
Algorithms in Action effectively introduces students to a variety 
of techniques for designing algorithms with a focus on 
developing intuitive understanding. Readers learn how to 
successfully construct foundational algorithms, preparing 
them for more advanced courses in the discipline, as well as 
professional application.

Over the course of nine chapters, students learn fundamental 
concepts critical to the development of algorithms, paired with 
detailed visual representations that walk readers step-by-step 
through algorithm execution. The text begins with a review of 
runtime complexity, lower bound for sorting, and trees and 
graphs, then moves into more complex topical areas, including 
amortized analysis, heaps, dynamic programming, network 
flow, linear programming, and NP-completeness. The book 
includes over 160 figures, as well as review questions and 
exercises at the end of each chapter, to encourage learning, 
retention, practice, and application.

Developed to provide students with an approachable and 
effective introduction to algorithm design, Algorithms in Action 
is an ideal resource for advanced undergraduate or master-level 
courses in computer science or related technical disciplines. 
Foundational knowledge of discrete mathematics, data 
structures, and calculus is recommended as a prerequisite.
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  vii

T his book is an introduction to algorithm design, intended to teach a variety of 
techniques for designing algorithms, with a focus on an intuitive understanding 

of algorithms. The book will train you on many basic algorithms, so you should be able 
to employ them in future algorithmic courses (like machine learning) and eventually 
apply them in your professional work. The book does not intend to be comprehensive 
nor complete.

The genesis of this book came about through the lecture notes I developed while teach-
ing undergraduate and graduate computer science courses at Carnegie Mellon University 
and the University of Southern California. The book covers roughly a semester’s worth of 
coursework, though some chapters go far beyond the standard lecture material, letting 
students dive deeper into the concepts and thus providing material to stimulate further 
thought and discussion. The book is intended for advanced undergraduate or master-level 
students in computer science and/or related technical disciplines. A foundation of under-
graduate coursework in discrete mathematics, data structures, and calculus is highly 
recommended as a prerequisite. The book does not emphasize nor require program-
ming, just pseudocode to encourage readers on conceptual understanding.

Analysis of algorithms is challenging for the most students, as they have not yet devel-
oped an experience in algorithmic problem solving. Students often easily come up with 
an erroneous intuitive solution, demonstrating their overconfidence in understanding 
material. My approach is to explain how to design algorithms, focusing on providing fun-
damental concepts, with a detailed, visual step-by-step algorithm execution. The book 
contains over 160 figures that help the reader to visualize the process. While I provide 
proofs of algorithm correctness, my goal is not to overwhelm the reader with rigorous 
mathematical proofs. 

Preface
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My hope with this book is to offer a reader-friendly approach to algorithms, with the 
numerous review questions and exercises at the end of each chapter (122 short review 
questions and 129 exercises in total) allowing readers to practice and apply the con-
cepts taught. 

Victor Savvich
Playa Vista, California

April 2019



  1

I n this chapter we review basic concepts, from asymptotic complexity, graph theory, 
and mathematical proof techniques, as they are required for better understanding for 

the chapters that follow. If the reader has some previous acquaintance with these topics, 
the chapter should be enough to get started. If the reader has no previous background in 
these, we suggest a more thorough introduction such as Mathematics for Computer Science 
by Eric Lehman, Thomson Leighton and Albert Meyer.1

1.1 Runtime Complexity
The term analysis of algorithms is used to describe approaches to study the performance of 
algorithms. With each algorithm we associate a sequence of steps comprising this algorithm. 
We measure the run time of an algorithm by counting the number of steps and therefore 
define an algorithmic complexity as a numerical function T(n), where n is the input size. 
Consider a problem of addition of two n-bit binary numbers. Let T(n) represent an amount 
of time addition used to add two n-bit numbers. We want to define “time” T(n) taken by the 
method of addition without having to worry about implementation details. The process of 
addition consists of the following two steps:

•	 Adding 3 bits (one bit is a carry bit)

•	 Writing down 2 bits (again, one bit is a carry bit)

1	 Eric Lehman, Thomson Leighton, and Albert Meyer, Mathematics for Computer Science, ([Great Britain: 
Samurai Media Limited, 2017).
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2  P  Algorithms in Action

On any computer, adding and writing two bits can be done in constant time. By constant 
time we mean that the time is independent of the input size. Therefore, the total time 
of addition of two n-bit binary numbers is T(n) = n · c, where the constant c can be dif-
ferent on different computers. We say that bit addition is a linear time algorithm. The 
process of abstracting away details and determining the rate of resource usage in terms 
of the input size is one of the fundamental ideas in computer science. In this course we 
will perform the following types of analysis:

1.	 The worst-case complexity (the maximum number of steps taken on any input) 
2.	 The best-case complexity (the minimum number of steps taken on any input) 
3.	 The average case complexity (the average number of steps taken on a random 

input) 
4.	 The amortized time complexity (the average complexity over a sequence of 

operations) 

We measure the runtime of an algorithm using following asymptotic notations: O, W, Q. 

1.1.1 Upper Bound (Big-O)
For any monotonic functions, f, g from the positive integers to the positive integers, we 
say f(n) = O(g(n)) (or f(n) Î O(g(n))) if g(n) eventually dominates f(n). Figure 1.1 helps 
you to visualize this relationship.

Formally, there exists a positive real number,  
c > 0, and a real number, n0, such that f(n) £ c·g(n) 
for all n ³ n0.

Example: n2 + 2n + 1 = O(n2). Since n2 + 2n + 1 
£ n2 + 2n2 + n2 = 4n2 for n ³ 1, we choose c = 4 
and n0 = 1.

1.1.2 Lower Bound (Big-Omega)
For any monotonic functions, f, g from the  

positive integers to the positive integers, we say 
f(n) = W(g(n)) (or f(n) Î W(g(n))) if f(n) eventually 

dominates g(n). Formally, there exists a positive real number, c > 0, and a real number, 
n0, such that f(n) ³ c · g(n) for all n ³ n0. 

Example: n2 + 2n + 1 = W(n2). Since n2 + 2n + 1 ³ n2 for n ³ 1, we choose c = 1 and n0 = 1.

Input size n

n0

f(n)

g(n)

Time T

FIGURE 1.1  f(n) = O(g(n)).

AARON-PREDATOR
Typewriter
分期偿还；已摊销的；已分期偿还的

AARON-PREDATOR
Highlight

AARON-PREDATOR
Typewriter
f(n) 实际形式



g(n) 泛化形式



Chapter 1  Review  P  3

1.1.3 Exact Bound (Big-Theta)
For any monotonic functions, f, g from the positive integers to the positive integers, 
we say f(n) = Q(g(n)) (or f(n) Î Q (g(n))) if f(n) = O(g(n)) and f(n) = W(g(n)). Formally, 
there exists positive real numbers, c1 and c2, and a real number, n0, such that c1·g(n) £ 
f(n) £ c2·g(n) for all n ³ n0.

Example: n2 + 2n + 1 = Q(n2).

1.2 Lower Bound for Sorting
We will show here that any deterministic comparison-based sorting algorithm must take 
W(n log n) time to sort an array of n elements in the worst case. Comparison-based sort-
ing algorithms operate on the input by comparing pairs of elements. For example, Mergesort 
and insertion sort are comparison-based sorting algorithms. But bucket sort and radix 
sort are not. In order to show W(n log n) bound we will play the Guess-a-Number game. 
The computer will select a number, x, between 1 and 10, and you need to determine x by 
asking questions. You’ll keep guessing numbers until you find x. The guessing game can 
be viewed abstractly as a binary search tree (also called a decision tree). Figure 1.2 shows 
that we can guess any number between 1 and 10 by asking at most four questions.

We will be using a decision tree to model the execution of any comparison-based sort. 
The execution of the sorting algorithm corresponds to tracing a path from the root of 
the decision tree to a leaf. At each internal node we make a comparison; based on that 
comparison we proceed further down to either the left or right subtree. Figure 1.3  
depicts sorting an array of three elements [a, b, c]. In that tree each leaf represents a 
permutation of [a, b, c]. Generally, for sorting an array of n elements, each leaf in the 

1,2,3,4,5,6,7,8,9,10

6,7,81,2,3 4,5

≤5 >5

≤3

≤2

≤1 ≤6

≤4 ≤7 ≤9>2

>1 >6

>4 >7 >9

>3 ≤8 >8

6,71,2 3 4 5

1 2 6 7

8 9 10

9,10

1,2,3,4,5 6,7,8,9,10

FIGURE 1.2  A binary search tree to guess a num-
ber between 1 and 10.



4  P  Algorithms in Action

decision tree represents a permutation of the n elements. Hence, there are n! leaves in 
the tree. Let us denote the tree by B. Next, we make the tree complete by adding extra 
nodes, as seen in figure 1.3. We will denote the new tree by B* and its height by h. Since 
tree B* is a complete binary tree, it has 2h leaves. By construction, B* has more leaves 
than B. It follows, 2h ³ n!, or, after taking the log of both parts, h ³ log(n!).

The height of the decision tree is the number of comparisons in a sorting algorithm; 
in other words, h is the runtime complexity T(n) of sorting. Thus, T(n) ³ log(n!). Lastly, 
we simplify log(n!) as follows:

= − −
≥ − −

≥ =

n n n n
n n n n
n n n

log( !) log( ( 1)( 2) 1)

log( ( 1) ( /2))

log(( /2) ) Ω( log )n/2





We have proved that any comparison-based sorting algorithm needs W(n log n) com-
parisons. This holds even for a quantum computer!

1.3 Trees and Graphs
A graph G is a pair (V, E), where V is a set of vertices (or nodes) and E is a set of edges 
connecting the vertices. A self-loop is an edge that connects to the same vertex twice. 
A multi-edge is a set of two or more edges that have the same two vertices. A graph is 
simple if it has no multi-edges or self-loops. We always assume simple graphs unless  
otherwise noted. Graphs could be directed and undirected and weighted and unweighted 
(weights will usually be edge weights). 

Theorem. Let G be a graph with V vertices and E edges. The following statements 
are equivalent:

1.	 G is a tree. 
2.	 Every two vertices of G are connected by a unique path.
3.	 G is connected and V = E + 1.

a<b

a<c c<a

b<c a<c c<ac<b

b<c c<b

c<a<b

a<b<c a<c<b b<a<c b<c<a

c<b<a

b<a a<b

a<c c<a

b<c a<c c<ac<b

b<c c<b

c<a<b

a<b<c a<c<b b<a<c b<c<a

c<b<a

b<a

FIGURE 1.3  A binary search tree to guess a number between 1 and 10.
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Chapter 1  Review  P  5

4.	 G is acyclic and V = E + 1.
5.	 G is acyclic and if any two non-adjacent vertices are joined by an edge, the resulting 

graph has exactly one cycle.

To prove this, it suffices to show 1 Þ 2 Þ 3 Þ 4 Þ 5 Þ 1. We’ll just show  
1 Þ 2 Þ 3 Þ 4 and leave the rest to the reader.

Proof of 1 Þ 2. We prove it by contradiction. Assume G is a tree 
that has two vertices connected by two different paths like in 
figure 1.4.

Then there exists a cycle! It follows that G cannot be a tree: a 
contradiction. ∎

Proof of 2 Þ 3. Since every two vertices in G are connected by a path, G is a connected 
graph. We prove that in G the number of nodes and edges are related by V = E + 1. The 
proof is by strong induction on the number of nodes.

Base case: V = 2. Since a graph is simple, E = 1. Thus, V = E + 1.

Inductive hypothesis: Assume V = E + 1 for every graph with V < n vertices.

Inductive step: Prove V = E + 1 for every graph with V = n vertices. 

Graph G has n vertices. We will use notation V(G) = n. We choose two adjacent ver-
tices, x and y. We know that every two vertices in G are connected by a unique path. It 
follows that x and y are joined by an edge, like 
in figure 1.5.

Note in both subgraphs G1 and G2 the number 
of vertices is less than n. Indeed, G1 does not 
contain vertex y, and G2 does not contain vertex 
x. We can apply the inductive hypothesis to G1 
and G2. It follows, 

V(G) = V(G1) + V(G2) = E(G1) + 1 + E(G2) + 1 = E(G) + 1.

This concludes the proof. ∎

Proof of 3 Þ 4. We prove that G is an acyclic graph by contradiction. Assume that G has 
a cycle with k vertices in it. This cycle also contains k edges. Now let us count edges in 

FIGURE 1.4  Two ver-
tices connected by two 
different paths.

Subgraph G1 Subgraph G2x y

FIGURE 1.5  Graph G consists of two sub-
graphs G1 and G2.
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6  P  Algorithms in Action

the whole graph. We claim the number of edges in the graph will be at least V. Indeed, 
there are k edges in the cycle and at least V - k + 1 outside the cycle. ∎

Theorem. In an undirected simple graph G = (V, E), there are at most V(V - 1)/2 edges. 
In short, by using the asymptotic notation, E = O(V 2).

Proof. Choose any vertex in G. The possible number of edges leaving this vertex is  
V - 1. Take another vertex (different from the previous one). The possible number of 
edges leaving that vertex is V - 2 (don’t count the edge between two vertices twice!), 
and so on. We have that the total number of edges is at most

(V - 1) + (V - 2) + … + 2 + 1 = V (V - 1)/2

This concludes the proof. ∎
We define a dense graph G = (V, E) as a graph in which the number of edges is  

E = W(V 2).  We say that a graph is sparse if E = O(V).

1.3.1 Graph Traversals
Graphs traversal means visiting all vertices in a systematic order. We can choose any 
vertex as a starting point. Then we will systematically enumerate all vertices acces-
sible from it. Because a graph might contain cycles, we need some way for marking a 
vertex as having been visited. To do so we will keep a Boolean array, with all elements 
initially set to false. We will set a correspondent element to true as soon as we visit a 
particular vertex. Also, we need to keep in mind that the graph might be disconnected. 
There are two most common traversals: 

•	 Depth-first search (DFS) 

•	 Breadth-first search (BFS) 

DFS uses a stack data structure for backtracking. BFS uses a FIFO queue for book-
keeping. Here is a pseudocode:

for all v in V do visited[v] = false
for all v in V do if !visited[v] traversal(v)
  traversal(v) {
    visited[v] = true
    for all w in adj(v) 
        do if !visited[w] traversal(w)
  }
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Chapter 1  Review  P  7

The runtime complexity of traversal is O(V + E). There are two important properties 
of traversal: (1) It visits all the vertices in the connected component; (2) edges labeled 
by traversal form a spanning tree of the connected component.

1.3.2 Topological Sort
Suppose each vertex represents a task that must 
be completed and a directed edge (u, v) indicates 
that task v depends on task u. That is, u must be  
completed before v. If G is a direct acyclic graph 
(DAG), then there exists a valid order in which you 
can complete the tasks. This is called topologi-
cal order or topological sort. If the graph is cyclic, 
no topological order exists. Consider the graph in 
figure 1.6.

The following sequence {a, b, c, d, e, f, g, h, i} is a 
valid topological sort. In other words, a topologi-
cal order means arranging the vertices along a line 
so that all edges go from left to right. It should be 
evident from figure 1.6 that a topological sort is not 
unique. The following list {a, c, b, f, e, d, h, g, i} is another 
topological order.

The algorithm of finding a topological sort is based on traversal: run DFS (from any 
vertex) and return a vertex that has no undiscovered leaving edges. In figure 1.6, the 
possible DFS run may be a®e®i, making i the first vertex with no undiscovered leav-
ing edges. From i, backtrack to e and then go to g. This makes g another vertex with 
no undiscovered leaving edges. From g, backtrack to e and then go to h. This makes h 
the third vertex with no undiscovered leaving edges. And so on. The algorithm will 
produce a topological order in reverse. Note, if we start DFS at any other vertex but 
a, we will need another run of DFS. The runtime complexity of the algorithm is linear 
O(V + E).

1.3.3 Planar Graphs
A connected graph is planar if it can be drawn in the plane 
with each edge drawn as a continuous curve such that 
no two edges cross. There are many examples of planar 
graphs: any tree is planar, every cycle is planar, a complete 
graph K4 is planar.

a e

d

f

b g

c h

i

FIGURE 1.6  A directed acyclic graph.

=

FIGURE 1.7  An example of a 
planar graph.
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8  P  Algorithms in Action

A planar graph in addition to vertices and edges also has 
disjoint faces.

Theorem. (Euler’s formula) If G is a connected planar graph with 
V vertices, E edges, and F faces, then 

V - E + F = 2.

Proof. The proof by induction on the number of edges.

Base case: E = 1. The identity holds, since V = 2 and F = 1.

Inductive hypothesis: Assume it’s true for any graph with no more than E edges.

Inductive step: Prove it for graphs with E edges.

Start with a graph G that has E edges and remove one edge. There are two cases 
to consider:

1.	 The edge to remove lies on a cycle. See figure 1.9.
2.	 The edge to remove does not lie on a cycle. See figure 1.10.

In case (1) by removing an edge (in red) on a cycle, we obtain 
a new graph G´ with E - 1 edges and F-1 faces. Since G´ has E - 1  
edges, the relation works by the induction hypothesis. That is  
V - (E - 1) + (F - 1) = 2. This simplifies to V - E + F = 2.

In case (2) by removing an edge (in red) that does not lies on a 
cycle, we obtain a new graph G´ with E - 1 edges and V - 1 verti-
ces. Since G´ has E - 1 edges, the relation works by the induction 
hypothesis. That is (V - 1) - (E - 1) + F = 2. This simplifies to 
V - E + F = 2.

This completes the proof. ∎

Theorem. In any simple connected planar graph with at least 3 
vertices, E £ 3V - 6.

Proof. If a graph has no cycles, then

E = V - 1 £ V £ V + (2V - 6) = 3V - 6,

since V ³ 3, and therefore 2V - 6 ³ 0.

FIGURE 1.9  A graph 
in case 1.

FIGURE 1.10  A graph 
in case 2.

4 faces

FIGURE 1.8  A planar 
graph with four faces.
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Chapter 1  Review  P  9

Assume a graph with cycles. We will count the number of pairs (edge, face)  
(i.e., S(edge, face)). Since each face is bounded by at least 3 edges, then S(edge, face) ³ 
3F. Since each edge is associated with at most 2 faces, then S(edge, face) £ 2E. Combining 
these two inequalities, we find 3F £ 2E. But we know from the previous theorem that 
V - E + F = 2. It follows,

6 = 3V - 3E + 3F £ 3V - 3E + 2E = 3V - E.

Thus, we conclude E £ 3V - 6. ∎

Corollary. A simple connected planar graph with at least 3 vertices has a vertex of degree 
5 or less.

Proof. We know that in any graph, the sum of the degrees of all vertices is equal to twice 
the number of edges, Sdegree(v) = 2E. From the previous theorem, 2E £ 6V - 12. Thus, 
the average degree is at most 6:

V
v V

V V
1

degree( )
6 12

6
12

v V
∑ ≤

−
= −

∈

It follows there exists a vertex of degree 5 or less. ∎

1.3.4 Coloring Planar Graphs
Given a planar graph, how many colors do you need in order to color 
the vertices so that no two adjacent vertices get the same color? 
Back in the 1880s, Francis Guthrie conjectured that four colors 
suffice. In 1976 K. Appel and W. Haken, using a special-purpose 
computer program, have proved that conjecture.

We won’t prove the conjecture but let us prove the 
six-color theorem.

Theorem. (6-color theorem) Every planar graph can be colored with at most six  
colors.

Proof. By induction on the number of vertices.

Base case: If a graph has six or less vertices, then the result is obvious.

FIGURE 1.11  A graph 
coloring problem.
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10  P  Algorithms in Action

Inductive hypothesis: Assume that all graphs with V - 1 vertices are six- 
colorable.

Inductive step: Prove it for any graph with V vertices.

By previous corollary any graph G with V vertices has at least one vertex of degree 
5 or less. Remove it from G. The remaining graph is planar and by induction can be col-
ored with at most 6 colors. Now insert that vertex back. Since this vertex has at most  
5 neighbors then at least one of 6 colors is not used. We color the vertex with one of the 
unused colors. ∎

1.3.5 Bipartite Graphs
A graph is bipartite if the vertices can be partitioned into two disjoint sets, X and Y, such 
that all edges go only between X and Y (no edges go from X to X or from Y to Y). 

A complete bipartite graph (denoted by Kn,m, where n and m 
are sizes of two sets) is a special kind of bipartite graph where 
every vertex of the first partition is connected to every vertex 
of the second partition.

Theorem. A graph is bipartite if and only if it does not contain an 
odd length cycle.

Proof. Note, the length of a cycle is the number of vertices in 
the cycle.

Þ) In a bipartite graph every cycle has vertices that must alternate between two par-
titions. Since the number of vertices in such a cycle is even, it is an even cycle.

Ü) Assume connected graph G has no odd cycle. Pick any vertex v. Define two sets of 
vertices based on parity of distance (even or odd) from v:

X = {u Î V | d(v, u) is even}

Y = {u Î V | d(v, u) is odd}

These sets provide a bipartition. If G had an odd cycle, then there will be a vertex pres-
ent on both sets. Finish the proof for disconnected graph G. ∎

X

Y

FIGURE 1.12  A bipar-
tite graph.
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One of the famous problems on bipartite graphs is a matching problem. A subset of 
edges is a matching if no two edges have a common vertex. A maximum matching is a 
matching with the largest possible number of edges. Our goal is to find the maximum 
matching in a graph. We will show in chapter 7 that the problem of finding the maxi-
mum matching can be reduced to the maximum flow problem.

1.3.6 Other Famous Graph Problems
A Euler path is a path that uses each edge of a graph exactly once. A Euler cycle is a 
cycle that uses every edge of a graph exactly once. A graph that contains a Euler cycle 
is called a Eulerian graph.

Theorem. A connected graph G is a Eulerian graph if and only if all vertices of G are of 
even degree.

Proof. Þ) Let G = (V, E) be a Euler graph. Thus, G contains a Euler path. Let us walk that 
path. Visiting an intermediate vertex in the path contributes two to the degree of that 
vertex. It follows that every intermediate vertex has an even degree. 

Ü) Assume that all vertices of G are of even degree. We construct a 
cycle starting at an arbitrary vertex v, going through the edges of G 
only once. Since every vertex is of even degree, we eventually come 
back to v. If this cycle includes all the edges of G, then G is a Eulerian 
graph. If not, we remove from G the cycle we have constructed. We 
will get a connected subgraph G0 in which all vertices are of even 
degree. We again construct a new cycle in G0. This process is repeated 
until we obtain a cycle that traces all the edges of G. We showed that 
G is a collection of cycles, hence G is a Eulerian graph. ∎

A Hamiltonian path is a path that visits each vertex of a graph exactly once. A Hamiltonian 
cycle is a cycle that visits every vertex in a graph exactly once (except for the start and 
end vertices). A graph that contains a Hamiltonian cycle is called a Hamiltonian graph. A 
problem closely related to Hamiltonian cycle is the famous traveling salesman problem. 
Given a weighted graph, find the shortest weighted Hamiltonian cycle. We will prove in 
chapter 9 that both problems are unlikely to be solved in polynomial time. The traveling 
salesman problem is one of the most intensively studied problems in computer science. 

A vertex cover of an undirected graph is a subset of vertices such that for every edge 
(u, v) either u or v is in a vertex cover. The vertex cover problem is to find the minimum 
size vertex cover.

FIGURE 1.13  The vertex 
cover problem.

https://en.wikipedia.org/wiki/Path_(graph_theory)
https://en.wikipedia.org/wiki/Path_(graph_theory)
https://en.wikipedia.org/wiki/Cycle_(graph_theory)
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Given a graph, we say that a subset of vertices is independent if no two of them are 
joined by an edge. Given an undirected graph, the independent set problem is to find 
the largest independent set. Vertex cover and independent set are very closely related 
graph problems; see Exercise 15.

Two graphs, G1 = (V1, E1) and G2 = (V2, E2), are isomorphic if there is a bijective function 
f: V1 ® V2 such that an edge (u, v) Î E1, if and only if an edge ( f(u), f(v)) Î E2. Two isomor-
phic graphs look differently but are structurally the same, up to the renaming of the 
vertices.

In figure 1.14 we can match vertices as follows: a - 1, b - 2, c - 3, d - 5, e - 4. 
Although we matched vertices in one particular way, there could be several ways to do 
it. Determining whether two graphs are isomorphic is not an easy task; however, com-
puter scientists believe the problem can be solved in polynomial time.

REVIEW QUESTIONS

1.	 Mark the following assertions as TRUE or FALSE. No need to provide 
any justification.

a.	 n = O(n2) 
b.	 n = O(Ön) 
c.	 log n = W(n) 
d.	 n2 = W(n log n) 
e.	 n2 log n = Q(n2) 
f.	 7 log2 n + 2n log n = W(log n)
g.	 5n log n + 1024 n log (log n) = Q(n log n) 
h.	 2n + 100n2 + n100= O(n101) 
i.	 (1/3)n + 100 = O(1)

2.	 (T/F) Any function which is W (log n) is also W (log(log n)).
3.	 (T/F) If f(n) = Q(g(n)) then g(n) = Q( f(n)).

c 5

1 2

4 3d

b

e

a

FIGURE 1.14  Two isomorphic graphs.
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4.	 (T/F) If f(n) = Q(g(n)) then f(n) = W(g(n)).
5.	 (T/F) If f(n) = W(g(n)) then 2f(n) = W(2g(n)).
6.	 (T/F) BFS can be used to find the shortest path between any two nodes in a 

non-weighted graph.
7.	 (T/F) A DFS tree is never the same as a BFS tree.
8.	 (T/F) Algorithm A has a running time of O(n2) and algorithm B has a running 

time of O(n log n). From this we conclude that A can never run faster than B on 
the same input.

9.	 (T/F) Planar graph is a sparse graph.
10.	 (T/F) Every DAG contains a vertex with no incoming edges.

EXERCISES

1.	 Prove g(n) = W( f (n)) if and only if f (n) = O(g(n)).
2.	 Prove or disprove f(n) = O(g(n)) implies 2 f(n) = O(2 g(n)).
3.	 Arrange the following functions 

log nn, n2, nlog n, n log log n, 2log n, log2 n, n√2

	 in increasing order of growth rate, with g(n) following f(n) in your list if and only 
if f(n) = O(g(n)).

4.	 Arrange the following functions 

n n n n4 , log , , ( 2) , 2 , , (log )!n n n n nlog log log log 2log 1/log

	 in increasing order of growth rate with g(n) following f(n) in your list if and only 
if f(n) = O(g(n)).

5.	 What is the Big-O runtime complexity of the following function?

          void bigOh1 (int n): 
            for i=1 to n
              j=1; 
              while j < n
                j = j*2;

6.	 What is the Big-O runtime complexity of the following function?
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          void bigOh2 (int n): 
            if(n == 0) return “a”;
            string str = bigOh2(n-1);
            return str + str;

7.	 What is the Big-Theta runtime complexity of the following function? Here find _
max finds the maximum element in the array L[0], L[1], …, L[n - 1].

          void bigTheta (int[] L, int n):
            while (n > 0)
              find _ max(L, n);
                  n = n/4

8.	 The complete graph on n vertices, denoted Kn, is a simple graph in which there 
is an edge between every pair of distinct vertices. What is the height of the DFS 
tree for the complete graph Kn? What is the height of the BFS tree for the com-
plete graph Kn? 

9.	 We are interested in finding a simple path in a directed acyclic graph that visits 
all vertices once and only once. Design a linear time algorithm to determine if 
there is such a path in a given DAG.

10.	 Prove that a complete graph K5 is not a planar graph.
11.	 Prove that a complete bipartite graph K3,3 is not a planar graph.
12.	 In a connected bipartite graph, is the bipartition unique? Justify your answer.
13.	 Given a directed graph G = (V, E) and a particular node v Î V, design a linear time 

algorithm to determine whether v is in a triangle of edges (a cycle of length 3).
14.	 Design a linear time algorithm which, given an undirected graph G = (V, E) and 

a particular edge e Î E, determines whether G has a cycle containing e.
15.	 Given an undirected graph G = (V, E), prove that S is an independent set if and 

only if V - S is a vertex cover.
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I n a sequence of operations, the worst-case time does not occur often in each oper-
ation; some operations may be cheap, some may be expensive. Therefore, a traditional 

worst-case per operation analysis can give an overly pessimistic bound. When the same 
operation takes different times, how can we accurately calculate the runtime complexity? 
Amortized analysis gives the average performance (over time) of each operation in the 
worst case. Amortized analysis is not average case analysis. In average case analysis we 
compute the expected cost of each operation. Amortization is a technique used by accoun-
tants to average a large one-time expense over a long period of time. There are generally 
three methods for performing amortized analysis:

1.	 The aggregate method computes the upper bound T(n) on the total cost of n opera-
tions. The amortized cost is given by T(n)/n. In this method each operation will get 
the same amortized cost, even if there are several types of operations in the sequence.

2.	 The accounting method (or the banker’s method) computes the individual cost of 
each operation. We assign different charges to each operation; some operations may 
charge more or less than they actually cost. The amount we charge an operation is 
called its amortized cost. 

3.	 The potential method (or the physicist’s method). We won’t use a potential method 
in this course. 

2.1 Unbounded Array
The general implementation strategy: We maintain an array of a fixed length limit and an 
internal index size, which tracks how many elements are actually used in the array. When 

Chapter 2

Amortized Analysis
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we add a new element, we increment size; when we remove an element, we decrement 
size. How do we proceed when the array is full and we need to add another element? 
At that point, we allocate a new array twice as large and copy the elements we already 
have to the new array. So, if the current array is full, the cost of insertion is linear; if it 
is not full, insertion takes a constant time. In order to make the analysis as concrete as 
possible, we will count the total number of inserts and the number of copy operations. 
In this model we won’t analyze deletions (see exercise 3 for insertions and deletions). 
In table 2.1, we record the current size of the array, its new size, the number of insets, 
and the number of copies. The table shows that 9 inserts require 1 + 2 + 4 + 8 = 15  
copy operations. Therefore, the amortized cost of a single insert is the total cost  
(9 + 15 = 24) over 9 inserts, which is 2.67. 

TABLE 2.1  The cost of insertions

Insert Old size New size Copy

1 1 — —
2 1 2 1

3 2 4 2

4 4 — —

5 4 8 4

6 8 — —

7 8 — —

8 8 — —

9 8 16 8

Let us generalize the pattern. Assume we start with the array of size 1 and make  
2n + 1 inserts. These inserts will require 1 + 2 + 4 + … + 2n = 2n+1 - 1 copy operations. 
Thus, the total work (inserts plus copies) is given by (2n + 1) + (2n+1 - 1) = 3 ́  2n. Next, 
we compute the average cost per insert as a limit when the input size tends to infinity:

⋅
+

=
→∞
lim

3 2

1 2
3

n

n

n

We say that the amortized cost of insertion is constant, namely O(3). Such method of 
analysis is called an aggregate method. The aggregate method seeks an upper bound 
on the total running time of a sequence of operations.

my
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my
Highlight
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Highlight
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Let us compute the amortized cost of insertion using the accounting method. This 
method seeks a payment for each individual operation. Intuitively, we maintain a bank 
account and each operation is charged to it. Some operations are charged very little 
but also generate a surplus. Others drain the savings. The balance in the bank account 
must always remain positive. 

We will assign a dollar token to each operation. It costs a token to insert an element 
and another token to move it when we need to double the array size.  It follows we have 
to assign at least 2 tokens to each insert: we pay one token to perform an operation, and 
we put one token into the bank. Figure 2.1 demonstrates the insertion process start-
ing with an array of size one and an empty 
bank account.

In that picture we see that after third 
insertion, the bank account is empty, and 
after fourth insertion, the bank account has 
only one token. On the next, fifth insertion, 
we need to double the array size from 4 to 8. 
Clearly, we do not have enough money in the 
bank to pay for it. 

Let us increase the number of tokens 
for each insert to three tokens: we pay one 
token to perform an operation, and we put 
two tokens into the bank. Figure 2.2 demon-
strates the insertion process.

Now the bank has enough money to per-
form fifth insertion. In the next few inserts 
(6th–8th) we generate surplus.

In the next insert, we drain our savings. 
How do we know there will be enough money 
in the bank to pay for moving when we need 
to double the array size? 

Doubling the array size say from N to 2N, 
we need at least N tokens in the bank. Those 
N extra tokens will be generated by N/2 new 
inserts. Therefore, assigning three tokens per 
insert, we were able to pay for all the oper-
ations. This proves that our amortized cost 
is at most three.

1

Bank account

Pay for 1 insert

Pay for 1 insert and 1 copy

Pay for 1 insert and
2 copies

Pay for 1 insert

1st insert

2nd insert

3rd insert

4th insert

0 1

–1 0 1

0 0 0 1

FIGURE 2.1  Out-of-pocket cost per insert is 
2 tokens.

2

Bank account

Pay for 1 insert

Pay for 1 insert and 1 copy

Pay for 1 insert and
2 copies

Pay for 1 insert

1st insert

2nd insert

3rd insert

4th insert

1 2

0 1 2

0 1 2 2

5th insert –1 0 1 1 2

FIGURE 2.2  Out-of-pocket cost per insert 
is 3 tokens.

8th insert 0 0 0 1 2 2 2 2

FIGURE 2.3  Bank account after 8th insertion.

0 0 0 0 0 0 0 1 2

9th insert 0 0 0 1 2 2 2 2

FIGURE 2.4  Bank account after 9th insertion.
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2.2 Binary Counter
Given a binary number with log(n) bits, stored as an array, where each entry A[i] stores 
the i-th bit, the cost of incrementing a binary number is the number of bits flipped. We 
use the standard way of incrementing the counter, which is to toggle the lowest order 
bit. What is the amortized cost per increment? As an example, consider 3-bit numbers 
and count the number of flips for each increment. 

