
Algorithms in Action effectively introduces students to a variety
of techniques for designing algorithms with a focus on
developing intuitive understanding. Readers learn how to
successfully construct foundational algorithms, preparing
them for more advanced courses in the discipline, as well as
professional application.

Over the course of nine chapters, students learn fundamental
concepts critical to the development of algorithms, paired with
detailed visual representations that walk readers step-by-step
through algorithm execution. The text begins with a review of
runtime complexity, lower bound for sorting, and trees and
graphs, then moves into more complex topical areas, including
amortized analysis, heaps, dynamic programming, network
flow, linear programming, and NP-completeness. The book
includes over 160 figures, as well as review questions and
exercises at the end of each chapter, to encourage learning,
retention, practice, and application.

Developed to provide students with an approachable and
effective introduction to algorithm design, Algorithms in Action
is an ideal resource for advanced undergraduate or master-level
courses in computer science or related technical disciplines.
Foundational knowledge of discrete mathematics, data
structures, and calculus is recommended as a prerequisite.

S
a

vvic
h ALGORITHMS

A
LG

O
R
ITH

M
S

Victor Savvich

F I R S T E D I T I O N

IN ACTION

IN
 A

C
T
IO

N

SKU 82372-1B

www.cognella.com

ALGORITHMS
IN ACTION

ALGORITHMS IN ACTION

ALGORITHMS
IN ACTION

First Edition

Victor Savvich
Univeristy of Southern California

S A N D I E G O

Bassim Hamadeh, CEO and Publisher

Mieka Portier, Field Acquisitions Editor

Tony Paese, Project Editor

Alia Bales, Production Editor

Jess Estrella, Senior Graphic Designer

Trey Soto, Licensing Coordinator

Natalie Piccotti, Director of Marketing

Kassie Graves, Vice President of Editorial

Jamie Giganti, Director of Academic Publishing

Copyright © 2020 by Cognella, Inc. All rights reserved. No part of this publication may be

reprinted, reproduced, transmitted, or utilized in any form or by any electronic, mechanical,

or other means, now known or hereafter invented, including photocopying, microfilming,

and recording, or in any information retrieval system without the written permission of

Cognella, Inc. For inquiries regarding permissions, translations, foreign rights, audio rights,

and any other forms of reproduction, please contact the Cognella Licensing Department at

rights@cognella.com.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks

and are used only for identification and explanation without intent to infringe.

Cover image copyright © 2018 iStockphoto LP/monsitj.

Printed in the United States of America.

3970 Sorrento Valley Blvd., Ste. 500, San Diego, CA 92121

  v

Preface vii

Chapter 1 Review 1

1.1 Runtime Complexity 1
1.2 Lower Bound for Sorting 3
1.3 Trees and Graphs 4

Chapter 2 Amortized Analysis 15
2.1 Unbounded Array 15
2.2 Binary Counter 18
2.3 Amortized Dictionary 19
2.4 Amortized Trees 20

Chapter 3 Heaps 25
3.1 Binary Heaps 25
3.2 Binomial Heaps 33
3.3 Fibonacci Heaps 40

Chapter 4 Greedy Algorithms 45
4.1 The Money Changing Problem 46
4.2 Scheduling Problem 47
4.3 Huffman Code 49
4.4 Minimum Spanning Trees 56
4.5 Shortest Path Problem 62

Chapter 5 Divide-and-Conquer Algorithms 69
5.1 Solving Divide-and-Conquer Recurrences 71
5.2 Integer Multiplication  76
5.3 Matrix Multiplication 78
5.4 The Maximum Subsequence Sum Problem 80
5.5 Computing Fibonacci Numbers 81

Contents

vi  P  Algorithms in Action

Chapter 6 Dynamic Programming 87
6.1 Introduction 87
6.2 Knapsack Problem 89
6.3 Static Optimal Binary Search Tree 94
6.4 The Bellman-Ford Algorithm 98
6.5 The Shortest Path in DAGs 101

Chapter 7 Network Flow 107
7.1 Introduction 107
7.2 The Ford–Fulkerson Algorithm  110
7.3 Reduction to Network Flow 116
7.4 Augmenting Path Heuristics  120
7.5 The Circulation Problem  123
7.6 Reduction to Circulation 130

Chapter 8 Linear Programming 137
8.1 Introduction: A Production Problem 137
8.2 The Standard Maximum Problem 141
8.3 A Few Applications 144
8.4 The Dual Linear Program 148

Chapter 9 NP Completeness 157
9.1 A Brief Introduction to the Turing Machines 157
9.2 Computational Intractability 159
9.3 NP-Complete Problems 163

  vii

T his book is an introduction to algorithm design, intended to teach a variety of
techniques for designing algorithms, with a focus on an intuitive understanding

of algorithms. The book will train you on many basic algorithms, so you should be able
to employ them in future algorithmic courses (like machine learning) and eventually
apply them in your professional work. The book does not intend to be comprehensive
nor complete.

The genesis of this book came about through the lecture notes I developed while teach-
ing undergraduate and graduate computer science courses at Carnegie Mellon University
and the University of Southern California. The book covers roughly a semester’s worth of
coursework, though some chapters go far beyond the standard lecture material, letting
students dive deeper into the concepts and thus providing material to stimulate further
thought and discussion. The book is intended for advanced undergraduate or master-level
students in computer science and/or related technical disciplines. A foundation of under-
graduate coursework in discrete mathematics, data structures, and calculus is highly
recommended as a prerequisite. The book does not emphasize nor require program-
ming, just pseudocode to encourage readers on conceptual understanding.

Analysis of algorithms is challenging for the most students, as they have not yet devel-
oped an experience in algorithmic problem solving. Students often easily come up with
an erroneous intuitive solution, demonstrating their overconfidence in understanding
material. My approach is to explain how to design algorithms, focusing on providing fun-
damental concepts, with a detailed, visual step-by-step algorithm execution. The book
contains over 160 figures that help the reader to visualize the process. While I provide
proofs of algorithm correctness, my goal is not to overwhelm the reader with rigorous
mathematical proofs.

Preface

viii  P  Algorithms in Action

My hope with this book is to offer a reader-friendly approach to algorithms, with the
numerous review questions and exercises at the end of each chapter (122 short review
questions and 129 exercises in total) allowing readers to practice and apply the con-
cepts taught.

Victor Savvich
Playa Vista, California

April 2019

  1

I n this chapter we review basic concepts, from asymptotic complexity, graph theory,
and mathematical proof techniques, as they are required for better understanding for

the chapters that follow. If the reader has some previous acquaintance with these topics,
the chapter should be enough to get started. If the reader has no previous background in
these, we suggest a more thorough introduction such as Mathematics for Computer Science
by Eric Lehman, Thomson Leighton and Albert Meyer.1

1.1 Runtime Complexity
The term analysis of algorithms is used to describe approaches to study the performance of
algorithms. With each algorithm we associate a sequence of steps comprising this algorithm.
We measure the run time of an algorithm by counting the number of steps and therefore
define an algorithmic complexity as a numerical function T(n), where n is the input size.
Consider a problem of addition of two n-bit binary numbers. Let T(n) represent an amount
of time addition used to add two n-bit numbers. We want to define “time” T(n) taken by the
method of addition without having to worry about implementation details. The process of
addition consists of the following two steps:

•	 Adding 3 bits (one bit is a carry bit)

•	 Writing down 2 bits (again, one bit is a carry bit)

1	 Eric Lehman, Thomson Leighton, and Albert Meyer, Mathematics for Computer Science, ([Great Britain:
Samurai Media Limited, 2017).

Chapter 1

Review

AARON-PREDATOR
Typewriter
包含；由…组成

AARON-PREDATOR
Typewriter
包含；由…组成

AARON-PREDATOR
Highlight

AARON-PREDATOR
Underline

AARON-PREDATOR
Underline

2  P  Algorithms in Action

On any computer, adding and writing two bits can be done in constant time. By constant
time we mean that the time is independent of the input size. Therefore, the total time
of addition of two n-bit binary numbers is T(n) = n · c, where the constant c can be dif-
ferent on different computers. We say that bit addition is a linear time algorithm. The
process of abstracting away details and determining the rate of resource usage in terms
of the input size is one of the fundamental ideas in computer science. In this course we
will perform the following types of analysis:

1.	 The worst-case complexity (the maximum number of steps taken on any input)
2.	 The best-case complexity (the minimum number of steps taken on any input)
3.	 The average case complexity (the average number of steps taken on a random

input)
4.	 The amortized time complexity (the average complexity over a sequence of

operations)

We measure the runtime of an algorithm using following asymptotic notations: O, W, Q.

1.1.1 Upper Bound (Big-O)
For any monotonic functions, f, g from the positive integers to the positive integers, we
say f(n) = O(g(n)) (or f(n) Î O(g(n))) if g(n) eventually dominates f(n). Figure 1.1 helps
you to visualize this relationship.

Formally, there exists a positive real number,
c > 0, and a real number, n0, such that f(n) £ c·g(n)
for all n ³ n0.

Example: n2 + 2n + 1 = O(n2). Since n2 + 2n + 1
£ n2 + 2n2 + n2 = 4n2 for n ³ 1, we choose c = 4
and n0 = 1.

1.1.2 Lower Bound (Big-Omega)
For any monotonic functions, f, g from the

positive integers to the positive integers, we say
f(n) = W(g(n)) (or f(n) Î W(g(n))) if f(n) eventually

dominates g(n). Formally, there exists a positive real number, c > 0, and a real number,
n0, such that f(n) ³ c · g(n) for all n ³ n0.

Example: n2 + 2n + 1 = W(n2). Since n2 + 2n + 1 ³ n2 for n ³ 1, we choose c = 1 and n0 = 1.

Input size n

n0

f(n)

g(n)

Time T

FIGURE 1.1  f(n) = O(g(n)).

AARON-PREDATOR
Typewriter
分期偿还；已摊销的；已分期偿还的

AARON-PREDATOR
Highlight

AARON-PREDATOR
Typewriter
f(n) 实际形式

g(n) 泛化形式

Chapter 1  Review  P  3

1.1.3 Exact Bound (Big-Theta)
For any monotonic functions, f, g from the positive integers to the positive integers,
we say f(n) = Q(g(n)) (or f(n) Î Q (g(n))) if f(n) = O(g(n)) and f(n) = W(g(n)). Formally,
there exists positive real numbers, c1 and c2, and a real number, n0, such that c1·g(n) £
f(n) £ c2·g(n) for all n ³ n0.

Example: n2 + 2n + 1 = Q(n2).

1.2 Lower Bound for Sorting
We will show here that any deterministic comparison-based sorting algorithm must take
W(n log n) time to sort an array of n elements in the worst case. Comparison-based sort-
ing algorithms operate on the input by comparing pairs of elements. For example, Mergesort
and insertion sort are comparison-based sorting algorithms. But bucket sort and radix
sort are not. In order to show W(n log n) bound we will play the Guess-a-Number game.
The computer will select a number, x, between 1 and 10, and you need to determine x by
asking questions. You’ll keep guessing numbers until you find x. The guessing game can
be viewed abstractly as a binary search tree (also called a decision tree). Figure 1.2 shows
that we can guess any number between 1 and 10 by asking at most four questions.

We will be using a decision tree to model the execution of any comparison-based sort.
The execution of the sorting algorithm corresponds to tracing a path from the root of
the decision tree to a leaf. At each internal node we make a comparison; based on that
comparison we proceed further down to either the left or right subtree. Figure 1.3
depicts sorting an array of three elements [a, b, c]. In that tree each leaf represents a
permutation of [a, b, c]. Generally, for sorting an array of n elements, each leaf in the

1,2,3,4,5,6,7,8,9,10

6,7,81,2,3 4,5

≤5 >5

≤3

≤2

≤1 ≤6

≤4 ≤7 ≤9>2

>1 >6

>4 >7 >9

>3 ≤8 >8

6,71,2 3 4 5

1 2 6 7

8 9 10

9,10

1,2,3,4,5 6,7,8,9,10

FIGURE 1.2  A binary search tree to guess a num-
ber between 1 and 10.

4  P  Algorithms in Action

decision tree represents a permutation of the n elements. Hence, there are n! leaves in
the tree. Let us denote the tree by B. Next, we make the tree complete by adding extra
nodes, as seen in figure 1.3. We will denote the new tree by B* and its height by h. Since
tree B* is a complete binary tree, it has 2h leaves. By construction, B* has more leaves
than B. It follows, 2h ³ n!, or, after taking the log of both parts, h ³ log(n!).

The height of the decision tree is the number of comparisons in a sorting algorithm;
in other words, h is the runtime complexity T(n) of sorting. Thus, T(n) ³ log(n!). Lastly,
we simplify log(n!) as follows:

= − −
≥ − −

≥ =

n n n n
n n n n
n n n

log(!) log((1)(2) 1)

log((1) (/2))

log((/2)) Ω(log)n/2





We have proved that any comparison-based sorting algorithm needs W(n log n) com-
parisons. This holds even for a quantum computer!

1.3 Trees and Graphs
A graph G is a pair (V, E), where V is a set of vertices (or nodes) and E is a set of edges
connecting the vertices. A self-loop is an edge that connects to the same vertex twice.
A multi-edge is a set of two or more edges that have the same two vertices. A graph is
simple if it has no multi-edges or self-loops. We always assume simple graphs unless
otherwise noted. Graphs could be directed and undirected and weighted and unweighted
(weights will usually be edge weights).

Theorem. Let G be a graph with V vertices and E edges. The following statements
are equivalent:

1.	 G is a tree.
2.	 Every two vertices of G are connected by a unique path.
3.	 G is connected and V = E + 1.

a<b

a<c c<a

b<c a<c c<ac<b

b<c c<b

c<a<b

a<b<c a<c<b b<a<c b<c<a

c<b<a

b<a a<b

a<c c<a

b<c a<c c<ac<b

b<c c<b

c<a<b

a<b<c a<c<b b<a<c b<c<a

c<b<a

b<a

FIGURE 1.3  A binary search tree to guess a number between 1 and 10.

AARON-PREDATOR
Underline

Chapter 1  Review  P  5

4.	 G is acyclic and V = E + 1.
5.	 G is acyclic and if any two non-adjacent vertices are joined by an edge, the resulting

graph has exactly one cycle.

To prove this, it suffices to show 1 Þ 2 Þ 3 Þ 4 Þ 5 Þ 1. We’ll just show
1 Þ 2 Þ 3 Þ 4 and leave the rest to the reader.

Proof of 1 Þ 2. We prove it by contradiction. Assume G is a tree
that has two vertices connected by two different paths like in
figure 1.4.

Then there exists a cycle! It follows that G cannot be a tree: a
contradiction. ∎

Proof of 2 Þ 3. Since every two vertices in G are connected by a path, G is a connected
graph. We prove that in G the number of nodes and edges are related by V = E + 1. The
proof is by strong induction on the number of nodes.

Base case: V = 2. Since a graph is simple, E = 1. Thus, V = E + 1.

Inductive hypothesis: Assume V = E + 1 for every graph with V < n vertices.

Inductive step: Prove V = E + 1 for every graph with V = n vertices.

Graph G has n vertices. We will use notation V(G) = n. We choose two adjacent ver-
tices, x and y. We know that every two vertices in G are connected by a unique path. It
follows that x and y are joined by an edge, like
in figure 1.5.

Note in both subgraphs G1 and G2 the number
of vertices is less than n. Indeed, G1 does not
contain vertex y, and G2 does not contain vertex
x. We can apply the inductive hypothesis to G1
and G2. It follows,

V(G) = V(G1) + V(G2) = E(G1) + 1 + E(G2) + 1 = E(G) + 1.

This concludes the proof. ∎

Proof of 3 Þ 4. We prove that G is an acyclic graph by contradiction. Assume that G has
a cycle with k vertices in it. This cycle also contains k edges. Now let us count edges in

FIGURE 1.4  Two ver-
tices connected by two
different paths.

Subgraph G1 Subgraph G2x y

FIGURE 1.5  Graph G consists of two sub-
graphs G1 and G2.

AARON-PREDATOR
Highlight

AARON-PREDATOR
Typewriter
反证法

AARON-PREDATOR
Underline

6  P  Algorithms in Action

the whole graph. We claim the number of edges in the graph will be at least V. Indeed,
there are k edges in the cycle and at least V - k + 1 outside the cycle. ∎

Theorem. In an undirected simple graph G = (V, E), there are at most V(V - 1)/2 edges.
In short, by using the asymptotic notation, E = O(V 2).

Proof. Choose any vertex in G. The possible number of edges leaving this vertex is
V - 1. Take another vertex (different from the previous one). The possible number of
edges leaving that vertex is V - 2 (don’t count the edge between two vertices twice!),
and so on. We have that the total number of edges is at most

(V - 1) + (V - 2) + … + 2 + 1 = V (V - 1)/2

This concludes the proof. ∎
We define a dense graph G = (V, E) as a graph in which the number of edges is

E = W(V 2). We say that a graph is sparse if E = O(V).

1.3.1 Graph Traversals
Graphs traversal means visiting all vertices in a systematic order. We can choose any
vertex as a starting point. Then we will systematically enumerate all vertices acces-
sible from it. Because a graph might contain cycles, we need some way for marking a
vertex as having been visited. To do so we will keep a Boolean array, with all elements
initially set to false. We will set a correspondent element to true as soon as we visit a
particular vertex. Also, we need to keep in mind that the graph might be disconnected.
There are two most common traversals:

•	 Depth-first search (DFS)

•	 Breadth-first search (BFS)

DFS uses a stack data structure for backtracking. BFS uses a FIFO queue for book-
keeping. Here is a pseudocode:

for all v in V do visited[v] = false
for all v in V do if !visited[v] traversal(v)
  traversal(v) {
   visited[v] = true
   for all w in adj(v)
     do if !visited[w] traversal(w)
  }

AARON-PREDATOR
Underline

AARON-PREDATOR
Squiggly

Chapter 1  Review  P  7

The runtime complexity of traversal is O(V + E). There are two important properties
of traversal: (1) It visits all the vertices in the connected component; (2) edges labeled
by traversal form a spanning tree of the connected component.

1.3.2 Topological Sort
Suppose each vertex represents a task that must
be completed and a directed edge (u, v) indicates
that task v depends on task u. That is, u must be
completed before v. If G is a direct acyclic graph
(DAG), then there exists a valid order in which you
can complete the tasks. This is called topologi-
cal order or topological sort. If the graph is cyclic,
no topological order exists. Consider the graph in
figure 1.6.

The following sequence {a, b, c, d, e, f, g, h, i} is a
valid topological sort. In other words, a topologi-
cal order means arranging the vertices along a line
so that all edges go from left to right. It should be
evident from figure 1.6 that a topological sort is not
unique. The following list {a, c, b, f, e, d, h, g, i} is another
topological order.

The algorithm of finding a topological sort is based on traversal: run DFS (from any
vertex) and return a vertex that has no undiscovered leaving edges. In figure 1.6, the
possible DFS run may be a®e®i, making i the first vertex with no undiscovered leav-
ing edges. From i, backtrack to e and then go to g. This makes g another vertex with
no undiscovered leaving edges. From g, backtrack to e and then go to h. This makes h
the third vertex with no undiscovered leaving edges. And so on. The algorithm will
produce a topological order in reverse. Note, if we start DFS at any other vertex but
a, we will need another run of DFS. The runtime complexity of the algorithm is linear
O(V + E).

1.3.3 Planar Graphs
A connected graph is planar if it can be drawn in the plane
with each edge drawn as a continuous curve such that
no two edges cross. There are many examples of planar
graphs: any tree is planar, every cycle is planar, a complete
graph K4 is planar.

a e

d

f

b g

c h

i

FIGURE 1.6  A directed acyclic graph.

=

FIGURE 1.7  An example of a
planar graph.

AARON-PREDATOR
Underline

AARON-PREDATOR
Typewriter
adj. 平面的；二维的；平坦的

AARON-PREDATOR
Highlight

8  P  Algorithms in Action

A planar graph in addition to vertices and edges also has
disjoint faces.

