on the lower levels.

At this point, it’s time to introduce two further principles important to finding a

reasonable modularization for a software system: the Single Responsibility Principle
(SRP) and the Single Level of Abstraction (SLA).

 Single Responsibility Principle (SRP)

The Single Responsibility Principle (SRP) states that each software unit—and these

include, among others, modules, classes, and functions—should have only one single,

well-defined responsibility.

SRP is based on the general principle of cohesion discussed in Chapter 3. If a

software module has a well-defined responsibility, also its cohesion is typically strong.

But what exactly is a responsibility? In literature we can often find the explanation

that there must only be one reason to change a software unit. And a frequently

mentioned example is that this rule is violated when the unit needs to be changed due to

new or changed requirements of different aspects of the system.

These aspects can be, for example, device driver and UI. If the same software unit

must be changed, either because the interface of a device driver has changed, or a new

Figure 6-1. The basic scheme of a hierarchically broken down system

Chapter 6 Modularization

226

requirement regarding the graphical user interface has to be implemented, then this

class has obviously too many responsibilities.

Another type of aspect relates to the system’s domain. If the same software unit

must be changed, either because there are new requirements regarding the customer

management, or there are new requirements regarding the invoicing, this software unit

has too many responsibilities.

If we look again at the general hierarchical decomposition of a system as depicted

in Figure 6-1, we can see that on every hierarchy level, every depicted part and software

unit should have one well-defined and clear responsibility.

 Single Level of Abstraction (SLA)

The principle of Single Level of Abstraction (SLA) states that each software unit—and this

includes all units mentioned in the section on the SRP—should be composed of parts

that are all at the next lower level of abstraction.

Software units usually have different levels of abstraction. For example, take a

method of a class. The instructions within this method should all be at the same level

of abstraction. Assigning a value to one of the class’s attribute is on a lower level of

abstraction than calling another method from within that method. The reason for this is

that a method call can conceal the execution of a significant amount of complex logic.

If you take a look at the literature, the SLA is always only explained on the basis of

the lines of code within a function or method. However, the principle should also be

applied to the software units above the functions and methods, e.g., to larger software

components. The building blocks that make up the software component, maybe a bunch

of collaborating classes, should all be at the same next lower level of abstraction.

Why is this principle important?

First of all, the single level of abstraction fosters the readability of the code

significantly. Mixing levels of abstraction can be very challenging for readers of the code,

because our brain must permanently handle a mental shift between thinking about

higher-level concepts and low-level implementation details.

Another great advantage is that SLA harmonizes extremely well with the

aforementioned principles SRP, the practice of hierarchical decomposition, and

especially with the domain-centric approach.

Chapter 6 Modularization

227

 The Whole Enchilada
Now that we have worked through all the principles helping developers find a good

modularization for a software system, we lump them all together to see how they

overlap, support each other, or interact with each other. Let’s recap once again.

The single responsibility principle (SRP) is an amplification of the general principle

of cohesion, which we know from Chapter 3. It states that each module we create should

have a clearly defined responsibility and perform only one task. To discover these

responsibilities, it is strongly recommended to use a domain-centered method and

perform domain analysis to approach the problem from a stakeholder’s perspective

and to make the modules and their interactions a model of an excerpt of the real world.

While doing this, we will discover modules that are on different levels of abstraction:

Large components that are responsible for an entire sub-area, down to small modules

that solve minor subtasks. This will lead us to a model as it is generally depicted in

Figure 6-1; we get a hierarchical decomposition of our software system. Modules on the

same hierarchy level should also have the same level of abstraction; remember the SLA

principle.

After this general introduction to the topic of modularization, let’s now look at a

programming paradigm that has been included in C++ from the very beginning and that

supports the formation of modules: object-orientation.

 Object-Orientation
The historical roots of object-orientation (OO) can be found in the late 1950s. The

Norwegian computer scientists Kristen Nygaard and Ole-Johan Dahl carried out

simulation calculations for the development and construction of Norway’s first nuclear

reactor at the military research institute Norwegian Defense Research Establishment

(NDRE). While developing the simulation programs, the two scientists noted that the

procedural programming languages used for that task were not well suited for the

complexity of the problems to be addressed. Dahl and Nygaard felt the need for suitable

possibilities in those languages to abstract and reproduce the structures, concepts, and

processes of the real world.

In 1960, Nygaard moved to the Norwegian Computing Center (NCC) that had been

established in Oslo two years before. Three years later, Ole-Johan Dahl also joined the

NCC. At this private, independent, and nonprofit research foundation, the two scientists

Chapter 6 Modularization

228

developed first ideas and concepts for an—from today’s point of view—object-oriented

programming language. Nygaard and Dahl were looking for a language that was suitable

for all domains and less specialized for certain fields of application, such as Fortran for

numeric computations and linear algebra or COBOL, which is designed especially for

business use.

The result of their research activities was the programming language Simula-67,

an extension of the procedural programming language ALGOL 60. The new language

introduced classes, subclassing, objects, instance variables, virtual methods, and even

a garbage collector. Simula-67 is considered the first object-oriented programming

language and has influenced many other programming languages, for example, the full

object-oriented programming language Smalltalk, which was designed by Alan Kay and

his team in the early 1970s.

While the Danish computer scientist Bjarne Stroustrup worked on his PhD

thesis Communication and Control in Distributed Computer Systems at University of

Cambridge in late 1970, he used Simula-67 and found it pretty useful, but far too slow

for practical use. So, he began to search for possibilities to combine the object-oriented

concepts of data abstraction from Simula-67 with the high efficiency of low-level

programming languages. The most efficient programming language at that time was C,

which had been developed by the American computer scientist Dennis Ritchie at Bell

Telephone Laboratories in the early 1970s. Stroustrup, who joined the Computer Science

Research Center of the Bell Telephone Laboratories in 1979, began to add object-oriented

features, like classes, inheritance, strong type checking, and many other things to the C

language and named it “C with Classes.” In 1983, the name of the language was changed

to C++, a word creation by Stroustrup’s associate Rick Mascitti, whereby the ++ was

inspired by the post-increment operator of the language.

In the following decades, object-orientation became the dominant programming

paradigm.

 Object-Oriented Thinking
There is a very important point that we need to bear in mind. Just because there are

several programming languages available on the market supporting object-oriented

concepts, there is absolutely no guarantee that developers using these languages will

produce an object-oriented software design automatically. Especially developers who

have worked with procedural languages for a long time often have difficulties with the

Chapter 6 Modularization

229

transition to that programming paradigm. Object-orientation is not a simple concept to

grasp. It requires that developers view the world in a new way.

Dr. Alan Curtis Kay, who developed object-oriented programming language

Smalltalk with some colleagues at Xerox PARC in the early 1970s, is well known as one of

the fathers of the term “object-orientation.” In a documented discussion via email with

the German university lecturer Dipl.-Ing. Stefan Ram from Freie Universität Berlin from

the year 2003, Kay explained what makes object-orientation for him:

“I thought of objects being like biological cells and/or individual computers
on a network, only able to communicate with messages (so messaging came
at the very beginning – it took a while to see how to do messaging in a pro-
gramming language efficiently enough to be useful). (…) OOP to me means
only messaging, local retention and protection and hiding of state-process,
and extreme late-binding of all things.”

—Dr. Alan Curtis Kay, American computer scientist,
July 23, 2003 [Ram03]

Biological cells are the smallest structural and functional units of all organisms.

They are often called the “building blocks of life.” Alan Kay considered software in the

same way a biologist sees complex, living organisms. This perspective of Alan Kay

should not be surprising, because he has a bachelor’s degree in mathematics and

molecular biology.

Alan Kay’s cells are what we call objects in OO. An object can be considered a

“thing” that has structure and behavior. A biological cell has a membrane that surrounds

and encapsulates it. This can also be applied to objects in object-orientation. An

object should be well encapsulated and offers its services solely through well-defined

interfaces.

In addition, Alan Kay emphasized that “messaging” plays a central role for him in

object-orientation. However, he does not define exactly what he means by that. Is calling

a method named foo() on an object the same as sending a message named “foo” to

that object? Or had Alan Kay a message passing infrastructure in mind, such as CORBA

(Common Object Request Broker Architecture) and similar technologies? Dr. Kay is also

a mathematician, so he could also mean a prominent mathematical model of message

passing named Actor model, which is very popular in concurrent computation.

In any case and whatever Alan Kay had in mind when he talked about messaging,

I consider this view interesting and, by and large, applicable to explain the typical

Chapter 6 Modularization

230

structure of an object-oriented program on an abstract level. But Mr. Kay’s elucidations

are definitely not sufficient enough to answer the following important questions:

• How do I find and form the “cells” (objects)?

• How do I design the publically available interface of those cells?

• How do I govern who can communicate with whom (dependencies)?

Object-orientation (OO) is primarily a mindset, and less a matter of the language

used. And it can also be abused and misapplied.

I’ve seen many programs written in C++, or in a pure OO-language like Java,

where classes are used, but these classes only constitute large namespaces wrapping

a procedural program. Or slightly sarcastically expressed: Fortran-like programs can

be written in nearly any programming language, obviously. On the other hand, every

developer who has internalized object-oriented thinking will be able to develop software

with an object-oriented design even in languages like ANSI-C, Assembler, or using shell

scripts.

 Principles for Good Class Design
The widespread and well-known mechanism for the formation of the previously

described modules in object-oriented languages is the concept of a class. Classes are

considered encapsulated software modules that combine structural features (attributes,

data members, fields) and behavioral features (member functions, methods, operations)

together into one cohesive unit.

In programming languages with object-oriented facilities like C++, classes are

the next higher structuring concept above functions. They are often described as the

blueprints of the objects (instances). That’s reason enough to investigate the concept of

classes further. In this section, I give several important clues for designing and writing

good classes in C++.

 Keep Classes Small

In my career as a software developer, I have seen many classes that were very large. Many

thousands of lines of code were no rarity. On closer inspection, I’ve noticed that these

large classes often were only used as namespaces for a more or less procedural program,

whose developers commonly did not understand object-orientation.

Chapter 6 Modularization

231

I think that the problems with such large classes are obvious. If classes contain

several thousand lines of code, they are difficult to understand, and their maintainability

and testability is usually bad, not to mention reusability. And according to several

studies, large classes generally contain a higher number of defects. And, of course, they

usually always violate the SRP.

THE GOD CLASS ANTI-PATTERN

in many systems, there are exceptionally large classes with many attributes and several

hundred operations. the names of these classes often end with “…Controller,” “…Manager,”

or “…helpers.” developers often argue that somewhere in the system must be one central

instance that pulls the strings and coordinates everything. the results of this way of thinking

are such giant classes with very poor cohesion (see the section about strong cohesion in

Chapter 3). they are like a convenience store that offers a colorful palette of goods.

Such classes are called God Classes, God Objects, or sometimes also The Blob (The Blob is a

1958 american horror/science-fiction film about an alien amoeba that eats the citizens of a

village.) this is a so-called anti-pattern, a synonym for what is perceived as bad design. a God

Class is an untamable beast, horrible to maintain, difficult to understand, not testable, error

prone, and has also a huge amount of dependencies to other classes. during the lifecycle of

the system, such classes get bigger and bigger. this makes the problems worse.

What has been proven as a good rule for a function’s size (see the section entitled

“Let Them be Small” in Chapter 4), seems to be also good advice for the size of classes:

Classes should be small!
If small size is an objective in class design, then the immediate next question is this:

How small?

For functions, I’ve given a number of lines of code in Chapter 4. Wouldn’t it be even

possible to define a number of lines for classes that would be perceived as good or

proper?

In The ThoughtWorks Anthology [Thought08], Jeff Bay contributed an essay entitled

“Object Calisthenics: 9 Steps to Better Software Design Today” that advises no more than

50 lines of code for a single class.

An upper limit of about 50 lines seems to be out of the question for many developers.

It appears that they feel a kind of unexplainable resistance against creating classes. They

often argue as follows: “Not more than 50 lines? But that will result in a huge amount

Chapter 6 Modularization

232

of tiny little classes, with just a few members and functions.” And then they will surely

conjure up an example that is irreducible to classes of such a small size.

I’m convinced that those developers are totally wrong. I’m pretty sure that every

software system can be decomposed into such small elementary building blocks.

Yes, if classes are to be small, you will have more of them. But that’s OO! In object-

oriented software development, a class is an equally natural language element such as

a function or a variable. In other words, do not be afraid to create small classes. Small

classes are much easier to use, to understand, and to test.

Nonetheless, that leads to a fundamental question: Is the definition of an upper limit

for lines of code basically the right way? I think that the metric of lines of code (LOC) can

be a helpful indicator. Too many LOCs are a smell. You can take a careful look at classes

with more than 50 lines. But it is not necessarily the case that many lines of code are

always a problem. A much better criterion is the amount of responsibilities of a class.

Classes that follow the SRP are usually small and have few dependencies. They are clear,

easy to understand, and can be tested easily.

Responsibility is a much better criterion than the amount of lines of code of a class.

There can be classes with 100, 200, or even 500 lines, and it can be perfectly okay if those

classes do not violate the single responsibility principle. Nonetheless, a high LOC count

can be an indicator. It is a clue that says: “You should take a look at these classes! Maybe

everything is fine, but maybe they are so big because they have too many responsibilities.”

 Open-Closed Principle (OCP)

“All systems change during their lifecycles. This must be borne in mind when
developing systems expected to last longer than the first version.”

—Ivar Jacobson, Swedish computer scientist, 1992

Another important guideline for any kind of software unit, but especially for class design,

is the open-closed principle (OCP). It states that software entities (modules, classes,

functions, etc.) should be open for extension, but closed for modification.

It is a simple fact that software systems evolve over time. New requirements must

constantly be satisfied, and existing requirements must be changed according to

customer needs or technology progress. These extensions should be made not only in an

elegant manner and with as little effort as possible. They should be especially made in

such a way that existing code does not need to be changed. It would be fatal if any new

Chapter 6 Modularization

233

requirement led to a cascade of changes and adjustments in existing and well-tested

parts of the software.

One way to support this principle in object-orientation is the concept of inheritance

(we will discuss another way in the following section). With inheritance it is possible to

add new functionality to a class without modifying that class. Furthermore, there are

many object-oriented design patterns that foster OCP, such as strategy or decorator (see

Chapter 9 about design patterns).

In the section about loose coupling in Chapter 3, we discussed a design that supports

OCP very well (see Figure 3-6). There we decoupled a switch and a lamp through an

interface. Through this step, the design is closed against modification but pleasantly open

for extensions. We can add more switchable devices easily, and we don’t need to touch

the Switch and Lamp classes or the Switchable interface. And as you can easily imagine,

another advantage of such a design is that it is very easy to provide a test double (e.g., a

mock object) for testing purposes (see the section about test doubles in Chapter 2).

But is an interface, which in C++ is nothing but an abstract class as a base type of a

type hierarchy, the only way to support the OCP?

 A Short Comparison of Type Erasure Techniques

“Inheritance is the base class of evil.”

—Sean Parent, GoingNative 2013

In January 2020, I was at the conference OOP in Munich, one of the most famous

software developer conferences in German-speaking countries and beyond. One

evening I had dinner at the hotel with Peter Sommerlad, member of the ISO C++

standardization committee and co-author of the seminal work Pattern-Oriented Software

Architecture. When we came to talk about the first edition of Clean C++, he gave me an

interesting feedback: “Too much virtual.”

So, I think it is time to talk about inheritance and dynamic polymorphism—their

advantages, disadvantages, and alternatives.

When developers are asked about the central core concept and killer feature of OO,

they often mention dynamic polymorphism. Polymorphism, a compound word of the

Greek prefix “poly-” for many, and the suffix “-morph” for the form or shape, means the

provision of a single interface to entities of different types. In fact, dynamic polymorphism

is just a special form of a more general concept in C++ called type erasure.

Chapter 6 Modularization

234

TYPE ERASURE

C++ type erasure is a set of techniques that provide a generic interface to various underlying

types, while hiding the underlying type information from the client code. in other words, the

client code does not know the concrete types; it only knows and uses some kind of abstract

interface. thus, it is also an application of the information hiding principle from Chapter 3 and

also makes the code more open-closed.

note that type erasure in C++ is different than what is known by the same term in Java.

In other words, introducing an OO-style type hierarchy with an abstract base

class as the single interface to all derived classes is only one way to realize type

erasure. It is certainly not always the best solution under all circumstances, because

it has, for instance, a few disadvantageous, although mostly only with small effects

on performance. The quality requirements that the software have to satisfy, as well

as the constraints of the execution environment, play a very important role here. In a

demanding environment with very ambitious performance requirements or limited

memory, as is sometimes the case in embedded software development, an OO-based

approach can quickly become problematic. Another disadvantage is that we are

somehow forced to use them predominantly via pointers or references, and we have to

take care about the resource management (memory allocation and deallocation).

This is what Peter Sommerlad meant with his above quoted point of criticism, “too

much virtual.” But what other forms of type erasure are there in C++?

C had a primitive form of type erasure, namely using a void pointer (void*). An

example is the C Standard Library function qsort that uses the well-known QuickSort

algorithm to sort a given array (although the C standard does not require it to implement

as a QuickSort):

void qsort(void* base, size_t nitems, size_t size,

 int(*comparator)(const void*, const void*));

The last parameter of qsort() is the function that compares two elements. The

idea is to provide a high degree of flexibility so that qsort() can be used for any given

type and with user-defined sorting criteria. As you can see, these two elements are

represented by two unsafe void pointers.

Chapter 6 Modularization

235

Even if this is another form of type erasure, functions of the C Standard Library

should of course no longer be used in a modern C++ program; remember the section

entitled “About Old C-style in C++ Projects” in Chapter 4.

A much safer way to implement type erasure is using C++ templates.

• The std::function class template (since C++11; header

<functional>) is a general-purpose polymorphic function wrapper,

i.e., it provides a uniform interface to a function, a function-like

object, or a lambda expression with a specified call signature. We

discuss this template in more detail in Chapter 7 on functional

programming.

• The std::variant class template (since C++17; header <variant>)

represents something like a type-safe union. An instance of a

std::variant can hold a value typed by one of the types specified as

its template arguments. For example, a std::variant<int, double>

can hold either an integral value or a double precision floating-point

value (and in some rare cases when something goes wrong, it can

also hold nothing).

• The Algorithm Library (the <algorithm> header) defines numerous

flexible function templates for a variety of purposes (see the

section entitled “Take Advantage of <algorithm>” in Chapter 5).

For example, there is also a type-safe replacement for the legacy C

function qsort() discussed previously: std::sort(). This function

template works for all data types and for different data containers,

e.g., old C-style arrays. Furthermore, it is faster than C’s qsort(),

because C++ compilers can optimize templated code.

In addition to these possibilities provided by the C++ Standard Library, developers

can of course implement type erasure with templates. Let’s consider the example in

Listings 6-1 and 6-2 with dynamic polymorphism in OO.

Listing 6-1. A Simple Class Hierarchy

#include <string>

#include <memory>

Chapter 6 Modularization

236

class Fruit {

public:

 virtual ~Fruit() = default;

 virtual std::string getTypeOfInstanceAsString() const = 0;

};

class Apple final : public Fruit {

 std::string getTypeOfInstanceAsString() const override {

 return "class Apple";

 }

};

class Peach final : public Fruit {

 std::string getTypeOfInstanceAsString() const override {

 return "class Peach";

 }

};

using FruitPointer = std::shared_ptr<Fruit>;

Listing 6-2. Concrete Instances Used via Their Abstract Base Classes

#include "Fruits.h"

#include <iostream>

#include <vector>

using Fruits = std::vector<FruitPointer>;

int main() {

 FruitPointer fruit1 = std::make_shared<Apple>();

 FruitPointer fruit2 = std::make_shared<Peach>();

 Fruits fruits{ fruit1, fruit2 };

 for (const auto& fruit : fruits) {

 std::cout << fruit->getTypeOfInstanceAsString() << ", ";

 }

 std::cout << std::endl;

 return 0;

}

Chapter 6 Modularization

237

This object-oriented variant of type erasure is type-safe, simple, and straightforward,

but has the known small disadvantage of dynamic polymorphism: each lookup in

the virtual function table costs a tiny little bit of runtime performance. I think in most

applications, this drawback is irrelevant (remember “Be Careful with Optimizations”

in Chapter 3), but maybe in some time-critical environments it might be an issue.

Furthermore, inheritance is one of the strongest forms of tight coupling; it is white-box-

reuse because the derived classes know their base class and its implementation.

Let’s now discuss an alternative implementation using C++ templates: The erasure
idiom, also known as “duck-typing”.

DUCK-TYPING

the u.S. writer and poet James Whitcomb riley (1849 – 1916) was supposed to have coined

the phrase: “When i see a bird that walks like a duck and swims like a duck and quacks like a

duck, i call that bird a duck.”

the so-called “duck test” is a form of abductive reasoning. the test says that people

can identify an unknown subject by just studying that subject’s behavior or its habitual

characteristics. in object-oriented programming, this principle is used to specify the type of a

thing or object by its behavioral characteristics, i.e., the functionality that the object has.

Let’s first look at the two simple classes Apple and Peach, which now no longer have

a common base class. See Listing 6-3.

Listing 6-3. The Apple and Peach Classes Without a Common Base Class Such

as Fruit

#include <string>

class Apple {

public:

 std::string getTypeOfInstanceAsString() const {

 return "class Apple";

 }

};

Chapter 6 Modularization

238

class Peach {

public:

 std::string getTypeOfInstanceAsString() const {

 return "class Peach";

 }

};

To enable clients to call the getTypeOfInstanceAsString() method without having

to know whether it is an instance of an Apple or a Peach, we need the class template in

Listing 6-4.

Listing 6-4. The PolymorphicObjectWrapper Class for Realizing Type Erasure

#include <concepts>

#include <memory>

#include <string>

template<typename Class>

concept ClassWithConstCallableMethod = requires (const Class& c) {

 { c.getTypeOfInstanceAsString() } -> std::same_as<std::string>;

};

class PolymorphicObjectWrapper {

public:

 template<ClassWithConstCallableMethod T>

 PolymorphicObjectWrapper(const T& obj) :

 wrappedObject_(std::make_shared<ObjectModel<T>>(obj)) {}

 std::string getTypeOfInstanceAsString() const {

 return wrappedObject_->getTypeOfInstanceAsString();

 }

private:

 struct ObjectConcept {

 virtual ~ObjectConcept() = default;

 virtual std::string getTypeOfInstanceAsString() const = 0;

 };

Chapter 6 Modularization

239

 template< ClassWithConstCallableMethod T>

 struct ObjectModel final : ObjectConcept {

 ObjectModel(const T& obj) : object_(obj) {}

 std::string getTypeOfInstanceAsString() const override {

 return object_.getTypeOfInstanceAsString();

 }

 private:

 T object_;

 };

 std::shared_ptr<ObjectConcept> wrappedObject_;

};

The PolymorphicObjectWrapper class has a smart pointer named wrappedObject_

that is typed by the inner interface or abstract class ObjectConcept. The inner class

template ObjectModel<T> implements this interface. Concrete implementations of

ObjectModel<T> (such as ObjectModel<Apple> or ObjectModel<Peach>) are accessed

via the abstract class ObjectConcept. The PolymorphicObjectWrapper class forwards

calls of the getTypeOfInstanceAsString() method to its ObjectConcept interface,

which is overridden by a concrete ObjectModel<T> subclass. That subclass ultimately

calls getTypeOfInstanceAsString() on the underlying type. For this to work, all

concrete types used for the template parameter T must fulfill an interface contract, i.e.,

they must have public methods that fit to those that are declared by the inner interface

ObjectConcept. We ensure that this requirement is satisfied by defining a C++ concept

named ClassWithConstCallableMethod (see the section about concepts in Chapter 5).

See Listing 6-5.

Listing 6-5. An Exemplary Use of PolymorphicObjectWrapper

#include "Fruits.h"

#include "PolymorphicObjectWrapper.h"

#include <iostream>

#include <vector>

using Fruits = std::vector<PolymorphicObjectWrapper>;

int main() {

 Fruits fruits{ Apple(), Peach() };

Chapter 6 Modularization

240

 for (const auto& fruit : fruits) {

 std::cout << fruit.getTypeOfInstanceAsString() << ", ";

 }

 std::cout << std::endl;

 return 0;

}

The output of stdout, both the object-oriented variant in Listing 6-2 and the

implementation with the type erasure idiom in Listing 6-5, are identical:

class Apple, class Peach,

The advantage of the template-based solution is that the types do not need a

common base class and it is still type safe. The template works with all data types

that have a public interface expected by them. The downside is that the type erasure

idiom has a significant higher degree of complexity compared to the much simpler

implementation using dynamic polymorphism. Another drawback is that it has a

performance issue during object construction, since the created objects have to be

copied into the ObjectModel, resulting in additional copy-constructor calls.

 Liskov Substitution Principle (LSP)

“Basically, the Liskov Substitution Principle states that you cannot create
an octopus by extending a dog with four additional fake legs.”

—Mario Fusco (@mariofusco), September 15, 2013, on Twitter

The object-oriented key concepts of inheritance and polymorphism seem relatively

simple at first glance. Inheritance is a taxonomical concept that should be used to build

a specialization hierarchy of types, that is, subtypes are derived from a more general

type. Polymorphism means in general, that one single interface is provided as an access

possibility to objects of different types, as discussed in the former section about type

erasure.

So far, so good. But sometimes you get into situations where a subtype does not want

to fit into a type hierarchy. Let’s discuss a very popular example that is often used to

illustrate the problem.

Chapter 6 Modularization

241

The Square-Rectangle Dilemma

Suppose that we are developing a class library with primitive types of shapes for

drawing on a canvas, for example, a Circle, a Rectangle, a Triangle, and a TextLabel.

Visualized as an UML class diagram, this library might look like Figure 6-2.

The abstract base class Shape has attributes and operations that are the same for all

specific shapes. For example, it is the same for all shapes how they can be moved from

one position to another position on the canvas. However, the Shape cannot know how

specific shapes can be shown (drawn) or hidden (erased). Therefore, these operations

are abstract, that is, they cannot be (fully) implemented in Shape.

Figure 6-2. A class library of different shapes

Chapter 6 Modularization

242

In C++, an implementation of the abstract class Shape (and the class Point that is

required by Shape) might look like Listing 6-6.

Listing 6-6. The Point and Shape Classes

class Point final {

public:

 Point() = default;

 Point(const unsigned int initialX, const unsigned int initialY) :

 x { initialX }, y { initialY } { }

 void setCoordinates(const unsigned int newX, const unsigned int newY) {

 x = newX;

 y = newY;

 }

 // ...more member functions here...

private:

 unsigned int x { 0 };

 unsigned int y { 0 };

};

class Shape {

public:

 Shape() = default;

 virtual ~Shape() = default;

 void moveTo(const Point& newCenterPoint) {

 hide();

 centerPoint = newCenterPoint;

 show();

 }

 virtual void show() = 0;

 virtual void hide() = 0;

 // ...

private:

 Point centerPoint;

 bool isVisible{ true };

};

Chapter 6 Modularization

243

void Shape::show() {

 isVisible = true;

}

void Shape::hide() {

 isVisible = false;

}

FINAL SPECIFIER [C++11]

the final specifier, available since C++11, can be used in two ways.

on the one hand, you can use this specifier to avoid individual virtual member functions from

being overridden in derived classes, like in this example:

class AbstractBaseClass {

public:

 virtual void doSomething() = 0;

};

class Derived1 : public AbstractBaseClass {

public:

 void doSomething() override final {

 //...

 }

};

class Derived2 : public Derived1 {

public:

 void doSomething() override { // Causes a compiler error!

 //...

 }

};

in addition, you can also mark a complete class as final, like the class Point in our Shape

library. this ensures that a developer cannot use such a class as a base class for inheritance.

class NotDerivable final {

 // ...

};

Chapter 6 Modularization

244

Of all concrete classes in the Shapes library, we take an exemplary look at one, the

Rectangle. See Listing 6-7.

Listing 6-7. The Important Parts of the Rectangle Class

class Rectangle : public Shape {

public:

 Rectangle() = default;

 Rectangle(const unsigned int initialWidth, const unsigned int

initialHeight) :

 width { initialWidth }, height { initialHeight } { }

 void show() override {

 Shape::show();

 // ...code to show a rectangle here...

 }

 void hide() override {

 Shape::hide();

 // ...code to hide a rectangle here...

 }

 void setWidth(const unsigned int newWidth) {

 width = newWidth;

 }

 void setHeight(const unsigned int newHeight) {

 height = newHeight;

 }

 void setEdges(const unsigned int newWidth, const unsigned int newHeight) {

 width = newWidth;

 height = newHeight;

 }

 // ...

private:

 unsigned int width{ 2 };

 unsigned int height{ 1 };

};

Chapter 6 Modularization

245

The client code wants to use all shapes in a similar fashion, no matter which

particular instance (Rectangle, Circle, etc.) it is confronted with. For instance, all

shapes should be shown on a canvas at one blow, which can be achieved using the

following code:

#include "Shapes.h" // Circle, Rectangle, etc.

#include <memory>

#include <vector>

using ShapePtr = std::shared_ptr<Shape>;

using ShapeCollection = std::vector<ShapePtr>;

void showAllShapes(const ShapeCollection& shapes) {

 for (auto& shape : shapes) {

 shape->show();

 }

}

int main() {

 ShapeCollection shapes;

 shapes.push_back(std::make_shared<Circle>());

 shapes.push_back(std::make_shared<Rectangle>());

 shapes.push_back(std::make_shared<TextLabel>());

 // ...etc...

 showAllShapes(shapes);

 return 0;

}

Now let’s assume that users formulate a new requirement for our library: they want
to have a square!

Probably everyone is immediately reminded of geometry lessons in school. At that

time your teacher may have said that a square is a special kind of rectangle that has four

sides of equal length. Thus, a first obvious solution seems to be that we derive a new

class called Square from Rectangle, as depicted in Figure 6-3.

Chapter 6 Modularization

246

At first glance, this seems to be a feasible solution. The Square inherits the interface

and the implementation of Rectangle. This is good to avoid code duplication (see the

DRY principle discussed in Chapter 3), because the Square can easily reuse the behavior

implemented in Rectangle.

A square just has to fulfill one additional and simple requirement that is shown in

the UML diagram as a constraint in class Square: {width = height}. This constraint

means that an instance of type Square ensures in all circumstances that its edges are

always the same length.

So we first implement our Square by deriving it from our Rectangle:

class Square : public Rectangle {

public:

 //...

};

Figure 6-3. Is deriving a square from the rectangle class a good idea?

Chapter 6 Modularization

247

But in fact, this is not a good solution!
Note that the Square inherits all operations of the Rectangle. That means that we

can do the following with an instance of Square:

Square square;

square.setHeight(10); // Err...changing only the height of a square?!

square.setEdges(10, 20); // Uh oh!

First of all, it would be very puzzling for users of Square to see that it provides a setter

with two parameters (remember the principle of least astonishment in Chapter 3). They

think: Why are there two parameters? Which parameter is used to set the length of all

edges? Must I put both parameters to the same value? What happens if I don’t?

The situation is even more dramatic when we do the following:

std::unique_ptr<Rectangle> rectangle = std::make_unique<Square>();

// ...and somewhere else in the code...

rectangle->setEdges(10, 20);

In this case, the client code uses a setter that makes sense. Both edges of a rectangle

can be manipulated independently. That’s not a surprise; it’s exactly the expectation.

However, the result may be weird. The instance of type Square would de facto not be a

square after such a call anymore, because it has two different edge lengths. So we have

once again committed a violation of the principle of least astonishment, and much

worse: we violated the Square’s class invariant.

However, one could now argue that we can declare setEdges(), setWidth(), and

setHeight() as virtual in the Rectangle class and override these member functions in

the Square class with an alternative implementation, which throws an exception in case

of unsolicited use. Furthermore, we provide a new member function called setEdge() in

the Square class instead, as shown in Listing 6-8.

Listing 6-8. A Bad Implementation of Square That Tries to “Erase” Unwanted

Inherited Features

#include <stdexcept>

// ...

class IllegalOperationCall : public std::logic_error {

public:

Chapter 6 Modularization

248

 explicit IllegalOperationCall(std::string_view message) :

logic_error(message) { }

};

class Square : public Rectangle {

public:

 Square() : Rectangle { 2, 2 } { }

 explicit Square(const unsigned int edgeLength) :

 Rectangle { edgeLength, edgeLength } { }

 void setEdges([[maybe_unused]] const unsigned int newWidth,

 [[maybe_unused]] const unsigned int newHeight) override {

 throw IllegalOperationCall { ILLEGAL_OPERATION_MSG };

 }

 virtual void setWidth([[maybe_unused]] const unsigned int newWidth) override {

 throw IllegalOperationCall { ILLEGAL_OPERATION_MSG };

 }

 virtual void setHeight([[maybe_unused]] const unsigned int newHeight)

override {

 throw IllegalOperationCall { ILLEGAL_OPERATION_MSG };

 }

 void setEdgeLength(const unsigned int length) {

 Rectangle::setEdges(length, length);

 }

private:

 static constexpr char* const ILLEGAL_OPERATION_MSG {

 "Unsolicited call of a prohibited operation on an instance of class

Square!" };

};

Well, I think it’s obvious that that would be a terribly bad design. It violates a

fundamental principle of object-orientation, that a derived class must not delete

inherited properties of their base class. It is definitely not a solution to our problem. First,

the new setter setEdge() would not be visible if we want to use an instance of Square as

Chapter 6 Modularization

249

a Rectangle. Furthermore, all the other setters throw an exception if they are used. This

is really abysmal! It ruined object-orientation.

So, what’s the fundamental problem here? Why does the obviously sensible

derivation of a Square class from a Rectangle cause so many difficulties?

The explanation is this: Deriving Square from Rectangle violates an important

principle in object-oriented software design—the Liskov Substitution Principle (LSP)!

Barbara Liskov, an American computer scientist who is an institute professor at

the Massachusetts Institute of Technology (MIT), and Jeannette Wing, who was the

President’s Professor of Computer Science at Carnegie Mellon University until 2013,

formulated the principle in a 1994 paper as follows:

“Let q(x) be a property provable about objects x of type T. Then q(y) should
be provable for objects y of type S, where S is a subtype of T.”

—Barbara Liskov, Jeanette Wing [Liskov94]

Well, that’s not necessarily a definition for everyday use. A definition suitable for

everyday use is that derived classes must fully satisfy the contract of their base class, so

that clients using a pointer or reference typed with this base class can use instances of

the derived classes without knowing them.

In fact, that means the following: Derived types must be completely substitutable

for their base types. In our example this is not possible. An instance of the Square

type cannot substitute a Rectangle. The reason for that lies in the constraint {width

= height} (a so-called class invariant) that would be enforced by the Square, but the

Rectangle cannot fulfill that constraint.

The Liskov Substitution Principle stipulates the following rules for type and class

hierarchies:

• The preconditions (see the section entitled “Prevention Is Better

Than Aftercare” in Chapter 5 about preconditions) of a base class

cannot be strengthened in a derived subclass.

• Postconditions (see the section entitled “Prevention Is Better Than

Aftercare” in Chapter 5) of a base class cannot be weakened in a

derived subclass.

• All invariants of a base class must not be changed or violated through

a derived subclass.

Chapter 6 Modularization

250

• The history constraint (also known as the “history rule”): The internal

state of an instance of a class should only be changed through its

public interface, i.e., through public method calls (encapsulation).

Of course, a newly derived class from this class is basically allowed to

introduce new public methods. However, the history constraint states

that these newly introduced methods in the derived class are not

allowed to modify the state of its instances in a manner prohibited

according to the base class. In other words, a derived class should

never ignore the constraints imposed by its base class, because

that would break any client code that relies on these constraints.

For instance, if the base class is designed to be the blueprint for an

immutable object (see Chapter 9 about immutable classes), the

derived class should not invalidate this property of immutability with

the help of newly introduced member functions. That’s, by the way,

the reason that immutable classes should be declared as final!

The interpretation of the generalization relationship (the arrow between Square and

Rectangle) in the class diagram in Figure 6-2 is often translated with “…IS A…”: Square IS

A Rectangle. But that could be misleading. In mathematics it may be possible to say that

a square is a special kind of rectangle, but in programming it is not!

To deal with this problem, the clients have to know with which specific type they are

working. Some developers might now say, “No problem, this can be done by using Run-

Time Type Information (RTTI).” See Listing 6-9.

RUN-TIME TYPE INFORMATION (RTTI)

the term run-time type information (sometimes also run-time type identification) denotes a

C++ mechanism to access information about an object’s data type at runtime. the general

concept behind rtti is called type introspection and is available also in other programming

languages, like Java.

in C++, the typeid operator (defined in the <typeinfo> header) and dynamic_cast<T>

(see the section about C++ casts in Chapter 4) belong to rtti. For instance, to determine the

class of an object at runtime, you can write:

const std::type_info& typeInformationAboutObject = typeid(instance);

Chapter 6 Modularization

251

the const reference of type std::type_info (also defined in the <typeinfo> header)

now holds information about the object’s class, for example, the class’s name. Since C++11,

a hash code is also available (std::type_info::hash_code()), which is identical to the

std::type_info objects referring to the same type.

it is important to know that rtti is available only to classes that are polymorphic, that is,

for classes that have at least one virtual function, either directly or through inheritance. in

addition, rtti can be turned on or off on some compilers. For example, when using the gcc

(Gnu Compiler Collection), rtti can be disabled by using the -fno-rtti option.

Listing 6-9. Another “Hack”: Using RTTI to Distinguish Between Different Types

of Shapes During Runtime

using ShapePtr = std::shared_ptr<Shape>;

using ShapeCollection = std::vector<ShapePtr>;

//...

void resizeAllShapes(const ShapeCollection& shapes) {

 try {

 for (const auto& shape : shapes) {

 const auto rawPointerToShape = shape.get();

 if (typeid(*rawPointerToShape) == typeid(Rectangle)) {

 Rectangle* rectangle = dynamic_cast<Rectangle*>(rawPointerToShape);

 rectangle->setEdges(10, 20);

 // Do more Rectangle-specific things here...

 } else if (typeid(*rawPointerToShape) == typeid(Square)) {

 Square* square = dynamic_cast<Square*>(rawPointerToShape);

 square->setEdge(10);

 } else {

 // ...

 }

 }

 } catch (const std::bad_typeid& ex) {

 // Attempted a typeid of NULL pointer!

 }

}

Chapter 6 Modularization

252

Don’t do this! This cannot, and it should not, be the appropriate solution, especially

not in a clean and modern C++ program. Many of the benefits of object-orientation, such

as dynamic polymorphism, are counteracted.

Caution Whenever you are compelled to use rtti in your program to distinguish
between different types, it is a distinct “design smell,” that is, an obvious indicator
of bad object-oriented software design!

In addition, our code will be heavily polluted with lousy if-else constructs and the

readability will go down the drain. And as if this wasn’t enough, the try-catch construct

also makes it clear that something could go wrong.

But what can we do?

First of all, we should take another careful look at what a square really is.

From a pure mathematical point of view, a square can be regarded as a rectangle

with equal edge lengths. So far, so good. But this definition cannot be directly transferred

into an object-oriented type hierarchy. A square is not a subtype of a rectangle!
Instead, having a square shape is merely a special state of a rectangle. If a rectangle

has identical edge lengths, which is solely a state of the rectangle, we usually give such

particular rectangle a special name in our natural language: we then speak about a

square!

That means that we just need to add an inspector method to our Rectangle class

to query its state, allowing us to waive an explicit class Square. According to the KISS

principle (see Chapter 3), this solution might be completely sufficient to satisfy the new

requirement. Furthermore, we can provide a convenient setter method to clients to set

both edge lengths equally. See Listing 6-10.

Listing 6-10. A Simple Solution Without an Explicit Class Called Square

class Rectangle : public Shape {

public:

 // ...

 void setEdgesToEqualLength(const unsigned int newLength) {

 setEdges(newLength, newLength);

 }

Chapter 6 Modularization

253

 bool isSquare() const {

 return width == height;

 }

 //...

};

Favor Composition over Inheritance

But what can we do if an explicit class Square is uncompromisingly required, for

example, because someone demands it? Well, if that is the case, we should never ever

inherit from Rectangle, but from the Shape class, as depicted in Figure 6-4. In order not

to violate the DRY principle, we use an instance of the Rectangle class for the Square’s

internal implementation.

Figure 6-4. The Square uses and delegates to an embedded instance of Rectangle

Chapter 6 Modularization

254

Expressed in source code, the implementation of this Square class would look like

Listing 6-11.

Listing 6-11. The Square Delegates All Method Calls to an Embedded Instance

of Rectangle

class Square : public Shape {

public:

 Square() {

 impl.setEdges(2, 2);

 }

 explicit Square(const unsigned int edgeLength) {

 impl.setEdges(edgeLength, edgeLength);

 }

 void setEdgeLength(const unsigned int length) {

 impl.setEdges(length, length);

 }

 virtual void moveTo(const Point& newCenterPoint) override {

 impl.moveTo(newCenterPoint);

 }

 virtual void show() override {

 impl.show();

 }

 virtual void hide() override {

 impl.hide();

 }

private:

 Rectangle impl;

};

Perhaps you’ve noticed that the moveTo() method was also overwritten. To this end,

the moveTo() method must also be made virtual in the Shape class. We must override

it, because the moveTo() inherited from Shape operates on the centerPoint of the base

Chapter 6 Modularization

255

class Shape, and not on the embedded instance of the Rectangle used. This is one small

drawback of this solution: some parts inherited from the base class Shape are idle.

Obviously, with this solution we will lose the possibility that an instance of Square

can be assigned to a Rectangle:

std::unique_ptr<Rectangle> rectangle = std::make_unique<Square>();

// Compiler error!

The principle behind this solution to cope with inheritance problems in OO is called

“favor composition over inheritance” (FCoI), sometimes also named “favor delegation

over inheritance.” For the reuse of functionality, object-oriented programming basically

has two options: inheritance (“white box reuse”) and composition or delegation (“black

box reuse”). It is sometimes better to treat another type in a way as it would be a black

box, that is, to use it only through its well-defined public interface, instead of deriving

a subtype from this type. Reuse by composition/delegation fosters looser coupling

between classes than reuse by inheritance.

 Interface Segregation Principle (ISP)

We know interfaces as a way to foster loose coupling between classes. In a previous section

about the open-closed principle, you learned that interfaces are a way to have an extension

and variation point in the code. An interface is like a contract: classes may request services

through this contract, which may be offered by other classes that fulfill the contract.

But what problems can arise when these contracts become too extensive, that is, if an

interface becomes too broad or “fat”? The consequences can best be demonstrated with

an example. Check out the interface in Listing 6-12.

Listing 6-12. An Interface for Birds

class Bird {

public:

 virtual ~Bird() = default;

 virtual void fly() = 0;

 virtual void eat() = 0;

 virtual void run() = 0;

 virtual void tweet() = 0;

};

Chapter 6 Modularization

256

This interface is implemented by several concrete birds, for example, by a Sparrow.

See Listing 6-13.

Listing 6-13. The Sparrow Class Overrides and Implements All Pure Virtual

Member Functions of Bird

class Sparrow : public Bird {

public:

 void fly() override {

 //...

 }

 void eat() override {

 //...

 }

 void run() override {

 //...

 }

 void tweet() override {

 //...

 }

};

So far, so good. And now assume that we have another concrete Bird: a Penguin. See

Listing 6-14.

Listing 6-14. The Penguin Class

class Penguin : public Bird {

public:

 void fly() override {

 // ???

 }

 //...

};

Although a penguin is undoubtedly a bird, they cannot fly. Although our interface is

relatively small, because it declares only four simple member functions, these declared

services cannot, obviously, be offered by each bird species.