Table 2.2 shows that incrementing 000 requires a single flip, incrementing 001 results 
in two flips, and incrementing 111 results in 3 flips.

Clearly, in the worst-case all bits are flipped, so the cost per increment is O(log n). 
Now suppose we increment n times, starting with a zero-binary number. If we only use 
the worst-case running time for each increment, we get an upper bound of O(n log n). 
Although this bound is correct, we can do better.

2.2.1 The Aggregate Method
Let us think about how often we flip a single bit. 
Consider the least significant bit. Each time we incre-
ment a binary number, that bit is changed. Thus, the 
number of times the bit changes is n. Consider the 
next significant bit. How often is it toggled? n/2 times. 
The next bit is toggled n/4 times, and so on. The most 
significant bit is toggled only twice. Thus, the total 
cost is given by

  ∑+ + + + = + + + +








≤ =

=

∞

n n n n
n

n n
2 4

2 1
1

2

1

4

2 1

2
2 .

k
k

0

It follows the amortized cost per increment is O(2).

2.2.2 The Accounting Method
The key point to observe is that each increment has 
exactly one 0 ® 1 flip. But different increments have 
different numbers of 1 ® 0 flips. Our accounting 
policy is the following: Every time you flip 0 ® 1, 
pay the actual cost of 1, plus put 1 into a bank; every 
time you flip 1 ® 0, use the money in the bank to pay 
for that flip. Consider 3-bit numbers and count the 
number of 1 ® 0 flips for each increment. Why does 
our policy work? As you see from table 2.3, our bank 

TABLE 2.2  The number of flips 
for 3-bit numbers

# of flips

000 1
001 2
010 1
011 3

100 1
101 2
110 1
111 3

TABLE 2.3  Bank account

Bank

000 0
001 1
010 1
011 2

100 1
101 2
110 2
111 3
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account has as many tokens as the number of 1 bit. This shows that we have enough 
tokens in the bank to pay for future 1 ® 0 flips.

2.3 Amortized Dictionary
One of the most important structures in computer science is the dictionary data struc-
ture that supports fast insert and search operations. Here we will discuss a dictionary 
based on linked lists and sorted arrays. The idea of this data structure is as follows. We 
will have a linked list of arrays, where array k has size 2k, and each array has a unique 
size and is in sorted order. Whether arrays are full or empty is based on the binary rep-
resentation of the number of items we are storing. For example, with 11 items our 
dictionary might look like this: (11 = 1 + 2 + 8).

In general, we need at most ceiling(log(n)) arrays to store n items. How do we insert 
into this data structure? We create an array of size one and add to the linked list. Since 
each array must have a different length, insertion requires merging arrays of the same 
size. As an example, consider inserting 4 into the dictionary in figure 2.5. We get two 
arrays of size one; thus, we have to merge them. After merging, the dictionary will have 
two arrays of size two: [4, 5] and [3, 7]. We have to merge them into an array of size four. 
Figure 2.6 demonstrates the final dictionary.

Head

Null

1 3 3 4 5 8 9 93 75

FIGURE 2.5  Example of a dictionary.

Null

1  3  3  4  5  8  9  93  4  5  7

Head

FIGURE 2.6  A dictionary after insert-
ing 4 to it.
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In the worst case we may merge all O(log(n)) sorted arrays. Each pair of sorted arrays 
can be merged in linear time. The total cost model is the following: Creating the initial 
array of size 1 costs 1, and merging two arrays of size k costs 2k. The total cost of this 
insert is 1 + 2 + 4 = 7. In the general case, the total cost per insert is given by

1 + 2 · 20 + 2 · 21 + 2 · 22 + … + 2 · 2log n = O(n).

Therefore, the worst-case runtime complexity of a single insert is O(n). However, on 
average we do not merge all O(log n) arrays. What is the amortized cost of insertion? 
First, we note that each array is a power of 2. Then we observe that adding a new item 
to the dictionary is equivalent to a bit increment. However, the cost of incrementing is 
not a constant anymore. Its cost equals to a cost of merging two sorted arrays. It fol-
lows that the cost of flipping the k-th bit is 2k. Consider the least significant bit (k = 0). 
The number of times this bit changes is n, with the cost 20. For the next bit (k = 1), the 
cost is 21. For the most significant bit (k = log(n)), the cost is 2log n. Thus, the total cost 
of n inserts is given by

n · 20 + n/2 · 21 + n/4 · 22 + … + 2 · 2log n = n + n + … + n = O(n log n).

We have proved that the amortized dictionary data structure has amortized cost  
O(log n) per insert. 

2.4 Amortized Trees
Recall that a binary search tree is not necessary balanced; therefore, it does not guar-
antee O(log n) insertion and searching time that could be in the worst case as bad as 
O(n2). There are several ways to make a search tree balanced, though in this section we 
consider a different approach. Suppose we search a tree multiple times. Don’t we want 
a previous search somehow to affect the next search? Ideally, we want a data struc-
ture that adjusts itself to accommodate the observed sequence of operations. The splay 
tree is a variant of a binary search tree that is designed to do exactly that. The intuition 
behind splay trees is based on the following observation: If an item was searched once, 
it is most likely to be searched again. Therefore, the splay tree heuristic is to move a 
searched item to the root, so that next time the item is searched it would take almost a 
constant time. Splay trees give up a tree balance in favor of taking advantage of the fact 
that a large percentage of the searches is caused by only a small subset of data. Splay 
trees have been introduced by D. Sleater and R. Tarjan in 1985.

The key operation performed on a splay tree is the splay operation. splay(N) is 
moving a node N to the root via a sequence of rotations that preserves the binary search 
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tree ordering invariant. Every time a node is accessed in a splay tree, it is moved to 
the root of the tree. However, splaying is done in a very special way that guarantees  
O(log n) amortized bound.

The rotation depends on the positions of the current node N, its parent P, and its 
grandparent G. There are six types of rotations:
Zig (Zag): A single right (left) rotation. It can only occur when the N node’s parent is the 
root of the tree. This rotation moves the current node N one level up, so N becomes the root.

Zig-Zag (Zag-Zig): A double rotation formed by a single Zig (Zag) followed by Zag (Zig) 
rotation. In the first rotation we rotate N and P. Node N moves a level up and becomes 
a child of G node. In the next rotation we rotate N and G. Node N moves again a level up, 
so that nodes G and P become children of N.

Zig-Zig (Zag-Zag): A double rotation formed by two single Zig (Zag) rotations in spe-
cial order. This rotation occurs when N and its parent P are both left (right) children. 
First, we rotate P and G, and then N and P.

T1 T2

T3
N

P

T2 T3

T1

N

P

FIGURE 2.7  Zig rotation.
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N

T4T3

T2

T1
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N

T2

T1
T4

P

G

N

T3

T4

FIGURE 2.8  Zig-Zag rotation.
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P

G

T2

T3

T4

T3T1
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P

T4T3

T2

T1

G

N

P

T4

FIGURE 2.9  Zig-Zig rotation.
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Note the order of rotations in Zig-Zig rule does matter. Alternatively, we may think 
to first rotate N and P and then N and G. These rotations will form the tree in  
figure 2.10. The difference between figures 2.9 and 2.10 might not seem to be that 
important, but the next example will demonstrate that without this rule, the amortized 
cost of search is linear.

Let us consider an example  
(figure 2.11), where a splay tree is a 
linked list of ordered elements from 1 to 
5. On this tree we will perform the follow-
ing sequence of operations: splay(1), 
splay(2), splay(3), splay(4), 
splay(5). Each splay operation will 
move a node to the root by performing 
a chain of single rotations, Zig or Zag. We 
will use the aggregate method to com-
pute the amortized cost per splay.

To promote node 1 to the root we have 
performed 4 single Zig rotations.

To promote node 2 to the root we have 
performed 3 single Zig rotations and one 
Zag rotation.

To promote node 3 to the root we have 
performed 2 single Zig rotations and one 
Zag rotation.

The next two splays, splay(4) and 
splay(5), will require two and one rota-
tions, respectively. Therefore, the total 
number of single rotations for 5 splay 
operations is 4 + 4 + 3 + 2 + 1 = 14. 

N

N

N

P

P P

GG

G

T1 T2

T1

T1T4

T4

T2 T3 T2 T3

T3

T4

FIGURE 2.10  A wrong Zig-Zig rotation.

1

2

3

4

5

FIGURE 2.11  A linked 
list of 5 elements.

1

5

4

3

2

FIGURE 2.12  The tree 
after splay(1) has taken 
place.

1
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4

5

FIGURE 2.13  The 
tree after splay(1) and 
splay(2) have taken 
place.

1

2

3

4

5

FIGURE 2.14  The tree 
after splay(1), splay(2), 
and splay(3) has taken 
place.
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Let us generalize this example. Suppose we started with a linked list of ordered 
items from 1 to n. We run a sequence of n splay operations: splay(1), splay(2), … ,  
splay(n). Proceeding as in the previous example, the first splay takes n - 1 single 
rotations, splay(2) also takes n - 1 single rotations, splay(3) takes n - 2 rotations, 
and so on. The total number of rotations is given by

( ) ( ) ( ) ...
( )

( ).n n n k n n O n
k

n

− + − + − + + + =− + =− +
+
=

=
∑1 1 2 2 1 1 1

1

21

2

It follows that the amortized cost per splay is O(n2)/n = O(n). This example demon-
strates that in order to achieve O(log n) amortized bound per splay, we have to have 
Zig-Zig (Zag-Zag) rotation.

The analysis of running time of splay trees is quite difficult. Any single insert 
or search might take a linear time in the worst case. But any sequence of m operations  
on a tree with n nodes takes O(m log n) time. The proof is far beyond the scope of this  
book.

REVIEW QUESTIONS

1.	 What is the definition of the amortized cost using the aggregate method?
2.	 (T/F) Amortized analysis is used to determine the average runtime complex-

ity of an algorithm.
3.	 (T/F) Compared to the worst-case analysis, amortized analysis provides a more 

accurate upper bound on the performance of an algorithm.
4.	 (T/F) The total amortized cost of a sequence of n operations gives a lower bound 

on the total actual cost of the sequence.
5.	 (T/F) Amortized constant time for a dynamic array is still guaranteed if we 

increase the array size by 5%.
6.	 (T/F) If an operation takes O(1) expected time, then it takes O(1) amortized time.
7.	 Suppose you have a data structure such that a sequence of n operations has an 

amortized cost of O(n log n). What could be the highest actual time of a single 
operation? 

8.	 What is the worst-case runtime complexity of searching in an amortized  
dictionary?
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EXERCISES

1.	 You have a stack data type, and you need to implement a FIFO queue. The stack 
has the usual POP and PUSH operations, and the cost of each operation is 1. 
The FIFO has two operations: ENQUEUE and DEQUEUE. We can implement 
a FIFO queue using two stacks. What is the amortized cost of ENQUEUE and 
DEQUEUE operations?

2.	 We are incrementing a binary counter, where flipping the i-th bit costs i + 1. 
Flipping the lowest-order bit costs 0 + 1 = 1, the next bit costs 1 + 1 = 2, the 
next bit costs 2 + 1 = 3, and so on. What is the amortized cost per operation for 
a sequence of n increments, starting from zero?

3.	 We have argued in the lecture that if the table size is doubled when it’s full, then 
the amortized cost per insert is acceptable. Fred Hacker claims that this consumes 
too much space. He wants to try to increase the size with every insert by just two 
over the previous size. What is the amortized cost per insertion in Fred’s table?

4.	 This table supports inserts as well as deletions. The protocol is the following: 
If an array is full, we double its size on insertion; if an array is 1/4 full, we halve 
the array size on deletion. Show that the amortized cost of insert and delete is 5.

5.	 Suppose we perform a sequence of n operations on a data structure in which the 
i-th operation costs i if i is an exact power of 2 and 1 otherwise. Use aggregate 
analysis to determine the amortized cost per operation.

6.	 Suppose we perform a sequence of n operations on a data structure in which the 
i-th operation costs i if i is an exact power of 4 and 1 otherwise. Use aggregate 
analysis to determine the amortized cost per operation.

7.	 A MultiStack data structure has the usual POP and PUSH operations, and the cost 
of each operation is one unit. Additionally, it has MULTIPOP(k) operation that 
removes k recently pushed items. If k is bigger than the stack size, it removes all 
items. We wish to analyze the running time for a sequence of n PUSH, POP, and 
MULTIPOP operations, starting with an empty stack. What is the worst-case 
complexity for a sequence of n operations? What is the amortized cost per oper-
ation? Use the accounting method.

8.	 Consider a singly linked list as a dictionary that we always insert at the beginning 
of the list. Now assume that you may perform any number of insert operations 
but will only ever perform at most one lookup operation. What is the amortized 
cost per operation?
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Heaps are one of the most important data structures, especially for implement-
ing greedy algorithms using a priority queue. Heaps provide a great option over 

sorting when input data changes during an algorithm execution. Sorting as we know is 
a process of arranging elements according to their priorities. However, in many appli-
cations we do not need a full sorted order, just the ability to access an element with the 
highest priority. We start the chapter with classical binary heaps and then extend the 
definition to amortized heaps that provide the constant amortized cost for insertion 
and decreaseKey operations. We will be using heaps in a few applications, namely find-
ing the shortest path in graphs, building the minimum spanning tree, and constructing 
Huffman encoding.

3.1 Binary Heaps
Binary heaps are based on the notion of a com-
plete binary tree. A complete binary tree is a 
binary tree where each level is completely filled 
with nodes, except the gap at the bottom level, 
which is filled from left to right, as illustrated 
in figure 3.1. 

A complete tree with n nodes has a height of 
floor(log(n + 1)). In this example, the tree height 
is 3. Note that the height of the root is 0.

JIH

D E F G

CB

A

No nodes here

FIGURE 3.1  Example of a complete tree.

Heaps

Chapter 3
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A binary heap satisfies one of the following two heap ordering properties:

•	 The min-heap property: The value of each node is greater than or equal to the 
value of its parent

•	 The max-heap property: The value of each node is less than or equal to the value 
of its parent 

In this course the word heap will always refer to a min-heap, unless otherwise noted. 
Note that a heap may have duplicate elements. To sum up, formally a binary heap can 
be defined as a collection of items that satisfy the following invariants:

•	 Structural property: States that a heap is a complete tree

•	 Ordering property: The key of the parent node less or equal than the key of chil-
dren nodes

A heap supports the following operations:

•	 insert

•	 deleteMin

•	 decreaseKey 

•	 build

•	 meld (merge two heaps)

These operations will be discussed in the subsequent sections. But first, let us dis-
cuss heap implementation.

3.1.1 Implementation.
A heap is uniquely represented by storing its data in an array by running a level-order 
traversal on a tree, with the root at index 1. This allows fast access to each heap element.

Observe that if a node’s index is k, its left child is located at 2k index, its right child is 
located at 2k + 1 index, and its parent is located at k/2 index. Array index 0 is left empty 
to make the indexing work easily.

0 1 2 3 4 5 6 7
2 4 3 9 7 8

879

4 3

2

FIGURE 3.2  A heap represented as an array.
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3.1.2 Insert
The new element is initially appended to the bottom level. If the level is full, we start a 
new one. In an array-based implementation, we place a new item to the end of the array. 
This will preserve the structural property. 

Insert 1

743

2 6

2

7 143

2 6

2

FIGURE 3.3  Inserting 1 into a heap.

0 1 2 3 4 5 6 7
2 2 6 3 4 7 1

At this step, the inserted item may violate the ordering property. We fix this by per-
colating the item up the tree by swapping positions with the parent, if it’s necessary. In 
figure 3.3 we swap 1 and 6, as shown in figure 3.4. 

Again, we observe that new placement of 1 still violates the heap-ordering property. 
Thus, we swap 1 and 2, as shown in figure 3.5.

The worst-case runtime complexity of insertion is O(log n). This is because a com-
plete tree is a balanced tree and in the worst-case scenario it may require a single swap 
on each tree level.

7 643

2 1

2

FIGURE 3.4  Swapping 1 and 6.

0 1 2 3 4 5 6 7
2 2 1 3 4 7 6

7 643

2 2

1

FIGURE 3.5  Swapping 1 and 2.

0 1 2 3 4 5 6 7
1 2 2 3 4 7 6



28  P  Algorithms in Action

3.1.3 DeleteMin
The minimum element can be found at the root of the heap, which is the first element 
of the array. Clearly, we cannot delete it, since otherwise a tree will be split into two 
trees. Instead, we move the last element of the heap to the root (this step preserves the 
structural invariant) and then restore the heap property by percolating it down the 
tree (this step preserves the ordering invariant). In figure 3.6, we move 8 to the root 
and then percolate it down by swapping it with the smallest child.

2 6

1

43 87 743

2 6

8

743

8 6

2

748

3 6

2

FIGURE 3.6  Deleting the minimum.

This continues until it is less or equal to its children or it reaches the last level. The 
worst-case runtime complexity of deleteMin is O(log n), since during percolation it may 
require a swap on each tree level.

3.1.4 Heapsort
If we run deleteMin n times we will get all heap elements in sorted order. This could be 
implemented in place by storing the deleted element at the end of the array. Figure 3.7 demon-
strates one step of the algorithm; we swap 1 with 8, and then percolate 8 down the tree.

0 1 2 3 4 5 6 7
2 3 6 8 4 7 1

0 1 2 3 4 5 6 7
1 2 6 3 4 7 8

2 6

1

43 87

748

3 6

2

FIGURE 3.7  One iteration of Heapsort.
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The worst-case runtime complexity of heapsort is O(n log n). Heapsort is in place but 
not stable.

3.1.5 DecreaseKey
In some algorithms we may require changing the key (value) of one of the heap elements. 
To restore a heap-ordering property, we may need to percolate this item up. The worst-
case runtime complexity of decreaseKey is O(log n). In figure 3.8, we decrease 7 to 2.

2 6

1

43 87

2 6

1

43 82

2 2

1

43 86

FIGURE 3.8  Demonstration of the decreaseKey operation.

3.1.6 Building a Heap
There are two algorithms to build a heap. The first one is the online algorithm,  
when the data is not known to us in advance. In this case we build a heap by  
insertion, starting with an empty array. We will resize the array once it is full. Read 
about the resizing policy in chapter 2. If we insert n elements, the total cost T(n) is 
bounded by

T(n) = log 1 + log 2 + … + log(n - 1) + log n £ log n + log n + … + log n + log n = n log n.

On the other hand (see chapter 1.2 for the proof),

T(n) = log 1 + log 2 + … + log(n - 1) + log n = log(n!) = W(n log n).

Thus, the worst-case runtime complexity of building a heap is Q(n log n).
The second algorithm is offline, when the data is known to us in advance. In this case 

we can develop a faster algorithm. We will call it “heapify,” a process of converting a 
complete tree into a heap. We begin by placing all the elements into an array in given 
order. Next, starting at position n/2 and working toward position 1, we percolate each 
element down the tree by swapping it with its smallest child.

Let us consider an example of building a heap on the following set of data: 7, 6,  
8, 1, 5, 9, 0, 3, 2, 4. First we place the numbers into a complete tree. This will satisfy the 
structural invariant.
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0 1 2 3 4 5 6
7 6 8 1 5 9

7
0

8
3

9
2

10
4

6 8

7

51

23 4

09

FIGURE 3.9 

Then we start at the middle (node 5) and swap it with the child 4. Next, we move to 1.  
There is nothing to swap for that element, so we move to 8.

0 1 2 3 4 5 6
7 6 8 1 4 9

7
0

8
3

9
2

10
5

6 8

7

41

23 5

09

FIGURE 3.10  Heapify nodes at depth 2.

The smallest child of 8 is 0, so we swap 8 with 0 and then move to 6. 

0 1 2 3 4 5 6
7 6 0 1 4 9

7
8

8
3

9
2

10
5

6 0

7

41

23 5

89

FIGURE 3.11  Heapify node 8 at depth 1.
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We swap 6 with the left child 1, and then swap 6 again with the right child 2.

6 0

7

41

23 5

89

6 0

7

46

23 5

89

1 0

7

42

63 5

89

FIGURE 3.12  Heapify node 6 at depth 1.

Finally, we move to the root and swap it with the right child 0. Figure 3.13 shows the 
final heap.

0 1 2 3 4 5 6
0 1 7 2 4 9

7
8

8
3

9
6

10
5

1 7

0

42

63 5

89

FIGURE 3.13  The final heap.

Now we analyze the worst-case complexity of heapify. During the algorithm execu-
tion at most n/2, heap elements percolate down the heap. Since the each percolation is 
O(log n), the total cost is bounded by O(n log n). But let us note that not each element 
was percolated down to a leaf. Thus, we shall derive an asymptotically tight bound. We 
will count the exact number of swaps (in the worst case) at each level. At the root,  
we may percolate down h times, where h is the tree height. At a level below, we may 
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have at most (h - 1) swaps. And so on. At the last level, there are zero swaps.  
Figure 3.14 replicates the number of swaps per level:

Next, we take into account the number of nodes on each level.

We summarize the total number of swaps during the heapification in table 3.1.

TABLE 3.1  The total number of swaps

Height # of nodes # of swaps

0 1 h
1 2 h - 1

— — —

h - 2 2h-2 2

h - 1 2h-1 1

# of swaps

h

h
h-1

h-2

2

1

0

FIGURE 3.14  Demonstrates the number of swaps 
per level.

# of nodes

h

1
2

4

2h–2

2h–1

at most 2h

FIGURE 3.15  Demonstrates the number of nodes 
per level.



Chapter 3  Heaps  P  33

Finally, we compute the total work by multiplying the number of swaps by the number 
of nodes on each level. Let T(n) denote the total number of swaps in the worst case. Then, 
as one can see from table 3.1, 

∑=
=

−T n k( ) 2 ,
k

h
h k

1

where h = log n. The finite sum can be further simplified as it follows

∑ ∑ ∑= = ≤ = =
=

−

= =

∞

T n k k k O n( ) 2 2
2

2
2

2 2 ( ).
k

h
h k h

k

h

k
h

k
k

h

1 1 1

This proves that building a heap by running the heapify operation has a linear 
runtime complexity.

Table 3.2 shows the binary heap operations and their runtime complexities:

TABLE 3.2  Running times for heap operations

Operation Complexity

findMin O(1)
deleteMin O(log n)

insert O(log n)
decreaseKey O(log n)

buildHeap O(n)

3.2 Binomial Heaps
In the previous section we have proved that insertion takes O(log n) in the worst case. 
However, as it easy to see, not all inserts require log n swaps; some inserts can be per-
formed in constant time. This observation implies that a binary heap may exhibit a better 
amortized complexity of insertion. Let us consider an example of inserting n items in sorted 
decreasing order from n to 1 into an empty min-heap. We will count the total number 
of swaps required to insert all the items. For simplicity, we assume that n = 2k - 1. The 
process of insertion will create a binary heap of height k - 1 = log(n + 1) - 1. Obviously, 
it takes no swaps to insert the first item n. It takes a single swap to each insert for the 
next two items n - 1 and n - 2. Finally, it takes k - 1 swaps for each element on the last 
level (the last level contains 2k-1 items.) The total work by inserting n items is given by

m O k O n nm

m

k
k2 2

0

1

=

−

∑ = =( ) ( log ).
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Then, the amortized cost per insertion in

O n n
n

O n( log )
(log ).=

This is the same as the worst-case complexity. This simple mathematical computation 
demonstrates that a binary heap is not suitable for amortized operations and therefore 
requires creating a different type of heap.

In this section we describe another heap data structure that has a slight improve-
ment in amortized cost over a binary heap. This data structure was introduced by J. 
Vuillemin in 1978. Each binomial heap is a collection of binomial trees. A binomial tree 
Bk, of rank k, is defined recursively as follows:

1.	 B0 is a single node
2.	 Bk is formed by joining two Bk-1 trees

Here are the first four binomial trees:

B0 B1 B2 B3

3
1

FIGURE 3.16  Example of binomial trees.

The number of nodes on each level l in a binomial tree Bk is defined by binomial coef-
ficients ( )lk , where 0 £ l £ k. The term binomial tree comes exactly from this property. 
The total number of nodes in Bk is 2k, as it follows from



k k k
k

k
k0 1 1

2k

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Another interesting property of a binomial tree Bk is that when we remove the root, 
the tree will break into k binomial trees B0, B1, …, Bk-1. Figure 3.17 shows a new way of 
looking at B3.
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B3

B0 B1 B2

FIGURE 3.17  Binomial tree of rank three.

A binomial heap is a collection (a linked list) of at most ceiling(log n) binomial trees 
in increasing order of size, where each tree has a heap ordering property. In a binomial 
heap there is at most one binomial tree of any given rank. In order to have constant time 
access to the top element, we store the pointer to the smallest root. Figure 3.18 demon-
strates a binomial heap of 13 elements:

9 3

612

14 17 11 20

23

8

15 1012

min

FIGURE 3.18  A binomial heap of size 13.

Observe that the number of elements that can be stored in a heap relates to its binary 
expansion. To store 13 elements, we need B0, B2, and B3 binomial trees. This is due to the 
binary expansion 1310 = 11012. If we need to store 25 items, the heap will be a collection 
of B0, B3, and B4, since 2510 = 110012. Thus, a binomial heap with n nodes has number 
of binomial trees equal to the number of 1’s bits in binary representation of n. Having 
this in mind, we always will assume in the worst-case analysis that there are O(log n) 
binomial trees in a binomial heap with n nodes.

3.2.1 Merging
Binomial heaps allow faster merging, compared to binary heaps. Note, binary heaps 
are complete binary trees, and two complete binary trees cannot easily be linked to 



36  P  Algorithms in Action

one another. Consider the merging of two binomial heaps on the following example in 
figure 3.19.

3

12

12

623

209 10

11

23

2017

1215

Merge with

FIGURE 3.19  Merging two Binomial heaps.

First we merge two heaps as we merge two linked lists; it takes O(1) time. We get the 
heap shown in figure 3.20.

3

12

14

6

10

11

23

2023

20

17

12159

FIGURE 3.20  The result of joining two top linked lists.

This heap is not a binomial heap yet, since it has trees of the same ranks. Thus, we 
need to combine binomial trees of the same rank. This can be done by making the 
smaller root the child of the larger root. It also takes O(1) time; however, it may require 
to merge O(log n) trees in total. Thus, the worst-case runtime complexity of merging is 
O(log n). In our example we need to merge two trees of rank 0 and two trees of rank 1.

3

12

14

6

10

11

23

20

129

1715

23

20

FIGURE 3.21  The result of merging two trees of rank 0 and two trees of rank 1.
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Finally, we combine two trees of rank 2 to get the heap in figure 3.22.

3

12

14

6 10

11

23

20

129

1715

23

20

FIGURE 3.22  The result of merging two trees of rank 2.

In conclusion, we note that merging two binomial heaps is related to a binary addi-
tion. In the previous example, the result of merging B0B1B2 with B0B1B2 is a binomial 
heap B1B2B3. This can be viewed as a binary addition

    111
    111
   
    1110

where the result of addition 1110 translates into a heap B1B2B3.

3.2.2. DeleteMin
The algorithm is as follows:

1.	 Find the binomial tree that contains the minimum element
2.	 Delete the root and move all subtrees to the top list
3.	 Merge the binomial trees of the same rank
4.	 Set a pointer to the new minimum

Note that deleting the root of Bk results in B0, B1, …, Bk-1 binomial trees. It follows that 
the worst-case complexity of deleteMin is O(log n), which is the same as merging two 
heaps. Let us execute the algorithm on the heap in figure 3.23.
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9 3

612

14

23

17 11 20

8

15 1012

min

FIGURE 3.23  We will perform deleteMin on this heap.

After deleting the minimum, the heap transforms into what is shown in  
figure 3.24.

12 6

14

23

17 11 20

8

15 1012

9

FIGURE 3.24  The result of deleting the min.

Next, we merge two B0 and B1 to get what is shown in figure 3.25.

6

14

23

1712 11 20

8

159 1012

min

FIGURE 3.25  The result of merging B0 and B1.
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3.2.3. Insert
Essentially, insertion is merging two heaps, one of size 1 and the other of size n. Therefore, 
it takes O(log n) in the worst case. This case occurs only if a binomial heap of size  
n = 2m - 1 contains binomial trees of all orders, namely the following trees B0, B1, …, 
Bm-1. Then, inserting a new item into this heap will case m binomial trees to merge. The 
first merge will result in a heap B1 B1 B2 … Bm-1. The second merge will result in a heap 
B2 B2 B3 … Bm-1. And so on. After m = O(log n) merges we will get a binomial heap that 
contains only a single binomial tree of order m.

It should be clear that not each insertion requires merging all O(log n) binomial trees. 
Let us compute amortized cost per insertion. We will use the accounting method. We 
show that assigning two tokens to a single insert is sufficient. Here is our assignment: 
One token is paid for creating a single binomial tree, and the other is for future tree 
merging. In this model each binomial tree in a heap has a single token associated with 
it. When we merge two trees of the same rank, we use one token to pay for merging and 
keep the second token for the next merger (if it will ever be required.) It follows that 
single insertion into a binomial heap has a constant amortized cost. 

Here is another way to prove that amortized cost of a single insert is constant. Recall 
that a binomial heap of size n is associated with a binary expansion of n. When we insert 
a new item into it, we merge two heaps, one of size 1 and the other of size n. This is equiv-
alent to a binary addition, namely incrementing a binary representation of n. We have 
proved in chapter 2 that amortized cost of binary increment is O(2).

3.2.4 Building a Binomial Heap
We have studied two algorithms of building a binary heap. One is an offline algorithm 
(building by insertion) with the runtime complexity O(n log n); the other is an online 
algorithm (building by heapifying) with the runtime complexity O(n). The cost of build-
ing a binomial heap of n elements by insertion is O(n), even if the data is not known to 
us in advance.

Finally, we summarize runtime complexities of binary and binomial heaps in  
table 3.3 (here, “ac” stands for amortized cost).

TABLE 3.3  Running times for heap operations

Binary Binomial

findMin O(1) O(1)
deleteMin O(log n) O(log n)

insert O(log n) O(1) (ac)
decreaseKey O(log n) O(log n)

merge O(n) O(log n)
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3.3 Fibonacci Heaps
The Fibonacci heap data structure was invented by Fredman and Tarjan in 1987. 

The general idea is to have a more relaxed structure (compared to binomial heaps) 
that will improve decreaseKey complexity to constant amortized time. The trees in 
a Fibonacci heap are not constrained to be binomial trees. Figure 3.26 shows an exam-
ple of a Fibonacci heap.

3 59

6

17 11 20

8

12 1012

min

FIGURE 3.26  Example of a Fibonacci heap.

The high-level idea of a decreaseKey algorithm is to take the node you want to 
decrease, change its value, disconnect it and its entire subtree from where it is, and 
attach it to the tree root list. This is clearly O(1) time. This attractive feature of Fibonacci 
heaps allows a performance improvement to many algorithms, in particular, the 
Dijkstra’s shortest path algorithm, (see chapter 4.5.1.2) bringing its runtime complexity  
to O(E + V log V). 

Let us discuss a bird’s-eye view of a decreaseKey algorithm on the heap in  
figure 3.27.

69

7

23

1714 11 20

8

1512 1012

FIGURE 3.27  We will perform decreasekey on this heap.

Suppose we want to change 7 to 5. Since 7 is not the root of the tree, its value dec-
rementing will break the heap order. We cut the tree rooted at 7 from its parent and 
move it to the top level.
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FIGURE 3.28  cut(7).

Running a new function cut(7), we are guaranteed that changing its value to 5 surely 
does not break the heap order. However, we may end up with having extremely sparse 
trees of high ranks as well as with several trees of the same rank. In order to avoid this 
problem, we limit the number of cuts among the children of any vertex to two. This is 
done by implementing another function marked(v) that keeps a track of cuts of all chil-
dren of v. Clearly, after a call to decreaseKey we won’t have a binomial tree anymore. 
We will fix the binomial heap property when deleteMin is called. However, the prob-
lem is that we can no longer prove the bound on the time of deleteMin. That heap may 
contain more than O(log n) binomial trees, and some of them are not necessary binomial. 
There’s a clever way to fix this by implementing “cascading cuts.” The algorithm was 
designed by M. Fredman and R. Tarjan. The algorithm is beyond the scope of this course. 

Fibonacci heaps have another advantage: The worst-case time complexity of the insert 
is O(1). How do we insert into the Fibonacci heap? Just add a single node to the top level. 
Do not merge binomial trees! We may have several trees of the same rank. We will fix the 
heap when deleteMin is called. Clearly, lazy insertion runs in O(1) time in the worst case. 

In table 3.4, we summarize runtime complexities of different heaps. There “ac” stands 
for the amortized time complexity.

TABLE 3.4  Running times for heap operations

Binary Binomial Fibonacci

findMin Q(1) Q(1) Q(1)
deleteMin Q(log n) Q(log n) O(log n) (ac)

insert Q(log n) Q(1) (ac) Q(1)
decreaseKey Q(log n) Q(log n) Q(1) (ac)

merge Q(n) Q(log n) Q(1) (ac)
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REVIEW QUESTIONS

1.	 What is the worst-case runtime complexity of finding the smallest item in a 
binary min-heap?

2.	 What is the worst-case runtime complexity of finding the largest item in a binary 
min-heap?

3.	 How many binomial trees does a binomial heap with 31 elements contain? 
4.	 How many binomial trees are in a binomial heap of size n?
5.	 What is the worst-case runtime complexity of inserting into a binomial heap?
6.	 What is the worst-case runtime complexity of searching in a binomial heap?
7.	 What is the amortized cost of inserting into a binomial heap?
8.	 What is the worst-case runtime complexity of deleteMin() from a binomial heap?
9.	 (T/F) The following array is a max heap: [10, 3, 5, 1, 4, 2].