Theorem. (Euler’s formula) If G is a connected planar graph with
V vertices, E edges, and F faces, then

V - E + F = 2.

Proof. The proof by induction on the number of edges.

Base case: E = 1. The identity holds, since V = 2 and F = 1.

Inductive hypothesis: Assume it’s true for any graph with no more than E edges.

Inductive step: Prove it for graphs with E edges.

Start with a graph G that has E edges and remove one edge. There are two cases
to consider:

1.	 The edge to remove lies on a cycle. See figure 1.9.
2.	 The edge to remove does not lie on a cycle. See figure 1.10.

In case (1) by removing an edge (in red) on a cycle, we obtain
a new graph G´ with E - 1 edges and F-1 faces. Since G´ has E - 1
edges, the relation works by the induction hypothesis. That is
V - (E - 1) + (F - 1) = 2. This simplifies to V - E + F = 2.

In case (2) by removing an edge (in red) that does not lies on a
cycle, we obtain a new graph G´ with E - 1 edges and V - 1 verti-
ces. Since G´ has E - 1 edges, the relation works by the induction
hypothesis. That is (V - 1) - (E - 1) + F = 2. This simplifies to
V - E + F = 2.

This completes the proof. ∎

Theorem. In any simple connected planar graph with at least 3
vertices, E £ 3V - 6.

Proof. If a graph has no cycles, then

E = V - 1 £ V £ V + (2V - 6) = 3V - 6,

since V ³ 3, and therefore 2V - 6 ³ 0.

FIGURE 1.9  A graph
in case 1.

FIGURE 1.10  A graph
in case 2.

4 faces

FIGURE 1.8  A planar
graph with four faces.

AARON-PREDATOR
Typewriter
这里的“面” 可以理解为区域

AARON-PREDATOR
Underline

AARON-PREDATOR
Underline

Chapter 1  Review  P  9

Assume a graph with cycles. We will count the number of pairs (edge, face)
(i.e., S(edge, face)). Since each face is bounded by at least 3 edges, then S(edge, face) ³
3F. Since each edge is associated with at most 2 faces, then S(edge, face) £ 2E. Combining
these two inequalities, we find 3F £ 2E. But we know from the previous theorem that
V - E + F = 2. It follows,

6 = 3V - 3E + 3F £ 3V - 3E + 2E = 3V - E.

Thus, we conclude E £ 3V - 6. ∎

Corollary. A simple connected planar graph with at least 3 vertices has a vertex of degree
5 or less.

Proof. We know that in any graph, the sum of the degrees of all vertices is equal to twice
the number of edges, Sdegree(v) = 2E. From the previous theorem, 2E £ 6V - 12. Thus,
the average degree is at most 6:

V
v V

V V
1

degree()
6 12

6
12

v V
∑ ≤

−
= −

∈

It follows there exists a vertex of degree 5 or less. ∎

1.3.4 Coloring Planar Graphs
Given a planar graph, how many colors do you need in order to color
the vertices so that no two adjacent vertices get the same color?
Back in the 1880s, Francis Guthrie conjectured that four colors
suffice. In 1976 K. Appel and W. Haken, using a special-purpose
computer program, have proved that conjecture.

We won’t prove the conjecture but let us prove the
six-color theorem.

Theorem. (6-color theorem) Every planar graph can be colored with at most six
colors.

Proof. By induction on the number of vertices.

Base case: If a graph has six or less vertices, then the result is obvious.

FIGURE 1.11  A graph
coloring problem.

AARON-PREDATOR
Typewriter
推论

AARON-PREDATOR
Highlight

AARON-PREDATOR
Typewriter
猜测

AARON-PREDATOR
Highlight

10  P  Algorithms in Action

Inductive hypothesis: Assume that all graphs with V - 1 vertices are six-
colorable.

Inductive step: Prove it for any graph with V vertices.

By previous corollary any graph G with V vertices has at least one vertex of degree
5 or less. Remove it from G. The remaining graph is planar and by induction can be col-
ored with at most 6 colors. Now insert that vertex back. Since this vertex has at most
5 neighbors then at least one of 6 colors is not used. We color the vertex with one of the
unused colors. ∎

1.3.5 Bipartite Graphs
A graph is bipartite if the vertices can be partitioned into two disjoint sets, X and Y, such
that all edges go only between X and Y (no edges go from X to X or from Y to Y).

A complete bipartite graph (denoted by Kn,m, where n and m
are sizes of two sets) is a special kind of bipartite graph where
every vertex of the first partition is connected to every vertex
of the second partition.

Theorem. A graph is bipartite if and only if it does not contain an
odd length cycle.

Proof. Note, the length of a cycle is the number of vertices in
the cycle.

Þ) In a bipartite graph every cycle has vertices that must alternate between two par-
titions. Since the number of vertices in such a cycle is even, it is an even cycle.

Ü) Assume connected graph G has no odd cycle. Pick any vertex v. Define two sets of
vertices based on parity of distance (even or odd) from v:

X = {u Î V | d(v, u) is even}

Y = {u Î V | d(v, u) is odd}

These sets provide a bipartition. If G had an odd cycle, then there will be a vertex pres-
ent on both sets. Finish the proof for disconnected graph G. ∎

X

Y

FIGURE 1.12  A bipar-
tite graph.

Chapter 1  Review  P  11

One of the famous problems on bipartite graphs is a matching problem. A subset of
edges is a matching if no two edges have a common vertex. A maximum matching is a
matching with the largest possible number of edges. Our goal is to find the maximum
matching in a graph. We will show in chapter 7 that the problem of finding the maxi-
mum matching can be reduced to the maximum flow problem.

1.3.6 Other Famous Graph Problems
A Euler path is a path that uses each edge of a graph exactly once. A Euler cycle is a
cycle that uses every edge of a graph exactly once. A graph that contains a Euler cycle
is called a Eulerian graph.

Theorem. A connected graph G is a Eulerian graph if and only if all vertices of G are of
even degree.

Proof. Þ) Let G = (V, E) be a Euler graph. Thus, G contains a Euler path. Let us walk that
path. Visiting an intermediate vertex in the path contributes two to the degree of that
vertex. It follows that every intermediate vertex has an even degree.

Ü) Assume that all vertices of G are of even degree. We construct a
cycle starting at an arbitrary vertex v, going through the edges of G
only once. Since every vertex is of even degree, we eventually come
back to v. If this cycle includes all the edges of G, then G is a Eulerian
graph. If not, we remove from G the cycle we have constructed. We
will get a connected subgraph G0 in which all vertices are of even
degree. We again construct a new cycle in G0. This process is repeated
until we obtain a cycle that traces all the edges of G. We showed that
G is a collection of cycles, hence G is a Eulerian graph. ∎

A Hamiltonian path is a path that visits each vertex of a graph exactly once. A Hamiltonian
cycle is a cycle that visits every vertex in a graph exactly once (except for the start and
end vertices). A graph that contains a Hamiltonian cycle is called a Hamiltonian graph. A
problem closely related to Hamiltonian cycle is the famous traveling salesman problem.
Given a weighted graph, find the shortest weighted Hamiltonian cycle. We will prove in
chapter 9 that both problems are unlikely to be solved in polynomial time. The traveling
salesman problem is one of the most intensively studied problems in computer science.

A vertex cover of an undirected graph is a subset of vertices such that for every edge
(u, v) either u or v is in a vertex cover. The vertex cover problem is to find the minimum
size vertex cover.

FIGURE 1.13  The vertex
cover problem.

https://en.wikipedia.org/wiki/Path_(graph_theory)
https://en.wikipedia.org/wiki/Path_(graph_theory)
https://en.wikipedia.org/wiki/Cycle_(graph_theory)

12  P  Algorithms in Action

Given a graph, we say that a subset of vertices is independent if no two of them are
joined by an edge. Given an undirected graph, the independent set problem is to find
the largest independent set. Vertex cover and independent set are very closely related
graph problems; see Exercise 15.

Two graphs, G1 = (V1, E1) and G2 = (V2, E2), are isomorphic if there is a bijective function
f: V1 ® V2 such that an edge (u, v) Î E1, if and only if an edge (f(u), f(v)) Î E2. Two isomor-
phic graphs look differently but are structurally the same, up to the renaming of the
vertices.

In figure 1.14 we can match vertices as follows: a - 1, b - 2, c - 3, d - 5, e - 4.
Although we matched vertices in one particular way, there could be several ways to do
it. Determining whether two graphs are isomorphic is not an easy task; however, com-
puter scientists believe the problem can be solved in polynomial time.

REVIEW QUESTIONS

1.	 Mark the following assertions as TRUE or FALSE. No need to provide
any justification.

a.	 n = O(n2)
b.	 n = O(Ön)
c.	 log n = W(n)
d.	 n2 = W(n log n)
e.	 n2 log n = Q(n2)
f.	 7 log2 n + 2n log n = W(log n)
g.	 5n log n + 1024 n log (log n) = Q(n log n)
h.	 2n + 100n2 + n100= O(n101)
i.	 (1/3)n + 100 = O(1)

2.	 (T/F) Any function which is W (log n) is also W (log(log n)).
3.	 (T/F) If f(n) = Q(g(n)) then g(n) = Q(f(n)).

c 5

1 2

4 3d

b

e

a

FIGURE 1.14  Two isomorphic graphs.

AARON-PREDATOR
Typewriter
T

AARON-PREDATOR
Typewriter
n <= c * n^2

AARON-PREDATOR
Typewriter
F

AARON-PREDATOR
Typewriter
n >= c * sqrt(n) => should use Ω

AARON-PREDATOR
Typewriter
log(n) <= c * n => should O

AARON-PREDATOR
Typewriter
F

AARON-PREDATOR
Typewriter
n^2 >= c * n * log(n)

AARON-PREDATOR
Typewriter
T

AARON-PREDATOR
Typewriter
F

AARON-PREDATOR
Typewriter
n^2 * log(n) >= n^2 => should use Ω

AARON-PREDATOR
Typewriter
T

AARON-PREDATOR
Typewriter
7A^2 + 2*n*A >= A

AARON-PREDATOR
Typewriter
5B + 1024nlog(A) <= 5B + 1024B =1029B = Φ(B)

AARON-PREDATOR
Typewriter
T

AARON-PREDATOR
Typewriter
T

Chapter 1  Review  P  13

4.	 (T/F) If f(n) = Q(g(n)) then f(n) = W(g(n)).
5.	 (T/F) If f(n) = W(g(n)) then 2f(n) = W(2g(n)).
6.	 (T/F) BFS can be used to find the shortest path between any two nodes in a

non-weighted graph.
7.	 (T/F) A DFS tree is never the same as a BFS tree.
8.	 (T/F) Algorithm A has a running time of O(n2) and algorithm B has a running

time of O(n log n). From this we conclude that A can never run faster than B on
the same input.

9.	 (T/F) Planar graph is a sparse graph.
10.	 (T/F) Every DAG contains a vertex with no incoming edges.

EXERCISES

1.	 Prove g(n) = W(f (n)) if and only if f (n) = O(g(n)).
2.	 Prove or disprove f(n) = O(g(n)) implies 2 f(n) = O(2 g(n)).
3.	 Arrange the following functions

log nn, n2, nlog n, n log log n, 2log n, log2 n, n√2

	 in increasing order of growth rate, with g(n) following f(n) in your list if and only
if f(n) = O(g(n)).

4.	 Arrange the following functions

n n n n4 , log , , (2) , 2 , , (log)!n n n n nlog log log log 2log 1/log

	 in increasing order of growth rate with g(n) following f(n) in your list if and only
if f(n) = O(g(n)).

5.	 What is the Big-O runtime complexity of the following function?

      void bigOh1 (int n):
       for i=1 to n
        j=1;
        while j < n
         j = j*2;

6.	 What is the Big-O runtime complexity of the following function?

14  P  Algorithms in Action

      void bigOh2 (int n):
       if(n == 0) return “a”;
       string str = bigOh2(n-1);
       return str + str;

7.	 What is the Big-Theta runtime complexity of the following function? Here find _
max finds the maximum element in the array L[0], L[1], …, L[n - 1].

      void bigTheta (int[] L, int n):
       while (n > 0)
              find _ max(L, n);
          n = n/4

8.	 The complete graph on n vertices, denoted Kn, is a simple graph in which there
is an edge between every pair of distinct vertices. What is the height of the DFS
tree for the complete graph Kn? What is the height of the BFS tree for the com-
plete graph Kn?

9.	 We are interested in finding a simple path in a directed acyclic graph that visits
all vertices once and only once. Design a linear time algorithm to determine if
there is such a path in a given DAG.

10.	 Prove that a complete graph K5 is not a planar graph.
11.	 Prove that a complete bipartite graph K3,3 is not a planar graph.
12.	 In a connected bipartite graph, is the bipartition unique? Justify your answer.
13.	 Given a directed graph G = (V, E) and a particular node v Î V, design a linear time

algorithm to determine whether v is in a triangle of edges (a cycle of length 3).
14.	 Design a linear time algorithm which, given an undirected graph G = (V, E) and

a particular edge e Î E, determines whether G has a cycle containing e.
15.	 Given an undirected graph G = (V, E), prove that S is an independent set if and

only if V - S is a vertex cover.

  15

I n a sequence of operations, the worst-case time does not occur often in each oper-
ation; some operations may be cheap, some may be expensive. Therefore, a traditional

worst-case per operation analysis can give an overly pessimistic bound. When the same
operation takes different times, how can we accurately calculate the runtime complexity?
Amortized analysis gives the average performance (over time) of each operation in the
worst case. Amortized analysis is not average case analysis. In average case analysis we
compute the expected cost of each operation. Amortization is a technique used by accoun-
tants to average a large one-time expense over a long period of time. There are generally
three methods for performing amortized analysis:

1.	 The aggregate method computes the upper bound T(n) on the total cost of n opera-
tions. The amortized cost is given by T(n)/n. In this method each operation will get
the same amortized cost, even if there are several types of operations in the sequence.

2.	 The accounting method (or the banker’s method) computes the individual cost of
each operation. We assign different charges to each operation; some operations may
charge more or less than they actually cost. The amount we charge an operation is
called its amortized cost.

3.	 The potential method (or the physicist’s method). We won’t use a potential method
in this course.

2.1 Unbounded Array
The general implementation strategy: We maintain an array of a fixed length limit and an
internal index size, which tracks how many elements are actually used in the array. When

Chapter 2

Amortized Analysis

16  P  Algorithms in Action

we add a new element, we increment size; when we remove an element, we decrement
size. How do we proceed when the array is full and we need to add another element?
At that point, we allocate a new array twice as large and copy the elements we already
have to the new array. So, if the current array is full, the cost of insertion is linear; if it
is not full, insertion takes a constant time. In order to make the analysis as concrete as
possible, we will count the total number of inserts and the number of copy operations.
In this model we won’t analyze deletions (see exercise 3 for insertions and deletions).
In table 2.1, we record the current size of the array, its new size, the number of insets,
and the number of copies. The table shows that 9 inserts require 1 + 2 + 4 + 8 = 15
copy operations. Therefore, the amortized cost of a single insert is the total cost
(9 + 15 = 24) over 9 inserts, which is 2.67.

TABLE 2.1  The cost of insertions

Insert Old size New size Copy

1 1 — —
2 1 2 1

3 2 4 2

4 4 — —

5 4 8 4

6 8 — —

7 8 — —

8 8 — —

9 8 16 8

Let us generalize the pattern. Assume we start with the array of size 1 and make
2n + 1 inserts. These inserts will require 1 + 2 + 4 + … + 2n = 2n+1 - 1 copy operations.
Thus, the total work (inserts plus copies) is given by (2n + 1) + (2n+1 - 1) = 3 ́ 2n. Next,
we compute the average cost per insert as a limit when the input size tends to infinity:

⋅
+

=
→∞
lim

3 2

1 2
3

n

n

n

We say that the amortized cost of insertion is constant, namely O(3). Such method of
analysis is called an aggregate method. The aggregate method seeks an upper bound
on the total running time of a sequence of operations.

my
Highlight

my
Highlight

my
Highlight

Chapter 2  Amortized Analysis  P  17

Let us compute the amortized cost of insertion using the accounting method. This
method seeks a payment for each individual operation. Intuitively, we maintain a bank
account and each operation is charged to it. Some operations are charged very little
but also generate a surplus. Others drain the savings. The balance in the bank account
must always remain positive.

We will assign a dollar token to each operation. It costs a token to insert an element
and another token to move it when we need to double the array size. It follows we have
to assign at least 2 tokens to each insert: we pay one token to perform an operation, and
we put one token into the bank. Figure 2.1 demonstrates the insertion process start-
ing with an array of size one and an empty
bank account.

In that picture we see that after third
insertion, the bank account is empty, and
after fourth insertion, the bank account has
only one token. On the next, fifth insertion,
we need to double the array size from 4 to 8.
Clearly, we do not have enough money in the
bank to pay for it.

Let us increase the number of tokens
for each insert to three tokens: we pay one
token to perform an operation, and we put
two tokens into the bank. Figure 2.2 demon-
strates the insertion process.

Now the bank has enough money to per-
form fifth insertion. In the next few inserts
(6th–8th) we generate surplus.

In the next insert, we drain our savings.
How do we know there will be enough money
in the bank to pay for moving when we need
to double the array size?

Doubling the array size say from N to 2N,
we need at least N tokens in the bank. Those
N extra tokens will be generated by N/2 new
inserts. Therefore, assigning three tokens per
insert, we were able to pay for all the oper-
ations. This proves that our amortized cost
is at most three.

1

Bank account

Pay for 1 insert

Pay for 1 insert and 1 copy

Pay for 1 insert and
2 copies

Pay for 1 insert

1st insert

2nd insert

3rd insert

4th insert

0 1

–1 0 1

0 0 0 1

FIGURE 2.1  Out-of-pocket cost per insert is
2 tokens.

2

Bank account

Pay for 1 insert

Pay for 1 insert and 1 copy

Pay for 1 insert and
2 copies

Pay for 1 insert

1st insert

2nd insert

3rd insert

4th insert

1 2

0 1 2

0 1 2 2

5th insert –1 0 1 1 2

FIGURE 2.2  Out-of-pocket cost per insert
is 3 tokens.

8th insert 0 0 0 1 2 2 2 2

FIGURE 2.3  Bank account after 8th insertion.

0 0 0 0 0 0 0 1 2

9th insert 0 0 0 1 2 2 2 2

FIGURE 2.4  Bank account after 9th insertion.

18  P  Algorithms in Action

2.2 Binary Counter
Given a binary number with log(n) bits, stored as an array, where each entry A[i] stores
the i-th bit, the cost of incrementing a binary number is the number of bits flipped. We
use the standard way of incrementing the counter, which is to toggle the lowest order
bit. What is the amortized cost per increment? As an example, consider 3-bit numbers
and count the number of flips for each increment.

Table 2.2 shows that incrementing 000 requires a single flip, incrementing 001 results
in two flips, and incrementing 111 results in 3 flips.

Clearly, in the worst-case all bits are flipped, so the cost per increment is O(log n).
Now suppose we increment n times, starting with a zero-binary number. If we only use
the worst-case running time for each increment, we get an upper bound of O(n log n).
Although this bound is correct, we can do better.

2.2.1 The Aggregate Method
Let us think about how often we flip a single bit.
Consider the least significant bit. Each time we incre-
ment a binary number, that bit is changed. Thus, the
number of times the bit changes is n. Consider the
next significant bit. How often is it toggled? n/2 times.
The next bit is toggled n/4 times, and so on. The most
significant bit is toggled only twice. Thus, the total
cost is given by

  ∑+ + + + = + + + +








≤ =

=

∞

n n n n
n

n n
2 4

2 1
1

2

1

4

2 1

2
2 .

k
k

0

It follows the amortized cost per increment is O(2).