Chapter 6 Modularization

257

The interface segregation principle (ISP) states that an interface should not be

bloated with member functions that are not required by implementing classes, or that

these classes cannot implement in a meaningful way. In our example, the Penguin class

cannot provide a meaningful implementation for Bird::fly(), but Penguin is enforced

to overwrite that member function.

The interface segregation principle says that we should segregate a “fat interface”

into smaller and highly cohesive interfaces. The resulting small interfaces are also

referred to as role interfaces. See Listing 6-15.

Listing 6-15. The Three Role Interfaces as a Better Alternative to the Broad Bird

Interface

class Lifeform {

public:

 virtual ~Lifeform() = default;

 virtual void eat() = 0;

 virtual void move() = 0;

};

class Flyable {

public:

 virtual ~Flyable() = default;

 virtual void fly() = 0;

};

class Audible {

public:

 virtual ~Audible() = default;

 virtual void makeSound() = 0;

};

These small role interfaces can now be combined very flexibly. This means that the

implementing classes only need to provide a meaningful functionality for those declared

member functions, which they can implement in a sensible manner. See Listing 6-16.

Chapter 6 Modularization

258

Listing 6-16. The Sparrow and Penguin Classes Implement the Relevant Interfaces

class Sparrow : public Lifeform, public Flyable, public Audible {

 //...

};

class Penguin : public Lifeform, public Audible {

 //...

};

 Acyclic Dependency Principle

Sometimes there is the need for two classes to “know” each other. For example, let’s

assume that we’re developing a web shop. So that certain use cases can be implemented,

the class representing a customer in this web shop must know its related account.

For other use cases, it is necessary that the account can access its owner, which is a

customer.

In UML, this mutual relationship looks like Figure 6-5.

This is known as a circular dependency. Both classes, either directly or indirectly,

depend on each other. In this case, there are only two classes. Circular dependencies can

also occur with several software units involved.

Let’s look at how that circular dependency shown in Figure 6-4 can be implemented

in C++.

What definitely would not work in C++ is Listings 6-17 and 6-18.

Figure 6-5. The association relationships between the Customer and Account
classes

Chapter 6 Modularization

259

Listing 6-17. The Contents of the Customer.h File

#pragma once

#include "Account.h"

class Customer {

// ...

private:

 Account account_;

};

Listing 6-18. The Contents of the Account.h File

#pragma once

#include "Customer.h"

class Account {

private:

 Customer owner_;

};

I think that the problem is obvious here. As soon as someone used the Account or

Customer classes, they would trigger a chain reaction while compiling. For example, the

Account owns an instance of Customer who owns an instance of Account who owns an

instance of Customer, and so on, and so on… Due to the strict processing order of C++

compilers, this implementation will result in compiler errors.

These compiler errors can be avoided, for example, by using references or pointers

in combination with forward declarations. A forward declaration is the declaration of an

identifier (e.g., of a type, like a class) without defining the full structure of that identifier.

Therefore, such types are sometimes also called incomplete types. Hence, they can only

be used for pointers or references, but not for an instance member variable, because the

compiler knows nothing about its size. See Listings 6-19 and 6-20.

Chapter 6 Modularization

260

Listing 6-19. The Modified Customer with a Forward-Declared Account

#pragma once

class Account;

class Customer {

public:

 // ...

 void setAccount(Account* account) {

 account_ = account;

 }

 // ...

private:

 Account* account_;

};

Listing 6-20. The Modified Account with a Forward-Declared Customer

#pragma once

class Customer;

class Account {

public:

 //...

 void setOwner(Customer* customer) {

 owner_ = customer;

 }

 //...

private:

 Customer* owner_;

};

Hand on heart: do you feel a little bit unwell with this solution? If yes, it’s for

good reasons! The compiler errors are gone, but this “fix” produces a bad gut feeling.

Listing 6-21 shows how both classes are used.

Chapter 6 Modularization

261

Listing 6-21. Creating the Instances of Customer and Account and Wiring Them

Circularly Together

#include "Account.h"

#include "Customer.h"

// ...

 Account* account = new Account { };

 Customer* customer = new Customer { };

 account->setOwner(customer);

 customer->setAccount(account);

// ...

I’m sure that a serious problem is obvious: what happens if, for example, the instance

of Account will be deleted, but the instance of Customer still exists? Well, the instance

of Customer will contain a dangling pointer then, that is, a pointer to No-Man’s Land!

Using or dereferencing such a pointer can cause serious issues, like undefined behavior

and application crashes. Don’t have high hopes: using std::shared_ptr<T> instead of

regular pointers is not a solution either. On the contrary, that will result in memory leaks.

Forward declarations are pretty useful for certain things, but using them to deal with

circular dependencies is a really bad practice. It is a creepy workaround that is supposed

to conceal a fundamental design problem.

The problem is the circular dependency itself. This is bad design. The Customer and

Account classes cannot be separated. Thus, they cannot be used independently of one

another, nor are they testable independently of one another. This makes unit testing

considerably more difficult.

The problem gets even worse if we have the situation depicted in Figure 6-6.

Chapter 6 Modularization

262

The Customer and Account classes are each located in different components.

Perhaps there are many more classes in each of these components, but these two classes

have a circular dependency. The consequence is that this circular dependency has a

impact on the architectural level. The circular dependency at the class level leads to

a circular dependency at the component level. CustomerManagement and Accounting

are tightly coupled (remember the section about loose coupling in Chapter 3) and

cannot be reused independently. And of course, also, an independent component test

is not possible anymore. The modularization on architecture level has been practically

reduced to absurdity.

The acyclic dependency principle states that the dependency graph of components

or classes should have no cycles. Circular dependencies are a bad form of tight coupling

and should be avoided at all costs.

Don’t sweat it! It is always possible to break a circular dependency, and the following

section will show you how to avoid or break them.

 Dependency Inversion Principle (DIP)

In the previous section, we experienced that circular dependencies are bad and should

be avoided under all circumstances. As with many other problems related to unwanted

dependencies, the concept of the interface (in C++, interfaces are simulated using

abstract classes) is our friend when dealing with such troubles.

Figure 6-6. The impact of circular dependencies between classes in different
components

Chapter 6 Modularization

263

The goal should therefore be to break the circular dependency without losing the

necessary possibility that the Customer class can access the Account class and vice versa.

The first step is that we no longer allow one of the two classes to have direct access to

the other class. Instead we allow access only via an interface. Basically, it does not matter

from which one of classes (Customer or Account) the interface is extracted. I’ve decided

to extract an interface named Owner from Customer. Exemplary, the Owner interface

declares just one pure virtual member function, which must be overridden by classes

that implement this interface. See Listings 6-22 and 6-23.

Listing 6-22. An Exemplary Implementation of the New interface Owner

(Owner.h)

#pragma once

#include <memory>

#include <string>

class Owner {

public:

 virtual ~Owner() = default;

 virtual std::string getName() const = 0;

};

using OwnerPtr = std::shared_ptr<Owner>;

Listing 6-23. The Customer Class Implements the Owner Interface (Customer.h)

#pragma once

#include "Owner.h"

#include "Account.h"

class Customer : public Owner {

public:

 void setAccount(AccountPtr account) {

 account_ = account;

 }

Chapter 6 Modularization

264

 std::string getName() const override {

 // return the Customer's name here...

 }

 // ...

private:

 AccountPtr account_;

 // ...

};

using CustomerPtr = std::shared_ptr<Customer>;

As can easily be seen, the Customer class still knows its Account. But when we take

a look at the changed implementation of the Account class, there is no dependency to

Customer anymore. See Listing 6-24.

Listing 6-24. The Changed Implementation of the Account Class (Account.h)

#pragma once

#include "Owner.h"

class Account {

public:

 void setOwner(OwnerPtr owner) {

 owner_ = owner;

 }

 //...

private:

 OwnerPtr owner_;

};

using AccountPtr = std::shared_ptr<Account>;

Depicted as an UML class diagram, the changed design at class level is shown in

Figure 6-7.

Chapter 6 Modularization

265

Excellent! With this first step in the redesign, there are no more circular

dependencies at the class level. The Account class knows absolutely nothing about the

Customer class. But how does the situation look from the component level, as depicted in

Figure 6-8?

Figure 6-7. Adding the interface has eliminated the circular dependency on class
level

Figure 6-8. The circular dependency between the components is still there

Chapter 6 Modularization

266

Great! The circular dependencies between the components have disappeared. The

Accounting component is no longer dependent on CustomerManagement, and as a result,

the quality of the modularization has been significantly improved. Furthermore, the

Accounting component can now be tested independently.

In fact, the bad dependency between both components was not literally eliminated.

On the contrary, through the introduction of the Owner interface, we have one additional

dependency at the class level. What we really have done is invert the dependency.
The dependency inversion principle (DIP) is an object-oriented design principle that

decouples software modules. The principle states that the basis of an object-oriented

design is not the special properties of concrete software modules. Instead, their common

Unfortunately, the circular dependency between the components has not been

broken. The two association relationships still go from one element in the one

component to one element in the other component. However, the step to achieve this

goal is blindingly easy: we need to relocate the Owner interface to the other component,

as depicted in Figure 6-9.

Figure 6-9. Relocating the interface also fixes the circular dependency problem at
the architecture level

Chapter 6 Modularization

267

features should be consolidated in a shared used abstraction (e.g., an interface). Robert

C. Martin a.k.a. “Uncle Bob,” formulated the principle as follows:

“A. High-level modules should not depend on low-level modules. Both
should depend on abstractions.

B. Abstractions should not depend on details. Details should depend on
abstractions.”

—Robert C. Martin [Martin03]

Note the terms “high-level modules” and “low-level modules” in this quote
can be misleading. they refer not necessarily to their conceptual position within
a layered architecture. a high-level module in this particular case is a software
module that requires external services from another module, the so-called low-
level module. high-level modules are those where an action is invoked; low-level
modules are the ones where the action is performed. in some cases, these two
categories may also be located on different levels of a software architecture (e.g.,
layers), or as in our example in different components.

The principle of dependency inversion is fundamental for what is perceived as a

good object-oriented design. It fosters the development of reusable software modules

by defining the provided and required external services solely through abstractions (e.g.,

interfaces). Consistently applied to our discussed case, we would also have to redesign

the direct dependency between the Customer and the Account accordingly, as depicted

in Figure 6-10.

Chapter 6 Modularization

268

The classes in both components are solely dependent on abstractions. Therefore, it

is no longer important to the client of the Accounting component which class requires

the Owner interface or provides the Account interface (remember the section about

information hiding in Chapter 3). I have insinuated this circumstance by introducing a

class that is named AnyClass, which implements Account and uses Owner.

For instance, if we have to change or replace the Customer class now, for example,

because we want to mount the Accounting against a test fixture for component testing,

then nothing has to be changed in the AnyClass class to achieve it. This also applies to

the reverse case.

The dependency inversion principle allows software developers to design

dependencies between modules purposefully, that is, to define in which direction

dependencies are pointing. You want to inverse the dependency between the

components, that is, Accounting should be dependent on CustomerManagement? No

problem: simply relocate both interfaces from Accounting to the CustomerManagement

and the dependency turns around. Bad dependencies, which reduce the maintainability

and the testability of the code, can be elegantly redesigned and reduced.

Figure 6-10. Dependency inversion principle applied

Chapter 6 Modularization

269

 Don’t Talk to Strangers (The Law of Demeter)

Do you remember the car I talked about earlier in this chapter? I described this car

as a composition of several parts, for example, body, engine, gears, and so on. And I

explained that these parts can consist of parts, which for themselves can also consist

of several parts, etc. This leads to a hierarchical top-down decomposition of a car. Of

course, a car can have a driver who wants to drive it.

Visualized as an UML class diagram, an excerpt from the car’s decomposition can

look like Figure 6-11.

According to the single responsibility principle discussed in Chapter 5, everything is

fine, because every class has a well-defined responsibility.

Now let’s assume that the driver wants to drive the car. This could be implemented in

the Driver class, as shown in Listing 6-25.

Figure 6-11. The hierarchical decomposition of a simple car

Chapter 6 Modularization

270

Listing 6-25. An Excerpt from the Implementation of the Driver Class

class Driver {

public:

// ...

 void drive(Car& car) const {

 Engine& engine = car.getEngine();

 FuelPump& fuelPump = engine.getFuelPump();

 fuelPump.pump();

 Ignition& ignition = engine.getIgnition();

 ignition.powerUp();

 Starter& starter = engine.getStarter();

 starter.revolve();

 }

// ...

};

What is the problem here? Would you expect as a driver of a car to directly access

your car’s engine, to turn on the fuel pump, turn on the ignition system, and let the

starter revolve? I go even further: are you even interested in the fact that your car consists

of these parts if you just want to drive it?!

I’m pretty sure your clear answer would be no!

Now let’s take a look at Figure 6-12, depicting the relevant part from the UML class

diagram to see what impact this implementation has on the design.

Chapter 6 Modularization

271

As can easily be seen in Figure 6-12, the Driver class has many awkward

dependencies. The Driver is not only dependent from Engine. The class has also several

dependency relationships to parts of the Engine. It is easy to imagine that this has some

disadvantageous consequences.

What would happen, for example, if the combustion engine was replaced by an

electric power train? An electric drive doesn’t have a fuel pump, an ignition system,

and a starter. Thus, the consequences would be that the implementation of the class

driver would have to be adapted. This violates the open-closed principle (see the earlier

Figure 6-12. The bad dependencies of the Driver class

Chapter 6 Modularization

272

section). Furthermore, all public getters that expose the innards of the Car and the Engine

to their environment are violating the information hiding principle (see Chapter 3).

Essentially, the previous software design violates the Law of Demeter (LoD), also

known as the Principle of Least Knowledge. The Law of Demeter can be regarded

as a principle that says something like “don’t talk to strangers”, or “only talk to your

immediate neighbors.” This principle states that you should do shy programming, and

the goal is to govern the communication structure within an object-oriented design.

The Law of Demeter postulates the following rules:

• A member function is allowed to call other member functions in its

own class scope directly.

• A member function is allowed to call member functions on member

variables that are in its class scope directly.

• If a member function has parameters, the member function is

allowed to call the member functions of these parameters directly.

• If a member function creates local objects, the member function is

allowed to call member functions on those local objects.

If one of these four aforementioned kinds of member function calls returns an object

that is structurally farther than the immediate neighbors of the class, it is forbidden to
call a member function on that object.

WHY THIS RULE IS NAMED LAW OF DEMETER

the name of this principle goes back to the Demeter Project about aspect-oriented software

development, where these rules were formulated and strictly applied. the demeter project

was a research project in the late 1980s with a main focus on making software easier to

maintain and expand through adaptive programming. the law of demeter was discovered

and proposed by ian M. holland and Karl lieberherr who worked in that project. in Greek

mythology, demeter is the sister of zeus and the goddess of agriculture.

So, what is now the solution in our example to get rid of the bad dependencies? Quite

simply, we should ask ourselves what does a driver really want to do? The answer is easy:

he wants to start the car! See Listing 6-26.

Chapter 6 Modularization

273

Listing 6-26. The Only Thing the Refactored Class Driver Has To Do Is Start the Car

class Driver {

public:

// ...

 void drive(Car& car) const {

 car.start();

 }

// ...

};

And what does the car do with this start command? Also, quite simple: it delegates

this method call to its engine. See Listing 6-27.

Listing 6-27. The Car Delegates the Start Command to its Engine

class Car {

public:

// ...

 void start() {

 engine.start();

 }

// ...

private:

 Engine engine;

};

Last but not least, the engine knows how it can execute the start process by calling

the appropriate member functions in the correct order on its parts, which are its

immediate neighbors in the software design. See Listing 6-28.

Listing 6-28. The Engine Internally Causes Everything to Be Fired Up

class Engine {

public:

// ...

 void start() {

 fuelPump.pump();

 ignition.powerUp();

Chapter 6 Modularization

274

 starter.revolve();

 }

// ...

private:

 FuelPump fuelPump;

 Ignition ignition;

 Starter starter;

};

The positive effect of these changes on the object-oriented design can be very clearly

seen in the class diagram depicted in Figure 6-13.

The annoying dependencies of the driver to the car’s parts are gone. Instead,

the driver can start the car, regardless of the internal structure of the car. The Driver

class doesn’t know that there is an Engine, a FuelPump, etc. All those bad public getter

functions, which revealed the innards of the car or the engine to all other classes, are

gone. This also means that changes to the Engine and its parts have very local impacts

and will not result in cascading changes straight through the whole design.

Figure 6-13. Fewer dependencies after the application of the Law of Demeter

Chapter 6 Modularization

275

Following the Law of Demeter when designing software can reduce the number of

dependencies significantly. This leads to loose coupling and fosters both the information

hiding principle and the open-closed principle. As with many other principles and rules,

too, there may be some justified exceptions, where a developer must vary from this

principle for very good reasons.

 Avoid Anemic Classes

In several projects, I’ve seen classes that looked like the one in Listing 6-29.

Listing 6-29. A Class Without Functionality that Serves Only as a Bucket for a

Bunch of Data

class Customer {

public:

 void setId(const unsigned int id);

 unsigned int getId() const;

 void setForename(std::string_view forename);

 std::string getForename() const;

 void setSurname(std::string_view surname);

 std::string getSurname() const;

 //...more setters/getters here...

private:

 unsigned int id;

 std::string forename;

 std::string surname;

 // ...more attributes here...

};

This domain class, representing a customer in an arbitrary software system, does

not contain any logic. The logic is in a different place, even that logic which represents

exclusive functionality for the Customer, that is, operating only on attributes of the

Customer.

Programmers who did this are using objects as bags for a bunch of data. This is just

procedural programming with data structures, and it has nothing to do with object-

orientation. Also all those setters/getters are totally foolish and violate the information

hiding principle severely—actually we could use a simple C-structure (struct) here.

Chapter 6 Modularization

276

Such classes are called anemic classes and should be avoided at all costs. They

can often be found in a software design that is an anti-pattern that has been called the

Anemic Domain Model by Martin Fowler [Fowler03]. It is the exact opposite of the basic

idea of object-oriented design, which is to combine data and the functionality that works

with the data together into cohesive units.

As long as you do not violate the Law of Demeter, you should insert logic into

(domain) classes, if this logic is operating on attributes of that class or collaborates only

with the immediate neighbors of the class.

 Tell, Don’t Ask!

The principle Tell, Don’t Ask has some similarities with the previously discussed Law

of Demeter. This principle is the “declaration of war” to all those public get methods,

which reveals something about the internal state of an object. Tell Don’t Ask also

fosters encapsulation and strengthens information hiding (see Chapter 3). But first and

foremost, this principle is about strong cohesion.

Let’s examine a small example. Let’s assume that the member function

Engine::start() from the Car example from the section about the Law Of Demeter is

implemented as shown in Listing 6-30.

Listing 6-30. A Possible, But Not Recommendable, Implementation of the

Engine::start() Member Function

class Engine {

public:

// ...

 void start() {

 if (! fuelPump.isRunning()) {

 fuelPump.powerUp();

 if (fuelPump.getFuelPressure() < NORMAL_FUEL_PRESSURE) {

 fuelPump.setFuelPressure(NORMAL_FUEL_PRESSURE);

 }

 }

 if (! ignition.isPoweredUp()) {

 ignition.powerUp();

 }

 if (! starter.isRotating()) {

Chapter 6 Modularization

277

 starter.revolve();

 }

 if (engine.hasStarted()) {

 starter.openClutchToEngine();

 starter.stop();

 }

 }

// ...

private:

 FuelPump fuelPump;

 Ignition ignition;

 Starter starter;

 static const unsigned int NORMAL_FUEL_PRESSURE { 120 };

};

As it is easy to see, the start() method of the Engine class queries many states from

its parts and responds accordingly. Furthermore, the Engine checks the fuel pressure of

the fuel pump and adjusts it if it is too low. This also means that the Engine must know

the value for the normal fuel pressure. Due to the numerous if branches, the cyclomatic

complexity (see Chapter 4) is high.

The Tell Don’t Ask principle reminds us that we should not ask an object to expose

information about its internal state and decide outside of this object what to do, if this

object could decide it on its own. Basically, this principle reminds us that in object-

orientation, data, and the operations operating on these data, are to be combined to

cohesive units.

If we apply this principle to the example, the Engine::start() method would only

tell its parts what they should do, as shown in Listing 6-31.

Listing 6-31. Delegating Stages of the Starting Procedure to the Responsible

Parts of the Engine

class Engine {

public:

// ...

 void start() {

 fuelPump.pump();

 ignition.powerUp();

Chapter 6 Modularization

278

 starter.revolve();

 }

// ...

private:

 FuelPump fuelPump;

 Ignition ignition;

 Starter starter;

};

The parts can decide for themselves how they want to execute this command,

because they have the knowledge about it. For example, the FuelPump can do all the

things what it has to do to build up fuel pressure, as shown in Listing 6-32.

Listing 6-32. An Excerpt from the FuelPump Class

class FuelPump {

public:

// ...

 void pump() {

 if (! isRunning) {

 powerUp();

 setNormalFuelPressure();

 }

 }

// ...

private:

 void powerUp() {

 //...

 }

 void setNormalFuelPressure() {

 if (pressure != NORMAL_FUEL_PRESSURE) {

 pressure = NORMAL_FUEL_PRESSURE;

 }

 }

Chapter 6 Modularization

279

 bool isRunning;

 unsigned int pressure;

 static const unsigned int NORMAL_FUEL_PRESSURE { 120 };

};

Of course, not all getters are inherently bad. Sometimes it is necessary to retrieve

information from an object, for example, if this information should be displayed on a

graphical user interface.

 Avoid Static Class Members

I can well imagine that many readers are wondering now: what is wrong with static

member variables and static member functions?

Well, perhaps you still remember the God Class anti-pattern described in the earlier

section on small classes. There I’ve described that utility classes typically tend to become

such huge “God Classes.” In addition, these utility classes usually also consist of many

static member functions, often even without exception. The quiet comprehensible

justification for this is: why should I force users of the utility class to create an instance

of it? Because such classes offer a colorful assortment of different functions for different

purposes, which is a sign of weak cohesion by the way, I have created a special pattern

name for these cluttered things: the Junk Shop anti-pattern. According to the online

encyclopedia Wikipedia, a junk shop is a retail outlet similar to a thrift store that offers a

broad assortment of mostly used goods at cheap prices. See Listings 6-33 and 6-34.

Listing 6-33. Excerpt from Some Utility Class

class JunkShop {

public:

 // ...many public utility functions...

 static int oneOfManyUtilityFunctions(int param);

 // ...more public utility functions...

};

Chapter 6 Modularization

280

Listing 6-34. Another Class That Uses the Utility Class

#include "JunkShop.h"

class Client {

 // ...

 void doSomething() {

 // ...

 y = JunkShop::oneOfManyUtilityFunctions(x);

 // ...

 }

};

The first problem is that your code becomes hard-wired with all those static helper

functions in these “junk shops.” As it can easily be seen from the previous example,

such static functions from utility classes are used somewhere in the implementation of

another software module. Hence, there is no easy way to replace this function call with

something else. But in unit testing (see Chapter 2), this is exactly what you want to do.

Furthermore, static member functions foster a procedural programming style.

Using them in conjunction with static variables reduces object-orientation to absurdity.

Sharing the same state across all instances of a class with the help of a static member

variable is intrinsically not OOP because it breaks encapsulation, because an object is no

longer in complete control of its state.

Of course, C++ is not a pure object-oriented programming language like Java or C#,

and it is basically not forbidden to write procedural code in C++. But when you want to

do that, you should be honest with yourself and consequently use simple free-standing

procedures, functions, global variables, and namespaces.

My advice is to largely avoid static member variables and member functions.
One exception to this rule are private constants of a class, because they are read-only

and do not represent an object’s state. Another exception are factory methods, that is,

static member functions that create instances of an object, usually instances of the class

type that serve as the namespace of the static member function.

Chapter 6 Modularization

281

 Modules
The programming language C++, which was first released in 1985, is now about 35

years old. The foundation of C++ is still the procedural language C, which was released

in 1972. To this day, C++ is backward compatible with C. This also means that C++

dragged along the legacy of C until today. Especially with the latest developments in the

direction of modern C++—i.e. the standards C++11, C++14, C++17 and now C++20—the

legacy of C appears more and more anachronistic and fits less and less with a modern

programming style. Nowadays, the old-fashioned and weak #include system for

implementing the modularity system in C++ is simply no longer appropriate.

Newer programming languages, like D or Rust, often have a built-in module system.

Java was retrofitted with the module system Jigsaw with the release of version 9 in 2017.

So, it was high time that C++ also got a module system: modules.

 The Drawbacks of #include
What are the disadvantages of the old #include system with header files? Well, these

are relatively easy to understand when we think about what an #include really is. Every

#include results in a simple text replacement by the preprocessor of the compiler, i.e.

an #include directive leads to a simple copy-and-paste-operation of the contents of the

included file, as depicted in Figure 6-14.

Chapter 6 Modularization

282

First of all, a major drawback to this approach is that the compilation time, especially

in large projects, suffers greatly. If a header file is included in many translation units, the

compiler must perform these copy-and-paste operations again and again. And the time-

consuming part is not the text substitution alone, but mainly the subsequent generation

of the so-called Abstract Syntax Tree (AST) by the compiler. Then it turns out that

hundreds or even thousands of lines of code that have been included can be optimized

away because they are not needed.

Furthermore, there are always two physical files, header and source file, to maintain

the interface and the implementation of the same module. This basically results into

consistency issues and many violations of the DRY principle.

But really unpleasant issues can be caused by multiple definitions of identical

symbols and types in different header files, also known as ODR violations, and accidental

code changes, e.g., redefinitions of symbols through macros. Imagine that two different

header files, both defining a constant named PI in the global namespace, are included in

the same translation unit. This requires that multiple inclusions of the same header file

in the same translation unit be prevented through certain measures, e.g., with the help

of an idiom called the include guard macro; otherwise, conflicts with multiple-defined

symbols and types will occur.

Figure 6-14. #include causes the file contents to be included in the including file

Chapter 6 Modularization

283

ODR VIOLATION

odr is the abbreviation for an important rule in C++ development: the One Definition Rule.

the odr is defined in the current iSo C++ Standard in Section 6.3. it states that no translation

unit should contain more than one definition of any variable, function, class type, enumeration

type, template, default argument for a parameter (for a function in a given scope), or default

template argument.

a simple example of an odr violation: a translation unit (.cpp file) includes two headers, both

defining a class with an identical name. the compiler would terminate with an error message

(e.g. “class type redefinition”) then.

Some violations of the odr must be diagnosed by the compiler. For other violations of this

rule, the compiler may remain silent. these possibly undetected odr violations can lead to

very subtle side effects and errors in the running program.

 Modules to the Rescue
With modules, which is one of the major new features of the C++20 standard,

the separation of header files and implementation files, and thus many of the

aforementioned problems, as well as C-style macros and the C preprocessor, should

be a thing of the past. Ultimately, the aim of modules is to significantly speed up the

compilation of the software and to make it easier for the software designer to build

distributable components.

A NOTE ABOUT FILE EXTENSIONS

in the following sections i will use *.mpp as the file extension for module files, and *.bmi

as extension for so-called Built Module interface (BMi) files. in fact, these file extensions are

not standardized and may vary between compilers. For example, if you’re using the Microsoft

Visual Studio C++ compiler, the module interface files end with *.ixx, and the BMi files

generated by the compiler have the extension *.ifc. For Clang/llVM compilers, the file

extension for the module file is *.cppm and the BMi file ends with *pcm.

Chapter 6 Modularization

284

With modules, the situation presented in Figure 6-14 would change as depicted in

Figure 6-15.

So, the solution is to do without the header files. Instead, one translation unit directly

accesses the other translation units that it wants to use. Of course, this is not just easily

done by throwing away the header file and instead using the implementation file directly

as it is. You may have noticed while looking at Figure 6-15 that the file extension of the

two artifacts to be imported in the client.cpp file has changed from *.cpp to *.mpp.

Migration to modules is not for free, there are a lot of things that must be changed and

taken into consideration. And sometimes you might not be able to do it for various

reasons, e.g., if you are confronted with a third-party library that you cannot change.

 Under the Hood
Before we go a bit more in detail, let’s look at what happens “under the hood” when a

C++ module is imported and what the basic difference to header file inclusion is.

As depicted in Figure 6-16, a module import is of course no copy&paste operation

as with the content of header files. If the compiler encounters a module file—in this

case the file named mathLibrary.mpp—imported by a translation unit (main.cpp), the

module file is first translated into a Built Module Interface (BMI) file and an object file.

Figure 6-15. Module import

Chapter 6 Modularization

285

The BMI is a file on the filesystem that contains the metadata for the module and

describes the exported interface of mathLibrary.mpp. The compiler also produces

an object file (mathLibrary.o), which is required by the Linker to link the module to

produce an executable.

So basically, when using modules, there is an additional processing step that is

required to generate the intermediate artifacts BMI file and object file. This is also an

essential difference compared to using header files: When using header file inclusions,

we do not have any additional time-consuming generation step. The big advantage,

however, is that this step only has to be performed once, no matter how many translation

units are importing the module. For example, using “import <iostream>” instead of

“#include <iostream>” everywhere in your program avoids compiling the thousands of

lines of code from the <iostream> header over and over again.

But this also means that we have a strict chronological order. Importing a module

creates a succession, i.e. the compiler has to process the module first to obtain the BMI

file, before compiling the translation units that imports the module.

One of the most important aspects of increasing build performance, especially when

building large projects, is parallelization. Especially in a CI/CD1 environment where a

continuous build chain is used to build the project very, very frequently, a single build

has to run very fast. The development team needs fast feedback on whether the build

1 Continuous Integration/Continuous Deployment

Figure 6-16. A module file is first translated to a Binary Module Interface (BMI)
file and an object file

Chapter 6 Modularization

286

was successful and all automated tests ran without errors. Hence parallelization is the

be-all and end-all here.

The fact that there are strict sequential processing steps when using C++ modules

makes parallelization more difficult. Especially with more complex import graphs with a

high DAG2-depth, i.e. with a long chain of modules that import each other, the potential

to speed up compilation through parallelization can decrease significantly. Rene Rivera,

who contributed to the famous Boost libraries, has carried out studies on the influence

of the use of modules on the compiler performance, especially under different degrees of

parallelization. He comes to the following conclusion:

“With the limitations of the capabilities of current compilers one can only
conclude that modular builds are very advantageous at lower parallelism
levels environments. But that it’s unclear if they are an advantage in highly
parallel build environments. In other words, that modules currently do not
scale in the same ways as traditional compilation.”

—Rene Rivera, “Are Modules Fast?” [Rivera19]

 Three Options for Using Modules
Migration to C++ modules should also be easily possible in ongoing projects. It would

be a big hurdle if there were no transition stages between the old concept of including

header files on the one hand and importing modules on the other. For this reason, the

new C++20 language standard provides three importing options, which I introduce

briefly now.

 Include Translation

The easiest step toward C++ modules in ongoing projects is to use the (header) include

translation. Basically, include translation means treat the header includes like module

imports. If certain constraints are fulfilled, especially that the header is importable,

nothing in the code has to be adapted or changed, neither on the client’s side nor on

the supplier’s side. However, it is important to point out that include translation is a

compiler-dependent feature.

2 Directed Acyclic Graph; a finite directed graph with no cycles

Chapter 6 Modularization

287

WHEN IS A HEADER FILE IMPORTABLE?

a header file that is suitable for both include translation and header importation must be

sufficiently self-contained, i.e. it must be modular in a way so that it does not rely on pre-

definitions, like macros or declarations, or post-undefinitions (macros).

For example, an include directive like #include <iostream> will be automatically

mapped to an import of that header. Fortunately, as specified by the C++20 standard,

compiler vendors have to provide their Standard Library headers in an importable

format. In contrast, all C++ wrappers for C Standard Libraries, for instance <cstdio>,

<cmath>, or <cstdlib>, will not be importable. But this should not bother us as clean

code developers, because most of the content of these libraries should not be used in a

modern C++ program anyway.

The C++20 include translation solves a couple of issues that we still had with the old-

fashioned header inclusion. First, the translation speed is increased. In addition, some

ODR violations are also prevented, since identical definitions in different header files no

longer cause conflicts. Header files can no longer manipulate other header files, nor can

the importing translation unit change the code of imported header files.

 Header Importation

The next step toward C++ modules is header importation, sometimes also called header

units, which requires a few minor changes in the code on the client’s side, i.e. the

consumer of the module. These changes are very simple: replace each header include

with an explicit import of that header. In other words, replace the #include directive

with the new import keyword, as shown in Listing 6-35.

Listing 6-35. Header Importation Example

import <iostream>; // ...instead of #include <iostream>

int main() {

 std::cout << "Header Importation" << '\n';

 return 0;

}

Chapter 6 Modularization

288

The advantages you get with header importation are basically the same as with

include translation, explained in the previous section.

 Module Importation

The highest level of using C++ modules is of course module importation, i.e. using

modules designated for a modern C++ program. At this stage there are ideally no header

files anymore, but the whole software is built of translation units and imported modules.

In Listing 6-36, you can find an example of a simple module, a small library of

financial mathematical functions, which currently contains only one function.

Listing 6-36. A Simple Module That Provides Just One Function

module;

#include <cmath>

export module financialmath;

namespace financialmath {

 export long double calculateCompoundedInterest(const long double

initialCapital,

 const long double rate,

 const unsigned short term) {

 return initialCapital * pow((1.0 + rate / 100.0), term);

 }

}

The first thing you may notice is that the usual boilerplate code that is typical for

header files, such as the include guard or a #pragma once statement, is gone. Instead,

we find the beginning of the so-called global module fragment in the first line. The

content of this area is not exported and is only visible within the module. For example,

preprocessor instructions can be placed here (e.g., #include directives). In our simple

case, we only include <cmath> here. The following export keyword followed by the

module’s name introduces the module declaration. It declares and exposes the primary

interface of a module named financialmath. Inside of the financialmath namespace,

we see a function called calculateCompoundedInterest, which performs a compound

interest calculation for a given initial capital at a given interest rate and a given term in

years.

Chapter 6 Modularization

289

It is noteworthy that the function is preceded by an export keyword. Using this

keyword enables a module developer to determine which parts of a module can

be accessed from outside, e.g. by consumers, and which cannot. So we see another

enormous advantage that we get with modules: better support of the information hiding

principle, which we learned about in Chapter 3.

The use of the module is demonstrated in the unit test in Listing 6-37, which tests the

exported function.

Listing 6-37. Calling the Exported Function in a Unit Test

import financialmath;

TEST(FinancialmathModuleTest, FinalCapitalIsCalculatedCorrectly) {

 const auto finalCapital = financialmath::calculateCompoundedInterest(

3500.0, 4.0, 3);

 EXPECT_DOUBLE_EQ(3937.024, finalCapital);

}

Module importation offers a number of additional advantages to those previously

mentioned with Header translation and header importation. It is particularly noticeable

that the separation between header files and source files no longer exists. Everything is

located in a single module file (which also has some drawbacks, I’ll get right on that).

Furthermore, the ordering of the import statements of modules doesn’t matter any

more, because the consumer can import them in an arbitrary sequence. Cyclical imports

are not possible. ODR violations are virtually a thing of the past.

 Separating Interface and Implementation

As I just implied, it is not always an advantage if the module is only one single file.

Especially if the module becomes very complex, it can be helpful to separate the

module’s interface from its implementation, because then the module interface file

remains clean without any implementation details.

Therefore, even with modules, there is the possibility to separate the usually stable

public interface of the module, the Module Interface Unit, from the probably more

frequently changed module implementation, the Module Implementation Unit. Our

small financialmath module would be divided into two units, as shown in Listings 6-38

and 6-39.

Chapter 6 Modularization

290

Listing 6-38. The Module Interface Unit of the financialmath Module

export module financialmath;

export namespace financialmath {

 long double calculateCompoundedInterest(const long double initialCapital,

 const long double rate,

 const unsigned short term);

}

Listing 6-39. The Module Implementation Unit of the financialmath Module

module;

#include <cmath>

module financialmath;

namespace financialmath {

 long double calculateCompoundedInterest(const long double initialCapital,

 const long double rate,

 const unsigned short term) {

 return initialCapital * pow((1.0 + rate / 100.0), term);

 }

}

Of course, this division also has some disadvantages. As with the well-known

separation of header and source code files, the separation of a module into an interface

and implementation unit violates the DRY principle (see Chapter 3).

Okay, that was modules in a nutshell. There is much more to tell about modules,

such as module partitions, or the creation of submodules, but that would go far beyond

the scope of this book. Now let’s take a look at what this new concept means to clean

code developers, and what impact it has on the architecture of a software.

 The Impact of Modules
The most frequently mentioned advantage of C++20 modules is that with this new

language feature, the compilation speed is increased. This is basically true and is also

good news, but it is only a very small, and I think not the most interesting aspect.

Chapter 6 Modularization

291

I believe that C++20 modules will have a greater impact on the whole C++ ecosystem

than any other feature added after C++98. Modules have the potential to reduce—and

eventually eliminate—the preprocessor and to get rid of most or all C-style macros.

They change how C++ projects are compiled, i.e., they will have an impact on build

systems and CI/CD tool chains. And even if software architecture is much more than just

defining components and structuring the code, modules also have an impact on how

C++ projects are organized and structured.

Modules offer true encapsulation, i.e. the information hiding principle that we know

from Chapter 3 is greatly supported. You can explicitly specify a module’s interface that

should be exported; thus, you can define what is publicly accessible and what not. We

can bundle a bunch of modules into a bigger module, this enables you to build a logical

structure, for instance, a hierarchical breakdown structure even on component level as

depicted in Figure 6-1. All these features can significantly increase the understandability,

maintainability, and extensibility of large and complex C++ development projects. And

from a clean code developer’s point of view, we can get rid of a lot of ugly, C-style macros.

Chapter 6 Modularization

293
© Stephan Roth 2021
S. Roth, Clean C++20, https://doi.org/10.1007/978-1-4842-5949-8_7

CHAPTER 7

Functional Programming
For the past several years, a programming paradigm has experienced a renaissance

that’s often viewed as a kind of counterdraft to object orientation. We are talking about

functional programming.

One of the first functional programming languages was Lisp (The uppercase

“LISP” is an older spelling, because the name of the language is an abbreviation for

“LISt Processing”). It was designed by the American computer scientist and cognitive

scientist John McCarthy in 1958 at the Massachusetts Institute of Technology (MIT).

McCarthy also coined the term “artificial intelligence” (AI), and he used Lisp as the

programming language for AI applications. Lisp is based on the so-called Lambda

Calculus (λ calculus), a formal model that was introduced in the 1930s by the American

mathematician Alonzo Church.

THE LAMBDA CALCULUS

It is difficult to find a painless introduction into the lambda calculus. Many essays on this

subject are scientifically written and require a good knowledge of mathematics and logic. I will

not try to explain the lambda calculus here, because it is not the main focus of this book. But

you can find countless explanations on the Internet; just use the search engine of your trust,

and you will get hundreds of hits.

The lambda calculus can be regarded as the simplest and smallest programming language

possible. It consists of two parts: one single function definition scheme and one single
transformation rule. These two components are sufficient to create a generic model for the

formal description of functional programming languages, like LISP, Haskell, Clojure, etc.

https://doi.org/10.1007/978-1-4842-5949-8_7#DOI

294

In fact, Lisp is a family of computer programming languages. Various dialects of Lisp

have emerged. For instance, everyone who has used a member of the famous Emacs text

editor family, such as GNU Emacs or X Emacs, knows the dialect Emacs Lisp that is used

as a scripting language for extension and automation.

Noteworthy functional programming languages developed using Lisp include:

• Scheme: A Lisp dialect with static binding that was developed in the

1970s at the MIT Artificial Intelligence Laboratory (AI Lab).

• Miranda: The first purely and lazy functional language that was

commercially supported.

• Haskell: A general-purpose, purely functional programming language

named after the American logician and mathematician Haskell

Brooks Curry.

• Erlang: Developed by the Swedish telecommunication company

Ericsson with a main focus on building massive scalable and high

reliable real-time software systems.

• F# (pronounced F sharp): A multiparadigm programming language

and a member of the Microsoft .NET Framework. The main paradigm

of F# is functional programming, but it allows the developer to switch

to the imperative/object-oriented world of the .NET ecosystem.

• Clojure: A modern dialect of the Lisp programming language created

by Rich Hickey. Clojure is purely functional and runs on the Java

virtual machine and the Common Language Runtime (CLR; the

runtime environment of the Microsoft .NET Framework).

Functional programming languages are still not as widely used as their imperative

relatives, such as the object-oriented ones, but they are increasing in dissemination.

Examples are JavaScript and Scala, which admittedly are both multiparadigm languages

(i.e., they are not purely functional). They have both become increasingly popular,

especially in web development, in part due to their functional programming capabilities.

This is reason enough to dive deeper into this topic and to explore what this style

of programming is all about, as well as discuss what modern C++ has to offer in this

direction.

CHaPTer 7 FunCTIonaL PrograMMIng

295

 What Is Functional Programming?
It is difficult to find a generally accepted definition of functional programming

(sometimes abbreviated FP). Often, one reads that functional programming is a

programming style in which the whole program is built exclusively from pure functions.

This immediately raises the question: what is meant by “pure functions” in this context?

We will address this question in the following section. This definition is basically correct:

the foundations of functional programming are functions in their mathematical sense.

Programs are built by a composition of functions, and the evaluation of functions and

function chains.

Just like object orientation (see Chapter 6), functional programming is a

programming paradigm. That means that it is a way of thinking about software

construction. However, the functional programming paradigm is also often defined by

all those positive properties attributed to it. These properties, which are regarded as

advantageous compared to other programming paradigms, especially object orientation,

are the following:

• No side effects by avoiding a (globally) shared mutable state. In

pure functional programming, a function call does not have any side

effect. This important property of pure functions is discussed in detail

in the following section, “What Is a Function?”

• Immutable data and objects. In pure functional programming, all

data is immutable, that is, once a data structure has been created

it can never be changed. Instead, if we apply a function to a data

structure, a new data structure is created as a result that is either

a new one, or a variant of the old one. As a pleasant consequence,

immutable data has the great advantage of being thread-safe.

• Function composition and higher-order functions. In functional

programming, functions can be treated like data. You can store a

function in a variable. You can pass a function as an argument to

other functions. Functions can be returned as results from other

functions. Functions can be easily chained. In other words, functions

are first-class citizens of the language.

CHaPTer 7 FunCTIonaL PrograMMIng

296

• Better and easier parallelization. Concurrency is basically difficult.

A software designer must pay attention to a lot of things in a

multithreaded environment that she usually does not have to worry

about when there is only one single thread of execution. And finding

bugs in such a program can be very painful. But if calls of functions

never have any side effects, if there are no global states, and if we deal

solely with immutable data structures, it is much easier to make a

piece of software parallelizable. Instead, with imperative languages,

like object-oriented ones, you need locking and synchronization

mechanisms to protect data from being simultaneously accessed and

manipulated by several threads (see the section entitled “The Power

of Immutability” in Chapter 9 on how to create an immutable class

object in C++).

• Easy to test. If pure functions have all the positive properties

mentioned here, they are also very easy to test. It is not necessary to

consider global mutable states or other side effects in test cases.

We will see that programming in a functional style in C++ cannot fully ensure all of

these positive aspects automatically. For instance, if we need an immutable data type,

we have to design it in a way I’ll explain in Chapter 9. But now let’s dive deeper into this

topic and discuss the central question: what is a function in functional programming?

 What Is a Function?
In software development, we can find many things that are named “function.” For

instance, some of the features that a software application offers its users are often also

called the program’s functions. In C++, the methods of a class are sometimes called

member functions. The subroutines of a computer program are generally considered

functions. No doubt, these examples are also “functions” in the broadest sense, but not

the functions that we deal with in functional programming.