10.	 (T/F) In a binary max-heap with n elements, the worst-case runtime complexity 
of finding the second largest element is O(1).

11.	 (T/F) If item A is an ancestor of item B in a heap then it must be the case that the 
insert(A) operation occurred before insert(B).

12.	 (T/F) Using a binary heap we can sort any array of size n in O(n) time.
13.	 (T/F) In a binomial min-heap with n elements, the worst-case runtime complex-

ity of finding the smallest element is O(1).
14.	 (T/F) In a binomial min-heap with n elements, the worst-case runtime complex-

ity of finding the second smallest element is O(1).
15.	 (T/F) By using a binomial heap we can sort data of size n in O(n) time.
16.	 (T/F) Given a Fibonacci heap of size n, the maximum number of trees is that 

heap is n.

EXERCISES

1.	 Given a sequence of numbers, 3, 5, 2, 8, 1, 5, 2,
a.	 draw a binary min-heap (in an array form) by inserting these numbers, 

reading them from left to right; and
b.	 show an array that would be the result after the call to deleteMin() on 

this heap.
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2.	 Devise an algorithm of merging two binary heaps. What is its runtime complexity?
3.	 Suppose you have two binary min-heaps, A and B, with a total of n elements 

between them. You want to discover if A and B have a key in common. Devise an 
algorithm to this problem that takes O(n log n) time.

4.	 The values 1, 2, 3, …, 63 are all inserted (in any order) into an initially empty min-
heap. What is the smallest number that could be a leaf node?

5.	 Prove that it is impossible construct a min-heap (not necessarily binary) in a 
comparison-based model with both the following properties:

a.	 deleteMin() runs in O(1)
b.	 buildHeap() runs in O(n), where n is the input size

6.	 Given an unsorted array of size n, devise a heap-based algorithm that finds the 
k-th largest element in the array. What is its runtime complexity?

7.	 Recall that two sorted arrays of size n can be merged into a single sorted list in 
linear time O(n). Suppose there are k > 2 sorted arrays, each of size n. Devise a 
heap-based algorithm that merges k arrays and requires at most O(k) extra space.

8.	 Given a stream of data (its size is unknown in advance), devise a heap-based 
algorithm that finds the k-th largest element in the array. Your algorithm must 
take at most O(k) extra space. What is its runtime complexity?

9.	 Given a stream of data (its size is unknown in advance), devise a heap-based algo-
rithm that finds the median of elements read so far. What is its runtime complexity? 

10.	 Given a sequence of numbers, 3, 5, 2, 8, 1, 5, 2, 7,
a.	 draw a binomial heap by inserting these numbers, reading them from 

left to right; and
b.	 show a heap that would be the result after the call to deleteMin() on 

this heap.
11.	 Discuss the relationship between inserting into a binomial heap and 

binary increment.
12.	 Discuss the relationship between merging two binomial heaps and adding two 

binary numbers.
13.	 Discuss the relationship between inserting into a binomial heap and a 

Fibonacci heap.
14.	 Devise an algorithm of deleting any item from a binomial heap. What is its 

runtime complexity?
15.	 Devise an algorithm to find all nodes less than some given value X in a binomial 

heap. Analyze its complexity.



  45

Greedy algorithms do not have a formal definition, but all of them possess the 
following characteristics:

•	 They make a sequence of choices.

•	 Each choice is the best available at each step. 

•	 Earlier decisions made during execution are never undone.

•	 They do not always yield the optimal solution. 

Greedy algorithms have several advantages over other algorithmic approaches. The 
first one is simplicity: Greedy algorithms are often easier to describe and implement. The 
second is efficiency: The greedy approach can often produce more efficient solutions. At 
the same time, they have a drawback: Showing that a greedy algorithm is correct often 
requires a non-trivial proof.

How can we tell if a greedy approach will solve a particular problem? There is no guar-
antee that such a greedy algorithm exists; however, a problem to be solved must obey the 
following two common properties: 

•	 Optimal substructure 

•	 Greedy-choice property

An optimal substructure means that an optimal solution to the original problem contains 
optimal solutions to all of its subproblems. The proof of optimal substructure correctness 
is usually by induction.

Greedy Algorithms

Chapter 4
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A greedy-choice property means that a globally optimal solution is obtained by 
making a locally optimal (greedy) choice. This choice is made to solve each subprob-
lem and may depend on choices that have been made to date, but it cannot depend on 
any future choices. The proof that a greedy choice for each subproblem yields a globally 
optimal solution is usually by contradiction.

Where does greedy approach efficiency come from? A greedy algorithm can be 
described as a multistage decision-making process, and therefore we can construct a 
tree to enumerate all possible decisions. During the algorithm execution, we don’t con-
sider all available choices at any given node, but use a greedy heuristic to pick just one, 
the highest-ranking child. In this model a greedy technique can be viewed as finding 
a set of paths from the root to a leaf node. Consider a board game where two players 
alternately take turns. We can use a tree to represent all possible moves until the game 
ends. Each node corresponds to a position, and each edge corresponds to a move. In this 
game tree, the number of nodes on each level is exponential in the tree height. Thus, a 
brute-force algorithm will have an exponential (in height) runtime complexity. A greedy 
algorithm, in contrast, will make only a single greedy choice at each tree level; there-
fore, its runtime complexity will be proportional to the height. 

We conclude the introduction with a few remarks on implementation. In order to make 
greedy choices efficiently we have to use a certain data structure. One simple choice 
is an unsorted array. The better choice may be a priority queue that allows accessing 
the highest-ranking choice in constant time. Alternatively, we could use a sorted array, 
though this may be more expensive compared to heaps. In this chapter we start with 
two greedy algorithms when a single sorting is sufficient and then proceed to other 
algorithms when use of a priority queue is advantageous.

4.1 The Money Changing Problem
In this problem we are to compute the minimum number of coins needed to make 
change for a given amount m and given set of n denominations. Assume that we have 
an unlimited supply of coins. As an example, let us use US currency (pennies, nickels, 
dimes, and quarters) and the amount to change is m = $0.40. There are several ways to 
make change, 0.40 = 4*0.10 (four dimes) or 0.40 = 2*0.10 + 4*0.05 (two dimes and four 
nickels). But intuitively we can get the smaller number of coins if we start with the larg-
est coin first: 0.40 = 0.25 + 0.10 + 0.05. This suggests the following greedy algorithm 
to make change: Start with the largest coin and use it as many times as possible; then 
use the second largest coin, and so on. Will we get the least number of coins? We prove 
the algorithm correct by contradiction. If we do not choose the largest coin, is there a 
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better solution? Assume that our algorithm does not take the largest coin (which is a 
quarter). Then we will need a combination of smaller coins (pennies, nickels, or dimes) 
to add up to a quarter. It follows that the change won’t be optimal, since we will end up 
with more coins. 

Let us discuss the algorithm efficiency. We will visualize the algorithm as a quad 
choice tree (figure 4.1) where each vertex contains an amount to change and each edge 
is a denomination.

In the brute-force approach we will have to try each available denomination. This 
will lead to O(4h) runtime, where h is the tree height. In the greedy approach, we will 
always choose the largest available denomination. It is clear that the complexity of this 
approach is O(h). Here we assumed that we could get the largest coin in the constant 
time. We can always do that by sorting all denominations in descending order and then 
traversing them in that order. In a general case, when we have a set of n denominations, 
this choice tree has height h = n; therefore, the algorithm runtime complexity is O(n).

Lastly, we demonstrate on the example that a greedy choice does not necessarily 
yield the optimal solution. Let us imagine a different denomination system, where in 
addition to pennies, nickels, dimes, and quarters we have a 20-cent coin. Then, running 
a greedy approach, we still get three coins: 0.40 = 0.25 + 0.10 + 0.05. However, the 
optimal solution contains only two coins: 0.40 = 2*0.20. This example emphasizes an 
importance of proving the algorithm correctness.

4.2 Scheduling Problem
There is a set of n requests. Each i-th request has a starting time s(i) and finish time f(i). 
Assume that all requests are equally important and s(i) £ f(i). Our goal is to develop a 
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FIGURE 4.1  A choice tree to change 40 cents using pennies, 
nickels, dimes and quarters.
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greedy algorithm that finds the largest compatible (non-overlapping) subset of requests. 
This problem is interesting because among many available greedy strategies it is not 
obvious which one to choose. One approach is to sort requests with respect to s(i) in 
ascending order. This one is not going to work (see figure 4.2). In that example the solu-
tion will consist of one request.

You may think that starting with the shortest f(i) - s(i) request first will be the right 
strategy. See figure 4.3 for the counterexample.

Another possible strategy is to take into consideration the number of overlapping 
intervals. In this strategy we start with an interval that has the smallest number of 
overlaps with other intervals. See figure 4.4 for the counterexample. It demonstrates 
that using this strategy we get only three intervals; however, the optimal solution has 
four intervals.

Finally, we consider a strategy of taking intervals with respect to finish time f(i), 
a request with the earliest finish time first. In this approach we sort requests with 
respect to f(i) in ascending order. Pick a request that has the earliest finish time. Delete 
all requests that overlap with it. Repeat.

The running time is O(n log n) for sorting plus O(n) for the greedy collection of activ-
ities. Does it always find an optimum?

4.2.1 Proof of Optimality
We assume that all intervals are sorted with respect to the finish time. Let {i1, i2, …, ik} 
be a subset of intervals chosen by our greedy algorithm and { j1, j2, …, jm} be the optimal 

FIGURE 4.2  The earliest starting time strategy.

FIGURE 4.3  The shortest interval strategy.

FIGURE 4.4  The smallest number of overlaps.
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subset of intervals. We will prove by induction that f(ir) £ f( jr) for "r £ k and thus our 
solution cannot be worse than the optimal one.

Base case: r = 1. This is true, f(i1) = f( j1), because we start with the earliest 
finish time.

Inductive hypothesis: Let us assume f(ir - 1) £ f( jr - 1). 

Inductive step: We need to prove f(ir) £ f( jr).

Note, f( jr - 1) £ s( jr) since in the solution the intervals cannot overlap. Thus, using 
the inductive hypothesis f(ir - 1) £ f( jr - 1) £ s( jr) we arrive at f(ir - 1) £ s( jr). Since jr is in 
the optimal set, then in the next step our greedy algorithm must pick the jr interval. It 
follows f(ir) £ f( jr).

Next, we need to prove that our solution {i1, i2, …, ik} has the same size as the opti-
mal solution (i.e., k = m). We prove this by contradiction. Let us assume that k < m.  
There must be a request jk+1 such that f( jk) £ s( jk+1) and f(ik) £ f( jk). Combining  
these two inequalities, it follows f(ik) £ s( jk+1). This means that a request jk+1 does 
not overlap with any i1, i2, …, ik requests. So, our greedy algorithm would not stop at ik  
and choose jk+1 as the next request. Contradiction, the size of our solution, is bigger  
than k.

4.3 Huffman Code
In 1948 Claude Shannon established that there is a fundamental limit to lossless data 
compression. This limit is called the entropy rate H. Entropy is a measure of the amount 
of information contained in the source. It is possible to compress the source, in a lossless 
manner, with a compression rate close to the entropy H. But it is mathematically impos-
sible to do better than H. The ASCII table is the simplest example of data compression. In 
that model we assign a fixed number of bits (called a codeword) to a character, namely 
8 bits. But we can achieve a better compression ratio if we assign a variable number 
of bits to each character. It is known (statistically) that the character “e” is much more 
likely to appear than “u.” In this model each letter in the alphabet of size n has a certain 
probability pk. We can define probabilities by counting frequencies of each character 
in the input text. The entropy H is given by

∑=
=

H p
p
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1
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n

k
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H is the lower bound on the average number of bits to code a character. Using stan-
dard distribution of characters in the English language, we get H = 4.07 bits/char. 

This theoretical result cannot be directly used to compute the number of bits per 
letter in a data compression algorithm, due to the fact that the log values are not inte-

gers. If we round up the logs, then the solution is not an optimal. 
In 1952 David Huffman developed a greedy algorithm to assign 
a prefix-free codeword to each character in the text according to 
their frequencies. A prefix-free code is one where no codeword is 
a prefix of another codeword. 

We will be using a full tree to map each character to a binary 
string. A codeword is a path from the root to the character. In 
figure 4.5 a codeword for C is 100 and a codeword for H is 11. 
Using a prefix-free code it is easy to encode and decode data. 
To encode, we need only to concatenate the codewords for each 
character. To decode, we scan the text from left to right, and as 
soon as we recognize a codeword, we print the corresponding  
character.

In general, we want to minimize the overall length of encoding, namely

∑=
=

cost( ) min ( ) ( )
1

T f x d x
k

n

k k

where f(x) is a frequency of xk character and d(xk) is a depth of xk in the tree T. This sug-
gests a greedy approach to constructing a tree. We need to put characters with the 
lowest frequencies to the bottom of a tree. This will guarantee longer binary strings 
assigned to them. Characters with the high frequency should be at the top, so they will 
have shorter codewords. Such a tree is called a Huffman tree.

4.3.1 Example: Building a Huffman tree
Let us draw a Huffman tree for the following table of frequencies:

TABLE 4.1  A table of frequencies

char A M L E K B U X

freq 34 21 14 13 11 9 8 7

E

H

UC

1

10

0

0 1

Root

FIGURE 4.5  Pre-
fix-free binary codes.
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Initially, there are only single-node trees: one for each character.

Next we select two characters of the smallest frequencies (they are U and X) and form 
a new parent node with the frequency 8 + 7 = 15, and connect it to U and X.

Once two nodes in a tree are connected, they are removed from consideration. 
However, their parent node is still in the game. Again, select two characters of the small-
est frequencies (they are K and B), form a new node with the frequency 11 + 9 = 20, 
and connect it to K and B. In the next step we connect L and E. The result is depicted in 
figure 4.8.

37

M

34

A

13

E

14

L

7

X

8

U

9

B

11

K

FIGURE 4.6  Single-node trees.
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FIGURE 4.7  A parent node for U and X.
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FIGURE 4.8  The result of joining K and B, and then L and E.
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Next, we join 15 and 20, and then 27 and 34 as in figure 4.9

Continue connecting nodes until there is only one tree left. That tree is the optimal 
Huffman coding tree. Lastly, we assign 0’s and 1’s to the edges.

Table 4.2 is a table of codewords.

TABLE 4.2  A table of codewords

char A M L E K B U X

freq 34 37 14 13 11 9 8 7
codeword 01 11 000 001 1010 1011 1000 1001
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FIGURE 4.9  The result of joining 15 and 20, 
and then 27 and 34.
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FIGURE 4.10  A Huffman tree.
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To get the total number of bits needed to compress a text (given the frequency table) 
we multiply the frequency of each character by the codeword length in bits:

34*2 + 37*2 + 14*3 + 13*3 + 11*4 + 9*4 + 8*4 + 7*4 = 363.

4.3.2 Proof of Optimality
We will prove it by induction on the number of characters.

Base case: Two characters. The tree is unique; therefore, it is optimal.

Inductive hypothesis: Assume that a Huffman tree of any n - 1 characters is optimal.

Inductive step: We need to prove that a Huffman tree of n characters is optimal.

Given a set A of n characters xk with some frequencies f(xk), where k = 1,2, …, n. If we 
run our greedy algorithm we will get a tree T over A. We will prove that T is optimal in 
a sense that T minimizes the overall length of encoding:
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k k

where d(xk) is a depth of xk in the tree T. Note that d(xk) is the number of bits of a code-
word associated with xk. Let us run a single step of our greedy algorithm. We choose two 
characters, x1 and x2, with the lowest frequencies f(x1) and f(x2). Then we join them to 
create a parent node x* with a frequency f(x*) = f(x1) + f(x2). After this step the number 
of characters in consideration is decreased by one (we removed x1 and x2 and added x*). 
Let us call this new set of characters by A*:

A* = A \ {x1, x2} Ç {x*}.

Since the size of A* is n - 1, we can apply the inductive hypothesis and thus build an 
optimal Huffman tree over A*. We will call this tree by T*. Let us summarize the construc-
tion; we say that we build a tree T (over a set A) by running one step of the algorithm for 
two characters and then using inductive hypothesis for the rest of characters (a set A*):
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By construction the cost of T is related to cost (T*) as follows:

cost(T) = f(x1)d(x1) + f(x2)d(x2) + cost(T*) - f(x*)d(x*).
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Here, f(x*) = f(x1) + f(x2) and d(x1) = d(x*) + 1 and d(x2) = d(x*) + 1. Substituting 
these into the previous equation, we get

cost(T) = cost(T*) + f(x1) + f(x2).

It is important to observe that we can reverse the construction process; namely, we 
can get an optimal tree T* from T by removing two lowest frequency nodes if they are 
siblings (see 4.3.2.1 for details)

cost(T*) = cost(T) - f(x1) - f(x2)

Having this in mind we proceed to the next step. We prove optimality of T by contradic-
tion. Assume that there is another tree T1 over the set A such that cost (T1) < cost (T). 
For the tree T1 we can perform the same reverse process to get another optimal tree T1*:

cost(T1*) = cost(T1) - f(x1) - f(x2).

Since cost(T1) < cost(T), it follows cost(T1*) < cost(T*). But tree T* is optimal. This is 
a contradiction. ∎

4.3.2.1 What if x1 and x2 are not siblings?

Lemma. Let x and y be two characters such that f(x) and f(y) are minimal. Then there is 
an optimal prefix code such that x and y are siblings.

Proof. Let T be the optimal tree and z be a sibling of x such that d(x) = d(z) ³ d(y). 
Consider two cases.

Case 1. d(z) = d(y). If z and y are at the same depth, we can swap them. The cost of the 
optimal tree T won’t change.

Case 2. d(z) > d(y). Since z is located deeper within the tree T than f(z) < f(y), we swap 
z and y and call that tree T1 as in figure 4.11.

Next, we compute the cost of T: 

cost(T) = f(x)d(x) + f(z)d(x) + f(y)d(y) + …
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FIGURE 4.11  The result of swapping z and y.

the cost of T1

cost(T1) = f(x)d(x) + f(z)d(y) + f(y)d(x) + …

and subtract them to get

cost(T1) - cost(T) = f(z)d(y) + f(y)d(x) - f(z)d(x) - f(y)d(y) = (f(y) - f(z)) (d(x) - d(y)). 

Since f(y) > f(z) and d(x) < d(y), it follows that cost(T1) £ cost(T). But T is the optimal 
tree, thus cost(T1) = cost(T). ∎

4.3.3 Runtime Complexity of Building a Huffman Tree
Let us assume that a frequency table is given to us and its size is n. The algorithm works 
by repeatedly connecting a pair of nodes that have the smallest frequencies. The fre-
quency of the new node is the sum of the frequencies of the connected nodes. We keep 
(node, frequency) in a min-heap. In each step of the algorithm we extract two nodes with 
the smallest frequencies, create a new parent node, and insert it back into the heap. The 
whole process takes O(n log n) time. Observe that using an unsorted array instead of a 
min-heap is less efficient. It will take us O(n) to find the minimum, and O(1) to insert a 
parent node. This will lead to O(n2) time.

4.3.4 Storing a Huffman Tree
In this section we will discuss decompression—a process of translating the stream of 
prefix codes back to the characters. It should be clear that in order to decompress an 
encoded text file we have to have the same Huffman tree that was used to compress. 
Therefore, every compressed file must have the whole Huffman tree stored in a binary 
form. How to store a full tree? It turns out a single bit per node is sufficient: a 0 bit for an 
internal node and a 1 bit for a leaf. We output nodes in preorder traversal. Once we hit a 
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leaf we output a binary ASCII code (8 bits) for that character. 
As an example, consider the tree in figure 4.12

The preorder traversal yields 0001U1X01K1B1M. The 
ASCII code for character U is 85, or 01010101 in binary. Taking 
into account ASCII codes for all other characters, we get the 
following encoded string: 0001010101011010110000101001
011101000010101001101. The total number of bits required 
to store that tree is 9 + 8*5 = 49.

The Huffman tree is always stored at the beginning of 
a compressed file and is called a header. During decom-

pression we read the header and restore the Huffman tree recursively from a 
preorder traversal.

4.4 Minimum Spanning Trees
Given a weighted undirected connected graph G = (V, E), a spanning tree is a subgraph 
of G that contains all vertices and it is a tree. The cost of a tree is the sum of the weights 
of its edges. A minimum spanning tree (MST) is a spanning tree with the minimum cost. 
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FIGURE 4.13  A graph on the left and its MST (blue edges) on the right.

It is important to note that a given graph is undirected! For directed graphs an MST 
problem is defined in a different way and called an arborescence problem (which we 
won’t cover in this text). Before we proceed with a greedy approach, let us discuss a 
brute-force approach. We find all spanning trees (using a BFS, for example) for a given 
graph and then choose the one with the smallest cost. It turns out this approach is quite 
expensive. In 1889 Arthur Cayley proved that the number of spanning trees in Kn (a 
complete graph on n vertices) is nn-2, and thus the brute force approach has an expo-
nential runtime complexity. We will omit a proof of Cayley’s theorem, and instead we 
will discuss a polynomial time algorithm for finding an MST.

M
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FIGURE 4.12  The Huffman 
tree to store.
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4.4.1 Prim’s Algorithm (1957)
For any weighted undirected graph G = (V, E), the algorithm builds a minimum span-
ning tree T one vertex at a time. Here are the algorithm steps:

1.	 Start with an arbitrary vertex and add it to an empty tree T. This vertex will be 
the root of T.

2.	 Expand T by adding a vertex from V\T, having the minimum weight edge and 
having exactly one end point in T.

3.	 Update distances from all vertices in T to adjacent vertices in V\T.
4.	 Continue to grow the tree until T gets all vertices, T = V.

Step 2 is a greedy choice: Among all adjacent vertices to T we pick the one that has the 
minimum weight edge. Step 3 is the most important step; we update only the shorter 
edges from T to V\T. The greedy choice implies that we have to use an intermediate data 
structure, which will allow us to find a vertex with the shortest edge in the most effi-
cient way. This suggests use of a priority queue.

4.4.1.1 Example: Building an MST
Let us run Prim’s algorithm on the graph in figure 4.14. We will keep a binary min-heap 
H as an intermediate data structure. Every element of the min-heap contains a vertex 
number and a key value of the vertex, which is an edge weight from a tree T to the vertex. 
In min-heap H we won’t show vertices that are not yet connected to T by an edge.
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FIGURE 4.14  The Prim algorithm illustrated on this graph.

We start at vertex a, so T = {a}. Edge weights from T to all adjacent vertices are  
|ab| = 4, |ac| = 2, |ad| = 1. We update adjacent vertices in a heap H = {d1, c2, b4}, where 
the subscripts denote an edge weight from a tree T to the vertex. We pick the shortest 
vertex in H (which is d) and add it to T. After this step T = {a, d} and H = {c2, b4}. 
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FIGURE 4.15  The first iteration of Prim’s algorithm.

In the next iteration we update edges from T to all adjacent vertices b, c, e, and f. The 
binary heap becomes H = {c1, b4, e5, f7}. Note that the edge (a, c) to vertex c gets replaced 
by a shorter one (d, c). Now vertex c in H is the closest one to T. We remove it from the 
heap H and add it to tree T. After this step T = {a, d, c} and H = {b4, e5, f7}.
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FIGURE 4.16  The second iteration of Prim’s algorithm.

Next, we update edges from T to all adjacent vertices b, e, and f. The binary heap 
becomes H = {b2, e3, f7}. Since vertex b is the shortest one, we remove it from H and add 
it to T. After this step T = {a, d, c, b} and H = {e5, f7}.
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FIGURE 4.17  The third iteration of Prim’s algorithm.
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Again we update edges in H, so H = {e3, f7}. Vertex e is the shortest one; we remove it 
from H and add it to T. After this step T = {a, d, c, b, e} and H = { f7}.
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FIGURE 4.18  The fourth iteration of Prim’s algorithm.

Update heap H = { f3}. Vertex f is the shortest one; we remove it from H and add it  
to T. After this step T = {a, d, c, b, e, f } and H = { }.
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FIGURE 4.19  The minimum spanning tree.

We have constructed the minimum spanning tree of the total weight 1 + 1 + 2 +  
3 + 3 = 10.

4.4.1.2 Complexity of Prim’s Algorithm
The Prim’s algorithm complexity depends heavily on the chosen graph representation. 
The following analysis assumes using an adjacency list structure for graph represen-
tation. Here is a pseudocode for the algorithm:



60  P  Algorithms in Action

1. H = minHeap(V);
2. insert(s, H);                     // start at vertex s
3. while (H is not empty)
4. {
5.  u = deleteMin(H);               // O(log V)
6.  for each w in adj(u)
7.  {
8.      if(weight(w,u) < key(u)) 
9.            key(u) = weight(w,u)   // update edge weight
10.           decreaseKey(u, H);    // O(log V)
11.  }
12. }

We maintain a min-heap of V vertices (line 1). In each step of the algorithm we delete 
a vertex (line 5) with the smallest weight (this takes O(log V) by deleteMin opera-
tion). We also update edges (lines 8–10) to all adjacent vertices (this takes O(log V) by 
decreaseKey operation). We run deleteMin operation once on each vertex, so the 
time required is O(V log V). We run decreaseKey operation once on each edge, so the 
time required is O(E log V). The latter requires an explanation. Consider the inner loop, 
lines 6–11. The number of steps in that loop depends on the degree of vertex u, which 
we will denote by deg(u). Thus, the complexity of the inner loop is O(deg(u) log V). If we 
add the outer loop, the total runtime complexity is given by

∑∑ + = + =
∈∈

O V O u V V O V O V O u( (log ) (deg( ) log )) ( log ) (log ) (deg( ))
u Vu V

  O V V O V E O V V E V( log ) (log ) ( log log ).= + = +

Prim’s algorithm can be further improved by using Fibonacci heaps that provide the best 
runtime in theory. In this case, the algorithm complexity is O(V log V + E) amortized. 

4.4.1.3 Prim’s Algorithm Using an Array
This is the simplest implementation of Prim’s algorithm. We use an unsorted array 
instead of a priority queue. Assuming the pseudocode from the previous section, let 
us analyze the runtime complexity. Each deleteMin (line 5) will take O(V) times to 
find the minimum in an unsorted array. Each decreaseKey (line 10) will take O(1) to 
update the edge weight. The total runtime complexity is given by

∑∑ + = + = + = +
∈∈

O V O u V O V O u O V E O V E( ( ) (deg( ))) ( ) (deg( )) ( ) ( ).
u Vu V

2 2
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4.4.1.4 Correctness of Prim’s Algorithm
Given a weighted connected graph, we will prove that Prim’s algorithm finds an  
MST. We will prove it by induction on the number of iterations. Let S(n) be a spanning  
tree of n < V vertices, constructed so far by Prim’s algorithm, and a tree M of V verti-
ces be an MST.

Base case: n = 1. That is true, since it is just a single node and no edges.

Inductive hypothesis: Assume S(n) is a subtree of M.

Inductive step: We need to prove that S(n + 1) is also a subtree of some MST.

Let e be the edge chosen by Prim’s algorithm. We need to argue that the new tree,  
S(n + 1) = S(n) + {e}, is a subtree of some minimum spanning tree M 1. If e Î M, then this 
is true, since by inductive hypothesis T(n) is a subtree of M, thus S(n) ∪ {e} is also a sub-
tree of M. Consider the case e Ï M. Adding edge e to M creates a cycle in M. Traversing 
the cycle, we find another edge e*Î M. So, Prim’s algorithm could have added e*, but 
instead chose e. It follows, weight(e) £ weight(e*), by the greedy choice property. 
Next, we create a new tree M1 = M - {e*} + {e} by removing e* from M and adding e.  
The total weight of M1 is at most the weight of M. By construction, M1 contains  
S(n + 1). ∎

4.4.2 Kruskal’s Algorithm (1956)
For any weighted undirected connected graph G = (V, E), the algorithm builds a min-
imum spanning tree by adding edges in a sequence of non-decreasing weights. The 
algorithm is a bit different from Prim’s algorithm; it does not maintain a single tree but 
instead maintains a forest (a collection of trees). Here are the algorithm steps:

1.	 Sort edges in non-decreasing order by weight.
2.	 Start with all vertices. Each vertex forms a tree.
3.	 Choose the minimum weight edge and join corresponding trees if it does not 

create a cycle. Otherwise, discard that edge.
4.	 Continue to merge the trees until all vertices are connected.

The proof of correctness is quite similar to the one we used for Prim’s algorithm. We 
leave it to the reader to work out the details.

What about the runtime complexity? Sorting takes O(E log E). Then we have to check 
if an adding edge will cause a cycle. Using a simple graph traversal it would take O(V). We 
must do this test for each edge in the worst case. This will take O(E V) for all edges. The 
total runtime is O(E log E + E V). The runtime can be improved by using an advanced 
data structure for the cycle detection.
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4.5 Shortest Path Problem
Consider a directed or undirected weighted connected graph G = (V, E). One of the nodes 
is designated as a source s. The problem is to find the shortest directed path from s and 
all other vertices in the graph. By shortest path we mean a set of edges with the mini-
mum possible sum of their weights. These shortest paths form a tree called the shortest 
path tree from start node s. There are many versions (and therefore algorithms) of this 
problem. For example, for graphs with equal-edge weights (or without edge weights) 
breadth-first search can be used to solve the single-source shortest path problem. In 
this section we consider Dijkstra’s algorithm and in chapter 6.3 we will discuss the 
Bellman-Ford shortest path algorithm.

4.5.1 Dijkstra’s Algorithm (1959)
For any positively weighted connected graph G = (V, E), the algorithm finds the  
shortest paths between a given source and all other vertices in V. There can be many 
equal weight shortest paths between two vertices; the problem requires finding only 
one. Before going further let us develop an intuition about the algorithm. Consider the 
case when we know the shortest path to some vertices. Let X denote the set of such 
vertices. In figure 4.20 the shortest paths are indicated by labels next to the vertices. 
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FIGURE 4.20  The shortest path to v cannot be shorter than 9.

Note that since there are no edges with negative weights, one cannot make a path 
shorter by visiting a vertex twice. The shortest path to vertex v consists of a path from 
s to a followed by the edge (a, v). This path cannot be shorter if it goes from v to u and 
then comes back to v, since all weights are nonnegative. By the same reason, the path 
s to v cannot be shorter than 9 if it does not go through vertex a. For example, the path 
s-c-u-y-v is of length 10 or longer. 



Chapter 4  Greedy Algorithms  P  63

We are now ready to define precisely Dijkstra’s algorithm:

1.	 Start at vertex s and add it to an empty tree T. This vertex will be the root of T.
2.	 Expand T by adding a vertex from V\T having the minimum path length from 

vertex s.
3.	 Update distances from vertex s to adjacent vertices in V\T.
4.	 Continue to grow the tree until T gets all vertices, T = V.

Step 2 is a greedy choice: Among all adjacent vertices to T we pick the one that has 
the minimum path length from vertex s. Step 3 is the relaxation step: We update the 
path if it’s shorter than in the previous instance. The greedy choice implies that we 
have to use an intermediate data structure, which will allow us to find a vertex with 
the shortest distance in the most efficient way. This suggests use of a priority queue in 
which we store every node v and the upper bound d(v) on its distance from the source 
s. Relaxing edge (u, v) means checking if we can decrease d(v) by using d(u) and the edge 
weight len(u, v). We test whether d(u) + len(u, v) < d(v). If this is true, then we found a 
shorter path to v, which now goes through vertex u. Thus, we update the distance to v 
in the priority queue.

4.5.1.1 Example
Let us run Dijkstra’s algorithm on the graph in figure 4.21. We will keep a binary min-
heap H as an intermediate data structure. Every element of the min-heap contains the 
vertex number and the path length from the source s to that vertex (marked by number 
next to the vertices).
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FIGURE 4.21  The Dijkstra algorithm illustrated on this graph.

We start at vertex s, so T = {s}. Edge weights from T to all adjacent vertices are  
|sa| = 4, |sd| = 3, |se| = 1. We update adjacent vertices a, d, and e in the heap H = {e1, d3, a4},  
where the subscripts denote a path length from s to the vertex. We pick the shortest 
vertex in H and add it to T. After this step T = {s, e} and H = {d3, a4}.
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FIGURE 4.22  The first iteration of Dijkstra’s algorithm.

Next, we update adjacent vertices a and d. The heap becomes H = {d2, a3}. The vertex 
with the shortest path is d. After this step T = {s, e, d}.
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FIGURE 4.23  The second iteration of Dijkstra’s algorithm.

Update adjacent vertices b and c. The heap becomes H = {a3, b6, c8}. The vertex with 
the shortest path is a. After this step T = {s, e, d, a}.
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FIGURE 4.24  The third iteration of Dijkstra’s algorithm.

Update the distance to b and c. The heap is H = {b4, c6}. The vertex with the shortest 
path is b. After this step T = {s, e, d, a, b}. Finally, we add c to the tree T.
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FIGURE 4.25  The tree of shortest paths from the sources.

4.5.1.2 Complexity of Dijkstra’s Algorithm
Dijkstra’s algorithm is quite similar to Prim’s algorithm. The only difference is that 
Prim’s algorithm stores in a priority queue a minimum cost edge whereas Dijkstra’s 
algorithm stores the path length from a source vertex to the current vertex. If follows 
that the runtime of Dijkstra’s algorithm using a priority queue implemented as an array 
is O(V2 + E), and using a min-heap is O(V log V + E log V). The runtime complexity can 
be further improved by using Fibonacci heaps.