2.2.2 The Accounting Method
The key point to observe is that each increment has
exactly one 0 ® 1 flip. But different increments have
different numbers of 1 ® 0 flips. Our accounting
policy is the following: Every time you flip 0 ® 1,
pay the actual cost of 1, plus put 1 into a bank; every
time you flip 1 ® 0, use the money in the bank to pay
for that flip. Consider 3-bit numbers and count the
number of 1 ® 0 flips for each increment. Why does
our policy work? As you see from table 2.3, our bank

TABLE 2.2  The number of flips
for 3-bit numbers

of flips

000 1
001 2
010 1
011 3

100 1
101 2
110 1
111 3

TABLE 2.3  Bank account

Bank

000 0
001 1
010 1
011 2

100 1
101 2
110 2
111 3

Chapter 2  Amortized Analysis  P  19

account has as many tokens as the number of 1 bit. This shows that we have enough
tokens in the bank to pay for future 1 ® 0 flips.

2.3 Amortized Dictionary
One of the most important structures in computer science is the dictionary data struc-
ture that supports fast insert and search operations. Here we will discuss a dictionary
based on linked lists and sorted arrays. The idea of this data structure is as follows. We
will have a linked list of arrays, where array k has size 2k, and each array has a unique
size and is in sorted order. Whether arrays are full or empty is based on the binary rep-
resentation of the number of items we are storing. For example, with 11 items our
dictionary might look like this: (11 = 1 + 2 + 8).

In general, we need at most ceiling(log(n)) arrays to store n items. How do we insert
into this data structure? We create an array of size one and add to the linked list. Since
each array must have a different length, insertion requires merging arrays of the same
size. As an example, consider inserting 4 into the dictionary in figure 2.5. We get two
arrays of size one; thus, we have to merge them. After merging, the dictionary will have
two arrays of size two: [4, 5] and [3, 7]. We have to merge them into an array of size four.
Figure 2.6 demonstrates the final dictionary.

Head

Null

1 3 3 4 5 8 9 93 75

FIGURE 2.5  Example of a dictionary.

Null

1 3 3 4 5 8 9 93 4 5 7

Head

FIGURE 2.6  A dictionary after insert-
ing 4 to it.

20  P  Algorithms in Action

In the worst case we may merge all O(log(n)) sorted arrays. Each pair of sorted arrays
can be merged in linear time. The total cost model is the following: Creating the initial
array of size 1 costs 1, and merging two arrays of size k costs 2k. The total cost of this
insert is 1 + 2 + 4 = 7. In the general case, the total cost per insert is given by

1 + 2 · 20 + 2 · 21 + 2 · 22 + … + 2 · 2log n = O(n).

Therefore, the worst-case runtime complexity of a single insert is O(n). However, on
average we do not merge all O(log n) arrays. What is the amortized cost of insertion?
First, we note that each array is a power of 2. Then we observe that adding a new item
to the dictionary is equivalent to a bit increment. However, the cost of incrementing is
not a constant anymore. Its cost equals to a cost of merging two sorted arrays. It fol-
lows that the cost of flipping the k-th bit is 2k. Consider the least significant bit (k = 0).
The number of times this bit changes is n, with the cost 20. For the next bit (k = 1), the
cost is 21. For the most significant bit (k = log(n)), the cost is 2log n. Thus, the total cost
of n inserts is given by

n · 20 + n/2 · 21 + n/4 · 22 + … + 2 · 2log n = n + n + … + n = O(n log n).

We have proved that the amortized dictionary data structure has amortized cost
O(log n) per insert.

2.4 Amortized Trees
Recall that a binary search tree is not necessary balanced; therefore, it does not guar-
antee O(log n) insertion and searching time that could be in the worst case as bad as
O(n2). There are several ways to make a search tree balanced, though in this section we
consider a different approach. Suppose we search a tree multiple times. Don’t we want
a previous search somehow to affect the next search? Ideally, we want a data struc-
ture that adjusts itself to accommodate the observed sequence of operations. The splay
tree is a variant of a binary search tree that is designed to do exactly that. The intuition
behind splay trees is based on the following observation: If an item was searched once,
it is most likely to be searched again. Therefore, the splay tree heuristic is to move a
searched item to the root, so that next time the item is searched it would take almost a
constant time. Splay trees give up a tree balance in favor of taking advantage of the fact
that a large percentage of the searches is caused by only a small subset of data. Splay
trees have been introduced by D. Sleater and R. Tarjan in 1985.

The key operation performed on a splay tree is the splay operation. splay(N) is
moving a node N to the root via a sequence of rotations that preserves the binary search

Chapter 2  Amortized Analysis  P  21

tree ordering invariant. Every time a node is accessed in a splay tree, it is moved to
the root of the tree. However, splaying is done in a very special way that guarantees
O(log n) amortized bound.

The rotation depends on the positions of the current node N, its parent P, and its
grandparent G. There are six types of rotations:
Zig (Zag): A single right (left) rotation. It can only occur when the N node’s parent is the
root of the tree. This rotation moves the current node N one level up, so N becomes the root.

Zig-Zag (Zag-Zig): A double rotation formed by a single Zig (Zag) followed by Zag (Zig)
rotation. In the first rotation we rotate N and P. Node N moves a level up and becomes
a child of G node. In the next rotation we rotate N and G. Node N moves again a level up,
so that nodes G and P become children of N.

Zig-Zig (Zag-Zag): A double rotation formed by two single Zig (Zag) rotations in spe-
cial order. This rotation occurs when N and its parent P are both left (right) children.
First, we rotate P and G, and then N and P.

T1 T2

T3
N

P

T2 T3

T1

N

P

FIGURE 2.7  Zig rotation.

T2 T3T1

PG

N

T4T3

T2

T1

P

G

N

T2

T1
T4

P

G

N

T3

T4

FIGURE 2.8  Zig-Zag rotation.

T2
T1

N

P

G

T2

T3

T4

T3T1

GN

P

T4T3

T2

T1

G

N

P

T4

FIGURE 2.9  Zig-Zig rotation.

22  P  Algorithms in Action

Note the order of rotations in Zig-Zig rule does matter. Alternatively, we may think
to first rotate N and P and then N and G. These rotations will form the tree in
figure 2.10. The difference between figures 2.9 and 2.10 might not seem to be that
important, but the next example will demonstrate that without this rule, the amortized
cost of search is linear.

Let us consider an example
(figure 2.11), where a splay tree is a
linked list of ordered elements from 1 to
5. On this tree we will perform the follow-
ing sequence of operations: splay(1),
splay(2), splay(3), splay(4),
splay(5). Each splay operation will
move a node to the root by performing
a chain of single rotations, Zig or Zag. We
will use the aggregate method to com-
pute the amortized cost per splay.

To promote node 1 to the root we have
performed 4 single Zig rotations.

To promote node 2 to the root we have
performed 3 single Zig rotations and one
Zag rotation.

To promote node 3 to the root we have
performed 2 single Zig rotations and one
Zag rotation.

The next two splays, splay(4) and
splay(5), will require two and one rota-
tions, respectively. Therefore, the total
number of single rotations for 5 splay
operations is 4 + 4 + 3 + 2 + 1 = 14.

N

N

N

P

P P

GG

G

T1 T2

T1

T1T4

T4

T2 T3 T2 T3

T3

T4

FIGURE 2.10  A wrong Zig-Zig rotation.

1

2

3

4

5

FIGURE 2.11  A linked
list of 5 elements.

1

5

4

3

2

FIGURE 2.12  The tree
after splay(1) has taken
place.

1

2

3

4

5

FIGURE 2.13  The
tree after splay(1) and
splay(2) have taken
place.

1

2

3

4

5

FIGURE 2.14  The tree
after splay(1), splay(2),
and splay(3) has taken
place.

Chapter 2  Amortized Analysis  P  23

Let us generalize this example. Suppose we started with a linked list of ordered
items from 1 to n. We run a sequence of n splay operations: splay(1), splay(2), … ,
splay(n). Proceeding as in the previous example, the first splay takes n - 1 single
rotations, splay(2) also takes n - 1 single rotations, splay(3) takes n - 2 rotations,
and so on. The total number of rotations is given by

() () () ...
()

().n n n k n n O n
k

n

− + − + − + + + =− + =− +
+
=

=
∑1 1 2 2 1 1 1

1

21

2

It follows that the amortized cost per splay is O(n2)/n = O(n). This example demon-
strates that in order to achieve O(log n) amortized bound per splay, we have to have
Zig-Zig (Zag-Zag) rotation.

The analysis of running time of splay trees is quite difficult. Any single insert
or search might take a linear time in the worst case. But any sequence of m operations
on a tree with n nodes takes O(m log n) time. The proof is far beyond the scope of this
book.

REVIEW QUESTIONS

1.	 What is the definition of the amortized cost using the aggregate method?
2.	 (T/F) Amortized analysis is used to determine the average runtime complex-

ity of an algorithm.
3.	 (T/F) Compared to the worst-case analysis, amortized analysis provides a more

accurate upper bound on the performance of an algorithm.
4.	 (T/F) The total amortized cost of a sequence of n operations gives a lower bound

on the total actual cost of the sequence.
5.	 (T/F) Amortized constant time for a dynamic array is still guaranteed if we

increase the array size by 5%.
6.	 (T/F) If an operation takes O(1) expected time, then it takes O(1) amortized time.
7.	 Suppose you have a data structure such that a sequence of n operations has an

amortized cost of O(n log n). What could be the highest actual time of a single
operation?

8.	 What is the worst-case runtime complexity of searching in an amortized
dictionary?

24  P  Algorithms in Action

EXERCISES

1.	 You have a stack data type, and you need to implement a FIFO queue. The stack
has the usual POP and PUSH operations, and the cost of each operation is 1.
The FIFO has two operations: ENQUEUE and DEQUEUE. We can implement
a FIFO queue using two stacks. What is the amortized cost of ENQUEUE and
DEQUEUE operations?

2.	 We are incrementing a binary counter, where flipping the i-th bit costs i + 1.
Flipping the lowest-order bit costs 0 + 1 = 1, the next bit costs 1 + 1 = 2, the
next bit costs 2 + 1 = 3, and so on. What is the amortized cost per operation for
a sequence of n increments, starting from zero?

3.	 We have argued in the lecture that if the table size is doubled when it’s full, then
the amortized cost per insert is acceptable. Fred Hacker claims that this consumes
too much space. He wants to try to increase the size with every insert by just two
over the previous size. What is the amortized cost per insertion in Fred’s table?

4.	 This table supports inserts as well as deletions. The protocol is the following:
If an array is full, we double its size on insertion; if an array is 1/4 full, we halve
the array size on deletion. Show that the amortized cost of insert and delete is 5.

5.	 Suppose we perform a sequence of n operations on a data structure in which the
i-th operation costs i if i is an exact power of 2 and 1 otherwise. Use aggregate
analysis to determine the amortized cost per operation.

6.	 Suppose we perform a sequence of n operations on a data structure in which the
i-th operation costs i if i is an exact power of 4 and 1 otherwise. Use aggregate
analysis to determine the amortized cost per operation.

7.	 A MultiStack data structure has the usual POP and PUSH operations, and the cost
of each operation is one unit. Additionally, it has MULTIPOP(k) operation that
removes k recently pushed items. If k is bigger than the stack size, it removes all
items. We wish to analyze the running time for a sequence of n PUSH, POP, and
MULTIPOP operations, starting with an empty stack. What is the worst-case
complexity for a sequence of n operations? What is the amortized cost per oper-
ation? Use the accounting method.

8.	 Consider a singly linked list as a dictionary that we always insert at the beginning
of the list. Now assume that you may perform any number of insert operations
but will only ever perform at most one lookup operation. What is the amortized
cost per operation?

  25

Heaps are one of the most important data structures, especially for implement-
ing greedy algorithms using a priority queue. Heaps provide a great option over

sorting when input data changes during an algorithm execution. Sorting as we know is
a process of arranging elements according to their priorities. However, in many appli-
cations we do not need a full sorted order, just the ability to access an element with the
highest priority. We start the chapter with classical binary heaps and then extend the
definition to amortized heaps that provide the constant amortized cost for insertion
and decreaseKey operations. We will be using heaps in a few applications, namely find-
ing the shortest path in graphs, building the minimum spanning tree, and constructing
Huffman encoding.

3.1 Binary Heaps
Binary heaps are based on the notion of a com-
plete binary tree. A complete binary tree is a
binary tree where each level is completely filled
with nodes, except the gap at the bottom level,
which is filled from left to right, as illustrated
in figure 3.1.

A complete tree with n nodes has a height of
floor(log(n + 1)). In this example, the tree height
is 3. Note that the height of the root is 0.

JIH

D E F G

CB

A

No nodes here

FIGURE 3.1  Example of a complete tree.

Heaps

Chapter 3

26  P  Algorithms in Action

A binary heap satisfies one of the following two heap ordering properties:

•	 The min-heap property: The value of each node is greater than or equal to the
value of its parent

•	 The max-heap property: The value of each node is less than or equal to the value
of its parent

In this course the word heap will always refer to a min-heap, unless otherwise noted.
Note that a heap may have duplicate elements. To sum up, formally a binary heap can
be defined as a collection of items that satisfy the following invariants:

•	 Structural property: States that a heap is a complete tree

•	 Ordering property: The key of the parent node less or equal than the key of chil-
dren nodes

A heap supports the following operations:

•	 insert

•	 deleteMin

•	 decreaseKey

•	 build

•	 meld (merge two heaps)

These operations will be discussed in the subsequent sections. But first, let us dis-
cuss heap implementation.

3.1.1 Implementation.
A heap is uniquely represented by storing its data in an array by running a level-order
traversal on a tree, with the root at index 1. This allows fast access to each heap element.

Observe that if a node’s index is k, its left child is located at 2k index, its right child is
located at 2k + 1 index, and its parent is located at k/2 index. Array index 0 is left empty
to make the indexing work easily.

0 1 2 3 4 5 6 7
2 4 3 9 7 8

879

4 3

2

FIGURE 3.2  A heap represented as an array.

Chapter 3  Heaps  P  27

3.1.2 Insert
The new element is initially appended to the bottom level. If the level is full, we start a
new one. In an array-based implementation, we place a new item to the end of the array.
This will preserve the structural property.

Insert 1

743

2 6

2

7 143

2 6

2

FIGURE 3.3  Inserting 1 into a heap.

0 1 2 3 4 5 6 7
2 2 6 3 4 7 1

At this step, the inserted item may violate the ordering property. We fix this by per-
colating the item up the tree by swapping positions with the parent, if it’s necessary. In
figure 3.3 we swap 1 and 6, as shown in figure 3.4.

Again, we observe that new placement of 1 still violates the heap-ordering property.
Thus, we swap 1 and 2, as shown in figure 3.5.

The worst-case runtime complexity of insertion is O(log n). This is because a com-
plete tree is a balanced tree and in the worst-case scenario it may require a single swap
on each tree level.

7 643

2 1

2

FIGURE 3.4  Swapping 1 and 6.

0 1 2 3 4 5 6 7
2 2 1 3 4 7 6

7 643

2 2

1

FIGURE 3.5  Swapping 1 and 2.

0 1 2 3 4 5 6 7
1 2 2 3 4 7 6

28  P  Algorithms in Action

3.1.3 DeleteMin
The minimum element can be found at the root of the heap, which is the first element
of the array. Clearly, we cannot delete it, since otherwise a tree will be split into two
trees. Instead, we move the last element of the heap to the root (this step preserves the
structural invariant) and then restore the heap property by percolating it down the
tree (this step preserves the ordering invariant). In figure 3.6, we move 8 to the root
and then percolate it down by swapping it with the smallest child.

2 6

1

43 87 743

2 6

8

743

8 6

2

748

3 6

2

FIGURE 3.6  Deleting the minimum.

This continues until it is less or equal to its children or it reaches the last level. The
worst-case runtime complexity of deleteMin is O(log n), since during percolation it may
require a swap on each tree level.

3.1.4 Heapsort
If we run deleteMin n times we will get all heap elements in sorted order. This could be
implemented in place by storing the deleted element at the end of the array. Figure 3.7 demon-
strates one step of the algorithm; we swap 1 with 8, and then percolate 8 down the tree.

0 1 2 3 4 5 6 7
2 3 6 8 4 7 1

0 1 2 3 4 5 6 7
1 2 6 3 4 7 8

2 6

1

43 87

748

3 6

2

FIGURE 3.7  One iteration of Heapsort.

Chapter 3  Heaps  P  29

The worst-case runtime complexity of heapsort is O(n log n). Heapsort is in place but
not stable.

3.1.5 DecreaseKey
In some algorithms we may require changing the key (value) of one of the heap elements.
To restore a heap-ordering property, we may need to percolate this item up. The worst-
case runtime complexity of decreaseKey is O(log n). In figure 3.8, we decrease 7 to 2.

2 6

1

43 87

2 6

1

43 82

2 2

1

43 86

FIGURE 3.8  Demonstration of the decreaseKey operation.

3.1.6 Building a Heap
There are two algorithms to build a heap. The first one is the online algorithm,
when the data is not known to us in advance. In this case we build a heap by
insertion, starting with an empty array. We will resize the array once it is full. Read
about the resizing policy in chapter 2. If we insert n elements, the total cost T(n) is
bounded by

T(n) = log 1 + log 2 + … + log(n - 1) + log n £ log n + log n + … + log n + log n = n log n.

On the other hand (see chapter 1.2 for the proof),

T(n) = log 1 + log 2 + … + log(n - 1) + log n = log(n!) = W(n log n).

Thus, the worst-case runtime complexity of building a heap is Q(n log n).
The second algorithm is offline, when the data is known to us in advance. In this case

we can develop a faster algorithm. We will call it “heapify,” a process of converting a
complete tree into a heap. We begin by placing all the elements into an array in given
order. Next, starting at position n/2 and working toward position 1, we percolate each
element down the tree by swapping it with its smallest child.

Let us consider an example of building a heap on the following set of data: 7, 6,
8, 1, 5, 9, 0, 3, 2, 4. First we place the numbers into a complete tree. This will satisfy the
structural invariant.

30  P  Algorithms in Action

0 1 2 3 4 5 6
7 6 8 1 5 9

7
0

8
3

9
2

10
4

6 8

7

51

23 4

09

FIGURE 3.9 

Then we start at the middle (node 5) and swap it with the child 4. Next, we move to 1.
There is nothing to swap for that element, so we move to 8.

0 1 2 3 4 5 6
7 6 8 1 4 9

7
0

8
3

9
2

10
5

6 8

7

41

23 5

09

FIGURE 3.10  Heapify nodes at depth 2.

The smallest child of 8 is 0, so we swap 8 with 0 and then move to 6.

0 1 2 3 4 5 6
7 6 0 1 4 9

7
8

8
3

9
2

10
5

6 0

7

41

23 5

89

FIGURE 3.11  Heapify node 8 at depth 1.

Chapter 3  Heaps  P  31

We swap 6 with the left child 1, and then swap 6 again with the right child 2.

6 0

7

41

23 5

89

6 0

7

46

23 5

89

1 0

7

42

63 5

89

FIGURE 3.12  Heapify node 6 at depth 1.

Finally, we move to the root and swap it with the right child 0. Figure 3.13 shows the
final heap.

0 1 2 3 4 5 6
0 1 7 2 4 9

7
8

8
3

9
6

10
5

1 7

0

42

63 5

89

FIGURE 3.13  The final heap.

Now we analyze the worst-case complexity of heapify. During the algorithm execu-
tion at most n/2, heap elements percolate down the heap. Since the each percolation is
O(log n), the total cost is bounded by O(n log n). But let us note that not each element
was percolated down to a leaf. Thus, we shall derive an asymptotically tight bound. We
will count the exact number of swaps (in the worst case) at each level. At the root,
we may percolate down h times, where h is the tree height. At a level below, we may

32  P  Algorithms in Action

have at most (h - 1) swaps. And so on. At the last level, there are zero swaps.
Figure 3.14 replicates the number of swaps per level:

Next, we take into account the number of nodes on each level.

We summarize the total number of swaps during the heapification in table 3.1.