When we talk about functions in functional programming, we are talking about true

mathematical functions. That means that we consider a function as a relation between

a set of input parameters and a set of permissible output parameters, whereby each set

of input parameters is related to exactly one set of output parameters. Boiled down to a

simple and general formula, a function is an expression like this: y=f(x).

CHaPTer 7 FunCTIonaL PrograMMIng

297

This simple formula defines the basic pattern of any function. It expresses that the

value of y depends on, and solely on, the value of x. And another important point is that

for the same values of x, the value of y is always the same! In other words, the function

f maps any possible value of x to exactly one unique value of y. In mathematics and

computer programming, this is known as referential transparency.

REFERENTIAL TRANSPARENCY

an essential advantage that is often mentioned in conjunction with functional programming is

that pure functions are always referentially transparent.

The term referential transparency has its origins in analytical philosophy, which is an umbrella

term for certain philosophical movements that have evolved since the beginning of the 20th

Century. analytical philosophy is based on a tradition that initially operated mainly with ideal

languages (formal logics) or by analyzing the everyday language of everyday use. The term

“referential transparency” is ascribed to the american philosopher and logician Willard Van

orman Quine (1908 – 2000).

If a function is referentially transparent, it means that anytime we call the function with

the same input values, we will always receive the same output. In other words, we are

theoretically able to substitute the function call directly with its resultant value, and this

change will not have any impact. This enables us to chain together functions as if they were

opaque boxes.

Referential transparency leads us directly to the concept of the pure function.

 Pure vs Impure Functions
Listing 7-1 shows a simple example of a pure function in C++.

Listing 7-1. A Simple Example of a Pure Function in C++

[[nodiscard]] double square(const double value) noexcept {

 return value * value;

};

CHaPTer 7 FunCTIonaL PrograMMIng

298

As it can easily be seen, the output value of square() depends solely on the

argument value that is passed to the function, so calling square() twice with the same

parameter value will produce the same result each time. We have no side effects,

because if any call of this function is completed, it does not leave any “dirt” behind

that can influence subsequent calls of square(). Such functions, which are completely

independent of an outside state without side effects, and which will produce the same

output for the same inputs and are referentially transparent are called pure functions.

In contrast, imperative programming paradigms, such as procedural or object-

oriented programming, do not provide this guarantee of side-effect freeness, as the

example in Listing 7-2 shows.

Listing 7-2. An Example Demonstrating That Member Functions of Classes Can

Cause Side Effects

#include <iostream>

class Clazz {

public:

 int functionWithSideEffect(const int value) noexcept {

 return value * value + someKindOfMutualState++;

 }

private:

 int someKindOfMutualState { 0 };

};

int main() {

 Clazz instanceOfClazz { };

 std::cout << instanceOfClazz.functionWithSideEffect(3) << std::endl;

// Output: "9"

 std::cout << instanceOfClazz.functionWithSideEffect(3) << std::endl;

// Output: "10"

 std::cout << instanceOfClazz.functionWithSideEffect(3) << std::endl;

// Output: "11"

 return 0;

}

CHaPTer 7 FunCTIonaL PrograMMIng

299

In this case, every call of the member function with its suspicious name Clazz::

functionWithSideEffect() will alter an internal state of the instance of class Clazz. As

a consequence, every call of this member function returns a different result, although

the given parameter for the function’s argument is always the same. You can have

similar effects in procedural programming with global variables that are manipulated by

procedures. Functions that can produce different outputs even if they are always called

with the same arguments are called impure functions. Another clear indicator that a

function is an impure function is when it makes sense to call it without using its return

value. If you can do that, this function must have any kind of side effect.

In a single-threaded execution environment, global states may cause a few problems

and pain. But now imagine that you have a multithreaded execution environment, where

several threads are running, calling functions in a non-deterministic order. In such an

environment, global states, or object-wide states of instances, are often problematic and

can cause unpredictable behavior or subtle errors.

 Functional Programming in Modern C++
Believe it or not, functional programming has always been a part of C++! With this

multiparadigm language, you were always able to program in a functional style, even

with C++98. The reason that I can claim this is because of the existence of the known

template metaprogramming (TMP) since the beginning of C++.

 Functional Programming with C++ Templates
Many C++ developers know that template metaprogramming is a technique in which so-

called templates are used by a compiler to generate C++ source code in a step before the

compiler translates the source code to object code. What many programmers may not be

aware of is the fact that template metaprogramming is functional programming, and that

it is Turing Complete.

CHaPTer 7 FunCTIonaL PrograMMIng

300

TURING COMPLETENESS

The term Turing Complete, named after the well-known english computer scientist,

mathematician, logician, and cryptanalyst alan Turing (1912 – 1954), is often used to define

what makes a language a “real” programming language. a programming language is

characterized as Turing Complete if you can solve any possible problem with it that can be

theoretically computed by a Turing Machine. a Turing Machine is an abstract and theoretical

machine invented by alan Turing that serves as an idealized model for computations.

In practice, no computer system is really Turing Complete. The reason is that ideal Turing

Completeness requires unlimited memory and unbounded recursions, what today’s computer

systems cannot offer. Hence, some systems approximate Turing Completeness by modeling

unbounded memory, but they are restricted by a physical limitation in the underlying hardware.

As a proof, we will calculate the greatest common divisor (GCD) of two integers

using TMP only. The GCD of two integers, which are both not zero, is the largest positive

integer that divides both of the given integers. See Listing 7-3.

Listing 7-3. Calculating the Greatest Common Divisor Using Template

Metaprogramming

01 #include <iostream>

02

03 template< unsigned int x, unsigned int y >

04 struct GreatestCommonDivisor {

05 static const unsigned int result = GreatestCommonDivisor< y, x % y

>::result;

06 };

07

08 template< unsigned int x >

09 struct GreatestCommonDivisor< x, 0 > {

10 static const unsigned int result = x;

11 };

12

13 int main() {

CHaPTer 7 FunCTIonaL PrograMMIng

301

14 std::cout << "The GCD of 40 and 10 is: " << GreatestCommonDivisor

<40u, 10u>::result

15 << std::endl;

16 std::cout << "The GCD of 366 and 60 is: " << GreatestCommonDivisor

<366u, 60u>::result <<

17 std::endl;

18 return 0;

19 }

This is the output that the program generates:

The GCD of 40 and 10 is: 10

The GCD of 366 and 60 is: 6

What is remarkable about this style of calculating the GCD at compile time using

templates is that it is real functional programming. The two class templates used are

completely free of states. There are no mutable variables, meaning that no variable

can change its value once it has been initialized. During template instantiation, a

recursive process is initiated that stops when the specialized class template on Lines

9-11 come into play. And, as mentioned, we have Turing Completeness in template

metaprogramming, meaning that any conceivable computation can be done at compile

time using this technique.

Well, template metaprogramming is undoubtedly a powerful tool, but also has some

disadvantages. Particularly the readability and understandability of the code can suffer

drastically if a great deal of template metaprogramming is used. The syntax and idioms

of TMP are sometimes not easy to understand. Users can be confronted with extensive

and often cryptic error messages when something goes wrong, even if this can now be

greatly reduced by using C++20 concepts (see Chapter 5). And, of course, the compile

time also increases with an extensive use of template metaprogramming. Therefore,

TMP is certainly a proper way of designing and developing generic multi-purpose

libraries (an outstanding example is undoubtedly the C++ Standard Library), but

should only be used in modern and well-crafted application code if this kind of generic

programming is required (e.g., to minimize code duplication).

Since C++11, it is no longer necessary to use only template metaprogramming for

compile-time computations. With the help of constant expressions (constexpr; see the

section about computations during compile time in Chapter 5), the GCD can easily be

implemented as a usual recursive function, as shown in Listing 7-4.

CHaPTer 7 FunCTIonaL PrograMMIng

302

Listing 7-4. A GCD Function Using Recursion That Can Be Evaluated at Compile

Time

constexpr unsigned int greatestCommonDivisor(const unsigned int x,

 const unsigned int y) noexcept

{

 return y == 0 ? x : greatestCommonDivisor(y, x % y);

}

By the way, the mathematical algorithm behind this is called Euclidean algorithm, or

Euclid’s algorithm, named after the ancient Greek mathematician Euclid.

And since C++17, the numeric algorithm std::gcd() has become part of the C++

Standard Library (defined in the <numeric> header), so it is not necessary to implement

it on your own. See Listing 7-5.

Listing 7-5. Using the std::gcd Function from the <numeric> Header

#include <iostream>

#include <numeric>

int main() {

 constexpr auto result = std::gcd(40, 10);

 std::cout << "The GCD of 40 and 10 is: " << result << std::endl;

 return 0;

}

 Function-Like Objects (Functors)
What was also always possible in C++ from the very beginning was the definition and

use of so-called function-like objects, also known as functors (another synonym is

functionals) in short. Technically speaking, a functor is more or less just a class that

defines the parenthesis operator, that is, the operator(). After the instantiation of these

classes, they can pretty much be used like functions.

Depending on whether the operator() has none, one, or two parameters, the

functor is called a generator, unary function, or binary function. Let’s look at a generator

first.

CHaPTer 7 FunCTIonaL PrograMMIng

303

 Generator

As the name “generator” reveals, this type of functor is used to produce something. See

Listing 7-6.

Listing 7-6. An Example of a Generator, a Functor That Is Called With No

Argument

class IncreasingNumberGenerator {

public:

 [[nodiscard]] int operator()() noexcept { return number++; }

private:

 int number { 0 };

};

The working principle is quite simple: every time IncreasingNumberGenerator:

:operator() is called, the actual value of the member variable number is returned to

the caller, and the value of this member variable is increased by 1. The following usage

example prints a sequence of the numbers 0 to 2 on standard output:

int main() {

 IncreasingNumberGenerator numberGenerator { };

 std::cout << numberGenerator() << std::endl;

 std::cout << numberGenerator() << std::endl;

 std::cout << numberGenerator() << std::endl;

 return 0;

}

Remember the quote from Sean Parent that I presented in the section on

algorithms in Chapter 5: no raw loops! To fill a std::vector<T> with a certain amount

of increasing values, we should not implement a handcrafted loop. Instead, we can

use std::generate or std::ranges::generate (since C++20), both defined in the

<algorithm> header. Both are function templates that assign each element in a certain

range a value generated by a given generator object. Hence, we can write the simple

and well-readable code shown in Listing 7-7 to fill a vector with an increasing number

sequence using IncreasingNumberGenerator.

CHaPTer 7 FunCTIonaL PrograMMIng

304

Listing 7-7. Filling a Vector with an Increasing Number Sequence Using

std::ranges::generate

#include <algorithm>

#include <vector>

using Numbers = std::vector<int>;

int main() {

 const std::size_t AMOUNT_OF_NUMBERS { 100 };

 Numbers numbers(AMOUNT_OF_NUMBERS);

 std::ranges::generate(numbers, IncreasingNumberGenerator());

 // ...now 'numbers' contains values from 0 to 99...

 return 0;

}

As one can easily imagine, these kinds of functors do not fulfill the strict

requirements for pure functions. Generators do commonly have a mutable state, that is,

when operator() is called, these functors usually have some side effect. In our case, the

mutable state is represented by the private member variable called IncreasingNumberGe

nerator::number, which is incremented after each call of the parenthesis operator.

STD::IOTA (SINCE C++11) AND STD::RANGES::IOTA_VIEW (SINCE C++20)

Since C++11, the <numeric> header has contained a function template called

std::iota(), named after the functional symbol ⍳ (Iota) from the programming language

aPL. It’s not a generator functor, but it can be used to fill a container with an ascending

sequence of values in an elegant way. Since C++20, this function template is also specified as

constexpr and thus usable in compile-time computations.

Thus, the line from the previous code example where the vector is filled can also be written as

follows:

std::iota(begin(numbers), end(numbers), 0);

CHaPTer 7 FunCTIonaL PrograMMIng

305

With the introduction of the ranges library since C++20, there is another way to generate

a sequence of elements by repeatedly incrementing an initial value: the range factory

std::ranges::iota_view (defined in the <ranges> header):

auto view = std::ranges::iota_view { 0, 100 };

std::vector<int> numbers(std::begin(view), std::end(view));

// ...now 'numbers' contains values from 0 to 99...

Another example of a function-like object of type generator is the random number

generator functor class template shown in Listing 7-8. This functor encapsulates all

the stuff that is necessary for the initialization and usage of a pseudorandom number

generator (PRNG) based on the so-called Mersenne Twister algorithm (defined in the

<random> header).

Listing 7-8. A Generator Functor Class Template Encapsulating a

Pseudorandom Number Generator

#include <random>

template <typename NUMTYPE>

class RandomNumberGenerator {

public:

 RandomNumberGenerator() {

 mersenneTwisterEngine.seed(randomDevice());

 }

 [[nodiscard]] NUMTYPE operator()() {

 return distribution(mersenneTwisterEngine);

 }

private:

 std::random_device randomDevice;

 std::uniform_int_distribution<NUMTYPE> distribution;

 std::mt19937_64 mersenneTwisterEngine;

};

Listing 7-9 shows how the RandomNumberGenerator functor could then be used.

CHaPTer 7 FunCTIonaL PrograMMIng

306

Listing 7-9. Filling a Vector with 100 Random Numbers

#include "RandomGenerator.h"

#include <algorithm>

#include <functional>

#include <iostream>

#include <vector>

using Numbers = std::vector<short>;

const std::size_t AMOUNT_OF_NUMBERS { 100 };

Numbers createVectorFilledWithRandomNumbers() {

 RandomNumberGenerator<short> randomNumberGenerator { };

 Numbers randomNumbers(AMOUNT_OF_NUMBERS);

 std::generate(begin(randomNumbers), end(randomNumbers), std::ref(randomNu

mberGenerator));

 return randomNumbers;

}

void printNumbersOnStdOut(const Numbers& numbers) {

 for (const auto& number : numbers) {

 std::cout << number << std::endl;

 }

}

int main() {

 auto randomNumbers = createVectorFilledWithRandomNumbers();

 printNumbersOnStdOut(randomNumbers);

 return 0;

}

 Unary Function

Next, let’s look at an example of a unary function-like object, which is a functor whose

parenthesis operator has one parameter. See Listing 7-10.

CHaPTer 7 FunCTIonaL PrograMMIng

307

Listing 7-10. An Example of a Unary Functor

class ToSquare {

public:

 [[nodiscard]] constexpr int operator()(const int value) const noexcept {

return value * value; }

};

As its name suggests, this functor squares the values passed to it in the parenthesis

operator. This does not necessarily always have to be the case, because, a unary functor

can also have private member variables, and thus a mutable state. Read or write access

to global variables is also possible (...although this should not be the normal case

nowadays).

With the ToSquare functor, we can now extend the previous example and apply it to

the vector with the ascending integer sequence. See Listing 7-11.

Listing 7-11. All 100 Numbers in a Vector Are Squared

#include <algorithm>

#include <vector>

using Numbers = std::vector<int>;

int main() {

 const std::size_t AMOUNT_OF_NUMBERS { 100 };

 Numbers numbers(AMOUNT_OF_NUMBERS);

 std::generate(begin(numbers), end(numbers), IncreasingNumberGenerator());

 std::transform(begin(numbers), end(numbers), begin(numbers), ToSquare());

 // ...to be continued...

 return 0;

}

The used algorithm std::transform (defined in the <algorithm> header) applies

the given function or function object to a range (defined by the first two parameters) and

stores the result in another range (defined by the third parameter). In our case, these

ranges are the same.

CHaPTer 7 FunCTIonaL PrograMMIng

308

 Predicate

Predicates are a special kind of functor. A unary functor is called a unary predicate if it

has one parameter and a Boolean return value indicating a true or false result of some

test, such as shown in Listing 7-12.

Listing 7-12. An Example of a Predicate

class IsAnOddNumber {

public:

 [[nodiscard]] constexpr bool operator()(const int value) const noexcept {

 return (value % 2) != 0;

 }

};

This predicate can now be applied to our number sequence using the std::erase_

if algorithm to get rid of all the odd numbers. See Listing 7-13.

Listing 7-13. All Odd Numbers From the Vector Are Deleted Using std::erase_if

#include <algorithm>

#include <vector>

// ...

using Numbers = std::vector<int>;

int main() {

 const std::size_t AMOUNT_OF_NUMBERS = 100;

 Numbers numbers(AMOUNT_OF_NUMBERS);

 std::generate(begin(numbers), end(numbers), IncreasingNumberGenerator());

 std::transform(begin(numbers), end(numbers), begin(numbers), ToSquare());

 std::erase_if(numbers, IsAnOddNumber());

 // ...

 return 0;

}

CHaPTer 7 FunCTIonaL PrograMMIng

309

Note unless you are using the C++20 language standard, you will need to apply
the erase-remove idiom to remove the odd numbers from the vector, which is
explained in a sidebar in the section entitled “Building abstractions Is Sometimes
Hard” in Chapter 3.

In order to use a functor in a more flexible and generic way, it is usually implemented

as a class template. Therefore, we can refactor our unary functor IsAnOddNumber into a

class template so that it can be used with all integral types, such as short, int, unsigned

int, uint64_t, etc. This can easily be done with the new C++20 concepts, as shown in

Listing 7-14.

Listing 7-14. Ensuring That the Template Parameter Is an Integral Data Type

#include <concepts>

template <std::integral T>

class IsAnOddNumber {

public:

 [[nodiscard]] constexpr bool operator()(const T value) const noexcept {

 return (value % 2) != 0;

 }

};

The location within the body of the main() function, where our predicate is used (the

call of the std::erase_if function), must now be adjusted a little bit:

 // ...

 std::erase_if(numbers, IsAnOddNumber<Numbers::value_type>());

 // ...

If we inadvertently use the IsAnOddNumber template with a non-integral data type,

such as a double, we would get a meaningful error message from the compiler.

Listing 7-15 shows the entire example, completed with an output of the contents of

the vector on stdout, using std::for_each and the PrintOnStdOut functor.

CHaPTer 7 FunCTIonaL PrograMMIng

310

Listing 7-15. The Whole Code Example with All Three Types of Functors

#include <algorithm>

#include <concepts>

#include <iostream>

#include <vector>

class IncreasingNumberGenerator {

public:

 [[nodiscard]] int operator()() noexcept { return number++; }

private:

 int number { 0 };

};

class ToSquare {

public:

 [[nodiscard]] constexpr int operator()(const int value) const noexcept {

 return value * value;

 }

};

template <std::integral T>

class IsAnOddNumber {

public:

 [[nodiscard]] constexpr bool operator()(const T value) const noexcept {

 return (value % 2) != 0;

 }

};

class PrintOnStdOut {

public:

 void operator()(const auto& printable) const {

 std::cout << printable << '\n';

 }

};

using Numbers = std::vector<int>;

CHaPTer 7 FunCTIonaL PrograMMIng

311

int main() {

 const std::size_t AMOUNT_OF_NUMBERS = 100;

 Numbers numbers(AMOUNT_OF_NUMBERS);

 std::generate(begin(numbers), end(numbers), IncreasingNumberGenerator());

 std::transform(begin(numbers), end(numbers), begin(numbers), ToSquare());

 std::erase_if(numbers, IsAnOddNumber<Numbers::value_type>());

 std::for_each(cbegin(numbers), cend(numbers), PrintOnStdOut());

 return 0;

}

The reason I show the example here again in its entirety is because we will be

improving it later in this chapter.

Last but not least, let’s finalize this section about functors and look at the binary

functor.

 Binary Functors

As mentioned, a binary functor is a function-like object that takes two parameters.

If such a functor operates on its two parameters to perform some calculation (e.g.,

addition) and returns the result of this operation, it is called a binary operator. If such a

functor has a Boolean return value as a result of some test, as shown in Listing 7-16, it is

called a binary predicate.

Listing 7-16. An Example of a Binary Predicate That Compares its Two

Parameters

class IsGreaterOrEqual {

public:

 [[nodiscard]] bool operator()(const auto& value1, const auto& value2)

const noexcept {

 return value1 >= value2;

 }

};

CHaPTer 7 FunCTIonaL PrograMMIng

312

Note until C++11, it was a good practice that functors, depending on their
number of parameters, were derived from the templates std::unary_function
and std::binary_function (both defined in the <functional> header).
These templates have been labeled as deprecated with C++11 and have been
removed from the Standard Library since C++17.

 Binders and Function Wrappers
The next development step in terms of functional programming in C++ was made with

the publication of the draft C++ Technical Report 1 (TR 1) in 2005, which is the common

name for the standard ISO/IEC TR 19768:2007 C++ Library Extensions. The TR 1 specifies

a series of extensions to the C++ Standard Library, including, among other things,

extensions for functional programming. This technical report was the library extension

proposal for the later C++11 standard, and in fact, 12 of the 13 proposed libraries (with

slight modifications) also made it into the new language standard published in 2011.

In terms of functional programming, the TR 1 introduced the two function templates

std::bind and std::function, which are defined in the <functional> library header.

The function template std::bind is a binder wrapper for functions and their

arguments. You can take a function (or a function pointer, or a functor), and “bind”

actual values to one or all of the function’s parameters. In other words, you can create

new function-like objects from existing functions or functors. Let’s start with a simple

example, as shown in Listing 7-17.

Listing 7-17. Using std::bind to Wrap the multiply() Binary Function

#include <functional>

#include <iostream>

[[nodiscard]] constexpr double multiply(const double multiplicand,

 const double multiplier) noexcept {

 return multiplicand * multiplier;

}

int main() {

 const auto result1 = multiply(10.0, 5.0);

CHaPTer 7 FunCTIonaL PrograMMIng

313

 auto boundMultiplyFunctor = std::bind(multiply, 10.0, 5.0);

 const auto result2 = boundMultiplyFunctor();

 std::cout << "result1 = " << result1 << ", result2 = " << result2 <<

std::endl;

 return 0;

}

In this example, the multiply() function is wrapped, together with two floating-

point number literals (10.0 and 5.0), using std::bind. The number literals represent

the actual parameters that are bound to the two function arguments multiplicand

and multiplier. As a result, we get a new function-like object that is stored in the

boundMultiplyFunctor variable. It can then be called like an ordinary functor using the

parenthesis operator.

Maybe you are wondering, nice, but I don’t get it. What’s the purpose of that? What is

the practical benefit of the binder function template?

Well, std::bind allows something that is known as partial application (or partial

function application) in programming. Partial application is a process by which only a

subset of the function parameters is bound to values or variables, whereas the other part

is not yet bound. The unbound parameters are replaced with the placeholders _1, _2, _3,

and so on, which are defined in the namespace std::placeholders. See Listing 7-18.

Listing 7-18. An Example of Partial Function Application

#include <functional>

#include <iostream>

[[nodiscard]] constexpr double multiply(const double multiplicand,

 const double multiplier) noexcept {

 return multiplicand * multiplier;

}

int main() {

 using namespace std::placeholders;

 auto multiplyWith10 = std::bind(multiply, _1, 10.0);

 std::cout << "result = " << multiplyWith10(5.0) << std::endl;

 return 0;

}

CHaPTer 7 FunCTIonaL PrograMMIng

314

In this example, the second parameter of the multiply() function is bound to the

floating-point number literal 10.0, but the first parameter is bound to a placeholder.

The function-like object, which is the return value of std::bind(), is stored in the

multiplyWith10 variable. This variable can now be used like a function, but we only

need to pass one parameter: the value that is to be multiplied by 10.0.

Partial function application is an adaptation technique that allows us to use a

function or a functor in various situations, when we need their functionality, but when

we can supply some but not all of the arguments. In addition, with the help of the

placeholders, the order of the functions parameters can be adapted to the order that the

client code expects. For example, the position of the multiplicand and the multiplier

in the parameter list can be interchanged by mapping them to a new function-like object

in the following way:

auto multiplyWithExchangedParameterPosition = std::bind(multiply, _2, _1);

In our case with the multiply() function, this is obviously senseless (remember the

commutative property of multiplication), because the new function object will produce

the same results as the original multiply() function. However, in other situations,

adapting the order of the parameters can improve the usability of a function. Partial

function application is a tool for interface adaptation.

By the way, especially in conjunction with functions as return parameters, the

automatic type deduction with its keyword auto (see the section entitled “Automatic

Type Deduction” in Chapter 5) can provide valuable services, because if we inspect what

the GCC compiler returns from the call to std::bind(), it is an object of the following

complex type:

std::_Bind_helper<bool0,double (&)(double, double),const _Placeholder<int2>

&,const _Placeholder<int1> &>::type

Terrifying, isn’t it? Writing down such a type explicitly in source code is not only less

helpful, but apart from that the readability of the code also suffers considerably. Thanks

to the keyword auto, it is not necessary to define these types explicitly. But in those rare

cases, where you must do it, the class template std::function comes into play, which is

a general-purpose polymorphic function wrapper. This template can wrap an arbitrary

callable object (an ordinary function, a functor, a function pointer, etc.) and manages

the memory used to store that object. For example, to wrap our multiplication function

multiply() into a std::function object, the code looks as follows:

CHaPTer 7 FunCTIonaL PrograMMIng

315

std::function<double(double, double)> multiplyFunc = multiply;

auto result = multiplyFunc(10.0, 5.0);

Now that we’ve discussed std::bind, std::function, and the technique of partial

application, I have a possibly disappointing message for you: since C++11 and the

introduction of lambda expressions, most of this template stuff from the C++ Standard

Library is only seldom required.

 Lambda Expressions
With the advent of C++11, the language has been extended with a new and noteworthy

feature: lambda expressions! Other frequently used terms for them are lambda functions,

function literals, or just lambdas. Sometimes they are also called closures, which is

actually a general term from functional programming, and which, incidentally, is also

not entirely correct.

CLOSURE

In imperative programming languages, we are accustomed to the fact that a variable is no

longer available when the program execution leaves the scope within which the variable is

defined. For instance, if a function is done and returns to its caller, all local variables of that

function are removed from the call stack and deleted from memory.

on the other hand, in functional programming, we can build a closure, which is a function

object with a persistent local variable scope. In other words, closures allow a scope with some

or all of its local variables to be tied to a function, and this scope object will persist as long as

that function exists.

In C++, such closures can be created with the help of lambda expressions due to the capture

list in the lambda introducer. a closure is not the same as a lambda expression, just like an

object (instance) in object orientation is not the same as its class.

CHaPTer 7 FunCTIonaL PrograMMIng

316

What is special about lambda expressions is that they are usually implemented

inline, that is, at the point of their application. This can sometimes improve the

readability of the code, and compilers can apply their optimization strategies even more

efficiently. Of course, lambda functions can also be treated as data, for example, stored

in variables or passed as a function argument to a so-called high-order function (see the

next section about this topic).

The basic structure of a lambda expression looks as follows:

[capture list](parameter list) -> return_type_declaration { lambda body }

Since this book is not a C++ language introduction, I will not explain all the basics of

lambda expressions here. Even if you are seeing something like this for the first time, it

should be relatively clear that the return type, the parameter list, and the lambda body

are pretty much the same as with ordinary functions. What might seem unusual at first

glance are two things. For example, a lambda expression has no name like an ordinary

function or a function-like object. This is the reason that one speaks in this context of

anonymous functions. The other conspicuousness is the square bracket at the beginning,

which is also called the lambda introducer. As the name suggests, the lambda introducer

marks the beginning of a lambda expression. In addition, the introducer also optionally

contains something called a capture list.

What makes this capture list so important is that all the variables from the outside

scope are listed, which should be available inside of the lambda body, and whether they

should be captured by value (copying) or by reference. In other words, these are the

closures of the lambda expression.

An example lambda expression is defined as follows:

[](const double multiplicand, const double multiplier) { return

multiplicand * multiplier; }

This is our good old multiplication function from the previous section as a lambda.

The introducer has a blank capture list, which means that nothing from the surrounding

scope is used. The return type is not specified in this case either, because the compiler

can easily deduce it.

By assigning the lambda expression to a variable, a corresponding runtime object

is created, the so-called closure. And this is actually true: the compiler generates a

functor class of an unspecified type from a lambda expression, which is instantiated at

runtime and assigned to the variable. The captures in the capture list are converted into

CHaPTer 7 FunCTIonaL PrograMMIng

317

constructor parameters and member variables of the functor object. The parameters

in the lambda’s parameter list are turned into parameters for the functor’s parenthesis

operator (operator()). See Listing 7-19.

Listing 7-19. Using the Lambda Expression to Multiply Two Doubles

#include <iostream>

int main() {

 auto multiply = [](const double multiplicand, const double multiplier) {

 return multiplicand * multiplier;

 };

 std::cout << multiply(10.0, 50.0) << std::endl;

 return 0;

}

However, the whole thing can be shorter, because a lambda expression can be called

directly at the place of its definition by appending parentheses with arguments behind

the lambda body. See Listing 7-20.

Listing 7-20. Defining and Calling a Lambda Expression in One Go

int main() {

 std::cout <<

 [](const double multiplicand, const double multiplier) {

 return multiplicand * multiplier;

 }(50.0, 10.0) << std::endl;

 return 0;

}

The previous example is, of course, for demonstration purposes only, since the use

of a lambda in this style makes no sense. The example in Listing 7-21 uses two lambda

expressions. One is used by the algorithm called std::transform to envelop the words

in the string vector called quote with angle brackets and store them in another vector

named result. The other lambda expression is used by std::for_each to output the

content of result on standard output.

CHaPTer 7 FunCTIonaL PrograMMIng

318

Listing 7-21. Putting Every Single Word in a List in Angle Brackets

#include <algorithm>

#include <iostream>

#include <string>

#include <vector>

int main() {

 std::vector<std::string> quote { "That's", "one", "small", "step", "for",

"a", "man,", "one", "giant", "leap", "for", "mankind." };

 std::vector<std::string> result;

 std::transform(begin(quote), end(quote), back_inserter(result),

 [](const std::string& word) { return "<" + word + ">"; });

 std::for_each(begin(result), end(result),

 [](const std::string& word) { std::cout << word << " "; });

 return 0;

}

The output of this small program is as follows:

<That's> <one> <small> <step> <for> <a> <man,> <one> <giant> <leap> <for>

<mankind.>

 Generic Lambda Expressions (C++14)
With C++14, lambda expressions experienced additional improvements. Since C++14, it

is okay to use auto (see the section about automatic type deduction in Chapter 5) as the

return type of a function or a lambda. In other words, the compiler will deduce the type.

Such lambda expressions are called generic lambda expressions.

Listing 7-22 shows an example.

CHaPTer 7 FunCTIonaL PrograMMIng

319

Listing 7-22. Applying a Generic Lambda Expression on Values of Different Data

Type

#include <complex>

#include <iostream>

int main() {

 auto square = [](const auto& value) noexcept { return value * value; };

 const auto result1 = square(12.56);

 const auto result2 = square(25u);

 const auto result3 = square(-6);

 const auto result4 = square(std::complex<double>(4.0, 2.5));

 std::cout << "result1 is " << result1 << "\n";

 std::cout << "result2 is " << result2 << "\n";

 std::cout << "result3 is " << result3 << "\n";

 std::cout << "result4 is " << result4 << std::endl;

 return 0;

}

The parameter type as well as the result type are derived automatically depending

on the type of the concrete parameter (literal) when the function is compiled (in

the previous example, double, unsigned int, int, and a complex number of type

std::complex<T>). Generalized lambdas are extremely useful in interaction with

Standard Library algorithms, because they are universally applicable.

 Lambda Templates (C++20)
The C++17 language standard that followed C++14 extended the capabilities of C++

lambdas. For instance, with C++17, it became possible to evaluate lambdas at compile-

time, so-called constexpr lambdas. The new C++20 standard also offers further, mostly

smaller improvements regarding more convenient uses of lambdas and to allow some

advanced use cases.

However, one new C++20 add-on regarding lambda expressions is explicitly

noteworthy: lambda templates!

CHaPTer 7 FunCTIonaL PrograMMIng

320

Maybe you are a little surprised now and ask yourself, wait a minute! We have had

generic lambdas since C++14. That is actually something like templates. For what

purpose do we still need lambda templates now?

Let’s compare two lambda expressions for a multiplication, one implemented as a

generic lambda (C++14) and one as a template lambda (C++20):

auto multiply1 = [](const auto multiplicand, const auto multiplier) {

 return multiplicand * multiplier;

};

auto multiply2 = []<typename T>(const T multiplicand, const T multiplier) {

 return multiplicand * multiplier;

};

If you would call them with identical parameters for both arguments, you will not

notice a difference:

auto result1 = multiply1(10, 20);

auto result2 = multiply2(10, 20);

In both cases, the value 200 can be found in the variables that receive the results. But

what will happen if we call both variants with parameters of different types, e.g., an int

for the multiplicand and a bool for the multiplier?

auto result3 = multiply1(10, true);

auto result4 = multiply2(10, true);

Also in this case the compiler manages to translate the generic template multiply1

without complaint. (By the way, the result in result3 is 10 because the compiler expands

the true to an int [integral promotion] and has the value 1.) However, we get a compiler

error for the instantiation of the lambda template multiply2; for instance something like

this:

error: deduced conflicting types for parameter 'T' ('int' and 'bool')

With lambda templates, developers cannot be prevented from accidental wrong

instantiations or usages of lambdas. Furthermore, C++20 concepts (see the section

entitled “Concepts: Requirements for Template Arguments” in Chapter 5) can of course

be used to perform compile-time validations of a lambda’s template arguments. See

Listing 7-23.

CHaPTer 7 FunCTIonaL PrograMMIng

321

Listing 7-23. Lambda Templates Can Also Be Equipped with Constraints Using

C++20 Concepts

#include <concepts>

#include <iostream>

#include <string>

template <typename T>

concept Number = std::integral<T> || std::floating_point<T>;

int main() {

 auto add = [] <Number T> (const T addend1, const T addend2) {

 return addend1 + addend2;

 };

 const std::string string1 { "Hello" };

 const std::string string2 { "World" };

 auto result1 = add(10, 20); // OK

 auto result2 = add('x', 'y'); // OK

 auto result3 = add(10.0, 20.0); // OK

 auto result4 = add(string1, string2); // Compiler-error: constraints not

satisfied!

 std::cout << result1 << ", " << result2 << ", " << result3 << std::endl;

 return 0;

}

In this example, the lambda template is allowed only for use with numeric data types

(int, float, double, ...). Although there is an operator called std::string::operator+

that allows two strings to be concatenated, an instantiation of the lambda template is

prohibited by the Number<T> concept.

CHaPTer 7 FunCTIonaL PrograMMIng

322

 Higher-Order Functions
A central concept in functional programming is so-called higher-order functions. They

are the pendant to first-class functions. A higher-order function is a function that takes

one or more other functions as arguments, or they can return a function as a result. In

C++, any callable object—for example, an instance of the std::function wrapper, a

function pointer, a closure created from a lambda expression, a handcrafted functor, and

anything else that implements operator()—can be passed as an argument to a higher-

order function.

We can keep this introduction relatively short, because we have already seen and

used several higher-order functions. Many of the algorithms (see the section about

algorithms in Chapter 5) in the C++ Standard Library are these kinds of functions.

Depending on their purpose, they take a unary operator, unary predicate, or binary

predicate and apply it to a container or to a sub-range of elements in a container.

Of course, despite the fact that the <algorithm> and <numeric> headers provide

a comprehensive selection of powerful higher-order functions for different purposes,

you can also implement higher-order functions or higher-order function templates by

yourself. See Listing 7-24.

Listing 7-24. An Example of Self-Made Higher-Order Functions

#include <functional>

#include <iostream>

#include <vector>

template<typename CONTAINERTYPE, typename UNARYFUNCTIONTYPE>

void myForEach(const CONTAINERTYPE& container, UNARYFUNCTIONTYPE

unaryFunction) {

 for (const auto& element : container) {

 unaryFunction(element);

 }

}

template<typename CONTAINERTYPE, typename UNARYOPERATIONTYPE>

void myTransform(CONTAINERTYPE& container, UNARYOPERATIONTYPE

unaryOperator) {

CHaPTer 7 FunCTIonaL PrograMMIng

323

 for (auto& element : container) {

 element = unaryOperator(element);

 }

}

template<typename NUMBERTYPE>

class ToSquare {

public:

 NUMBERTYPE operator()(const NUMBERTYPE& number) const noexcept {

 return number * number;

 }

};

template<typename TYPE>

void printOnStdOut(const TYPE& thing) {

 std::cout << thing << ", ";

}

int main() {

 std::vector<int> numbers { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

 myTransform(numbers, ToSquare<int>());

 std::function<void(int)> printNumberOnStdOut = printOnStdOut<int>;

 myForEach(numbers, printNumberOnStdOut);

 return 0;

}

In this case, our two self-made higher-order function templates myTransform()

and myForEach() are only applicable to entire containers because, unlike the Standard

Library algorithms, they have no iterator interface. The crucial point, however, is that

developers can provide custom higher-order functions that do not exist in the C++

Standard Library.

We will now look at three of these high-order functions in greater detail, because

they play an important role in functional programming.

CHaPTer 7 FunCTIonaL PrograMMIng

324

 Map, Filter, and Reduce
Each serious functional programming language must provide at least three useful

higher-order functions: map, filter, and reduce (called fold). Even if they have different

names depending on the programming language, you can find this triumvirate in

Haskell, Erlang, Clojure, JavaScript, Scala, and many other languages with functional

programming capabilities. Hence, we can claim justifiably that these three higher-order

functions form a very common functional programming design pattern.

It should therefore hardly surprise you that these higher-order functions are also

contained in the C++ Standard Library. And maybe you will also not be surprised that we

have already used some of these functions.

Let’s look at each of these functions in the following sections.

 Map

Map might be the easiest to understand of the three. With the help of this higher-order

function, we can apply an operator function to each single element of a list. In C++, this

function is provided by the Standard Library algorithm std::transform (defined in the

<algorithm> header), which you’ve seen in some previous code examples.

 Filter

Filter is also pretty simply. As the name suggests, this higher-order function takes a

predicate (see the section about predicates earlier in this chapter) and a list, and it

removes any element from the list that does not satisfy the predicate’s condition. In C++,

this function is provided by the Standard Library algorithm std::remove_if (defined in

the <algorithm> header), which you’ve seen in some previous code examples.

Nevertheless, here’s another nice example of the std::remove_if filter. If you

are suffering from a disease called “aibohphobia,” which is a humorous term for the

irrational fear of palindromes, you could filter out palindromes from word lists, as shown

in Listing 7-25.

Listing 7-25. Removing All Palindromes from a Vector of Words

#include <algorithm>

#include <iostream>

#include <string>

CHaPTer 7 FunCTIonaL PrograMMIng

325

#include <vector>

class IsPalindrome {

public:

 bool operator()(const std::string& word) const {

 const auto middleOfWord = begin(word) + word.size() / 2;

 return std::equal(begin(word), middleOfWord, rbegin(word));

 }

};

int main() {

 std::vector<std::string> someWords { "dad", "hello", "radar", "vector",

"deleveled", "foo", "bar", "racecar", "ROTOR", "", "C++", "aibohphobia" };

 someWords.erase(std::remove_if(begin(someWords), end(someWords),

IsPalindrome()),

 end(someWords));

 std::for_each(begin(someWords), end(someWords), [](const auto& word) {

 std::cout << word << ",";

 });

 return 0;

}

The output of this program is as follows:

hello,vector,foo,bar,C++,

 Reduce (Fold)

Reduce (also called fold, collapse, or aggregate) is the most powerful of the three higher-

order functions and might be a bit hard to understand at first glance. Reduce (fold) is

a higher-order function to get a single resultant value by applying a binary operator

to a list of values. In C++, this function is provided by the Standard Library algorithm

std::accumulate (defined in the <numeric> header). Some say that std::accumulate is

the most powerful algorithm in the Standard Library.

To start with a simple example, you can easily get the sum of all integers in a vector,

as shown in Listing 7-26.

CHaPTer 7 FunCTIonaL PrograMMIng

326

Listing 7-26. Building the Sum of All Values in a Vector Using std::accumulate

#include <numeric>

#include <iostream>

#include <vector>

int main() {

 std::vector<int> numbers { 12, 45, -102, 33, 78, -8, 100, 2017, -110 };

 const int sum = std::accumulate(begin(numbers), end(numbers), 0);

 std::cout << "The sum is: " << sum << std::endl;

 return 0;

}

The version of std::accumulate we used does not expect an explicit binary

operator in the parameter list. Using this version of the function, the sum of all values

is calculated. Of course, you can provide your own binary operator, as in the example

through a lambda expression in Listing 7-27.

Listing 7-27. Finding the Highest Number in a Vector Using std::accumulate

int main() {

 std::vector<int> numbers { 12, 45, -102, 33, 78, -8, 100, 2017, -110 };

 const int maxValue = std::accumulate(begin(numbers), end(numbers), 0,

 [](const int value1, const int value2) {

 return value1 > value2 ? value1 : value2;

 });

 std::cout << "The highest number is: " << maxValue << std::endl;

 return 0;

}

CHaPTer 7 FunCTIonaL PrograMMIng

327

LEFT AND RIGHT FOLD

Functional programming often distinguishes between two ways to fold a list of elements: a left
fold and a right fold.

If we combine the first element with the result of recursively combining the rest, this is called

a right fold. Instead, if we combine the result of recursively combining all elements but the last

one with the last element, this operation is called a left fold.

If, for example, we take a list of values that are to be folded with a + operator to a sum, the

parentheses are as follows for a left fold operation: ((A + B) + C) + D. Instead, with a

right fold, the parentheses would be set like this: A + (B + (C + D)). In the case of a

simple associative + operation, the result does not change whether it is formed with a left

fold or a right fold. But in the case of non-associative binary functions, the order in which the

elements are combined may influence the final result’s value.

also in C++, we can distinguish between a left fold and a right fold. If we use

std::accumulate with normal iterators, we get a left fold:

std::accumulate(begin, end, init_value, binary_operator)

Instead, if we use std::accumulate with a reverse iterator, we get a right fold:

std::accumulate(rbegin, rend, init_value, binary_operator)

 Fold Expressions in C++17

Starting with C++17, the language has gained an interesting new feature called fold

expressions. Fold expressions are implemented as so-called variadic templates (available

since C++11); that is, as templates that can take a variable number of arguments in a

type-safe way. This arbitrary number of arguments is held in a so-called parameter pack.

What has been added with C++17 is the possibility to reduce the parameter pack

directly with the help of a binary operator, that is, to perform a folding. The general

syntax of C++17 fold expressions are as follows:

CHaPTer 7 FunCTIonaL PrograMMIng

328

(... operator parampack) // left fold

(parampack operator ...) // right fold

(initvalue operator ... operator parampack) // left fold with an init

value

(parampack operator ... operator initvalue) // right fold with an init

value

Listing 7-28 shows an example, a left fold with an init value.

Listing 7-28. An example of a Left Fold

#include <iostream>

template<typename... PACK>

int subtractFold(int minuend, PACK... subtrahends) {

 return (minuend - ... - subtrahends);

}

int main() {

 const int result = subtractFold(1000, 55, 12, 333, 1, 12);

 std::cout << "The result is: " << result << std::endl;

 return 0;

}

Note that a right fold cannot be used in this case due to the lack of associativity of

operatort. Fold expressions are supported for 32 operators, including logical operators

like ==, &&, and ||.

Listing 7-29 shows another example, which tests that a parameter pack contains at

least one even number.