4.5.1.3 Correctness of Dijkstra’s Algorithm
We will be using the following notations: d(v) is the shortest s-v path, d(v) is some s-v 
path that is not necessarily shortest, d(v) ³ d(v), and len(u, v) is the edge weight.

We will prove correctness of Dijkstra’s algorithm by induction on the number of itera-
tions. Let S(n) denote a shortest-path tree constructed by the algorithm after n iterations.

Base case: n = 1. That is true, since it is just a single node and no edges.
Inductive hypothesis: Assume S(n) is a shortest-path tree of n vertices.
Inductive step: We need to prove that S(n + 1) is also a shortest-path tree.

Let v be the next vertex chosen by the algorithm and let (u, v) be the chosen edge.  
The shortest path to vertex u Î S(n) is already known; it is d(u). The path to vertex v is 
d(v) = d(u) + len(u, v). Assume that s-u-v path is not the shortest path. So, there is another 
s-v path P that is shorter. Let y be the last vertex on that path. 

s
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FIGURE 4.26  Case a: y Î S(n).
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First, note that vertex y cannot be in S(n). If it was, then by relaxing edge (y, v) we 
would compute the distance to v as d(v) = d(y) + len(y, v). On other hand, since P is 
shorter, we have d(u) + len(u, v) > d(y) + len(y, v). The contradiction is d(v) = d(u) + 
len(u, v) > d(y) + len(y, v) = d(v).

Suppose that y Ï S(n). Let edge (w, x) be the first edge in P that leaves S(n). 

S(n)

w

v

y

x

u

s

FIGURE 4.27  Case b: y Ï S(n).

Vertex x may or may not be vertex y. Since x is on the real shortest path P to v that 
goes through vertex w, we know that d(x) = d(x), which in turn is less than d(v), since 
we exclude the x-y-v sub-path. Next, we note that d(v) £ d(v), since d(v) is the shortest 
path. Combining these together, we have

d(x) = d(x) < d(v) £ d(v).

This gives a contradiction, since the algorithm would not pick v as the next node but 
would instead pick x. ∎

REVIEW QUESTIONS

1.	 (T/F) In the interval scheduling problem, if all intervals are of equal size, a greedy 
algorithm based on earliest start time will always select the maximum number 
of compatible intervals.

2.	 (T/F) Any weighted undirected graph with distinct edge weights has exactly 
one minimum spanning tree.

3.	 (T/F) Suppose we have a graph where each edge weight value appears at most 
twice. Then, there are at most two minimum spanning trees in this graph.

4.	 (T/F) Kruskal’s algorithm can fail in the presence of negative cost edges.
5.	 (T/F) If a connected undirected graph G = (V, E) has n = |V| vertices and n + 5 

edges, we can find the minimum spanning tree of G in O(n) runtime.
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6.	 (T/F) The first edge added by Kruskal’s algorithm can be the last edge added 
by Prim’s algorithm.

7.	 (T/F) Suppose graph G has a unique minimum spanning tree and graph G1 is 
obtained by increasing the weight of every edge in G by 1. The MST of G1 must 
be different from the MST of G.

8.	 (T/F) Suppose graph G has a unique minimum spanning tree and graph G1 is 
obtained by squaring the weight of every edge in G. The MST of G1 may be dif-
ferent from the MST of G.

9.	 (T/F) If path P is the shortest path from u to v and w is a node on the path, then 
the part of path P from u to w is also the shortest path.

10.	 (T/F) If all edges in a connected undirected graph have distinct positive weights, 
the shortest path between any two vertices is unique.

11.	 (T/F) Suppose we have calculated the shortest paths from a source to all other ver-
tices. If we modify the original graph G such that weights of all edges are doubled, 
then the shortest path tree of G is also the shortest path tree of the modified graph.

12.	 (T/F) Suppose we have calculated the shortest paths from a source to all other 
vertices. If we modify the original graph, G, such that weights of all edges are 
increased by 2, then the shortest path tree of G is also the shortest path tree of 
the modified graph.

EXERCISES

1.	 At the Perfect Programming Company, the programmers are paired in order to 
ensure the highest quality of produced code. The productivity of each pair is the 
speed of the slowest programmer. Assuming an even number of programmers, 
devise an efficient algorithm for pairing them up so the total productivity of all 
programmers is maximized.

2.	 A new startup, FastRoute, wants to route information along a path in a com-
munication network, represented as a graph. Each vertex represents a router 
and each edge a wire between routers. The wires are weighted by the max-
imum bandwidth they can support. FastRoute comes to you and asks you to 
develop an algorithm to find the path with maximum bandwidth from any source  
s1, s2, …, sk to any destination t1, t2, …, tn. Devise an algorithm that has the same 
runtime complexity as Dijkstra’s algorithm.

3.	 You are given a set S of n points, labeled 1 to n, on a line. You are also given a set 
of k finite intervals I1, …, Ik, where each interval Ii, is of the form [si, ei], I £ si £ ei.  
Present an efficient algorithm to find the smallest subset X Í S of points such that 
each interval contains at least one point from X. Prove that your solution is optimal.
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4.	 You are given a minimum spanning tree T in a graph G = (V, E). Suppose we 
remove an edge from G, creating a new graph, G1. Assuming that G1 is still con-
nected, devise a linear time algorithm to find an MST in G1.

5.	 You are given a minimum spanning tree T in a graph, G = (V, E). Suppose we 
add a new edge (without introducing any new vertices) to G, creating a new  
graph, G1. Devise a linear time algorithm to find an MST in G1.

6.	 Given graph G = (V, E) with positive edge weights, we know that Dijkstra’s algo-
rithm can be implemented in O((E + V) log V)) time using a binary heap. Suppose 
you have been told that the input graph G is a dense graph in which E = O(V 2). 
Find a way to implement Dijkstra’s algorithm in O(V 2) time.

7.	 Given a graph, G = (V, E), whose edge weights are integers in the range [0, W], where 
W is a relatively small integer number, we could run Dijkstra’s algorithm to find the 
shortest distances from the start vertex to all other vertices. Design a new algorithm 
that will run in linear time O(V + E) and therefore outperform Dijkstra’s algorithm.

8.	 Given a directed acyclic graph, G = (V, E), with nonnegative edge weights and 
the source s, devise a linear time algorithm to find the shortest distances from 
s to all other vertices.

9.	 You are given a graph, G = (V, E), with nonnegative edge weights and the shortest 
path distances d(s, u) from a source vertex s to all other vertices in G. However, 
you are not given the shortest path tree. Devise a linear time algorithm to find 
a shortest path from s to a given vertex t.

10.	 Given a graph, G = (V, E), with nonnegative edge weights and two vertices s and 
t, the goal is to find the shortest path from s to t with an odd number of edges. 
Devise an algorithm that has the same runtime complexity as Dijkstra’s algorithm.

11.	 Given a graph, G = (V, E), with nonnegative edge weights and the shortest path 
distances d(u, v) between any pair of vertices in G, suppose we add a new edge 
(without introducing any new vertices) to G, creating a new graph G1. Devise an 
efficient algorithm (that outperforms Dijkstra’s algorithm in the worst case) to 
update the shortest path distances d(u, v).

12.	 Given n rods of lengths L1, L2, …, Ln, respectively, the goal is to connect all the rods 
to form a single rod. The length and the cost of connecting two rods are equal 
to the sum of their lengths. Devise an algorithm to minimize the cost of form-
ing a single rod. 

13.	 Given a sorted array of frequencies of size n, devise a linear time algorithm for 
building a Huffman tree.
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A divide-and-conquer algorithm design paradigm solves a problem by

•	 dividing it into smaller subproblems of the same type;

•	 solving (recursively or iteratively) each subproblem; and

•	 combining solutions to subproblems to get solutions to the original problem.

This design approach exploits the fact that solutions to smaller subproblems used to solve 
larger problems. All subproblems must have exactly the same structure as the original 
problem and can be solved independently from each other.

Divide-and-conquer (DC) algorithms have a few advantages over other algorithmic 
approaches: 

1.	 Simple proofs of correctness: The DC approach closely follows the structure of an 
inductive proof. 

2.	 Efficiency: The DC approach can often lead to a more efficient solution. Its runtime 
complexity can be expressed by recurrences, which in most cases can be solved 
straightforwardly. Solving such divide-and-conquer recurrences will be a major 
topic of this chapter. 

3.	 Parallelism: Independence of subproblems means that they can be solved in parallel.

As an introduction we will consider two canonical examples of DC: binary search and 
mergesort. Later in the chapter we will look at how to apply divide-and-conquer design 
technique to a variety of problems and analyze their runtime complexities.

Divide-and-Conquer Algorithms

Chapter 5
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Binary search algorithm. The algorithm finds an item in a sorted array by comparing 
the search item with the middle element; if they are unequal, half of the array (in which 
the search item cannot be) is eliminated and the search continues on to the remaining 
half until it is successful or that half is found to be empty. Let T(n) be the number of com-
parisons in the worst case needed to find an item in a sorted array of size n. We define 
the runtime complexity T(n) by a recurrence equation:

T(n) = T(n/2) + O(1)

T(1) = 1.

This recurrence contains the base case T(1) = 1 and the inductive step T(n) = T(n/2) +  
O(1), in which we reduce a problem of size n into a subproblem of size n/2. On each 
recursive step we require a constant time O(1) work to (a) find the middle element in 
an array and (b) compare it with the search item.

Mergesort. The algorithm sorts an array by first dividing the array into equal (or 
nearly equal) subarrays and then combining them in a sorted manner. Let T(n) be the 
number of comparisons in the worst case needed to sort an array of size n. We define 
the runtime complexity T(n) by the following recurrence:

T(n) = 2T(n/2) + O(1) + O(n)

T(1) = 1.

In the base case n = 1, the array is sorted by definition. In the inductive step we gener-
ate two subproblems of size n/2. We also infer the constant work of splitting the array 
in half and a linear time work O(n) of merging two sorted arrays.

8 3 4 1

8 3 4 1 6 5 2 7

6 5 2 7

3 8 1 4 5 6 2 7

8 3 4 1 6 5 2 7

1 3 4 8 2 5 6 7

8 3 4 1 6 5 2 7

1 2 3 4 5 6 7 8

T(n)

T(n/2)

T(n/4)

T(n/8)

O(1)

O(n)

FIGURE 5.1  Mergesort example.
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As we see on these two examples, divide-and-conquer algorithms follow a generic 
pattern: They tackle a problem of size n by recursively solving a ³ 1 subproblems of 
size n/b (where b > 1) and then combining the results in f(n) > 0 time (this also includes 
complexity of dividing). Therefore, the form of divide-and-conquer recurrences for the 
runtime complexity look like this:

T(n) = a T(n/b) + f(n)

T(1) = Q(1). 

In binary search, we have a = 1, since we call a binary search on one half; b = 2, since 
the new subproblem size is half of the original problem size; and f(n) = O(1), since find-
ing the middle and deciding which half to recurse to takes a constant time.

In mergesort, we have a = 2, since we call mergesort twice; b = 2, since the new sub-
problem size is half of the original problem size; and f(n) = O(n), since we merge two 
sorted arrays in linear time.

5.1 Solving Divide-and-Conquer Recurrences
Divide-and-conquer recurrences can be depicted as trees. The way to solve recurrences 
is to draw a tree of recursive calls, where each node in the tree represents a subproblem 
and the value at each node represents the amount of work spent at that subproblem. 
The root node represents the original problem. Every internal node has a ³ 1 children, 
representing the number of subproblems. 

a calls

T(n)

a calls

. . .

T(n/b)

T(n/b2)T(n/b2)

a calls

. . .

T(n/b)

T(n/b2)T(n/b2)

. . .

. . . . . . . . .

. . .

T(1)T(1)T(1)T(1)

FIGURE 5.2  Tree of recursive calls.
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The tree height is h = logb n, and it has a nh alogb=  leaves. This identity can be easily 
proven by the property of logs:

h n
n
b

n alog
log

log
log logb

a

a
a b= = =

a a n( ) .h n a alog log loga b b= =

To figure out how much work is being spent at each subproblem, we substitute the size 
of the subproblem into f(n). Thus, a node for a problem size n will have a child contrib-
uting f(n/b) amount of work. Note, a recurrence T(n) = a T(n/b) + f(n) must converge, 
so we require f(n/b) £ a ·f(n) for some constant a > 0. 

a calls

Leaves, O(1)

f(n)
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. . .

f(n/b)
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a2 f(n/b2)

n logb
a

FIGURE 5.3  Tree represents the total work.

The work contributed by each leaf is constant. Once we have our tree (see  
figure 5.3), the total runtime T(n) can be calculated by summing up the work con-
tributed by all nodes. We can do this by summing up the work at each level of the tree 
and then summing up the levels of the tree. As an example, let us consider a merge-
sort recursion tree:

The work at each level is n, summing up the levels lead to T(n) = Q(n log n) running 
time for mergesort.
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FIGURE 5.4  Mergesort recursion tree.

5.1.1 The Master Theorem
The total work depicted in figure 5.3 is given by (where the tree height is  
h = logb n)
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and depends on three cases that may happen. Either the work done at the leaves domi-
nates, or the work done at internal nodes dominates, or the work at all levels have about 
the same cost. This leads to the master theorem (here, c = logb a):

Case 1: (leaves dominate) If f(n) = O(nc-ε), then T(n) = Q(nc) for some e > 0.

Case 2: (all nodes) If f(n) = Q (nc logk n), k ³ 0, then T(n) = Q(nc logk+1 n).

Case 3: (internal nodes dominate) If f(n) = W(nc+ε), then T(n) = Q( f(n)) for  
some e > 0.

Let us prove Case 1: for some constant e > 0

= =Θe−f n O n T n nif ( ) ( ), then ( ) ( )
a alog logb b .
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Proof. We start with simplifying the finite sum using the definition of the big-O notation:
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where c > 0 is some constant. Next, by simple algebra we get
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Now using the properties of logs, we arrive at
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Therefore, we have showed
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The proof for the other two cases is left to the reader as an exercise.

5.1.2 Examples of Recurrences

Example 1. Solve the following recurrence by the master theorem:

T(n) = 4 T(n/8) + n2.

First, we observe that a = 4 and b = 8; next we compute c = logb a = log8 4 = 2/3. It fol-
lows that this is Case 3, since f(n) = n2 = W(n2/3). Therefore, T(n) = Q(n2).

Example 2. Solve the following recurrence by the master theorem:

T n T n n
n

( ) 2
2 log

.=








+
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We start with computing c = logb a = log2 2 = 1. Next, we observe that this is not  
Case 3, f(n) ¹ W(n1+ε). We can also eliminate Case 2, f(n) ¹ Q(n), since the parameter k 
must be nonnegative. Finally, we claim that this does not fall into Case 1, f(n) ¹ O(n1-ε). 
We will prove it by contradiction. Assume that

f n n
n

O n( )
log

( ).1= = e−

By the definition of Big-O notation,

n
n

c n
log

1≤ e−

which is the same as

n c nlog£e

and (after applying log to both sides)

n c nlog log log log .e ≤ +

Clearly, this inequality does not hold when →∞n . It follows that the master theorem 
is not applicable to the original recurrence.

Example 3. Solve the following recurrence using the tree method:

T n T n n
n

( ) 2
2 log
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
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+

We already know that the total work (as it is depicted in figure 5.3) is given by
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where 

f n n
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It follows,
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Next, we note that the finite sum can be resummed from log(n) - 1 back to 0. We get
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Hence,

=Θ + =Θ + Θ = ΘT n n n H n n n n n( ) ( ) ( ) (log log ) ( log log ).nlog

5.2 Integer Multiplication 
Given two n-digit integers a and b, our goal is to design an algorithm to compute a prod-
uct a × b. The brute force approach is to multiply two numbers digit by digit. Assuming 
that digit multiplication and addition are done in constant time, this leads to Q(n2) run-
time complexity of the brute force approach.

Let us design a divide-and-conquer algorithm. We split each number in half,  
a = x1 × 10n/2 + x0, b = y1 × 10n/2 + y0, and then multiply those four pieces:

a × b = (x1 × 10n/2 + x0) × (y1 × 10n/2 + y0) = x1 × y1 × 10n + (x0 × y1 + x1 × y0) × 10n/2 + x0 × y0.

Therefore, we reduced the problem of multiplication of two n-digit integers to multi-
plication of four n/2-digit integers. Additionally, we gained three additions, each takes 
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Q(n) and two multiplications by a base, and each takes a constant time. Let T(n) be a 
runtime complexity of multiplication of two n-digit integers, then

T(n) = 4 T(n/2) + Q(n).

It follows, by the master theorem (Case 1), T(n) = Q(n2), which is not an improvement 
to the brute force approach. In 1960 A.A. Karatsuba observed that n-digit multiplica-
tion can be done with only three n/2-digit multiplications at the cost of increasing the 
number of additions:

a × b = x1 × y1 × 10n + ((x0 + x1) × (y0 + y1) - x0 × y0 - x1 × y1) × 10n/2 + x0 × y0.

It looks that we have increased the number of multiplications from four to five, but that 
is not so, since we will compute x0 × y0 and x1 × y1 only once and then reuse them. The 
recurrence for the time complexity T(n) is given now by

T(n) = 3 T(n/2) + Q(n).

Using the master theorem (Case 1) we find, =Θ =ΘT n n n( ) ( ) ( )log3 1.58 .
The eternal question is, “Can we do better?” A few years later A. Toom and S. Cook 

independently proposed the generalizations of the Karatsuba method by splitting an 
n-digit integer into three parts of size n/3:

a × b = (x2 × 102n/3 + x1 × 10n/3 + x0) × (y2 × 102n/3 + y1 × 10n/3 + y0). 

However, this requires nine multiplications. To get an improvement to Karatsuba’s algo-
rithm, the number multiplication must be reduced to five. It turns out it is possible to 
define five new variables zk to express xk and yk in terms of zk as follows:

x0 × y0 = z0

12 (x1 × y0 + x0 × y1) = 8z1 - z2 - 8z3 + z4

24 (x2 × y0 + x1 × y1 + x0 × y2) = -30z0 + 16z1 - z2 + 16z3 - z4

12 (x2 × y1 + x1 × y2) = -2z1 + z2 + 2z3 - z4

24 x2 × y2 = 6z0 - 4z1 + z2 - 4z3 + z4.
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The recurrence for the time complexity T(n) now is 

T(n) = 5 T(n/3) + Q(n)

and its solution is =Θ =ΘT n n n( ) ( ) ( )
log 5 1.473 . A. Toom and S. Cook have still further gen-

eralized this idea by proposing k-way splitting, and they were able to reduce the number 
of multiplications from k2 to 2k - 1. This leads to the following recurrence

T(n) = (2k - 1) T(n/k) + Q(n)

and its solution, =Θ −T n n( ) ( )
klog (2 1)k . It should be noted that by increasing k we get faster 

and faster algorithms; however, we will never get a linear performance. Also, we have 
to mention that the cost of the extra additions is growing very rapidly.

5.3 Matrix Multiplication
Given two n ́  n matrices, A and B, our goal is to design an algorithm to compute a prod-
uct C = A × B. The standard matrix multiplication algorithm is based on the mathematical 
definition of matrix multiplication in which rows of one matrix are multiplied by the 
column of another matrix:
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For n ´ n matrices the runtime is Q(n3). In 1969 V. Strassen, inspired by Karatsuba’s 
method, designed a divide-and-conquer algorithm for matrix multiplication. The idea 
is to divide the original matrix in four matrices, each of which of size n/2 ´ n/2, and 
then multiply them using the definition of block-matrix multiplication. Let us assume 
that n is a power of two and write matrices A and B as block matrices:

A
A A

A A
B

B B

B B
C AB

C C

C C
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The usual matrix multiplication works by substituting the blocks into the formula. Each 
of the four block entries of C are computed independently from one another; thus, we 
may come up with the following recurrence for the runtime complexity:

T(n) = 8 T(n/2) + Q(n2).
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On each step we compute four block matrices, Ci j, each requiring two recursive calls 
to matrices of size n/2 ´ n/2. Additionally, the algorithm requires four matrix addi-
tions, each taking Q(n2). Using the master theorem (Case 1) we find T(n) = Q(n3). This 
is not an improvement to the standard matrix multiplication. V. Strassen has observed 
that the number of block matrix multiplications can be reduced to seven by defining 
new matrices: 

S1 = (A12 - A22) (B21 + B22)

S2 = (A11 + A22) (B11 + B22)

S3 = (A11 - A21) (B11 + B12)

S4 = (A11 + A12) B22

S5 = A11 (B12 - B22)

S6 = A22 (B21 - B11)

S7 = (A21 + A22) B11

so that

A A

A A

B B

B B

S S S S S S

S S S S S S
11 12

21 22
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21 22

1 2 4 6 4 5

6 7 2 3 5 7
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The recurrence for the time complexity T(n) now is 

T(n) = 7 T(n/2) + Q(n2)

and its solution is =Θ =ΘT n n n( ) ( ) ( )log7 2.808 . We got a faster algorithm at the cost of 
increasing the number of additions, Strassen’s algorithm requires 18 matrix additions. 
The algorithm also requires significantly more memory compared to the standard 
algorithm. 

There are more recent algorithms that are theoretically faster than Strassen:

1969, Strassen O(n 2.808)
1978, Pan O(n 2.796)
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1979, Bini O(n 2.78)
1981, Schonhage O(n 2.548)
1981, Pan O(n 2.522)
1982, Romani O(n 2.517)
1982, Coppersmith and Winograd O(n 2.496)
1986, Strassen O(n 2.479)
1989, Coppersmith and Winograd O(n 2.376)
2010, Stothers O(n 2.374)
2011, Williams O(n 2.3728642)
2014, Le Gall O(n 2.3728639)

However, the constant factor hidden in the upper bounds is so large that these algo-
rithms are only valuable for matrices of enormous sizes. Even Strassen’s algorithm is 
not beneficial on current architectures for matrix sizes below 500.

5.4 The Maximum Subsequence Sum Problem
Given an array A of n numbers, design a divide-and-conquer algorithm that finds a sub-
array such that A[i] + A[i + 1] + … + A[ j] is the maximum. For example, A = {3, -4, 5, 
-2, -2, 6, -3, 5, -3, 2}. The maximum sum subarray is {5, -2, -2, 6, -3, 5}.

The problem is easy when all the numbers are positive (then the entire array is the 
maximum) or negative (then we need to find the maximum number in the array). The 
problem becomes interesting when the array contains positive and negative num-
bers. Let’s start with the brute force algorithm: we generate all subarrays (there are 
Q(n2) of them) and then find the one with the maximum sum. This is a cubic time Q(n3)  
algorithm.

The divide-and-conquer approach involves splitting the array in half by the median 
index and making recursive calls on each half. This will find the maximum subarray in 
the left half and the maximum subarray in the right half. But the solution to the prob-
lem may not necessarily be included entirely within the left or right subarrays. It may 
span both subarrays. Therefore, in the combining step span(n) we need to search for 
the maximum subarray that begins in the left half of the array and ends in the right 
half. An overall maximum is then returned as the maximum of the three (left, right, 
and span). Let T(n) be a runtime complexity of finding the subarray of maximum sum.  
Then,

T(n) = 2 T(n/2) + span(n).
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The combine step span(n) requires a linear search from the middle index of A to the left 
and to the right. Therefore,

T(n) = 2 T(n/2) + Q(n).

Solving the above recurrence by the master theorem yields T(n) = Q(n log n).
Let us briefly explain the implementation of span(n) in linear time based on the above 

example. If the solution spans the center, then it must include the middle elements -2 
and the next to it 6:

{3, -4, 5, -2, -2, 6, -3, 5, -3, 2}.

Next, we start with -2 and go left computing partial sums: 

{0, -3, 1, -4, -2, 6, -3, 5, -3, 2}.

Then we compute partial sums to the right starting with 6:

{0, -3, 1, -4, -2, 6, 3, 8, 5, 7}.

We choose the max value from each side: 1 + 8 = 9

{0, -3, 1, -4, -2, 6, 3, 8, 5, 7}.

It follows that the maximum sum subarray is {5, -2, -2, 6, -3, 5}.
In conclusion, we have to mention that there are faster algorithms for solving this 

problem; however, they do not use a divide-and-conquer technique.

5.5 Computing Fibonacci Numbers
The Fibonacci numbers are defined by the recurrence relation Fn = Fn-1 + Fn-2, n ³ 2 
with the base values F0 = 0 and F1 = 1. The formal definition of this sequence directly 
maps to a divide-and-conquer algorithm to compute the n-th Fibonacci number Fn. Here 
is a pseudocode for the algorithm:

int fib(int n) {
  if (n == 0 || n == 1) return 1
  else 
  return fib(n-1) + fib(n-2)
}
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Its runtime complexity T(n) can be expressed as

T(n) = T(n - 1) + T(n - 2) + Q(1)

assuming that two Fibonacci numbers can be added in constant time. The solution to 
the recurrence is exponential in n; we roughly double the work on each recursive call. 
For large n the addition of Fibonacci numbers Fn takes a linear time in the number of 
bits. The reason is that Fn = Q(jn), where j is a golden ratio, and

log(Fn) = log(Q(jn)) = Q(n log(j)) = Q(n).

Therefore, the algorithm runtime complexity with non-constant time arithmetic is 
given by

T(n) = T(n - 1) + T(n - 2) + Q(n).

Its solution is also exponential in n.
For this problem, divide and conquer ends up having exponential runtime com-

plexity just because the recurrence tree for T(n) has a height Q(n) and an exponential 
number of nodes. 

f(6)
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f(2)
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f(2) f(3)
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f(1)

f(1)

f(5)

FIGURE 5.5  A recurrence tree for F6.

However, it turns out that only some of these nodes are distinct, the rest are repeats. 
Figure 5.5 demonstrates redundant computations for F6; we recompute the same 
Fibonacci numbers over and over again.

One may wonder why a divide-and-conquer approach was so efficient for merge-
sort. The reason is that a recurrence tree for mergesort (see figure 5.4) has a height 
Q(log n) and therefore a polynomial number of nodes. As the result of this, we shall use 
a divide-and-conquer technique only when subproblems are independent. In case of 
overlapping subproblems, the better time complexity may be obtained by a dynamic 
programming approach.
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REVIEW QUESTIONS

1.	 (T/F) For a divide-and-conquer algorithm, it is possible that the dividing step 
takes asymptotically longer time than the combining step.

2.	 (T/F) A divide-and-conquer algorithm acting on an input size of n can have a 
lower bound less than Q(n log n).

3.	 (T/F) There exist some problems that can be efficiently solved by a divide-and-
conquer algorithm but cannot be solved by a greedy algorithm.

4.	 (T/F) It is possible for a divide-and-conquer algorithm to have an 
exponential runtime.

5.	 (T/F) A divide-and-conquer algorithm is always recursive.
6.	 (T/F) The master theorem can be applied to the following recurrence:  

T(n) = 1.2 T(n/2) + n.
7.	 (T/F) The master theorem can be applied to the following recurrence:  

T(n) = 9 T(n/3) - n 2 log n + n.
8.	 (T/F) Karatsuba’s algorithm reduces the number of multiplications from four 

to three.
9.	 (T/F) The runtime complexity of mergesort can be asymptotically  

improved by recursively splitting an array into three parts (rather than into 
two parts).

10.	 (T/F) Two n ́  n matrices of integers are multiplied in Q(n2) time.
11.	 (Fill in the blank) Let A, B be two 2 ´ 2 matrices that are multiplied using the 

standard multiplication method and Strassen’s method.
a.	 Number of multiplications in the standard method: 
b.	 Number of additions in the standard method: 
c.	 Number of multiplications using Strassen’s method: 
d.	 Number of additions using Strassen’s method: 

12.	 (Fill in the blank) The space complexity of Strassen’s algorithm is:  .

EXERCISES

1.	 Solve

T(n) = 3 T(n/4) + n

	 by the recurrence tree method.
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2.	 Solve

T(n) = T(3n/4) + T(n/4) + n

	 by the recurrence tree method.
3.	 Solve the following recurrences by the master theorem:

T n T n n n( ) 3
2

log=
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
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+

T n T n
( ) 10

2
2n=
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




+

4.	 Prove Case 2 of the Master theorem.
5.	 Prove Case 3 of the Master theorem.
6.	 There are two sorted arrays, each of size n. Design a divide-and-conquer algo-

rithm to find the median of the array obtained after merging the 2 arrays. Discuss 
its worst-case runtime complexity.

7.	 You are given an unsorted array of all integers in the range [0, …, 2k - 1] except 
for one integer, which is denoted by M. Describe a divide-and-conquer algorithm 
to find the missing number M and discuss its worst-case runtime complexity in 
terms of n = 2k.

8.	 We know that binary search on a sorted array of size n takes Q(log n) time. Design 
a similar divide-and-conquer algorithm for searching in a sorted singly linked 
list of size n. Discuss its worst-case runtime complexity.
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9.	 We know that mergesort takes Q(n log n) time to sort an array of items. Design a 
divide-and-conquer mergesort algorithm for sorting a singly linked list. Discuss 
its worst-case runtime complexity.

10.	 Given a sorted array of n integers that has been rotated an unknown number of 
times, give an Q(log n) divide-and-conquer algorithm that finds an element in 
the resulting array. Note, after a single rotation, the array is not sorted anymore, 
so we cannot use the binary search. An example of a rotations sorted array is  
A = [1, 3, 5, 7, 11]; after first rotation it is A = [3, 5, 7,11, 1], and after second rota-
tion it is A = [5, 7, 11, 1, 3]. You may assume that that array has no duplicates.

11.	 Consider a two-dimensional array A of size n ́  n filled with integers. In the array 
each row is sorted in ascending order and each column is also sorted in ascend-
ing order. Our goal is to determine if a given value x exists in the array. Design 
a divide-and-conquer algorithm to solve this problem and state the runtime of 
your algorithm. Don’t just call binary search on each row or column. Your algo-
rithm should take strictly less than O(n2) time to run.

12.	 Improve your divide-and-conquer algorithm from Exercise 10 to run in Q(n) time.
13.	 A polygon is called convex if all its internal angles are less than 180°. A convex 

polygon is represented as an array V with n vertices of the polygon, where each 
vertex is in the form of a coordinate pair (x, y). We are told that V[1] is the vertex 
with the least x coordinate and that the vertices V[1],V [2], …, V[n] are ordered 
counter-clockwise. Design a divide-and-conquer algorithm to find the vertex 
with the largest x-coordinate. Discuss its worst-case runtime complexity.
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I n this chapter we will learn another powerful algorithm design technique that is used 
to solve a broad variety of problems by breaking them down into simpler subproblems 

and storing their solutions for further computation. We usually apply dynamic program-
ming to optimization problems. 

The technique of dynamic programming (usually referred to as DP) was originally intro-
duced by Richard Bellman in the 1950s. At that time there was no programming as we 
understand it today; the word computer meant a person performing mathematical calcula-
tions. In that time early computers were mostly women who used painstaking calculations 
on paper and later on punch cards. The Turing machine that describes a model for algorithms 
and computational problem solving was widely adapted only in the 1960s. Originally R. 
Bellman referred the word programming to the use of the method to find an optimal pro-
gram, in the sense of planning or scheduling. The word dynamic was chosen by R. Bellman 
to capture the multistage solution to a problem. 

6.1 Introduction
There are two key attributes that a problem must have in order for dynamic programming 
to be applicable: 

•	 Optimal substructure: The solution can be obtained by the combination of optimal solu-
tions to its subproblems. Such optimal substructures are usually described recursively.

•	 Overlapping subproblems: The space of subproblems must be small, so an algorithm 
solving the problem should solve the same subproblems over and over again.

Dynamic Programming

Chapter 6



88  P  Algorithms in Action

Reading this you may be wondering how dynamic programming differs from a greedy 
approach. The major difference is that greedy algorithms first make a greedy choice 
and then solve the resulting subproblems. Dynamic programming is similar to brute 
force and will examine all subproblems. A DP algorithm can be described as a multi-
stage decision process, and therefore we can construct a recurrence tree to enumerate 
all possible subproblems. During the DP algorithm execution, we have to consider all 
available choices at any given node. In the greedy model we use a greedy heuristic to 
pick just one choice.

Comparing DP to a divide-and-conquer algorithm, we say that dynamic programming 
usually enumerates all possible dividing strategies and therefore extends divide and 
conquer by reusing subproblems solutions. Divide-and-conquer partitions the problem 
into disjointed subproblems, though dynamic programming applies when the subprob-
lems overlap. We may view a divide-and-conquer algorithm as a DP with no subproblem 
overlapping. The efficiency of DP directly depends on the amount of subproblem over-
lapping; the more overlapping we have, the more efficient DP algorithm we get. 

A dynamic programming algorithm is implemented either recursively (memoization) 
or iteratively (tabulation) by placing all intermediate results into a table. Let us explain 
the differences between the two techniques on the example of Fibonacci numbers Fn. 
In Chapter 5.5 we demonstrated a divide-and-conquer approach to computing the 
Fibonacci numbers. We have shown that divide and conquer ends up having exponen-
tial time complexity, mainly due to the exponential number of overlapping subproblems. 
One way to avoid redundant computation is memoization. Memoization is a recursive 
optimization technique to speed up recursive programs by storing the intermediate 
results in a table. Here is a pseudocode using memoization:

int table [50];  //initialize to zero
table[0] = table[1] = 1;
int fib(int n) {
  if (table[n] == 0) 
      table[n] = fib(n-1) + fib(n-2);
  return table[n];
}

The runtime complexity T(n) of this implementation is given by 

T(n) = T(n - 1) + O(n).