TABLE 3.1  The total number of swaps

Height # of nodes # of swaps

0 1 h
1 2 h - 1

— — —

h - 2 2h-2 2

h - 1 2h-1 1

of swaps

h

h
h-1

h-2

2

1

0

FIGURE 3.14  Demonstrates the number of swaps
per level.

of nodes

h

1
2

4

2h–2

2h–1

at most 2h

FIGURE 3.15  Demonstrates the number of nodes
per level.

Chapter 3  Heaps  P  33

Finally, we compute the total work by multiplying the number of swaps by the number
of nodes on each level. Let T(n) denote the total number of swaps in the worst case. Then,
as one can see from table 3.1,

∑=
=

−T n k() 2 ,
k

h
h k

1

where h = log n. The finite sum can be further simplified as it follows

∑ ∑ ∑= = ≤ = =
=

−

= =

∞

T n k k k O n() 2 2
2

2
2

2 2 ().
k

h
h k h

k

h

k
h

k
k

h

1 1 1

This proves that building a heap by running the heapify operation has a linear
runtime complexity.

Table 3.2 shows the binary heap operations and their runtime complexities:

TABLE 3.2  Running times for heap operations

Operation Complexity

findMin O(1)
deleteMin O(log n)

insert O(log n)
decreaseKey O(log n)

buildHeap O(n)

3.2 Binomial Heaps
In the previous section we have proved that insertion takes O(log n) in the worst case.
However, as it easy to see, not all inserts require log n swaps; some inserts can be per-
formed in constant time. This observation implies that a binary heap may exhibit a better
amortized complexity of insertion. Let us consider an example of inserting n items in sorted
decreasing order from n to 1 into an empty min-heap. We will count the total number
of swaps required to insert all the items. For simplicity, we assume that n = 2k - 1. The
process of insertion will create a binary heap of height k - 1 = log(n + 1) - 1. Obviously,
it takes no swaps to insert the first item n. It takes a single swap to each insert for the
next two items n - 1 and n - 2. Finally, it takes k - 1 swaps for each element on the last
level (the last level contains 2k-1 items.) The total work by inserting n items is given by

m O k O n nm

m

k
k2 2

0

1

=

−

∑ = =() (log).

34  P  Algorithms in Action

Then, the amortized cost per insertion in

O n n
n

O n(log)
(log).=

This is the same as the worst-case complexity. This simple mathematical computation
demonstrates that a binary heap is not suitable for amortized operations and therefore
requires creating a different type of heap.

In this section we describe another heap data structure that has a slight improve-
ment in amortized cost over a binary heap. This data structure was introduced by J.
Vuillemin in 1978. Each binomial heap is a collection of binomial trees. A binomial tree
Bk, of rank k, is defined recursively as follows:

1.	 B0 is a single node
2.	 Bk is formed by joining two Bk-1 trees

Here are the first four binomial trees:

B0 B1 B2 B3

3
1

FIGURE 3.16  Example of binomial trees.

The number of nodes on each level l in a binomial tree Bk is defined by binomial coef-
ficients ()lk , where 0 £ l £ k. The term binomial tree comes exactly from this property.
The total number of nodes in Bk is 2k, as it follows from



k k k
k

k
k0 1 1

2k









+









+ +

−










+









=

Another interesting property of a binomial tree Bk is that when we remove the root,
the tree will break into k binomial trees B0, B1, …, Bk-1. Figure 3.17 shows a new way of
looking at B3.

Chapter 3  Heaps  P  35

B3

B0 B1 B2

FIGURE 3.17  Binomial tree of rank three.

A binomial heap is a collection (a linked list) of at most ceiling(log n) binomial trees
in increasing order of size, where each tree has a heap ordering property. In a binomial
heap there is at most one binomial tree of any given rank. In order to have constant time
access to the top element, we store the pointer to the smallest root. Figure 3.18 demon-
strates a binomial heap of 13 elements:

9 3

612

14 17 11 20

23

8

15 1012

min

FIGURE 3.18  A binomial heap of size 13.

Observe that the number of elements that can be stored in a heap relates to its binary
expansion. To store 13 elements, we need B0, B2, and B3 binomial trees. This is due to the
binary expansion 1310 = 11012. If we need to store 25 items, the heap will be a collection
of B0, B3, and B4, since 2510 = 110012. Thus, a binomial heap with n nodes has number
of binomial trees equal to the number of 1’s bits in binary representation of n. Having
this in mind, we always will assume in the worst-case analysis that there are O(log n)
binomial trees in a binomial heap with n nodes.

3.2.1 Merging
Binomial heaps allow faster merging, compared to binary heaps. Note, binary heaps
are complete binary trees, and two complete binary trees cannot easily be linked to

36  P  Algorithms in Action

one another. Consider the merging of two binomial heaps on the following example in
figure 3.19.

3

12

12

623

209 10

11

23

2017

1215

Merge with

FIGURE 3.19  Merging two Binomial heaps.

First we merge two heaps as we merge two linked lists; it takes O(1) time. We get the
heap shown in figure 3.20.

3

12

14

6

10

11

23

2023

20

17

12159

FIGURE 3.20  The result of joining two top linked lists.

This heap is not a binomial heap yet, since it has trees of the same ranks. Thus, we
need to combine binomial trees of the same rank. This can be done by making the
smaller root the child of the larger root. It also takes O(1) time; however, it may require
to merge O(log n) trees in total. Thus, the worst-case runtime complexity of merging is
O(log n). In our example we need to merge two trees of rank 0 and two trees of rank 1.

3

12

14

6

10

11

23

20

129

1715

23

20

FIGURE 3.21  The result of merging two trees of rank 0 and two trees of rank 1.

Chapter 3  Heaps  P  37

Finally, we combine two trees of rank 2 to get the heap in figure 3.22.

3

12

14

6 10

11

23

20

129

1715

23

20

FIGURE 3.22  The result of merging two trees of rank 2.

In conclusion, we note that merging two binomial heaps is related to a binary addi-
tion. In the previous example, the result of merging B0B1B2 with B0B1B2 is a binomial
heap B1B2B3. This can be viewed as a binary addition

    111
    111
   
    1110

where the result of addition 1110 translates into a heap B1B2B3.

3.2.2. DeleteMin
The algorithm is as follows:

1.	 Find the binomial tree that contains the minimum element
2.	 Delete the root and move all subtrees to the top list
3.	 Merge the binomial trees of the same rank
4.	 Set a pointer to the new minimum

Note that deleting the root of Bk results in B0, B1, …, Bk-1 binomial trees. It follows that
the worst-case complexity of deleteMin is O(log n), which is the same as merging two
heaps. Let us execute the algorithm on the heap in figure 3.23.

38  P  Algorithms in Action

9 3

612

14

23

17 11 20

8

15 1012

min

FIGURE 3.23  We will perform deleteMin on this heap.

After deleting the minimum, the heap transforms into what is shown in
figure 3.24.

12 6

14

23

17 11 20

8

15 1012

9

FIGURE 3.24  The result of deleting the min.

Next, we merge two B0 and B1 to get what is shown in figure 3.25.

6

14

23

1712 11 20

8

159 1012

min

FIGURE 3.25  The result of merging B0 and B1.

Chapter 3  Heaps  P  39

3.2.3. Insert
Essentially, insertion is merging two heaps, one of size 1 and the other of size n. Therefore,
it takes O(log n) in the worst case. This case occurs only if a binomial heap of size
n = 2m - 1 contains binomial trees of all orders, namely the following trees B0, B1, …,
Bm-1. Then, inserting a new item into this heap will case m binomial trees to merge. The
first merge will result in a heap B1 B1 B2 … Bm-1. The second merge will result in a heap
B2 B2 B3 … Bm-1. And so on. After m = O(log n) merges we will get a binomial heap that
contains only a single binomial tree of order m.

It should be clear that not each insertion requires merging all O(log n) binomial trees.
Let us compute amortized cost per insertion. We will use the accounting method. We
show that assigning two tokens to a single insert is sufficient. Here is our assignment:
One token is paid for creating a single binomial tree, and the other is for future tree
merging. In this model each binomial tree in a heap has a single token associated with
it. When we merge two trees of the same rank, we use one token to pay for merging and
keep the second token for the next merger (if it will ever be required.) It follows that
single insertion into a binomial heap has a constant amortized cost.

Here is another way to prove that amortized cost of a single insert is constant. Recall
that a binomial heap of size n is associated with a binary expansion of n. When we insert
a new item into it, we merge two heaps, one of size 1 and the other of size n. This is equiv-
alent to a binary addition, namely incrementing a binary representation of n. We have
proved in chapter 2 that amortized cost of binary increment is O(2).

3.2.4 Building a Binomial Heap
We have studied two algorithms of building a binary heap. One is an offline algorithm
(building by insertion) with the runtime complexity O(n log n); the other is an online
algorithm (building by heapifying) with the runtime complexity O(n). The cost of build-
ing a binomial heap of n elements by insertion is O(n), even if the data is not known to
us in advance.

Finally, we summarize runtime complexities of binary and binomial heaps in
table 3.3 (here, “ac” stands for amortized cost).

TABLE 3.3  Running times for heap operations

Binary Binomial

findMin O(1) O(1)
deleteMin O(log n) O(log n)

insert O(log n) O(1) (ac)
decreaseKey O(log n) O(log n)

merge O(n) O(log n)

40  P  Algorithms in Action

3.3 Fibonacci Heaps
The Fibonacci heap data structure was invented by Fredman and Tarjan in 1987.

The general idea is to have a more relaxed structure (compared to binomial heaps)
that will improve decreaseKey complexity to constant amortized time. The trees in
a Fibonacci heap are not constrained to be binomial trees. Figure 3.26 shows an exam-
ple of a Fibonacci heap.

3 59

6

17 11 20

8

12 1012

min

FIGURE 3.26  Example of a Fibonacci heap.

The high-level idea of a decreaseKey algorithm is to take the node you want to
decrease, change its value, disconnect it and its entire subtree from where it is, and
attach it to the tree root list. This is clearly O(1) time. This attractive feature of Fibonacci
heaps allows a performance improvement to many algorithms, in particular, the
Dijkstra’s shortest path algorithm, (see chapter 4.5.1.2) bringing its runtime complexity
to O(E + V log V).

Let us discuss a bird’s-eye view of a decreaseKey algorithm on the heap in
figure 3.27.

69

7

23

1714 11 20

8

1512 1012

FIGURE 3.27  We will perform decreasekey on this heap.

Suppose we want to change 7 to 5. Since 7 is not the root of the tree, its value dec-
rementing will break the heap order. We cut the tree rooted at 7 from its parent and
move it to the top level.

Chapter 3  Heaps  P  41

6 5

1412

23

17 11 20

8

15 1012

9

FIGURE 3.28  cut(7).

Running a new function cut(7), we are guaranteed that changing its value to 5 surely
does not break the heap order. However, we may end up with having extremely sparse
trees of high ranks as well as with several trees of the same rank. In order to avoid this
problem, we limit the number of cuts among the children of any vertex to two. This is
done by implementing another function marked(v) that keeps a track of cuts of all chil-
dren of v. Clearly, after a call to decreaseKey we won’t have a binomial tree anymore.
We will fix the binomial heap property when deleteMin is called. However, the prob-
lem is that we can no longer prove the bound on the time of deleteMin. That heap may
contain more than O(log n) binomial trees, and some of them are not necessary binomial.
There’s a clever way to fix this by implementing “cascading cuts.” The algorithm was
designed by M. Fredman and R. Tarjan. The algorithm is beyond the scope of this course.

Fibonacci heaps have another advantage: The worst-case time complexity of the insert
is O(1). How do we insert into the Fibonacci heap? Just add a single node to the top level.
Do not merge binomial trees! We may have several trees of the same rank. We will fix the
heap when deleteMin is called. Clearly, lazy insertion runs in O(1) time in the worst case.

In table 3.4, we summarize runtime complexities of different heaps. There “ac” stands
for the amortized time complexity.

TABLE 3.4  Running times for heap operations

Binary Binomial Fibonacci

findMin Q(1) Q(1) Q(1)
deleteMin Q(log n) Q(log n) O(log n) (ac)

insert Q(log n) Q(1) (ac) Q(1)
decreaseKey Q(log n) Q(log n) Q(1) (ac)

merge Q(n) Q(log n) Q(1) (ac)

42  P  Algorithms in Action

REVIEW QUESTIONS

1.	 What is the worst-case runtime complexity of finding the smallest item in a
binary min-heap?

2.	 What is the worst-case runtime complexity of finding the largest item in a binary
min-heap?

3.	 How many binomial trees does a binomial heap with 31 elements contain?
4.	 How many binomial trees are in a binomial heap of size n?
5.	 What is the worst-case runtime complexity of inserting into a binomial heap?
6.	 What is the worst-case runtime complexity of searching in a binomial heap?
7.	 What is the amortized cost of inserting into a binomial heap?
8.	 What is the worst-case runtime complexity of deleteMin() from a binomial heap?
9.	 (T/F) The following array is a max heap: [10, 3, 5, 1, 4, 2].

10.	 (T/F) In a binary max-heap with n elements, the worst-case runtime complexity
of finding the second largest element is O(1).

11.	 (T/F) If item A is an ancestor of item B in a heap then it must be the case that the
insert(A) operation occurred before insert(B).

12.	 (T/F) Using a binary heap we can sort any array of size n in O(n) time.
13.	 (T/F) In a binomial min-heap with n elements, the worst-case runtime complex-

ity of finding the smallest element is O(1).
14.	 (T/F) In a binomial min-heap with n elements, the worst-case runtime complex-

ity of finding the second smallest element is O(1).
15.	 (T/F) By using a binomial heap we can sort data of size n in O(n) time.
16.	 (T/F) Given a Fibonacci heap of size n, the maximum number of trees is that

heap is n.

EXERCISES

1.	 Given a sequence of numbers, 3, 5, 2, 8, 1, 5, 2,
a.	 draw a binary min-heap (in an array form) by inserting these numbers,

reading them from left to right; and
b.	 show an array that would be the result after the call to deleteMin() on

this heap.

Chapter 3  Heaps  P  43

2.	 Devise an algorithm of merging two binary heaps. What is its runtime complexity?
3.	 Suppose you have two binary min-heaps, A and B, with a total of n elements

between them. You want to discover if A and B have a key in common. Devise an
algorithm to this problem that takes O(n log n) time.

4.	 The values 1, 2, 3, …, 63 are all inserted (in any order) into an initially empty min-
heap. What is the smallest number that could be a leaf node?

5.	 Prove that it is impossible construct a min-heap (not necessarily binary) in a
comparison-based model with both the following properties:

a.	 deleteMin() runs in O(1)
b.	 buildHeap() runs in O(n), where n is the input size

6.	 Given an unsorted array of size n, devise a heap-based algorithm that finds the
k-th largest element in the array. What is its runtime complexity?

7.	 Recall that two sorted arrays of size n can be merged into a single sorted list in
linear time O(n). Suppose there are k > 2 sorted arrays, each of size n. Devise a
heap-based algorithm that merges k arrays and requires at most O(k) extra space.

8.	 Given a stream of data (its size is unknown in advance), devise a heap-based
algorithm that finds the k-th largest element in the array. Your algorithm must
take at most O(k) extra space. What is its runtime complexity?

9.	 Given a stream of data (its size is unknown in advance), devise a heap-based algo-
rithm that finds the median of elements read so far. What is its runtime complexity?

10.	 Given a sequence of numbers, 3, 5, 2, 8, 1, 5, 2, 7,
a.	 draw a binomial heap by inserting these numbers, reading them from

left to right; and
b.	 show a heap that would be the result after the call to deleteMin() on

this heap.
11.	 Discuss the relationship between inserting into a binomial heap and

binary increment.
12.	 Discuss the relationship between merging two binomial heaps and adding two

binary numbers.
13.	 Discuss the relationship between inserting into a binomial heap and a

Fibonacci heap.
14.	 Devise an algorithm of deleting any item from a binomial heap. What is its

runtime complexity?
15.	 Devise an algorithm to find all nodes less than some given value X in a binomial

heap. Analyze its complexity.

  45

Greedy algorithms do not have a formal definition, but all of them possess the
following characteristics:

•	 They make a sequence of choices.

•	 Each choice is the best available at each step.

•	 Earlier decisions made during execution are never undone.

•	 They do not always yield the optimal solution.

Greedy algorithms have several advantages over other algorithmic approaches. The
first one is simplicity: Greedy algorithms are often easier to describe and implement. The
second is efficiency: The greedy approach can often produce more efficient solutions. At
the same time, they have a drawback: Showing that a greedy algorithm is correct often
requires a non-trivial proof.

How can we tell if a greedy approach will solve a particular problem? There is no guar-
antee that such a greedy algorithm exists; however, a problem to be solved must obey the
following two common properties:

•	 Optimal substructure

•	 Greedy-choice property

An optimal substructure means that an optimal solution to the original problem contains
optimal solutions to all of its subproblems. The proof of optimal substructure correctness
is usually by induction.

Greedy Algorithms

Chapter 4

46  P  Algorithms in Action

A greedy-choice property means that a globally optimal solution is obtained by
making a locally optimal (greedy) choice. This choice is made to solve each subprob-
lem and may depend on choices that have been made to date, but it cannot depend on
any future choices. The proof that a greedy choice for each subproblem yields a globally
optimal solution is usually by contradiction.

Where does greedy approach efficiency come from? A greedy algorithm can be
described as a multistage decision-making process, and therefore we can construct a
tree to enumerate all possible decisions. During the algorithm execution, we don’t con-
sider all available choices at any given node, but use a greedy heuristic to pick just one,
the highest-ranking child. In this model a greedy technique can be viewed as finding
a set of paths from the root to a leaf node. Consider a board game where two players
alternately take turns. We can use a tree to represent all possible moves until the game
ends. Each node corresponds to a position, and each edge corresponds to a move. In this
game tree, the number of nodes on each level is exponential in the tree height. Thus, a
brute-force algorithm will have an exponential (in height) runtime complexity. A greedy
algorithm, in contrast, will make only a single greedy choice at each tree level; there-
fore, its runtime complexity will be proportional to the height.

We conclude the introduction with a few remarks on implementation. In order to make
greedy choices efficiently we have to use a certain data structure. One simple choice
is an unsorted array. The better choice may be a priority queue that allows accessing
the highest-ranking choice in constant time. Alternatively, we could use a sorted array,
though this may be more expensive compared to heaps. In this chapter we start with
two greedy algorithms when a single sorting is sufficient and then proceed to other
algorithms when use of a priority queue is advantageous.

4.1 The Money Changing Problem
In this problem we are to compute the minimum number of coins needed to make
change for a given amount m and given set of n denominations. Assume that we have
an unlimited supply of coins. As an example, let us use US currency (pennies, nickels,
dimes, and quarters) and the amount to change is m = $0.40. There are several ways to
make change, 0.40 = 4*0.10 (four dimes) or 0.40 = 2*0.10 + 4*0.05 (two dimes and four
nickels). But intuitively we can get the smaller number of coins if we start with the larg-
est coin first: 0.40 = 0.25 + 0.10 + 0.05. This suggests the following greedy algorithm
to make change: Start with the largest coin and use it as many times as possible; then
use the second largest coin, and so on. Will we get the least number of coins? We prove
the algorithm correct by contradiction. If we do not choose the largest coin, is there a

Chapter 4  Greedy Algorithms  P  47

better solution? Assume that our algorithm does not take the largest coin (which is a
quarter). Then we will need a combination of smaller coins (pennies, nickels, or dimes)
to add up to a quarter. It follows that the change won’t be optimal, since we will end up
with more coins.

Let us discuss the algorithm efficiency. We will visualize the algorithm as a quad
choice tree (figure 4.1) where each vertex contains an amount to change and each edge
is a denomination.

In the brute-force approach we will have to try each available denomination. This
will lead to O(4h) runtime, where h is the tree height. In the greedy approach, we will
always choose the largest available denomination. It is clear that the complexity of this
approach is O(h). Here we assumed that we could get the largest coin in the constant
time. We can always do that by sorting all denominations in descending order and then
traversing them in that order. In a general case, when we have a set of n denominations,
this choice tree has height h = n; therefore, the algorithm runtime complexity is O(n).