Listing 7-29. Checking Whether a Parameter Pack Contains an Even Value

#include <iostream>

template <typename... TYPE>

bool containsEvenValue(const TYPE&... argument) {

 return ((argument % 2 == 0) || ...);

}

CHaPTer 7 FunCTIonaL PrograMMIng

329

int main() {

 const bool result1 = containsEvenValue(10, 7, 11, 9, 33, 14);

 const bool result2 = containsEvenValue(17, 7, 11, 9, 33, 29);

 std::cout << std::boolalpha;

 std::cout << "result1 is " << result1 << "\n";

 std::cout << "result2 is " << result2 << std::endl;

 return 0;

}

The output of this program is as follows:

result1 is true

result2 is false

 Pipelining with Range Adaptors (C++20)
People who like to work with UNIX or Linux operating systems emphasize, among other

things, a particularly convenient and efficient way to perform tasks on these operating

systems: using shell programming. Basically, a UNIX/Linux shell is a command-line- based

human-machine interface. There are a number of text-based shells available for UNIX/

Linux OS, such as Bash (an acronym for Bourne Again Shell), the Korn Shell, and the Z Shell.

One of the reasons that you can perform complex tasks very elegantly and efficiently

with the help of these shells is the possibility of pipelining. Some people say the concept of

pipelining, introduced in 1972, has been one of the most important UNIX innovations in

history, perhaps apart from regular expressions. Basically, a pipeline is a message- passing

pattern and describes a chain of processing elements. In a shell, a pipeline is a set of

processes, usually small programs, chained together by their standard streams, so that the

output text of each process (stdout) is passed directly as input (stdin) to the next one.

As an example, suppose we have a text file named customers.txt, in which

hundreds of customer names are listed line-by-line, preceded by a date, as follows (an

excerpt):

2020-11-05,Stephan Roth

2020-11-22,John Doe

2020-10-15,Mark Powers

[...]

CHaPTer 7 FunCTIonaL PrograMMIng

330

On the Bash command line, we now execute the following command sequence:

$ cat customers.txt | sort -r > customers2.txt

What will happen here? Well, first the cat command (short for “concatenate”) lists

the contents of the text file customers.txt on stdout. This output stream is redirected

with the help of the pipe operator (a vertical bar: |) and is used as the input stream for

the program sort. The sort command is used to sort lines in a text file. In our case, we

have specified by the command-line option -r that the sort order should be reversed.

Instead of descending sorting, ascending sorting is used. The output stream of the sort

command is redirected again, because we don’t want to see its output on the screen.

Instead, it should be written to a new text file. The greater than symbol, >, tells the shell

to redirect the sort’s output to the customers2.txt file.

In Chapter 5 I briefly introduced the new C++20 Ranges library. However, I neglected

a few of the new features there: range adaptors and chaining using the pipe operator! Just

as you can chain commands together on a UNIX shell using pipes, this is also possible

with C++20 Range adaptors.

You may remember the following small code example (excerpt) from Listing 5-26?

It’s shown in again in Listing 7-30.

Listing 7-30. The Code Snippet from Listing 5-26

#include <iostream>

#include <ranges>

#include <vector>

std::vector<int> integers = { 2, 5, 8, 22, 45, 67, 99 };

auto view = std::views::reverse(integers); // does not change 'integers'

Recall that a view is lazy evaluated, i.e., whatever transformation it applies, the view

performs it at the moment someone requests an element. And as a range adaptor, it does

not modify the underlying range, in our case the vector named integers.

Due to their property as adaptors, views can be easily chained. We now extend this

example by adding more views and some lambda expressions; see Listing 7-31.

CHaPTer 7 FunCTIonaL PrograMMIng

331

Listing 7-31. Chaining Range Adaptors

#include <algorithm> // required for std::ranges::for_each

#include <iostream>

#include <ranges>

#include <vector>

int main() {

 std::vector<int> integers = { 2, 5, 8, 22, 45, 67, 99 };

 auto isOdd = [] (const int value) { return value % 2 != 0; };

 auto square = [] (const int value) { return value * value; };

 auto printOnStdOut = [] (const int value) { std::cout << value << '\n';

};

 auto view = std::views::transform(std::views::reverse(std::views::filter(

integers, isOdd)),

 square);

 std::ranges::for_each(view, printOnStdOut);

 return 0;

}

The output of the program is as follows:

9801

4489

2025

25

Well, from a clean code developer’s perspective, this code sample still has one

unsightly flaw: the nested Range adaptors for creating the view. This is just one line of

code, but it is not easy to comprehend on first sight what’s happening here. Just think

about that in a real software application; nested Range adaptors could become much

more complex than in this relatively simple example.

CHaPTer 7 FunCTIonaL PrograMMIng

332

This is where the new C++20 pipe operator comes into play. It is “syntactic sugar”1

and can be used for easier function chaining. The line of code in which the view view is

created can also be written as follows:

 auto view = integers | std::views::filter(isOdd) | std::views::reverse |

 std::views::transform(square);

That’s pretty convenient, isn’t it? This looks very similar to building pipelines in

a UNIX shell, as we saw it at the beginning of this section. You can simply read the

expression from left to right and easily understand how the view is composed. Thanks

to the power of views, the C++20 Ranges Library enables developers to write code in an

even more functional programming-style.

Before we come to the end of this chapter on functional programming, I previously

announced that I would revisit and improve the code example in Listing 7-15 once

again. With all the new functional programming concepts we have now learned, we can

refactor this example and make it much more compact and elegant; see Listing 7-32.

Listing 7-32. The Refactored Code Example

#include <concepts>

#include <iostream>

#include <ranges>

template <typename T>

concept Streamable = requires (std::ostream& os, const T& value) {

 { os << value };

};

int main() {

 auto toSquare = [] (const auto value) { return value * value; };

 auto isAnEvenNumber = [] <std::integral T> (const T value) {

 return (value % 2) == 0;

 };

 auto print = [] <Streamable T> (const T& printable) {

 std::cout << printable << '\n';

 };

1 The term “syntactic sugar” describes syntax within a programming language that is designed to
make parts of the code easier to read or to express.

CHaPTer 7 FunCTIonaL PrograMMIng

333

 for (const auto& value : std::views::iota(0, 100)

 | std::views::transform(toSquare)

 | std::views::filter(isAnEvenNumber)) {

 print(value);

 }

 return 0;

}

 Clean Code in Functional Programming
No doubt, the functional programming movement has not stopped with C++, and that’s

basically good. Many useful concepts have been incorporated into our somewhat aged

programming language during the last decade, starting with C++11.

But code that is written in a functional style is not automatically good or clean code.

The increasing popularity of functional programming languages during the last few

years could make you believe that functional code is per se better to maintain, to read,

to test, and is less error prone than, for instance, object-oriented code. But that’s not
unconditionally true! On the contrary, nifty elaborated functional code that is doing

non-trivial things can be very difficult to understand.

Let’s, for example, look at a simple fold operation that is very similar to one of the

previous examples:

// Build the sum of all product prices

const Money sum = std::accumulate(begin(productPrices),

end(productPrices), 0.0);

If you read this without the explaining source code comment…is this intention

revealing code? Remember what you learned in Chapter 4 about comments. Whenever

you feel the urge to write a source code comment, you should first think about how to

improve the code so that the comment becomes superfluous.

So, what we really want to read or write is something like this:

const Money totalPrice = buildSumOfAllPrices(productPrices);

CHaPTer 7 FunCTIonaL PrograMMIng

334

You prefer the functional programming style over OO? Okay, but I’m sure that you

will agree that KISS, DRY, and YAGNI (see Chapter 3) are also very good principles in

functional programming! Do you think that you can ignore the single responsibility

principle (see Chapter 6) in functional programming? Forget it! If a function does more

than one thing, it will lead to similar problems as in object orientation. I hope do not

have to mention that good and expressive naming (see Chapter 4 about good names) is

also enormously important for the understandability and maintainability of code in a

functional environment. Always keep in mind that developers spend much more time

reading code than writing code.

Note The principles of good software design still apply, regardless of the
programming style you use!

Thus, we can conclude that most design principles used by object-oriented software

designers and programmers can also be used by functional programmers.

Personally, I prefer a balanced mix of both programming styles. There are many

design challenges that can be solved perfectly using object-oriented paradigms.

Polymorphism is a great benefit of OO. We can take advantage of the dependency

inversion principle (see the eponymous section in Chapter 6), which allows us to invert

source code and runtime dependencies.

Instead, complex mathematical computations and algorithms can be better solved

using a functional programming style. And if high and ambitious performance and

efficiency requirements must be fulfilled, which will inevitably require a parallelization

of certain tasks, functional programming can play its trump card.

Regardless of whether you prefer to write software in an object-oriented way, or in a

functional style, or in an appropriate mixture of both, you should always remember the

following quote:

“Always code as if the guy who ends up maintaining your code will be a
violent psychopath who knows where you live.”

—John F. Woods, 1991,
in a post to the comp.lang.c++ newsgroup

CHaPTer 7 FunCTIonaL PrograMMIng

335
© Stephan Roth 2021
S. Roth, Clean C++20, https://doi.org/10.1007/978-1-4842-5949-8_8

CHAPTER 8

Test-Driven Development
“Project Mercury ran with very short (half-day) iterations that were time
boxed. The development team conducted a technical review of all changes,
and, interestingly, applied the Extreme Programming practice of test-first
development, planning, and writing tests before each micro-increment.”

—Craig Larman and Victor R. Basili,
Iterative and Incremental Development: A Brief History. IEEE, 2003

In Chapter 2, “Build a Safety-Net,” we learned that a suite of well-crafted and fast unit

tests can ensure that our code works correctly. So far, so good. But what is so special

about test-driven development (TDD) so that this topic justifies a dedicated chapter?

Especially in recent years, the discipline of test-driven development, a so-called test-

first approach, has gained in popularity. TDD has become an important ingredient of the

toolbox of software craftspeople. That’s a little bit surprising, because the basic idea of

test-first approaches is nothing new. Project Mercury, which is mentioned in the opening

quote, was the first human spaceflight program of the United States and was conducted

under the direction of NASA from 1958 through 1963. Although what was practiced in

that project about 60 years ago as “test-first development” certainly is not exactly the

kind of TDD as we know it today, we can say that the basic idea was present quite early in

professional software development.

But then it seemed that this approach was forgotten for decades. In countless

projects with billions of lines of code, the tests were postponed at the end of the

development process. The sometimes-devastating consequences of this right-shifting of

the tests in the project’s schedules are known: if time is getting short in the project, one

of the first things usually abandoned by the development team are the important tests.

https://doi.org/10.1007/978-1-4842-5949-8_8#DOI

336

With the increasing popularity of agile practices in software development and the

coming up of a new method called eXtreme Programming (XP) at the beginning of the

2000s, test-driven development was rediscovered. Kent Beck wrote his famous book

 Test- Driven Development: By Example [Beck02], and test-first approaches like TDD

experienced a renaissance and became increasingly important tools in the toolbox of

software craftspeople.

In this chapter, I not only explain that although the term “test” is included in test-

driven development, it is not primarily about quality assurance. TDD offers many more

benefits than just a simple validation of the correctness of the code. Rather I explain the

differences between TDD and what is sometimes called plain old unit testing (POUT),

followed by the discussion of the workflow of TDD in detail, supported by a detailed

practical example that shows how to do it in C++.

 The Drawbacks of Plain Old Unit Testing (POUT)
No doubt, as we’ve seen in Chapter 2, a suite of unit tests is basically a much better

situation than having no tests in place. But in many projects the unit tests are written

somehow parallel to the implementation of the code to be tested, sometimes even

completely after finalization of the module to be developed. The UML activity diagram

depicted in Figure 8-1 visualizes this process.

Chapter 8 test-Driven Development

337

This widespread approach is occasionally also referred to as plain old unit testing

(POUT). Basically, POUT means that the software will be developed “code first”, and not

test first; meaning that the unit tests are written always after the code to be tested has

been written. And to many developers this order appears to be the only logical sequence.

They argue that to test something, obviously the thing to be tested needs to have

Figure 8-1. The typical process flow in traditional unit testing

Chapter 8 test-Driven Development

338

been built previously. And in some development organizations, this approach is even

mistakenly named as “test-driven development,” which is flat wrong.

Like I said, plain old unit testing is better than no unit testing at all. Nonetheless, this

approach has a few disadvantages:

• There is no compulsion to write the unit tests afterward. Once a

feature works (…or rather seems to work), there is little motivation

to retrofit the code with unit tests. It’s no fun, and the temptation

to move on to the next exciting task is just too great for many

developers.

• The resulting code can be difficult to test. Often it is not so easy to

retrofit existing code with unit tests, because the initial developers

didn’t set great store by its testability. This tends to favor the

emergence of tightly coupled code.

• It is not easy to reach pretty-high test coverage with retrofitted unit

tests. The writing of unit tests after the code has the tendency that

some issues or bugs can slip through.

 Test-Driven Development as a Game Changer
Test-driven development (TDD) turns traditional development completely around. For

developers who have not yet dealt with TDD, this approach represents a paradigm shift.

As a so-called test-first approach and in contrast to POUT, TDD does not allow any

production code to be written before the associated test has been written that justifies

that code. In other words, TDD means that we write the test for a new feature or function

always before we write the corresponding production code. This is done strictly step by

step: after each implemented test, just enough production code is written that the test

will pass and no more! And it is done as long as there are still unrealized requirements

for the module to be developed.

At first glance, it seems to be paradoxical and a little bit absurd to write a unit test for

something that does not yet exist. How can this work?

Don’t worry, it works. After we have discussed the process behind TDD in detail in

the next section, all doubts will hopefully be eliminated.

Chapter 8 test-Driven Development

339

 The Workflow of TDD
When performing test-driven development, the steps depicted in Figure 8-2 are run

through repeatedly until all known requirements for the unit to develop are satisfied.

First of all, it is remarkable that the first action after the initial node that is labeled

with “Start Doing TDD” is that the developer should think about which requirement to

satisfy. Which kinds of requirements are meant here?

Well, first and foremost there are requirements that must be fulfilled by a software

system. This applies both to the requirements of the business stakeholders on the top

level regarding the whole system, as well as to the requirements residing on lower

abstraction levels, that is, requirements for components, classes, and functions, which

were derived from the business stakeholders’ requirements. With TDD and its test-

first approach, requirements are nailed down firmly by unit tests. In fact, before the

production code is written. In our case of a test-first approach for the development

of units, that is, at the lowest level of the test pyramid (see Figure 2- 1 in Chapter 2),

Figure 8-2. The detailed workflow of TDD as an UML activity diagram

Chapter 8 test-Driven Development

340

of course the requirements at the lowest level are meant here. Naturally, such a test-

first approach can also be applied at the higher levels of abstraction, such as in an

approach named acceptance test–driven development (ATDD), which is a development

methodology that encompasses acceptance testing, but claims writing acceptance tests

before developers begin coding.

Next, a small test is to be written, whereby the public interface (API) is to be

designed. This might be surprising, because in the first run through this cycle, we still

have not written any production code. So, what interface can be designed here if we have

a blank piece of paper?

Well, the simple answer is this: that “blank piece of paper” is exactly what we want to

fill in now, but coming from a different perspective than usual. We take the perspective

of a future external client of the piece of software to be developed. We use a small test to

define how we want to use the code to be developed. In other words, this is the step that

should lead to well-testable and thus also well-usable software units.

After we have written the appropriate lines in the test, we must, of course, also satisfy

the compiler and provide the interface requested by the test.

Then immediately the next surprise: the newly written unit test must (initially) fail.

Why?

Simple answer: we have to make sure that the test can fail at all. Even a unit test can

itself be implemented incorrectly and, for example, always pass, no matter what we’re

doing in the production code. So, we have to ensure that the newly written test is armed.

Now we are getting to the climax of this small workflow: we write just enough

production code—and not a single line more!—so that the new unit test (… and any

previously existing tests) is passed! It is very important to be disciplined at this point and

not write more code than required (remember the KISS principle from Chapter 3). It’s up

to the developer to decide what is appropriate in each situation. Sometimes a single line

of code, or even just one statement, is sufficient; in other cases you need to call a library

function. If the latter is the case, the time has now come to think about how to integrate

and use this library, and especially how to replace it with a test double (see the section

about test doubles in Chapter 2).

If we now run the unit tests and we have done everything right, the tests will pass.

We have reached a remarkable point in the process. If the tests pass, we always have
100% unit test coverage at this step. Always! Not only 100% in the sense of a technical

test coverage metric, such as condition coverage, branch coverage, or statement

coverage. No, much more important is that we have 100% unit test coverage regarding

Chapter 8 test-Driven Development

341

the requirements that were already implemented at this point! And yes, at this point

possibly there may be still some or many non-implemented requirements for the piece

of code to be developed. This is okay, because we will go through the TDD cycle again

and again until all requirements are satisfied. But for a subset of requirements that are

already satisfied at this point, we have 100% unit test coverage.

This fact gives us tremendous power! With this gapless safety net of unit tests, we

can now carry out fearless refactorings. Code smells (e.g., duplicated code) or design

issues can be fixed. We do not need to be afraid to break functionality, because regularly

executed unit tests will give us immediate feedback about that. And the pleasant thing is

this: if one or more tests fail during the refactoring phase, the code change that led to it

was a very small one.

After the refactoring has been completed, we can implement another requirement

that has not yet been fulfilled by continuing the TDD cycle. If there are no more

requirements, we are ready.

Figure 8-2 depicts the TDD cycle with many details. Boiled down to its three essential

main steps as depicted in Figure 8-3, the TDD cycle is often referred to as “RED –

GREEN – REFACTOR.”

Figure 8-3. The core workflow of TDD

Chapter 8 test-Driven Development

342

• RED: We write one failing unit test.

• GREEN: We write just enough production code—and not one line

more!—so that the new test and all previously written tests will pass.

• REFACTOR: Code duplication and other code smells are eliminated,

both from the production code as well as from the unit tests.

The terms RED and GREEN refer to typical unit test framework integrations that are

available for a variety of IDEs (Integrated Development Environments), where tests that

passed are displayed in green and tests that failed are shown in red.

Enough of theory, I will now explain the complete development of a piece of software

using TDD and a small example.

 TDD by Example: The Roman Numerals Code Kata
The basic idea for what is nowadays called a code kata was first described by Dave

Thomas, one of the two authors of the remarkable book, The Pragmatic Programmer

[Hunt99]. Dave was of the opinion that developers should practice on small, not job-

related, code bases repeatedly so that they can master their profession like a musician.

He said that developers should constantly learn and improve themselves, and for that

purpose, they need practice sessions to apply the theory over and over again, using

feedback to get better every time.

A code kata is a small exercise in programming, which serves exactly this purpose.

The term kata is inherited from the martial arts. In far-eastern combatant sports, they

use katas to practice their basic moves over and over again. The goal is to bring the

course of motion to perfection.

This kind of practice was devolved to software development. To improve their

programming skills, developers should practice their craft with the help of small

exercises. Katas became an important facet of the Software Craftsmanship movement.

They can address different abilities a developer should have, for example, knowing the

keyboard shortcuts of the IDE, learning a new programming language, focusing on

certain design principles, or practicing TDD. On the Internet, several catalogues with

suitable katas for different purposes exist, for example, the collection by Dave Thomas

on http://codekata.com.

For our first steps with TDD, we use a code kata with an algorithmic emphasis: the

well-known Roman numerals code kata.

Chapter 8 test-Driven Development

http://codekata.com

343

TDD KATA: CONVERT ARABIC NUMBERS TO ROMAN NUMERALS

the romans wrote numbers using letters. For instance, they wrote “v” for the arabic number 5.

Your task is to develop a piece of code using the test-driven development (TDD)
approach that translates the Arabic numbers between 1 and 3,999 into their respective
Roman representations.

numbers in the roman system are represented by combinations of letters from the latin

alphabet. roman numerals, as used today, are based on seven characters:

 1 ⇒ I

 5 ⇒ V

 10 ⇒ X

 50 ⇒ L

 100 ⇒ C

 500 ⇒ D

1,000 ⇒ M

numbers are formed by combining characters together and adding the values. For instance,

the arabic number 12 is represented by “Xii” (10 + 1 + 1). and the number 2017 is “mmXvii”

in its roman equivalent.

exceptions are 4, 9, 40, 90, 400, and 900. to avoid that four equal characters must be repeated

in succession, the number 4, for instance, is not represented by “iiii”, but “iv”. this is known

as subtractive notation, that is, the number that is represented by the preceding character i is

subtracted from v (5 - 1 = 4). another example is “Cm,” which is 900 (1,000 - 100).

By the way, the romans had no equivalent for 0 (zero); furthermore, they didn’t know negative

numbers.

 Preparations
Before we can write our first test, we need to make some preparations and set up the test

environment.

Chapter 8 test-Driven Development

344

As the unit test framework for this kata, I use Google Test (https://github.com/

google/googletest), a platform-independent C++ unit test framework released under

the New BSD License. Of course, any other C++ unit testing framework can be used for

this kata as well.

It is also strongly recommended to use a version control system. Apart from a few

exceptions, we will perform a commit to the version control system after each pass-

through of the TDD cycle. This has the great advantage that we can walk back and

regress possibly wrong decisions.

Furthermore, we have to think about how the source code files will be organized. My

suggestion for this kata is initially to start with just one file, the file that will take up all

future unit tests: ArabicToRomanNumeralsConverterTestCase.cpp. Since TDD guides us

incrementally through the formation process of a software unit, it is possible to decide

later if additional files are required.

For a fundamental function check, we write a main function that initializes

Google Test and runs all tests, and we write one simple unit test (named

PreparationsCompleted) that always fails intentionally, as shown in the code example in

Listing 8-1.

Listing 8-1. The Initial Content of ArabicToRomanNumeralsConverterTestCase.cpp

#include <gtest/gtest.h>

int main(int argc, char** argv) {

 testing::InitGoogleTest(&argc, argv);

 return RUN_ALL_TESTS();

}

TEST(ArabicToRomanNumeralsConverterTestCase, PreparationsCompleted) {

 GTEST_FAIL();

}

After compiling and linking, we execute the resulting binary file to run the test.

The output of our small program on standard output (stdout) should be as shown in

Listing 8-2.

Chapter 8 test-Driven Development

https://github.com/google/googletest
https://github.com/google/googletest

345

Listing 8-2. The Output of the Test Run

[==========] Running 1 test from 1 test case.

[----------] Global test environment set-up.

[----------] 1 test from ArabicToRomanNumeralsConverterTestCase

[RUN] ArabicToRomanNumeralsConverterTestCase.PreparationsCompleted

../ ArabicToRomanNumeralsConverterTestCase.cpp:9: Failure

Failed

[FAILED] ArabicToRomanNumeralsConverterTestCase.PreparationsCompleted

(0 ms)

[----------] 1 test from ArabicToRomanNumeralsConverterTestCase (2 ms total)

[----------] Global test environment tear-down

[==========] 1 test from 1 test case ran. (16 ms total)

[PASSED] 0 tests.

[FAILED] 1 test, listed below:

[FAILED] ArabicToRomanNumeralsConverterTestCase.PreparationsCompleted

 1 FAILED TEST

Note Depending on the unit test framework and its version used, the output may
be different than what is presented in this example.

As expected, the test fails. The output on stdout is pretty helpful to imagine what

went wrong. It specifies the name of the failed tests, the filename, the line number, and

the reason that the test failed. In this case, it is a failure that was enforced by a special

Google Test macro.

If we now exchange the GTEST_FAIL() macro with the GTEST_SUCCEED() macro

inside the test, after a recompilation the test should pass, as shown in Listing 8-3.

Listing 8-3. The Output of the Successful Test Run

[==========] Running 1 test from 1 test case.

[----------] Global test environment set-up.

[----------] 1 test from ArabicToRomanNumeralsConverterTestCase

[RUN] ArabicToRomanNumeralsConverterTestCase.PreparationsCompleted

[OK] ArabicToRomanNumeralsConverterTestCase.PreparationsCompleted (0 ms)

Chapter 8 test-Driven Development

346

[----------] 1 test from ArabicToRomanNumeralsConverterTestCase (0 ms total)

[----------] Global test environment tear-down

[==========] 1 test from 1 test case ran. (4 ms total)

[PASSED] 1 test.

That’s good, because now we know that everything is prepared properly and we can

start with our kata.

 The First Test
The first step is to decide which first small requirement we want to implement. Then we

will write a failing test for it. For our example, we’ve decided to start with converting a

single Arabic number into a Roman numeral: We want to convert the Arabic number 1

into an “I.”

Hence, we take the already existing dummy test and convert it into a real unit test,

which can prove the fulfillment of this small requirement. Thereby we also have to

consider how the interface to the conversion function should look (Listing 8-4).

Listing 8-4. The First Test (Irrelevant Parts of the Source Code Were Omitted)

TEST(ArabicToRomanNumeralsConverterTestCase, 1_isConvertedTo_I) {

 ASSERT_EQ("I", convertArabicNumberToRomanNumeral(1));

}

As you can see, we have decided for a simple function that takes an Arabic number

as a parameter and has a string as a return value.

But the code cannot be compiled without compiler errors, because the

convertArabicNumberToRomanNumeral() function does not yet exist. Uncompilable test

code is considered like a failed unit test in TDD.

That means that we now have to stop writing test code to write just enough

production code that it can be compiled without errors. Thus, we’re going to create the

conversion function now, and we’ll even write that function directly into the source

code file, which also contains the test. Of course, we are aware of the fact that it cannot

permanently remain this way. See Listing 8-5.

Chapter 8 test-Driven Development

347

Listing 8-5. The Function Stub Satisfies the Compiler

#include <gtest/gtest.h>

#include <string>

int main(int argc, char** argv) {

 testing::InitGoogleTest(&argc, argv);

 return RUN_ALL_TESTS();

}

std::string convertArabicNumberToRomanNumeral(const unsigned int

arabicNumber) {

 return "";

}

TEST(ArabicToRomanNumeralsConverterTestCase, 1_isConvertedTo_I) {

 ASSERT_EQ("I", convertArabicNumberToRomanNumeral(1));

}

Now the code can be compiled again without errors. And for the moment the

function returns only an empty string.

In addition, we now have our first executable test, which must fail (RED), because

the test expects an “I,” but the function returns an empty string (Listing 8-6).

Listing 8-6. The Output of Google Test After Executing the Deliberately Failing

Unit Test (RED)

[==========] Running 1 test from 1 test case.

[----------] Global test environment set-up.

[----------] 1 test from ArabicToRomanNumeralsConverterTestCase

[RUN] ArabicToRomanNumeralsConverterTestCase.1_isConvertedTo_I

../ArabicToRomanNumeralsConverterTestCase.cpp:14: Failure

Value of: convertArabicNumberToRomanNumeral(1)

 Actual: ""

Expected: "I"

[FAILED] ArabicToRomanNumeralsConverterTestCase.1_isConvertedTo_I (0 ms)

[----------] 1 test from ArabicToRomanNumeralsConverterTestCase (0 ms total)

[----------] Global test environment tear-down

Chapter 8 test-Driven Development

348

[==========] 1 test from 1 test case ran. (6 ms total)

[PASSED] 0 tests.

[FAILED] 1 test, listed below:

[FAILED] ArabicToRomanNumeralsConverterTestCase.1_isConvertedTo_I

 1 FAILED TEST

Okay, that’s what we expected.

Now we need to change the implementation of the

convertArabicNumberToRomanNumeral() function so that the test will pass. The rule

is this: do the simplest thing that could possibly work. And what could be easier than

returning an “I” from the function? See Listing 8-7.

Listing 8-7. The Changed Function (Irrelevant Parts of the Source Code Were

Omitted)

std::string convertArabicNumberToRomanNumeral(const unsigned int

arabicNumber) {

 return "I";

}

You will probably say, “Wait a minute! That’s not an algorithm to convert Arabic

numbers into their Roman equivalents. That’s cheating!”

Of course, the algorithm isn’t ready yet. You have to change your mind. The rules of

TDD state that we should write the simplest bit of code that passes the current test. It is

an incremental process, and we are just at its beginning.

[==========] Running 1 test from 1 test case.

[----------] Global test environment set-up.

[----------] 1 test from ArabicToRomanNumeralsConverterTestCase

[RUN] ArabicToRomanNumeralsConverterTestCase.1_isConvertedTo_I

[OK] ArabicToRomanNumeralsConverterTestCase.1_isConvertedTo_I (0 ms)

[----------] 1 test from ArabicToRomanNumeralsConverterTestCase (0 ms total)

[----------] Global test environment tear-down

[==========] 1 test from 1 test case ran. (1 ms total)

[PASSED] 1 test.

Chapter 8 test-Driven Development

349

Excellent! The test passed (GREEN) and we can go to the refactoring step. Actually,

there is no need to refactor something yet, so we can just proceed with the next run-

through the TDD cycle. But first we have to commit our changes to the source code

repository.

 The Second Test
For our second unit test, we will take a 2, which has to be converted into “II”.

TEST(ArabicToRomanNumeralsConverterTestCase, 2_isConvertedTo_II) {

 ASSERT_EQ("II", convertArabicNumberToRomanNumeral(2));

}

Unsurprisingly, this test must immediately fail (RED), because our

convertArabicNumberToRomanNumeral() function returns an “I.” After we have verified

that the test fails, we complement the implementation so that the test can pass. Once

again, we do the simplest thing that could possibly work (Listing 8-8).

Listing 8-8. We Add Some Code to Pass the New Test

std::string convertArabicNumberToRomanNumeral(const unsigned int

arabicNumber) {

 if (arabicNumber == 2) {

 return "II";

 }

 return "I";

}

Both tests pass (GREEN).

Should we refactor something now? Maybe not yet, but you might get a sneaking

suspicion that we will need a refactoring soon. At the moment, we continue with our

third test…

 The Third Test and the Tidying Afterward
Unsurprisingly, the third test will test the conversion of the number 3:

TEST(ArabicToRomanNumeralsConverterTestCase, 3_isConvertedTo_III) {

Chapter 8 test-Driven Development

350

 ASSERT_EQ("III", convertArabicNumberToRomanNumeral(3));

}

Of course, this test will fail (RED). The code to pass this test, and all previous tests

(GREEN), could look as follows:

std::string convertArabicNumberToRomanNumeral(const unsigned int

arabicNumber) {

 if (arabicNumber == 3) {

 return "III";

 }

 if (arabicNumber == 2) {

 return "II";

 }

 return "I";

}

The bad gut feeling about the emerging design, which you might have had on the

second test, was not unsubstantiated. At least now we, as skilled clean code developers,

should be completely dissatisfied with the obvious code duplication. It’s pretty evident

that we cannot continue this path. An endless sequence of if statements cannot be a

solution, because we will end up with a horrible design. It’s time for refactoring, and we

can do it without fear, because 100% unit test coverage creates a comfortable feeling of

safety!

If we take a look at the code inside function

convertArabicNumberToRomanNumeral(), a pattern is recognizable. The Arabic number

is like a counter of the I-characters of its Roman equivalent. In other words, as long as the

number to be converted can be decremented by 1 before it reaches 0, an “I” is added to

the Roman numeral string.

Well, this can be done in an elegant way using a while loop and string concatenation,

as shown in Listing 8-9.

Listing 8-9. The Conversion Function After Refactoring

std::string convertArabicNumberToRomanNumeral(unsigned int arabicNumber) {

 std::string romanNumeral;

 while (arabicNumber >= 1) {

 romanNumeral += "I";

Chapter 8 test-Driven Development

351

 arabicNumber--;

 }

 return romanNumeral;

}

That looks pretty good. We removed code duplication and found a compact solution.

We also had to remove the const declaration from the arabicNumber parameter because

we have to manipulate the Arabic number in the function. And the three existing unit

tests are still passed.

We can proceed to the next test. Of course, you can also continue with the 5, but I

decided for “10-is-X”. I have the hope that the group of 10 will reveal a similar pattern as

1, 2, and 3. The Arabic number 5 will, of course, be treated later. See Listing 8-10.

Listing 8-10. The Fourth Unit Test

TEST(ArabicToRomanNumeralsConverterTestCase, 10_isConvertedTo_X) {

 ASSERT_EQ("X", convertArabicNumberToRomanNumeral(10));

}

Well, it shouldn’t surprise anyone that this test fails (RED). Here is what Google Test

writes on stdout about this new test:

[RUN] ArabicToRomanNumeralsConverterTestCase.10_isConvertedTo_X

../ArabicToRomanNumeralsConverterTestCase.cpp:31: Failure

Value of: convertArabicNumberToRomanNumeral(10)

 Actual: "IIIIIIIIII"

Expected: "X"

[FAILED] ArabicToRomanNumeralsConverterTestCase.10_isConvertedTo_X (0 ms)

The test fails, because 10 is not “IIIIIIIIII,” but “X”. However, if we see the output of

Google Test, we could get an idea. Maybe the same approach that we used for the Arabic

numbers 1, 2, and 3, could be used also for 10, 20, and 30?

STOP! Well, that’s imaginable, but we should not yet create something for the

future without unit tests that lead us to such a solution. We would not work test-driven

anymore, if we implement the production code for 20 and 30 in one go with the code for

10. So, we do again the simplest thing that could possibly work. See Listing 8-11.

Chapter 8 test-Driven Development

352

Listing 8-11. The Conversion Function Can Now Also Convert 10

std::string convertArabicNumberToRomanNumeral(unsigned int arabicNumber) {

 if (arabicNumber == 10) {

 return "X";

 } else {

 std::string romanNumeral;

 while (arabicNumber >= 1) {

 romanNumeral += "I";

 arabicNumber--;

 }

 return romanNumeral;

 }

}

Okay, the test and all previous tests are passed (GREEN). We can stepwise add a test

for the Arabic number 20, and then for 30. After we run through the TDD cycle for both

cases, our conversion function looks like Listing 8-12.

Listing 8-12. The Result During the Sixth TDD Cycle Before Refactoring

std::string convertArabicNumberToRomanNumeral(unsigned int arabicNumber) {

 if (arabicNumber == 10) {

 return "X";

 } else if (arabicNumber == 20) {

 return "XX";

 } else if (arabicNumber == 30) {

 return "XXX";

 } else {

 std::string romanNumeral;

 while (arabicNumber >= 1) {

 romanNumeral += "I";

 arabicNumber--;

 }

 return romanNumeral;

 }

}

Chapter 8 test-Driven Development

353

At least now a refactoring is urgently required. The emerged code has some bad smells,

like some redundancies and a high cyclomatic complexity. However, our suspicion has

also been confirmed that the processing of the numbers 10, 20, and 30 follows a similar

pattern to processing the numbers 1, 2, and 3. Let’s try it; see Listing 8-13.

Listing 8-13. After the Refactoring All if-else Decisions Are Gone

std::string convertArabicNumberToRomanNumeral(unsigned int arabicNumber) {

 std::string romanNumeral;

 while (arabicNumber >= 10) {

 romanNumeral += "X";

 arabicNumber -= 10;

 }

 while (arabicNumber >= 1) {

 romanNumeral += "I";

 arabicNumber--;

 }

 return romanNumeral;

}

Excellent, all tests passed immediately! It seems that we are on the right track.

We must, however, have the goal in mind of the refactoring step in the TDD cycle.

Further up in this section, you can read the following: Code duplication and other code

smells are eliminated, both from the production code as well as from the unit tests.

We should take a critical look at our test code. Currently it looks like Listing 8-14.

Listing 8-14. The Emerged Unit Tests Have a Lot of Code Duplications

TEST(ArabicToRomanNumeralsConverterTestCase, 1_isConvertedTo_I) {

 ASSERT_EQ("I", convertArabicNumberToRomanNumeral(1));

}

TEST(ArabicToRomanNumeralsConverterTestCase, 2_isConvertedTo_II) {

 ASSERT_EQ("II", convertArabicNumberToRomanNumeral(2));

}

TEST(ArabicToRomanNumeralsConverterTestCase, 3_isConvertedTo_III) {

 ASSERT_EQ("III", convertArabicNumberToRomanNumeral(3));

Chapter 8 test-Driven Development

354

}

TEST(ArabicToRomanNumeralsConverterTestCase, 10_isConvertedTo_X) {

 ASSERT_EQ("X", convertArabicNumberToRomanNumeral(10));

}

TEST(ArabicToRomanNumeralsConverterTestCase, 20_isConvertedTo_XX) {

 ASSERT_EQ("XX", convertArabicNumberToRomanNumeral(20));

}

TEST(ArabicToRomanNumeralsConverterTestCase, 30_isConvertedTo_XXX) {

 ASSERT_EQ("XXX", convertArabicNumberToRomanNumeral(30));

}

Remember what I wrote about test code quality in Chapter 2: the quality of the test

code must be as high as the quality of the production code. In other words, our tests

need to be refactored, because they contain a lot of duplication and should be designed

more elegantly. Furthermore, we want to increase their readability and maintainability.

But what can we do?

Take a look at the six tests. The verification in the tests is always the same and could

be read more generally as: “Check if Arabic number <x> is converted to the Roman

numeral <string>.”

A solution could be to provide a dedicated assertion (also known as custom assertion

or custom matcher) for that purpose, which can be read in the same way:

checkIf(x).isConvertedToRomanNumeral("string");

 More Sophisticated Tests with a Custom Assertion
To implement our custom assertion, we first of all write a unit test that fails, but different

from the unit tests we’ve written before:

TEST(ArabicToRomanNumeralsConverterTestCase, 33_isConvertedTo_XXXIII) {

 checkIf(33).isConvertedToRomanNumeral("XXXII");

}

Chapter 8 test-Driven Development

355

The probability is very high that the conversion of 33 already works. Therefore, we

force the test to fail (RED) by specifying an intentionally wrong result as the expected

value (“XXXII”). But this new test also fails due to another reason: the compiler cannot

compile the unit test without errors. A function named checkIf() does not exist yet,

equally there is no isConvertedToRomanNumeral().

So, we must first satisfy the compiler by writing the custom assertion. This will

consist of two parts (Listing 8-15):

• A free checkIf(<parameter>) function, returning one instance of a

custom assertion class.

• The custom assertion class that contains the real assertion method,

verifying one or various properties of the tested object.

Listing 8-15. A Custom Assertion for Roman Numerals

class RomanNumeralAssert {

public:

 RomanNumeralAssert() = delete;

 explicit RomanNumeralAssert(const unsigned int arabicNumber) :

 arabicNumberToConvert(arabicNumber) { }

 void isConvertedToRomanNumeral(std::string_view expectedRomanNumeral)

const {

 ASSERT_EQ(expectedRomanNumeral,

 convertArabicNumberToRomanNumeral(arabicNumberToConvert));

 }

private:

 const unsigned int arabicNumberToConvert;

};

RomanNumeralAssert checkIf(const unsigned int arabicNumber) {

 RomanNumeralAssert assert { arabicNumber };

 return assert;

}

Chapter 8 test-Driven Development

356

Note instead of a free function checkIf(), a static and public class method can
also be used in the assertion class. this can be necessary when you're facing oDr
violations, for example, clashes of identical function names. of course, then the
namespace name must be prepended when using the class method:

RomanNumeralAssert::checkIf(33).isConvertedToRomanNumeral
("XXXIII");

Now the code can be compiled without errors, but the new test will fail as expected

during execution. See Listing 8-16.

Listing 8-16. An Excerpt from the Output of Google Test on stdout

[RUN] ArabicToRomanNumeralsConverterTestCase.33_isConvertedTo_XXXIII

../ArabicToRomanNumeralsConverterTestCase.cpp:30: Failure

Value of: convertArabicNumberToRomanNumeral(arabicNumberToConvert)

 Actual: "XXXIII"

Expected: expectedRomanNumeral

Which is: "XXXII"

[FAILED] ArabicToRomanNumeralsConverterTestCase.33_isConvertedTo_XXXIII

(0 ms)

So, we need to modify the test and correct the Roman numeral that we expect as the

result. See Listing 8-17.

Listing 8-17. Our Custom Asserter Allows a More Compact Spelling of the Test

Code

TEST(ArabicToRomanNumeralsConverterTestCase, 33_isConvertedTo_XXXIII) {

 checkIf(33).isConvertedToRomanNumeral("XXXIII");

}

Now we can sum up all previous tests into a single one, as shown in Listing 8-18.

Listing 8-18. All Checks Can Be Elegantly Pooled Into One Test Function

TEST(ArabicToRomanNumeralsConverterTestCase,

conversionOfArabicNumbersToRomanNumerals_Works) {

Chapter 8 test-Driven Development

357

 checkIf(1).isConvertedToRomanNumeral("I");

 checkIf(2).isConvertedToRomanNumeral("II");

 checkIf(3).isConvertedToRomanNumeral("III");

 checkIf(10).isConvertedToRomanNumeral("X");

 checkIf(20).isConvertedToRomanNumeral("XX");

 checkIf(30).isConvertedToRomanNumeral("XXX");

 checkIf(33).isConvertedToRomanNumeral("XXXIII");

}

Take a look at our test code now: redundancy-free, clean, and easily readable. The

directness of our self-made assertion is quite elegant. And it is blindingly easy to add

more tests now, because we have just to write a single line of code for every new test.

You might complain that this refactoring also has a small disadvantage. The name

of the test method is now less specific than the name of all test methods prior to the

refactoring (see the section on unit test names in Chapter 2). Can we tolerate these

small drawbacks? I think yes. We’ve made a compromise here: This little disadvantage is

compensated by the benefits in terms of maintainability and extensibility of our tests.

Now we can continue the TDD cycle and implement the production code

successively for the following three tests:

checkIf(100).isConvertedToRomanNumeral("C");

checkIf(200).isConvertedToRomanNumeral("CC");

checkIf(300).isConvertedToRomanNumeral("CCC");

After three iterations, the code will look like Listing 8-19 prior to the refactoring step.

Listing 8-19. Our Conversion Function in the Ninth TDD Cycle Before

Refactoring

std::string convertArabicNumberToRomanNumeral(unsigned int arabicNumber) {

 std::string romanNumeral;

 if (arabicNumber == 100) {

 romanNumeral = "C";

 } else if (arabicNumber == 200) {

 romanNumeral = "CC";

 } else if (arabicNumber == 300) {

 romanNumeral = "CCC";

 } else {

Chapter 8 test-Driven Development

358

 while (arabicNumber >= 10) {

 romanNumeral += "X";

 arabicNumber -= 10;

 }

 while (arabicNumber >= 1) {

 romanNumeral += "I";

 arabicNumber--;

 }

 }

 return romanNumeral;

}

And again, the same pattern emerges as before with 1, 2, 3; and 10, 20, and 30. We

can also use a similar loop for the hundreds, as shown in Listing 8-20.

Listing 8-20. The Emerging Pattern, as Well as Which Parts of the Code Are

Variable and Which Are Identical, Is Clearly Recognizable

std::string convertArabicNumberToRomanNumeral(unsigned int arabicNumber) {

 std::string romanNumeral;

 while (arabicNumber >= 100) {

 romanNumeral += "C";

 arabicNumber -= 100;

 }

 while (arabicNumber >= 10) {

 romanNumeral += "X";

 arabicNumber -= 10;

 }

 while (arabicNumber >= 1) {

 romanNumeral += "I";

 arabicNumber--;

 }

 return romanNumeral;

}

Chapter 8 test-Driven Development

359

 It’s Time to Clean Up Again
At this point we should take a critical look at our code once again. If we continue like

this, the code will contain many code duplications, because the three while statements

look very similar. We can, however, take advantage of these similarities by abstracting the

code parts that are equal in all three while loops.

It’s refactoring time! The only code parts that are different in all three while loops are

the Arabic number and its corresponding Roman numeral. The idea is to separate these

variable parts from the stable rest of the loop.

In a first step, we introduce a struct that maps Arabic numbers to their Roman

equivalents. In addition, we need an array (we will use std::array from the C++

Standard Library here) of that struct. Initially, we will only add one element to the array

that allocates letter “C” to the number 100. See Listing 8-21.