Note that the complexity of fib(n-2) is constant since that Fibonacci number will be 
computed during a call to fib(n-1). The solution to this recurrence is Q(n2). This example 
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demonstrates that reusing previously computed (and stored) values leads to a more 
efficient algorithm. Next, we consider tabulation: a non-recursive bottom-up optimi-
zation technique. Here is a pseudocode using tabulation:

int table [50]; 
table[0] = table[1] = 1;
int fib(int n) {
  for(int k = 2; k < n; k++) 
      table[k] = table[k-1] + table[k-2];
}

It has the same runtime complexity as memoization. Generally, dynamic program-
ming techniques can be implemented either using tabulation (a non-recursive bottom-up 
approach) or memoization (a recursive top-down approach). Both results in the same solu-
tion, though they may differ by a constant factor in runtime and memory use. For all DP 
algorithms in this chapter we will always use tabulation as the implementation approach.

In conclusion of the introduction we note that the example of Fibonacci numbers 
demonstrates that reusing previously computed (and stored) subproblems may lead 
to a more efficient algorithm. The important aspect is that the total number of unique 
subproblems to be solved must be polynomial. 

6.2 Knapsack Problem
You are given a set of n unique items, with weights w1, …, wn and values v1, …, vn, where 
the weights and values are all integers. The problem is to find a subset of the most valu-
able items such that their total weight does not exceed W. We assume that all items are 
unbreakable (thus, 0-1 problem).

Let’s start with the brute force algorithm: Consider all possible subsets of n items 
and then find the one with the maximum value. The worst-case runtime complexity of 
this approach is exponential, since the total number of subsets is O(2n); there are two 
choices for each item: Either we pick that item, or we don’t. 

Next, we turn to dynamic programming by storing all distinct subproblems (sub-
sets) in a table. First, we formalize the problem by introducing an indicator variable xk 
for each item k = 1, 2, …, n:

=







1, if item is selected

0, otherwise
.x k

k
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Then, we write the 0-1 Knapsack problem as follows

∑

∑ ≤

=

=

max
1

1

v x

w x W

k

n

k k

k

n

k k

This formalization helps us to visualize decisions we make, which in turn will help us 
to define subproblems. Figure 6.1 shows that we start with n items and an empty knap-
sack of capacity W. The first decision we make is to either select the nth item (the left 
child in the tree) or not select it (the right child in the tree)

[1..n–1], W – wn

[1..n – 2], W[1..n – 2], W – wn – 1[1..n – 2], W – wn[1..n – 2], W – wn – wn – 1

[1..n – 1], W

[1..n], W
xn = 1

xn – 1 = 1 xn – 1 = 1xn – 1 = 0 xn–1 = 0

xn = 0 Level n

Level n – 1

Level n – 2

FIGURE 6.1  Decision tree.

If an item is selected, the knapsack capacity gets smaller; also, the set of available 
items shrinks by one (remember, all items are unique). Each node in this tree represents 
a subproblem, call it OPT[k, w], that corresponds to the maximum value achievable 
using a knapsack of capacity 0 £ w £ W and items 1, 2, …, k, where 1 £ k £ n. In order to 
compute OPT[k, w] we need to express it in terms of the smaller subproblems. Again, 
this tree suggests two cases:

1.	 xk = 1, k-th item is included 

	 OPT[k, w] = vk + OPT[k - 1, w - wk]

2.	 xk = 0, k-th item is not included

	 OPT[k, w] = OPT[k - 1, w]

We do not know if the k-th item is actually included or not into the optimal solution; 
therefore, we have to try both possibilities and then choose the maximum:

= + − − −k w v k w w k wOPT[ , ] max( OPT[ 1, ],OPT[ 1, ]).k k
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The optimal solution we seek is OPT[n, W]. This recursive definition must be termi-
nated by base cases: 

OPT[k, w] = 0, if k = 0 or w = 0
OPT[k, w] = OPT[k - 1, w], if wk > w.

The first base case represents a situation when the knapsack has zero capacity or there 
are no items to choose from. The second base case occurs when the item to choose is 
too big for the knapsack (remember, items are not breakable). The algorithm then con-
sists of filling out a two-dimensional table. We fill out a table in the bottom-up manner, 
from smaller size subproblems to larger ones.

Let us trace the algorithm on the following example: n = 4, W = 5 and (wk, vk) =  
{(2, 3), (3, 4), (5, 5), (5,6)}. Let OPT[k, w] be a table (see table 6.1) where each row rep-
resents available items k = 0, 1, 2, 3, 4, and each column represents the knapsack 
capacities in the weight units.

TABLE 6.1  OPT[k, w] table filled with initial conditions

0 1 2 3 4 5

0 0 0 0 0 0 0

1 0
12 0
123 0
1234 0

The recursive definition of OPT[k, w] infers that to enter a value at a given (k, w) index; 
we have to know table entries at (k - 1, w) and (k - 1, w - wk). This suggests filling up 
the table from top to bottom and from left to right. 

Table 6.2 demonstrates the case when only the first item (w1, v1) = (2, 3) is avail-
able. To enter, for example, OPT[1, 2], we need to lookup OPT[0, 2] (the first item is not 
chosen) and OPT[0, 0] (the first item is chosen). Thus, OPT[1, 2] = max(3 + 0, 0) = 3.

TABLE 6.2  OPT[k, w] for the first item (w1, v1)

0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3
12 0
123 0
1234 0
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Table 6.3 demonstrates the case when two items, (w1, v1) = (2, 3) and (w2, v2) =  
(3, 4), are available. In order to calculate, for example, OPT[2, 5], we need to lookup 
OPT[1, 5] and OPT[1, 2]. Thus, OPT[2, 5] = max(4 + 3, 3) = 7.

TABLE 6.3  OPT[k, w] for the first two items

0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3
12 0 0 3 4 4 7
123 0
1234 0

The final OPT[k, w] is shown in table 6.4. The optimal solution is OPT[4, 5] = 7, that 
means that we found a subset of items with the maximum value 7. 

TABLE 6.4  The final OPT[k, w] table

0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3
12 0 0 3 4 4 7
123 0 0 3 4 5 7
1234 0 0 3 4 5 7

Here is a pseudocode. We fill a two-dimensional table with n + 1 rows and  
W + 1 columns:

int knapsack(int W, int w[ ], int v[ ], int n) {
  int OPT [n+1][ W+1];
  for (k = 0; k <= n; k++) {
      for (j = 0; j <= W; j++) {
          if (k==0 || j==0) OPT [k][j] = 0;
          if (w[k] > j) OPT [k][j] = OPT [k-1][j];
          else
            OPT [k][j] = max(v[k] + OPT [k-1][j − w[k-1]],  OPT [k-1][j]);
      }
    }
    return Opt[n][W];
  }
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Each table entry takes constant time to fill, since the work we do involves two table 
lookups and one comparison. The overall running time is O(n W). 

Note that the OPT[k, w] table does not show the optimal items, but only the maxi-
mum value. We can trace back in the table (see table 6.5) to find which items give us 
that value. Starting from OPT[n, W], we check if OPT[n, W] = OPT[n - 1, W]. If they are 
equal, it means the nth item was not chosen, then go to OPT[n - 1, W]. If they are not 
equal, return the nth item and go to OPT[n - 1, W - wn]. Continue until you reach one 
of the base cases. 

Table 6.5 illustrates that by tracing back we find the optimal solution consisting of 
two items (w1, v1) = (2, 3) and (w2, v2) = (3, 4).

TABLE 6.5  Tracing OPT[k, w]

0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3
12 0 0 3 4 4 7
123 0 0 3 4 5 7
1234 0 0 3 4 5 7

6.2.1 Pseudo-Polynomial Running Time
The solution to the knapsack problem is not polynomial in the input size, but pseudo- 
polynomial. This section explains the subtle difference between the two.

Let us compute the total input size of the knapsack problem:

int knapsack(int W, int w[], int v[], int n).

An array of weights int w[ ] will take O(log w1) + … + O(log wn) bits. Assuming that 
each item does not exceed the knapsack capacity W, this simplifies to O(n log W). An 
array of values int v[ ] will take O(log v1) + … + O(log vn) = O(n log V) bits, where 
V = max(v1, …, vn). Thus, the total input size is 

O(log W + n log W + n log V + log n) = O(n log (W V))

bits. Now compare the input size with the running time O(n W). Is O(n × W) polynomial 
in the input size O(n × log W)? It is polynomial in n, but it is not polynomial in W. Let  
k = log W; then the input size is O(n × k) and the running time is O(n × 2k). This is an 
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exponential time algorithm! Indeed, if we increase the knapsack capacity by 2, so  
k´ = 2 × k, the running time O(n × 2k´) = O(n × 22k) will increase quadratically.

Definition. A numeric algorithm runs in pseudo-polynomial time if its running 
time is polynomial in the numeric value of the input but is exponential in the input size.

We will see in Chapter 9 that it is not known if the knapsack problem can be solved 
in polynomial time. It is also not proven that it cannot be solved in polynomial time.

6.3 Static Optimal Binary Search Tree
In this section we will solve the optimization problem of finding the binary search 
tree that minimizes the total search time, given a set of keys and probabilities of look-
ing up each key. The tree cannot be modified (no insertions and deletions) after it has 
been constructed.

We are given a sequence k1 < k2 < … < kn of n keys, which are to be stored in a binary 
search tree. We are also given a search probability pi for each key ki. The search cost 
for key ki is defined by depth(ki), where we assume that the root depth is 1 (for conve-
nience of computations). We need to build a binary search tree T from the keys with 
the minimum total search cost:

∑= ⋅
=

Cost T p depth k( ) ( )i T i
i

n

1 .

Example. Consider 5 keys k1 < k2 < k3 < k4 < k5 with the following search probabilities:  
p1 = 0.25, p2 = 0.2, p3 = 0.1, p4 = 0.15, and p5 = 0.3. There are many different binary 
search trees where the given keys can be stored. Here is one possibility (a balanced 
tree) with the total cost 2.2:

Cost = (0.25 ́  2) + (0.2 ́  1) + (0.1 ́  3) + (0.15 ́  2) + (0.3 ́  3) = 2.2.

1
2
3
4
5

2
1
3
2
3

0.5
0.2
0.3
0.3
0.9

ki Depth (ki) pi • depth (ki)

k5k3

k4

k2

k1

FIGURE 6.2  A balanced tree.
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There is another possibility—a greedy tree. The greedy approach inserts the most 
frequent key first.

1
2
3
4
5

2
3
4
4
1

0.5
0.6
0.4
0.6
0.3

ki Depth (ki) pi • depth (ki)

k4k3

k2

k1

k5

FIGURE 6.3  A greedy tree.

The total cost of the greedy tree is 2.4. Finally is an optimal tree of the cost of 2.15.

1
2
3
4
5

2
1
4
3
2

0.5
0.2
0.4
0.45
0.6

ki Depth (ki) pi • depth (ki)

k5

k4

k3

k2

k1

FIGURE 6.4  An optimal tree.

This example demonstrates that an optimal BST may not have the smallest height 
nor have the highest probability key at the root. Also, an optimal BST is different from 
the Huffman tree (chapter 4.3), since the keys are not restricted to be leaves only. This 
suggests a brute force approach when we consider all possible binary trees and then 
choose the optimal. The only problem is that there are exponentially many binary trees 
(they are counted in the Catalan numbers1). Fortunately, by using dynamic program-
ming, we can solve the problem efficiently.

The idea behind the DP approach is that in order to find an optimal solution for all 
keys k1, …, kn, we must be able to find an optimal solution for any subset ki, …, kj. Let 
OPT[i, j] be the total search cost for the optimal tree T on ki, …, kj keys. 

∑= ⋅
=

i j p depth kOPT[ , ] ( )
s i

j

s T s

1	 “Catalan numbers,” Wikipedia, https://en.wikipedia.org/wiki/Catalan_number
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For this to work, we need to express OPT[i, j] in terms of smaller subproblems. Suppose 
the root of T on ki, …, kj keys is kr, where i £ r £ j. This breaks the tree T into to subtrees: 
TL - a subtree on ki, …, kr-1 keys, and TR - a subtree on kr + 1, …, kj keys.

TL TR

kr

ki kjkr–1 kr+1

FIGURE 6.5  Computing subproblems.

We can therefore compute OPT[i, j] as follows:

∑ ∑= ⋅ + + ⋅
=

−

= +

i j p depth k p p depth kOPT[ , ] ( ) ( ).
s i

r

s T s r
s r

j

s T s

1

1

Note that depth k depth k( ) 1 ( )T s T sL
= +  and depth k depth k( ) 1 ( )T s T sR

= + . It follows that

∑ ∑= ⋅ + + + ⋅ +
=

−

= +

i j p depth k p p depth kOPT[ , ] (1 ( )) (1 ( ))
s i

r

s T s r
s r

j

s T s

1

1

∑ ∑= +…+ + ⋅ + ⋅
=

−

= +

p p p depth k p depth k( ) ( )i j
s i

r

s T s
s r

j

s T s

1

1
L R

= +…+ + − + +p p i r r jOPT[ , 1] OPT[ 1, ].i j

Finally, since we don’t know the r, we minimize OPT[i, j] over all choices of r, giving us 
the final recurrence

= +…+ + − + +
≤ ≤

i j p p i r r jOPT[ , ] min{ OPT[ , 1] OPT[ 1, ]}
i r j i j

with two base cases

OPT[i, i] = pi

OPT[i, i - 1] = 0.

The optimal solution we seek is OPT[1, n].
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Runtime. There are n2 subproblems, and each subproblem takes O(n) time to compute. 
Thus, the total running time is O(n3).

Let us trace the algorithm on keys k1 < k2 < k3 < k4 < k5 with the following search 
probabilities: p1 = 0.25, p2 = 0.2, p3 = 0.1, p4 = 0.15, and p5 = 0.3. We will assume that 
keys are just numbers 1, 2, 3, 4, and 5. Table 6.6 shows the OPT[i, j] table filled with 
initial conditions.

TABLE 6.6  OPT[i, j] table filled with initial conditions.

0 1 2 3 4 5

1 0 0.25
2 0 0.2
3 0 0.1
4 0 0.15
5 0 0.3

The recursive definition of OPT[i, j] infers that we fill up the table diagonally. The 
first value to compute is OPT[1, 2]

= + + − + +
≤ ≤

p p r rOPT[1, 2] min{OPT[1, 1] OPT[ 1,2]}
r1 2 1 2

OPT[1, 2] = 0.45 + min(0 + 0.2, 0.25 + 0) = 0.65.

Proceeding in the same way, we fill up the whole diagonal OPT[i, i + 1], as shown in 
table 6.7.

TABLE 6.7  Diagonal OPT[i, i + 1] for i = 1, 2, 3, 4

0 1 2 3 4 5
1 0 0.25 0.65
2 0 0.2 0.4
3 0 0.1 0.35
4 0 0.15 0.6
5 0 0.3

Next, we fill up the next diagonal OPT[i, i + 2] for i = 1, 2, 3. To compute, for example, 
OPT[1, 3] we do the following

= + + + − + +
≤ ≤

p p p r rOPT[1, 3] min{OPT[1, 1] OPT[ 1,3]}
r1 2 3 1 3

OPT[1, 3] = 0.55 + min(0 + 0.4, 0.25 + 0.1, 0.65 + 0) = 0.9.
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Tables 6.8 shows the final result.

TABLE 6.8  The final cost table

0 1 2 3 4 5

1 0 0.25 0.65 0.9 1.3 2.15
2 0 0.2 0.4 0.8 1.45
3 0 0.1 0.35 0.9
4 0 0.15 0.6
5 0 0.3

In order to compute the actual BST, for each subproblem we need also to store the 
root of the corresponding subtree

= − + +
≤ ≤

i j i r r jroot[ , ] argmin{OPT[ , 1] OPT[ 1, ]}.
i r j

See table 6.9 for the root indices.

TABLE 6.9  The table root[i, j] of root indices

0 1 2 3 4 5

1 1 1 2 2 2
2 2 2 2 4
3 3 4 5
4 4 5
5 5

6.4 The Bellman-Ford Algorithm
In chapter 4.5 we explored Dijkstra’s algorithm for finding the shortest paths from a 
single source vertex to all other vertices. Dijkstra’s algorithm works only on graphs with 

nonnegative-weight edges. If some edge weights are negative, 
then Dijkstra’s algorithm could return incorrect results. As an 
example, consider the graph in figure 6.6. Dijkstra’s algorithm 
would visit vertex C first and return the distance 3. However, 
there is a shorter path S-A-B-C with the distance 1. Due to the 
greedy nature of the algorithm, the new distance to C won’t 
be recorded.

You may think that there is an easy way to fix the algorithm 
by adding a large constant to each edge weight. Unfortunately, 

–9

5

53

C

S

B

A

FIGURE 6.6  Dijkstra’s al-
gorithm does not work if 
there are negative edges.
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this idea does not work. That is because paths with more edges 
will be penalized disproportionately. If we add 9 to all edge 
weights in the previous graph and run Dijkstra’s algorithm, 
the path S-A-B-C isn’t the shortest anymore. This is illustrated 
in figure 6.7.

There are two ideas to fix Dijkstra’s algorithm: either to 
add a large constant to each path (Johnson’s algorithm, which 
we won’t cover in this book) or to relax all edges V-1 times 
(Bellman-Ford’s algorithm). In this section we will consider 
the latter, since the former is not a dynamic programming algo-
rithm. How can we use dynamic programming to find the shortest path? We need to 
somehow define ordered subproblems, otherwise we may get an exponential runtime. 
Consider the shortest v-u path v = w0, w1, …, wk-1, wk = u. To have an optimal substruc-
ture the path v = w0, w1, …, wk-1 must be the shortest path from v to to wk-1. Thus, we will 
be counting the number of edges in the shortest path. This is how we order subproblems.

Let D[v, k] denote the length of the shortest path from s to v that uses at most k edges. 
How do we compute D[v, k]? By reducing it to subproblems of the smaller size. We can 
go to some neighbor w of v and then take the shortest path from s to w that uses at most 
k - 1 (which is already solved).

In figure 6.8 the paths P1 = D[v, k - 1] and P2 = D[u, 
k - 1] use at most k - 1 edges. The vertex v is adjacent 
to u. Then the path P3 = P2 + (u, v) uses at most k edges 
and its length is D[v, k] = w(u,v) + D[v, k - 1].

Now there are two s-v paths: P1 = D[v, k - 1] and  
P3 = D[v, k]. We do not know which path is actually shorter; therefore, we have to try 
both possibilities and then choose the minimum:

= − + −
∈

v k v k w u v v kD[ , ] min {D[ , 1], ( , ) D[ , 1]}.
u v E( , )

This recursive definition is terminated by D[v, 0] = 0.
Here is a pseudocode:

D[v,0] = 0; for all v
for k = 1 to V-1:
  for each v in V:
    D[v, k] = D[v, k-1]
  for each edge (u,v)ÎE
    D[v, k] = min(D[v, k-1], w(u, v) + D[u, k-1])
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FIGURE 6.7  Reweighted 
graph.
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FIGURE 6.8  Defining subproblems.
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Note that the Bellman-Ford algorithm is designed only for directed graphs. For undi-
rected graphs with negative-weight edges the shortest path problem is more complex 
and requires different algorithms.

Let us trace the algorithm on the example below (figure 6.9).

1

1

1–2

2

3

B

A

S

D

C
A B C D

3 2

0 2 4 3

D[v, 1]

D[v, 2]

0D[v, 3] 2 1 3

0D[v, 4] 2 1 2

FIGURE 6.9  Tracing the algorithm.

Runtime. There are V 2 subproblems, and each subproblem takes O(V) time to compute. 
Thus, the total running time is O(V 3).

Note that the algorithm only finds the length of the shortest paths, but not the actual 
shortest paths. For that we need to store some axillary information. We create another 
array of vertices p[0 … V - 1], where for each vertex v we store its predecessor in the 
shortest s-v path as in figure 6.10.

2

1

1–2

2

3

B

A

S

D

C

A B C D

B S A Cp

FIGURE 6.10  Graph and its table of predecessors.

Having table of predecessors, we restore the path recursively. For example, to get 
the S-D path, we have to first get to p[D] = C, and then to p[C] = A, and then to p[A] = B,  
and finally to p[B] = S.

How would we apply the Bellman-Ford algorithm to find out if a graph has a negative 
cycle? Consider the following graph. The S-C distance is 3 if we take just an S-D edge. On 
the other hand, the distance is 1 if we take a path S-A-B-C. Moreover, the S-C distance 
is -1, if we take S-A-B-C-A-B-C path. The S-C distance can be as low as we want by going 
through a negative cycle C-A-B-C. This tells us that the shortest path problem does not 
have a solution in presence of a negative cycle. 
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–9

5

523

C

S

B

A

FIGURE 6.11  A graph with a negative weight cycle.

However, the Bellman-Ford algorithm can easily detect if a graph has a negative 
cycle. The procedure is the following: Do not stop after V - 1 iterations, perform one 
extra round, and if anything changes in the table, then we know there is a negative cycle.

6.5 The Shortest Path in DAGs
In this chapter we will solve a shortest distance problem in weighed directed acyclic 
graphs (DAG). For these special graphs we will develop a dynamic programming algo-
rithm that is faster than the Bellman-Ford algorithm from the previous chapter and 
the Dijkstra algorithm from chapter 4.5. We do not require edge weights to be nonneg-
ative and we don’t have to worry about negative-weight cycles, since a DAG is acyclic.

Recall a topological sort from chapter 1.3.2. If graph G = (V, E) is a DAG, it is always 
possible to arrange vertices in a topological order. The runtime complexity of the algo-
rithm is linear O(V + E). Figure 6.12 demonstrates a DAG and one possible ordering.
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FIGURE 6.12  A DAG with a topological ordering.

You can see from the picture that whenever we have an edge from u to v, the order-
ing visits u before v. Therefore, in the dynamic programming approach we organize 
subproblems according to the topological ordering. We will pass through the ordered 
list and compute distances just like in Dijkstra’s algorithm. Let d(v) denote the length 
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of the shortest path from s to v for each v Î V. We compute d(v) as the minimum over all 
adjacent vertices:

d v d u w u v( ) min { ( ) ( , )}.
u v E( , )

= +
∈

Note that vertex u is preceding vertex v. In figure 6.12, d(C) = min(d(B) + 1, d(D) + 2).
Here is a pseudocode:

d[s] = 0, d[v] = infinity for all v Î V\{s}
topologically sort the vertices 
for each v taken in topological order 
    for each u Î adjacent[v] 
        if d[v] > d[u] + w(u, v) then d[v] = d[u] + w(u, v)

The runtime complexity is Q(V + E), since it requires a single pass over vertices in 
topological ordering and relaxing each edge that leaves each vertex. As an example, we 
run the algorithm over a graph from figure 6.12.
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FIGURE 6.13  Steps of the algorithm.

In figure 6.13 we show a table d[v], where each row represents a vertex in a topo-
logical ordering S-D-A-B-C. The table is filled in row-by-row fashion. In each table 
entry (i, j) we record an updated distance from the vertex s to vertex j via an adjacent 
vertex i. If the table entry is empty, then the distance was not updated. The algorithm 
does not find the actual shortest paths, but only calculates the distances. As with the 
Bellman-Ford algorithm, we can add an array p[] such that p[v] stores the vertex pre-
vious to v in the shortest path from s to v. This will allow us to reconstruct the actual 
shortest paths.
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REVIEW QUESTIONS

1.	 (T/F) If a dynamic programming algorithm has n subproblems, then its running 
time complexity is W(n).

2.	 (T/F) It is possible for a dynamic programming algorithm to have an exponen-
tial runtime complexity.

3.	 (T/F) In a dynamic programming formulation, the subproblems must be 
mutually independent.

4.	 (T/F) A pseudo-polynomial time algorithm is always asymptotically slower than 
a polynomial time algorithm.

5.	 (T/F) If a dynamic programming solution is set up correctly (i.e., the recurrence 
equation is correct) and each unique sub-problem is solved only once, then the 
resulting algorithm will always find the optimal solution in polynomial time.

6.	 (T/F) If a problem can be solved by divide and conquer, then it can always be 
solved by dynamic programming.

7.	 (T/F) If a problem can be solved by dynamic programming, then it can always 
be solved by exhaustive search.

8.	 (T/F) The Bellman-Ford algorithm always fails to find the shortest path between 
two nodes in a graph if there is a negative cycle present in the graph.

9.	 (T/F) In a dynamic programming solution, the space requirement is always at 
least as big as the number of unique sub problems.

10.	 (T/F) In a connected, directed graph with positive edge weights, the Bellman-
Ford algorithm runs asymptotically faster than the Dijkstra algorithm.

11.	 (T/F) The dynamic programming for the knapsack problem runs in 
polynomial time.

12.	 (T/F) The longest simple path can be computed by negating the weights of all 
the edges in the graph and then running the Bellman-Ford algorithm.

13.	 (T/F) There exist some problems that can be solved by dynamic programming 
but cannot be solved by greedy algorithms.

14.	 (T/F) The Bellman-Ford algorithm always finds the shortest path in 
undirected graphs.

15.	 Which of the following standard algorithms are solved using dynamic  
programming?

a.	 Bellman-Ford’s algorithm
b.	 Dijkstra’s algorithm
c.	 Prim’s algorithm
d.	 Karatsuba’s algorithm
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EXERCISES

1.	 Design a DP algorithm that solves the 0-1 knapsack problem, which allows rep-
etitions (i.e., assume that there are unlimited quantities of each item available).
What is its space complexity?

2.	 Design a DP algorithm that takes a string and returns the length of the longest 
palindromic subsequence. A subsequence of a string is obtained by deleting zero 
or more symbols from that string. A subsequence is palindromic if it reads the 
same left and right. For example, the string QRAECCETCAURP has several pal-
indromic subsequences, but the longest one is RACECAR.

3.	 Given a non-empty string str and a dictionary containing a list of unique words, 
design a dynamic programming algorithm to determine if str can be segmented 
into a sequence of dictionary words. For example, if str =“algorithmdesign” and 
your dictionary contains “algorithm” and “design,” then your algorithm should 
answer yes since str can be segmented to “algorithm” and “design.” You may 
assume that a dictionary lookup can be done in O(1) time.

4.	 You are given n balloons, indexed from 0 to n - 1, where each balloon is painted 
with a number on it represented by array nums. You are asked to burst all the bal-
loons. If you burst balloon i you will get nums[left] · nums[i] · nums[right] coins. 
Here, left and right are adjacent indices of i. After the burst, the left and right 
then becomes adjacent. You may assume nums[-1] = nums[n] = 1, and they are 
not real; therefore, you cannot burst them. For example, if you have the nums = 
[3, 1, 5, 8], the optimal solution would be 167, where you burst balloons in the 
order of 1, 5, 3 and 8. The array nums after each step is [3, 1, 5, 8] ® [3, 5, 8] ® 
[3, 8] ® [8] ® []. Design a dynamic programming algorithm to find the maxi-
mum coins you can collect by bursting the balloons. Analyze the running time 
of your algorithm.

5.	 A rope has length of n units, where n is an integer. You are asked to cut the rope (at 
least once) into different smaller pieces pj of integer lengths so that the product 
of lengths of those new smaller ropes is maximized. Design a dynamic program-
ming algorithm and analyze its running time. Explain how you would find the 
optimal set of cutting positions.

6.	 There is a series of n > 0 jobs lined up one after the other. The i-tℎ job has a dura-
tion ti Î � units of time, and you earn pi ³ 0 amount of money for doing it. Also, 
you are given the number si Î � of immediately following jobs that you cannot 
take if you perform that i-tℎ job. Design a dynamic programming algorithm to 
maximize the amount of money one can make in T units of time. 
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7.	 You are to compute the minimum number of coins needed to make change for a 
given amount m. Assume that we have an unlimited supply of coins. All denom-
inations dk are sorted in ascending order: 1 = d1 < d2 < … < dn. Design a dynamic 
programming algorithm to minimize the amount of coins.

8.	 Given an unlimited supply of coins of denominations d1 < d2 < … < dn, we wish 
to make change for an amount m. This might not be always possible. Your goal 
is to verify if it is possible to make such change. Design an algorithm by reduc-
tion to the knapsack problem.

9.	 There are two strings: string S of length n, and string T of length m. Design a 
dynamic programming algorithm to compute their longest common subse-
quence. A subsequence is a subset of elements in the sequence taken in order 
(with strictly increasing indexes.)

10.	 A polygon is called convex if all its internal angles are less than 180°. A convex 
polygon is represented as an array V with n vertices in counterclockwise order, 
where each vertex is in the form of a coordinate pair (x, y). Given is a convex poly-
gon, we would like to triangulate this polygon (i.e., decompose it into disjoint 
triangles by adding line segments (diagonals) between its corners (vertices)). 
Design a dynamic programming algorithm for triangulating a convex polygon 
while minimizing the total perimeter of all the triangles.

11.	 Given a row of n houses that can each be painted red, green, or blue with a cost 
P(i, c) for painting house i with color c, design a dynamic programming algo-
rithm to find a minimum cost coloring of the entire row of houses such that no 
two adjacent houses are the same color.

12.	 A tourism company is providing boat tours on a river with n consecutive segments. 
According to previous experience, the profit they can make by providing boat 
tours on segment i is known as ai. Here, ai could be positive (they earn money), 
negative (they lose money), or zero. Because of the administration convenience, 
the local community requires that the tourism company do their boat tour busi-
ness on a contiguous sequence of the river segments (i.e., if the company chooses 
segment i as the starting segment and segment j as the ending segment, all the 
segments in between should also be covered by the tour service, no matter 
whether the company will earn or lose money). The company’s goal is to deter-
mine the starting segment and ending segment of boat tours along the river, 
such that their total profit can be maximized. Design a dynamic programming 
algorithm to achieve this goal and analyze its runtime.
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13.	 You have two rooms to rent out. There are n customers interested in renting the 
rooms. The ith customer wishes to rent one room (either room you have) for d[i] 
days and is willing to pay bid[i] for the entire stay. Customer requests are nonne-
gotiable in that they would not be willing to rent for a shorter or longer duration. 
Design a dynamic programming algorithm to determine the maximum profit 
that you can make from the customers over a period of D days.

14.	 You are to plan the fall 2025 schedule of classes. Suppose that you can sign up 
for as many classes as you want, and you’ll have infinite amount of energy to 
handle all the classes, but you cannot take two classes at the same time. Also 
assume that the problem reduces to planning your schedule for one particular 
day. Thus, consider one day of the week and all the classes happening on that day:  
c1, …, cn. Associated with each class ci is a start time si and a finish time fi such that  
si < fi. Also, there is a score vi assigned to that class, ci, based on your interests 
and your program requirement. You would like to choose a set of courses for that 
day to maximize the total score. Design a dynamic programming algorithm for 
planning your schedule.

15.	 There are n trading posts along a river numbered n, n - 1 …, 1. At any of the posts 
you can rent a canoe to be returned at any other post downstream. (It is impos-
sible to paddle against the river.) For each possible departure point i and each 
possible arrival point j < i, the cost of a rental is C[i, j]. However, it can happen that 
the cost of renting from i to j is higher than the total costs of a series of shorter 
rentals. In this case you can return the first canoe at some +post k between i 
and j and continue your journey in a second (and, maybe, third, fourth, and so on) 
canoe. There is no extra charge for changing canoes in this way. Design a dynamic 
programming algorithm to determine the minimum cost of a trip by canoe from 
each possible departure point i to each possible arrival point j. Analyze the run-
ning time of your algorithm in terms of n.

16.	 Given a weighted directed acyclic graph G = (V, E) in which we allow negative 
edge weights, design a dynamic programming algorithm to find the longest 
simple path between two given vertices.

17.	 Design a dynamic programming algorithm for counting the number of paths 
between two given vertices in a DAG.
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I n this chapter we will learn our fourth major algorithm design technique (after 
greedy, divide-and-conquer, and dynamic programming). Network flow is an import-

ant design technique because it can be used to express a wide variety of problems. When 
we think of networks, we typically envision a physical network, like an electrical network 
(with an electrical current flow), or a hydraulic network (with a water, gas, or oil flow), or 
a communication network (with a voice, data, or video flow), or a transportation network 
(with passengers, vehicles, or freight flow). Transportation networks are the most popu-
lar; they are designed to model complex distribution and logistics decisions. In this model, 
a shipper with an inventory of goods at its warehouses must ship to disperse retail centers 
(with different customer demands) given transportation routes. Each route has a distribu-
tion capacity and cost. The goal is to ship the maximum amount of goods.

7.1 Introduction
We start with a directed weighted graph G = (V, E) with two distinguished vertices s (the 
source) and t (the sink), in which each edge (u, v) Î E has a nonnegative capacity c(u, v). The 
graph should never have edges between u and v in both directions, so there are no loops. 
Also, if u, v Î V but (u, v) Ï E, we assume that c(u, v) = 0. We call this graph a flow network. 
Next, we define a flow as a function f that assigns nonnegative real values to the edges of G 
and satisfies two axioms:

1.	 Capacity constraint: 0 £ f(u, v) £ c(u, v), for each u, v Î V
2.	 Conservation constraint: ∑ =∑f u v f v w( , ) ( , )

u w
, for each v Î V - {s, t} 

Network Flow

Chapter 7
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In other words, the flow does not exceed the capacity on any edge, and the flow enter-
ing a vertex equals the flow leaving the vertex at every vertex other than the source 
and the sink.

We also define a value of the flow: the total flow that the source s can send, 
=Σf f s v| | ( , )v . Since s and t are the only nodes that are not beholden to the conser-

vation law, the value of f can be equivalently stated as the amount of flow entering t.
The max-flow problem is stated as to find the maximum flow value into the  

target t.

3 2

2 1

1 5 3 12

s a b

d c t

FIGURE 7.1  A flow network.