Lastly, we demonstrate on the example that a greedy choice does not necessarily
yield the optimal solution. Let us imagine a different denomination system, where in
addition to pennies, nickels, dimes, and quarters we have a 20-cent coin. Then, running
a greedy approach, we still get three coins: 0.40 = 0.25 + 0.10 + 0.05. However, the
optimal solution contains only two coins: 0.40 = 2*0.20. This example emphasizes an
importance of proving the algorithm correctness.

4.2 Scheduling Problem
There is a set of n requests. Each i-th request has a starting time s(i) and finish time f(i).
Assume that all requests are equally important and s(i) £ f(i). Our goal is to develop a

40

30 1539

14293438 510

04

1

1

1

5

10

25
105

5

14

35

FIGURE 4.1  A choice tree to change 40 cents using pennies,
nickels, dimes and quarters.

48  P  Algorithms in Action

greedy algorithm that finds the largest compatible (non-overlapping) subset of requests.
This problem is interesting because among many available greedy strategies it is not
obvious which one to choose. One approach is to sort requests with respect to s(i) in
ascending order. This one is not going to work (see figure 4.2). In that example the solu-
tion will consist of one request.

You may think that starting with the shortest f(i) - s(i) request first will be the right
strategy. See figure 4.3 for the counterexample.

Another possible strategy is to take into consideration the number of overlapping
intervals. In this strategy we start with an interval that has the smallest number of
overlaps with other intervals. See figure 4.4 for the counterexample. It demonstrates
that using this strategy we get only three intervals; however, the optimal solution has
four intervals.

Finally, we consider a strategy of taking intervals with respect to finish time f(i),
a request with the earliest finish time first. In this approach we sort requests with
respect to f(i) in ascending order. Pick a request that has the earliest finish time. Delete
all requests that overlap with it. Repeat.

The running time is O(n log n) for sorting plus O(n) for the greedy collection of activ-
ities. Does it always find an optimum?

4.2.1 Proof of Optimality
We assume that all intervals are sorted with respect to the finish time. Let {i1, i2, …, ik}
be a subset of intervals chosen by our greedy algorithm and { j1, j2, …, jm} be the optimal

FIGURE 4.2  The earliest starting time strategy.

FIGURE 4.3  The shortest interval strategy.

FIGURE 4.4  The smallest number of overlaps.

Chapter 4  Greedy Algorithms  P  49

subset of intervals. We will prove by induction that f(ir) £ f(jr) for "r £ k and thus our
solution cannot be worse than the optimal one.

Base case: r = 1. This is true, f(i1) = f(j1), because we start with the earliest
finish time.

Inductive hypothesis: Let us assume f(ir - 1) £ f(jr - 1).

Inductive step: We need to prove f(ir) £ f(jr).

Note, f(jr - 1) £ s(jr) since in the solution the intervals cannot overlap. Thus, using
the inductive hypothesis f(ir - 1) £ f(jr - 1) £ s(jr) we arrive at f(ir - 1) £ s(jr). Since jr is in
the optimal set, then in the next step our greedy algorithm must pick the jr interval. It
follows f(ir) £ f(jr).

Next, we need to prove that our solution {i1, i2, …, ik} has the same size as the opti-
mal solution (i.e., k = m). We prove this by contradiction. Let us assume that k < m.
There must be a request jk+1 such that f(jk) £ s(jk+1) and f(ik) £ f(jk). Combining
these two inequalities, it follows f(ik) £ s(jk+1). This means that a request jk+1 does
not overlap with any i1, i2, …, ik requests. So, our greedy algorithm would not stop at ik
and choose jk+1 as the next request. Contradiction, the size of our solution, is bigger
than k.

4.3 Huffman Code
In 1948 Claude Shannon established that there is a fundamental limit to lossless data
compression. This limit is called the entropy rate H. Entropy is a measure of the amount
of information contained in the source. It is possible to compress the source, in a lossless
manner, with a compression rate close to the entropy H. But it is mathematically impos-
sible to do better than H. The ASCII table is the simplest example of data compression. In
that model we assign a fixed number of bits (called a codeword) to a character, namely
8 bits. But we can achieve a better compression ratio if we assign a variable number
of bits to each character. It is known (statistically) that the character “e” is much more
likely to appear than “u.” In this model each letter in the alphabet of size n has a certain
probability pk. We can define probabilities by counting frequencies of each character
in the input text. The entropy H is given by

∑=
=

H p
p

log
1
.

k

n

k
k0

50  P  Algorithms in Action

H is the lower bound on the average number of bits to code a character. Using stan-
dard distribution of characters in the English language, we get H = 4.07 bits/char.

This theoretical result cannot be directly used to compute the number of bits per
letter in a data compression algorithm, due to the fact that the log values are not inte-

gers. If we round up the logs, then the solution is not an optimal.
In 1952 David Huffman developed a greedy algorithm to assign
a prefix-free codeword to each character in the text according to
their frequencies. A prefix-free code is one where no codeword is
a prefix of another codeword.

We will be using a full tree to map each character to a binary
string. A codeword is a path from the root to the character. In
figure 4.5 a codeword for C is 100 and a codeword for H is 11.
Using a prefix-free code it is easy to encode and decode data.
To encode, we need only to concatenate the codewords for each
character. To decode, we scan the text from left to right, and as
soon as we recognize a codeword, we print the corresponding
character.

In general, we want to minimize the overall length of encoding, namely

∑=
=

cost() min () ()
1

T f x d x
k

n

k k

where f(x) is a frequency of xk character and d(xk) is a depth of xk in the tree T. This sug-
gests a greedy approach to constructing a tree. We need to put characters with the
lowest frequencies to the bottom of a tree. This will guarantee longer binary strings
assigned to them. Characters with the high frequency should be at the top, so they will
have shorter codewords. Such a tree is called a Huffman tree.

4.3.1 Example: Building a Huffman tree
Let us draw a Huffman tree for the following table of frequencies:

TABLE 4.1  A table of frequencies

char A M L E K B U X

freq 34 21 14 13 11 9 8 7

E

H

UC

1

10

0

0 1

Root

FIGURE 4.5  Pre-
fix-free binary codes.

Chapter 4  Greedy Algorithms  P  51

Initially, there are only single-node trees: one for each character.

Next we select two characters of the smallest frequencies (they are U and X) and form
a new parent node with the frequency 8 + 7 = 15, and connect it to U and X.

Once two nodes in a tree are connected, they are removed from consideration.
However, their parent node is still in the game. Again, select two characters of the small-
est frequencies (they are K and B), form a new node with the frequency 11 + 9 = 20,
and connect it to K and B. In the next step we connect L and E. The result is depicted in
figure 4.8.

37

M

34

A

13

E

14

L

7

X

8

U

9

B

11

K

FIGURE 4.6  Single-node trees.

37

M

34

A

13

E

14

L

X

15

8

U

97

B

11

K

FIGURE 4.7  A parent node for U and X.

37

M

34

A

13

E

14

L

X

8
U

15

B

11
K

9

20

E

14

L

13

27 37

M

34

A

7 7

X

8

U

15

B

11

K

9

20

FIGURE 4.8  The result of joining K and B, and then L and E.

52  P  Algorithms in Action

Next, we join 15 and 20, and then 27 and 34 as in figure 4.9

Continue connecting nodes until there is only one tree left. That tree is the optimal
Huffman coding tree. Lastly, we assign 0’s and 1’s to the edges.

Table 4.2 is a table of codewords.

TABLE 4.2  A table of codewords

char A M L E K B U X

freq 34 37 14 13 11 9 8 7
codeword 01 11 000 001 1010 1011 1000 1001

E

14

L

13

27

61

37

M

34

A

X

8

U

15

B

11

K

7 9

20

35

FIGURE 4.9  The result of joining 15 and 20,
and then 27 and 34.

E

14

L

13

27

61 72

37

M

34

A

X

8

U

15

B

11

K

7 9

20

35

1010

10

1

10

00 1

10

FIGURE 4.10  A Huffman tree.

Chapter 4  Greedy Algorithms  P  53

To get the total number of bits needed to compress a text (given the frequency table)
we multiply the frequency of each character by the codeword length in bits:

34*2 + 37*2 + 14*3 + 13*3 + 11*4 + 9*4 + 8*4 + 7*4 = 363.

4.3.2 Proof of Optimality
We will prove it by induction on the number of characters.

Base case: Two characters. The tree is unique; therefore, it is optimal.

Inductive hypothesis: Assume that a Huffman tree of any n - 1 characters is optimal.

Inductive step: We need to prove that a Huffman tree of n characters is optimal.

Given a set A of n characters xk with some frequencies f(xk), where k = 1,2, …, n. If we
run our greedy algorithm we will get a tree T over A. We will prove that T is optimal in
a sense that T minimizes the overall length of encoding:

∑=
=

cost() min () (),
1

T f x d x
k

n

k k

where d(xk) is a depth of xk in the tree T. Note that d(xk) is the number of bits of a code-
word associated with xk. Let us run a single step of our greedy algorithm. We choose two
characters, x1 and x2, with the lowest frequencies f(x1) and f(x2). Then we join them to
create a parent node x* with a frequency f(x*) = f(x1) + f(x2). After this step the number
of characters in consideration is decreased by one (we removed x1 and x2 and added x*).
Let us call this new set of characters by A*:

A* = A \ {x1, x2} Ç {x*}.

Since the size of A* is n - 1, we can apply the inductive hypothesis and thus build an
optimal Huffman tree over A*. We will call this tree by T*. Let us summarize the construc-
tion; we say that we build a tree T (over a set A) by running one step of the algorithm for
two characters and then using inductive hypothesis for the rest of characters (a set A*):

∑ ∑= = + +
= =

−

cost() () () () () () () () ().
1

1 1 2 2

1

2

T f x d x f x d x f x d x f x d x
k

n

k k
k

n

k k

By construction the cost of T is related to cost (T*) as follows:

cost(T) = f(x1)d(x1) + f(x2)d(x2) + cost(T*) - f(x*)d(x*).

54  P  Algorithms in Action

Here, f(x*) = f(x1) + f(x2) and d(x1) = d(x*) + 1 and d(x2) = d(x*) + 1. Substituting
these into the previous equation, we get

cost(T) = cost(T*) + f(x1) + f(x2).

It is important to observe that we can reverse the construction process; namely, we
can get an optimal tree T* from T by removing two lowest frequency nodes if they are
siblings (see 4.3.2.1 for details)

cost(T*) = cost(T) - f(x1) - f(x2)

Having this in mind we proceed to the next step. We prove optimality of T by contradic-
tion. Assume that there is another tree T1 over the set A such that cost (T1) < cost (T).
For the tree T1 we can perform the same reverse process to get another optimal tree T1*:

cost(T1*) = cost(T1) - f(x1) - f(x2).

Since cost(T1) < cost(T), it follows cost(T1*) < cost(T*). But tree T* is optimal. This is
a contradiction. ∎

4.3.2.1 What if x1 and x2 are not siblings?

Lemma. Let x and y be two characters such that f(x) and f(y) are minimal. Then there is
an optimal prefix code such that x and y are siblings.

Proof. Let T be the optimal tree and z be a sibling of x such that d(x) = d(z) ³ d(y).
Consider two cases.

Case 1. d(z) = d(y). If z and y are at the same depth, we can swap them. The cost of the
optimal tree T won’t change.

Case 2. d(z) > d(y). Since z is located deeper within the tree T than f(z) < f(y), we swap
z and y and call that tree T1 as in figure 4.11.

Next, we compute the cost of T:

cost(T) = f(x)d(x) + f(z)d(x) + f(y)d(y) + …

Chapter 4  Greedy Algorithms  P  55

XZ

T T1

Y

XY

Z

FIGURE 4.11  The result of swapping z and y.

the cost of T1

cost(T1) = f(x)d(x) + f(z)d(y) + f(y)d(x) + …

and subtract them to get

cost(T1) - cost(T) = f(z)d(y) + f(y)d(x) - f(z)d(x) - f(y)d(y) = (f(y) - f(z)) (d(x) - d(y)).

Since f(y) > f(z) and d(x) < d(y), it follows that cost(T1) £ cost(T). But T is the optimal
tree, thus cost(T1) = cost(T). ∎

4.3.3 Runtime Complexity of Building a Huffman Tree
Let us assume that a frequency table is given to us and its size is n. The algorithm works
by repeatedly connecting a pair of nodes that have the smallest frequencies. The fre-
quency of the new node is the sum of the frequencies of the connected nodes. We keep
(node, frequency) in a min-heap. In each step of the algorithm we extract two nodes with
the smallest frequencies, create a new parent node, and insert it back into the heap. The
whole process takes O(n log n) time. Observe that using an unsorted array instead of a
min-heap is less efficient. It will take us O(n) to find the minimum, and O(1) to insert a
parent node. This will lead to O(n2) time.

4.3.4 Storing a Huffman Tree
In this section we will discuss decompression—a process of translating the stream of
prefix codes back to the characters. It should be clear that in order to decompress an
encoded text file we have to have the same Huffman tree that was used to compress.
Therefore, every compressed file must have the whole Huffman tree stored in a binary
form. How to store a full tree? It turns out a single bit per node is sufficient: a 0 bit for an
internal node and a 1 bit for a leaf. We output nodes in preorder traversal. Once we hit a

56  P  Algorithms in Action

leaf we output a binary ASCII code (8 bits) for that character.
As an example, consider the tree in figure 4.12

The preorder traversal yields 0001U1X01K1B1M. The
ASCII code for character U is 85, or 01010101 in binary. Taking
into account ASCII codes for all other characters, we get the
following encoded string: 0001010101011010110000101001
011101000010101001101. The total number of bits required
to store that tree is 9 + 8*5 = 49.

The Huffman tree is always stored at the beginning of
a compressed file and is called a header. During decom-

pression we read the header and restore the Huffman tree recursively from a
preorder traversal.

4.4 Minimum Spanning Trees
Given a weighted undirected connected graph G = (V, E), a spanning tree is a subgraph
of G that contains all vertices and it is a tree. The cost of a tree is the sum of the weights
of its edges. A minimum spanning tree (MST) is a spanning tree with the minimum cost.

3

1

1
2

2

4

73 5

fe

dcb

a

3

1

1
2

2

4

73 5

fe

dcb

a

FIGURE 4.13  A graph on the left and its MST (blue edges) on the right.

It is important to note that a given graph is undirected! For directed graphs an MST
problem is defined in a different way and called an arborescence problem (which we
won’t cover in this text). Before we proceed with a greedy approach, let us discuss a
brute-force approach. We find all spanning trees (using a BFS, for example) for a given
graph and then choose the one with the smallest cost. It turns out this approach is quite
expensive. In 1889 Arthur Cayley proved that the number of spanning trees in Kn (a
complete graph on n vertices) is nn-2, and thus the brute force approach has an expo-
nential runtime complexity. We will omit a proof of Cayley’s theorem, and instead we
will discuss a polynomial time algorithm for finding an MST.

M

XU BK

FIGURE 4.12  The Huffman
tree to store.

Chapter 4  Greedy Algorithms  P  57

4.4.1 Prim’s Algorithm (1957)
For any weighted undirected graph G = (V, E), the algorithm builds a minimum span-
ning tree T one vertex at a time. Here are the algorithm steps:

1.	 Start with an arbitrary vertex and add it to an empty tree T. This vertex will be
the root of T.

2.	 Expand T by adding a vertex from V\T, having the minimum weight edge and
having exactly one end point in T.

3.	 Update distances from all vertices in T to adjacent vertices in V\T.
4.	 Continue to grow the tree until T gets all vertices, T = V.

Step 2 is a greedy choice: Among all adjacent vertices to T we pick the one that has the
minimum weight edge. Step 3 is the most important step; we update only the shorter
edges from T to V\T. The greedy choice implies that we have to use an intermediate data
structure, which will allow us to find a vertex with the shortest edge in the most effi-
cient way. This suggests use of a priority queue.

4.4.1.1 Example: Building an MST
Let us run Prim’s algorithm on the graph in figure 4.14. We will keep a binary min-heap
H as an intermediate data structure. Every element of the min-heap contains a vertex
number and a key value of the vertex, which is an edge weight from a tree T to the vertex.
In min-heap H we won’t show vertices that are not yet connected to T by an edge.

3

1

1
2

2

4

73 5

fe

dcb

a

FIGURE 4.14  The Prim algorithm illustrated on this graph.

We start at vertex a, so T = {a}. Edge weights from T to all adjacent vertices are
|ab| = 4, |ac| = 2, |ad| = 1. We update adjacent vertices in a heap H = {d1, c2, b4}, where
the subscripts denote an edge weight from a tree T to the vertex. We pick the shortest
vertex in H (which is d) and add it to T. After this step T = {a, d} and H = {c2, b4}.

58  P  Algorithms in Action

1

1
2

2

4

3 5

fe

dcb

a

FIGURE 4.15  The first iteration of Prim’s algorithm.

In the next iteration we update edges from T to all adjacent vertices b, c, e, and f. The
binary heap becomes H = {c1, b4, e5, f7}. Note that the edge (a, c) to vertex c gets replaced
by a shorter one (d, c). Now vertex c in H is the closest one to T. We remove it from the
heap H and add it to tree T. After this step T = {a, d, c} and H = {b4, e5, f7}.

3

1

1
2

2

4

73 5

fe

dcb

a

FIGURE 4.16  The second iteration of Prim’s algorithm.

Next, we update edges from T to all adjacent vertices b, e, and f. The binary heap
becomes H = {b2, e3, f7}. Since vertex b is the shortest one, we remove it from H and add
it to T. After this step T = {a, d, c, b} and H = {e5, f7}.

3

1

1
2

2

4

73 5

fe

dcb

a

FIGURE 4.17  The third iteration of Prim’s algorithm.

Chapter 4  Greedy Algorithms  P  59

Again we update edges in H, so H = {e3, f7}. Vertex e is the shortest one; we remove it
from H and add it to T. After this step T = {a, d, c, b, e} and H = { f7}.

3

1

1
2

2

4

73 5

fe

dcb

a

FIGURE 4.18  The fourth iteration of Prim’s algorithm.

Update heap H = { f3}. Vertex f is the shortest one; we remove it from H and add it
to T. After this step T = {a, d, c, b, e, f } and H = { }.

3

1

1
2

2

4

73 5

fe

dcb

a

FIGURE 4.19  The minimum spanning tree.

We have constructed the minimum spanning tree of the total weight 1 + 1 + 2 +
3 + 3 = 10.

4.4.1.2 Complexity of Prim’s Algorithm
The Prim’s algorithm complexity depends heavily on the chosen graph representation.
The following analysis assumes using an adjacency list structure for graph represen-
tation. Here is a pseudocode for the algorithm:

60  P  Algorithms in Action

1. H = minHeap(V);
2. insert(s, H);            // start at vertex s
3. while (H is not empty)
4. {
5.  u = deleteMin(H);         // O(log V)
6.  for each w in adj(u)
7.  {
8.    if(weight(w,u) < key(u))
9.       key(u) = weight(w,u)   // update edge weight
10.       decreaseKey(u, H);   // O(log V)
11.  }
12. }

We maintain a min-heap of V vertices (line 1). In each step of the algorithm we delete
a vertex (line 5) with the smallest weight (this takes O(log V) by deleteMin opera-
tion). We also update edges (lines 8–10) to all adjacent vertices (this takes O(log V) by
decreaseKey operation). We run deleteMin operation once on each vertex, so the
time required is O(V log V). We run decreaseKey operation once on each edge, so the
time required is O(E log V). The latter requires an explanation. Consider the inner loop,
lines 6–11. The number of steps in that loop depends on the degree of vertex u, which
we will denote by deg(u). Thus, the complexity of the inner loop is O(deg(u) log V). If we
add the outer loop, the total runtime complexity is given by

∑∑ + = + =
∈∈

O V O u V V O V O V O u((log) (deg() log)) (log) (log) (deg())
u Vu V

  O V V O V E O V V E V(log) (log) (log log).= + = +

Prim’s algorithm can be further improved by using Fibonacci heaps that provide the best
runtime in theory. In this case, the algorithm complexity is O(V log V + E) amortized.