Listing 8-21. Introducing an Array that Holds Mappings Between Arabic

Numbers and Their Roman Equivalents

struct ArabicToRomanMapping {

 unsigned int arabicNumber;

 std::string romanNumeral;

};

const std::array arabicToRomanMappings {

 ArabicToRomanMapping { 100, "C" }

};

After these preparations, we modify the first while loop in the conversion function to

verify if the basic idea will work. See Listing 8-22.

Listing 8-22. Replacing the Literals with Entries from the New Array

std::string convertArabicNumberToRomanNumeral(unsigned int arabicNumber) {

 std::string romanNumeral;

 while (arabicNumber >= arabicToRomanMappings[0].arabicNumber) {

 romanNumeral += arabicToRomanMappings[0].romanNumeral;

 arabicNumber -= arabicToRomanMappings[0].arabicNumber;

 }

Chapter 8 test-Driven Development

360

 while (arabicNumber >= 10) {
 romanNumeral += "X";

 arabicNumber -= 10;

 }

 while (arabicNumber >= 1) {
 romanNumeral += "I";

 arabicNumber--;

 }

 return romanNumeral;
}

All tests pass. So, we can continue to fill the array with the mappings “10-is-X” and

“1-is-I”. See Listing 8-23.

Listing 8-23. Again a Pattern Emerges: The Obvious Code Redundancy Can Be
Eliminated by a Loop

const std::array arabicToRomanMappings {
 ArabicToRomanMapping { 100, "C" },

 ArabicToRomanMapping { 10, "X" },

 ArabicToRomanMapping { 1, "I" }

};

std::string convertArabicNumberToRomanNumeral(unsigned int arabicNumber) {
 std::string romanNumeral;

 while (arabicNumber >= arabicToRomanMappings[0].arabicNumber) {
 romanNumeral += arabicToRomanMappings[0].romanNumeral;

 arabicNumber -= arabicToRomanMappings[0].arabicNumber;

 }

 while (arabicNumber >= arabicToRomanMappings[1].arabicNumber) {
 romanNumeral += arabicToRomanMappings[1].romanNumeral;

 arabicNumber -= arabicToRomanMappings[1].arabicNumber;

 }

 while (arabicNumber >= arabicToRomanMappings[2].arabicNumber) {
 romanNumeral += arabicToRomanMappings[2].romanNumeral;

 arabicNumber -= arabicToRomanMappings[2].arabicNumber;

 }

 return romanNumeral;
}

Chapter 8 test-Driven Development

361

And again, all tests are passed. Excellent! But there is still a lot of duplicated code,

so we have to continue our refactoring. The good news is that we can now see that the

only difference in all three while loops is just the array index. This means that we can get

along with just one while loop if we iterate through the array. See Listing 8-24.

Listing 8-24. Through the Range Based for Loop, the DRY Principle Is No Longer

Violated

std::string convertArabicNumberToRomanNumeral(unsigned int arabicNumber) {

 std::string romanNumeral;

 for (const auto& mapping : arabicToRomanMappings) {

 while (arabicNumber >= mapping.arabicNumber) {

 romanNumeral += mapping.romanNumeral;

 arabicNumber -= mapping.arabicNumber;

 }

 }

 return romanNumeral;

}

All tests pass. Wow, that’s great! Just take a look at this compact and well-readable

piece of code. More mappings of Arabic numbers to their Roman equivalents can now

be supported by adding them to the array. We will try this for 1,000, which must be

converted into an M. Here is our next test:

checkIf(1000).isConvertedToRomanNumeral("M");

The test failed as expected. By adding another element for “1000-is-M” to the array,

the new test, and of course all previously tests, should pass.

const std::array arabicToRomanMappings {

 ArabicToRomanMapping { 1000, "M" },

 ArabicToRomanMapping { 100, "C" },

 ArabicToRomanMapping { 10, "X" },

 ArabicToRomanMapping { 1, "I" }

};

A successful test run after this small change confirms our assumption: it works! That

was quite easy. We can add more tests now, for example, for 2,000 and 3,000. And even

3,333 should work immediately:

Chapter 8 test-Driven Development

362

checkIf(2000).isConvertedToRomanNumeral("MM");

checkIf(3000).isConvertedToRomanNumeral("MMM");

checkIf(3333).isConvertedToRomanNumeral("MMMCCCXXXIII");

Good. Our code works even with these cases. However, there are some Roman

numerals that have not yet been implemented. For example, the 5 that has to be

converted to “V”.

checkIf(5).isConvertedToRomanNumeral("V");

As expected, this test fails. The interesting question is the following: what should we

do now so that the test gets passed? Maybe you think about a special treatment of this

case. But is this really a special case, or can we treat this conversion in the same way as

the previous and already implemented conversions?

Probably the simplest thing that could possibly work is to just add a new element at

the correct index to our array? Well, maybe it’s worth it to try it out…

const std::array arabicToRomanMappings {

 ArabicToRomanMapping { 1000, "M" },

 ArabicToRomanMapping { 100, "C" },

 ArabicToRomanMapping { 10, "X" },

 ArabicToRomanMapping { 5, "V" },

 ArabicToRomanMapping { 1, "I" }

};

Our assumption was true: All tests are passed! Even Arabic numbers like 6 and

37 should be converted correctly to their Roman equivalent. We verify that by adding

assertions for these cases:

 checkIf(6).isConvertedToRomanNumeral("VI");

//...

 checkIf(37).isConvertedToRomanNumeral("XXXVII");

 Approaching the Finish Line
And it comes as no surprise that we can use basically the same approach for “50-is-L”

and “500-is-D”.

Chapter 8 test-Driven Development

363

Next, we need to deal with the implementation of the so-called subtraction notation;

for example, the Arabic number 4 has to be converted to the Roman numeral “IV”. How

could we implement these special cases elegantly?

Tip if you ask yourself how to find all the important test cases for this code kata,
i just want to remind you about the topics of equivalence partitioning and boundary
value analysis discussed in Chapter 2.

Well, after a short consideration it becomes obvious that these cases are nothing

really special! Ultimately, it is of course not forbidden to add a mapping rule to our

array where the string contains two characters instead of one. For instance, we can just

add a new “4-is-IV” entry to the arabicToRomanMappings array. Maybe you will say,

"Isn’t that a hack?” No, I don’t think so. It is pragmatic and easy, without making things

unnecessarily complicated.

Therefore, we first add a new test that will fail:

checkIf(4).isConvertedToRomanNumeral("IV");

For the new test to be passed, we add the corresponding mapping rule for 4 (see the

penultimate entry in the array):

const std::array arabicToRomanMappings {

 ArabicToRomanMapping { 1000, "M" },

 ArabicToRomanMapping { 500, "D" },

 ArabicToRomanMapping { 100, "C" },

 ArabicToRomanMapping { 50, "L" },

 ArabicToRomanMapping { 10, "X" },

 ArabicToRomanMapping { 5, "V" },

 ArabicToRomanMapping { 4, "IV" },

 ArabicToRomanMapping { 1, "I" }

};

After we’ve executed all tests and verified that they passed, we can be certain that

our solution also works for 4! Hence, we can repeat that pattern for “9-is-IX,” “40-is-XL,”

“90-is-XC,” and so on. The schema is always the same, so I do not show the resulting

source code here (the final result with the complete code is shown in Listing 8-25), but I

think it’s not hard to comprehend.

Chapter 8 test-Driven Development

364

 Done!
The interesting question is this: When do we know that we are done? When the piece of

software that we have to implement is finished and all requirements are satisfied? When

we can discontinue running through the TDD cycle? Do we really have to test all the

numbers from 1 up to 3999 each by a unit test to know that we’re done?

The simple answer: If all requirements on our piece of code have been
successfully implemented, and we do not find a new unit test that would lead to new
production code, we are done!

And that is exactly the case with our TDD kata. We could still add many more

assertions to the test method; the test would pass each time without the necessity to

change the production code. This is the way TDD “speaks” to us: “Hey, my friend, you’re

done!”

The result is shown in Listing 8-25.

Listing 8-25. This Version Has Been Checked In at GitHub with the Commit

Message “Done”

#include <gtest/gtest.h>

#include <string>

#include <array>

int main(int argc, char** argv) {

 testing::InitGoogleTest(&argc, argv);

 return RUN_ALL_TESTS();

}

struct ArabicToRomanMapping {

 unsigned int arabicNumber;

 std::string romanNumeral;

};

const std::string arabicToRomanMappings {

 ArabicToRomanMapping { 1000, "M" },

 ArabicToRomanMapping { 900, "CM" },

 ArabicToRomanMapping { 500, "D" },

 ArabicToRomanMapping { 400, "CD" },

 ArabicToRomanMapping { 100, "C" },

Chapter 8 test-Driven Development

365

 ArabicToRomanMapping { 90, "XC" },

 ArabicToRomanMapping { 50, "L" },

 ArabicToRomanMapping { 40, "XL" },

 ArabicToRomanMapping { 10, "X" },

 ArabicToRomanMapping { 9, "IX" },

 ArabicToRomanMapping { 5, "V" },

 ArabicToRomanMapping { 4, "IV" },

 ArabicToRomanMapping { 1, "I" }

};

std::string convertArabicNumberToRomanNumeral(unsigned int arabicNumber) {

 std::string romanNumeral;

 for (const auto& mapping : arabicToRomanMappings) {

 while (arabicNumber >= mapping.arabicNumber) {

 romanNumeral += mapping.romanNumeral;

 arabicNumber -= mapping.arabicNumber;

 }

 }

 return romanNumeral;

}

// Test code starts here...

class RomanNumeralAssert {

public:

 RomanNumeralAssert() = delete;

 explicit RomanNumeralAssert(const unsigned int arabicNumber) :

 arabicNumberToConvert(arabicNumber) { }

 void isConvertedToRomanNumeral(std::string_view expectedRomanNumeral)

const {

 ASSERT_EQ(expectedRomanNumeral, convertArabicNumberToRomanNumeral

(arabicNumberToConvert));

 }

private:

 const unsigned int arabicNumberToConvert;

};

Chapter 8 test-Driven Development

366

RomanNumeralAssert checkIf(const unsigned int arabicNumber) {

 return RomanNumeralAssert { arabicNumber };

}

TEST(ArabicToRomanNumeralsConverterTestCase,

conversionOfArabicNumbersToRomanNumerals_Works) {

 checkIf(1).isConvertedToRomanNumeral("I");

 checkIf(2).isConvertedToRomanNumeral("II");

 checkIf(3).isConvertedToRomanNumeral("III");

 checkIf(4).isConvertedToRomanNumeral("IV");

 checkIf(5).isConvertedToRomanNumeral("V");

 checkIf(6).isConvertedToRomanNumeral("VI");

 checkIf(9).isConvertedToRomanNumeral("IX");

 checkIf(10).isConvertedToRomanNumeral("X");

 checkIf(20).isConvertedToRomanNumeral("XX");

 checkIf(30).isConvertedToRomanNumeral("XXX");

 checkIf(33).isConvertedToRomanNumeral("XXXIII");

 checkIf(37).isConvertedToRomanNumeral("XXXVII");

 checkIf(50).isConvertedToRomanNumeral("L");

 checkIf(99).isConvertedToRomanNumeral("XCIX");

 checkIf(100).isConvertedToRomanNumeral("C");

 checkIf(200).isConvertedToRomanNumeral("CC");

 checkIf(300).isConvertedToRomanNumeral("CCC");

 checkIf(499).isConvertedToRomanNumeral("CDXCIX");

 checkIf(500).isConvertedToRomanNumeral("D");

 checkIf(1000).isConvertedToRomanNumeral("M");

 checkIf(2000).isConvertedToRomanNumeral("MM");

 checkIf(2017).isConvertedToRomanNumeral("MMXVII");

 checkIf(3000).isConvertedToRomanNumeral("MMM");

 checkIf(3333).isConvertedToRomanNumeral("MMMCCCXXXIII");

 checkIf(3999).isConvertedToRomanNumeral("MMMCMXCIX");

}

Chapter 8 test-Driven Development

367

Note the source code of the completed roman numerals kata, including its
version history, can be found on Github at: https://github.com/Apress/
clean-cpp20.

Wait! There is still one really important step to be taken: we must separate the production

code from the test code. We used the ArabicToRomanNumeralsConverterTestCase.cpp file

all the time like our workbench, but now the time has come to remove the finished piece of

work from the vise. In other words, the production code has now to be moved into a different,

still-to-be created new file; but of course, the unit tests should still be able to test the code.

During this last refactoring step, some design decisions can be made. For example,

does it remain with a free-standing conversion function, or should the conversion

method and the array be wrapped into a new class? I would clearly favor the latter

(embedding the code in a class) because it is toward an object-oriented design, and it is

easier to hide implementation details with the help of encapsulation.

No matter how the production code will be provided and be integrated in its usage

environment (this depends on the purpose), our gapless unit test coverage makes it

unlikely that something will go wrong.

 The Advantages of TDD
Test-driven development is a tool and technique for incremental design and

development of a software component. That’s why the acronym TDD is also often

referred to as “test-driven design.” It’s one way, of course not the only way, to think

through your requirements or design before you write the production code.

The significant advantages of TDD are the following:

• TDD, if done right, forces you to take small steps when writing
software. The approach ensures that you always have to write

just a few lines of production code to reach the comfortable state

again where everything works. This also means that you are at most

a few lines of code away from a situation where everything still

worked. This is the main difference with the traditional approach of

producing and changing a lot of production code beforehand, which

goes hand in hand with the drawback that the software sometimes

cannot be compiled and executed without errors for hours or days.

Chapter 8 test-Driven Development

https://github.com/Apress/clean-cpp20
https://github.com/Apress/clean-cpp20

368

• TDD establishes a very fast feedback loop. Developers must always

know if they are still working on a correct system. Therefore, it is

important for them that they have a fast feedback loop to know in a

split second that everything works correctly. Complex system and

integration tests, especially if they are still carried out manually,

are not capable of this and are much too slow (remember the test

pyramid in Chapter 2).

• Creating a unit test first helps a developer really consider what
needs to be done. In other words, TDD ensures that code is not

simply hacked down from the brain into the keyboard. That’s good,

because code that was written that way is often error prone, difficult

to read, and sometimes even superfluous. Many developers are

usually going faster than their true capacity to deliver good work.

TDD is a way to slow the developers down in a positive sense. Don’t

worry, managers, it is good that your developers slow down, because

this will soon be rewarded with a noticeable increase in quality and

speed in the development process when the high test-coverage

reveals its positive effect.

• With TDD, a gapless specification arises in the form of
executable code. Specifications written in natural language with

a text processing program of an Office suite, for example, are not

executable—they are “dead artifacts.”

• The developer deals much more consciously and responsibly with

dependencies. If another software component or even an external

system (for example, a database) is required, this dependency can

be defined due to an abstraction (interface) and replaced by a test

double (mock object) for the test. The resulting software modules

(e.g., classes) are smaller, loosely coupled, and contain only the code

necessary to pass the tests.

• The emerging production code with TDD will have 100% unit test
coverage by default. If TDD was performed correctly, there should

not be a single line of production code that was not motivated by a

previously written unit test.

Chapter 8 test-Driven Development

369

Test-driven development can be a driver and enabler for a good and sustainable

software design. As with many other tools and methods, the practice of TDD cannot

guarantee a good design. It is not a silver bullet for design issues. The design decisions

are still taken by the developer and not by the tool. At the least, TDD is a helpful

approach to avoid what might be perceived as bad design. Many developers who use

TDD in their daily work can confirm that it is extremely hard to produce or tolerate bad

and messy code with this approach.

And there is no doubt about when a developer has finished implementing all

required functionalities: if all unit tests are green and they cannot find any more new

test cases that would lead to new code, it means that all requirements on the unit are

satisfied and the job is done! And an enjoyable side effect is that it’s done in high quality.

In addition, the TDD workflow also drives the design of the unit to be developed,

especially its interface. With TDD and test first, the API’s design and implementation are

guided by its test cases. Anyone who has ever tried to retrofit legacy code with unit tests

knows how difficult that could be. These systems are typically built “code first.” Many

inconvenient dependencies and a bad API design complicate testing in such systems.

And if a software unit is hard to test, it is also hard to (re-)use. In other words, TDD gives

early feedback on a software unit’s usability, that is, how simple that piece of software

can be integrated and used in its planned execution environment.

 When We Should Not Use TDD
The final question is this: should we develop every piece of code using a test-first

approach?

My clear answer is probably not!
No doubt, test-driven development is a great practice to guide the design and

implementation of a piece of software. Theoretically, it would even be possible to

develop almost all parts of a software system this way. And as a kind of positive side

effect, the emerging code is 100% tested by default.

But some parts of a project are so simple, small, or less complex, that they don’t

justify this approach. If you can write your code quickly off the cuff, because complexity

and risks are low, then of course you can do that. Examples of such situations are pure

data classes without functionality (which could be, by the way, a smell, but for other

reasons; see the section about anemic classes in Chapter 6), or simple glue code that

couples together two modules.

Chapter 8 test-Driven Development

370

Furthermore, prototyping can be a very difficult task with TDD. When you enter

new territory, or you should develop software in a very innovative environment without

domain experience, you’re sometimes not sure what road you’re going to take to a

solution. Writing unit tests first in projects with very volatile and fuzzy requirements can

be an extremely challenging task. Sometimes it’s better to write down a rudimentary

solution easily and quickly then, and to ensure its quality in a later step with the help of

retrofitted unit tests.

Another big challenge, for which TDD won’t help, is getting a good architecture. TDD

does not replace the necessary reflecting on the coarse-grained structures (subsystems,

components, etc.) of your software system. When you are faced with fundamental

decisions about frameworks, libraries, technologies, or architecture patterns, TDD might

not be the appropriate approach to make them.

UI code also seems to resists this practice. It seems difficult to impossible to develop

the (graphical) user interface of an application in a test-driven way. Among other things,

this may be due to the fact that it takes a certain amount of imagination to get an idea

of what the UI should look like: How should the user be guided visually through the

flow of an use case? How many screens or dialogs are we talking about? What are the

preconditions? What does visual feedback to the user look like in the event of an error?

All of these questions may not be easily answered, even by domain experts and other

stakeholders.

In such cases, a method called behavior driven development (BDD) might be helpful,

an extension of TDD. BDD promotes writing specification stories with acceptance

criteria together with the people from business and QA. These stories can be—virtually

or real—executed step by step, stimulating the software to be developed to change its

state. With BDD, the user's interaction with the software can be systematically explored

and requirements for the UI can be derived.

For anything else, I strongly recommend TDD. This approach can save a lot of time,

headaches, and false starts when you must develop a software unit, like a function or

class, in C++.

“For anything that is more complex than just a few lines of code, software
craftsmen can test-drive code as fast as other developers can write code
without tests, if not faster.”

—Sandro Mancuso

Chapter 8 test-Driven Development

371

Tip if you want to dive deeper into test-driven development with C++, i
recommend the excellent book Modern C++ Programming with Test-Driven
Development [langr13] by Jeff langr. Jeff’s book offers much deeper insights into
tDD and gives you hands-on lessons about the challenges and rewards of doing
tDD in C++.

 TDD Is Not a Replacement for Code Reviews

“Given enough eyeballs, all bugs are shallow.”

—Eric S. Raymond, Linus’s law,
The Cathedral and the Bazaar, 1999

Let’s conclude this chapter with a topic that plays a major role not only in the

environment of C++ development projects: code reviews.

The so-called multi-eye principle applied in code reviews may seem somewhat

old- fashioned and time-consuming in today’s world, but it is a proven means of

knowledge sharing and quality assurance in software development. Who hasn’t had this

experience—that sometimes it’s enough just to have a colleague take a quick look at a

tricky problem you’ve been brooding over for hours and she can immediately give you

the decisive tip to solve it?

A code review is much more than just reviewing and improving a piece of code by

another developer. In a team, code reviews also help developers get to know their code

base better. They can share ideas about how to implement a piece of software better, and

they also learn new technologies and practices that enhance their skills. A code review

simplifies conversations about the code base, making it easier and faster for new team

members to understand the system being developed.

The following questions and points can be clarified and discussed in a code review:

• Are there any obvious bugs in the reviewed code?

• Does the reviewed code meet the requirements for readable,

understandable and well-maintainable code? Were clean code

principles followed? Are there any bad and unwanted dependencies?

Chapter 8 test-Driven Development

372

• Have all requirements for the reviewed piece of code been

considered and implemented?

• Are the tests sufficient for the reviewed piece of code?

• Does new code conform to existing style and formatting guidelines?

• Is the implementation of the reviewed piece of code appropriate

and efficient, or are there shorter, more elegant, and better ways to

achieve the same result (e.g., a library function that the developers

didn’t know about)?

• Is there anything I can learn, take, or draw a lesson from the

developers of the piece of code being reviewed, e.g., a particularly

elegant and good solution, or a library feature that was previously

unknown to me?

Code reviews can be performed in a variety of ways. An informal code review can

be that you simply ask your colleagues to take a quick look at the code you just wrote

and to see if they notice anything (“over-the-shoulder review”). In some development

organizations, reviews are formalized and there is even a defined process for them. In

some other organizations, code reviews are organized as a regular and social team event,

e.g., once a week the development team meets for one or two hours over coffee and cake

to review and discuss some code. With pair programming, a continuous code review

takes place, so to speak, because the multiple-eyes principle is already in effect while the

code is written.

In addition to physical (peer) code review techniques, where a few team members

get together for an hour or two, there are also centralized software tools with code

review capabilities, often integrated with the version control system and the developers

IDEs. These have advantages as well as disadvantages. Advantages are that such tools

 automatically ensure traceability, and they often provide reporting as well. In addition,

they also seem to save time, since a time-consuming meeting for reviewing a piece of

code is not required.

The downside of these tools is that you have to find one that fits well into your

development process. Moreover, it should be ensured that such tools in no way replace

the indispensable face-to-face communication of the team: software development is also

a social activity, and direct communication is a crucial factor for success.

Chapter 8 test-Driven Development

373

Some people say that with test-driven development, you can largely do without code

reviews. They argue that with the help of TDD, developers are enforced to produce code

of such high quality that a review then no longer brings any further improvements.

But beware: This is a fallacy! If each developer writes test cases, code, and APIs for

himself alone, the view of another developer is missing, i.e., someone who can check the

aforementioned points from a different perspective. Every developer would stew in her

own juice. Thus, no knowledge sharing can take place, nor can people learn from each

other. In the medium to long term, code quality will suffer.

One way to combine code reviews and TDD and perform both in parallel is the

aforementioned pair programming. The pairing partners can discuss test cases,

algorithms, structure, naming, and API design and thus improve together. Bugs can be

spotted much earlier, because four eyes see more than two. Early and frequent feedback

can raise the code quality significantly, and you can’t get an earlier feedback than from

your pairing partner. And by changing pairings, knowledge is continuously distributed

throughout the team.

Chapter 8 test-Driven Development

375
© Stephan Roth 2021
S. Roth, Clean C++20, https://doi.org/10.1007/978-1-4842-5949-8_9

CHAPTER 9

Design Patterns
and Idioms
Good craftspeople can draw on a wealth of experience and knowledge. Once they’ve

found a good solution for a certain problem, they take this solution into their repertoire

to apply it in the future to a similar problem. Ideally, they transform their solution into

something that is known as a canonical form and document it, both for themselves and

for others.

CANONICAL FORM

The term canonical form in this context describes a representation of something that is

reduced to its simplest and most significant form without losing generality. Related to design

patterns, the canonical form of a pattern describes its most basic elements: name, context,

problem, forces, solution, examples, drawbacks, etc.

This is also true for software developers. Experienced developers can draw on a

wealth of sample solutions for constantly recurring design problems in software. They

share their knowledge with others and make it reusable for similar problems. The

principle behind this is don’t reinvent the wheel!
In 1995, a much-noticed and famous book was published. Some people even say

that it was one of the most important books that has ever been written in software

history. The book’s title is Design Patterns: Elements of Reusable Object-Oriented Software

[Gamma95]. Its four authors, Erich Gamma, Richard Helm, Ralph Johnson, and John

Vlissides, also known as the Gang of Four (GoF), introduced the concept of design

patterns into software development and presented a catalogue of 23 object-oriented

design patterns.

https://doi.org/10.1007/978-1-4842-5949-8_9#DOI

376

Some people believe that Gamma et al. had invented all the design patterns that

are described in their book. But that’s not true. Design patterns are not invented by

someone, they are usually discovered. The authors have examined software systems that

were well made regarding certain qualities, especially flexibility, maintainability, and

extendibility. They found the cause of these positive characteristics in the code base and

described them in a canonical form.

After the book of the Gang of Four was published, it was thought that many other

authors would join the bandwagon and there would be a flood of pattern books in the

following years. But this did not happen. Indeed, in the following years there were a

few other important books on the subject pattern, such as Pattern-Oriented Software

Architecture (also known under the acronym “POSA”) [Busch96] or Patterns of Enterprise

Application Architecture [Fowler02], both about architectural patterns, but the expected

huge mass stayed out. But from time to time a few new patterns appear, especially in

the light of new trends in software development. In recent years, for example, special

patterns have become known for the environment of highly distributed, highly available

and hyperscaling software systems, which are often based on so-called microservice

architectures. One example is the Circuit Breaker [Nygard18], a fault-tolerance pattern

that can handle the problem that remote requests to other systems or processes can

either fail or take too long.

 Design Principles vs Design Patterns
In the previous chapters, we discussed a lot of design principles. But how are these

principles related to design patterns? What is more important?

Well, let’s assume just hypothetically that perhaps one day object-orientation

will become totally unpopular, and functional programming (see Chapter 7) will be

the dominating programming paradigm. Do principles like KISS, DRY, YAGNI, single

responsibility principle, open-closed principle, information hiding, etc., become invalid

and thus worthless? The clear answer is no!
A principle is a fundamental “truth” or “law” that serves as the foundation for

decisions. Therefore, a principle is in most cases independent of a certain programming

paradigm or technology. The KISS principle (see Chapter 3), for instance, is a very

universal principle. No matter if you are programming in an object-oriented or a

functional style, or using different languages like C++, C#, Java, or Erlang: trying to do

something as simple as possible is always a worthwhile attitude!

ChapTeR 9 Design paTTeRns anD iDioms

377

In contrast, a design pattern is a solution for a concrete design problem in a certain

context. Especially those ones that are described in the famous Design Pattern book

of the Gang of Four are closely related to object-orientation. Therefore, principles are

more long-lasting and more important. You can find a design pattern for a certain

programming problem by yourself, if you have internalized all the valuable principles.

“Decisions and patterns give people solutions; principles help them design
their own.”

—Eoin Woods in a keynote on
the Joint Working IEEE/IFIP Conference on

Software Architecture 2009 (WICSA2009)

 Some Patterns and When to Use Them
As mentioned, besides the 23 design patterns described in the Gang of Four book, there

are of course more patterns. Even nowadays, new patterns appear from time to time.

Particularly in the context of highly distributed and concurrent systems, specific patterns

of resilience, consistency ensurance, and fault tolerance have emerged in recent years.

Some patterns are often being found in many code bases, while others are more or less

rare or exotic.

The following sections discuss some of the in my opinion most important design

patterns.

By the way, we used a few design patterns in the previous chapters, some even

relatively intense, but I did not mentioned it. Just a slight hint: In the book of the Gang of

Four [Gamma95], you can find a design pattern that is called… Iterator!

Before we continue with the discussion of individual design patterns, a warning must

be pointed out here.

Warning Don’t overuse design patterns! no doubt, design patterns are cool and
sometimes even fascinating. But an overplayed use of them, especially if there are
no good reasons to justify it, can have catastrophic consequences. Your software
design will suffer from useless overengineering. always remember Kiss and Yagni
(see Chapter 3).

Let’s take a look at a few patterns.

ChapTeR 9 Design paTTeRns anD iDioms

378

 Dependency Injection (DI)

“Dependency Injection is a key element of agile architecture.”

—Ward Cunningham, paraphrased from the
“Agile and Traditional Development” panel discussion at Pacific

NW Software Quality Conference (PNSQC) 2004

The fact that I start the section about specific design patterns with one that is not

mentioned in the famous book of the Gang of Four has weighty reasons, of course. I am

convinced that dependency injection is by far the most important pattern that can help

software developers significantly improve their software design. This pattern can be

regarded quite rightly as a game changer.

Before we dive deeper into dependency injection, I want to reckon with another

pattern that is detrimental to good software design: the singleton!

 The Singleton Anti-Pattern

I’m pretty sure that you already know the design pattern named singleton. It is, on

first sight, a simple and widespread pattern, not only in the C++ domain (we will see

soon that its supposed simplicity can be deceptive). Some code bases are even littered

with singletons. This pattern is, for instance, often used for so-called loggers (objects

for logging purposes), for database connections, for central user management, or

to represent things from the physical world (e.g., hardware such as USB or printer

interfaces). In addition, factories and so-called utility classes, which are a colorful

hodgepodge of helper functions, are often implemented as singletons. The latter are a

code smell, because they are a sign of weak cohesion (see Chapter 3).

The authors of Design Patterns have been regularly asked by journalists when they will

revise their book and publish a new edition. And their regular answer was that they do not

see any reason for this, because the contents of the book are still largely valid. In an interview

with the online journal InformIT, however, they allowed themselves to give a more detailed

answer. Here is a small excerpt from the entire interview, which reveals an interesting

opinion from Gamma about singletons (Larry O’Brien was the interviewer, and Erich

Gamma gives the answer):

[...]

Larry: How would you refactor “Design Patterns”?

ChapTeR 9 Design paTTeRns anD iDioms

379

Erich: We did this exercise in 2005. Here are some notes from our session.
We have found that the object-oriented design principles and most of the
patterns haven’t changed since then. (…)

When discussing which patterns to drop, we found that we still love them
all. (Not really—I’m in favor of dropping Singleton. Its use is almost always
a design smell.)

—Design Patterns 15 Years Later: An Interview
with Erich Gamma, Richard Helm, and

Ralph Johnson, 2009 [InformIT09]

So, why did Erich Gamma say that the Singleton pattern is almost always a design smell?

What’s wrong with it?

To answer this, let’s first look at what goals are achieved by means of singletons.

What requirements can be fulfilled with this pattern? Here is the mission statement of

the Singleton pattern from the GoF book:

“Ensure a class only has one instance and provide a global point of access
to it.”

—Erich Gamma, et al., Design Patterns [Gamma95]

This statement contains two conspicuous aspects. On the one hand, the mission of this

pattern is to control and manage the whole lifecycle of its one-and-only instance. In

accordance with the principle of separation of concerns, the management of the lifecycle

of an object should be independent and separated from its application—or domain-

specific business logic. In a singleton, these two concerns are mixed together.

On the other hand, a global access to its one-and-only instance is provided, so that

every other object in the application can use it. This talk about a “global point of access”

in the context of object-orientation appears fishy and should raise red flags.

Let’s first look at a general implementation style of a singleton in C++, the so-called

Meyers’ Singleton, named after Scott Meyers, the author of the Effective C++ book

[Meyers05]. See Listing 9-1.

ChapTeR 9 Design paTTeRns anD iDioms

380

Listing 9-1. An Implementation of Meyers’ Singleton in Modern C++

#pragma once

class Singleton final {

public:

 static Singleton& getInstance() {

 static Singleton theInstance { };

 return theInstance;

 }

 int doSomething() {

 return 42;

 }

 // ...more member functions doing more or less useful things here...

private:

 Singleton() = default;

 Singleton(const Singleton&) = delete;

 Singleton(Singleton&&) noexcept = delete;

 Singleton& operator=(const Singleton&) = delete;

 Singleton& operator=(Singleton&&) noexcept = delete;

 // ...

};

One of the main advantages of this implementation style of a singleton is that since

C++11, the construction process of the one-and-only instance using a static variable

inside getInstance() is thread-safe by default. Be careful, because that does not

automatically mean that all the other member functions of the singleton are thread-safe

too! The latter must be ensured by the developer.

In source code, the use of such a global singleton instance typically looks like

Listing 9-2.

Listing 9-2. An Excerpt from the Implementation of an Arbitrary Class That Uses

the Singleton

001 #include "AnySingletonUser.h"

002 #include "Singleton.h"

ChapTeR 9 Design paTTeRns anD iDioms

381

003 #include <string>

004

... // ...

024

025 void AnySingletonUser::aMemberFunction() {

... // ...

040 std::string result = Singleton::getInstance().doThis();

... // ...

050 }

051

... // ...

089

090 void AnySingletonUser::anotherMemberFunction() {

... //...

098 int result = Singleton::getInstance().doThat();

... //...

104 double value = Singleton::getInstance().doSomethingMore();

... //...

110 }

111 // ...

I think it should now be clear what one of the main problems with singletons is.

Due to their global visibility and accessibility, they are simply used anywhere inside

the implementation of other classes. That means that in the software design, all the

dependencies to this singleton are hidden inside the code. You cannot see these

dependencies by examining the interfaces of your classes, that is, their attributes and

methods.

And the AnySingletonUser class exemplified in Listing 9-2 is only representative

of perhaps hundreds of classes within a large code base, many of which also use the

Singleton at different places. In other words, a singleton in OO is like a global variable
in procedural programming. You can use this global object everywhere, and you

cannot see that usage in the interface of the using class, but only in its implementation.

This has a significant negative impact on the dependency situation in a project, as

depicted in Figure 9-1.

ChapTeR 9 Design paTTeRns anD iDioms

382

Note perhaps you are wondering why, when looking at Figure 9-1, there
is a private member variable instance inside the Singleton class
EverybodysDarling, which cannot be found in this form in meyers’s
recommended implementation. Well, UmL is programming language agnostic,
that is, as a multipurpose modeling language it does not know about C++, Java,
or other oo languages. in fact, in meyers’s singleton there is a variable that holds
the one-and-only instance, but there is not a graphical notation for a variable
with static storage duration in UmL, because this feature is proprietary in C++.
Therefore, i chose to represent this variable as a private static member. This
makes the representation compatible with the no longer recommended singleton
implementation described in the goF book [gamma95].

I think it’s easy to imagine that all these dependencies will have major drawbacks

regarding reusability, maintainablility, and testability. All those client classes of the

singleton are tightly coupled to it (remember the good property of loose coupling

discussed in Chapter 3).

Figure 9-1. Loved by everyone: the singleton!

ChapTeR 9 Design paTTeRns anD iDioms

383

As a consequence, we completely forfeit the possibility to take advantage of

polymorphism to supply an alternative implementation. Just think about unit testing.

How can it succeed at all to implement a real unit test, if something is used inside the

implementation of the class to be tested that cannot be replaced easily by a test double?

See the section about test doubles in Chapter 2.

And remember all the rules for good unit tests discussed in Chapter 2, especially

unit-test independence. A global object like a singleton sometimes holds a mutable

state. How can the independence of tests be ensured, if many or nearly all of the classes

in a code base are dependent on one single object that has a lifecycle that ends with the

termination of the program, and that possibly holds a state that is shared between them?

Another disadvantage of singletons is that if they have to be changed due to new

or changing requirements, this change could trigger a cascade of changes in all the

dependent classes. All the dependencies visible in Figure 9-1 pointing to the singleton

are potential propagation paths for changes.

Finally, it is also very difficult to ensure in a distributed system—which, by the

way, is the normal case in software architecture nowadays—that exactly one instance

of a class exists. Just imagine the Microservices pattern, where a complex software

system is composed of many small, independent, and distributed processes. In such an

environment, singletons are not only difficult to protect against multiple instantiations,

but they are also problematic because of the tight coupling they foster.

So, maybe you will ask now: “Okay, I’ve got it, singletons are basically bad, but what

are the alternatives?” The perhaps surprisingly simple answer, which of course requires

some further explanation, is this: Just create one and inject it everywhere its needed!

 Dependency Injection to the Rescue

In the aforementioned interview with Erich Gamma et al., the authors also made a

statement about those design patterns, which they would like to include in a new

revision of their book. They nominated only a few patterns that would possibly make it

into their legendary work and one of them is dependency injection.

Basically, dependency injection (DI) is a technique in which the independent service

objects needed by a dependent client object are supplied from the outside. The client

object does not have to take care of its required service objects itself, or actively request

the service objects, for example, from a factory (see the Factory pattern later in this

chapter), or from a service locator.

ChapTeR 9 Design paTTeRns anD iDioms

384

The intent behind DI could be formulated as follows:

“Decouple components from their required services in such a way that the
components do not have to know the names of these services, nor how they
have to be acquired.”

Let’s look at a specific example, the Logger already mentioned, for example, a service

class, which offers the possibility to write log entries. Such loggers have often been

implemented as singletons. Hence, every client of the logger is dependent on that global

singleton object, as depicted in Figure 9-2.

Listing 9-3 shows how the logger singleton class might look in source code (only the

relevant parts are shown).

Listing 9-3. The Logger Implemented as a Singleton

#include <string_view>

class Logger final {

public:

 static Logger& getInstance() {

 static Logger theLogger { };

 return theLogger;

 }

Figure 9-2. Three domain-specific classes of a web shop are dependent on the
logger singleton

ChapTeR 9 Design paTTeRns anD iDioms

385

 void writeInfoEntry(std::string_view entry) {

 // ...

 }

 void writeWarnEntry(std::string_view entry) {

 // ...

 }

 void writeErrorEntry(std::string_view entry) {

 // ...

 }

};

STD::STRING_VIEW [SINCE C++17]

since C++17, there is a new class available in the C++ language standard: std:: string_

view (defined in the <string_view> header). objects of this class are very performant

proxies (proxy is, by the way, also a design pattern) of a string, which are cheap to construct

(there is no memory allocation for raw string data) and thus also cheap to copy.

another nice feature is that std::string_view can also serve as an adaptor for C-style

strings (char*), character arrays, and even for proprietary string implementations from

different frameworks such as CString (mFC) or QString (Qt):

CString aString("I'm a string object of the MFC type CString");

std::string_view viewOnCString { (LPCTSTR)aString };

Therefore, it is the ideal class to represent strings whose data is already owned by someone

else and if read-only access is required, for example, for the duration of a function’s

execution. For instance, instead of the widespread constant references to std::string,

now std::string_view should be used as a replacement for read-only string function

parameters in a modern C++ program.

We now just pick out for demonstration purposes one of those many classes that use

the logger singleton in its implementation to write log entries, the CustomerRepository

class, shown in Listing 9-4.

ChapTeR 9 Design paTTeRns anD iDioms

386

Listing 9-4. An Excerpt from the CustomerRepository Class

#include "Customer.h"

#include "Identifier.h"

#include "Logger.h"

class CustomerRepository {

public:

 //...

 Customer findCustomerById(const Identifier& customerId) {

 Logger::getInstance().writeInfoEntry("Starting to search for a customer

specified by a

 given unique identifier...");

 // ...

 }

 // ...

};

In order to get rid of the singleton and replace the Logger object with a test double

during unit tests, we must first apply the dependency inversion principle (DIP; see

Chapter 6). This means that we have to introduce an abstraction (an interface) and make

both the CustomerRepository and the concrete Logger dependent on that interface, as

depicted in Figure 9-3.

Figure 9-3. Decoupling through the applied dependency inversion principle

ChapTeR 9 Design paTTeRns anD iDioms

387

Listing 9-5 shows how the newly introduced LoggingFacility interface looks in

source code.

Listing 9-5. The LoggingFacility Interface

#include <memory>

#include <string_view>

class LoggingFacility {

public:

 virtual ~LoggingFacility() = default;

 virtual void writeInfoEntry(std::string_view entry) = 0;

 virtual void writeWarnEntry(std::string_view entry) = 0;

 virtual void writeErrorEntry(std::string_view entry) = 0;

};

using Logger = std::shared_ptr<LoggingFacility>;

The StandardOutputLogger is one example of a specific Logger class that

implements the LoggingFacility interface and writes the log on standard output, as its

name suggests. See Listing 9-6.

Listing 9-6. One Possible Implementation of a LoggingFacility: the

StandardOutputLogger

#include "LoggingFacility.h"

#include <iostream>

class StandardOutputLogger : public LoggingFacility {

public:

 void writeInfoEntry(std::string_view entry) override {

 std::cout << "[INFO] " << entry << std::endl;

 }

 void writeWarnEntry(std::string_view entry) override {

 std::cout << "[WARNING] " << entry << std::endl;

 }

ChapTeR 9 Design paTTeRns anD iDioms

388

 void writeErrorEntry(std::string_view entry) override {

 std::cout << "[ERROR] " << entry << std::endl;

 }

};

Next, we need to modify the CustomerRepository class. First, we create a new

member variable of the smart pointer type alias Logger. This pointer instance is passed

into the class via an initialization constructor. In other words, we allow an instance

of a class that implements the LoggingFacility interface to be injected into the

CustomerRepository object during construction. We also delete the default constructor,

because we do not want to allow a CustomerRepository to be created without a logger.

Furthermore, we remove the direct dependency in the implementation to the singleton

and instead use the smart pointer Logger to write log entries. See Listing 9-7.

Listing 9-7. The Modified Customer Repository Class

#include "Customer.h"

#include "Identifier.h"

#include "LoggingFacility.h"

class CustomerRepository {

public:

 CustomerRepository() = delete;

 explicit CustomerRepository(const Logger& loggingService) : logger {

loggingService } { }

 //...

 Customer findCustomerById(const Identifier& customerId) {

 logger->writeInfoEntry("Starting to search for a customer specified by

a given unique identifier...");

 // ...

 }

 // ...

private:

 // ...

 Logger logger;

};

ChapTeR 9 Design paTTeRns anD iDioms

389

As a consequence of this refactoring, the CustomerRepository class is no longer

dependent on a specific logger. Instead, the CustomerRepository simply has a

dependency on an abstraction (interface) that is now explicitly visible in the class and its

interface, because it is represented by a member variable and a constructor parameter.

That means that the CustomerRepository class now accepts service objects for logging

purposes that are passed in from outside, as shown in Listing 9-8.

Listing 9-8. The Logger Object Is Injected Into the Instance of

CustomerRepository

Logger logger = std::make_shared<StandardOutputLogger>();

CustomerRepository customerRepository { logger };

This design change has significantly positive effects. A loose coupling is promoted,

and the client object CustomerRepository can now be configured with various service

objects that provide logging functionality, as can be seen in the UML class diagram in

Figure 9-4.

Moreover, the testability of the CustomerRepository class has been significantly

improved. There are no hidden dependencies to singletons anymore. Now we can easily

replace a real logging service by a mock object (see Chapter 2 about unit tests and test

doubles). We can equip the mock object with spy methods, for example, to check inside

the unit test and determine which data would leave the CustomerRepository object via

the LoggingFacility interface. See Listing 9-9.

Figure 9-4. The CustomerRepository class can be supplied with specific logging
implementations via its constructor

ChapTeR 9 Design paTTeRns anD iDioms

390

Listing 9-9. A Test Double (Mock Object) to Unit Test Classes That Have a

Dependency on LoggingFacility

namespace test {

#include "../src/LoggingFacility.h"

#include <string>

#include <string_view>

class LoggingFacilityMock : public LoggingFacility {

public:

 void writeInfoEntry(std::string_view entry) override {

 recentlyWrittenLogEntry = entry;

 }

 void writeWarnEntry(std::string_view entry) override {

 recentlyWrittenLogEntry = entry;

 }

 void writeErrorEntry(std::string_view entry) override {

 recentlyWrittenLogEntry = entry;

 }

 std::string_view getRecentlyWrittenLogEntry() const {

 return recentlyWrittenLogEntry;

 }

private:

 std::string recentlyWrittenLogEntry;

};

using MockLogger = std::shared_ptr<LoggingFacilityMock>;

}

In the unit test in Listing 9-10, you can see the mock object in action.