In the graph in figure 7.1, |f| = 4, however, the max flow is only 3; we push 2 units of 
flow along the edge (s, a), and one unit of flow along the edge (s, d). How do we prove 
that this is the max flow? The flow saturates edges (s, a) and (d, a). If we remove them, 
the graph becomes disconnected.

Let us consider a greedy approach to the max-flow problem: choosing an edge leav-
ing the source with the largest capacity. This greedy algorithm does not find the max 
flow in general graphs. A simple counterexample can be seen in figure 7.2.
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FIGURE 7.2  Pushing 2 units of flow via s-u-v-t.

In figure 7.2, the greedy algorithm has made a first choice to push 2 units of flow 
through s-u-v-t path—the maximum flow has not been achieved. The optimal flow 
value is 3: We push one unit via s-u-t and then another unit via s-v-t, and one more unit 
via s-u-v-t. The problem with a greedy approach is that we pushed too much flow via 
the (u, v) edge. We want to redo our previously made decision and push on that edge 
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only one unit of flow. Unfortunately, a greedy approach does not allow us to change the 
previously made decisions. But what if we can push a unit of flow back through (u, v)? 
This will mean that we cancel the previously pushed flow by one unit. This is the rough 
idea of the Ford–Fulkerson algorithm. We modify the greedy algorithm such that we 
can revise the paths later by flow cancelation. Thus, there are two ways to increase a  
flow value: 

•	 Find unused capacity

•	 Find cancelable flow

We will keep track of how much additional flow can be pushed directly (over an edge) 
between any pair of vertices u and v (in each direction). This requires constructing 
another directed graph Gf, called the residual network of f, which has the same vertices 
as G, but a different set of edges Ef.. Assume a flow network with some flow f on each 
edge. Then, for each edge (u, v) Î E we create

•	 a forward edge, and we include edge (u, v) into Gf with the residual capacity  
cf (u, v) = c(u, v) - f(u, v); and

•	 a backward edge, and we include edge (v, u) into Gf with the residual capacity  
cf (v, u) = f(u, v).

G

Flow 6
Cap 10

u v

Gf

Cap 4

Cap 6
u v

FIGURE 7.3  Example of residual capacities.

Having backward edges allows us to fix the greedy approach by erasing a flow on some 
edges. Next, we define an augmenting path. Let P be a simple (with no cycles) path from 
s to t in Gf. We can find such a path by running a graph traversal. The residual capacity 
of P is the smallest capacity on any edge of P, namely cf (P) = min{cf (u, v): (u, v) Î P}. If 
cf (P) > 0, then P is an augmenting path in Gf.

As an example, consider the graph G in figure 7.4. Suppose we push two units of flow 
on s-d-b-t path. We will end up with the residual graph Gf. Note that edge (d, b) is satu-
rated, cf(d, b) = 0; we do not include that edge into Gf.
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FIGURE 7.4  Residual graph.

In Gf we can find another augmenting path, for example, s-a-b-d-c-t, and push two 
units of flow along the path.
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FIGURE 7.5  Augmenting flow along s-a-b-d-c-t path.

Note in this path we erased the previous flow on (d, b) edge. From this example we 
see that in the residual network Gf = (V, Ef) we can increase the flow by using forward 
as well as backward edges as long as there is an augmenting path. The residual network 
and augmenting along an s-t path are the cornerstone of Ford-Fulkerson algorithm.

7.2 The Ford–Fulkerson Algorithm 
For the purpose of this algorithm, we will assume that all capacities and all flows take 
only nonnegative, integral values. The algorithm begins with the zero flow f and suc-
cessively improves f by finding an augmenting s-t path P and pushing as much flow as 
possible along the path. It terminates if there are no more s-t paths in Gf. The Ford–
Fulkerson algorithm is essentially a greedy algorithm; it finds a locally optimal solution 
which turns out to be a global optimum. Here is a pseudocode for the algorithm:

Given a flow network: (G=(V, E), s, t, c)
1.  start with f(u, v)=0 and G

f
 = G //initialization

2.  while (there exist an augmenting path P in Gf):
3.       find a bottleneck cf(P) = min{cf (u, v): (u, v) Î P}.
4.       augment the flow f along P
5.       update the residual graph Gf
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7.2.1 Example
Let us run Ford–Fulkerson’s algorithm on the graph G in figure 7.6. 
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FIGURE 7.6  The original graph G.

We will illustrate iterations of the algorithm on the residual graph Gf. There will be 
multiple augmenting paths in Gf, so we will make an arbitrary choice. There are many 
heuristics for choosing an augmenting path, which we will address later. We start 
with a zero flow and Gf = G. We find an augmenting path s-a-d-t with the bottleneck 8. 
We push 8 units of flow and augment the flow along that path and update the residual 
graph as in figure 7.7.
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FIGURE 7.7  Residual graph Gf after pushing 8 units.

Next, we find another augmenting path s-a-c-d-t in Gf with the bottleneck 2. We push 
2 units of flow and augment the flow along that path and update the residual graph as 
in figure 7.8. The total flow now is 10.
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FIGURE 7.8  Residual graph Gf after second iteration.
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Then again, we find an augmenting path s-c-a-b-t with the bottleneck 2. We push  
2 units of flow and augment the flow along that path and update the residual graph as 
in figure 7.9. The total flow now is 12.
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FIGURE 7.9  Residual graph Gf after third iteration.

On the next iteration we pick an augmenting path s-c-d-b-t with the bottleneck 6. The 
updated residual graph is depicted in figure 7.10. The total flow now is 18.
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FIGURE 7.10  Residual graph Gf after fourth iteration.

On the fifth iteration we pick an augmenting path s-c-d-a-b-t with the bottleneck 1. 
The updated residual graph is depicted in figure 7.11. The total flow now is 19.
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FIGURE 7.11  Residual graph Gf after fifth iteration.

That was the algorithm’s last iteration. As you easily see from figure 7.11 the residual 
graph is disconnected—there is no an s-t path in it. Therefore, we found the maximum 
flow of 19 units. In figure 7.12 we demonstrate the original network flow graph G with 
each edge labeled by flow/capacity.
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FIGURE 7.12  Network flow graph with flow/capacity on each edge.

7.2.2 Complexity of the Ford–Fulkerson Algorithm
We find an augmenting path (line 2 in the pseudocode) through a graph traversal in O(E) 
time (since the number of edges in Gf is at most 2E). In each step of the algorithm we tra-
verse the path to find a bottleneck (line 3) and traverse it again to update the residual 
graph (line 5). These also take O(E) time. The question remains, “How many steps are 
in the while loop (lines 2–5)?” Since the edge capacities are integral, the bottleneck = 
min {cf (u, v): (u, v) Î P} is also integral. It follows that in the worst case we increase the 
value of flow by at least one. Hence, the algorithm stops after at most =Σf f s v| | ( , )v  
steps. This implies that the running time of the Ford–Fulkerson algorithm is O(E · | f |) 
for integral capacities. The algorithm is pseudo-polynomial (see Chapter 6.2.1) because 
it depends on the size of the integers in the input. 

The following example demonstrates an extreme case of the algorithm’s slow con-
vergence. Consider a graph where four edges have capacities of c = 109 and one edge 
has capacity of 1. On each iteration we choose an augmenting path in such a way that 
nodes u and v are always in the path.
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a) Original graph

109109
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c) Second iteration
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1

1

c-1
v t
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FIGURE 7.13  Extreme case of the Ford–Fulkerson algorithm.

Since each iteration increases the flow value by 1, the algorithm terminates after  
2 · 109 steps.

Note that the algorithm may never terminate if the edge capacities are arbitrary real 
numbers. The algorithm can loop forever, always finding smaller and smaller augment-
ing paths. See the example of this effect by U. Zwick.1

1	 “Ford–Fulkerson Algorithm,” Wikipedia, https://en.wikipedia.org/wiki/Ford–Fulkerson_ 
algorithm#Non-terminating_example
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7.2.3 Proof of Correctness
When no more augmenting paths can be found, the graph becomes disconnected and 
therefore no more flow can be pushed from s to t in the residual network. This proves 
that the flow we found is maximal. Is this the maximum? Maximum is not the same as 
maximal. Since we choose the augmenting paths arbitrarily, it seems it may happen that 
when running the algorithm for the second time we will get a bigger flow. We prove the 
maximum flow by using the duality principle. An optimization problem may be viewed 
from two perspectives, the primal (minimization) problem or the dual (maximization) 
problem. The solution to the dual problem provides a lower bound to the solution of the 
primal problem. We think of the maximum flow problem as the dual problem. We will 
formulate the primal problem in terms of a vertex cut. 

A vertex s-t cut of a flow network is a partition of the vertices V into disjoint subsets 
A and B such that s Î A and t Î B. We define the cut capacity, cap(A, B), as the sum of 
capacities of all the edges going from partition A to partition B. In figure 7.14, partition 
A consists of vertices s, a, b, and partition B consists of vertices t, c, d. The cut capacity 
is cap(A, B) = 10 + 2 + 8 + 10 = 30.
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FIGURE 7.14  st-cut and its capacity.

The minimum cut problem is to compute an s-t cut whose capacity is as small  
as possible. We will show that the value of any flow is at most the capacity of  
any cut. 

Lemma 1. For any flow and any cut:

∑ ∑ ∑= = −
∈ ∈ ∈ ∈

f f s v f u v f v u| | ( , ) ( , ) ( , ).
v u A v B u A v B, ,
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Proof. Since there are no incoming edges to s, we have that f(v, s) = 0, and therefore

∑ ∑ ∑= = −f f s v f s v f v s| | ( , ) ( , ) ( , ).
v v v

Next, we observe that due to the flow conservation law 

∑ ∑=f u v f v u( , ) ( , )
v v

for any vertex u except s and t. It follows,

∑ ∑ ∑ ∑ ∑= −









= −

∈ ∈ ∈ ∈ ∈

f f u v f v u f u v f v u| | ( , ) ( , ) ( , ) ( , ).
u A v u u A v B u A v B, ,

This concludes the proof. ∎

The graph in figure 7.15 illustrates Lemma 1.
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FIGURE 7.15  This demonstrates Lemma 1.

The flow from the source |f| is 19. The flow from partition A to B is 9 + 7 + 9 = 25. 
The flow from partition B to A is 6. The flow difference is 19, same as |f|.

Lemma 2. For any flow and any (A, B)- cut:

£f cap A B| | ( , ).

Proof. By previous Lemma 1 and taking into account the capacity constraint, we obtain

∑ ∑ ∑= − ≤
∈ ∈ ∈ ∈ ∈ ∈

f f u v f v u f u v| | ( , ) ( , ) ( , ).
u A v B u A v B u A v B, , ,



116  P  Algorithms in Action

Taking into account the capacity constraint, we obtain

f f u v c u v cap A B( , ) ( , ) ( , ).
u A v B u A v B, ,

∑ ∑≤ ≤ =
∈ ∈ ∈ ∈

This concludes the proof. ∎

Lemma 2 proved that the solution to the min-cut problem provides an upper bound 
to the solution of the max-flow problem:

f cap A Bmax| | min ( , ).
f A B( , )

£

In fact, this bound is tight.

Theorem 1. The Ford–Fulkerson algorithm outputs the maximum flow.

Proof. When the algorithm terminates there is no augmenting path from s to t in the 
residual graph Gf. Let A be a set of vertices reachable from s in Gf and let set B be all 
other vertices in V including t. We will prove that |f| = cap(A, B). Consider any edge  
(u, v) from A to B in the original flow network. This edge cannot exist in Gf, because 
otherwise vertex v will be reachable from s, which contradicts the definition of the s-t 
cut. It follows that that edge must be saturated f(u, v) = c(u, v) in Gf. Now consider any 
edge (v, u) from B to A in the original flow network. The flow on this edge must be zero  
f(v, u) = 0. If f(v, u) > 0, then there will be an edge in the opposite direction (u, v) in Gf, 
and therefore vertex v will be reachable from s. Again, we reached a contradiction to 
the definition of s-t cut. Then by Lemma 1, we have

f f u v f v u c u v cap A B| | ( , ) ( , ) ( , ) 0 ( , ).
u A v B u A v B u A v B, , ,

∑ ∑ ∑= − = − =
∈ ∈ ∈ ∈ ∈ ∈

Thus, the Ford–Fulkerson algorithm outputs the maximum flow, the cut (A, B) is a min-
imum cut, and the max-flow equals the capacity of the min-cut. ∎

7.3 Reduction to Network Flow
A reduction is a problem-solving method for transforming instances of problem Y into 
instances of another problem X, so that an algorithm for solving problem X efficiently 
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can be used to solve problem Y efficiently. Formally, to reduce a problem Y to a problem 
X (we write Yp £ X) we want a function f that maps Y to X such that

1.	  f is a polynomial time computable and
2.	 " instance y Î Y is solvable if and only if f(y) Î X is solvable.

Figure 7.16 illustrates the idea of problem solving by polynomial-time reduction.

Instance of
y ε y

Output of
y

Instance of
f( y) ε X

Output of
X

f

X-solver

f

FIGURE 7.16  Solving by reduction.

If problem X can be solved in polynomial time and Yp £ X, then Y can be solved in poly-
nomial time. This is the most common use of reductions. In chapter 9 we will see that 
reductions also can be used to prove that problem X is NP -hard.

7.3.1 Dinner Party
This is our first example of solving a problem by using a reduction to network flow. 

At a dinner party, there are n families f1, f2, …, fn and m tables t1, t2, …, tm. 
The i-th family fi has ri relatives and the j-th table bj has sj seats. Everyone is 
interested in making new friends between families; therefore, the dinner 
party planner wants to seat people such that no two members of the same 
family are seated at the same table. Design an algorithm that decides if 
there exists a seating assignment such that everyone is seated and no two 
members of the same family are seated at the same table. What would be 
a seating arrangement?

We start by setting the problem as a bipartite graph problem. In this graph one 
partition is a set of vertices, fi, representing all n families. Another partition is a set of 
m tables tj. Then, we connect each family fi to all tables tj by directed edges with the  
capacity 1.

Next, we extend the bipartite graph to a network flow. We add the source s and con-
nect it to every family vertex fi by an edge (s, fi) of capacity ri. We add the target t and 
for every table vertex tj, we add an edge (tj, t) of capacity sj.
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Claim. The original problem has a solution (a valid seating assignment is indeed possible) 
if and only if the constructed network has a max-flow of value r1 + r2 + … + rn.

Proof. Þ) Assume that there is a solution. It means that every family member is seated. 
So, we can push a flow of ri from the source s to each family. On the edges between 
families and tables, we assign a flow of 1 or 0. Since no two members of the same 
family are seated at the same table, each family vertex will have outgoing flow of 
value 1. On the edges between tables and the sink, we assign a flow value equal to the 
number of people seated at that table. This must be possible, since we have a valid  
assignment.

Conversely Ü) Assume there is a max-flow of value r1 + r2 + … + rn. This means that 
each family vertex will get a flow of ri. Due to capacity constrain (each edge ( fi, tj) has a 
unit capacity) no two members will sit at the same table. We also observe that no table 
is overloaded due to the capacity condition si. ∎

Lastly, we get a seating assignment by running a network flow algorithm and pick 
edges ( fi, tj) with a unit flow.

7.3.2 Reallocation Problem
As the second example of using a reduction to network flow, we consider the 
following problem:

A company has n locations in city A and plans to move some of them  
(or all) to another city B. The i-th location costs ai per year if it is in the 
city A and bi per year if it is in the city B. The company also needs to pay 
an extra cost, cij > 0, per year for traveling between locations i and j. We 
assume that cij = cji. Design an efficient algorithm to decide which company 
locations in city A should be moved to city B in order to minimize the total  
annual cost. 

We start with constructing a flow network. Create a complete graph where each 
vertex vi, i = 1,2, …, n is a company location in city A. Any two vertices vi and vj are con-
nected by a bidirectional edge with capacity cij > 0. We connect the source s to all vertices  
vi, i = 1, 2, …, n with capacity bi on edge (s, vi). Finally, we connect all vertices vi, i = 1,  
2, …, n to the sink t with capacity ai on edge (vi, t).
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V3
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b2
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a2

a1
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FIGURE 7.17  Flow network for 4 cities.

We have constructed a flow network with V = n + 2 vertices and E = 2n + n  
(n - 1)/2 edges. Figure 7.17 demonstrates a flow network of four cities. Next, we run the 
Ford–Fulkerson algorithm (see Exercise 1) to separate all vertices into two partitions 
in such a way that the cut capacity is the smallest. See figure 7.18 for a possible min-cut. 
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FIGURE 7.18  A min-cut for 4 cities.

The min-cut in figure 7.18 suggests that locations v2 and v4 should be moved to 
city B. Noting that max flow is a1 + a3 + b2 + b4 + c12 + c14 + c32 + c34, we propose the 
following claim.

Claim. The total annual cost is minimized if and only if the constructed flow network has 
a max flow of the following value

∑ ∑ ∑+ +
∈ ∈ ∈ ∈

a b c .
i A

i
j B

j
i A j B

ij
,
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Proof. Þ) The max flow is exactly the annual cost of moving the locations from city A 
to city B. Thus, the minimum cut of this network corresponds to the optimal solution 
of the relocation problem.

Conversely Ü) Consider the network with the max flow. By the property of the min-cut, 

•	 the blue edges with capacity bj are saturated, meaning that the location vj is 
moved to city B;

•	 the red edges with capacity ai are saturated, meaning that the location vi stays 
in city A; and

•	 the black edges with capacity cij are saturated, meaning that the cost of for trav-
eling between locations vi and vj. 

The runtime complexity, assuming the Ford–Fulkerson algorithm, is O(E ·|f |) =  
O(n2 ·|f|). ∎

7.4 Augmenting Path Heuristics 
We have seen in figure 7.13 that the way augmenting paths are chosen can significantly 
impact the algorithm’s performance. Here, we consider a couple of heuristics (due to 
Jack Edmonds and Richard Karp) of selecting augmenting paths to avoid that extreme 
performance of the Ford–Fulkerson algorithm. 

One suggestion is that we should select edges with high capacities, called the “max-
imum bottleneck path.” In the residual network in figure 7.13, the paths s-v-t and s-u-t 
have weight 109, while the path s-v-u-t has weight 1. 

Another suggestion is that we should find the shortest augmenting path in terms of 
the number of edges. This approach does not consider the edge capacities at all. In the 
residual network in figure 7.13, the paths s-v-t and s-u-t are one edge shorter than the 
path s-v-u-t.

There are many other augmenting path heuristics for the Ford–Fulkerson algorithm.

7.4.1 Edmonds–Karp 1: Augmenting Path with Largest Capacity
We consider an implementation of the Ford–Fulkerson algorithm in which we pick 
the augmenting path with the largest bottleneck value. In this scenario, we need to 
repeatedly find the path between two vertices whose minimum capacity is the largest. 
That path can be found using an algorithm similar to Dijkstra’s shortest-path algo-
rithm. Instead of maintaining the shortest path length to a vertex, we maintain the 
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bottleneck. Let bottleneck(v) be the capacity of the highest-capacity path from s to v.  
In this array we will keep a track of the lowest capacity edge on s-v path discovered so 
far. We will also maintain a spanning tree T of vertices, rooted at s, for which we have 
bottleneck(v). If we find another s-v path with a higher bottleneck value, we update 
bottleneck(v). Here is the updated rule:

v u c u vbottleneck( ) max {min(bottleneck( ), ( , ))}
u T
u v E( , )

=
∈
∈

and a pseudocode for finding the largest-capacity path:

while T ≠ V 
   for each v Î V adjacent to T:
       update bottleneck(v);
   add v to T;
end 

That path can be found in O(E · log V) time using a binary max heap. The runtime 
analysis is the same as in Dijkstra’s algorithm.

So far, we have addressed the runtime complexity of a single iteration in the Edmonds–
Karp algorithm. Next, we compute the upper bound on the total number of iterations in 
terms of the value of the maximum flow. In the Ford–Fulkerson algorithm we increase 
the flow by any path bottleneck (which could be as low as just 1); in the Edmonds–Karp 
algorithm we increase the flow by the maximum path bottleneck.

Claim 1. If the max flow in the network is |f |, then there exists an s-t path with capacity 
of ³ |f |E. 

Proof. To prove the existence of such a path, we delete all edges with capacity < |f|/E. 
Let us call this graph G .́ We claim that G´ is not disconnected and has an s-t augment-
ing path. Suppose that G´ is disconnected. Then, every edge on an s-t cut has capacity  
< |f|/E. Since in the worst case there could be E edges on that cut, it follows that the 
cut capacity is cap(A, B) < E · |f|/E = |f|. This is a contradiction, since Lemma 2 says 
|f| £ cap(A, B). ∎

Claim 2. Edmonds–Karp makes O(E · log |f|) iterations. 



122  P  Algorithms in Action

Proof. The previous claim says that each iteration adds at least 1/E fraction of the 
flow found so far. But let us run the algorithm backward. On each iteration the flow F 
gets reduced by at least | f |/E. So, after the first step the max in the residual network 
is at most

− ⋅ = ⋅ −








f f
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| | | |

1
| | 1

1
.

After the second step, the flow is at most

⋅ −








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


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⋅ = ⋅ −









f

E
f

E E
f

E
| | 1

1
| | 1

1 1
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1
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Proceeding in the same way, after x steps, the max flow is at least | f | · (1 - 1/E)x. How 
many iterations x do we need to have in order to reduce the max-flow |f | to 1? To answer 
that we need to solve the following inequality:

⋅ −








 ≤| | 1

1
1.f

E

x

Noticing that 1 + z £ ez (where e is the Euler constant), we find that x = O(E · log | f |). 
This says that the flow decreases exponentially with the number of iterations. ∎

We conclude that for graphs with integer capacities, the Edmonds-Karp 1 algorithm 
runs in O(E2 · log V · log | f |) time. 

As an example, let us consider a graph in figure 7.6 and run a few iterations of the 
above algorithm. The first augmenting path we choose is s-c-d-t. We push 9 units of flow 
and augment the flow along the path. 
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FIGURE 7.19  The residual graph after first iteration.
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The next augmenting path with the largest bottleneck is s-a-d-b-t. We push 6 units 
of flow and augment the flow along the path. 
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FIGURE 7.20  The residual graph after second iteration.

The last augmenting path is s-a-b-t. Comparing this algorithm with the Ford–Fulkerson 
algorithm, we see that we reached the max flow in only three iterations.

7.4.2 Edmonds–Karp 2: Shortest Augmenting Path
In this heuristic, we repeatedly select the shortest augmenting path, in terms of the 
number of edges. The resulting network flow algorithm is known as the Edmonds–Karp 
2 algorithm. The shortest path can be found in O(E) time by running a breadth-first 
search in the residual graph. The subtle question is, “How many iterations does the 
algorithm take?” It can be shown that this requires only O(V · E) iterations. Thus, the 
total runtime is O(V · E2). The proof is quite elaborate and beyond the scope of this book. 

7.5 The Circulation Problem 
In this section we modify and extend the network flow problem, but this time there will 
be no source and sink. Also, we add demand d(v) on each vertex and the lower bounds 
on the capacities on the given edges. This leads to the notion of circulations on graphs.

7.5.1 Circulation with Demands
Given a directed graph, in addition to having capacities c(u, v) ³ 0 on each edge, we 
associate each vertex v with a supply/demand value d(v). We say that a vertex v is a 
demand if d(v) > 0 and a supply if d(v) < 0. If d(v) = 0 then the vertex simply receives 
and transmits flow.

The demand function d(v) describes how much of an excess flow must be injected or 
extracted at each vertex. Next, we define a circulation with demands as a function f that 
assigns nonnegative real values to the edges of G and satisfies the following two axioms:

1.	 Capacity constraint: 0 £ f(u, v) £ c(u, v), for each u, v Î V
2.	 Conservation constraint: ∑ −∑ =f u v f v w d v( , ) ( , ) ( )u w , for each v Î V
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See figure 7.21 for an example, in which supply vertex a must send 3 units of flow 
and demand vertex b must receive 4 units of flow.

3

22 3

4
a b

–3 4

d c 1–2

FIGURE 7.21  Circulation with demands (in red).

We call a circulation feasible if it meets the capacity and demand constraints. The cir-
culation problem is stated as to find a feasible circulation. First, we note, that if there is 
a feasible circulation, then ∑ =d v( ) 0v . We prove this by taking the conservation con-
straints and summing them up over all vertices:

∑ ∑ ∑ ∑−









=f u v f v w d v( , ) ( , ) ( ).

v u w v

The left-hand side of the equality is zero, since the flow on every edge is summed 
twice, once as a coming-in flow, and then as a coming-out flow. This implies the claim. 
See figure 7.22.
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FIGURE 7.22  Left: Circulation with demands; right: Feasible circulation (flow/capacity).

We will find a feasible flow (or determine if one does not exist) using a reduction 
to a maximum flow problem. We construct a graph G´ as follows: Add two extra ver-
tices s and t to graph G; connect the source s with every vertex v that has a negative 
demand; assign a capacity -d(v) to each (s, v) edge; connect each vertex with a positive 
demand with the sink t; and assign a capacity d(v) to each (v, t) edge. See figure 7.23 for  
an example.
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FIGURE 7.23  Left: Circulation with demands; right: A flow network.

The max flow in G´ must saturate all the edges coming out of the source s; otherwise, 
there is no feasible solution.

Claim. There is a feasible circulation with demands d(v) in G if and only if the max-flow 
value in G´ is =∑

>
D d v( )v d v: ( ) 0

.

Proof. Þ) In graph G´ we send -d(v) units of flow along each edge from s, with the total 
flow | f| = D. Since there is a feasible circulation, that flow will reach the sink t, and 
moreover it is the maximum.

Ü) If the max-flow value in G´ is D, then edges incident on s and t must be saturated. 
Remove those edges to get a feasible circulation. Figure 7.24 demonstrates a transfor-
mation from a flow network to a feasible circulation.

2/3

1/21/2 1/3

2/2

3/3

2/4

1/1

4/4

s

a b

d c
2/3

1/21/2 1/3

2/4
a b

d c

t

FIGURE 7.24  Left: A flow network; right: Feasible circulation.

7.5.2 Circulation with Lower Bounds
Now we impose restrictions on the edge capacity in a directed graph G. For every edge 
(u, v) we add a constraint 0 £ l(u, v) £ c(u, v), which is a lower bound to how much flow 
must be on this edge. By setting a lower bound l(u, v) > 0, we can force a particular edge 
to be used by flow. 
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We define a circulation with demands and lower bounds as a function f that assigns 
nonnegative real values to the edges of G and satisfies the following axioms:

1.	 Capacity constraint: l(u, v) £ f(u, v) £ c(u, v), for each u, v Î V
2.	 Conservation constraint: ∑ −∑ =f u v f v w d v( , ) ( , ) ( )u w , for each v Î V

We call a circulation feasible if it meets all these constraints. The question is if there 
exists feasible circulation. Figure 7.25 provides an example of a graph with demands 
on each vertex (in red) and capacity on each edge in the form [l, c], meaning l(u, v) £ 
f(u, v) £ c(u, v).

0 3
[2, 5][5, 10]

[2, 2]

–10

–5 12
[3, 7]

[5, 7] [1, 3]

a

b c

e d

FIGURE 7.25  Circulation with demands and lower bounds.

We reduce this problem to the existence of a feasible circulation with demands. Let 
us start by pushing a flow f0 on every edge with a value that is exactly equal to its lower 
bound l(u, v). In the graph in figure 7.25, we push 2 units of flow on edge (a, b), 3 units 
on edge (b, c), 5 units on edges (a, e), and so on. A flow f0(u, v) = l(u, v) is a valid flow as 
far as capacities and lower bounds, but it might violate the conservation constraints. 
So, we need to compute

∑ ∑ ∑∑− = − =f u v f v w l u v l v w L v( , ) ( , ) ( , ) ( , ) ( )
u u ww

0 0

for each vertex. If L(v) = d(v), then flow f0 satisfies the required demand. Otherwise, 
there is flow imbalance at vertex v. We fix this by transferring L(v) to the vertex 
demand by setting a new demand d´(v) = d(v) - L(v). In particular, for this graph, L(e) =  
5 - (5 + 2) = -2 and d(e) = 0 - (-2) = 2. We have constructed a graph G´ with new  
demands, d (́v) = d(v) - L(v), and new capacities, c (́u, v) = c(u, v) - l(u, v). See figure 7.26  
for details.
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FIGURE 7.26  G´ with new demands and capacities.

Claim. There is a feasible circulation in G if and only if there is a feasible circulation  
in G .́

Proof. Þ) Let f be a feasible circulation in G. Then by construction (we pushed an  
initial flow of the value l(u, v) on each edge), f ́ (u, v) = f (u, v) - l(u, v) is a feasible circu-
lation in G .́

Ü) Let f ́  be a feasible circulation in G .́ Construct a new flow, f (u, v) = f ́ (u, v) + f0(u, v).  
How do we find f0(u, v)? Since we know the old c(u, v) and new c´(u, v) capacities on  
each edge, we compute f0(u, v) = l(u, v) = c(u, v) - c´(u, v). Next, we need to verify  
that f is a feasible circulation in G. First, we check the capacity constraints for  
circulation f:

l(u, v) £ f(u, v) £ c(u, v) Û l(u, v) £ f ́ (u, v) + l(u, v) £ c (́u, v) + l(u, v) Û 0 £ f ́ (u, v) £ c (́u, v).

Then we check the demand conditions for circulation f:

∑ ∑− = ⇔f u v f v w d v( , ) ( , ) ( )
u w

∑ ∑+ − + = + ⇔f u v l u v f v w l v w d v L v( ´( , ) ( , )) ( ´( , ) ( , )) ´( ) ( )
u w

∑ ∑ ∑ ∑− + − = + ⇔l u v l v w f u v f v w d v L v( , ) ( , ) ´( , ) ´( , ) ´( ) ( )
u w u w

∑ ∑− =f u v f v w d v´( , ) ´( , ) ´( ).
u w
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7.5.3 Circulation Problem Example 
As an example of the circulation problem with demands and lower bounds, we consider 
the following problem:

Given the network (see figure 7.27) with the demand values on vertices and lower bounds 
on edge capacities, determine if there is a feasible circulation in this graph.

(a) �Turn the circulation with lower bounds problem into a circulation problem 
without lower bounds.

(b) �Turn the circulation with demands problem into the maximum flow problem.

(c) �Does a feasible circulation exist?

[2, 3]

[2, 5]

[2, 5]

[1, 4]
[3, 4]

[2, 4]

[2, 6]
b:5 c:–4

a:7

e:3 d:–11

FIGURE 7.27  Circulation problem with demands and lower bounds.

Part (a): First, we check the necessary condition for a feasible circulation: The sum of 
demands must be equal to zero. Then we turn the circulation with lower bounds prob-
lem into a circulation problem without lower bounds. We push a flow with the value of 
the lower bound l(u, v) on each edge and compute the flow excess L(v) = f in(v) – f out(v) 
for each vertex v.

L(a) = (2 + 2) - 0 = 4, 

L(b) = (2 + 1) - (2 + 3) = -2, 

L(c) = 2 - 2=0, 

L(d) = 0 - (1 + 2 + 2) = -5, 

L(e) = (2 + 3) - 2 = 3.

Next, we recompute the demands d´(v) = d(v) - L(v) to get 

d´(a) = 7 - 4 = 3, d´(b) = 5 - (-2) = 7, d´(c) = -4 - 0 = -4,  
d´(d) = -11 - (-5) = -6, d´(e) = 3 - 3 = 0.
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We have reduced the original problem in a circulation problem without lower bounds. 
See figure 7.28.
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FIGURE 7.28  Circulation problem with no lower bounds.

Part (b): In order to reduce the circulation problem from part (a) into the max-flow 
network problem, we construct a new graph by adding two extra vertices, s and t. We 
connect the source s with vertices c and d by edges with capacities 4 and 6, respectively. 
We connect vertices a and b with the target t by edges with capacities 3 and 7, respec-
tively. See figure 7.29 for the resulting graph.
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FIGURE 7.29  The max-flow network.

Part (c): Running the Ford–Fulkerson algorithm, we find that the max flow has value 
10 and saturates all the edges coming out of the source s. Figure 7.30 is a feasible circu-
lation to the original problem.
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FIGURE 7.30  Network flow graph with flow/capacity on each edge.
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7.6 Reduction to Circulation
As an example of using a reduction to circulation, consider the following problem:

Consider LAX, a notoriously busy airport with many arriving passengers 
who want to get to their destinations as soon as possible. There is an avail-
able fleet of n Uber drivers to accommodate all passengers. However, there 
is a traffic regulation at the airport that limits the total number of Uber 
drivers at any given hour-long interval to 0 £ k < n simultaneous drivers. 
Assume that there are p time intervals. Each driver provides a subset of 
the time intervals he or she can work at the airport, with the minimum 
requirement of aj hour(s) per day and the maximum bj hour(s) per day. 
Lastly, the total number of Uber drivers available per day must be at least 
m to maintain a minimum customer satisfaction and loyalty. Design an 
algorithm to determine if there is a valid way to schedule the Uber driv-
ers with respect to these constraints.

We will reduce the Uber driver’s problem to a circulation problem. First, we build a 
bipartite graph (see figure 7.31) having the drivers Ubi on one side and hour-long time 
intervals Ij on the other side. We insert the edge between driver Ubi and time interval Ij 
if the driver prefers to work at that hour. The capacity of this edge is 1. There could be 
many drivers willing to work at that hour, so having flow 0 on that edge is interpreted 
as a driver not covering that time interval.

Ub1 1

Ub2

I1

I2

I3

Ub3

Ub4

FIGURE 7.31  A bipartite graph.