4.4.1.3 Prim’s Algorithm Using an Array
This is the simplest implementation of Prim’s algorithm. We use an unsorted array
instead of a priority queue. Assuming the pseudocode from the previous section, let
us analyze the runtime complexity. Each deleteMin (line 5) will take O(V) times to
find the minimum in an unsorted array. Each decreaseKey (line 10) will take O(1) to
update the edge weight. The total runtime complexity is given by

∑∑ + = + = + = +
∈∈

O V O u V O V O u O V E O V E(() (deg())) () (deg()) () ().
u Vu V

2 2

Chapter 4  Greedy Algorithms  P  61

4.4.1.4 Correctness of Prim’s Algorithm
Given a weighted connected graph, we will prove that Prim’s algorithm finds an
MST. We will prove it by induction on the number of iterations. Let S(n) be a spanning
tree of n < V vertices, constructed so far by Prim’s algorithm, and a tree M of V verti-
ces be an MST.

Base case: n = 1. That is true, since it is just a single node and no edges.

Inductive hypothesis: Assume S(n) is a subtree of M.

Inductive step: We need to prove that S(n + 1) is also a subtree of some MST.

Let e be the edge chosen by Prim’s algorithm. We need to argue that the new tree,
S(n + 1) = S(n) + {e}, is a subtree of some minimum spanning tree M 1. If e Î M, then this
is true, since by inductive hypothesis T(n) is a subtree of M, thus S(n) ∪ {e} is also a sub-
tree of M. Consider the case e Ï M. Adding edge e to M creates a cycle in M. Traversing
the cycle, we find another edge e*Î M. So, Prim’s algorithm could have added e*, but
instead chose e. It follows, weight(e) £ weight(e*), by the greedy choice property.
Next, we create a new tree M1 = M - {e*} + {e} by removing e* from M and adding e.
The total weight of M1 is at most the weight of M. By construction, M1 contains
S(n + 1). ∎

4.4.2 Kruskal’s Algorithm (1956)
For any weighted undirected connected graph G = (V, E), the algorithm builds a min-
imum spanning tree by adding edges in a sequence of non-decreasing weights. The
algorithm is a bit different from Prim’s algorithm; it does not maintain a single tree but
instead maintains a forest (a collection of trees). Here are the algorithm steps:

1.	 Sort edges in non-decreasing order by weight.
2.	 Start with all vertices. Each vertex forms a tree.
3.	 Choose the minimum weight edge and join corresponding trees if it does not

create a cycle. Otherwise, discard that edge.
4.	 Continue to merge the trees until all vertices are connected.

The proof of correctness is quite similar to the one we used for Prim’s algorithm. We
leave it to the reader to work out the details.

What about the runtime complexity? Sorting takes O(E log E). Then we have to check
if an adding edge will cause a cycle. Using a simple graph traversal it would take O(V). We
must do this test for each edge in the worst case. This will take O(E V) for all edges. The
total runtime is O(E log E + E V). The runtime can be improved by using an advanced
data structure for the cycle detection.

62  P  Algorithms in Action

4.5 Shortest Path Problem
Consider a directed or undirected weighted connected graph G = (V, E). One of the nodes
is designated as a source s. The problem is to find the shortest directed path from s and
all other vertices in the graph. By shortest path we mean a set of edges with the mini-
mum possible sum of their weights. These shortest paths form a tree called the shortest
path tree from start node s. There are many versions (and therefore algorithms) of this
problem. For example, for graphs with equal-edge weights (or without edge weights)
breadth-first search can be used to solve the single-source shortest path problem. In
this section we consider Dijkstra’s algorithm and in chapter 6.3 we will discuss the
Bellman-Ford shortest path algorithm.

4.5.1 Dijkstra’s Algorithm (1959)
For any positively weighted connected graph G = (V, E), the algorithm finds the
shortest paths between a given source and all other vertices in V. There can be many
equal weight shortest paths between two vertices; the problem requires finding only
one. Before going further let us develop an intuition about the algorithm. Consider the
case when we know the shortest path to some vertices. Let X denote the set of such
vertices. In figure 4.20 the shortest paths are indicated by labels next to the vertices.

6
3

2

5

7

1
9

X

3

a

b

c

u

v

s y

FIGURE 4.20  The shortest path to v cannot be shorter than 9.

Note that since there are no edges with negative weights, one cannot make a path
shorter by visiting a vertex twice. The shortest path to vertex v consists of a path from
s to a followed by the edge (a, v). This path cannot be shorter if it goes from v to u and
then comes back to v, since all weights are nonnegative. By the same reason, the path
s to v cannot be shorter than 9 if it does not go through vertex a. For example, the path
s-c-u-y-v is of length 10 or longer.

Chapter 4  Greedy Algorithms  P  63

We are now ready to define precisely Dijkstra’s algorithm:

1.	 Start at vertex s and add it to an empty tree T. This vertex will be the root of T.
2.	 Expand T by adding a vertex from V\T having the minimum path length from

vertex s.
3.	 Update distances from vertex s to adjacent vertices in V\T.
4.	 Continue to grow the tree until T gets all vertices, T = V.

Step 2 is a greedy choice: Among all adjacent vertices to T we pick the one that has
the minimum path length from vertex s. Step 3 is the relaxation step: We update the
path if it’s shorter than in the previous instance. The greedy choice implies that we
have to use an intermediate data structure, which will allow us to find a vertex with
the shortest distance in the most efficient way. This suggests use of a priority queue in
which we store every node v and the upper bound d(v) on its distance from the source
s. Relaxing edge (u, v) means checking if we can decrease d(v) by using d(u) and the edge
weight len(u, v). We test whether d(u) + len(u, v) < d(v). If this is true, then we found a
shorter path to v, which now goes through vertex u. Thus, we update the distance to v
in the priority queue.

4.5.1.1 Example
Let us run Dijkstra’s algorithm on the graph in figure 4.21. We will keep a binary min-
heap H as an intermediate data structure. Every element of the min-heap contains the
vertex number and the path length from the source s to that vertex (marked by number
next to the vertices).

e

s0

∞ ∞ ∞

∞∞4

1 6

11

1

1

4
33 2

c

b

d

a

FIGURE 4.21  The Dijkstra algorithm illustrated on this graph.

We start at vertex s, so T = {s}. Edge weights from T to all adjacent vertices are
|sa| = 4, |sd| = 3, |se| = 1. We update adjacent vertices a, d, and e in the heap H = {e1, d3, a4},
where the subscripts denote a path length from s to the vertex. We pick the shortest
vertex in H and add it to T. After this step T = {s, e} and H = {d3, a4}.

64  P  Algorithms in Action

e

s0

1 3 ∞

∞44

1 6

11

1

1

4
33 2

c

b

d

a

FIGURE 4.22  The first iteration of Dijkstra’s algorithm.

Next, we update adjacent vertices a and d. The heap becomes H = {d2, a3}. The vertex
with the shortest path is d. After this step T = {s, e, d}.

e

s

1 2 ∞

∞34

1 6

11

1

1

4
33 2

c

b

d

a

FIGURE 4.23  The second iteration of Dijkstra’s algorithm.

Update adjacent vertices b and c. The heap becomes H = {a3, b6, c8}. The vertex with
the shortest path is a. After this step T = {s, e, d, a}.

e

s0

1 2 8

634

1 6

11

1

1

4
33 2

c

b

d

a

FIGURE 4.24  The third iteration of Dijkstra’s algorithm.

Update the distance to b and c. The heap is H = {b4, c6}. The vertex with the shortest
path is b. After this step T = {s, e, d, a, b}. Finally, we add c to the tree T.

Chapter 4  Greedy Algorithms  P  65

e

s

1 2 5

434

1 6

11

1

1

4
33 2

c

b

d

a

FIGURE 4.25  The tree of shortest paths from the sources.

4.5.1.2 Complexity of Dijkstra’s Algorithm
Dijkstra’s algorithm is quite similar to Prim’s algorithm. The only difference is that
Prim’s algorithm stores in a priority queue a minimum cost edge whereas Dijkstra’s
algorithm stores the path length from a source vertex to the current vertex. If follows
that the runtime of Dijkstra’s algorithm using a priority queue implemented as an array
is O(V2 + E), and using a min-heap is O(V log V + E log V). The runtime complexity can
be further improved by using Fibonacci heaps.

4.5.1.3 Correctness of Dijkstra’s Algorithm
We will be using the following notations: d(v) is the shortest s-v path, d(v) is some s-v
path that is not necessarily shortest, d(v) ³ d(v), and len(u, v) is the edge weight.

We will prove correctness of Dijkstra’s algorithm by induction on the number of itera-
tions. Let S(n) denote a shortest-path tree constructed by the algorithm after n iterations.

Base case: n = 1. That is true, since it is just a single node and no edges.
Inductive hypothesis: Assume S(n) is a shortest-path tree of n vertices.
Inductive step: We need to prove that S(n + 1) is also a shortest-path tree.

Let v be the next vertex chosen by the algorithm and let (u, v) be the chosen edge.
The shortest path to vertex u Î S(n) is already known; it is d(u). The path to vertex v is
d(v) = d(u) + len(u, v). Assume that s-u-v path is not the shortest path. So, there is another
s-v path P that is shorter. Let y be the last vertex on that path.

s

S(n)

y

v

u

FIGURE 4.26  Case a: y Î S(n).

66  P  Algorithms in Action

First, note that vertex y cannot be in S(n). If it was, then by relaxing edge (y, v) we
would compute the distance to v as d(v) = d(y) + len(y, v). On other hand, since P is
shorter, we have d(u) + len(u, v) > d(y) + len(y, v). The contradiction is d(v) = d(u) +
len(u, v) > d(y) + len(y, v) = d(v).

Suppose that y Ï S(n). Let edge (w, x) be the first edge in P that leaves S(n).

S(n)

w

v

y

x

u

s

FIGURE 4.27  Case b: y Ï S(n).

Vertex x may or may not be vertex y. Since x is on the real shortest path P to v that
goes through vertex w, we know that d(x) = d(x), which in turn is less than d(v), since
we exclude the x-y-v sub-path. Next, we note that d(v) £ d(v), since d(v) is the shortest
path. Combining these together, we have

d(x) = d(x) < d(v) £ d(v).

This gives a contradiction, since the algorithm would not pick v as the next node but
would instead pick x. ∎

REVIEW QUESTIONS

1.	 (T/F) In the interval scheduling problem, if all intervals are of equal size, a greedy
algorithm based on earliest start time will always select the maximum number
of compatible intervals.

2.	 (T/F) Any weighted undirected graph with distinct edge weights has exactly
one minimum spanning tree.

3.	 (T/F) Suppose we have a graph where each edge weight value appears at most
twice. Then, there are at most two minimum spanning trees in this graph.

4.	 (T/F) Kruskal’s algorithm can fail in the presence of negative cost edges.
5.	 (T/F) If a connected undirected graph G = (V, E) has n = |V| vertices and n + 5

edges, we can find the minimum spanning tree of G in O(n) runtime.

Chapter 4  Greedy Algorithms  P  67

6.	 (T/F) The first edge added by Kruskal’s algorithm can be the last edge added
by Prim’s algorithm.

7.	 (T/F) Suppose graph G has a unique minimum spanning tree and graph G1 is
obtained by increasing the weight of every edge in G by 1. The MST of G1 must
be different from the MST of G.

8.	 (T/F) Suppose graph G has a unique minimum spanning tree and graph G1 is
obtained by squaring the weight of every edge in G. The MST of G1 may be dif-
ferent from the MST of G.

9.	 (T/F) If path P is the shortest path from u to v and w is a node on the path, then
the part of path P from u to w is also the shortest path.

10.	 (T/F) If all edges in a connected undirected graph have distinct positive weights,
the shortest path between any two vertices is unique.

11.	 (T/F) Suppose we have calculated the shortest paths from a source to all other ver-
tices. If we modify the original graph G such that weights of all edges are doubled,
then the shortest path tree of G is also the shortest path tree of the modified graph.

12.	 (T/F) Suppose we have calculated the shortest paths from a source to all other
vertices. If we modify the original graph, G, such that weights of all edges are
increased by 2, then the shortest path tree of G is also the shortest path tree of
the modified graph.

EXERCISES

1.	 At the Perfect Programming Company, the programmers are paired in order to
ensure the highest quality of produced code. The productivity of each pair is the
speed of the slowest programmer. Assuming an even number of programmers,
devise an efficient algorithm for pairing them up so the total productivity of all
programmers is maximized.

2.	 A new startup, FastRoute, wants to route information along a path in a com-
munication network, represented as a graph. Each vertex represents a router
and each edge a wire between routers. The wires are weighted by the max-
imum bandwidth they can support. FastRoute comes to you and asks you to
develop an algorithm to find the path with maximum bandwidth from any source
s1, s2, …, sk to any destination t1, t2, …, tn. Devise an algorithm that has the same
runtime complexity as Dijkstra’s algorithm.

3.	 You are given a set S of n points, labeled 1 to n, on a line. You are also given a set
of k finite intervals I1, …, Ik, where each interval Ii, is of the form [si, ei], I £ si £ ei.
Present an efficient algorithm to find the smallest subset X Í S of points such that
each interval contains at least one point from X. Prove that your solution is optimal.

68  P  Algorithms in Action

4.	 You are given a minimum spanning tree T in a graph G = (V, E). Suppose we
remove an edge from G, creating a new graph, G1. Assuming that G1 is still con-
nected, devise a linear time algorithm to find an MST in G1.

5.	 You are given a minimum spanning tree T in a graph, G = (V, E). Suppose we
add a new edge (without introducing any new vertices) to G, creating a new
graph, G1. Devise a linear time algorithm to find an MST in G1.

6.	 Given graph G = (V, E) with positive edge weights, we know that Dijkstra’s algo-
rithm can be implemented in O((E + V) log V)) time using a binary heap. Suppose
you have been told that the input graph G is a dense graph in which E = O(V 2).
Find a way to implement Dijkstra’s algorithm in O(V 2) time.

7.	 Given a graph, G = (V, E), whose edge weights are integers in the range [0, W], where
W is a relatively small integer number, we could run Dijkstra’s algorithm to find the
shortest distances from the start vertex to all other vertices. Design a new algorithm
that will run in linear time O(V + E) and therefore outperform Dijkstra’s algorithm.

8.	 Given a directed acyclic graph, G = (V, E), with nonnegative edge weights and
the source s, devise a linear time algorithm to find the shortest distances from
s to all other vertices.

9.	 You are given a graph, G = (V, E), with nonnegative edge weights and the shortest
path distances d(s, u) from a source vertex s to all other vertices in G. However,
you are not given the shortest path tree. Devise a linear time algorithm to find
a shortest path from s to a given vertex t.

10.	 Given a graph, G = (V, E), with nonnegative edge weights and two vertices s and
t, the goal is to find the shortest path from s to t with an odd number of edges.
Devise an algorithm that has the same runtime complexity as Dijkstra’s algorithm.

11.	 Given a graph, G = (V, E), with nonnegative edge weights and the shortest path
distances d(u, v) between any pair of vertices in G, suppose we add a new edge
(without introducing any new vertices) to G, creating a new graph G1. Devise an
efficient algorithm (that outperforms Dijkstra’s algorithm in the worst case) to
update the shortest path distances d(u, v).

12.	 Given n rods of lengths L1, L2, …, Ln, respectively, the goal is to connect all the rods
to form a single rod. The length and the cost of connecting two rods are equal
to the sum of their lengths. Devise an algorithm to minimize the cost of form-
ing a single rod.

13.	 Given a sorted array of frequencies of size n, devise a linear time algorithm for
building a Huffman tree.

  69

A divide-and-conquer algorithm design paradigm solves a problem by

•	 dividing it into smaller subproblems of the same type;

•	 solving (recursively or iteratively) each subproblem; and

•	 combining solutions to subproblems to get solutions to the original problem.

This design approach exploits the fact that solutions to smaller subproblems used to solve
larger problems. All subproblems must have exactly the same structure as the original
problem and can be solved independently from each other.

Divide-and-conquer (DC) algorithms have a few advantages over other algorithmic
approaches:

1.	 Simple proofs of correctness: The DC approach closely follows the structure of an
inductive proof.

2.	 Efficiency: The DC approach can often lead to a more efficient solution. Its runtime
complexity can be expressed by recurrences, which in most cases can be solved
straightforwardly. Solving such divide-and-conquer recurrences will be a major
topic of this chapter.

3.	 Parallelism: Independence of subproblems means that they can be solved in parallel.

As an introduction we will consider two canonical examples of DC: binary search and
mergesort. Later in the chapter we will look at how to apply divide-and-conquer design
technique to a variety of problems and analyze their runtime complexities.

Divide-and-Conquer Algorithms

Chapter 5

70  P  Algorithms in Action

Binary search algorithm. The algorithm finds an item in a sorted array by comparing
the search item with the middle element; if they are unequal, half of the array (in which
the search item cannot be) is eliminated and the search continues on to the remaining
half until it is successful or that half is found to be empty. Let T(n) be the number of com-
parisons in the worst case needed to find an item in a sorted array of size n. We define
the runtime complexity T(n) by a recurrence equation:

T(n) = T(n/2) + O(1)

T(1) = 1.

This recurrence contains the base case T(1) = 1 and the inductive step T(n) = T(n/2) +
O(1), in which we reduce a problem of size n into a subproblem of size n/2. On each
recursive step we require a constant time O(1) work to (a) find the middle element in
an array and (b) compare it with the search item.

Mergesort. The algorithm sorts an array by first dividing the array into equal (or
nearly equal) subarrays and then combining them in a sorted manner. Let T(n) be the
number of comparisons in the worst case needed to sort an array of size n. We define
the runtime complexity T(n) by the following recurrence:

T(n) = 2T(n/2) + O(1) + O(n)

T(1) = 1.

In the base case n = 1, the array is sorted by definition. In the inductive step we gener-
ate two subproblems of size n/2. We also infer the constant work of splitting the array
in half and a linear time work O(n) of merging two sorted arrays.

8 3 4 1

8 3 4 1 6 5 2 7

6 5 2 7

3 8 1 4 5 6 2 7

8 3 4 1 6 5 2 7

1 3 4 8 2 5 6 7

8 3 4 1 6 5 2 7

1 2 3 4 5 6 7 8

T(n)

T(n/2)

T(n/4)

T(n/8)

O(1)

O(n)

FIGURE 5.1  Mergesort example.

Chapter 5  Divide-and-Conquer Algorithms  P  71

As we see on these two examples, divide-and-conquer algorithms follow a generic
pattern: They tackle a problem of size n by recursively solving a ³ 1 subproblems of
size n/b (where b > 1) and then combining the results in f(n) > 0 time (this also includes
complexity of dividing). Therefore, the form of divide-and-conquer recurrences for the
runtime complexity look like this:

T(n) = a T(n/b) + f(n)

T(1) = Q(1).

In binary search, we have a = 1, since we call a binary search on one half; b = 2, since
the new subproblem size is half of the original problem size; and f(n) = O(1), since find-
ing the middle and deciding which half to recurse to takes a constant time.

In mergesort, we have a = 2, since we call mergesort twice; b = 2, since the new sub-
problem size is half of the original problem size; and f(n) = O(n), since we merge two
sorted arrays in linear time.

5.1 Solving Divide-and-Conquer Recurrences
Divide-and-conquer recurrences can be depicted as trees. The way to solve recurrences
is to draw a tree of recursive calls, where each node in the tree represents a subproblem
and the value at each node represents the amount of work spent at that subproblem.
The root node represents the original problem. Every internal node has a ³ 1 children,
representing the number of subproblems.

a calls

T(n)

a calls

. . .

T(n/b)

T(n/b2)T(n/b2)

a calls

. . .

T(n/b)

T(n/b2)T(n/b2)

. . .

.

. . .

T(1)T(1)T(1)T(1)

FIGURE 5.2  Tree of recursive calls.