ChapTeR 9 Design paTTeRns anD iDioms

391

Listing 9-10. An Example Unit Test Using the Mock Object

#include "../src/CustomerRepository.h"

#include "LoggingFacilityMock.h"

#include <gtest/gtest.h>

namespace test {

TEST(CustomerTestCase, WrittenLogEntryIsAsExpected) {

 MockLogger logger = std::make_shared<LoggingFacilityMock>();

 CustomerRepository customerRepositoryToTest { logger };

 Identifier customerId { 1234 };

 customerRepositoryToTest.findCustomerById(customerId);

 ASSERT_EQ("Starting to search for a customer specified by a given unique

identifier...",

 logger->getRecentlyWrittenLogEntry());}

}

In the previous example, I presented dependency injection as a pattern to remove

annoying singletons, but of course this is only one of many applications. Basically,

a good object-oriented software design should ensure that the involved modules or

components are as loosely coupled as possible, and dependency injection is the key to

this goal. By consistently applying this pattern, a software design will emerge that has a

very flexible plug-in architecture. As a kind of positive side effect, this technique results

in highly testable objects as well.

The responsibility for object creation and linking is removed from the objects

themselves and is centralized in an infrastructure component, the so-called assembler

or injector. This component (see Figure 9-5) usually operates at program startup and

processes something like a “construction plan” (e.g., a configuration file) for the whole

software system; that is, it instantiates the objects and services in the correct order and

injects the services into the objects that needs them.

ChapTeR 9 Design paTTeRns anD iDioms

392

Pay attention to the pleasant dependency situation. The direction of the creation

dependencies (dashed arrows with stereotype «Create») leads away from the Assembler

to the other modules (classes). In other words, no class in this design “knows” that such an

infrastructure element like an Assembler exists. (That’s not completely correct, because at

least one other element in the software system knows about the existence of this component,

because the assemble process must be triggered by someone, usually at program start.)

Somewhere within the Assembler component, something like the code in Listing 9- 11

could possibly be found.

Listing 9-11. Parts of the Implementation of the Assembler Could Look Like This

// ...

Logger loggingServiceToInject = std::make_shared<StandardOutputLogger>();

auto customerRepository = std::make_shared<CustomerRepository>

(loggingServiceToInject);

// ...

Figure 9-5. The assembler is responsible for object creation and injection

ChapTeR 9 Design paTTeRns anD iDioms

393

This DI technique is called constructor injection, because the service object to be

injected is passed as an argument to an initialization constructor of the client object. The

advantage of constructor injection is that the client object gets completely initialized

during its construction and is immediately usable then.

But what do we do if service objects are to be injected into client objects while the

program is running, for instance, if a client object is only occasionally created during

program execution, or the specific logger should be exchanged at runtime? Then the client

object must provide a setter for the service object, as in the example in Listing 9- 12.

Listing 9-12. The Customer Class Provides a Setter to Inject a Logger

#include "Address.h"

#include "LoggingFacility.h"

class Customer {

public:

 Customer() = default;

 void setLoggingService(const Logger& loggingService) {

 logger = loggingService;

 }

 //...

private:

 Address address;

 Logger logger;

};

This DI technique is called setter injection. And, of course, it is also possible to

combine constructor injection and setter injection.

Dependency injection is a design pattern that makes a software design loosely

coupled and eminently configurable. It allows the creation of different product

configurations for different customers or intended purposes of a software product. It

greatly increases the testability of a software system, since it enables developers to inject

mock objects very easily. Therefore, this pattern should not be ignored when designing

any serious software system. If you want to dive deeper into this pattern, I recommend

you read the trend-setting blog article “Inversion of Control Containers and the

Dependency Injection pattern” written by Martin Fowler [Fowler04].

ChapTeR 9 Design paTTeRns anD iDioms

394

In practice, dependency injection frameworks are available as commercial and open

source solutions.

 Adapter
I’m sure the Adapter (Wrapper) is one of the most commonly used design patterns. The

reason for this is that the adaptation of incompatible interfaces is certainly a case that’s

often necessary in software development, such as when a module developed by another

team has to be integrated, or when using third-party libraries.

Here is the mission statement of the Adapter pattern:

“Convert the interface of a class into another interface clients expect.
Adapter lets classes work together that couldn’t otherwise because of incom-
patible interfaces.”

—Erich Gamma et al., Design Patterns [Gamma95]

Let’s further develop the example from the previous section about dependency injection.

Let’s assume that we want to use BoostLog v2 (see www.boost.org) for logging purposes,

but we want to keep a usage of this third-party library exchangeable with other logging

approaches and technologies.

The solution is simple: we just have to provide another implementation of the

LoggingFacility interface, which adapts the interface of BoostLog to the interface that

we want, as depicted in Figure 9-6.

Figure 9-6. An adapter for a boost logging solution

ChapTeR 9 Design paTTeRns anD iDioms

http://www.boost.org

395

In source code, the additional implementation of the LoggingFacility interface

BoostTrivialLogAdapter is shown in Listing 9-13.

Listing 9-13. The Adapter for BoostLog Is Just Another Implementation of

LoggingFacility

#include "LoggingFacility.h"

#include <boost/log/trivial.hpp>

class BoostTrivialLogAdapter : public LoggingFacility {

public:

 void writeInfoEntry(std::string_view entry) override {

 BOOST_LOG_TRIVIAL(info) << entry;

 }

 void writeWarnEntry(std::string_view entry) override {

 BOOST_LOG_TRIVIAL(warn) << entry;

 }

 void writeErrorEntry(std::string_view entry) override {

 BOOST_LOG_TRIVIAL(error) << entry;

 }

};

The advantages are obvious: through the Adapter pattern, there is now exactly one

class in the entire software system that has a dependency to the third-party logging

solution. This also means that the code is not contaminated with proprietary logging

statements, like BOOST_LOG_TRIVIAL(). And because this Adapter class is just another

implementation of the LoggingFacility interface, we can also use dependency

injection (see the previous section) to inject instances—or just exactly the same

instance—of this class into all client objects that want to use it.

Adapters can facilitate a broad range of adaptation and conversion possibilities for

incompatible interfaces. This ranges from simple adaptations, such as operations names

and data type conversions, right up to supporting an entirely different set of operations.

In our case, a call of a member function with a string parameter is converted into a call of

the insertion operator for streams.

ChapTeR 9 Design paTTeRns anD iDioms

396

Interface adaptations are of course easier if the interfaces to be adapted are similar.

If the interfaces are very different, an adapter can also become a very complex piece of

code.

 Strategy
If you remember the open-closed principle (OCP) described in Chapter 6 as a guideline

for an extensible object-oriented design, the Strategy design pattern can be considered

as the “celebrity gig” of this important principle. Here is the mission statement of this

pattern:

“Define a family of algorithms, encapsulate each one, and make them inter-
changeable. Strategy lets the algorithm vary independently from clients
that use it.”

—Erich Gamma et al., Design Patterns [Gamma95]

Doing tings in different ways is a common requirement in software design. Just think

of sorting algorithms for lists. There are various sorting algorithms that have different

characteristics regarding the time complexity (number of operations required) and

the space complexity (additional required storage space in addition to the input list).

Examples are Bubble-Sort, Quick-Sort, Merge-Sort, Insert-Sort, and Heap-Sort.

For instance, Bubble-Sort is the least complex one and it is very efficient regarding

memory consumption, but also one of the slowest sorting algorithms. In contrast,

Quick-Sort is a fast and efficient sorting algorithm that is easy to implement through its

recursive structure and does not require additional memory, but it is very inefficient with

presorted and inverted lists. With the help of the Strategy pattern, a simple exchange of

the sorting algorithm can be implemented, for example, depending on the properties of

the list to be sorted.

Let’s consider another example. Assume that we want to have a textual

representation of an instance of a Customer class in an arbitrary business IT system. A

stakeholder requirement states that the textual representation should be formatted in

various output formats: as plain text, as XML (Extensible Markup Language), and as

JSON (JavaScript Object Notation).

First of all, let’s introduce an abstraction for our various formatting strategies, the

abstract class Formatter. See Listing 9-14.

ChapTeR 9 Design paTTeRns anD iDioms

397

Listing 9-14. The Abstract Formatter Class Contains Everything That All Specific

Formatter Classes Have in Common

#include <memory>

#include <string>

#include <string_view>

class Formatter {

public:

 virtual ~Formatter() = default;

 Formatter& withCustomerId(std::string_view customerId) {

 this->customerId = customerId;

 return *this;

 }

 Formatter& withForename(std::string_view forename) {

 this->forename = forename;

 return *this;

 }

 Formatter& withSurname(std::string_view surname) {

 this->surname = surname;

 return *this;

 }

 Formatter& withStreet(std::string_view street) {

 this->street = street;

 return *this;

 }

 Formatter& withZipCode(std::string_view zipCode) {

 this->zipCode = zipCode;

 return *this;

 }

 Formatter& withCity(std::string_view city) {

 this->city = city;

 return *this;

 }

ChapTeR 9 Design paTTeRns anD iDioms

398

 virtual std::string format() const = 0;

protected:

 std::string customerId { "000000" };

 std::string forename { "n/a" };

 std::string surname { "n/a" };

 std::string street { "n/a" };

 std::string zipCode { "n/a" };

 std::string city { "n/a" };

};

using FormatterPtr = std::unique_ptr<Formatter>;

The three specific formatters that provide the formatting styles that are requested by

the stakeholders are shown in Listing 9-15.

Listing 9-15. The Three Specific Formatters Override the Pure Virtual format()

Member Function of Formatter

#include "Formatter.h"

#include <sstream>

class PlainTextFormatter : public Formatter {

public:

 std::string format() const override {

 std::stringstream formattedString { };

 formattedString << "[" << customerId << "]: "

 << forename << " " << surname << ", "

 << street << ", " << zipCode << " "

 << city << ".";

 return formattedString.str();

 }

};

class XmlFormatter : public Formatter {

public:

 std::string format() const override {

 std::stringstream formattedString { };

 formattedString <<

 "<customer id=\"" << customerId << "\">\n" <<

ChapTeR 9 Design paTTeRns anD iDioms

399

 " <forename>" << forename << "</forename>\n" <<

 " <surname>" << surname << "</surname>\n" <<

 " <street>" << street << "</street>\n" <<

 " <zipcode>" << zipCode << "</zipcode>\n" <<

 " <city>" << city << "</city>\n" <<

 "</customer>\n";

 return formattedString.str();

 }

};

class JsonFormatter : public Formatter {

public:

 std::string format() const override {

 std::stringstream formattedString { };

 formattedString <<

 "{\n" <<

 " \"CustomerId : \"" << customerId << END_OF_PROPERTY <<

 " \"Forename: \"" << forename << END_OF_PROPERTY <<

 " \"Surname: \"" << surname << END_OF_PROPERTY <<

 " \"Street: \"" << street << END_OF_PROPERTY <<

 " \"ZIP code: \"" << zipCode << END_OF_PROPERTY <<

 " \"City: \"" << city << "\"\n" <<

 "}\n";

 return formattedString.str();

 }

private:

 static constexpr const char* const END_OF_PROPERTY { "\",\n" };

};

As can be seen clearly here, the OCP is particularly well supported. As soon as a new

output format is required, another specialization of the abstract class Formatter has to

be implemented. Modifications to the already existing formatters are not required. See

Listing 9-16.

ChapTeR 9 Design paTTeRns anD iDioms

400

Listing 9-16. How the Passed-In Formatter Object Is Used Inside the Member

Function getAsFormattedString()

#include "Address.h"

#include "CustomerId.h"

#include "Formatter.h"

class Customer {

public:

 // ...

 std::string getAsFormattedString(Formatter& formatter) const {

 return formatter.

 withCustomerId(customerId.toString()).

 withForename(forename).

 withSurname(surname).

 withStreet(address.getStreet()).

 withZipCode(address.getZipCodeAsString()).

 withCity(address.getCity()).

 format();

 }

 // ...

private:

 CustomerId customerId;

 std::string forename;

 std::string surname;

 Address address;

};

The Customer::getAsFormattedString() member function has a parameter that

expects a non-const reference to a formatter object. This parameter can be used to

control the format of the string that can be retrieved through this member function,

or in other words, the member function Customer::getAsFormattedString() can be

supplied with a formatting strategy.

Perhaps you’ve noticed the special design of the public interface of the Formatter

with its numerous chained with...() member functions. Here also another design

pattern has been used, which is called Fluent Interface. In object-oriented programming,

ChapTeR 9 Design paTTeRns anD iDioms

401

a fluent interface is a style to design APIs in a way that the readability of the code is close

to that of ordinary written prose. In Chapter 8, we saw such an interface. That chapter

introduced a custom assertion (see the section entitled “More Sophisticated Tests with a

Custom Assertion”) to write more elegant and better readable tests. In this case here, the

trick is that every with...() member function is self-referential, that is, the new context

for calling a member function on the formatter is equivalent to the previous context,

unless when the final format() function is called.

A graphical visualization of the class structure of our code example (a UML class

diagram) is shown in Figure 9-7.

As you can see, the Strategy pattern in this example ensures that the caller of the Cust

omer::getAsFormattedString() member function can configure the output format as it

wants. You want to support another output format? No problem: thanks to the excellent

support of the open-closed principle, another concrete formatting strategy can be easily

added. The other formatting strategies, as well as the Customer class, remain completely

unaffected by this extension.

Figure 9-7. An abstract formatting strategy and its three concrete formatting
strategies

ChapTeR 9 Design paTTeRns anD iDioms

402

CLASS HIERARCHY VS TYPE ERASURE IDIOM

as we know from the section about object-orientation in Chapter 6, polymorphism in general

means providing a single interface to entities of different types. many object-oriented design

patterns, including most of those in the Design Patterns book, rely on class hierarchies with

dynamic (runtime) polymorphism realized by virtual member function overrides.

You may also remember the section on type erasure techniques in Chapter 6. There, i

presented an alternative way to realize dynamic polymorphism that did not rely on a class

hierarchy: the Type erasure idiom. at this point i would like just to remind you that strategy, as

well as other design patterns, could also be implemented with the help of this idiom.

 Command
Software systems usually have to perform a variety of actions due to the reception of

instructions. Users of text processing software, for example, issue a variety of commands

by interacting with the software’s user interface. They want to open a document, save a

document, print a document, copy a piece of text, paste a copied piece of text, etc. This

general pattern is also observable in other domains. For example, in the financial world,

there could be orders from a customer to his securities dealer to buy shares, sell shares,

etc. And in a more technical domain like manufacturing, commands are used to control

industrial facilities and machines.

When implementing software systems that are controlled by commands, it is

important to ensure that the request for an action is separated from the object that

actually performs the action. The guiding principle behind this is loose coupling (see

Chapter 3) and separation of concerns.

A good analogy is a restaurant. In a restaurant, the waiter accepts the customer’s

order, but she is not responsible for cooking the food. That is a task for the restaurant’s

kitchen. Actually, it is even transparent for the customer how the food is prepared.

Maybe someone at the restaurant prepares the food, but the food might also be delivered

from somewhere else.

In object-oriented software development, there is a behavioral pattern named

Command (Action) that fosters this kind of decoupling. Its mission statement is as

follows:

ChapTeR 9 Design paTTeRns anD iDioms

403

“Encapsulate a request as an object, thereby letting you parameterize cli-
ents with different requests, queue or log requests, and support undoable
operations.”

—Erich Gamma et al., Design Patterns [Gamma95]

A good example of the Command pattern is a client/server architecture, where a client—

the so-called invoker—sends commands that should be executed on a server, which is

referred to as the receiver.

Let’s start with the abstract Command, which is a simple and small interface shown in

Listing 9-17.

Listing 9-17. The Command interface

#include <memory>

class Command {

public:

 virtual ~Command() = default;

 virtual void execute() = 0;

};

using CommandPtr = std::shared_ptr<Command>;

We’ve also introduced a type alias (CommandPtr) for a smart pointer to commands.

This abstract Command interface can now be implemented by various concrete

commands. Let’s first take a look at a very simple command, the output of the string

"Hello World!". See Listing 9-18.

Listing 9-18. A First and Very Simple Implementation of a Concrete Command

#include <iostream>

class HelloWorldOutputCommand : public Command {

public:

 void execute() override {

 std::cout << "Hello World!" << "\n";

 }

};

ChapTeR 9 Design paTTeRns anD iDioms

404

Next, we need the element that accepts and executes the commands. This element is

called Receiver in the general description of this design pattern. In our case, it is a class

named Server that plays this role. See Listing 9-19.

Listing 9-19. The Receiver Command

#include "Command.h"

class Server {

public:

 void acceptCommand(const CommandPtr& command) {

 command->execute();

 }

};

Currently, this class contains only one simple public member function that can

accept and execute commands.

Finally, we need the so-called invoker, which is the Client class in our client/server

architecture. See Listing 9-20.

Listing 9-20. The Client Sends Commands to the Server

class Client {

public:

 void run() {

 Server theServer { };

 CommandPtr helloWorldOutputCommand = std::make_shared<HelloWorldOutput

Command>();

 theServer.acceptCommand(helloWorldOutputCommand);

 }

};

Inside the main() function, we find the simple code shown in Listing 9-21.

Listing 9-21. The main() Function

#include "Client.h"

int main() {

 Client client { };

ChapTeR 9 Design paTTeRns anD iDioms

405

 client.run();

 return 0;

}

If this program is now being compiled and executed, the "Hello World!" output will

appear on stdout. Well, at first sight, this may seem not very exciting, but what we have

achieved through the Command pattern is that the origination and sending off of the

command is decoupled from its execution. We can now handle command objects as well

as other objects.

Since this design pattern supports the open-closed principle (OCP; see Chapter 6)

very well, it is also very easy to add new commands with negligible minor modifications

of existing code. For instance, if we want to force the Server to wait for a certain amount

of time, we can just add the new command shown in Listing 9-22.

Listing 9-22. Another Concrete Command That Instructs the Server to Wait

#include "Command.h"

#include <chrono>

#include <thread>

class WaitCommand : public Command {

public:

 explicit WaitCommand(const unsigned int durationInMilliseconds) noexcept :

 durationInMilliseconds{durationInMilliseconds} { };

 void execute() override {

 std::chrono::milliseconds timespan(durationInMilliseconds);

 std::this_thread::sleep_for(timespan);

 }

private:

 unsigned int durationInMilliseconds { 1000 };

};

Now we can use the new WaitCommand, as shown in Listing 9-23.

ChapTeR 9 Design paTTeRns anD iDioms

406

Listing 9-23. The New WaitCommand in Use

class Client {

public:

 void run() {

 Server theServer { };

 const unsigned int SERVER_DELAY_TIMESPAN { 3000 };

 CommandPtr waitCommand = std::make_shared<WaitCommand>(SERVER_DELAY_

TIMESPAN);

 theServer.acceptCommand(waitCommand);

 CommandPtr helloWorldOutputCommand = std::make_shared<HelloWorldOutputC

ommand>();

 theServer.acceptCommand(helloWorldOutputCommand);

 }

};

Figure 9-8 shows an overview of the structure that has been originated so far in the

form of an UML class diagram.

As can be seen in this example, we can parameterize commands with values.

Since the signature of the pure virtual execute() member function is specified as

parameterless by the Command interface, the parameterization is done with the help of an

Figure 9-8. The server knows the Command interface, but not any concrete
command

ChapTeR 9 Design paTTeRns anD iDioms

407

initialization constructor. Furthermore, we didn’t have to change anything in the Server

class, because it was able to treat and execute the new command immediately.

The Command pattern provides manifold possibilities of applications. For example,

commands can be queued. This also supports an asynchronous execution of the

commands: The invoker sends the command and can then do other things immediately,

but the command is executed by the receiver at a later time.

However, something is missing! In the quoted mission statement of the Command

pattern, you can read something about “…support undoable operations.” Well, the

following section is dedicated to that topic.

 Command Processor
In our small example of a client/server architecture from the previous section, I cheated

a bit. In reality, a server would not execute the commands in the manner I demonstrated.

The command objects that are arriving at the server would be distributed to the internal

parts of the server that are responsible for the execution of the command. This can, for

example, be done with the help of another pattern that is called Chain of Responsibility

(this pattern is not described in this book).

Let’s consider another, more complex example. Assume that we have a drawing

program. Users of this program can draw many different shapes, for instance, circles

and rectangles. For this purpose, corresponding menus are available in the program’s

user interface via that these drawing operations can be invoked. I’m pretty sure that

you’ve guessed it: the well-skilled software developers of this program implemented the

Command pattern to perform these drawing operations. A stakeholder requirement,

however, states that a user of the program can also undo drawing operations.

To fulfill this requirement, we need, first of all, undoable commands. See Listing 9- 24.

Listing 9-24. The UndoableCommand Interface Is Created by Combining

Command and Revertable

#include <memory>

class Command {

public:

 virtual ~Command() = default;

 virtual void execute() = 0;

};

ChapTeR 9 Design paTTeRns anD iDioms

408

class Revertable {

public:

 virtual ~Revertable() = default;

 virtual void undo() = 0;

};

class UndoableCommand : public Command, public Revertable { };

using CommandPtr = std::shared_ptr<UndoableCommand>;

According to the interface segregation principle (ISP; see Chapter 6), we’ve added

another interface called Revertable that supports the Undo functionality. This new

interface can be combined with the existing Command interface using inheritance to an

UndoableCommand.

As an example of many, different undoable drawing commands, I just show the

concrete command for the circle in Listing 9-25.

Listing 9-25. An Undoable Command for Drawing Circles

#include "Command.h"

#include "DrawingProcessor.h"

#include "Point.h"

class DrawCircleCommand : public UndoableCommand {

public:

 DrawCircleCommand() = delete;

 DrawCircleCommand(DrawingProcessor& receiver, const Point& centerPoint,

 const double radius) noexcept :

 receiver { receiver }, centerPoint { centerPoint }, radius { radius } {

}

 void execute() override {

 receiver.drawCircle(centerPoint, radius);

 }

 void undo() override {

 receiver.eraseCircle(centerPoint, radius);

 }

ChapTeR 9 Design paTTeRns anD iDioms

409

private:

 DrawingProcessor& receiver;

 const Point centerPoint;

 const double radius;

};

It is easy to imagine that the commands for drawing a rectangle and other shapes look

very similar. The executing receiver of the command is a class named DrawingProcessor,

which is the element that performs the drawing operations. A reference to this object

is passed along with other arguments during the construction of the command (see

initialization constructor). At this place I show only a small excerpt of the presumably

complex class DrawingProcessor, because it does not play an important role for the

understanding of the pattern. See Listing 9-26.

Listing 9-26. The DrawingProcessor Is the Element that Will Perform the

Drawing Operations

class DrawingProcessor {

public:

 void drawCircle(const Point& centerPoint, const double radius) {

 // Instructions to draw a circle on the screen...

 };

 void eraseCircle(const Point& centerPoint, const double radius) {

 // Instructions to erase a circle from the screen...

 };

 // ...

};

Now we come to the centerpiece of this pattern, the CommandProcessor; see Listing 9-27.

Listing 9-27. The CommandProcessor Class Manages a Stack of Undoable

Command Objects

#include <stack>

class CommandProcessor {

public:

ChapTeR 9 Design paTTeRns anD iDioms

410

 void execute(const CommandPtr& command) {

 command->execute();

 commandHistory.push(command);

 }

 void undoLastCommand() {

 if (commandHistory.empty()) {

 return;

 }

 commandHistory.top()->undo();

 commandHistory.pop();

 }

private:

 std::stack<std::shared_ptr<Revertable>> commandHistory;

};

The CommandProcessor class (which is by the way not thread-safe when using the

above implementation) contains a std::stack<T> (defined in the <stack> header),

which is an abstract data type that operates as a LIFO (Last-In First-Out). After an

execution of a command has been triggered by the CommandProcessor::execute()

member function, the command object is stored on the commandHistory stack. When

calling the CommandProcessor::undoLastCommand() member function, the last

command stored on the stack is undone and then removed from the top of the stack.

The undo operation can now be modeled as a command object. In this case, the

command receiver is, of course, the CommandProcessor itself. See Listing 9-28.

Listing 9-28. The UndoCommand Prompts the CommandProcessor to Perform

an Undo

#include "Command.h"

#include "CommandProcessor.h"

class UndoCommand : public UndoableCommand {

public:

 explicit UndoCommand(CommandProcessor& receiver) noexcept :

 receiver { receiver } { }

ChapTeR 9 Design paTTeRns anD iDioms

411

 void execute() override {

 receiver.undoLastCommand();

 }

 void undo() override {

 // Intentionally left blank, because an undo should not be undone.

 }

private:

 CommandProcessor& receiver;

};

Lost the overview? It’s once again time for a “big picture” in the form of a UML class

diagram, as shown in Figure 9-9.

Figure 9-9. The CommandProcessor (on the right) executes the commands it
receives and manages a command history

ChapTeR 9 Design paTTeRns anD iDioms

412

When using the Command pattern in practice, you’re often confronted with the

need to be able to compose a more complex command from several simple commands

or to record and replay commands (scripting). In order to be able to implement such

requirements in an elegant manner, the following design pattern is suitable.

 Composite
A data structure widely used in computer science is that of a tree. Trees can be found

everywhere. For instance, the hierarchical organization of a filesystem on a data media

(e.g., a hard disk) conforms to that of a tree. The project browser of an integrated

development environment (IDE) usually has a tree structure. In compiler design, the

abstract syntax tree (AST), is, as the name suggests, a tree representation of the abstract

syntactic structure of the source code that is usually the result of the syntax analysis

phase of a compiler.

The object-oriented blueprint for a tree-like data structure is called the Composite

pattern. This pattern has the following intent:

“Compose objects into tree structures to represent part-whole hierarchies.
Composite lets clients treat individual objects and compositions of objects
uniformly.”

—Erich Gamma et al., Design Patterns [Gamma95]

Our previous example from the “Command” and “Command Processor” sections

should be extended by the possibility that we can build composite commands, and that

commands can be recorded and replayed. So we add a new class to the previous design,

a CompositeCommand. See Listing 9-29.

Listing 9-29. A New Concrete UndoableCommand That Manages a List of

Commands

#include "Command.h"

#include <ranges>

#include <vector>

class CompositeCommand : public UndoableCommand {

public:

ChapTeR 9 Design paTTeRns anD iDioms

413

 void addCommand(CommandPtr& command) {

 commands.push_back(command);

 }

 void execute() override {

 for (const auto& command : commands) {

 command->execute();

 }

 }

 void undo() override {

 const auto& commandsInReverseOrder = std::ranges::reverse_

view(commands);

 for (const auto& command : commandsInReverseOrder) {

 command->undo();

 }

 }

private:

 std::vector<CommandPtr> commands;

};

The composite command has a member function called addCommand(), which allows

you to add commands to an instance of CompositeCommand. Since the CompositeCommand

class also implements the UndoableCommand interface, its instances can be treated

like ordinary commands. In other words, it is also possible to assemble composite

commands with other composite commands hierarchically. Through the recursive

structure of the Composite pattern, you can generate command trees.

The UML class diagram in Figure 9-10 depicts the extended design.

ChapTeR 9 Design paTTeRns anD iDioms

414

The newly added CompositeCommand class can now be used, for example, as a macro

recorder in order to record and replay command sequences. See Listing 9-30.

Listing 9-30. The New CompositeCommand in Action as a Macro Recorder

int main() {

 CommandProcessor commandProcessor { };

 DrawingProcessor drawingProcessor { };

 auto macroRecorder = std::make_shared<CompositeCommand>();

 Point circleCenterPoint { 20, 20 };

 CommandPtr drawCircleCommand = std::make_shared<DrawCircleCommand>

(drawingProcessor, circleCenterPoint, 10);

 commandProcessor.execute(drawCircleCommand);

Figure 9-10. With the added CompositeCommand (on the left), commands can
now be scripted

ChapTeR 9 Design paTTeRns anD iDioms

415

 macroRecorder->addCommand(drawCircleCommand);

 Point rectangleCenterPoint { 30, 10 };

 CommandPtr drawRectangleCommand = std::make_shared<DrawRectangleCommand>

(drawingProcessor, rectangleCenterPoint, 5, 8);

 commandProcessor.execute(drawRectangleCommand);

 macroRecorder->addCommand(drawRectangleCommand);

 commandProcessor.execute(macroRecorder);

 commandProcessor. undoLastCommand();

 return 0;

}

With the help of the Composite pattern, it is now very easy to assemble complex

command sequences from simple commands (the latter are referred to as “leafs” in

the canonical form). Since CompositeCommand also implements the UndoableCommand

interface, they can be used exactly like the simple commands. This greatly simplifies the

usage through client code.

On closer inspection, there is a small disadvantage. You may have noticed that an

access to the member function CompositeCommand::addCommand() is possible only if you

use an instance (macroRecorder) of the concrete type CompositeCommand (see the source

code). This member function is not available via the UndoableCommand interface. In other

words, the promised equal treatment (remember the pattern’s intent) of composites and

leafs is not given here!

If you look at the general Composite pattern in [Gamma95], you’ll see that the

administrative functions for managing child elements are declared in the abstraction. In

our case, however, this would mean that we would have to declare an addCommand() in

the UndoableCommand interface (which would be a violation of the ISP, by the way). The

fatal consequence would be that the leaf elements would have to override addCommand(),

and must provide a meaningful implementation for this member function. This is not

possible! What should happen, what doesn’t violate the principle of least astonishment

(see Chapter 3), if we add a command to an instance of DrawCircleCommand?

If we do that, it would be a violation of the Liskov Substitution Principle (LSP; see

Chapter 6). Therefore, it is better to make a tradeoff in this case and do without the equal

treatment of composites and leafs.

ChapTeR 9 Design paTTeRns anD iDioms

416

 Observer
A well-known architecture pattern for the structuring of software systems is Model-

View- Controller (MVC). With the help of this architecture pattern, which is described

in detail in the book Pattern-Oriented Software Architecture [Busch96], the presentation

part (User Interface) of an application is usually structured. The principle behind it

is separation of concerns (SoC). Among other things, the data to be displayed, which

is held in the model, is separated from the manifold visual representations (so-called

views) of these data.

In MVC, the coupling between the views and the model should be as loose as

possible. This loose coupling is usually realized with the Observer pattern. The Observer

is a behavioral pattern that is described in [Gamma95] and it has the following intent:

“Define a one-to-many dependency between objects so that when one object
changes state, all its dependents are notified and updated automatically.”

—Erich Gamma et al., Design Patterns [Gamma95]

As usual, the pattern can best be explained using an example. Let’s consider a

spreadsheet application, which is a natural constituent of many office software suites. In

such an application, the data can be displayed in a worksheet, in a pie chart graphic, and

in many other presentation forms; the so-called views. Different views on the data can be

created and closed again.

First we need an abstract element for the views that is called Observer. See

Listing 9-31.

Listing 9-31. The Observer Abstract

#include <memory>

class Observer {

public:

 virtual ~Observer() = default;

 virtual int getId() const noexcept = 0;

 virtual void update() = 0;

};

bool operator==(const Observer& lhs, const Observer& rhs) {

ChapTeR 9 Design paTTeRns anD iDioms

417

 return lhs.getId() == rhs.getId();

}

using ObserverPtr = std::shared_ptr<Observer>;

The Observers observe a so-called Subject. For this purpose, they can be registered

at the Subject, and they can also be deregistered. See Listing 9-32.

Listing 9-32. Observers Can Be Added to and Removed From a Subject

#include "Observer.h"

#include <algorithm>

#include <vector>

;

class Subject {

public:

 void addObserver(const ObserverPtr& observerToAdd) {

 if (isNotYetObservingThisSubject(observerToAdd)) {

 observers.push_back(observerToAdd);

 }

 }

 void removeObserver(ObserverPtr& observerToRemove) {

 std::erase(observers, observerToRemove);

 }

protected:

 void notifyAllObservers() const {

 for (const auto& observer : observers) {

 observer->update();

 }

 }

private:

 std::vector<ObserverPtr> observers;

};

ChapTeR 9 Design paTTeRns anD iDioms

418

In addition to the Subject class, a functor named IsEqualTo is also defined (see

Chapter 7 about functors), which is used for comparisons when adding and removing

observers. The functor compares the IDs of the Observer. It would also be conceivable

that it compares the memory addresses of the Observer instances. Then it would even be

possible for several observers of the same type to register at the Subject.

The core is the notifyAllObservers() member function. It is protected since it

is intended to be called by the concrete subjects that are inherited from this one. This

function iterates over all registered observers and calls their update() member function.

Let’s look at a concrete subject, the SpreadsheetModel. See Listing 9-33.

Listing 9-33. The SpreadsheetModel Is a Concrete Subject

#include "Subject.h"

#include <iostream>

#include <string_view>

class SpreadsheetModel : public Subject {

public:

 void changeCellValue(std::string_view column, const int row, const double

value) {

 std::cout << "Cell [" << column << ", " << row << "] = " << value <<

std::endl;

 // Change value of a spreadsheet cell, and then...

 notifyAllObservers();

 }

};

This, of course, is only an absolute minimum of a SpreadsheetModel. It just serves

to explain the functional principle of the pattern. The only thing you can do here is call a

member function that calls the inherited notifyAllObservers() function.

The three concrete observers in our example that implement the update() member

function of the Observer interface are the three views TableView, BarChartView, and

PieChartView. See Listing 9-34.

ChapTeR 9 Design paTTeRns anD iDioms

419

Listing 9-34. Three Concrete Views Implement the Abstract Observer Interface

#include "Observer.h"

#include "SpreadsheetModel.h"

class TableView : public Observer {

public:

 explicit TableView(SpreadsheetModel& theModel) :

 model { theModel } { }

 int getId() const noexcept override {

 return 1;

 }

 void update() override {

 std::cout << "Update of TableView." << std::endl;

 }

private:

 SpreadsheetModel& model;

};

class BarChartView : public Observer {

public:

 explicit BarChartView(SpreadsheetModel& theModel) :

 model { theModel } { }

 int getId() const noexcept override {

 return 2;

 }

 void update() override {

 std::cout << "Update of BarChartView." << std::endl;

 }

private:

 SpreadsheetModel& model;

};

class PieChartView : public Observer {

public:

ChapTeR 9 Design paTTeRns anD iDioms

420

 explicit PieChartView(SpreadsheetModel& theModel) :

 model { theModel } { }

 int getId() const noexcept override {

 return 3;

 }

 void update() override {

 std::cout << "Update of PieChartView." << std::endl;

 }

private:

 SpreadsheetModel& model;

};

I think it is time again to show an overview in the form of a class diagram. Figure 9-11

depicts the structure (classes and dependencies) that have arisen.

In the main() function, we now use the SpreadsheetModel and the three views, as

shown in Listing 9-35.

Figure 9-11. When the SpreadsheetModel gets changed, it notifies all its observers

ChapTeR 9 Design paTTeRns anD iDioms

421

Listing 9-35. Our SpreadsheetModel and the Three Views Assembled Together

and in Action

#include "SpreadsheetModel.h"

#include "Views.h"

int main() {

 SpreadsheetModel spreadsheetModel { };

 ObserverPtr observer1 = std::make_shared<TableView>(spreadsheetModel);

 spreadsheetModel.addObserver(observer1);

 ObserverPtr observer2 = std::make_shared<BarChartView>(spreadsheetModel);

 spreadsheetModel.addObserver(observer2);

 spreadsheetModel.changeCellValue("A", 1, 42);

 spreadsheetModel.removeObserver(observer1);

 spreadsheetModel.changeCellValue("B", 2, 23.1);

 ObserverPtr observer3 = std::make_shared<PieChartView>(spreadsheetModel);

 spreadsheetModel.addObserver(observer3);

 spreadsheetModel.changeCellValue("C", 3, 3.1415926);

 return 0;

}

After compiling and running the program, we see the following on the standard output:

Cell [A, 1] = 42

Update of TableView.

Update of BarChartView.

Cell [B, 2] = 23.1

Update of BarChartView.

Cell [C, 3] = 3.14153

Update of BarChartView.

Update of PieChartView.

ChapTeR 9 Design paTTeRns anD iDioms

422

In addition to the positive feature of loose coupling (the concrete subject knows

nothing about the Observers), this pattern also supports the open-closed principle very

well. New concrete observers (in our case, new views) can be added very easily since

nothing needs to be adjusted or changed in the existing classes.

 Factories
According to the separation of concerns (SoC) principle, object creation or procurement

should be separated from the domain-specific tasks that an object has. The dependency

injection pattern follows this principle in a straightforward way, because the whole

object creation and dependency resolution process is centralized in an infrastructure

element, and the objects themselves do not have to worry about it.

But what should we do if an object must be dynamically created at some point at

runtime? Well, this task can then be taken over by an object factory.

The Factory design pattern is basically relatively simple and appears in code bases in

many different forms and varieties. In addition to the SoC principle, information hiding

(see Chapter 3) is also greatly supported, because the creation process of an instance

should be concealed from its users.

As stated, factories can be found in countless forms and variants. We discuss only a

simple variant.

 Simple Factory

The simplest implementation of a Factory probably looks like Listing 9-36 (we take up

the Logging example from the DI section).

Listing 9-36. Probably the Simplest Imaginable Object Factory

#include "LoggingFacility.h"

#include "StandardOutputLogger.h"

class LoggerFactory {

public:

 static Logger create() {

 return std::make_shared<StandardOutputLogger>();

 }

};

ChapTeR 9 Design paTTeRns anD iDioms

423

Usage of this very simple factory looks like Listing 9-37.

Listing 9-37. Using the LoggerFactory to Create a Logger Instance

#include "LoggerFactory.h"

int main() {

 Logger logger = LoggerFactory::create();

 // ...log something...

 return 0;

}

Maybe you’ll ask now, whether it is at all worth it to spend an extra class for such a

puny task. Well, maybe not. It’s more sensible, if the factory were able to create various

loggers, and decides which type it will be. This can be done, for example, by reading

and evaluating a configuration file, or a certain key is read out from the Windows

Registry database. It is also imaginable that the type of the generated object is made

dependent on the time of the day. The possibilities are endless. It is important that this

should be completely transparent to the client class. Listing 9-38 shows a slightly more

sophisticated LoggerFactory that reads a configuration file (e.g., from hard disk) and

decides which specific Logger is created based on the current configuration.

Listing 9-38. A More Sophisticated Factory That Reads and Evaluates a

Configuration File

#include "LoggingFacility.h"

#include "StandardOutputLogger.h"

#include "FilesystemLogger.h"

#include <fstream>

#include <string>

#include <string_view>

class LoggerFactory {

private:

 enum class OutputTarget : int {

 STDOUT,

 FILE

 };

ChapTeR 9 Design paTTeRns anD iDioms

424

public:

 explicit LoggerFactory(std::string_view configurationFileName) :

 configurationFileName { configurationFileName } { }

 Logger create() const {

 const std::string configurationFileContent = readConfigurationFile();

 OutputTarget outputTarget = evaluateConfiguration(configurationFileContent);

 return createLogger(outputTarget);

 }

private:

 std::string readConfigurationFile() const {

 std::ifstream filestream(configurationFileName);

 return std::string(std::istreambuf_iterator<char>(filestream),

 std::istreambuf_iterator<char>()); }

 OutputTarget evaluateConfiguration(std::string_view

configurationFileContent) const {

 // Evaluate the content of the configuration file...

 return OutputTarget::STDOUT;

 }

 Logger createLogger(OutputTarget outputTarget) const {

 switch (outputTarget) {

 case OutputTarget::FILE:

 return std::make_shared<FilesystemLogger>();

 case OutputTarget::STDOUT:

 default:

 return std::make_shared<StandardOutputLogger>();

 }

 }

 const std::string configurationFileName;

};

The UML class diagram in Figure 9-12 depicts the structure that we basically know

from the section about dependency injection (Figure 9-5), but now with our simple

LoggerFactory instead of an assembler.

ChapTeR 9 Design paTTeRns anD iDioms

425

Comparing this diagram with Figure 9-5 shows a significant difference: while the

CustomerRepository class has no dependency on the assembler, the customer “knows”

the factory class when using the Factory pattern. Presumably, this dependency is not

a serious problem, but it makes clear once again that loose coupling is brought to the

maximum extent with dependency injection.

 Facade
The Facade pattern is a structural pattern that is often used on an architectural level and

has the following intent:

“Provide a unified interface to a set of interfaces in a subsystem. Facade
defines a higher-level interface that makes the subsystem easier to use.”

—Erich Gamma et al., Design Patterns [Gamma95]

Structuring a large software system according to the separation of concerns and

single responsibility principles (see Chapter 6), and information hiding (see Chapter 3)

usually has the result that some kind of bigger components or modules are originated.

Figure 9-12. The Customer uses a LoggerFactory to obtain concrete loggers

ChapTeR 9 Design paTTeRns anD iDioms

426

Generally, these components or modules can sometimes be referred to as “subsystems.”

Even in a layered architecture, individual layers can be considered subsystems.

In order to promote encapsulation, the internal structure of a component or

subsystem should be hidden from its clients (see information hiding in Chapter 3). The

communication between subsystems, and thus the amount of dependencies between

them, should be minimized. It would be fatal, if clients of a subsystem must know details

about the internal structure and the interaction of its parts.

A Facade regulates access to a complex subsystem by providing a well-defined and

simple interface for clients. Any access to the subsystem must solely be done over the

Facade.

The UML diagram in Figure 9-13 shows a subsystem named Billing for preparing

invoices. Its internal structure consists of several interconnected parts. Clients

of the subsystem cannot access these parts directly. They have to use the Facade

BillingService, which is represented by a UML port (stereotype «facade») on the

border of the subsystem.

In C++, and also in other languages, a Facade is nothing special. It is often just a

simple class that is receiving calls at its public interface and forwarding them to the

internal structure of the subsystem. Sometimes it is only a simple forwarding of a call to

Figure 9-13. The Billing subsystem provides a facade called BillingService as an
access point for clients

ChapTeR 9 Design paTTeRns anD iDioms

427

one of the internal structural elements of the subsystem, but occasionally a Facade also

carries out data conversions, in which case it’s also an adapter (see the section about

adapters).

In our example, the Facade class BillingService implements two interfaces,

represented by the UML ball-notation. According to the interface segregation principle

(ISP; see Chapter 6), the configuration of the Billing subsystem (the Configuration

interface) is separated from the generation of bills (the InvoiceCreation interface).

Thus, the Facade must override operations that are declared in both interfaces.

 The Money Class
If high accuracy is of any importance, you should avoid floating-point values. Floating-

point variables of type float, double, or long double fail in simple additions, as this

small example demonstrates. See Listing 9-39.

Listing 9-39. When Adding Ten Floating-Point Numbers This way, the Result Is

Possibly Not Accurate Enough

#include <assert.h>

#include <iostream>

int main() {

 double sum = 0.0;

 double addend = 0.3;

 for (int i = 0; i < 10; i++) {

 sum = sum + addend;

 };

 assert(sum == 3.0);

 return 0;

}

ChapTeR 9 Design paTTeRns anD iDioms

428

If you compile and run this small program, this is what you’ll see as its console

output:

Assertion failed: sum == 3.0, file ..\main.cpp, line 13

I think that the cause for this deviation is generally known. Floating-point numbers

are stored in a binary format internally. Due to this, it is impossible to store a value of 0.3

(and others) precisely in a variable of type float, double, or long double, because it has

no exact representation of finite length in binary. In decimal, we have a similar problem.

We can’t represent the value 1/3 (one-third) using only decimal notation. 0.33333333

isn’t completely accurate.

There are several solutions for this problem. For currencies it can be a suitable

approach to store the money value in an integer with the required precision, for

example, $12.45 will be stored as 1245. If requirements are not very high, an integer can

be a feasible solution. Note that the C++ standard does not specify the size of integral

types in bytes; thus you must be careful with very big amounts since an integer overflow

can occur. If in doubt, a 64-bit integer should be used, as it can hold very large amounts

of money.