Next, we add two new vertices x and y. Connect x to all Ubi and all Ij to y. The edge  
(x, Ubi) has lower bound ai and upper bound bi. The edge (Ij, y) has capacity k. Finally, we 
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add the edge (y, x). The flow on this edge represents the total number of Uber drivers 
serving the airport. We set the lower bound on that edge to m. See figure 7.32 for the 
resulting graph H with n = 4 and p = 3.

Ub1

x

1 [m, ∞]

k

[a4, b4]

[a3, b3]

[a2, b2]

[a1, b1]

y

Ub2

I1

I2

I3

Ub3

Ub4

FIGURE 7.32  The Uber driver’s problem as a circulation problem.

Claim. There is a valid way to schedule the Uber drivers if and only if there is a feasible 
circulation in H.

Proof. Þ) Assume that there is a valid way to schedule at least m Uber drivers per day. 
We construct a flow in H as follows. If a driver Ubi works during a time interval Ij, we 
create a flow of one unit on edge (Ubi, Ij). A particular driver Ubi may work during sev-
eral time intervals. Therefore, we set the flow along the edge (s, Ubi) to the number of 
time intervals that driver works. We set the flow along the edge (Ij, t) to the number 
of drivers who work during that time interval Ij. Finally, we set the flow on edge (t, s) 
to the total number of Uber drivers serving the airport. Thus, we have constructed a 
feasible circulation.

Ü) Consider a feasible circulation in H. For each edge (Ubi, Ij) that carries one unit of 
flow, driver Ubi works at hour Ij. Flow on the edge (s, Ubi) represents the total number 
hours that driver works. By the flow conservation law, that number is between ai and 
bi. Similarly, the flow along the edge (Ij, t) cannot exceed k, implying that only at most k 
drivers can work at that hour Ij. ∎

If we want to know under what conditions a feasible circulation graph H exists, we 
need to turn the circulation problem into the max-flow network problem. We proceed 
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as in section 7.4.2. See figure 7.33 for a newly constructed graph H´ by removing the 
lower bounds and vertex demands. There we assume that −∑m ai i > 0, so that vertex x  
is a supply. It follows that there is a feasible circulation in H if and only if the max-flow 
value in H´ is m.

Ub1

x

s a4

a3

a2

a1

1
∞

k

m

b4 – a4

m – Σai

b3 – a3

b2 – a2

b1 – a1

y

t

Ub2

I1

I2

I3

Ub3

Ub4

FIGURE 7.33  Graph H´ for the max-flow problem.

REVIEW QUESTIONS

1.	 What is a flow?
2.	 What is a flow network?
3.	 What is an augmenting path?
4.	 What is the relationship between a flow value and a cut capacity?
5.	 Among all cuts, how do you distinguish a min-cut in the residual network?
6.	 How do you find a min-cut?
7.	 Is a min-cut unique?
8.	 How do you force the flow to use certain edges?
9.	 (T/F) A residual network is a flow network.

10.	 (T/F) The Ford–Fulkerson algorithm always terminates.
11.	 (T/F) The Ford–Fulkerson algorithm is a polynomial time algorithm.
12.	 (T/F) The Ford–Fulkerson algorithm is a greedy algorithm.
13.	 (T/F) The Edmonds-Karp 1 algorithm is a pseudo-polynomial time algorithm.
14.	 (T/F) The Edmonds-Karp 2 algorithm is a polynomial time algorithm.
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15.	 (T/F) If all capacities in a flow network are integers, then every maximum flow 
in the network is such that the flow value on each edge is an integer.

16.	 (T/F) If we add the same positive number to the capacity of every directed edge, 
then the minimum cut (but not its value) remains unchanged.

17.	 (T/F) Given a max-flow value you can find a min-cut in O(E).
18.	 (T/F) Given a min-cut value you can find a max-flow value in O(E).
19.	 (T/F) Every flow is a circulation.
20.	 (T/F) There is a feasible circulation with demands {dv} if Svdv = 0.

EXERCISES

1.	 Given a flow network N = (G = (V, E), s, t, c), where E might contain edges (u, v) 
and (v, u) in both directions for some pair of vertices u, v, we would like to use 
the Ford–Fulkerson algorithm to solve the flow problem on G, but G is not a flow 
network. Reduce this problem to the network flow problem.

2.	 Suppose we have a directed weighted graph G = (V, E) with multiple sources 
s1, s2, …, sn and multiple sinks t1, t2, …, tm. Reduce this problem to the network 
flow problem.

3.	 Given a flow network N = (G = (V, E), s, t, c), find the maximum number of edge dis-
joint paths from s to t. A set of paths is edge disjoint if no two paths share an edge.

4.	 Given a flow network N = (G = (V, E), s, t, c), find the maximum number of vertex 
disjoint paths from s to t. A set of paths is vertex disjoint if no two paths share 
a vertex.

5.	 Given a flow network N = (G = (V, E), s, t, c), in which, in addition to having a 
capacity c(u, v) for every edge, we also have a capacity c(v) for every vertex. The 
flow coming to a vertex v cannot exceed the vertex capacity c(v). Reduce this 
problem to the network flow problem.

6.	 You have successfully computed a maximum s-t flow for a network G = (V, E) with 
positive integer edge capacities. Your manager now gives you another network G’ 
that is identical to G except that the capacity of exactly one edge is decreased by 
one. You are also explicitly given the edge whose capacity was changed. Describe 
how you can compute a maximum flow for G’ in linear time.

7.	 The vertex cover of an undirected graph G = (V, E) is a subset of the vertices that 
touches every edge; that is, a subset S Ì V such that for each edge (u, v) Î E, one or 
both of u, v are in S. Show that the problem of finding the minimum vertex cover 
in a bipartite graph reduces to the maximum flow problem.
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8.	 A subset of edges is a matching if no two edges have a common vertex. A maxi-
mum matching is a matching with the largest possible number of edges. Our goal 
is to find the maximum matching in a bipartite graph. Show that the problem of 
finding the maximum matching in a bipartite graph reduces to the maximum 
flow problem.

9.	 There are n students in a class. We want to choose a subset of k students to join a 
committee. There has to be m1 number of freshmen, m2 number of sophomores, 
m3 number of juniors, and m4 number of seniors on the committee. Each student 
is from one of k departments, where k = m1 + m2 + m3 + m4. Exactly one stu-
dent from each department has to be chosen for the committee. We are given a 
list of students, their home departments, and their class (freshman, sophomore, 
junior, or senior). Describe an efficient algorithm based on network flow tech-
niques to select who should be on the committee such that these constraints 
are all satisfied.

10.	 Consider a set of mobile computing clients in a certain town who each need to 
be connected to one of several possible base stations. We’ll suppose there are n 
clients, with the position of each client specified by its (x, y) coordinates in the 
plane. There are also k base stations; the position of each of these is specified 
by (x, y) coordinates as well. For each client, we wish to connect it to exactly one 
of the base stations. Our choice of connections is constrained in the following 
ways. There is a range parameter R, which means that a client can only be con-
nected to a base station that is within distance R. There is also a load parameter 
L, which means that no more than L clients can be connected to any single base 
station. Given the positions of a set of clients and a set of base stations, as well as 
the range and load parameters, decide whether every client can be connected 
simultaneously to a base station.

11.	 The computer science department course structure is represented as a directed 
acyclic graph G = (V, E) where the vertices correspond to courses and a directed 
edge (u, v) exists if and only if course u is a prerequisite for course v. By taking 
a course w Î V, you gain a benefit of pw which could be a positive or negative 
number. Note, to take a course, you have to take all of its prerequisites. Design 
an efficient algorithm that picks a subset S Ì V of courses such that the total 
benefit is maximized. 

12.	 The edge connectivity of an undirected graph G = (V, E) is the minimum number 
of edges that must be removed to disconnect the graph. For example, the edge 
connectivity of a tree is 1. Show how the edge connectivity of an undirected 
graph can be determined by running a maximum-flow algorithm.
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13.	 There is a precious diamond that is on display in a museum at m disjoint time 
intervals. There are n security guards who can be deployed to protect the pre-
cious diamond. Each guard has a list of intervals for which he or she is available 
to be deployed. Each guard can be deployed to at most M time slots and has to 
be deployed to at least L time slots. Design an algorithm that decides if there is a 
deployment of guards to intervals such that each interval has either one or two 
guards deployed.

14.	 Your local police department has asked you to help set up the work shift schedule 
for the next month. There are n policemen on the staff and m days in the month. 
Each policeman gives a list of the days of the month that he or she is available 
to work. Let di denote the number of days that each policeman i is available to 
work. Then he or she should be scheduled to work at least di/2 of these days. 
Each day there must be exactly 2 policemen on duty. Design an algorithm that 
decides whether there exists a schedule that satisfies all of these requirements.
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I n this chapter we will describe a very general design technique called linear pro-
gramming (LP). Like network flow and dynamic programming, it can be used to express 

a wide variety of linear optimization problems given certain constraints. We can use 
algorithms for linear programming to solve the shortest distance problem, the max-flow 
problem, and many other optimization problems. The latter especially includes problems 
of allocating resources and business supply-chain applications given limited resources and 
competing constraints. 

The technique of linear programming was originally formulated by Russian economist 
L.V. Kantorovich in 1939. Later in 1975 he was awarded the Nobel prize in economics for 
contributions to the theory of optimum allocation of resources. 

The word programming in linear programming is not used in the sense of computer pro-
gramming as we understand it today. Its etymology is similar to dynamic programming (see 
chapter 6.) The world linear indicates the linear relationships between different variables.

8.1 Introduction: A Production Problem
Before we proceed with the theory, let us start with a motivating example.

A jewelry company wishes to produce two types of rings: The first type will 
result in a profit of $100, and the second type in a profit of $120. To manufac-
ture the first type of ring requires 2 rubies and 1 sapphire. The second type 
of ring requires 1 ruby and 3 sapphires. There are 200 rubies and 300 sap-
phires available. How many rings of each type should the company make in 
order to maximize its profit?

Linear Programming

Chapter 8
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A linear programming problem consists of a linear objective function to be max-
imized or minimized, subject to certain constraints, in a form of linear equations or 
inequalities. First, we start with defining variables. Let x ³ 0 be the number of the first 
type rings and y ³ 0 be the number of the second type rings to be made. Then the total 
profit the company makes is given by 100 x + 120 y. Therefore, the objective function 
for the problem is

+max100 120 .
,

x y
x y

Next, we define constraints on x and y. The total amount of rubies is 2x + y is and 
must not exceed 200. The total amount of sapphire is x + 3y and must not exceed 300. 
These lead to the following system of inequalities

+ ≤

+ ≤

≥

2 200

3 300

, 0.

x y
x y
x y

This is an example of a linear program: All our constraints are linear inequalities 
and the objective function is also linear.

We can solve our linear program by graphing the set of points in the plane that sat-
isfies all the constraints and then finding the maximum of the objective function. A 
linear equation in x and y defines a line, and a linear inequality defines a half space, 
the region on one side of the line. Figure 8.1 represents a half space for inequality  
2x + y £ 200.

FIGURE 8.1  A half space for 2x + y £ 200.

2x + y ≤ 200
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y

2x + y = 200
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Drawing other inequalities in the constraint set will give us a convex polygon S (see 
figure 8.2.) The set S (in blue) is the intersection of all four half spaces. Each point in S 
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is a candidate for the solution to our linear program and the whole set represents all 
feasible solutions. 

FIGURE 8.2  Feasible solutions.
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We want to find a feasible point in S that maximized the objective function. 
For that, we draw an objective line 100 x + 120 y = p, where p can take any real 
value and move it parallel to itself, up and to the right to get the larger and larger 
profit p (see figure 8.3). Ideally, we want to get as far as possible within the fea-
sible region S and find the last point where the objective line intersects the 
feasible region. It is easy to see that the objective function always takes on its 
maximum value at a corner point of the feasible region. In our example that point 
is at the vertex (60, 80) and the objective function value is 15,600. The point(s) 
that optimizes the objective function of the linear program is called an optimal  
solution.

FIGURE 8.3  The arrow shows a direction of increasing profit.
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Although it does not happen in our example, an entire polygon edge could be the 
optimal solution. This happens when an objective function line is parallel with one 
of the constraint lines. In this case a linear program has infinitely many optimal  
solutions.
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8.1.1 Infeasibility and Unboundedness
Not all linear programs have solutions. In certain circumstances a linear program can 
be either infeasible or unbounded. Both situations are commonly due to shortcomings 
in the constraints formulation or to some wrong numbers in the data. Consider the fol-
lowing linear program:

≤
≥

max

1

2.

x

x
x

x

For this program, the constraint set S is empty. Since there is no assignment to the 
variables that satisfies all the constraints, the problem has no solution and is called  
infeasible.

Feasible sets may be bounded or unbounded. A problem is said to be unbounded if 
the constraints do not restrict the objective function and the optimal objective may be 
improved indefinitely. Here is an example:

³

max

2.

x

x
x

If the feasible region is unbounded, the optimal objective value may or may not be 
finite. Consider the following unbounded linear program (depicted in figure 8.4), in 
which an objective function line is parallel to a constraint:

−

− ≤

≥

max

1

, 0.

,
x y

x y
x y

x y

The feasible region S is clearly unbounded, since any point x = y belongs to it. On 
other hand, there is a finite solution to the problem, which occurs at the corner x = 1  
and y = 0. Note that the solution is not unique; x = 2, y = 1 is another solution.  
Actually, the whole edge of the region S is a solution. We could make a unique solution 
by adding another constraint x £ 1.

https://en.wikipedia.org/wiki/Bounded_set
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FIGURE 8.4  An unbounded linear program.
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If a linear program is both feasible and bounded, then it has at least one finite 
optimal solution.

8.2 The Standard Maximum Problem
A linear program is the problem of optimizing a linear objective function in n variables, 
x1, …, xn, subject to m linear inequalities. In standard inequality form, a linear program 
is written as

+…+
…
max( )
, , 1 1

1

c x c x
x x n n

n

subject to



+…+ ≤

+…+ ≤

11 1 1 1

1 1

a x a x b

a x a x b

n n

m mn n m

where each variable xj satisfies the non-negativity constraint

≥ … ≥0, , 0.
1
x xn

Most of the application problems do not automatically arise in standard form, though 
there is a variety of techniques to rephrase problems in standard form. All LP problems 
can be converted to standard form by the following techniques:

1.	 A minimum problem can be changed to a maximum problem by multiplying the 
objective function by -1. 
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2.	 Constraints of the form a xj ³ b can be changed to –a xj £ –b.
3.	 An equality constraint a xj = b can be transformed into inequality form by replac-

ing each equation by two inequalities, a xj £ b and –a xj £ –b.
4.	 An unrestricted (free) variable xj can be replaced by the difference of two vari-

ables, xj = u – v, where u ³ 0, v ³ 0.
5.	 A variable constraint of the form xj ³ c can be transformed into zj ³ 0 by replac-

ing xj = zj – c.

The standard form is useful when we want to state theoretical results about linear 
programs without going through all special cases. From the application point of view, 
it’s not necessary to convert a problem into standard form. The LP solver packages (like 
LINDO, CPLEX, Gurobi) carry out all necessary conversions.

A standard problem can be written in a matrix form if we introduce the 
following notations:

�

� � �
�
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By applying some basic linear algebra, this problem becomes

max( )c xT
x

subject to

≤
≥0.

A x b
x

For example, in the production problem from chapter 8.1, we have
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Every inequality of the form +…+ ≤11 1 1 1a x a x bn n  in the constraint set divides the 
space n into two regions, called half spaces, with the hyperplane + + =11 1 1 1a x a x bn n  
being the boundary between them. An intersection of these half spaces forms a polyhe-
dron, which is a convex set in n dimensions. A polytope is a bounded polyhedron. A cube 
and a tetrahedron are examples of polytopes. Corner points of a polytope are intersec-
tions of hyperplanes and called extreme points.

Theorem (Fundamental theorem). The linear program either

1.	 has no optimal solution, in which case a feasible set is empty or unbounded; or,

2.	 has an optimal solution that must occur at one of the vertices of the polytope.

In linear program we do not allow strict inequalities such as a x < b, since the solu-
tion is not guaranteed to exist at extreme points. Here is an example:

<

max

2.

x

x
x

The maximum x = 2 does not lie in the feasible region.
An important consequence of this theorem is that an algorithm for solving a linear 

program only needs to examine all the extreme points of the polytope. How many 
vertices can there be? In a system with m constraints and n variables, that is the same 
as the number of ways to choose n linear independent rows from m rows, at most ( )mn . 
Thus, we have discovered an exponential time algorithm (in the worst case) for solv-
ing a linear program: Enumerate all vertices of the polytope, calculate the value of 
the objective function for each vertex, and take the maximum. This is the outline of 
an algorithm called the simplex algorithm, invented by G. Dantzig in 1947. The algo-
rithm is very efficient in practice and runs in O(n2 m) time in most cases, even with 
tens of thousands of variables and constraints (on modern computers).

The first polynomial time algorithm, the ellipsoid method, was discovered in 1979 
by L. Khachian. The algorithm is terribly slow and not competitive with the simplex 
algorithm in practice, though it makes a theoretically powerful tool; for instance, it 
is used for combinatorial optimization problems. In 1984, N. Karmarkar described a 
faster polynomial time algorithm called the interior point method. However, the sim-
plex algorithm remains the most popular method for solving linear programming  
problems. 
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8.3 A Few Applications
In this chapter we express problems that are familiar to us, for which we have developed 
efficient algorithms in the previous chapters, as linear programs. Though the linear 
programming approach is less efficient when using specialized algorithms, the main 
point here is to demonstrate how linear programming can be applied, and to illustrate 
its generality. Reducing a problem to linear programming may provide a quicker way 
(from a software engineering standpoint) to solve it, rather than to invent a custom 
algorithm for it.

8.3.1 The Shortest-Path Problem
In chapters 4.5 and 6.4 we have discussed the problem of finding the shortest directed 
path from s and t in a weighted directed graph G = (V, E). In this section we will reduce 
the shortest path problem to linear programming. Recall the definition of a polynomial 
reduction from chapter 7.3.

We construct a linear program as follows. We define a variable d(v) that denotes a 
distance from a source s to each vertex v Î V. Since the edge weights are allowed to be 
negative, each d(v) is unrestricted in sign. For the source vertex, d(s) = 0. For every 
directed edge (u, v) Î E, we add the constraint d(v) £ d(u) + w(u, v), where w(u, v) is the 
edge weight. This is illustrated in figure 8.5.

FIGURE 8.5  The relaxation constraint.
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The relaxation constraint implies that d(v) £ min u (d(u) + w(u, v)) is at most the 
shortest path distance from s to v. So, d(v) is the largest value in the set {d(u) + w(u, v)}. 
It follows that in order to get the shortest distance to the target t, we need maximize 
d(t). Another argument for why the objective function is to be maximized is that if we 
minimize d(t) we will get a trivial solution. We do not require edge weights to be non-
negative, but we have to watch out for negative weight cycles (see Exercise 8).

Here is the LP formulation for the single-source shortest-path problem, assuming 
no negative weight cycles:
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max d t( )

subject to

d v d u w u v u v E( ) ( ) ( , ), for every ( , )− ≤ ∈

d s d v v V s( ) 0, ( ) are unrestricted for every \{ }.= ∈

As an example, consider the directed weighted graph (figure 8.6). We need to calcu-
late the shortest distance between s to t.

FIGURE 8.6  A shortest path problem.
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This problem can be formulated as a following linear program:

max d(t)

subject to

d(1) £ d(s) +5 , d(2) £ d(1) + 4, d(2) £ d(4) + 5, d(2) £ d(s) +11, d(3) £ d(4) +13, 

d(3) £ d(2) – 9,d(3) £ d(1) + 6, d(4) £ d(s) +2, d(t) £ d(2) + 5, d(t) £ d(3) +11,

where

d(s) = 0, d(1) ³ -9, d(2) ³ -9, d(3) ³ -9, d(4) ³ -9, d(t) ³ -9.

Solving the above LP yields the correct results, d(t) = 9. However, the dis-
tance d(1) = 3 is underestimated. The optimal solution guarantees only the 
shortest distance from s to t. For other vertices, d(v) may be an underestimate of 
the true distance. This could be easily fixed by changing the objective function (see  
Exercise 7).

What happens to the LP if there is no s-t path in the given graph? Consider the fol-
lowing graph (figure 8.7) in which the vertex t is unreachable.
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FIGURE 8.7  A graph with an unreachable vertex t.
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A linear programming formulation is

max d(t)

d(1) £ d(s) +5 , d(2) £ d(1) + 4, d(2) £ d(4) + 5, d(2) £ d(s) +11, d(3) £ d(4) +13, 

d(3) £ d(2) – 9, d(3) £ d(1) + 6, d(4) £ d(s) +2, d(2) £ d(t) + 5, d(3) £ d(t) +11,

d(s) = 0, d(1) ³ -9, d(2) ³ -9, d(3) ³ -9, d(4) ³ -9, d(t) ³ -9.

As it turns out the linear program is unbounded. It follows from the last two 
constraints: 

≤ +

≤ +








d d t
d d t
(2) ( ) 5

(3) ( ) 11

We can readily calculate the shortest distances d(2) = 7 and d(3) = –2. The above 
inequalities therefore can be rewritten as

d t

d t

( ) 2

( ) 13

≥

≥−








which means that the maximum d(t) cannot be reached.

8.3.2 The Max-Flow Problem
Recall the max-flow problem defined in chapter 7.1. Given a network (G = (V, E), s, t, c) 
with a designated source s and sink t, and a nonnegative capacity c(u, v) for each edge 
(u, v) Î E, we need to maximize the flow from s to t. The max-flow problem can be easily 
reduced to a linear program by following the definition of feasible flow. We introduce 
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a variable f(u, v) that denotes a flow across the edge (u, v) Î E. There are two types of 
constraints in a flow network:

1.	 Capacity constraint: 0 £ f(u, v) £ c(u, v), for each edge (u, v) Î E
2.	 Conservation constraint: ∑ =∑f u v f v w( , ) ( , )u w , for each v Î V - {s, t}

The objective function is to maximize a flow emanating from the source s (or 
descend to the sink t). The linear program has E variables and 2E + V – 2 constraints. 
If we want to write this LP in the standard from, we need to change the equal-
ities, ∑ =∑f u v f v w( , ) ( , ),u w

 into inequalities, ∑ − ≤∑ −f u v f v w( , ) ( , )u w  and  

∑ ≤∑f u v f v w( , ) ( , )u w
.

As an example, consider the flow network in figure 8.8. We need to calculate the 
max-flow between s to t.

FIGURE 8.8  The flow network.
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This problem can be formulated as a following linear program:

max f(s, a) + f(s, d)

subject to

0 £ f(s, a) £ 3, 0 £ f(s, d) £ 4, 0 £ f(a, b) £ 2, 0 £ f(a, c) £ 1, 

0 £ f(b, t) £ 3, 0 £ f(c, t) £ 3, 0 £ f(d, c) £ 3, 0 £ f(d, b) £ 2,

f(s, a) = f(a, b) + f(a, c), f(a, b) + f(d, b) = f(b, t), 

f(a, c) + f(d, c) = f(c, t), f(s, d) = f(d, b) + f(d, c).

8.3.3 The Knapsack Problem
Recall the knapsack problem from chapter 6.1. You are given a set of n unique items, with 
weights w1, …, wn and values v1, …, vn, where the weights and values are all integers. The 



148  P  Algorithms in Action

problem is to find a subset of the most valuable items such that their total weight does 
not exceed W. We assume that all items are unbreakable. We formalize the problem by 
introducing an indicator variable xk for each item k = 1, 2, …, n:

=







1, if item is selected

0, otherwise.
x k
k

Then, we write the 0-1 Knapsack problem as follows

∑

∑ ≤

=

=

max
1

1

v x

w x W

k

n

k k

k

n

k k

Notice that since the variables Î {0, 1}xk  are integers, we do not have an 
ordinary linear program. This is an integer linear programming (ILP) prob-
lem that cannot be solved by the Simplex method. It’s even worse: There is no 
polynomial algorithm that solves this problem. On the other hand, there is no proof 
that such an algorithm does not exists. We will prove in chapter 9 that ILP is a NP-hard  
problem.

8.4 The Dual Linear Program
Generally, the duality principle allows us to prove that a solution to an optimi-
zation problem is optimal. In chapter 7.2.3 we have used duality to prove the 
maximum flow. In this chapter we will describe how to formulate a dual linear 
program in which we minimize an objective function. We call the original linear 
program the primal. The dual of a dual linear program is the original primal  
linear program. 

Given a primal linear program in standard maximum form

≤

≥

max( )

subject to

0

c x

Ax b
x

x

T



Chapter 8  Linear Programming  P  149

we define the dual as standard minimum problem:

³

³

min( )

subject to

0

b y

A y c
y

y

T

T

As an example, consider the production problem from section 8.1:
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Here, the variables x and y represent the number of the first and second types of rings 
correspondingly. The dual to the previous linear program is in the variables u and v, 
which represent the shadow prices. 

FIGURE 8.9  A dual to the production problem.
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A shadow price is the value per unit of a resource, which in our case is rubies and 
sapphires. Figure 8.9 shows that the objective function takes its minimum value at a 
corner point of the feasible region, at the vertex with coordinates (36, 28). These num-
bers are the minimal prices at which we are willing to sell each ruby and sapphire. If 
we compute the value of resources based on shadow prices, we get our optimal profit:  
200 ́  36 + 300 ́  28 = 15,600. The objective function value is the same as in the primal 
problem. This is not a coincidence but reflects a fundamental property of primal and 
dual programs.
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The relation between a standard problem and its dual is given in the following the-
orems and corollaries.

Theorem 1. (The weak duality) Let P and D be primal and dual LP correspondingly. If x 
is a feasible solution for P and y is a feasible solution for its dual D, then £c x b yT T .

Proof. Since y is feasible solution, we have

= ≤ = ≤( ) ( ) .c x x c x A y A x y b yT T T T T T

The first inequality follows from the fact that y is feasible solution; the second inequal-
ity follows since x is feasible solution. ∎

The theorem says that the optimum of the dual is an upper bound to the optimum of 
the primal. The difference between them, -c x b yT T , is called a duality gap.

Corollary 1. If a standard problem and its dual are both feasible, then both are 
feasible bounded.

Proof. Since the dual is an upper bound to the optimum of the primal, then the primal 
is bounded. If the primal is a lower bound to the optimum of the dual, then the dual is 
bounded. ∎

Corollary 2. If one problem has an unbounded solution, then the dual of that problem is 
infeasible. 

Proof. Suppose that the dual is feasible. Then, the dual would provide an upper bound 
on the primal. This contradicts the fact that the primal problem is unbounded. The 
argument for the dual is analogous. ∎

Theorem 2. (The strong duality) Let P and D be primal and dual LP correspondingly. 
If x is a feasible solution for P and y is a feasible solution for its dual D, then =c x b yT T .

The proof of this theorem is beyond the scope of this book.
Table 8.1 demonstrates all possible relations between the primal P and the dual 

D. In the table we use the following notations: F.B. (feasible bounded), F.U. (feasible 
unbounded), I. (infeasible). The NO in the table shows the impossibilities that follow 
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either from Corollary 1 or 2. The YES in the table means the possibility, and we provide 
a corresponding example.

TABLE 8.1  Relations between the primal and the dual

P/D F.B. F.U. I.
F.B. YES (1) NO NO
F.U. NO NO YES (2)

I. NO YES (3) YES (4)

Example 1. (P and D are F.B.)
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Example 2. (P is F.U. and D is I.)
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Example 3. (P is I. and D is F.U.)
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Example 4. (P and D are I.)

+

− + ≤−

− ≤

≥

− +

− + ≥

− ≥

≥

max( 4 )

3

2

, 0

min( 3 2 )

1

4

, 0

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

x x

x x

x x

x x

y y

y y

y y

y y

Theorem 2 states that if the primal and dual problems have optimal solutions, then 
the optimal objective function values must be equal. But it does not mean that a dual-
ity gap of the linear program is always zero. It is possible for both the primal and dual 
problems to be infeasible. In this case the duality gap is infinity (see Exercise 14).

REVIEW QUESTIONS

1.	 What is linear programming?
2.	 What is an objective function?
3.	 What are the nonnegativity constraints?
4.	 What is an optimal solution?
5.	 What is a feasible solution?
6.	 (T/F) Every LP has an optimal solution.
7.	 (T/F) If an LP has an optimal solution it occurs at an extreme point.
8.	 (T/F) If an LP is feasible and bounded, then it must have an optimal solution.
9.	 (T/F) An LP allows strict inequalities in the constraints.

10.	 (T/F) An LP for which the feasible region is unbounded has the finite 
optimal solution.

11.	 (T/F) The weak duality theorem does not always hold for an integer 
linear program.

12.	 (T/F) An LP must be infeasible if its dual problem is unbounded.
13.	 (T/F) Both the primal and the dual can be infeasible.
14.	 (T/F) There is no duality gap in linear programming.
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EXERCISES

1.	 A furniture company produces two types of chairs. The first type takes 10 hours 
to make and uses 2 square yards of fabric and 20 pounds of padding. The second 
type takes 70 hours to make and uses 3 square yards of fabric and 10 pounds of 
padding. The profit of the first type is $2 per chair, and the profit of the second 
type is $5 per chair. The resources available for production for both chairs are 
490 hours of labor, 32 yards of fabric, and 240 pounds of padding. How many 
chairs of each type should the company make in order to maximize its profit?

2.	 A cargo plane can carry a maximum weight of 100 tons and a maximum volume 
of 60 cubic meters. There are three materials to be transported, and the cargo 
company may choose to carry any amount of each, up to the maximum available 
limits provided in the table below

Density Volume Price

Material 1 2 tons/m3 40 m3 $1,000 per m3

Material 2 1 tons/m3 30 m3 $2,000 per m3

Material 3 3 tons/m3 20 m3 $12,000 per m3

Write a linear program that optimizes revenue given the constraints.  

3.	 A furniture company produces three types of couches. The first type uses 1 foot 
of framing wood and 3 feet of cabinet wood. The second type uses 2 feet of fram-
ing wood and 2 feet of cabinet wood. The third type uses 2 feet of framing wood 
and 1 foot of cabinet wood. The profit of the three types of couches is $10, $8, and 
$5, respectively. The factory produces 500 couches each month of the first type, 
300 of the second type, and 200 of the third type. However, this month there is 
a shortage of cabinet wood to only 600 feet, but the supply of framing wood is 
increased by 100 feet. How should the production of the three types of couches 
be adjusted to minimize the decrease in profit?

4.	 You have $1,000 to invest. There are three types of investments. The first type 
is every dollar invested yields $0.10 a year from now and $1.30 three years from 
now. The second type is every dollar invested yields $0.20 a year from now and 
$1.10 two years from now. The third type is every dollar invested a year from 
now yields $1.50 three years from now. The most that can be invested into a 
single investment is $500. During each year all leftover cash is placed into money 
markets that yield 6% per year. Write a linear program to maximize your invest-
ment in three years from now.
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5.	 The Canine Products company has two dogfood products, Frisky Pup and Husky 
Hounds, that are made from a blend of two raw materials, cereal and meat. One 
pound of cereal and 1.5 pounds of meat are needed to make a package of Frisky 
Pup, and it sells for $7 a package. Two pounds of cereal and 1 pound of meat are 
needed to make a package of Husky Hound, and it sells for $6 a package. Raw 
cereal costs $1 per pound and raw meat costs $2 per pound. It also costs $1.40 to 
package the Frisky Pup and $.60 to package the Husky Hound. A total of 240,000 
pounds of cereal and 180,000 pounds of meat are available per month. The pro-
duction bottleneck is that the factory can only package 110,000 bags of Frisky 
Pup per month. Write a linear program to maximize profit. 

6.	 Rewrite the following linear programs in the standard maximum form:
a.	 Maximize	 2 x + 3 y

subject to	 5 x – 6 y ³ 7

					    7 x + 8 y £ 9

					    x ³ 0, y ³ 2

b.	 Maximize	 2 x + 3 y
subject to	 5 x – 6 y ³ 7

					    7 x + 8 y = 9

					    x ³ 0

c.	 Minimize	 5 x – 2 y + 9 z 
subject to	 3 x + y + 4 z = 8 

					    2 x + 7 y – 6 z £ 4 

					    x £ 0, z ³ 1

7.	 Modify the linear program in section 8.3.1 to find the shortest distance from the 
source s to all other vertices.

8.	 What happens to the LP in section 8.3.1 if a given graph has negative weight cycles?
9.	 The all-pairs shortest-paths problem is to find a shortest path between any pair of 

vertices, u to v. Formulate the all-pairs shortest-paths problem as a linear program.
10.	 Given a bipartite graph, G = (V, E), a subset of edges is a matching if no two edges 

have a common vertex. A maximum matching is a matching with the largest pos-
sible number of edges. Our goal is to find the maximum matching in a bipartite 
graph G. Write a linear program that solves the maximum-matching problem.



Chapter 8  Linear Programming  P  155

11.	 There are n people and n jobs. You are given a cost matrix, where each element 
C(i, j) represents the cost of assigning person i to do job j. You need to assign all 
the jobs in such a way that each person performs only one job and each job is 
assigned to only one person. Write a linear program that minimizes the total 
cost of the assignment.

12.	 Given an infinite supply of bins, each of which can hold the maximum weight  
of 1, and there are also n objects, each of which has a weight wi £ 1, your goal is to 
place all the objects into bins in such a way that the total number of used bins is 
minimized. Formulate the problem as an integer linear programming problem.