72  P  Algorithms in Action

The tree height is h = logb n, and it has a nh alogb= leaves. This identity can be easily
proven by the property of logs:

h n
n
b

n alog
log

log
log logb

a

a
a b= = =

a a n() .h n a alog log loga b b= =

To figure out how much work is being spent at each subproblem, we substitute the size
of the subproblem into f(n). Thus, a node for a problem size n will have a child contrib-
uting f(n/b) amount of work. Note, a recurrence T(n) = a T(n/b) + f(n) must converge,
so we require f(n/b) £ a ·f(n) for some constant a > 0.

a calls

Leaves, O(1)

f(n)

a calls

. . .

f(n/b)

f(n/b2)f(n/b2)

a calls

. . .

f(n/b)

f(n/b2)f(n/b2)

. . .

f(n)

a f(n/b)

a2 f(n/b2)

n logb
a

FIGURE 5.3  Tree represents the total work.

The work contributed by each leaf is constant. Once we have our tree (see
figure 5.3), the total runtime T(n) can be calculated by summing up the work con-
tributed by all nodes. We can do this by summing up the work at each level of the tree
and then summing up the levels of the tree. As an example, let us consider a merge-
sort recursion tree:

The work at each level is n, summing up the levels lead to T(n) = Q(n log n) running
time for mergesort.

Chapter 5  Divide-and-Conquer Algorithms  P  73

n

n/2

n/4n/4

n/2

n/4n/4

. . .

.

1111

n

n

n

2h = n

FIGURE 5.4  Mergesort recursion tree.

5.1.1 The Master Theorem
The total work depicted in figure 5.3 is given by (where the tree height is
h = logb n)

∑= ⋅ +










=

−

T n T n a f n
b

() (1)
a

k

h
k

k
log

0

1

b

and depends on three cases that may happen. Either the work done at the leaves domi-
nates, or the work done at internal nodes dominates, or the work at all levels have about
the same cost. This leads to the master theorem (here, c = logb a):

Case 1: (leaves dominate) If f(n) = O(nc-ε), then T(n) = Q(nc) for some e > 0.

Case 2: (all nodes) If f(n) = Q (nc logk n), k ³ 0, then T(n) = Q(nc logk+1 n).

Case 3: (internal nodes dominate) If f(n) = W(nc+ε), then T(n) = Q(f(n)) for
some e > 0.

Let us prove Case 1: for some constant e > 0

= =Θe−f n O n T n nif () (), then () ()
a alog logb b .

74  P  Algorithms in Action

Proof. We start with simplifying the finite sum using the definition of the big-O notation:

∑ ∑








≤











e

=

−

=

− −

a f n
b

c a n
b

,
k

h
k

k
k

h
k

k

a

0

1

0

1 logb

where c > 0 is some constant. Next, by simple algebra we get

c a n
b

c n a
b

b .
k

h
k

k

a
a

k

h

a

k
k

0

1 log

log

0

1

log

b

b

b∑ ∑








 =











e
e e

=

− −

−

=

−

Now using the properties of logs, we arrive at

∑ ∑








≤ = = =e e e e e e

=

−
−

=

−
− −a f n

b
c n b c n b c n n nO().

k

h
k

k
a

k

h
k a n a a

0

1
log

0

1

1

log log

1

log logb b b b b

Therefore, we have showed

∑=Θ +








=Θ + =Θ

=

−

T n n a f n
b

n n n() () () O() ().
a

k

h
k

k
a a alog

0

1
log log logb b b b

The proof for the other two cases is left to the reader as an exercise.

5.1.2 Examples of Recurrences

Example 1. Solve the following recurrence by the master theorem:

T(n) = 4 T(n/8) + n2.

First, we observe that a = 4 and b = 8; next we compute c = logb a = log8 4 = 2/3. It fol-
lows that this is Case 3, since f(n) = n2 = W(n2/3). Therefore, T(n) = Q(n2).

Example 2. Solve the following recurrence by the master theorem:

T n T n n
n

() 2
2 log

.=








+

Chapter 5  Divide-and-Conquer Algorithms  P  75

We start with computing c = logb a = log2 2 = 1. Next, we observe that this is not
Case 3, f(n) ¹ W(n1+ε). We can also eliminate Case 2, f(n) ¹ Q(n), since the parameter k
must be nonnegative. Finally, we claim that this does not fall into Case 1, f(n) ¹ O(n1-ε).
We will prove it by contradiction. Assume that

f n n
n

O n()
log

().1= = e−

By the definition of Big-O notation,

n
n

c n
log

1≤ e−

which is the same as

n c nlog£e

and (after applying log to both sides)

n c nlog log log log .e ≤ +

Clearly, this inequality does not hold when →∞n . It follows that the master theorem
is not applicable to the original recurrence.

Example 3. Solve the following recurrence using the tree method:

T n T n n
n

() 2
2 log

.=








+

We already know that the total work (as it is depicted in figure 5.3) is given by

∑ ∑()= Θ +








=Θ +











=

−

=

−

T n n a f n
b

n f n
() () 2

2

a

k

h
k

k
k

log n
k

k
log

0

1

0

() 1

b

76  P  Algorithms in Action

where

f n n
n2

/2

log(/2)
.

k

k

k









=

It follows,

∑ ∑=Θ + =Θ +
−=

−

=

−

T n n n
n

n n
n k

() () 2
/2

log(/2)
()

1

log()
.

k

log n
k

k

k
k

n

0

() 1

0

log() 1

Next, we note that the finite sum can be resummed from log(n) - 1 back to 0. We get

∑ ∑=Θ +
−
=Θ + =Θ +

=

−

=

T n n n
n k

n n n n H() ()
1

log()
()

1

j
()

k

n

j

n

n
0

log() 1

1

log()

log

where Hk are the Harmonic numbers denoted by

H
j

n1
(log).n

j

n

1

∑= =Θ
=

Hence,

=Θ + =Θ + Θ = ΘT n n n H n n n n n() () () (log log) (log log).nlog

5.2 Integer Multiplication
Given two n-digit integers a and b, our goal is to design an algorithm to compute a prod-
uct a × b. The brute force approach is to multiply two numbers digit by digit. Assuming
that digit multiplication and addition are done in constant time, this leads to Q(n2) run-
time complexity of the brute force approach.

Let us design a divide-and-conquer algorithm. We split each number in half,
a = x1 × 10n/2 + x0, b = y1 × 10n/2 + y0, and then multiply those four pieces:

a × b = (x1 × 10n/2 + x0) × (y1 × 10n/2 + y0) = x1 × y1 × 10n + (x0 × y1 + x1 × y0) × 10n/2 + x0 × y0.

Therefore, we reduced the problem of multiplication of two n-digit integers to multi-
plication of four n/2-digit integers. Additionally, we gained three additions, each takes

Chapter 5  Divide-and-Conquer Algorithms  P  77

Q(n) and two multiplications by a base, and each takes a constant time. Let T(n) be a
runtime complexity of multiplication of two n-digit integers, then

T(n) = 4 T(n/2) + Q(n).

It follows, by the master theorem (Case 1), T(n) = Q(n2), which is not an improvement
to the brute force approach. In 1960 A.A. Karatsuba observed that n-digit multiplica-
tion can be done with only three n/2-digit multiplications at the cost of increasing the
number of additions:

a × b = x1 × y1 × 10n + ((x0 + x1) × (y0 + y1) - x0 × y0 - x1 × y1) × 10n/2 + x0 × y0.

It looks that we have increased the number of multiplications from four to five, but that
is not so, since we will compute x0 × y0 and x1 × y1 only once and then reuse them. The
recurrence for the time complexity T(n) is given now by

T(n) = 3 T(n/2) + Q(n).

Using the master theorem (Case 1) we find, =Θ =ΘT n n n() () ()log3 1.58 .
The eternal question is, “Can we do better?” A few years later A. Toom and S. Cook

independently proposed the generalizations of the Karatsuba method by splitting an
n-digit integer into three parts of size n/3:

a × b = (x2 × 102n/3 + x1 × 10n/3 + x0) × (y2 × 102n/3 + y1 × 10n/3 + y0).

However, this requires nine multiplications. To get an improvement to Karatsuba’s algo-
rithm, the number multiplication must be reduced to five. It turns out it is possible to
define five new variables zk to express xk and yk in terms of zk as follows:

x0 × y0 = z0

12 (x1 × y0 + x0 × y1) = 8z1 - z2 - 8z3 + z4

24 (x2 × y0 + x1 × y1 + x0 × y2) = -30z0 + 16z1 - z2 + 16z3 - z4

12 (x2 × y1 + x1 × y2) = -2z1 + z2 + 2z3 - z4

24 x2 × y2 = 6z0 - 4z1 + z2 - 4z3 + z4.

78  P  Algorithms in Action

The recurrence for the time complexity T(n) now is

T(n) = 5 T(n/3) + Q(n)

and its solution is =Θ =ΘT n n n() () ()
log 5 1.473 . A. Toom and S. Cook have still further gen-

eralized this idea by proposing k-way splitting, and they were able to reduce the number
of multiplications from k2 to 2k - 1. This leads to the following recurrence

T(n) = (2k - 1) T(n/k) + Q(n)

and its solution, =Θ −T n n() ()
klog (2 1)k . It should be noted that by increasing k we get faster

and faster algorithms; however, we will never get a linear performance. Also, we have
to mention that the cost of the extra additions is growing very rapidly.

5.3 Matrix Multiplication
Given two n ́ n matrices, A and B, our goal is to design an algorithm to compute a prod-
uct C = A × B. The standard matrix multiplication algorithm is based on the mathematical
definition of matrix multiplication in which rows of one matrix are multiplied by the
column of another matrix:
























=

+ +

+ +













a a

a a

b b

b b

a b a b a b a b

a b a b a b a b
11 12

21 22

11 12

21 22

11 11 12 21 11 12 12 22

21 11 22 21 21 12 22 22

For n ´ n matrices the runtime is Q(n3). In 1969 V. Strassen, inspired by Karatsuba’s
method, designed a divide-and-conquer algorithm for matrix multiplication. The idea
is to divide the original matrix in four matrices, each of which of size n/2 ´ n/2, and
then multiply them using the definition of block-matrix multiplication. Let us assume
that n is a power of two and write matrices A and B as block matrices:

A
A A

A A
B

B B

B B
C AB

C C

C C
, , .11 12

21 22

11 12

21 22

11 12

21 22

=











=











= =













The usual matrix multiplication works by substituting the blocks into the formula. Each
of the four block entries of C are computed independently from one another; thus, we
may come up with the following recurrence for the runtime complexity:

T(n) = 8 T(n/2) + Q(n2).

Chapter 5  Divide-and-Conquer Algorithms  P  79

On each step we compute four block matrices, Ci j, each requiring two recursive calls
to matrices of size n/2 ´ n/2. Additionally, the algorithm requires four matrix addi-
tions, each taking Q(n2). Using the master theorem (Case 1) we find T(n) = Q(n3). This
is not an improvement to the standard matrix multiplication. V. Strassen has observed
that the number of block matrix multiplications can be reduced to seven by defining
new matrices:

S1 = (A12 - A22) (B21 + B22)

S2 = (A11 + A22) (B11 + B22)

S3 = (A11 - A21) (B11 + B12)

S4 = (A11 + A12) B22

S5 = A11 (B12 - B22)

S6 = A22 (B21 - B11)

S7 = (A21 + A22) B11

so that

A A

A A

B B

B B

S S S S S S

S S S S S S
11 12

21 22

11 12

21 22

1 2 4 6 4 5

6 7 2 3 5 7
























=

+ − + −

+ − + −












.

The recurrence for the time complexity T(n) now is

T(n) = 7 T(n/2) + Q(n2)

and its solution is =Θ =ΘT n n n() () ()log7 2.808 . We got a faster algorithm at the cost of
increasing the number of additions, Strassen’s algorithm requires 18 matrix additions.
The algorithm also requires significantly more memory compared to the standard
algorithm.

There are more recent algorithms that are theoretically faster than Strassen:

1969, Strassen O(n 2.808)
1978, Pan O(n 2.796)

80  P  Algorithms in Action

1979, Bini O(n 2.78)
1981, Schonhage O(n 2.548)
1981, Pan O(n 2.522)
1982, Romani O(n 2.517)
1982, Coppersmith and Winograd O(n 2.496)
1986, Strassen O(n 2.479)
1989, Coppersmith and Winograd O(n 2.376)
2010, Stothers O(n 2.374)
2011, Williams O(n 2.3728642)
2014, Le Gall O(n 2.3728639)

However, the constant factor hidden in the upper bounds is so large that these algo-
rithms are only valuable for matrices of enormous sizes. Even Strassen’s algorithm is
not beneficial on current architectures for matrix sizes below 500.

5.4 The Maximum Subsequence Sum Problem
Given an array A of n numbers, design a divide-and-conquer algorithm that finds a sub-
array such that A[i] + A[i + 1] + … + A[j] is the maximum. For example, A = {3, -4, 5,
-2, -2, 6, -3, 5, -3, 2}. The maximum sum subarray is {5, -2, -2, 6, -3, 5}.

The problem is easy when all the numbers are positive (then the entire array is the
maximum) or negative (then we need to find the maximum number in the array). The
problem becomes interesting when the array contains positive and negative num-
bers. Let’s start with the brute force algorithm: we generate all subarrays (there are
Q(n2) of them) and then find the one with the maximum sum. This is a cubic time Q(n3)
algorithm.

The divide-and-conquer approach involves splitting the array in half by the median
index and making recursive calls on each half. This will find the maximum subarray in
the left half and the maximum subarray in the right half. But the solution to the prob-
lem may not necessarily be included entirely within the left or right subarrays. It may
span both subarrays. Therefore, in the combining step span(n) we need to search for
the maximum subarray that begins in the left half of the array and ends in the right
half. An overall maximum is then returned as the maximum of the three (left, right,
and span). Let T(n) be a runtime complexity of finding the subarray of maximum sum.
Then,

T(n) = 2 T(n/2) + span(n).

Chapter 5  Divide-and-Conquer Algorithms  P  81

The combine step span(n) requires a linear search from the middle index of A to the left
and to the right. Therefore,

T(n) = 2 T(n/2) + Q(n).

Solving the above recurrence by the master theorem yields T(n) = Q(n log n).
Let us briefly explain the implementation of span(n) in linear time based on the above

example. If the solution spans the center, then it must include the middle elements -2
and the next to it 6:

{3, -4, 5, -2, -2, 6, -3, 5, -3, 2}.

Next, we start with -2 and go left computing partial sums:

{0, -3, 1, -4, -2, 6, -3, 5, -3, 2}.

Then we compute partial sums to the right starting with 6:

{0, -3, 1, -4, -2, 6, 3, 8, 5, 7}.

We choose the max value from each side: 1 + 8 = 9

{0, -3, 1, -4, -2, 6, 3, 8, 5, 7}.

It follows that the maximum sum subarray is {5, -2, -2, 6, -3, 5}.
In conclusion, we have to mention that there are faster algorithms for solving this

problem; however, they do not use a divide-and-conquer technique.

5.5 Computing Fibonacci Numbers
The Fibonacci numbers are defined by the recurrence relation Fn = Fn-1 + Fn-2, n ³ 2
with the base values F0 = 0 and F1 = 1. The formal definition of this sequence directly
maps to a divide-and-conquer algorithm to compute the n-th Fibonacci number Fn. Here
is a pseudocode for the algorithm:

int fib(int n) {
  if (n == 0 || n == 1) return 1
  else
  return fib(n-1) + fib(n-2)
}

82  P  Algorithms in Action

Its runtime complexity T(n) can be expressed as

T(n) = T(n - 1) + T(n - 2) + Q(1)

assuming that two Fibonacci numbers can be added in constant time. The solution to
the recurrence is exponential in n; we roughly double the work on each recursive call.
For large n the addition of Fibonacci numbers Fn takes a linear time in the number of
bits. The reason is that Fn = Q(jn), where j is a golden ratio, and

log(Fn) = log(Q(jn)) = Q(n log(j)) = Q(n).

Therefore, the algorithm runtime complexity with non-constant time arithmetic is
given by

T(n) = T(n - 1) + T(n - 2) + Q(n).

Its solution is also exponential in n.
For this problem, divide and conquer ends up having exponential runtime com-

plexity just because the recurrence tree for T(n) has a height Q(n) and an exponential
number of nodes.

f(6)

f(4) f(4)
f(3)

f(3)

f(2)
f(2)

f(2)

f(2) f(3)

f(0)

f(0)

f(0)
f(0)f(1)

f(1)

f(1)

f(1) f(1)
f(2)

f(0) f(1)

f(1)

f(1)

f(5)

FIGURE 5.5  A recurrence tree for F6.

However, it turns out that only some of these nodes are distinct, the rest are repeats.
Figure 5.5 demonstrates redundant computations for F6; we recompute the same
Fibonacci numbers over and over again.

One may wonder why a divide-and-conquer approach was so efficient for merge-
sort. The reason is that a recurrence tree for mergesort (see figure 5.4) has a height
Q(log n) and therefore a polynomial number of nodes. As the result of this, we shall use
a divide-and-conquer technique only when subproblems are independent. In case of
overlapping subproblems, the better time complexity may be obtained by a dynamic
programming approach.

Chapter 5  Divide-and-Conquer Algorithms  P  83

REVIEW QUESTIONS

1.	 (T/F) For a divide-and-conquer algorithm, it is possible that the dividing step
takes asymptotically longer time than the combining step.

2.	 (T/F) A divide-and-conquer algorithm acting on an input size of n can have a
lower bound less than Q(n log n).

3.	 (T/F) There exist some problems that can be efficiently solved by a divide-and-
conquer algorithm but cannot be solved by a greedy algorithm.

4.	 (T/F) It is possible for a divide-and-conquer algorithm to have an
exponential runtime.

5.	 (T/F) A divide-and-conquer algorithm is always recursive.
6.	 (T/F) The master theorem can be applied to the following recurrence:

T(n) = 1.2 T(n/2) + n.
7.	 (T/F) The master theorem can be applied to the following recurrence:

T(n) = 9 T(n/3) - n 2 log n + n.
8.	 (T/F) Karatsuba’s algorithm reduces the number of multiplications from four

to three.
9.	 (T/F) The runtime complexity of mergesort can be asymptotically

improved by recursively splitting an array into three parts (rather than into
two parts).

10.	 (T/F) Two n ́ n matrices of integers are multiplied in Q(n2) time.
11.	 (Fill in the blank) Let A, B be two 2 ´ 2 matrices that are multiplied using the

standard multiplication method and Strassen’s method.
a.	 Number of multiplications in the standard method:
b.	 Number of additions in the standard method:
c.	 Number of multiplications using Strassen’s method:
d.	 Number of additions using Strassen’s method:

12.	 (Fill in the blank) The space complexity of Strassen’s algorithm is:  .

EXERCISES

1.	 Solve

T(n) = 3 T(n/4) + n

	 by the recurrence tree method.

84  P  Algorithms in Action

2.	 Solve

T(n) = T(3n/4) + T(n/4) + n

	 by the recurrence tree method.
3.	 Solve the following recurrences by the master theorem:

T n T n n n() 3
2

log=








+

T n T n n() 8
6

log=








+

T n T n n
n

() 16
4 log

=








+

T n T n n() 7
2

3=








+

T n T n
() 10

2
2n=









+

4.	 Prove Case 2 of the Master theorem.
5.	 Prove Case 3 of the Master theorem.
6.	 There are two sorted arrays, each of size n. Design a divide-and-conquer algo-

rithm to find the median of the array obtained after merging the 2 arrays. Discuss
its worst-case runtime complexity.

7.	 You are given an unsorted array of all integers in the range [0, …, 2k - 1] except
for one integer, which is denoted by M. Describe a divide-and-conquer algorithm
to find the missing number M and discuss its worst-case runtime complexity in
terms of n = 2k.

8.	 We know that binary search on a sorted array of size n takes Q(log n) time. Design
a similar divide-and-conquer algorithm for searching in a sorted singly linked
list of size n. Discuss its worst-case runtime complexity.