DETERMINING THE RANGE OF AN ARITHMETIC TYPE

The actual implementation-specific ranges for arithmetic types (either integral or floating-

point) can be found as class templates in the <limits> header. For example, this is how you

would find the maximum range for int:

#include <limits>

constexpr auto INT_LOWER_BOUND = std::numeric_limits<int>::min();

constexpr auto INT_UPPER_BOUND = std::numeric_limits<int>::max();

Another popular approach is to provide a special class for this purpose, the so-called

Money class:

“Provide a class to represent exact amounts of money. A Money class han-
dles different currencies and exchanges between them.”

—Martin Fowler, Patterns of Enterprise Application Architecture
[Fowler02]

ChapTeR 9 Design paTTeRns anD iDioms

429

The Money Class pattern is basically a class encapsulating a financial amount and

its currency, but dealing with money is just one example of this category of classes.

There are many other properties, or dimensions, that must be accurately represented,

for example, precise measurements in physics (time, voltage, current, distance, mass,

frequency, amount of substances, and so on).

1991: PATRIOT MISSILE MISTIMING

mim-104 patriot is a surface-to-air missile (sam) system that was designed and manufactured

by the Raytheon Company of the United states. its typical application was to counter high-

altitude tactical ballistic missiles, cruise missiles, and advanced aircraft. During the first

persian gulf War (1990 – 1991), also called operation “Desert storm,” patriot was used to

shoot down incoming iraqi sCUD or al hussein short-range ballistic missiles.

on February 25, 1991, a battery in Dhahran, a city located in the eastern province of saudi

arabia, failed to intercept a sCUD. The missile struck an army barracks and caused 28 deaths

and 98 injuries.

an investigation report [gaoimTeC92] revealed that the cause of this failure was an inaccurate

calculation of the time since power-up of the system due to computer arithmetic errors.

so that patriot’s missiles can detect and hit the target after launch, they must be spatially

approximated to the target, the “range gate.” To predict where the target will appear next (the

deflection angle), some calculations with the system’s time and the target’s flying speed had to

be performed. The elapsed time since system’s start was measured in tenths of a second and

expressed as an integer. The target’s speed was measured in miles per second and expressed

as a decimal value. To calculate the “range gate,” the value of the system’s timer has to be

multiplied by 1/10 to get the time in seconds. This calculation was done using registers that

were only 24 bits long.

The problem was that the value of 1/10 in decimal cannot be accurately represented in a

24-bit register. The value was chopped at 24 bits after the radix point. The consequence was

that the conversion of time from an integer to a real number results in a small loss of precision

causing a less accurate time calculation. This accuracy error would probably not have been a

problem if the system would only been in operation for a few hours, according to its concept

of operation as a mobile system. But in this case, the system has been running for more than

ChapTeR 9 Design paTTeRns anD iDioms

430

100 hours. The number representing the system’s up-time was quite large. This meant that

the small conversion error of 1/10 into its decimal 24-bit representation resulted in a large

deviation error of nearly half of a second! an iraqi sCUD missile travels approximately 800

meters in that time span—far enough to be outside the “range gate” of an approaching patriot

missile.

Although the accurate dealing with amounts of money is a very common case

in many business IT systems, you will struggle in vain to find a Money class in most

mainstream C++ base class libraries. But don’t reinvent the wheel! There are multitudes

of different C++ Money class implementations out there, just search and you will

get thousands of hits. As is often the case, one implementation doesn’t satisfy all

requirements. The key is to understand your problem domain. While choosing (or

designing) a Money class, you may consider several constraints and requirements. Here

are a few questions that you may have to clarify first:

• What is the full range of values to be handled (minimum, maximum)?

• Which rounding rules apply? There are national laws or practices for

roundings in some countries.

• Are there legal requirements for accuracy?

• Which standards must be considered (e.g., ISO 4217 International

Standard for Currency Codes)?

• How will the values be displayed to the user?

• How often will conversion take place?

From my perspective, it is absolutely essential to have 100% unit test coverage (see

Chapter 2 about unit tests) for a Money class to check whether the class is working as

expected under all circumstances. Of course, the Money class has a small drawback

compared to the pure number representation with an integer: you lose a smidgen

of performance. This might be an issue in some systems. But I’m convinced that in

most cases the advantages will predominate (always keep in mind that premature

optimization is bad).

ChapTeR 9 Design paTTeRns anD iDioms

431

 Special Case Object (Null Object)
In the section “Don’t Pass or Return 0 (NULL, nullptr)” in Chapter 4, you learned that

returning a nullptr from a function or method is bad and should be avoided. There

we also discussed various strategies to avoid regular (raw) pointers in a modern C++

program. In the section “An Exception Is an Exception, Literally!” in Chapter 5, you

learned that exceptions should only be used for truly exceptional cases and not for the

purpose of controlling the normal program flow.

The open and interesting question is now this: How do we treat special cases that

are not real exceptions (e.g., a failed memory allocation), without using a non-semantic

nullptr or other weird values?

Let’s pick up our code example again, which we have seen several times before: the

query of a Customer by name. See Listing 9-40.

Listing 9-40. A Lookup Method for Customers by Name

Customer CustomerService::findCustomerByName(const std::string& name) {

 // Code that searches the customer by name...

 // ...but what shall we do, if a customer with the given name does not

exist?!

}

Well, one possibility would be to return lists instead of a single instance. If the

returned list is empty, the queried business object does not exist. See Listing 9-41.

Listing 9-41. An Alternative to nullptr: Returning an Empty List if the Lookup for

a Customer Fails

#include "Customer.h"

#include <vector>

using CustomerList = std::vector<Customer>;

CustomerList CustomerService::findCustomerByName(const std::string& name) {

 // Code that searches the customer by name...

 // ...and if a customer with the given name does not exist:

 return CustomerList();

}

ChapTeR 9 Design paTTeRns anD iDioms

432

The returned list can now be queried in the program sequence whether it is empty.

But what semantics does an empty list have? Was an error responsible for the emptiness

of the list? Well, the member function std::vector<T>::empty() cannot answer this

question. Being empty is a state of a list, but this state has no domain-specific semantics.

Folks, no doubt, this solution is much better than returning a nullptr, but maybe

not good enough in some cases. What would be much more comfortable is a return

value that can be queried about its origination cause, and about what can be done with

it. The answer is the Special Case pattern!

“A subclass that provides special behavior for particular cases.”

—Martin Fowler, Patterns of
Enterprise Application Architecture [Fowler02]

The idea behind the Special Case pattern is that we take advantage of polymorphism,

and that we provide classes representing the special cases, instead of returning nullptr

or some other odd value. These special case classes have the same interface as the

“normal” class that is expected by the callers. The class diagram in Figure 9-14 depicts

such a specialization.

In C++ source code, an implementation of the Customer class and the

NotFoundCustomer class representing the special case looks something like Listing 9-42

(only the relevant parts are shown).

Figure 9-14. The class(es) representing a special case are derived from the
Customer class

ChapTeR 9 Design paTTeRns anD iDioms

433

Listing 9-42. An Excerpt from the Customer.h File with the Customer and

NotFoundCustomer Classes

#ifndef CUSTOMER_H_

#define CUSTOMER_H_

#include "Address.h"

#include "CustomerId.h"

#include <memory>

#include <string>

class Customer {

public:

 // ...more member functions here...

 virtual ~Customer() = default;

 virtual bool isPersistable() const noexcept {

 return (customerId.isValid() && ! forename.empty() && ! surname.empty()

&&

 billingAddress->isValid() && shippingAddress->isValid());

 }

private:

 CustomerId customerId;

 std::string forename;

 std::string surname;

 std::shared_ptr<Address> billingAddress;

 std::shared_ptr<Address> shippingAddress;

};

class NotFoundCustomer final : public Customer {

public:

 bool isPersistable() const noexcept override {

 return false;

 }

};

using CustomerPtr = std::unique_ptr<Customer>;

#endif /* CUSTOMER_H_ */

ChapTeR 9 Design paTTeRns anD iDioms

434

The objects that represent the special case can now be used largely as if they were

valid (normal) instances of class Customer. Permanent null-checks, even when the

object is passed around between different parts of the program, are superfluous, since

there is always a valid object. Many things can be done with the NotFoundCustomer

object, as if it were an instance of Customer, for example, presenting it in a user interface.

The object can even reveal whether it is persistable. For the “real” Customer, this is done

by analyzing its data fields. In the case of the NotFoundCustomer, however, this check

always has a negative result.

Compared to the meaningless null-checks, a statement like the following one makes

significantly more sense:

if (customer.isPersistable()) {

 // ...write the customer to a database here...

}

STD::OPTIONAL<T> [C++17]

since C++17, there is another interesting alternative that could be used for a possibly missing

result or value: std::optional<T> (defined in the <optional> header). instances of this

class template represent an “optional contained value,” that is, a value that may or may not be

present.

The Customer class can be used as an optional value using std::optional<T> by

introducing a type alias as follows:

#include "Customer.h"

#include <optional>

using OptionalCustomer = std::optional<Customer>;

our search function CustomerService::findCustomerByName() can now be

implemented as follows:

class CustomerRepository {

public:

 OptionalCustomer findCustomerByName(const std::string& name) {

 if (/* the search was successful */) {

 return Customer();

 } else {

ChapTeR 9 Design paTTeRns anD iDioms

435

 return {};

 }

 }

};

at the call site of the function, you now have two ways to handle the return value, as illustrated

in the following example:

int main() {

 CustomerRepository repository { };

 auto optionalCustomer = repository.findCustomerByName("John Doe");

 // Option 1: Catch an exception, if 'optionalCustomer' is empty

 try {

 auto customer = optionalCustomer.value();

 } catch (std::bad_optional_access& ex) {

 std::cerr << ex.what() << std::endl;

 }

 // Option 2: Provide a substitute for a possibly missing object

 auto customer = optionalCustomer.value_or(NotFoundCustomer());

 return 0;

}

in the second option, for instance, it is possible to either provide a standard (default) customer,

or—as in this case—an instance of a special case object, if optionalCustomer is empty.

i recommend choosing the first option when the absence of an object is unexpected and is a

clue that a serious error must have been occurred. For the other cases, where a missing object

is nothing unusual, i recommend option 2.

 What Is an Idiom?
A programming idiom is a special kind of pattern to solve a problem in a specific

programming language or technology. That is, unlike the more general design patterns,

idioms are limited in their applicability. Often, their applicability is limited to exactly one

specific programming language or a certain technology, for example, a framework.

ChapTeR 9 Design paTTeRns anD iDioms

436

Idioms are typically used during detailed design and implementation, if

programming problems must be solved at a low level of abstraction. A well-known idiom

in the C and C++ domain is the so-called Include Guard, sometimes also called Macro

Guard or Header Guard, which is used to avoid double inclusion of the same header file:

#ifndef FILENAME_H_

#define FILENAME_H_

// ...content of header file...

#endif

One disadvantage of this idiom is that a consistent naming scheme for filenames,

and thus also for Include Guard macro names, must be ensured. Hence, most modern

C and C++ compilers support a non-standard #pragma once directive. This directive,

inserted at the top of a header file, will ensure that the header file is included only once.

By the way, we have already gotten to know a few idioms. In Chapter 4, we discussed

the Resource Acquisition Is Initialization (RAII) idiom, and in Chapter 6, I presented the

Type Erasure idiom that I also used earlier in this chapter to implement the State pattern.

 Some Useful C++ Idioms
It is not a joke, but you can actually find an exhaustive collection of nearly 100(!) C++

idioms on the Internet (WikiBooks: More C++ Idioms; URL: https://en.wikibooks.

org/wiki/More_C++_Idioms). The problem is that not all of these idioms are conducive

to a modern and clean C++ program. They are sometimes very complex and barely

comprehensible (e.g., Algebraic Hierarchy), even for fairly skilled C++ developers.

Furthermore, some idioms have become largely obsolete by the publishing of C++11

and subsequent standards. Therefore, I present here a small selection, which I consider

interesting and still useful.

 The Power of Immutability

Sometimes it’s very helpful to have classes for objects that cannot change their

states once they have been created, a.k.a. immutable classes (what is really meant

by this are in fact immutable objects, because properly speaking a class can only be

altered by a developer). For instance, immutable objects can be used as key values

ChapTeR 9 Design paTTeRns anD iDioms

https://en.wikibooks.org/wiki/More_C++_Idioms
https://en.wikibooks.org/wiki/More_C++_Idioms

437

in a hashed data structure, since the key value should never change after creation.

Another known example of an immutable object is the String class in several other

languages like C# or Java.

The benefits of immutable classes and objects are the following:

• Immutable objects are thread-safe by default, so you will not have

any synchronization issues if several threads or processes access

those objects in a non-deterministic way. Thus, immutability makes

it easier to create a parallelizable software design as there are no

conflicts among objects.

• Immutability makes it easier to write, use, and reason about the code,

because a class invariant, that is, a set of constraints that must always

be true, is established once at object creation and is ensured to be

unchanged during the object’s lifetime.

To create an immutable class in C++, the following measures must be taken:

• The member variables of the class must all be made immutable,

that is, they must all be made const (see the section about const

correctness in Chapter 4). This means that they can only be

initialized once in a constructor, using the constructor’s member

initializer list.

• Manipulating methods do not change the object on which they are

called, but return a new instance of the class with an altered state.

The original object is not changed. To emphasize this, there should

be no setter, because a member function whose name starts with

set...() is misleading. There is nothing to set on an immutable

object.

• The class should be marked as final. This is not a hard rule, but if

a new class can be inherited from an allegedly immutable class, it

might be possible to circumvent its immutability (remember the

history constraint described in Chapter 4).

ChapTeR 9 Design paTTeRns anD iDioms

438

Listing 9-43 shows an example of an immutable class in C++.

Listing 9-43. Employee Is Designed as an Immutable Class

#include "Identifier.h"

#include "Money.h"

#include <string>

#include <string_view>

class Employee final {

public:

 Employee(std::string_view forename,

 std::string_view surname,

 const Identifier& staffNumber,

 const Money& salary) noexcept :

 forename { forename },

 surname { surname },

 staffNumber { staffNumber },

 salary { salary } { }

 Identifier getStaffNumber() const noexcept {

 return staffNumber;

 }

 Money getSalary() const noexcept {

 return salary;

 }

 Employee changeSalary(const Money& newSalary) const noexcept {

 return Employee(forename, surname, staffNumber, newSalary);

 }

private:

 const std::string forename;

 const std::string surname;

 const Identifier staffNumber;

 const Money salary;

};

ChapTeR 9 Design paTTeRns anD iDioms

439

 Substitution Failure Is Not an Error (SFINAE)

In fact, substitution failure is not an error (SFINAE) is not a real idiom but a feature of the

C++ compiler. It has already been a part of the C++98 standard, but with C++11 several

new features have been added. However, it is still referred to as an idiom, also because

it is used in a very idiomatic style, especially in template libraries, such as the C++

Standard Library, or Boost.

The defining text passage in the standard can be found in Section 14.8.2 about

template argument deduction. There we can read in §8 the following statement:

“If a substitution results in an invalid type or expression, type deduction
fails. An invalid type or expression is one that would be ill-formed if written
using the substituted arguments. Only invalid types and expressions in the
immediate context of the function type and its template parameter types
can result in a deduction failure.”

—Standard for Programming Language C++ [ISO11]

Error messages in case of a faulty instantiation of C++ templates, for example, with

wrong template arguments, can be very verbose and cryptic. SFINAE is a programming

technique that ensures that a failed substitution of template arguments does not create

an annoying compilation error. Simply put, it means that if the substitution of a template

argument fails, the compiler continues with the search for a suitable template instead of

aborting with an error.

Listing 9-44 shows a very simple example with two overloaded function templates.

Listing 9-44. SFINAE by Example of Two Overloaded Function Templates

#include <iostream>

template <typename T>

void print(typename T::type) {

 std::cout << "Calling print(typename T::type)" << std::endl;

}

template <typename T>

void print(T) {

 std::cout << "Calling print(T)" << std::endl;

}

ChapTeR 9 Design paTTeRns anD iDioms

440

struct AStruct {

 using type = int;

};

int main() {

 print<AStruct>(42);

 print<int>(42);

 print(42);

 return 0;

}

The output of this small example on stdout will be:

Calling print(typename T::type)

Calling print(T)

Calling print(T)

As can be seen, the compiler uses the first version of print() for the first function

call, and the second version for the two subsequent calls. This code also works in C++98.

Well, but SFINAE prior C++11 had several drawbacks. The previous very simple

example is a bit deceptive regarding the real effort to use this technique in real projects.

The application of SFINAE this way in template libraries has led to very verbose and

tricky code that is difficult to understand. Furthermore, it is badly standardized and

sometimes compiler specific.

With the advent of C++11, the so-called Type Traits library was introduced, which we

got to know in Chapter 7. The meta function std::enable_if() (defined in the <type_

traits> header), which is available since C++11, played a central role in SFINAE. With

this function we got a conditionally “remove functions capability” from overload

resolution based on type traits. C++14 added a helper template for std::enable_if

that has a shorter syntax: std::enable_if_t. With the help of this template, and the

miscellaneous template-based type checks from the <type_traits> header, we can, for

example, pick an overloaded version of a function depending on the argument’s type at

compile-time. See Listing 9-45.

ChapTeR 9 Design paTTeRns anD iDioms

441

Listing 9-45. SFINAE By Using the Function Template std::enable_if<>

#include <iostream>

#include <type_traits>

template <typename T>

void print(T var, std::enable_if_t<std::is_enum_v<T>, T>* = nullptr) {

 std::cout << "Calling overloaded print() for enumerations." << std::endl;

}

template <typename T>

void print(T var, std::enable_if_t<std::is_integral_v<T>, T> = 0) {

 std::cout << "Calling overloaded print() for integral types." <<

std::endl;

}

template <typename T>

void print(T var, std::enable_if_t<std::is_floating_point_v<T>, T> = 0.0) {

 std::cout << "Calling overloaded print() for floating point types." <<

std::endl;

}

template <typename T>

void print(const T& var, std::enable_if_t<std::is_class_v<T>, T>* =

nullptr) {

 std::cout << "Calling overloaded print() for classes." << std::endl;

}

The overloaded function templates can be used by simply calling them with

arguments of different types, as shown in Listing 9-46.

Listing 9-46. Thanks to SFINAE, There Is a Matching print() Function for

Arguments of Different Types

enum Enumeration1 {

 Literal1,

 Literal2

};

ChapTeR 9 Design paTTeRns anD iDioms

442

enum class Enumeration2 : int {

 Literal1,

 Literal2

};

class Clazz { };

int main() {

 Enumeration1 enumVar1 { };

 print(enumVar1);

 Enumeration2 enumVar2 { };

 print(enumVar2);

 print(42);

 Clazz instance { };

 print(instance);

 print(42.0f);

 print(42.0);

 return 0;

}

After compiling and executing, we see the following result on the standard output:

Calling overloaded print() for enumerations.

Calling overloaded print() for enumerations.

Calling overloaded print() for integral types.

Calling overloaded print() for classes.

Calling overloaded print() for floating point types.

Calling overloaded print() for floating point types.

ChapTeR 9 Design paTTeRns anD iDioms

443

 The Copy-and-Swap Idiom

In the section “Prevention Is Better Than Aftercare” in Chapter 5, we learned the four

levels of exception-safety guarantee: no exception-safety, basic exception-safety, strong

exception-safety, and the no-throw guarantee. What member functions of a class should

always guarantee is the basic exception-safety, because this exception-safety level is

usually easy to implement.

In the section “The Rule of Zero” in Chapter 5, we learned that we should design

classes in a way that the compiler-generated special member functions (copy

constructor, copy assignment operator, etc.) automatically do the right things. Or in

other words, when we are forced to provide a non-trivial destructor, we are dealing with

an exceptional case that requires special treatment during destruction of the object. As a

consequence, it follows that the special member functions generated by the compiler are

not sufficient to deal with this situation, and we have to implement them by ourselves.

However, it is inevitable that the Rule of Zero will occasionally not be fulfilled, that

is, a developer has to implement the special member functions by herself. In this case, it

may be a challenging task to create an exception-safe implementation of an overloaded

assignment operator. In such a case, the Copy-and-Swap idiom is an elegant way to solve

this problem.

Hence, the intent of this idiom is as follows:

“Implement the copy assignment operator with strong exception safety.”

The simplest way to explain the problem and its solution is with a small example.

Consider the class shown in Listing 9-47.

Listing 9-47. A Class That Manages a Resource That Is Allocated on the Heap

#include <cstddef>

class Clazz final {

public:

 explicit Clazz(const std::size_t size) : resourceToManage { new

char[size] }, size { size } { }

 ~Clazz() {

 delete [] resourceToManage;

 }

ChapTeR 9 Design paTTeRns anD iDioms

444

private:

 char* resourceToManage;

 std::size_t size;

};

This class is, of course, only for demonstration purposes and should not be part of a

real program.

Let’s assume that we want to do the following with the class Clazz:

int main() {

 Clazz instance1 { 1000 };

 Clazz instance2 { instance1 };

 return 0;

}

We know from Chapter 5 that the compiler-generated version of a copy constructor

does the wrong thing here: it only creates a flat copy of the character pointer

resourceToManage!

Hence, we have to provide our own copy constructor, like so:

#include <algorithm>

class Clazz final {

public:

 // ...

 Clazz(const Clazz& other) : Clazz { other.size } {

 std::copy(other.resourceToManage, other.resourceToManage + other.size,

resourceToManage);

 }

 // ...

};

So far, so good. Now the copy construction will work fine. But now we’ll also need

a copy assignment operator. If you are not familiar with the copy-and-swap idiom, an

implementation of an assignment operator might look like this:

#include <algorithm>

class Clazz final {

ChapTeR 9 Design paTTeRns anD iDioms

445

public:

 // ...

 Clazz& operator=(const Clazz& other) {

 if (&other == this) {

 return *this;

 }

 delete [] resourceToManage;

 resourceToManage = new char[other.size];

 std::copy(other.resourceToManage, other.resourceToManage + other.size,

 resourceToManage);

 size = other.size;

 return *this;

 }

 // ...

};

Basically, this assignment operator will work, but it has several drawbacks. For

instance, the constructor and destructor code is duplicated in it, which is a violation of

the DRY principle (see Chapter 3). Furthermore, there is a self-assignment check at the

beginning. But the biggest disadvantage is that we cannot guarantee exception-safety.

For example, if the new statement causes an exception, the object can be left behind in a

weird state that violates elementary class invariants.

Now the copy-and-swap idiom comes into play, also known as “Create-Temporary-

and-Swap”!

For a better understanding, I present the whole class Clazz in Listing 9-48.

Listing 9-48. A Much Better Implementation of an Assignment Operator Using

the Copy-and-Swap Idiom

#include <algorithm>

#include <cstddef>

class Clazz final {

public:

 explicit Clazz(const std::size_t size) : resourceToManage { new

char[size] },

 size { size } { }

ChapTeR 9 Design paTTeRns anD iDioms

446

 ~Clazz() {

 delete [] resourceToManage;

 }

 Clazz(const Clazz& other) : Clazz { other.size } {

 std::copy(other.resourceToManage, other.resourceToManage + other.size,

 resourceToManage);

 }

 Clazz& operator=(Clazz other) {

 swap(other);

 return *this;

 }

private:

 void swap(Clazz& other) noexcept {

 using std::swap;

 swap(resourceToManage, other.resourceToManage);

 swap(size, other.size);

 }

 char* resourceToManage{ nullptr };

 std::size_t size{ 0 };

};

What is the trick here? Let’s look at the completely different assignment operator.

This no longer has a const reference (const Clazz& other) as a parameter, but an

ordinary value parameter (Clazz other). This means that when this assignment

operator is called, the copy constructor of Clazz is called. The copy constructor, in turn,

calls the default constructor that allocates memory for the resource. And that is exactly

what we want: we need a temporary copy of other!

Now we come to the heart of the idiom: the call of the private member function

Clazz::swap(). Within this function, the contents of the temporary instance other,

that is, its member variables, are exchanged (“swapped”) with the contents of the

same member variables of our own class context (this). This is done by using the

non-throwing std::swap() function (defined in the <utility> header). After the

swap operations, the temporary object called other now owns the resources that were

previously owned by the this object, and vice versa.

ChapTeR 9 Design paTTeRns anD iDioms

447

Additionally, the Clazz::swap() member function now makes it very easy to

implement a move constructor:

class Clazz {

public:

 // ...

 Clazz(Clazz&& other) noexcept {

 swap(other);

 }

 // ...

};

Of course, the major goal in good class design should be that it is not necessary to

implement explicit copy constructors and assignment operators (recall the Rule of Zero).

But when you are forced to do it, you should remember the copy-and-swap idiom.

 Pointer to Implementation (PIMPL)

The last section of this chapter is dedicated to an idiom with the funny acronym,

PIMPL. PIMPL stands for Pointer to Implementation; and the idiom is also known as

Handle Body, the Compilation Firewall, or Cheshire Cat technique (The Cheshire Cat

is a fictional character, a grinning cat, from Lewis Carroll’s novel Alice’s Adventures in

Wonderland.) It has, by the way, some similarities with the Bridge pattern described in

[Gamma95].

The intent of the PIMPL could be formulated as follows:

“Remove compilation dependencies on internal class implementation
details by relocating them into a hidden implementation class and thus
improve compile times.”

Let’s look at an excerpt from the Customer class, a class that we’ve seen in many

examples before. See Listing 9-49.

Listing 9-49. An Excerpt from the Contents of the Customer.h Header File

#ifndef CUSTOMER_H_

#define CUSTOMER_H_

#include "Address.h"

#include "Identifier.h"

ChapTeR 9 Design paTTeRns anD iDioms

448

#include <string>

class Customer {

public:

 Customer();

 virtual ~Customer() = default;

 std::string getFullName() const;

 void setShippingAddress(const Address& address);

 // ...

private:

 Identifier customerId;

 std::string forename;

 std::string surname;

 Address shippingAddress;

};

#endif /* CUSTOMER_H_ */

Let’s assume that this is a central business entity in our commercial software system

and that it is used (#include "Customer.h") by many other classes. When this header

file changes, any files that use that file will need to be recompiled, even if only one

private member variable is added, renamed, etc.

In order to reduce these recompilations to the absolute minimum, the PIMPL idiom

comes in to play.

First we rebuild the class interface of the Customer class, as shown in Listing 9-50.

Listing 9-50. The Altered Customer.h Header File

#ifndef CUSTOMER_H_

#define CUSTOMER_H_

#include <memory>

#include <string>

class Address;

class Customer {

public:

 Customer();

ChapTeR 9 Design paTTeRns anD iDioms

449

 virtual ~Customer();

 std::string getFullName() const;

 void setShippingAddress(const Address& address);

 // ...

private:

 class Impl;

 std::unique_ptr<Impl> impl;

};

#endif /* CUSTOMER_H_ */

It is conspicuous that all previous private member variables, as well as their

associated include-directives, have now disappeared. Instead, a forward declaration for

a class named Impl, as well as a std::unique_ptr<T> to this forward-declared class, is

present.

Let’s look at the corresponding implementation file, shown in Listing 9-51.

Listing 9-51. The Contents of the Customer.cpp File

#include "Customer.h"

#include "Address.h"

#include "Identifier.h"

class Customer::Impl final {

public:

 std::string getFullName() const;

 void setShippingAddress(const Address& address);

private:

 Identifier customerId;

 std::string forename;

 std::string surname;

 Address shippingAddress;

};

std::string Customer::Impl::getFullName() const {

 return forename + " " + surname;

}

ChapTeR 9 Design paTTeRns anD iDioms

450

void Customer::Impl::setShippingAddress(const Address& address) {

 shippingAddress = address;

}

// Implementation of class Customer starts here...

Customer::Customer() : impl { std::make_unique<Customer::Impl>() } { }

Customer::~Customer() = default;

std::string Customer::getFullName() const {

 return impl->getFullName();

}

void Customer::setShippingAddress(const Address& address) {

 impl->setShippingAddress(address);

}

In the upper part of the implementation file (up to the source code comment),

we can see the Customer::Impl class. Everything has been relocated in this class,

which formerly was done directly by the Customer class. Here we also find all member

variables.

In the lower section (beginning with the comment), we now find the implementation

of the Customer class. The constructor creates an instance of Customer::Impl and holds

it in the smart pointer impl. As to the rest, any call of the API of the Customer class is

delegated to the internal implementation object.

If something has to be changed in the internal implementation in Customer::Impl,

the compiler must only compile Customer.h/Customer.cpp, and then the linker can start

its work immediately. Such changes do not have an effect on the outside, and a time-

consuming compilation of the almost entire project is avoided.

ChapTeR 9 Design paTTeRns anD iDioms

451
© Stephan Roth 2021
S. Roth, Clean C++20, https://doi.org/10.1007/978-1-4842-5949-8

 APPENDIX A

Small UML Guide
“Learn the rules so you know how to break them properly.”

―Rule no. 5 of the Dalai Lama’s “18 Rules for Living”

The OMG Unified Modeling Language (OMG UML)1 is a standardized graphical

language used to create models of software and other systems. Its main purpose is

to enable developers, software architects, and other stakeholders to design, specify,

visualize, construct, and document artifacts of a software system. The language

supports both the modeling of structures (the building blocks of a software and their

relationships), as well as their behavior (how those building blocks interact and

collaborate at runtime). Well-crafted UML models support the discussion between

different stakeholders, serve as an aid to clarify requirements and other issues related to

the system of interest, and can capture design decisions.

The vocabulary range of the UML is very extensive. The language offers 15 different

diagram types for different purposes. However, as with any other language, it is not

usually necessary to use all the vocabulary you know in daily communication. The “art of

omission” is also essential here. In practice, there is always a limitation on the language

elements you need, and a limitation on a few diagram types.

This appendix provides a brief overview of that subset of UML notations that are

used in this book. Each UML element is illustrated (syntax) and briefly explained

(semantic). The short definition for an element is based on the current UML

specification [OMG15], which can be downloaded for free from OMG’s website. An in-

depth introduction to the Unified Modeling Language should be made with the help of

appropriate literature, or by taking a course at a training provider.

1 OMG, Unified Modeling Language, and UML are registered trademarks of the Object
Management Group, Inc.

https://doi.org/10.1007/978-1-4842-5949-8#DOI

452

 Structural Modeling
This section introduces the UML notations used to model structures, i.e. the building

blocks of a software system, their interfaces, and their relationships (dependencies).

Among the most important structural diagrams in UML are the component diagram and

the class diagram.

 Component
The UML element component represents a modular part of a system that is usually on

a high abstraction level, for example at the level of software architecture. A component

serves as a kind of “capsule” or “envelope” for a set of smaller components or classes that

together fulfill certain functionality.

COMPONENT

A component represents a modular part of a system that encapsulates its contents and whose

manifestation is replaceable within its environment.

The notation (syntax) of a component is a rectangular symbol with the component’s

name, as depicted in Figure A-1. Above the component’s name (Billing), the keyword

«component» appears within French quotation marks, which are also called guillemets.

The icon in the upper-right corner is optional.

Due to the fact that a component encapsulates its content, its services are defined

in terms of so-called provided and required interfaces. Only these interfaces are

available to the environment for the use of a component. That means that a component

is a substitutable unit that can be replaced at design time or at runtime by another

component that has compatible interfaces and offers equivalent functionality.

Figure A-1. An example of the notation of a billing component

Appendix A SmAll Uml GUide

453

 Class and Object
Among various other applications, class diagrams are typically used to depict structures

of an object-oriented software design. Class diagrams are at a lower level of abstraction

than the previously discussed component diagrams. The central element in class

diagrams is the class.

CLASS

A class describes a set of objects that share the same specifications of features, constraints,

and semantics.

The notation (symbol) for a class is a simple rectangle with the name of the class, as

depicted in Figure A-2.

An instance of a class is commonly referred to as an object. Therefore, classes

can be considered as blueprints for similar objects. If such objects are presented in a

UML diagram, they are called instance specifications.2 The notation of an instance

specification is very similar to that of a class, with the difference that its name is

underlined. Figure A-3 depicts three instance specifications (“peter”, “mary”, and

“sheila”) that were created by instantiating the same class.

2 A linguistic subtlety: The background for this very special term “instance specification” is that the
graphical representation of an instance (object) on a UML diagram is not the real object at all, it
is just a specification of it in a model. The real object can be found in the memory of the running
software system.

Figure A-2. A class named Customer

Appendix A SmAll Uml GUideSmAll Uml GUide

454

Usually, classes have both structural and behavioral features. These are called

attributes and operations.3 Attributes are usually shown in the second compartment of

the class and operations in the third, as depicted in Figure A-4.

3 In C++, the attributes of a class are sometimes called “members,” and the operations are
sometimes called “methods” or “member functions,” whereby the last term is properly speaking
not quite correct, because they are normally not true pure functions.

Figure A-3. Three instance specifications created from the Customer class

Figure A-4. The Customer class with attributes and operations

Appendix A SmAll Uml GUide

455

The type of an attribute is noted separated by a colon after the attribute’s name.

The same applies to the type of the return value of an operation. Operations can have

parameters that are specified within parentheses. If an operation has more than one

parameter, the parameters are noted as a comma-separated list. Static attributes or

operations are underlined.

Classes have a mechanism to regulate the access to their attributes and operations.

In UML they are called visibilities. The visibility kind is placed in front of the attribute’s

or operation’s name and may be one of the characters described in Table A-1.

A C++ class definition corresponding to the UML class shown in Figure A-4 may look

like Listing A-1.

Listing A-1. The Customer Class Implemented in C++

#include <string>

#include <string_view>

#include "Address.h"

#include "UniqueIdentifierFactory.h"

class Customer {

public:

 Customer() = delete;

 Customer(const UniqueIdentifierFactory& idProvider,

 std::string_view name, const bool isRegular);

 virtual ~Customer() = default;

Table A-1. Visibilities

Character Visibility Kind

+ public: This attribute or operation is visible to all elements that can access the class.

protected: This attribute or operation is not only visible inside the class itself, but also

visible to elements that are derived from the class that owns it (see the section entitled

“Generalization”).

~ package: This attribute or operation is visible to elements that are in the same package

as its owning class. This kind of visibility cannot be realized in a language like C++ and

is therefore not used in this book.

- private: This attribute or operation is only visible inside the class, nowhere else.

Appendix A SmAll Uml GUide

456

 void setShippingAddress(const Address& address);

 void setBillingAddress(const Address& address);

 Address getShippingAddress() const;

 Address getBillingAddress() const;

 bool isRegular() const;

 GUID getIdentifier() const;

 std::string getIdentifierAsString() const;

private:

 void requestUniqueIdentifier(const UniqueIdentifierFactory&

 identifierFactory);

 GUID identifier;

 std::string name;

 Address billingAddress;

 Address shippingAddress;

 bool isRegular;

};

Note due to the fact that a Uml model is an abstraction in most cases
(exception: when their purpose is to generate source code), diagrams often do not
depict all existing properties of a described element, i.e., diagrams usually have a
lower level of detail.

If a class is abstract, that is, it cannot be instantiated due to an incomplete

specification, its name is typically shown in italicized letters, as depicted in Figure A-5.

Abstract classes serve as base classes in inheritance hierarchies (see the section entitled

“Generalization”).

Figure A-5. An abstract class called Shape

Appendix A SmAll Uml GUide

457

 Interface
An interface defines a kind of a contract. A component or class that realizes the interface

must fulfill that contract. Another component or class that uses the interface expects that

it is supplied with an element that fulfills the contract.

INTERFACE

An interface is a declaration of a set of coherent public obligations.

Interfaces are always abstract, that is, they cannot be instantiated by default. The

UML symbol for an interface is very similar to a class, with the keyword «interface»

above its name, as depicted in Figure A-6.

To express, for example, that a class realizes (synonym: implements) an interface, a

special relationship exists in UML. The realization relationship is a dashed arrow with a

closed but not filled arrowhead. This relationship points, as depicted in Figure A-7, from

the class (the realizing element) to the interface (the specification).

Figure A-6. The Displayable interface with two declared operations

Appendix A SmAll Uml GUide

458

It is, of course, allowed that a class implements multiple interfaces.

Unlike some other object-oriented languages, such as Java and C#, there is no

interface keyword in C++. Interfaces are therefore usually emulated with the help

of abstract classes that solely consist of pure virtual member functions, as shown in

Listing A-2.

Listing A-2. The Displayable Interface in C++

class Displayable {

public:

 virtual ~Displayable() = default;

 virtual void show() = 0;

 virtual void hide() = 0;

};

To show that a class or component provides or requires interfaces, you can use the

so-called ball-and-socket notation. A provided interface is depicted using a ball (a

“lollipop”), whereas a required interface is depicted with a socket (a symbol that looks

like a claw). Strictly speaking, this is an alternative notation, as Figure A-8 clarifies.

(The association relationship that appears in this figure between Account and Owner is

explained in detail in the following section.)

Figure A-7. The Shape class realizes the Displayable interface

Appendix A SmAll Uml GUide

459

 Association
Classes usually have static relationships to other classes. The UML association specifies

such a relationship.

ASSOCIATION

An association relationship allows one instance of a classifier (e.g., a class or a component) to

access another.

In its simplest form, the UML syntax for an association is a solid line between two

classes, as depicted in Figure A-9.

Figure A-8. The so-called “ball-and-socket-notation” for provided
(AccountService) and required (Owner) interfaces

Appendix A SmAll Uml GUide

460

This simple association is often not sufficient to properly specify the relationship

between both classes. For instance, the navigation direction across such a simple

association, that is, who is able to access whom, is undefined by default. However,

navigability in this case is often interpreted as bidirectional by convention, that is,

Customer (whose internals have been completely hidden here) has an attribute to

access ShoppingCart and vice versa. Therefore, more information can be provided to an

association. Figure A-10 illustrates a few of the possibilities.

 1. This example shows an association with one end navigable

(depicted by an arrowhead) and the other having unspecified

navigability. The semantic is: class A is able to navigate to class

B. In the other direction it is unspecified, that is, class B might be

able to navigate to class A.

Figure A-9. A simple association relationship between two classes

Figure A-10. Some examples of associations between classes

Appendix A SmAll Uml GUide

461

Note it is strongly recommended to define the interpretation of the navigability
of such an unspecified association end in your project. My recommendation is to
consider them as non-navigable. This interpretation is also used in this book.

 2. This navigable association has a name (“has”). The solid triangle

indicates the direction of reading. Apart from that, the semantics

of this association is fully identical to Example 1.

 3. In this example, both association ends have labels (names) and

multiplicities. The labels are typically used to specify the roles of

the classes in an association.

A multiplicity specifies the allowed quantity of instances of the

classes that are involved in an association. It is an inclusive

interval of non-negative integers beginning with a lower bound

and ending with an (possibly infinite) upper bound. In this case,

any A has zero to any number of Bs, whereas any B has exactly one

A. Table A-2 shows some examples of valid multiplicities.

 4. This is a special association called aggregation. It represents

a whole-part- relationship; that is, the one class (the part) is

hierarchically subordinated to the other class (the whole). The

hollow diamond is just a marker in this kind of association

and identifies the whole. Otherwise, everything that applies to

associations applies to an aggregation.

 5. This is a composite aggregation, which is a strong form of

aggregation. It expresses that the whole is the owner of the parts,

and thus also responsible for the parts. If an instance of the whole

is deleted, all of its part instances are normally deleted with it.

Note note that a part can (where allowed) be removed from a composite before
the whole is deleted, and thus not be deleted as part of the whole. This can be
made possible by a multiplicity of 0..1 at the association end that is connected to
the whole, that is, the end with the filled diamond. The only allowed multiplicities at
this end are 1 or 0..1; all other multiplicities are prohibited.

Appendix A SmAll Uml GUide

462

In programming languages, associations and the mechanism of navigation from one

class to another can be implemented in various ways. In C++, associations are usually

implemented by members having the other class as its type, for example, as a reference

or a pointer, as shown in Listing A-3.

Listing A-3. Sample Implementation of a Navigable Association Between

Classes A and B

class B; // Forward declaration

class A {

private:

 B* b;

 // ...

};

class B {

 // No pointer or any other reference to class A here!

};

 Generalization
A central concept in object-oriented software development is the so-called inheritance.

In UML there is a different and better fitting term for this concept: generalization. What

is meant by this is the generalization of, for instance, classes or components.

Table A-2. Multiplicity Examples

Multiplicity Meaning

1 exactly one. if no multiplicity is shown on an association end, this is the default.

1..10 An inclusive interval between 1 and 10.

0..* An inclusive interval between 0 and any number (zero-to-many). The star character (*)

is used to represent the unlimited (or infinite) upper bound.

* Abbreviated form of 0..*.

1..* An inclusive interval between 1 and any number (one-to-many).

Appendix A SmAll Uml GUide

463

GENERALIZATION

A generalization is a taxonomic relationship between a general class and a more

specific class.

The generalization relationship is used in UML diagrams to represent the concept of

inheritance: the specific class (subclass) inherits attributes and operations of the more

general class (base class). The UML syntax of the generalization relationship is a solid

arrow with a closed but not filled arrowhead, as depicted in Figure A-11.

In the direction of the arrow, this relationship is read as the following: “<Subclass> is

a kind of <Baseclass>,” for example, “Rectangle is a kind of Shape.”

 Dependency
In addition to the already mentioned associations, classes (and components) can have

further relationships with other classes (and components). For instance, if a class is used

as a type for a parameter of a member function, this is not an association, but it is a kind

of dependency to that used class.

Figure A-11. An abstract base class called Shape and three concrete classes that
are specializations of it

Appendix A SmAll Uml GUide

464

DEPENDENCY

A dependency is a relationship that signifies that a single or a set of elements requires other

elements for their specification or implementation.

As depicted in Figure A-12, a dependency is shown as a dashed arrow between two

elements, for example, between two classes or components. It implies that the element

at the arrowhead is required by the element at the tail of the arrow, for example, for

implementation purposes. In other words, the dependent element is incomplete without

the independent element.

In addition to its simple form (see the first example in Figure A-12), two special types

of dependency can be distinguished:

• The usage dependency («use») is a relationship in which one

element requires another element (or set of elements) for its full

implementation or operation.

• The creation dependency («Create») is a special kind of usage

dependency indicating that the element at the tail of the arrow

creates instances of the type at the arrowhead.

Figure A-12. Miscellaneous dependencies

Appendix A SmAll Uml GUide

465

 Template and Template Binding
In C++, templates are well known as the foundation of generic programming. In contrast,

the possibility of depicting class templates in UML class diagrams is largely unknown, as

is the possibility to show how template parameters are substituted with concrete types or

values.

The example in Figure A-13 shows a class template named std::vector with two

formal template parameters named T and Allocator. Template parameters of a Class

template are shown in a dashed rectangle that overlaps the class’ rectangle in the upper-

right corner. In our example, there is even a default value (std::allocator) with which

the Allocator template parameter is substituted.

There is also a bound class (named ProductList) that substitutes the template

parameter T with the type Product (which is another class that is not shown here). The

TemplateBinding is depicted with a dashed arrow («bind») showing the substitution of

template parameters (T -> Product).

Figure A-13. The class template std::vector and a bound class ProductList

Appendix A SmAll Uml GUide

466

 Behavioral Modeling
In addition to modeling static structures, UML also offers various possibilities to model

the behavior of software, i.e. dynamic aspects and processes during the operation of the

software. The three diagram types most commonly used for this purpose are activity

diagrams, sequence diagrams, and state diagrams.

Since the total vocabulary range of UML is also relatively large, we will confine

ourselves in this small introduction only to the elements that are necessary for

understanding the behavioral diagrams presented in this book.

 Activity Diagram
An activity diagram is suitable for describing complex processes (e.g., procedures,

operations, etc.). The paths through the process described by an activity diagram can be

divided and reunited, decisions can be made, and parallel regions may also exist, i.e. you

can also describe concurrently running processes.