13.	 Write the duals to the following linear programs:
a.	 Maximize	 x1 + x2 + 2 x3

subject to	 x1 + 2 x3 £ 3 

					    –x1 + 3 x3 £ 2

					    2 x1 + x2 + x3 £ 1

					    x1, x2, x3 ³ 0 

b.	 Maximize	 3 x1 – 2 x2 + x3

subject to	 x1 – x2 + x3 £ 4 

					    3 x1 + x2 + 2 x3 £ 6

					    –x1 + 2 x3 = 3

					    x1 + x2 + x3 £ 8

					    x1, x2, x3 ³ 0 

c.	 Minimize	 3 y1 – 2 y2 + 5 y3

subject to	 – y2 + 2 y3 ³ 1 

					    y1 + y3 ³ 1

					    2 y1 – 3 y2 + 7 x3 ³ 5

					    y1, y2, y3 ³ 0 

14.	 Create an example of a linear program showing that the strong duality theorem 
does not always hold for an integer linear program.

15.	 Create an example of a linear program showing that the primal and the dual can 
be both infeasible.
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I n previous chapters we have seen different algorithms that run in worst-case poly-
nomial time. We say that those algorithms are efficient. At the same time, we have seen 

problems that cannot be computed in polynomial time. That raises two questions: What is 
computable? and What is efficiently computable? These are the fundamental questions of 
computer science. To answer these questions, we have to introduce an abstract model of 
computation—the Turing machine. Turing machines provide a precise, formal definition of 
what it means to be computable. In this chapter we will consider a class of hard problems 
for which it is unknown if they can be solved in polynomial time. At the heart of these is the 
most famous unsolved problem in computer science:  versus NP.

9.1 A Brief Introduction to the Turing Machines
In the 1900 International Congress of Mathematicians, D. Hilbert presented a list of 23 chal-
lenging (unsolved) problems in mathematics. One of them (known today as Hilbert’s 10th 
problem) was formulated (my rephrasing) as follows:

Given a multivariate polynomial with integer coefficients, devise a process 
according to which it can be determined, in a finite number of operations, 
whether it has an integer root.

In modern terminology, Hilbert was asking for an algorithm to decide whether a 
Diophantine equation has a solution in integers. This problem sparked the great interest 
in the research community. For many years people have tried to devise such an algorithm 

Chapter 9

NP Completeness
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without success. Eventually, they began to think that it could not be done at all, so they 
started to search for proof that there is no such algorithm at all. Only in the mid-1930s 
did Alonzo Church and Alan Turing show that some problems have no algorithmic 
solution. In other words, they are unsolvable. Turing’s proof introduced the notion of 
computation by machine, nowadays called the Turing machine. The machine precisely 
defines the meaning of an algorithm. An algorithm is a Turing machine in the sense that 
if an algorithm exists, then a Turing machine can run it. We say that a problem is com-
putable if there is an algorithm for solving it in a finite number of steps. Therefore, an 
algorithm must always halt.

The Turing machine is a computing device, consisting of a head with a tape of unbounded 
length passing through it—a tape divided into cells. Each cell contains one symbol. The 
machine can perform only the following types of operations—read, write, move left, 
move right, change state, and halt. Based on the symbol it is currently reading, and its 
current state, the Turing machine either writes a new symbol in that location, moves 
to a new state, or stays in place. Once the computation is completed, the machine will 
come to a halt state. Figure 9.1 shows an example of a Turing machine that takes a binary 
string and appends 0 to its left side.

FIGURE 9.1  An Example of a Turing machine.
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The states are represented by vertices and the transitions are represented by edges. 
Each transition has a triple of the form read, write, and direction. For example, (0,1,R) 
means if reading a 0, then write a 1 and move the head right. ∆ denotes an empty cell. 
Computation starts at state S0. If, for example, the first character of the input is a 1, we 
output a 0, move the head to the next character, and transition to state S1. A computa-
tion may consist of millions of transitions. The Turing machines we have described here 
are deterministic: For every state there must be exactly one transition.

Despite its simplicity, the Turing machine is capable of computing anything that the 
modern computer can compute. According to the Church-Turing thesis (conjecture), 
everything that can be computed can be computed by a Turing machine. That is not a 
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theorem; it has not been and cannot be proven. Also, as of today no counterexample 
has yet been constructed.

9.2 Computational Intractability
With the Turing machine we are ready to define the runtime complexity and com-
plexity classes. The runtime complexity is the function f: � ® � such that f(n) is the 
maximum number of steps (transitions) that the Turing machine uses on any input of  
length n. 

Definition. A fundamental complexity class  (or PTIME) is a class of decision problems 
that can be solved by a deterministic Turing machine in polynomial time. 

A fundamental complexity class EXPTIME is a class of decision problems that can 
be solved by a deterministic Turing machine in O(2p(n)) time, where p(n) is a poly-
nomial. By a decision problem we mean a problem that can be formulated as a 
“yes-no” question. Considering decision problems only does not reduce the scope of 
all problems, since every computational problem is equivalent to a decision prob-
lem. For instance, any optimization problem can be converted into a decision problem  
(see Exercise 1.)

A decision problem is decidable if it can be solved by a Turing machine that always 
halts; otherwise, it is called undecidable. An undecidable problem cannot be solved by 
any Turing machine. The most famous example of an unsolvable problem is the halt-
ing problem. That is the problem of whether a given Turing machine will terminate on 
a given input or instead it will run forever.

Theorem (A. Turing, 1936). The halting problem is undecidable (unsolvable).

Proof. We will prove it by a self-referencing contradiction as in the famous liar’s para-
dox, the one about saying, “I am lying.” If that statement is true, then it’s not true. But if 
the statement is not true, then it is true. 

Let P(x) denote the output that arises from running program P on input x, assuming 
that P eventually halts. Then P(P) means the output obtained from running program P 
on the text of its own source code. Let K be the set of all programs P such that P(P) halts:

K P P P{program | ( ) halts}.=
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Clearly a set K is not empty; a Java program could be an element of that set. Next, we 
define a program HALT as follows:

P K P P

P K P P
HALT(P)

yes, if , so ( ) halts.

no, if , so ( ) doesn t halt.
=

∈

∉ ′








Let us assume that such program HALT does exist. Finally, we define a new program 
CONFUSE that calls HALT as a subroutine:

bool CONFUSE(P) { 
 if (HALT(P) == True) 
	     then loop forever;
 else return True;
}

Does CONFUSE(CONFUSE) halt? Consider two cases:

1.	 Assume CONFUSE(CONFUSE) does halt.

Then, by the definition of program HALT, we have that HALT(CONFUSE) 
is true. And by the definition of program CONFUSE, we have that 
CONFUSE(CONFUSE) loops forever.

2.	 Assume CONFUSE(CONFUSE) does not halt. 

Then, by the definition of program HALT, we have that HALT(CONFUSE) is false. 
And by the definition of CONFUSE, we have that CONFUSE(CONFUSE) returns true.

This is a contradiction. We have assumed that HALT exists; therefore, such a pro-
gram HALT cannot exist. ∎

Why is the halting problem so important? There are two reasons. First, a lot of prac-
tical problems are the halting problem in disguise. For example, there is no algorithm 
that can reliably detect all software viruses. Second, if the halting problem could be 
solved, many other problems could be decided. For example, the famous Goldbach’s con-
jecture could be decided. This conjecture states that every even integer greater than 
2 can be expressed as the sum of two primes. We can write a program that runs until 
it finds the first counterexample to Goldbach’s conjecture. If the halting problem was 
decidable then Goldbach’s conjecture would be true if this program never halted and 
would be false if it did halt.

https://brilliant.org/wiki/the-goldbach-conjecture/
https://brilliant.org/wiki/the-goldbach-conjecture/
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In his original 1936 paper, Turing also defined an extension of his deterministic 
machine that is known today as nondeterministic Turing machines. However, the con-
cept of nondeterminism did not get much interest until works by M. Rabin and D. Scott 
in the early 1960s. Formally, a nondeterministic Turing machine has all the components 
of a standard deterministic Turing machine, except that at every state there is a set of 
possible transitions, any of which can be chosen by the machine. Therefore, a nonde-
terministic machine specifies a computation rooted tree. In this tree, a path from the 
root to a leaf is a computation. In a deterministic machine, the computation tree is just 
a single path. The power of a nondeterministic Turing machine is that it does computa-
tions in parallel. Using this machine, we can define new computational classes. 

Definition. A fundamental complexity class NP is a class of decision problems that can 
be solved by a nondeterministic Turing machine in polynomial time. 

For example, consider the problem of coloring the vertices of a graph with k > 2 
colors so that no two adjacent vertices have the same color belongs to the NP  class. A 
nondeterministic algorithm can simply guess an assignment of colors and then check 
in polynomial time if all pairs of adjacent vertices have distinct colors.

There is another view of the NP class that uses an alternative verifier-based definition.

Definition. A fundamental complexity class NP  is a class of decision problems where 
each provides a certificate that can be verified by a deterministic Turing machine in 
polynomial time.

Consider the Hamiltonian path problem (see chapter 1.3.6). Assume we were given a 
sequence of vertices. We could verify in polynomial time whether they form a Hamiltonian 
path by visiting all vertices in the sequence. NP problems can be viewed as finding a 
needle in a haystack: It is hard to find it but it’s always easy to verify once the needle 
is found.

Unfortunately, a mighty nondeterministic machine is a pure abstraction since no phys-
ical computer (even a quantum computer) can support unlimited parallelism. It is easy 
to see (running a breadth-first search) that a deterministic machine can recompute the 
entire computational tree of a nondeterministic machine. We can state that if a problem 
can be solved by a nondeterministic Turing machine, then it can be solved by a deter-
ministic one. The difficulty is that such simulation between machines takes exponential 
time. But can we do it efficiently (i.e., in polynomial time)? The famous  versus NP 
conjecture would answer this question: We cannot hope to simulate nondeterministic 
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Turing machines in polynomial time. Therefore, we believe that these two classes are 
not equal since researchers have devoted an enormous amount of time trying to find 
polynomial time algorithms for some NP problems without success.

Next, we describe two more complexity classes: the NP-hard and NP-complete. For 
that we need to recall the definition of polynomial reduction (see chapter 7.3)

Definition. A polynomial-time reduction of a decision problem Y to a decision problem X 
(we write it as Y £ p X) is a map f: Y ® X such that

1.	 f is a polynomial time computable, and
2.	 "y Î Y is yes-instance if and only if f(y) Î X is yes-instance.

In the previous chapters we use reductions to solve problems. A reduction Y £ p X 
means that if we have an algorithm for problem X, we can use it to solve problem Y fol-
lowing these steps:

•	 Reduce an input of Y into an input of X 

•	 Solve X

•	 Reduce the solution back to Y

In particular, if we can solve X in polynomial time, then we can solve Y in polyno-
mial time. 

In this chapter we use reductions to show that we cannot solve some problems. The 
contrapositive of the previous statement is, “If we cannot solve Y in polynomial time, 
then we cannot solve X in polynomial time.” Therefore, the second meaning of Y £ p X 
is that knowing that problem Y is hard (it has no an efficient algorithm), we prove that 
X is at least as hard as Y.

An example is Independent Set £p Vertex Cover. 
Recall the definitions of an independent set and a vertex cover from chapter 1.3.6. 

Given a graph G = (V, E). A set of vertices C is a vertex cover if every edge in E has at least 
one endpoint in C. A set of vertices I is an independent set if no two vertices of I are con-
nected by an edge of E. We define decision problems as follows:

Vertex cover problem: Given a graph G and integer k > 0, decide whether there is a vertex 
cover of size k.

Independent set problem: Given a graph G and integer k > 0, decide whether there is an 
independent set of size k.
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The proof of reduction from an independent set problem to a vertex cover problem 
is based on the fact that a graph G = (V, E) has an independent set of size ³ k if and only 
if G has a vertex cover of size £ V – k.

Definition. A problem X is in NP-hard is for any Y Î NP it holds that Y £p X.

Definition. A decision problem X is in NP-complete if X Î NP  and X Î NP-Hard.

An NP-hard problem does not necessarily belong to the NP class. The halting problem 
is an example. Also, not all NP-hard problems are decision problems; some of them are 
optimization problems. We already know that these two kinds of problems are essen-
tially equivalent. However, they belong to two different complexity classes.

These are two of the most important and interesting classes of problems. If an NP- 
hard (or NP-complete) problem can be solved in polynomial time, then all NP (and NP- 
complete) problems will be solved in polynomial time. Therefore, if one solves such a 
problem, it would follow that  = NP.

The diagram in figure 9.2 shows the graphical relationships between different com-
plexity classes, assuming P NP¹ .

FIGURE 9.2  Complexity classes.
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9.3 NP-Complete Problems
In this section we will take a look at a specific class of problems for which no efficient 
algorithms are known. These are NP-complete problems. As we learned in the pre-
vious section, if a polynomial time algorithm were to be found for any one of these 
problems, then we could derive polynomial time algorithms for all of the problems in 
this class. There are hundreds of NP-complete problems that have been identified.1  

1“NP-Complete Problems,” Wikipedia, https://en.wikipedia.org/wiki/List_of_NP-complete_problems
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In this chapter we will consider only a few of them. Our first example is the satisfiabil-
ity problem, which we will call SAT for short.

9.3.1 SAT Problem
Given a logical formula consisting of Boolean variables and operators AND (conjunc-
tion, Ù), OR (disjunction, Ú), NOT (negation, ¬), we say that a formula is in conjunctive 
normal form (CNF) if it is a conjunction of clauses, where each clause is a disjunction of 
literals. A literal is a Boolean variable or its negation. For example,

¬ ¬∨ ∧ ∨ ∨ ∨ ∧ ∨ ∨( ) ( ) ( )
1 2 1 2 4 5 2 3 5

x x x x x x x x x

A formula is in disjunctive normal form (DNF) if it is a disjunction of clauses, where 
each clause is a conjunction of literals:

¬ ¬ ¬∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧( ) ( ) ( )
1 3 5 1 2 5 3 4

x x x x x x x x

A formula is said to be satisfiable if it can be made TRUE by assigning appropriate 
logical values (TRUE, FALSE) to its variables. Therefore, SAT is the problem of deter-
mining if there exists an assignment that satisfies a given formula. We would like to find 
an algorithm whose worst-case running time is polynomial in the number of variables. 
It is easy to see that such an algorithm exists for DNF satisfiability. Any DNF formula is 
satisfiable if and only if at least one of its clauses is satisfiable. A conjunctive clause is 
satisfiable if and only if it does not contain both a literal and its negation. However, CNF 
satisfiability is NP-complete, so no polynomial time algorithm has been found yet. At 
the same time, it is not proven that such an algorithm does not exists. 

Theorem 1. (Cook-Levin theorem, 1971) CNF-SAT is NP-complete.

We won’t prove the theorem here since it’s beyond the scope of the book. This result 
seems paradoxical, because using De Morgan’s laws 

¬ ¬ ¬

¬ ¬

∧ = ∨

∨ =¬ ∧

( )

( )

x y x y
x y x y

we can convert any CNF formula into an equivalent DNF formula. The catch is that 
this conversion may require an exponential number of variables (or clauses) in the 
worst-case scenario.
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Once we have one NP-complete problem, the task of showing other problems to be 
NP-complete becomes much easier, since we can use a polynomial reduction between 
two problems. To show that a problem X is NP-complete, we will follow these three steps:

1.	 Show that X is in NP
2.	 Pick a problem Y, known to be an NP-complete 
3.	 Show that X is in NP-hard, namely prove Y £p X 

This is the technique that we will use for all subsequent NP-completeness (and  
NP-hardness) proofs. In order to illustrate this technique, we consider a special case 
of Boolean satisfiability. We say that a CNF formula is k-CNF if no clause contains more 
than k literals. Therefore, k-SAT is the problem of determining satisfiability for a given 
k-CNF formula. Next, we will show that 3-SAT is NP-complete.

Theorem 2. 3-SAT is NP-complete.

Proof. The fact that 3-SAT is in NP follows immediately from the observation that if we 
have a truth assignment, we can substitute it into a given 3-CNF and then evaluate the 
expression in polynomial time. Another way to prove that 3-SAT is in NP is to non-de-
terministically guess values for all the variables and then evaluate the formula. This 
can be done in nondeterministic polynomial time. 

To prove NP-hardness, we reduce CNF-SAT to 3-SAT. Since instances of CNF-SAT are 
already in CNF, we only need to ensure the number of literals in each clause. We will 
do this by breaking up clauses that are too long into clauses containing only 3 literals. 
For clauses with three literals or less, we do nothing. Consider a clause with four liter-
als (a Ú b Ú c Ú d) and let us break it into two clauses of 3 literals. The first obvious try 
is as follows

(a Ú b Ú c Ú d) ® (a Ú b Ú c) Ù (b Ú c Ú d).

Unfortunately, it does not work, since not every assignment that satisfies the left-
hand side of the expression will satisfy the right-hand side. Indeed, a = T, b = c = d = F  
is an example of such an assignment. We learn from this example that we need 
leverage, namely a free variable that does not belong to a given SAT. Let us intro-
duce a new variable, x, and replace (a Ú b Ú c Ú d) with the following conjunction of  
clauses:

(a Ú b Ú c Ú d) ® (a Ú b Ú x) Ù (¬ x Ú c Ú d).
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Note that this statement is not a logical equivalence, since there are different vari-
ables on both sides of the statement.

If there is a truth assignment that satisfies the left-hand side, then at least one of its 
literals must be true. Let a = T. Then, to satisfy the right-hand side, we need to satisfy  
(¬ x Ú c Ú d) for any c and d. We do this by setting the extra variable x = F.

We now claim that any assignment that satisfies the new clauses will also satisfy  
(a Ú b Ú c Ú d). We prove this by contradiction. Suppose that (a Ú b Ú c Ú d) is not satisfied 
(i.e., a = b = c = d = F). In order for the first new clause (a Ú b Ú x) to be satisfied, the vari-
able x must be true. Then the second clause (¬ x Ú c Ú d) is not satisfied—a contradiction.

Next, let us consider a clause with five literals (a Ú b Ú c Ú d Ú e). Denoting d Ú e by a 
new variable DE and using the breaking rule for four literals twice, we get

(a Ú b Ú c Ú d Ú e) = (a Ú b Ú c Ú DE) 

= (a Ú b Ú x) Ù (¬ x Ú c Ú DE)

= (a Ú b Ú x) Ù (¬ x Ú c Ú y) Ù (¬ y Ú d Ú e).

This leads to 3 new clauses with two new variables. We apply this transformation to 
each clause having more than 3 literals. Clearly this transformation takes polynomial 
time, since we traverse an original CNF-SAT and replace each clause with new clauses. 
We also need to make sure that we won’t get an exponential number of new variables 
and clauses. During this transformation, a clause with m literals will be replaced by  
(m - 2) clauses with (m - 3) new variables. The number of clauses and variables is 
polynomially bounded. Thus, we have proved that the resulting 3-CNF formula is sat-
isfiable if and only if CNF-SAT is satisfiable. ∎

9.3.2 Independent Set Problem
An independent set in an undirected graph G is a subset S of the vertices such that no 
pair of vertices in S is adjacent in G. The independent set problem (IS, in short) is to 
decide, for a given undirected graph G and natural number k > 0, whether G has an 
independent set of size k.

Theorem 3. The independent set problem is NP-complete.

Proof. First, we show that IS Î NP. Assume we have an independent set S. For each vertex 
in S we check every edge incident to it. If there is an edge that connects two vertices in 
S, the solution is not an independent set. Otherwise we accept S as the independent set.
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In order to show that IS Î NP-hard, we use a polynomial reduction from 3-SAT to IS. 
We will construct an undirected graph G from the 3-SAT instance with k clauses. The 
construction is based on the following ideas:

1.	 For each Boolean variable in 3-SAT we create a vertex in G.
2.	 All vertices corresponding to a given clause are connected to each other. This 

is because we want to make sure that only one vertex per clause is chosen in an 
independent set. This step creates k triangle subgraphs. If there are fewer than 
three literals, we can set the missing literals to any present literals.

3.	 Connect a vertex corresponding to a literal x to all vertices in G corresponding 
to its negation ¬x. We do not want to have two complementary vertices in one 
independent set.

FIGURE 9.3  The graph constructed from (x Ú y Ú z) Ù (x Ú ¬ y Ú z) Ù (¬ x Ú y Ú ¬ z) Ù (¬ x Ú ¬ y).
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For example, figure 9.3 shows the graph constructed from 3-SAT formula (x Ú y Ú z) 
Ù (x Ú ¬ y Ú z) Ù (¬ x Ú y Ú ¬ z) Ù (¬ x Ú ¬ y). We conclude the construction with an obser-
vation that its runtime complexity is O(k2).

Claim: 3-SAT instance with k clauses is satisfiable if and only if the constructed graph G 
has an independent set of size k.

Proof. We must show the implication in both directions.

Þ) Assume we have a truth assignment. Since the assignment makes each clause true, 
then at least one literal of each clause must be true. For some clauses we may have a 
few of such literals; we then arbitrarily pick one. Construct a set S of k vertices in G by 
choosing the vertex corresponding to the selected literal from each clause. S is an inde-
pendent set. For the example in figure 9.4, let us choose the following truth assignment: 
x = T, y = F, and z = F. The corresponded independent set S is shown in figure 9.5.

Ü) Suppose G has an independent set S of size k. Then S must include exactly one vertex 
from each clause. Also, S cannot have vertices representing a literal and its negation. We 
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set all vertices in S to true. For vertices not in S, we choose the assignment arbitrarily. 
Thus, the independent set S yields a satisfying truth assignment. 

FIGURE 9.4  The independent set (shown in red) built from x = T, y = F and z = F.
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Consider the independent set in figure 9.5. We set all green vertices to true (i.e., z = 
T and ¬ x = T). The vertex y can be set either to true or false. It is easy to see that we 
have a truth assignment for (x Ú y Ú z) Ù (x Ú ¬ y Ú z) Ù (¬ x Ú y Ú ¬ z) Ù (¬ x Ú ¬ y). ∎

FIGURE 9.5  The independent set in green.
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9.3.3 Vertex Cover Problem
The vertex cover problem (VC, in short) is to decide, for a given undirected graph G 
and natural number k > 0, whether G has a vertex cover of size k. In section 9.2 we 
showed that the independent set (IS) problem is polynomial time reducible to the vertex 
cover (VC) problem (i.e., IS £p VC). Therefore, combining this with the fact that IS Î  
NP-complete, and VC Î NP, we conclude that VC is NP-complete. 

Let us restrict the instances of VC to undirected graphs with only even degree ver-
tices. We will call this problem vertex cover even (VCE, in short). 
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Theorem 4. The vertex cover even problem is NP-complete.

Proof. VCE Î NP follows immediately from the fact that VC Î NP. VCE is the same prob-
lem as VC, only with more restrictions placed on the input.

In order to show that VCE is NP-hard, we will use reduction from VC (i.e., VC £ p 
VCE. We need to convert any graph G into a graph with all even degree vertices G .́ Note 
a simple fact that any undirected graph has an even number of odd degree vertices. 
Therefore, we construct G´ by adding an extra vertex to G and connecting it to all ver-
tices of odd degrees. See figure 9.6 for an example. ∎

FIGURE 9.6  Graph G is in blue. We construct G´ by adding a yellow vertex.

Claim: G has a vertex cover of size k if and only if G´ has a vertex cover of size k + 1.

Proof. Þ) Assume G has a vertex cover of size k. Then the vertex cover of G´ is created 
by adding the new vertex. Thus, the vertex cover size is k + 1.

Ü) Assume G´ has a vertex cover of size k + 1. In order to get the vertex cover of G, 
we have to remove one vertex. Unfortunately, it does not always work. Consider G´ in  
figure 9.6. The vertex cover of G´ does not necessarily contain a yellow vertex. Assume 
that the vertex cover of G´ is comprised of four blue vertices. If we remove one, we get 
a vertex cover of the smaller size but for a different graph—a graph with the yellow 
vertex. Its vertex cover is not identical to the vertex cover of G.

And so, the reduction we have described is not correct.
We revise our construction and add three new vertices to G. One of those new verti-

ces is connected to all vertices of odd degrees. See figure 9.7.
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FIGURE 9.7  Graph G is in blue. We construct G´ by adding three new vertices.

Claim: G has a vertex cover of size k if and only if G´ has a vertex cover of size k + 2.

Proof. Þ) Assume G has a vertex cover of size k. Then the vertex cover of G´ is created 
by adding two extra vertices (yellow and red in figure 9.5). Thus, the vertex cover size 
is k + 2.

Ü) Assume G´ has a vertex cover of size k + 2. In order to get the vertex cover of G, we 
have to remove two vertices. Those two vertices are easily identified; they must from 
the set of extra vertices. In figure 9.7, we remove yellow and red vertices to get the right 
vertex cover for G. ∎

9.3.4 Graph Coloring Problem
The graph coloring problem is to decide, for a given undirected graph G and integer 
number k > 0, whether all vertices in G can be colored with k colors so that any two 
adjacent vertices are colored differently. There are certain classes of graphs when the 
coloring problem can be solved in polynomial time. One special case is when a graph is 
planar (see chapter 1.3.4). The second special case is k = 2, in which we are to decide 
if a graph is bipartite (see chapter 1.3.5). Unfortunately, for general graphs with k ³ 3, 
the problem is NP-complete. To prove this, let us restrict the instances of the graph 
coloring problem to k = 3. We will call this problem 3-COLORING. 

Theorem 4. 3-COLORING is NP-complete.

Proof. First, we show that 3-COLORING Î NP . Assume we have a 3-color assign-
ment S. For each vertex u in S we deterministically check its adjacent vertices. If there 
is an adjacent vertex of the same color as u, we reject this solution. Another way to 
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prove that 3-COLORING Î NP  is to non-deterministically guess an assignment of 
colors and then check each vertex. In either case this can be done in nondeterministic  
polynomial time.

In order to show that 3-COLORING Î NP-hard, we use a polynomial reduction from 
3-SAT. We will construct an undirected graph G from the 3-SAT instance. The construc-
tion is based on using “gadgets.” A part of the original 3-SAT instance is translated into 
a “gadget” (a colored subgraph) that handles some details of the problem. These gadget 
subgraphs are then connected together to create a graph G. Our reduction consists of 
three gadgets. We associate the green-colored vertex with true and the red-colored 
vertex with false. We do not assign any special meaning to a blue vertex. The truth gadget 
is a triangle subgraph where each vertex has a different color. There will be only one 
truth gadget in G. The variable gadget is a subgraph with two vertices, colored either 
green or red. One vertex is associated with a variable, another with its negation. There 
will as many such gadgets as there are variables in the given 3-SAT instance. The vari-
able gadgets are connected with the truth gadget via the blue vertex; see figure 9.8 for 
an example. Any 3-coloring of the that subgraph defines a valid truth assignment! And 
vice versa.

FIGURE 9.8  The truth and variable gadgets.
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Finally, we have to make sure that the truth assignments satisfy the given clauses. 
This requires a new gadget for each clause. This gadget contains five unlabeled 
vertices that are connected with the truth and variable gadgets, as it’s shown in  
figure 9.9.

FIGURE 9.9  The clause gadget for (a Ú b Ú c).
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This gadget can be always colored with 3 colors except the case when all three lit-
erals, a, b, and c, are colored red (false). The proof is left as an exercise to the reader. 
Thus, if all the variables in a clause are false, the gadget cannot be 3-colored. On the 
other hand, if the clause gadget can be colored with 3 colors, then the associated clause 
in 3-SAT is satisfied.

Next, we put these gadgets together: Connect a truth gadget with the variable gadgets, 
connect the variable gadgets with the clause gadgets, and connect the clause gadgets 
with the truth gadget. As an example, the formula (a Ú b Ú c) would be transformed into 
the graph shown in figure 9.10.

We conclude the construction noting that runtime complexity of building a graph G 
is O(n), where n is the number of clauses in the original 3-SAT. The total number of ver-
tices in G is also O(n).

FIGURE 9.10  The graph for (a Ú b Ú c).
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Claim: 3-SAT instance is satisfiable if and only if G is 3-colorable.

Proof. Þ) Assume we have a truth assignment. In the constructed graph G, we color the 
variables with true or false according to the assignment. Coloring for the rest of verti-
ces in the clause gadgets is forced.
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Ü) Assume G is 3-colorable. We can extract a satisfying assignment from any 3-coloring 
by traversing the variable gadgets. We set a Boolean variable to true if in G it’s colored 
green. We set a Boolean variable to false if in G it’s colored red. ∎

REVIEW QUESTIONS

1.	 What is an algorithm?
2.	 What is the Church–Turing thesis?
3.	 What is a decision problem?
4.	 What is an undecidable problem?
5.	 What is the Halting problem?
6.	 What is the   versus NP conjecture?
7.	 (T/F) If someone proves  = NP, then it would imply that every decision prob-

lem can be solved in polynomial time.
8.	 (T/F) Any problem in   is also in NP.
9.	 (T/F) Every decision problem is in NP.

10.	 (T/F) Every problem in NP can be solved in exponential time by a determinis-
tic Turing machine.

11.	 (T/F) All NP-hard problems are in NP.
12.	 (T/F) If a problem X can be reduced to linear programming in polynomial time, 

then X is in  .
13.	 (T/F) If SAT £p A, then A is NP-hard.
14.	 (T/F) If 3-SAT £p 2-SAT, then   = NP.
15.	 (T/F) If a problem Y £p X, then it follows that X £p Y.
16.	 (T/F) If A £p B and B is in NP, then A is in NP.
17.	 (T/F) If a problem X can be reduced to a known NP-hard problem, then X must 

be NP-hard.

EXERCISES

1.	 Prove that any optimization problem can be converted into a decision problem 
and vice versa. 

2.	 Prove that if A £p B and B Î NP then A Î NP.



174  P  Algorithms in Action

3.	 Prove that if A £p B and B £p C then A £p C.
4.	 Prove that if Z £p Y and Y £p X then Z £p X.
5.	 Prove that the Halting problem is in NP-hard class.
6.	 Assume that you are given a polynomial time algorithm that given a 3-SAT 

instance decides in polynomial time if it has a satisfying assignment. Describe 
a polynomial time algorithm that finds a satisfying assignment (if it exists) to a 
given 3-SAT instance.

7.	 Assume that you are given a polynomial time algorithm that decides if a directed 
graph contains a Hamiltonian cycle. Describe a polynomial time algorithm that 
outputs a sequence of vertices (in order) that form a Hamiltonian cycle.

8.	 Prove by reduction from 3-SAT that an integer linear program is NP-complete.
9.	 The vertex cover problem (VC, in short) is to decide, for a given undirected graph 

G and natural number k > 0, whether G has a vertex cover of size k. Prove that 
VC is in NP-complete class by reduction from 3-SAT. No other reductions can  
be used.

10.	 You are given a set S of n people and a set L of pairs of people that are mutually 
friends. Can these n people be seated for dinner around a circular table such 
that each person will sit next to friends on both sides? Prove that the problem 
(in short, DINNER) of finding such a sitting arrangement is NP-complete.

11.	 Consider the 5-COLOR problem of deciding whether all vertices in undirected 
graph G can be colored with 5 colors so that any two adjacent vertices are 
colored differently. Prove that 5-COLOR is NP -complete by reducing from  
3-COLOR.

12.	 You are given an undirected connected graph G = (V, E) in which a certain number 
of tokens t(v) ³ 1 placed on each vertex v. You will now play the following game. 
You pick a vertex u that contains at least two tokens, remove two tokens from u, 
and add one token to any one of adjacent vertices. The objective of the game is 
to perform a sequence of moves such that you are left with exactly one token in 
the whole graph. You are not allowed to pick a vertex with a 0 or 1 token. Prove 
that the problem of finding such a sequence of moves is NP-complete by reduc-
tion from the Hamiltonian path.

13.	 We want to become celebrity chefs by creating a new dish. There are n ingredi-
ents and we’d like to use as many of them as possible. However, some ingredients 
don’t go so well with others. There is n ́  n matrix D giving discord between any 
two ingredients, where D[i, j] is a real value between 0 and 1. Any dish prepared 
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with these ingredients incurs a penalty, which is the sum of the discords between 
all pairs of ingredients in the dish. We would like the total penalty to be as small 
as possible. Consider the decision problem EXPERIMENTAL CUISINE: can we 
prepare a dish with at least k ingredients and with the total penalty at most p? 
Show that EXPERIMENTAL CUISINE is NP-complete by giving a reduction from 
INDEPENDENT SET.

14.	 Given an undirected graph with positive edge weights, the BIG-HAM-CYCLE prob-
lem is to decide if it contains a Hamiltonian cycle C such that the sum of weights 
of edges in C is at least half of the total sum of weights of edges in the graph. Show 
that BIG-HAM-CYCLE is NP-complete by reduction from the Hamiltonian cycle.

15.	 We know that finding a Hamiltonian cycle in a graph is NP-complete. Show that 
finding a Hamiltonian path—a path that visits each vertex exactly once and isn’t 
required to return to its starting point—is also NP-complete.

16.	 Given a graph G = (V, E) and a positive integer k, the longest-cycle problem is the 
problem of determining whether a simple cycle (no repeated vertices) of length 
k exists in a graph. Show that this problem is NP-complete by reduction from 
the Hamiltonian cycle.

17.	 Given a graph G = (V, E) and a positive integer k, the longest-path problem is the 
problem of determining whether a simple path (no repeated vertices) of length 
k exists in a graph. Show that this problem is NP-complete by reduction from 
the Hamiltonian path.

18.	 You are given an undirected weighted graph G = (V, E) with positive edge costs, 
a subset of vertices R Í V, and a number C. Is there a tree in G that spans all verti-
ces in R (and possibly some other in V) with a total edge cost of at most C? Prove 
that this problem is NP-complete by reduction from vertex cover.
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