In general, an activity diagram consists of nodes and edges. The edges determine

the processing order. The nodes are the elements that are brought into a certain order by

the edges.

Figure A-14 depicts a simple example of an activity diagram. It shows that there

are two alternative flows for regular customers and new customers, because regular

customers already have a customer account, whereas new customers first have to

provide their data and then their credit card is charged. The diagram also shows that for

regular customers, debiting the customer account and crediting the bonus points can

run in parallel.

Appendix A SmAll Uml GUide

467

 Action

A very central element in activity diagrams is an executable node that is called action.

ACTION

An action is the fundamental unit of executable functionality.

Figure A-14. An activity diagram that depicts the process of purchasing products

Appendix A SmAll Uml GUide

468

Actions are used to describe that something is happening in the modeled system,

i.e. some kind of function or processing. The syntax (notation) of an action is a rectangle

with rounded corners, as depicted in Figure A-15. The name of the action is usually the

description of what is executed. Good and well-understandable action names consist of

a noun and a verb.

There are many special kinds of actions in UML. For our purposes, the simple

standard action (also called an opaque action), which describes by an expressive name

what happens within the modeled system, is sufficient.

 Control Flow Edge

In Figure A-16, the solid line with an open arrowhead connecting the action called “Fill

shopping cart” to “Identify customer” is a control flow edge. This means that when

the “Fill shopping cart” behavior is completed, control is passed to the action named

“Identify customer”.

A control flow edge can also have a so-called guard. Guards can be used, for

example, to decide how a process in an activity will continue. A guard is depicted by

a condition, which is a (Boolean) expression that can be evaluated to true or false,

surrounded with square brackets, e.g., [is regular customer].

 Other Activity Nodes

Table A-3 provides an overview with brief descriptions of the other nodes that can be

seen in the activity diagram in Figure A-14.

Figure A-15. The notation of a simple action

Figure A-16. A control flow edge connects two actions

Appendix A SmAll Uml GUide

469

 Sequence Diagram
Unlike the previously discussed activity diagrams, a sequence diagram depicts the

interaction of, or communication between, elements of the modeled system in a specific,

limited situation. They thus represent a different view of the behavior of the modeled

system.

The sequence diagram in Figure A-17 depicts the sequence of interactions, that is,

the ordered exchange of messages between all software modules involved in creating a

new posting in an account.

Table A-3. Other Frequently Used Activity Nodes

Notation Name of the Element and its Semantic

Initial node Represents the point at which flow starts when the activity is invoked.

An activity may contain more than one initial node; in this case invoking the activity

will start multiple flows simultaneously.

Activity final node This kind of node stops all flows in an activity. An activity may

contain more than one activity final node; in this case the first one reached stops all

flows and terminates the whole activity.

Decision node This kind of node has one incoming edge and selects one outgoing

edge from two or more possible outgoing flows. So-called guards (see the section

called “Control Flow edge”) are typically used to select the outgoing edge.

Merge node This kind of node brings together multiple incoming alternate flows and

has one single outgoing flow.

Fork node This kind of node has one incoming edge and multiple outgoing edges

and is used to split an incoming flow into multiple concurrent (parallel) flows.

Join node This kind of node has multiple incoming edges and one outgoing edge

and is used to synchronize incoming concurrent (parallel) flows.

Appendix A SmAll Uml GUide

470

 Lifeline

The central element in sequence diagrams is the so-called lifeline.

LIFELINE

A lifeline represents an individual participant in an interaction.

The syntax (notation) of a lifeline, as depicted in Figure A-18, is a symbol that

consists of a rectangle forming its “head” followed by a vertical dashed line that

represents the lifetime of the participant. The head of the lifeline contains the

information about the participant in the format elementName : elementType, whereby

the elementName is optional.

Figure A-17. The interaction of elements when creating a new account posting

Figure A-18. A lifeline representing the element a of type Type A

Appendix A SmAll Uml GUide

471

 Message

A message is a communication between participants of an interaction in which a sender

makes a request for either an operation call or signal reception by a receiver. Figure A-19

depicts different sorts of messages.

The difference between a synchronous and asynchronous message is that with an

asynchronous message, the sender can do other things immediately after the message

has been sent (“fire and forget”). On the other hand, the sender of a synchronous

message is blocked until the message recipient has finished processing the message and

returns to the caller with a so-called Reply message.

An object creation message (depicted by a dashed line with an open arrow head

pointing to the head of a lifeline) designates the creation of another lifeline object.

 State Diagram
In addition to processes (depicted with the help of activity diagrams) and interactions

(depicted with the help of sequence diagrams), a third aspect of behavior is the state

and the change of states, i.e. event-driven behaviors of parts of a system. These states

and transitions between states are usually modeled with the help of state machines

and depicted in state diagrams. UML state machine is an object-based variant of Harel

statechart [Harel87], adapted and extended by UML. Thus, it offers more possibilities

than the traditional Finite State Machine (FSM).

Figure A-19. Different sorts of messages

Appendix A SmAll Uml GUide

472

Figure A-20 depicts an example of a state diagram with the most common notation

elements. The diagram frame represents the context of the state machine.

 State

The central element in state diagrams is the state.

STATE

A state models a situation during which some (usually implicit) invariant condition holds.

A state is depicted as a rectangle with rounded corners. A distinction is made

between simple and composite states, as depicted in Figure A-21. The latter are states

that have a region with sub-states, i.e. hierarchically nested states.

Figure A-20. An example of a state diagram

Appendix A SmAll Uml GUide

473

 Transitions

Transitions are basically distinguished between external and internal transitions.

External Transitions

An external transition usually leads to a change of state. Switching from one state to

another is called state transition. However, it is also possible that the start and end state

of an external transition are the same. The syntax (notation) of an external transition is a

solid line with an open arrowhead, as depicted in Figure A-22.

Internal Transitions

Sometimes an event causes some internal behavior to execute but does not lead to a

state change. This is called an internal transition. Internal transitions are noted within a

state’s compartment, as depicted in Figure A-23.

Figure A-21. A simple state (State A) and a composite state (State B), with nested
sub-states (State B1 and State B2)

Figure A-22. External transitions

Appendix A SmAll Uml GUide

474

Besides self-defined events, the following predefined events can optionally be used

for internal transitions in order to execute some specified behavior:

• entry: A behavior that is performed upon entry to a state.

• do: An ongoing behavior that is performed as long as the modeled

element is in the state.

• exit: A behavior that is performed upon exit from a state.

 Trigger

A transition may own a set of so-called triggers. A trigger specifies an event whose

occurrence, when dispatched, may trigger traversal of the transition. Triggers can be

noted on a transition according to the following template:

[event1, event2, ...][condition][/behavior]

All elements, i.e. the explicit events, the so-called guard (that’s the part that contains

the condition), as well as the executed behavior if a transition is triggered, are optional.

Even if no explicit trigger is annotated at a transition, there is one. This implicit event is

called a completion event and it signifies that all behaviors associated with the source

state (e.g., the possibly existing behaviors that are associated with the entry- and do-

events) have completed execution.

 Stereotypes
Among other ways, the vocabulary of UML can be extended with the help of so-called

stereotypes. This lightweight mechanism allows the introduction of platform- or

domain-specific extensions of standard UML elements. For instance, by the application

of the stereotype «Factory» on the standard UML element Class, designers can express

that those specific classes are object factories.

Figure A-23. A state with internal transitions

Appendix A SmAll Uml GUide

475

The name of an applied stereotype is shown within a pair of guillemets (French

quotation marks) above or before the name of the model element. Some stereotypes also

introduce a new graphical symbol, an icon. Table A-4 contains a list of the stereotypes

used in this book.

Table A-4. Stereotypes Used in This Book

Stereotype Meaning

«Factory» A class that creates objects without exposing the instantiation logic to the

client.

«Facade» A class that provides a unified interface to a set of interfaces in a complex

component or subsystem.

«Include» A stereotype applied to a directed relationship (dependency) to indicate that one

source code file requires the contents of another source code file.

«ModuleImport» A stereotype applied to a directed relationship (dependency) to indicate that

a C++ source code file imports a C++ module, which is a set of source code

files that were precompiled independently of the units that are importing the

module.

«Subsystem» A Uml standard stereotype. it is used to mark a component that represents a

large-scale module within a system, which may have characteristics of a self-

contained system.

«SUT» The System Under Test (SUT). Classes or components with this stereotype are

the entities to be tested, for example, with the help of unit tests.

«System» This stereotype, which can be applied to both the Uml component and the

class, marks the element that represents the so-called “system of interest,”

i.e., the entire software system.

«TestContext» A software entity, for example, a class that acts as a grouping mechanism for a

set of test cases (see stereotype «TestCase»).

«TestCase» An operation that interacts with the «SUT» to verify its correctness. Test cases

are grouped in a «TestContext».

Appendix A SmAll Uml GUide

477
© Stephan Roth 2021
S. Roth, Clean C++20, https://doi.org/10.1007/978-1-4842-5949-8

 Bibliography

[Abrahams98] David Abrahams. “Exception-Safety in Generic Components.” Appeared

in “Selected Papers from the International Seminar on Generic Programming’

(pp 69–79), Proceedings of the ACM. Springer, 1998.

[Beck01] Kent Beck, Mike Beedle, Arie van Bennekum, et al. “Manifesto for Agile

Software Development.” 2001. http://agilemanifesto.org, retrieved 3-21-2021.

[Beck02] Kent Beck. Test-Driven Development: By Example. Addison-Wesley

Professional, 2002.

[Beizer90] Boris Beizer. Software Testing Techniques (2nd Edition). Itp – Media, 1990.

[Busch96] Frank Buschmann, Regine Meunier, Hans Rohnert, and Peter Sommerlad.

Pattern-Oriented Software Architecture Volume 1: A System of Patterns. Wiley, 1996.

[Cohn09] Mike Cohn. Succeeding with Agile: Software Development Using Scrum

(1st Edition). Addison-Wesley, 2009.

[Cppcore21] Bjarne Stroustrup, Herb Sutter. C++ Core Guidelines. https://isocpp.

github.io/CppCoreGuidelines/CppCoreGuidelines.html, retrieved 3-21-2021.

[Evans04] Eric J. Evans. Domain-Driven Design: Tackling Complexity in the Heart of

Software (1st Edition). Addison-Wesley, 2004.

[Feathers07] Michael C. Feathers. Working Effectively with Legacy Code.

Addison-Wesley, 2007.

[Fernandes12] R. Martinho Fernandes. “Rule of Zero.” https://github.com/

rmartinho/flamingdangerzone/blob/master/_posts/cxx11/2012-08-15-rule-of-

zero.md, retrieved 3-22-2021.

[Fowler02] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-

Wesley, 2002.

[Fowler03] Martin Fowler. “Anemic Domain Model.” November 2003.

https://martinfowler.com/bliki/AnemicDomainModel.html, retrieved 5-1-2017.

[Fowler04] Martin Fowler. “Inversion of Control Containers and the Dependency

Injection Pattern.” January 2004. https://martinfowler.com/articles/injection.

html, retrieved 7-19-2017.

https://doi.org/10.1007/978-1-4842-5949-8#DOI
http://agilemanifesto.org
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines.html
https://github.com/rmartinho/flamingdangerzone/blob/master/_posts/cxx11/2012-08-15-rule-of-zero.md
https://github.com/rmartinho/flamingdangerzone/blob/master/_posts/cxx11/2012-08-15-rule-of-zero.md
https://github.com/rmartinho/flamingdangerzone/blob/master/_posts/cxx11/2012-08-15-rule-of-zero.md
https://martinfowler.com/bliki/AnemicDomainModel.html
https://martinfowler.com/articles/injection.html
https://martinfowler.com/articles/injection.html

478

[Gamma95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.

Design Patterns: Elements of Reusable, Object-Oriented Software. Addison-Wesley, 1995.

[GAOIMTEC92] United States General Accounting Office. GAO/IMTEC-92-26:

“Patriot Missile Defense: Software Problem Led to System Failure at Dhahran, Saudi

Arabia,” 1992. https://www.gao.gov/products/imtec-92-26, retrieved 3-22-2021.

[Hunt99] Andrew Hunt, David Thomas. The Pragmatic Programmer: From

Journeyman to Master. Addison-Wesley, 1999.

[InformIT09] Larry O’Brien. “Design Patterns 15 Years Later: An Interview with

Erich Gamma, Richard Helm, and Ralph Johnson.” InformIT/Pearson Education, 2009.

https://www.informit.com/articles/article.aspx?p=1404056, retrieved 3-22-2021

[ISO11] International Standardization Organization (ISO), JTC1/SC22/WG21

(The C++ Standards Committee). ISO/IEC 14882:2011, Standard for Programming

Language C++.

[ISO14] International Standardization Organization (ISO), JTC1/SC22/WG21

(The C++ Standards Committee). ISO/IEC 14882:2014, Standard for Programming

Language C++.

[ISO17] International Standardization Organization (ISO), JTC1/SC22/WG21

(The C++ Standards Committee). ISO/IEC 14882:2017, Standard for Programming

Language C++.

[ISO20] International Standardization Organization (ISO), JTC1/SC22/WG21

(The C++ Standards Committee). ISO/IEC 14882:2020, Standard for Programming

Language C++.

[Jain15] Naveen Jain. Naveen Jain Blog: “Why You Should Always Bet on Dreams, Not

Experts.” http://www.naveenjain.com/why-you-should-always-bet-on-dreams-not-

experts/, retrieved 3-22-2021.

[Jeffries98] Ron Jeffries. “You’re NOT Gonna Need It!” http://ronjeffries.com/

xprog/articles/practices/pracnotneed/, retrieved 3-21-2021.

[JPL99] NASA Jet Propulsion Laboratory (JPL). “Mars Climate Orbiter Team Finds

Likely Cause of Loss.” September 1999. https://solarsystem.nasa.gov/news/156/

mars-climate-orbiter-team-finds-likely-cause-of-loss/, retrieved 3-22-2021.

[Knuth74] Donald E. Knuth. “Structured Programming with Go To Statements.”

ACM Journal Computing Surveys, 6 (4), December 1974. https://dl.acm.org/

doi/10.1145/356635.356640, retrieved 3-22-2021.

BIBLIOGRAPHY

https://www.gao.gov/products/imtec-92-26
https://www.informit.com/articles/article.aspx?p=1404056
http://www.naveenjain.com/why-you-should-always-bet-on-dreams-not-experts/
http://www.naveenjain.com/why-you-should-always-bet-on-dreams-not-experts/
http://ronjeffries.com/xprog/articles/practices/pracnotneed/
http://ronjeffries.com/xprog/articles/practices/pracnotneed/
https://solarsystem.nasa.gov/news/156/mars-climate-orbiter-team-finds-likely-cause-of-loss/
https://solarsystem.nasa.gov/news/156/mars-climate-orbiter-team-finds-likely-cause-of-loss/
https://dl.acm.org/doi/10.1145/356635.356640
https://dl.acm.org/doi/10.1145/356635.356640

479

[Koenig01] Andrew Koenig and Barbara E. Moo. “C++ Made Easier: The Rule

of Three.” June 2001. http://www.drdobbs.com/c-made-easier-the-rule-of-

three/184401400, retrieved 3-22-2021.

[Langr13] Jeff Langr. Modern C++ Programming with Test-Driven Development: Code

Better, Sleep Better. Pragmatic Bookshelf, 2013.

[Liskov94] Barbara H. Liskov and Jeanette M. Wing. “A Behavioral Notion

of Subtyping.” ACM Transactions on Programming Languages and Systems

(TOPLAS), 16 (6): 1811–1841. November 1994. http://dl.acm.org/citation.

cfm?doid=197320.197383, retrieved 12-30-2014.

[Martin03] Robert C. Martin. Agile Software Development: Principles, Patterns, and

Practices. Prentice Hall, 2003.

[Meyers05] Scott Meyers. Effective C++: 55 Specific Ways to Improve Your Programs

and Designs (Third Edition). Addison-Wesley, 2005.

[Nygard18] Michael T. Nygard. Release It!: Design and Deploy Production-Ready

Software (2nd Edition). O'Reilly UK Ltd., 2018.

[OMG17] Object Management Group. OMG Unified Modeling Language (OMG

UML), Version 2.5.1. OMG Document Number: formal/17-12-05. http://www.omg.org/

spec/UML/2.5.1, retrieved 3-22-2021.

[Parnas07] ACM Special Interest Group on Software Engineering: ACM Fellow Profile

of David Lorge Parnas. http://www.sigsoft.org/SEN/parnas.html, retrieved 9-24-2016.

[Ram03] Stefan Ram. Dr. Alan Kay on the Meaning of “Object-Oriented

Programming.” http://www.purl.org/stefan_ram/pub/doc_kay_oop_en, retrieved

3-22-2021.

[Rivera19] Rene Rivera. “C++ Tooling Statistics: Are Modules Fast?” February 2019.

https://www.bfgroup.xyz/cpp_tooling_stats/modules/modules_perf_D1441R1.

html, retrieved 3-21-2021.

[Sommerlad13] Peter Sommerlad. “Meeting C++ 2013: Simpler C++ with C++11/14.”

November 2013. http://wiki.hsr.ch/PeterSommerlad/files/MeetingCPP2013_

SimpleC++.pdf, retrieved 1-2-2014.

[Stroustrup16] Bjarne Stroustrup. “C++11 – The New ISO C++ Standard.” September

2016. https://www.stroustrup.com/C++11FAQ.html, retrieved 3-21-2021.

[Sutter04] Herb Sutter. “The Free Lunch Is Over: A Fundamental Turn Toward

Concurrency in Software.” http://www.gotw.ca/publications/concurrency-ddj.htm,

retrieved 3-21-2021.

BIBLIOGRAPHY

http://www.drdobbs.com/c-made-easier-the-rule-of-three/184401400
http://www.drdobbs.com/c-made-easier-the-rule-of-three/184401400
http://dl.acm.org/citation.cfm?doid=197320.197383
http://dl.acm.org/citation.cfm?doid=197320.197383
http://www.omg.org/spec/UML/2.5.1
http://www.omg.org/spec/UML/2.5.1
http://www.sigsoft.org/SEN/parnas.html
http://www.purl.org/stefan_ram/pub/doc_kay_oop_en
https://www.bfgroup.xyz/cpp_tooling_stats/modules/modules_perf_D1441R1.html
https://www.bfgroup.xyz/cpp_tooling_stats/modules/modules_perf_D1441R1.html
http://wiki.hsr.ch/PeterSommerlad/files/MeetingCPP2013_SimpleC++.pdf
http://wiki.hsr.ch/PeterSommerlad/files/MeetingCPP2013_SimpleC++.pdf
https://www.stroustrup.com/C++11FAQ.html
http://www.gotw.ca/publications/concurrency-ddj.htm

480

[Thought08] ThoughtWorks, Inc. (multiple authors). The ThoughtWorks Anthology:

Essays on Software Technology and Innovation. Pragmatic Bookshelf, 2008.

[Wipo1886] World Intellectual Property Organization (WIPO): Berne Convention for

the Protection of Literary and Artistic Works. https://www.wipo.int/treaties/en/ip/

berne/index.html, retrieved 3-22-2021.

BIBLIOGRAPHY

https://www.wipo.int/treaties/en/ip/berne/index.html
https://www.wipo.int/treaties/en/ip/berne/index.html

481
© Stephan Roth 2021
S. Roth, Clean C++20, https://doi.org/10.1007/978-1-4842-5949-8

Index

A
Abstract Syntax Tree (AST), 282, 412
Activity diagram

action, 467, 468
activity final node, 469
control flow edge, 468
decision node, 469
fork node, 469
guards, 468, 469
initial node, 469
merge node, 469
nodes/edges, 466

Anemic Domain Model, 276, 277
Anti-pattern, see also Code smell

abuse of exceptions, 204
anemic classes, 275
circular dependencies, 258
god class, 231, 279
Not invented here

syndrome, 182
reinventing the wheel, 182
singleton, 25, 378

disadvantage, 383
global variable, 381
hidden dependencies, 381
Meyers’ Singleton, 379, 380
utility classes, 378

Apache OpenOffice, 66, 83

B
Behavior driven development (BDD), 370
Big Ball of Mud, 2
Boundary Value Analysis, extreme values,

33, 35
Built Module Interface (BMI), 283
Broken window theory, 4

C
C++ programming language, 65

Apache OpenOffice, 66
appropriate level, 72
ADL, 160
arithmetic types, 428
array default delete, 171
auto keyword, 159
automatic type deduction, 159, 160
brownfield/greenfield projects, 8
C++11, 6, 7
C++14, 7
C++17, 7
C++20, 7
comments

block comments, 80–84
definition, 77
disable code, 79, 80
documentation generator, 86–89

https://doi.org/10.1007/978-1-4842-5949-8#DOI

482

Doxygen-style annotations, 88
#pragma directives, 82
storytelling concepts, 78
substitute version control, 84

compile-time computations,
constexpr, 164–166

copy constructor/assignment
operator, 147

C-style, 114
arrays, 122–125
begin()/end(), 124
casts, 126–128
insertion operator, 121
macros, 128–130
printf()/sprintf()/gets(), 117–122
strings/streams, 115–117
text formatting library, 118
type conversions, 127

disassembled object code, 166
Enumeration Class, 51
functions

call function, 95
fits, 94, 95
intention-revealing names, 97, 98
source code, 90

ISO/IEC 14882:2011, 6
Move semantics, 146
parameters and return values (see

Parameters and return values)
RVO, 153
Rule of Five, 153, 154
Rule of Three, 154
Rule of Zero, 153
rvalue references, 148, 150
std::initializer_list, 161, 162
std::move, 152
std::optional, 434

std::string_view, 385
templates, 4
type traits, 174

tag dispatching, 176
user-defined literal, 181

literal operator, 181
variable templates, 167

Clean code, functional programming, 6, 293
Code Kata, 342
Code smell, 4
Companion website, 11
Compiler tool

automatic type deduction
auto code, 161
braced-init-list, 162
constexpr (constant

expression), 164
factorial() function, 165

Concepts, requires clause, 216, 219
Copy elision techniques, 108
Cross-cutting concern, 196

exception and error handling, 196
logging, 196
transaction handling, 196

D
Deleted functions, 31
Dependency injection (DI)

adapter (wrapper)
LoggingFacility interface, 395

commands
concrete, 405
main() function, 404
mission statement, 402

composite pattern
addCommand() function, 415
CompositeCommand class, 415

C++ programming language (cont.)

Index

483

factory design pattern, 422
processor command, 414
rescue

assembler component, 392
assembler/injector, 391, 392
customer class, 393
independent service

objects, 383
strategy

format() function, 401
formatting strategies, 398, 399

Dependency Inversion Principle (DIP),
262–268, 386

architecture level, 266
circular dependency, 265
dependency inversion, 268
high-level modules/low-level

modules, 267
interface, 263
object-oriented design, 266

Design pattern, 375
adapter, 394

advantages, 395
architectural patterns, 376

microservices, 376
MVC, 416

Bridge, 447
canonical form, 375
command, 402

Undoable, 408
UndoableCommand class, 412
WaitCommand, 406

Command Processor, 407
DrawingProcessor class, 409

composite, 412
CompositeCommand class, 414

decorator, 233

dependency injection
constructor injection, 393
setter injection, 393

Facade, 425
Factory, 383, 422
fluent interface, 400
GoF, Erich Gamma, 375, 378
mission statement, 379
Money class, 427
observer, 416

subject, 417
service locator, 383
special case object (NULL object), 431
strategy, 233
strategy, 43, 396

formatting strategies, 396
wrapper, 394

Design patterns vs. principles
definition, 377
DI (see Dependency injection (DI))

Domain-driven design (DDD), 70–72
Don’t repeat yourself (DRY), 44

E
Entropy/disorder

broken window theory, 4
C++ projects, 4, 5

Equivalence class, see Equivalence class
partitioning (ECP)

Equivalence class partitioning (ECP), 33
input parameter, 34
upper/lower limit, 34

Equivalence Partitioning, see Equivalence
class partitioning (ECP)

Euclidean algorithm, 302
Extreme Programming (XP), 42

Index

484

F
Fake Object, see Test Double
Functional programming languages

advantages, 295, 296
binders/wrappers

adaptation technique, 314
development step, 312
libraries, 312
multiply() binary function, 312
multiply() function, 314
partial application, 313
std::bind, 312
std::function object, 314

clean code, 333, 334
definition, 295
features, 296
function-like objects (functors), 302

binary functor, 311
generator, 303–306
predicates, 308–311
unary function, 306, 307

higher-order function (see
Higher- order function)

immutable data, 295
impure functions, 299
lambda calculus, 293
lambda expressions (see Lambda

expressions)
LISP processing, 293, 294
mathematical functions, 296
pipelining (range adaptors), 329, 330,

332, 333
pure vs. impure function, 297–299
referential transparency, 297
template metaprogramming (TMP), 299
templates

disadvantages, 301

Euclidean algorithm, 302
greatest common divisor (GCD),

300, 301
mutable variables, 301
recursion, 302
std::gcd function, 302
turing complete, 300

Functions, 89
cyclomatic complexity, 92
function-like object, 170
functor, 170
naming rules, 96

G
Generator functor

functor class template, 305
RandomNumberGenerator functor, 305
std::iota(), 304

H
Higher-order function

filter, 324
fold expressions, 327, 329
map, 324
operator() function, 322
reduce (fold), 325–327
templates, 322

High-performance computing (HPC), 164

I, J
Idioms

copy-and-swap, 443–447
assignment operator, 445
Clazz::swap() function, 446
definition, 443

Index

485

definition, 436
Erase-Remove Idiom, 46
erasure idiom (duck-typing), 237
immutable class, 436

benefits, 437
Include Guard, 436

disadvantage, 436
RAII, 134
SFINAE statement, 439–442

Impure functions, 299–301
Integrated development environments

(IDE), 85, 342, 412
Interface design

attributes
annotations, 210
deprecated, 211, 212
maybe_unused, 213, 214
nodiscard, 212
noreturn (since C++11), 211

principles, 209
template arguments, 215–217

Interface segregation
principle (ISP), 255

K
Keep it simple and stupid (KISS), 42

L
Lambda expressions

anonymous functions, 316
capture list, 316
closure, 315
generic expressions,318, 319
parenthesis operator, 317
std::transform, 317
structure, 316

templates, 319–321
Law of Demeter (LoD)

delegates, 273
Demeter project, 272
fewer dependencies, 274
hierarchical decomposition, 269
member functions, 273
refactored class driver, 273
rules, 272

Libraries
advantages

for loops/while loops, 183
non-owning ranges, 190, 191
parallelization, 186–189

algorithm, 183, 235
execution policy, 187
std::equal, 191
std::erase_if, 308
std::for_each, 188
std::generate, 303
std::ranges::generate, 303
std::remove_if, 324
std::reverse, 184
std::sort, 188
std::transform, 324

atomic types (<atomic>), 194
Boost Library, 135, 194
concurrent data structure, 196
container/sequence, 185
date and time utilities (<chrono>), 195
Filesystem library, 195
random/pseudo-random

numbers, 195
Range Library, 189

view, 190
regular expressions library, 195
Thread Support Library, 186

class library, 241

Index

486

Liskov Substitution Principle (LSP)
inheritance/composition

inheritance, 255
internal implementation, 253
moveTo() method, 254
source code, 254

square-rectangle dilemma
class hierarchies, 249
class library, 241
client code, 245
definition, 249
explicit class, 252
final specifier, 243
interpretation, 250
point and shape classes, 242
parameters, 247
rectangle class, 244, 246
run-time type information, 250
setEdge(), 247
shapes during runtime, 251
try-catch construct, 252

Loose coupling, 36, 56–60

M
Manifesto for Agile Software

Development, 42
Methods, see Functions
Modularization

component, 222
definition, 222
hierarchical decomposition, 224

levels of abstraction, 225
identification/finding modules

abstraction, 224
criterias, 222
domain-centered/domain-driven

approach, 223

hierarchical decomposition,
224, 225

OO (see Object-orientation (OO))
Whole Enchilada, 227

Modules, 221
abstract syntax tree, 282
BMI, 283

file extensions, 283
declaration, 288
definition, 281
encapsulation, 291
exported function, 289
financialmath module, 290
global module fragment, 288
header files, 285
header importation, 287
impact of, 291
import, 284
importable header file, 287
disadvantages (#include system),

281–283
include translation, 286
interface unit, 290
module importation, 288
ODR violation, 283
parallelization, 286
rescue, 283
separate interface/

implementation, 289
sequential processing, 286
under the hood, 284–286

N
Named return value optimization

(NRVO), 108
Naming, 66

cryptic abbreviations, 74

Index

487

Hungarian notation, 75
level of abstraction, 72
purpose, 76
redundancy, 73
self-explanatory code, 68

Norwegian Computing Center (NCC), 227
Not invented here (NIH) syndrome, 182

O
Object-orientation (OO)

Alan Kay, 229
class design

classes, 231
lines of code (LOC), 232
open-closed principle, 232
principles, 230
responsibilities, 232
type erasure techniques, 233–240

concepts, 228
data abstraction, 228
definition, 227, 229
DIP, 262–268
Engine::start() member function,

276–280
FuelPump class, 278
historical roots, 227
interface segregation principle, 257–260
Law of Demeter, 269–275
LSP (see Liskov Substitution

Principle (LSP))
research activities, 228
Simula-67, 228
Smalltalk, 229
static class members, 279, 280

Object-oriented analysis and design
(OOAD), see Domain-driven
design (DDD)

One Definition Rule (ODR), 283
Open-closed principle (OCP), 232, 396

P, Q
Parameters and return values, 98

API returns, 111
arguments list, 111
attributes, 98–100
const correctness, 112–114
copy elision techniques, 108
CreateWindowEx function, 99
flag parameter, 100–102
mathematical constants, 112
NULL (nullptr), 105–108
object construction, 107–110
output parameter, 103, 104
override identifier, 102
pointer, 111
ScriptInterpreter class, 103
semantics, 110

Patriot Missile Mistiming, 429
Pointer to Implementation (PIMPL), 447
Plain old unit testing (POUT), 336, 337

disadvantages, 338
typical process flow, 337

Principles, 41
acyclic dependency principle, 258
Be Careful with Optimizations, 60
boy scout rule, 62
collective code ownership, 63
DIP, 386
Don’t repeat yourself, 73
DRY, 44
information hiding, 48–53

encapsulation, 49
ISP, 255
KISS, 42, 43

Index

488

loose coupling, 56–60
OCP, 232, 396
Principle of Least Astonishment, 61
SoC, 422
SLA, 226
SRP, 225
Strong Cohesion, 53
tell, don’t ask, 276
YAGNI, 43

Proper exception and error handling
Abrahams Guarantees, 197

basic exception safety, 198
no exception safety, 198
no-throw guarantee, 200
strong exception safety, 199

catch clause, 208
const reference, 207, 208
dynamic exception specification, 201
errors and exceptions, 197, 198
failure transparency, 200
invariant, 198
postcondition, 198
precondition, 197
quick termination, 204
user-specific exception types, 205–207

Pure vs. impure function, 297–299

R
Radiography/magnetic resonance

imaging (MRI), 70
Resource Acquisition Is Initialization

(RAII), 430
Resources management

bread-and-butter business, 132
CloseHandle() function, 145
new and delete explicit, 144

OpenProcess() function, 145
proprietary resources, 144–146
resource acquisition is initialization,

134, 135
smart pointers (see also Smart

pointers)
std::shared_ptr, 137
std::unique_ptr, 135
std::weak_ptr, 139

stack solution, 133
Return value optimization (RVO), 108
Roman numerals code kata

arabic number, 343
ArabicToRomanNumerals

ConverterTestCase.cpp, 344
checkIf() function, 355
code duplication, 359–362
conversion function, 346–349
convertArabicNumberTo

RomanNumeral() function,
348, 350

custom assertion, 354–358
GTEST_FAIL()/GTEST_SUCCEED(), 345
refactoring, 357
requirements, 364–367
standard output (stdout), 344
third test, 349–354

Run-time type information (RTTI), 250

S
Semantics

locator value, 148
lvalues and rvalues, 148–150

Separation of Concerns (SoC), 422
Single Level of Abstraction (SLA), 225, 226
Single Responsibility Principle (SRP), 26,

56, 225

Principles (cont.)

Index

489

Smart pointers (std::weak_ptr<T>),
139–143

atomic operation, 143
shared (std::shared_ptr<T>), 137, 138
unique ownership (std::unique_

ptr<T>), 135, 136
Software development projects

architecture, 2
coding style, 10
external/internal stakeholders, 1
integration/acceptance tests, 2
internal quality, 2
line-numbered code, 10
requirements, 1
sidebars, 9
source code, 9, 10

Software entropy, influencing factors, 3, 65
Stereotypes, 392, 474
Strong cohesion, 53–56
Substitution failure is not an error

(SFINAE), 439–442
Surface-to-air missile (SAM) system, 429
System under test (SUT), 23

T
Template metaprogramming (TMP),

4, 299
Test Double, 36
Test-driven development (TDD)

advantages, fast feedback loop,
367–369

approaches, 369
BDD, 370
coarse-grained structures, 370
code reviews, 371–373
dependencies, 368
eXtreme Programming (XP), 336

preparations, 343
prototyping, 370
requirements, 339
specifications, 368
test-first approach, 338
version control, 344
workflow

RED-GREEN-REFACTOR, 341
writing production code, 340
UML activity diagram, 339

Testing
benefits, 13
fault/malfunction, 15
large system tests, 17
NASA report, 14
plain old unit testing, 13
pyramid, 16, 18
QA department, 21
software bugs, 14
Therac-25, 14
unit test (see Unit testing)

Type Erasure techniques
abstract base classes, 236
class template, 235
duck test, 237
dynamic polymorphism, 233
getTypeOfInstanceAsString()

method, 238
PolymorphicObjectWrapper

class, 238, 239
qsort() function, 234
quality requirements, 234
templates, 235
type erasure, 234

Type-Rich Programming
imperial measurement system, 172
interface design, 182
International System of Units, 172

Index

490

literal operators, 180
Mars Climate Orbiter I, 171
MksUnit class, 177
MksUnit template, 175
physical quantities, 177
std::true_type and std::false_type, 176

U, V
Undefined behavior

specification, 170
Unified Modeling Language (UML), 12

activity diagram (see Activity diagram)
behavioral modeling, 466
class

abstract, 456
attribute, 460
base class, 463
operation, 457

core guidelines, 11
diagram type, 466
graphical language, 451
object, 471
sequence diagram

asynchronous message, 371
interaction, 470
interactions, 469
lifeline, 470
message, 471
reply message, 471
sequence diagram, 471
state transition, 473

state diagram
completion event, 474
do event, 474
entry event, 474
exit event, 474

event-driven behaviors, 471
external transition, 473
internal transitions, 473
state, 472
transitions, 473
trigger, 474

stereotypes, 474
structural modeling, 452

aggregation, 461
association, 459–462
attributes and operations, 454
class diagrams, 453–456
component, 452
composite aggregation, 461
creation dependency, 464
dependencies, 463, 464
displayable interface, 458
generalization, 462
instance specifications, 453
interface, 457–459
multiplicity, 461
realization relationship, 457
shape, 456
template/template binding, 465
usage dependency, 464
VisibilityKind, 455

Unit testing
abstract interface, 37
assertion, 25, 26
code quality, 22
CurrencyConverter object, 39
databases, 28
debugging sessions, 20
environments, 26
expressive and descriptive naming,

22–24
expressive code, 23
external systems, 28

Type-Rich Programming (cont.)

Index

491

fake objects/mock-ups, 36–39
frameworks, 21
getters and setters, 27
independence, 24, 25
input data, 33
legacy systems, 25
maintenance phase, 20
numerous advantages, 19, 20

requirements, 24
test harnesses/fixtures, 22
third-party code, 27

W, X, Y, Z
Weak cohesion, 55

Shot Gun Anti-Pattern, 55

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Introduction
	Software Entropy
	Why C++?

	Clean Code
	C++11: The Beginning of a New Era
	Who This Book Is For
	Conventions Used in This Book
	Sidebars
	Notes, Tips, and Warnings
	Code Samples
	Coding Style
	C++ Core Guidelines

	Companion Website and Source Code Repository
	UML Diagrams

	Chapter 2: Build a Safety Net
	The Need for Testing
	Introduction to Testing
	Unit Tests
	What About QA?
	Rules for Good Unit Tests
	Test Code Quality
	Unit Test Naming
	Unit Test Independence
	One Assertion per Test
	Independent Initialization of Unit Test Environments
	Exclude Getters and Setters
	Exclude Third-Party Code
	Exclude External Systems
	What Do We Do with the Database?
	Don’t Mix Test Code with Production Code
	Tests Must Run Fast
	How Do You Find a Test’s Input Data?
	Equivalence Partitioning
	Boundary Value Analysis

	Test Doubles (Fake Objects)

	Chapter 3: Be Principled
	What Is a Principle?
	KISS
	YAGNI
	DRY
	It’s About Knowledge!
	Building Abstractions Is Sometimes Hard

	Information Hiding
	Strong Cohesion
	Loose Coupling
	Be Careful with Optimizations
	Principle of Least Astonishment (PLA)
	The Boy Scout Rule
	Collective Code Ownership

	Chapter 4: Basics of Clean C++
	Good Names
	Names Should Be Self-Explanatory
	Use Names from the Domain
	Choose Names at an Appropriate Level of Abstraction
	Avoid Redundancy When Choosing a Name
	Avoid Cryptic Abbreviations
	Avoid Hungarian Notation and Prefixes
	Avoid Using the Same Name for Different Purposes

	Comments
	Let the Code Tell the Story
	Do Not Comment Obvious Things
	Don’t Disable Code with Comments
	Don’t Write Block Comments
	Don’t Use Comments to Substitute Version Control

	The Rare Cases Where Comments Are Useful
	Documentation Generation from Source Code

	Functions
	One Thing, No More!
	Let Them Be Small
	“But the Call Time Overhead!”

	Function Naming
	Use Intention-Revealing Names
	Parameters and Return Values
	Number of Parameters
	Avoid Flag Parameters
	Avoid Output Parameters
	Don’t Pass or Return 0 (NULL, nullptr)
	Strategies for Avoiding Regular Pointers
	Choose simple object construction on the stack instead of on the heap
	In a function’s argument list, use (const) references instead of pointers
	If it is inevitable to deal with a pointer to a resource, use a smart one
	If an API returns a raw pointer...

	The Power of const Correctness

	About Old C-Style in C++ Projects
	Choose C++ Strings and Streams over Old C-Style char*
	Avoid Using printf(), sprintf(), gets(), etc.
	Choose Standard Library Containers over Simple C-Style Arrays
	Use C++ Casts Instead of Old C-Style Casts
	Avoid Macros

	Chapter 5: Advanced Concepts of Modern C++
	Managing Resources
	Resource Acquisition Is Initialization (RAII)
	Smart Pointers
	Unique Ownership with std::unique_ptr<T>
	Shared Ownership with std::shared_ptr<T>
	No Ownership, but Secure Access with std::weak_ptr<T>
	Atomic Smart Pointers

	Avoid Explicit New and Delete
	Managing Proprietary Resources

	We Like to Move It
	What Are Move Semantics?
	The Matter with Those lvalues and rvalues
	rvalue References
	Don’t Enforce Move Everywhere
	The Rule of Zero

	The Compiler Is Your Colleague
	Automatic Type Deduction
	Computations During Compile Time
	Variable Templates

	Don’t Allow Undefined Behavior
	Type-Rich Programming
	Know Your Libraries
	Take Advantage of <algorithm>
	Easier Parallelization of Algorithms Since C++17
	Sorting and Output of a Container
	More Convenience with Ranges
	Non-Owning Ranges with Views
	Comparing Two Sequences

	Take Advantage of Boost
	More Libraries That You Should Know About

	Proper Exception and Error Handling
	Prevention Is Better Than Aftercare
	No Exception Safety
	Basic Exception Safety
	Strong Exception Safety
	The No-Throw Guarantee

	An Exception Is an Exception, Literally!
	If You Can’t Recover, Get Out Quickly
	Define User-Specific Exception Types
	Throw by Value, Catch by const Reference
	Pay Attention to the Correct Order of Catch Clauses

	Interface Design
	Attributes
	noreturn (since C++11)
	deprecated (since C++14)
	nodiscard (since C++17)
	maybe_unused (since C++17)

	Concepts: Requirements for Template Arguments
	Specifying a Concept
	Applying a Concept

	Chapter 6: Modularization
	The Basics of Modularization
	Criteria for Finding Modules
	Focus on the Domain of Your Software
	Abstraction
	Choose a Hierarchical Decomposition
	Single Responsibility Principle (SRP)
	Single Level of Abstraction (SLA)

	The Whole Enchilada

	Object-Orientation
	Object-Oriented Thinking
	Principles for Good Class Design
	Keep Classes Small
	Open-Closed Principle (OCP)
	A Short Comparison of Type Erasure Techniques
	Liskov Substitution Principle (LSP)
	The Square-Rectangle Dilemma
	Favor Composition over Inheritance

	Interface Segregation Principle (ISP)
	Acyclic Dependency Principle
	Dependency Inversion Principle (DIP)
	Don’t Talk to Strangers (The Law of Demeter)
	Avoid Anemic Classes
	Tell, Don’t Ask!
	Avoid Static Class Members

	Modules
	The Drawbacks of #include
	Modules to the Rescue
	Under the Hood
	Three Options for Using Modules
	Include Translation
	Header Importation
	Module Importation
	Separating Interface and Implementation

	The Impact of Modules

	Chapter 7: Functional Programming
	What Is Functional Programming?
	What Is a Function?
	Pure vs Impure Functions

	Functional Programming in Modern C++
	Functional Programming with C++ Templates
	Function-Like Objects (Functors)
	Generator
	Unary Function
	Predicate
	Binary Functors

	Binders and Function Wrappers
	Lambda Expressions
	Generic Lambda Expressions (C++14)
	Lambda Templates (C++20)

	Higher-Order Functions
	Map, Filter, and Reduce
	Map
	Filter
	Reduce (Fold)
	Fold Expressions in C++17

	Pipelining with Range Adaptors (C++20)
	Clean Code in Functional Programming

	Chapter 8: Test-Driven Development
	The Drawbacks of Plain Old Unit Testing (POUT)
	Test-Driven Development as a Game Changer
	The Workflow of TDD

	TDD by Example: The Roman Numerals Code Kata
	Preparations
	The First Test
	The Second Test
	The Third Test and the Tidying Afterward
	More Sophisticated Tests with a Custom Assertion
	It’s Time to Clean Up Again
	Approaching the Finish Line
	Done!

	The Advantages of TDD
	When We Should Not Use TDD
	TDD Is Not a Replacement for Code Reviews

	Chapter 9: Design Patterns and Idioms
	Design Principles vs Design Patterns
	Some Patterns and When to Use Them
	Dependency Injection (DI)
	The Singleton Anti-Pattern
	Dependency Injection to the Rescue

	Adapter
	Strategy
	Command
	Command Processor
	Composite
	Observer
	Factories
	Simple Factory

	Facade
	The Money Class
	Special Case Object (Null Object)

	What Is an Idiom?
	Some Useful C++ Idioms
	The Power of Immutability
	Substitution Failure Is Not an Error (SFINAE)
	The Copy-and-Swap Idiom
	Pointer to Implementation (PIMPL)

	Appendix A:Small UML Guide
	Structural Modeling
	Component
	Class and Object
	Interface
	Association
	Generalization
	Dependency
	Template and Template Binding

	Behavioral Modeling
	Activity Diagram
	Action
	Control Flow Edge
	Other Activity Nodes

	Sequence Diagram
	Lifeline
	Message

	State Diagram
	State
	Transitions
	External Transitions
	Internal Transitions

	Trigger

	Stereotypes

	Bibliography
	Index