Chapter 5  Divide-and-Conquer Algorithms  P  85

9.	 We know that mergesort takes Q(n log n) time to sort an array of items. Design a
divide-and-conquer mergesort algorithm for sorting a singly linked list. Discuss
its worst-case runtime complexity.

10.	 Given a sorted array of n integers that has been rotated an unknown number of
times, give an Q(log n) divide-and-conquer algorithm that finds an element in
the resulting array. Note, after a single rotation, the array is not sorted anymore,
so we cannot use the binary search. An example of a rotations sorted array is
A = [1, 3, 5, 7, 11]; after first rotation it is A = [3, 5, 7,11, 1], and after second rota-
tion it is A = [5, 7, 11, 1, 3]. You may assume that that array has no duplicates.

11.	 Consider a two-dimensional array A of size n ́ n filled with integers. In the array
each row is sorted in ascending order and each column is also sorted in ascend-
ing order. Our goal is to determine if a given value x exists in the array. Design
a divide-and-conquer algorithm to solve this problem and state the runtime of
your algorithm. Don’t just call binary search on each row or column. Your algo-
rithm should take strictly less than O(n2) time to run.

12.	 Improve your divide-and-conquer algorithm from Exercise 10 to run in Q(n) time.
13.	 A polygon is called convex if all its internal angles are less than 180°. A convex

polygon is represented as an array V with n vertices of the polygon, where each
vertex is in the form of a coordinate pair (x, y). We are told that V[1] is the vertex
with the least x coordinate and that the vertices V[1],V [2], …, V[n] are ordered
counter-clockwise. Design a divide-and-conquer algorithm to find the vertex
with the largest x-coordinate. Discuss its worst-case runtime complexity.

  87

I n this chapter we will learn another powerful algorithm design technique that is used
to solve a broad variety of problems by breaking them down into simpler subproblems

and storing their solutions for further computation. We usually apply dynamic program-
ming to optimization problems.

The technique of dynamic programming (usually referred to as DP) was originally intro-
duced by Richard Bellman in the 1950s. At that time there was no programming as we
understand it today; the word computer meant a person performing mathematical calcula-
tions. In that time early computers were mostly women who used painstaking calculations
on paper and later on punch cards. The Turing machine that describes a model for algorithms
and computational problem solving was widely adapted only in the 1960s. Originally R.
Bellman referred the word programming to the use of the method to find an optimal pro-
gram, in the sense of planning or scheduling. The word dynamic was chosen by R. Bellman
to capture the multistage solution to a problem.

6.1 Introduction
There are two key attributes that a problem must have in order for dynamic programming
to be applicable:

•	 Optimal substructure: The solution can be obtained by the combination of optimal solu-
tions to its subproblems. Such optimal substructures are usually described recursively.

•	 Overlapping subproblems: The space of subproblems must be small, so an algorithm
solving the problem should solve the same subproblems over and over again.

Dynamic Programming

Chapter 6

88  P  Algorithms in Action

Reading this you may be wondering how dynamic programming differs from a greedy
approach. The major difference is that greedy algorithms first make a greedy choice
and then solve the resulting subproblems. Dynamic programming is similar to brute
force and will examine all subproblems. A DP algorithm can be described as a multi-
stage decision process, and therefore we can construct a recurrence tree to enumerate
all possible subproblems. During the DP algorithm execution, we have to consider all
available choices at any given node. In the greedy model we use a greedy heuristic to
pick just one choice.

Comparing DP to a divide-and-conquer algorithm, we say that dynamic programming
usually enumerates all possible dividing strategies and therefore extends divide and
conquer by reusing subproblems solutions. Divide-and-conquer partitions the problem
into disjointed subproblems, though dynamic programming applies when the subprob-
lems overlap. We may view a divide-and-conquer algorithm as a DP with no subproblem
overlapping. The efficiency of DP directly depends on the amount of subproblem over-
lapping; the more overlapping we have, the more efficient DP algorithm we get.

A dynamic programming algorithm is implemented either recursively (memoization)
or iteratively (tabulation) by placing all intermediate results into a table. Let us explain
the differences between the two techniques on the example of Fibonacci numbers Fn.
In Chapter 5.5 we demonstrated a divide-and-conquer approach to computing the
Fibonacci numbers. We have shown that divide and conquer ends up having exponen-
tial time complexity, mainly due to the exponential number of overlapping subproblems.
One way to avoid redundant computation is memoization. Memoization is a recursive
optimization technique to speed up recursive programs by storing the intermediate
results in a table. Here is a pseudocode using memoization:

int table [50];  //initialize to zero
table[0] = table[1] = 1;
int fib(int n) {
  if (table[n] == 0)
      table[n] = fib(n-1) + fib(n-2);
  return table[n];
}

The runtime complexity T(n) of this implementation is given by

T(n) = T(n - 1) + O(n).

Note that the complexity of fib(n-2) is constant since that Fibonacci number will be
computed during a call to fib(n-1). The solution to this recurrence is Q(n2). This example

Chapter 6  Dynamic Programming  P  89

demonstrates that reusing previously computed (and stored) values leads to a more
efficient algorithm. Next, we consider tabulation: a non-recursive bottom-up optimi-
zation technique. Here is a pseudocode using tabulation:

int table [50];
table[0] = table[1] = 1;
int fib(int n) {
  for(int k = 2; k < n; k++)
    table[k] = table[k-1] + table[k-2];
}

It has the same runtime complexity as memoization. Generally, dynamic program-
ming techniques can be implemented either using tabulation (a non-recursive bottom-up
approach) or memoization (a recursive top-down approach). Both results in the same solu-
tion, though they may differ by a constant factor in runtime and memory use. For all DP
algorithms in this chapter we will always use tabulation as the implementation approach.

In conclusion of the introduction we note that the example of Fibonacci numbers
demonstrates that reusing previously computed (and stored) subproblems may lead
to a more efficient algorithm. The important aspect is that the total number of unique
subproblems to be solved must be polynomial.

6.2 Knapsack Problem
You are given a set of n unique items, with weights w1, …, wn and values v1, …, vn, where
the weights and values are all integers. The problem is to find a subset of the most valu-
able items such that their total weight does not exceed W. We assume that all items are
unbreakable (thus, 0-1 problem).

Let’s start with the brute force algorithm: Consider all possible subsets of n items
and then find the one with the maximum value. The worst-case runtime complexity of
this approach is exponential, since the total number of subsets is O(2n); there are two
choices for each item: Either we pick that item, or we don’t.

Next, we turn to dynamic programming by storing all distinct subproblems (sub-
sets) in a table. First, we formalize the problem by introducing an indicator variable xk
for each item k = 1, 2, …, n:

=







1, if item is selected

0, otherwise
.x k

k

90  P  Algorithms in Action

Then, we write the 0-1 Knapsack problem as follows

∑

∑ ≤

=

=

max
1

1

v x

w x W

k

n

k k

k

n

k k

This formalization helps us to visualize decisions we make, which in turn will help us
to define subproblems. Figure 6.1 shows that we start with n items and an empty knap-
sack of capacity W. The first decision we make is to either select the nth item (the left
child in the tree) or not select it (the right child in the tree)

[1..n–1], W – wn

[1..n – 2], W[1..n – 2], W – wn – 1[1..n – 2], W – wn[1..n – 2], W – wn – wn – 1

[1..n – 1], W

[1..n], W
xn = 1

xn – 1 = 1 xn – 1 = 1xn – 1 = 0 xn–1 = 0

xn = 0 Level n

Level n – 1

Level n – 2

FIGURE 6.1  Decision tree.

If an item is selected, the knapsack capacity gets smaller; also, the set of available
items shrinks by one (remember, all items are unique). Each node in this tree represents
a subproblem, call it OPT[k, w], that corresponds to the maximum value achievable
using a knapsack of capacity 0 £ w £ W and items 1, 2, …, k, where 1 £ k £ n. In order to
compute OPT[k, w] we need to express it in terms of the smaller subproblems. Again,
this tree suggests two cases:

1.	 xk = 1, k-th item is included

	 OPT[k, w] = vk + OPT[k - 1, w - wk]

2.	 xk = 0, k-th item is not included

	 OPT[k, w] = OPT[k - 1, w]

We do not know if the k-th item is actually included or not into the optimal solution;
therefore, we have to try both possibilities and then choose the maximum:

= + − − −k w v k w w k wOPT[,] max(OPT[1,],OPT[1,]).k k

Chapter 6  Dynamic Programming  P  91

The optimal solution we seek is OPT[n, W]. This recursive definition must be termi-
nated by base cases:

OPT[k, w] = 0, if k = 0 or w = 0
OPT[k, w] = OPT[k - 1, w], if wk > w.

The first base case represents a situation when the knapsack has zero capacity or there
are no items to choose from. The second base case occurs when the item to choose is
too big for the knapsack (remember, items are not breakable). The algorithm then con-
sists of filling out a two-dimensional table. We fill out a table in the bottom-up manner,
from smaller size subproblems to larger ones.

Let us trace the algorithm on the following example: n = 4, W = 5 and (wk, vk) =
{(2, 3), (3, 4), (5, 5), (5,6)}. Let OPT[k, w] be a table (see table 6.1) where each row rep-
resents available items k = 0, 1, 2, 3, 4, and each column represents the knapsack
capacities in the weight units.

TABLE 6.1  OPT[k, w] table filled with initial conditions

0 1 2 3 4 5

0 0 0 0 0 0 0

1 0
12 0
123 0
1234 0

The recursive definition of OPT[k, w] infers that to enter a value at a given (k, w) index;
we have to know table entries at (k - 1, w) and (k - 1, w - wk). This suggests filling up
the table from top to bottom and from left to right.

Table 6.2 demonstrates the case when only the first item (w1, v1) = (2, 3) is avail-
able. To enter, for example, OPT[1, 2], we need to lookup OPT[0, 2] (the first item is not
chosen) and OPT[0, 0] (the first item is chosen). Thus, OPT[1, 2] = max(3 + 0, 0) = 3.

TABLE 6.2  OPT[k, w] for the first item (w1, v1)

0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3
12 0
123 0
1234 0

92  P  Algorithms in Action

Table 6.3 demonstrates the case when two items, (w1, v1) = (2, 3) and (w2, v2) =
(3, 4), are available. In order to calculate, for example, OPT[2, 5], we need to lookup
OPT[1, 5] and OPT[1, 2]. Thus, OPT[2, 5] = max(4 + 3, 3) = 7.

TABLE 6.3  OPT[k, w] for the first two items

0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3
12 0 0 3 4 4 7
123 0
1234 0

The final OPT[k, w] is shown in table 6.4. The optimal solution is OPT[4, 5] = 7, that
means that we found a subset of items with the maximum value 7.

TABLE 6.4  The final OPT[k, w] table

0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3
12 0 0 3 4 4 7
123 0 0 3 4 5 7
1234 0 0 3 4 5 7

Here is a pseudocode. We fill a two-dimensional table with n + 1 rows and
W + 1 columns:

int knapsack(int W, int w[], int v[], int n) {
  int OPT [n+1][W+1];
  for (k = 0; k <= n; k++) {
    for (j = 0; j <= W; j++) {
      if (k==0 || j==0) OPT [k][j] = 0;
      if (w[k] > j) OPT [k][j] = OPT [k-1][j];
      else
       OPT [k][j] = max(v[k] + OPT [k-1][j − w[k-1]], OPT [k-1][j]);
    }
   }
   return Opt[n][W];
  }

Chapter 6  Dynamic Programming  P  93

Each table entry takes constant time to fill, since the work we do involves two table
lookups and one comparison. The overall running time is O(n W).

Note that the OPT[k, w] table does not show the optimal items, but only the maxi-
mum value. We can trace back in the table (see table 6.5) to find which items give us
that value. Starting from OPT[n, W], we check if OPT[n, W] = OPT[n - 1, W]. If they are
equal, it means the nth item was not chosen, then go to OPT[n - 1, W]. If they are not
equal, return the nth item and go to OPT[n - 1, W - wn]. Continue until you reach one
of the base cases.

Table 6.5 illustrates that by tracing back we find the optimal solution consisting of
two items (w1, v1) = (2, 3) and (w2, v2) = (3, 4).

TABLE 6.5  Tracing OPT[k, w]

0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3
12 0 0 3 4 4 7
123 0 0 3 4 5 7
1234 0 0 3 4 5 7

6.2.1 Pseudo-Polynomial Running Time
The solution to the knapsack problem is not polynomial in the input size, but pseudo-
polynomial. This section explains the subtle difference between the two.

Let us compute the total input size of the knapsack problem:

int knapsack(int W, int w[], int v[], int n).

An array of weights int w[] will take O(log w1) + … + O(log wn) bits. Assuming that
each item does not exceed the knapsack capacity W, this simplifies to O(n log W). An
array of values int v[] will take O(log v1) + … + O(log vn) = O(n log V) bits, where
V = max(v1, …, vn). Thus, the total input size is

O(log W + n log W + n log V + log n) = O(n log (W V))

bits. Now compare the input size with the running time O(n W). Is O(n × W) polynomial
in the input size O(n × log W)? It is polynomial in n, but it is not polynomial in W. Let
k = log W; then the input size is O(n × k) and the running time is O(n × 2k). This is an

94  P  Algorithms in Action

exponential time algorithm! Indeed, if we increase the knapsack capacity by 2, so
k´ = 2 × k, the running time O(n × 2k´) = O(n × 22k) will increase quadratically.

Definition. A numeric algorithm runs in pseudo-polynomial time if its running
time is polynomial in the numeric value of the input but is exponential in the input size.

We will see in Chapter 9 that it is not known if the knapsack problem can be solved
in polynomial time. It is also not proven that it cannot be solved in polynomial time.

6.3 Static Optimal Binary Search Tree
In this section we will solve the optimization problem of finding the binary search
tree that minimizes the total search time, given a set of keys and probabilities of look-
ing up each key. The tree cannot be modified (no insertions and deletions) after it has
been constructed.

We are given a sequence k1 < k2 < … < kn of n keys, which are to be stored in a binary
search tree. We are also given a search probability pi for each key ki. The search cost
for key ki is defined by depth(ki), where we assume that the root depth is 1 (for conve-
nience of computations). We need to build a binary search tree T from the keys with
the minimum total search cost:

∑= ⋅
=

Cost T p depth k() ()i T i
i

n

1 .

Example. Consider 5 keys k1 < k2 < k3 < k4 < k5 with the following search probabilities:
p1 = 0.25, p2 = 0.2, p3 = 0.1, p4 = 0.15, and p5 = 0.3. There are many different binary
search trees where the given keys can be stored. Here is one possibility (a balanced
tree) with the total cost 2.2:

Cost = (0.25 ́ 2) + (0.2 ́ 1) + (0.1 ́ 3) + (0.15 ́ 2) + (0.3 ́ 3) = 2.2.

1
2
3
4
5

2
1
3
2
3

0.5
0.2
0.3
0.3
0.9

ki Depth (ki) pi • depth (ki)

k5k3

k4

k2

k1

FIGURE 6.2  A balanced tree.

Chapter 6  Dynamic Programming  P  95

There is another possibility—a greedy tree. The greedy approach inserts the most
frequent key first.

1
2
3
4
5

2
3
4
4
1

0.5
0.6
0.4
0.6
0.3

ki Depth (ki) pi • depth (ki)

k4k3

k2

k1

k5

FIGURE 6.3  A greedy tree.

The total cost of the greedy tree is 2.4. Finally is an optimal tree of the cost of 2.15.

1
2
3
4
5

2
1
4
3
2

0.5
0.2
0.4
0.45
0.6

ki Depth (ki) pi • depth (ki)

k5

k4

k3

k2

k1

FIGURE 6.4  An optimal tree.

This example demonstrates that an optimal BST may not have the smallest height
nor have the highest probability key at the root. Also, an optimal BST is different from
the Huffman tree (chapter 4.3), since the keys are not restricted to be leaves only. This
suggests a brute force approach when we consider all possible binary trees and then
choose the optimal. The only problem is that there are exponentially many binary trees
(they are counted in the Catalan numbers1). Fortunately, by using dynamic program-
ming, we can solve the problem efficiently.

The idea behind the DP approach is that in order to find an optimal solution for all
keys k1, …, kn, we must be able to find an optimal solution for any subset ki, …, kj. Let
OPT[i, j] be the total search cost for the optimal tree T on ki, …, kj keys.

∑= ⋅
=

i j p depth kOPT[,] ()
s i

j

s T s

1	 “Catalan numbers,” Wikipedia, https://en.wikipedia.org/wiki/Catalan_number

96  P  Algorithms in Action

For this to work, we need to express OPT[i, j] in terms of smaller subproblems. Suppose
the root of T on ki, …, kj keys is kr, where i £ r £ j. This breaks the tree T into to subtrees:
TL - a subtree on ki, …, kr-1 keys, and TR - a subtree on kr + 1, …, kj keys.

TL TR

kr

ki kjkr–1 kr+1

FIGURE 6.5  Computing subproblems.

We can therefore compute OPT[i, j] as follows:

∑ ∑= ⋅ + + ⋅
=

−

= +

i j p depth k p p depth kOPT[,] () ().
s i

r

s T s r
s r

j

s T s

1

1

Note that depth k depth k() 1 ()T s T sL
= + and depth k depth k() 1 ()T s T sR

= + . It follows that

∑ ∑= ⋅ + + + ⋅ +
=

−

= +

i j p depth k p p depth kOPT[,] (1 ()) (1 ())
s i

r

s T s r
s r

j

s T s

1

1

∑ ∑= +…+ + ⋅ + ⋅
=

−

= +

p p p depth k p depth k() ()i j
s i

r

s T s
s r

j

s T s

1

1
L R

= +…+ + − + +p p i r r jOPT[, 1] OPT[1,].i j

Finally, since we don’t know the r, we minimize OPT[i, j] over all choices of r, giving us
the final recurrence

= +…+ + − + +
≤ ≤

i j p p i r r jOPT[,] min{ OPT[, 1] OPT[1,]}
i r j i j

with two base cases

OPT[i, i] = pi

OPT[i, i - 1] = 0.

The optimal solution we seek is OPT[1, n].

Chapter 6  Dynamic Programming  P  97

Runtime. There are n2 subproblems, and each subproblem takes O(n) time to compute.
Thus, the total running time is O(n3).

Let us trace the algorithm on keys k1 < k2 < k3 < k4 < k5 with the following search
probabilities: p1 = 0.25, p2 = 0.2, p3 = 0.1, p4 = 0.15, and p5 = 0.3. We will assume that
keys are just numbers 1, 2, 3, 4, and 5. Table 6.6 shows the OPT[i, j] table filled with
initial conditions.

TABLE 6.6  OPT[i, j] table filled with initial conditions.

0 1 2 3 4 5

1 0 0.25
2 0 0.2
3 0 0.1
4 0 0.15
5 0 0.3

The recursive definition of OPT[i, j] infers that we fill up the table diagonally. The
first value to compute is OPT[1, 2]

= + + − + +
≤ ≤

p p r rOPT[1, 2] min{OPT[1, 1] OPT[1,2]}
r1 2 1 2

OPT[1, 2] = 0.45 + min(0 + 0.2, 0.25 + 0) = 0.65.

Proceeding in the same way, we fill up the whole diagonal OPT[i, i + 1], as shown in
table 6.7.

TABLE 6.7  Diagonal OPT[i, i + 1] for i = 1, 2, 3, 4

0 1 2 3 4 5
1 0 0.25 0.65
2 0 0.2 0.4
3 0 0.1 0.35
4 0 0.15 0.6
5 0 0.3

Next, we fill up the next diagonal OPT[i, i + 2] for i = 1, 2, 3. To compute, for example,
OPT[1, 3] we do the following

= + + + − + +
≤ ≤

p p p r rOPT[1, 3] min{OPT[1, 1] OPT[1,3]}
r1 2 3 1 3

OPT[1, 3] = 0.55 + min(0 + 0.4, 0.25 + 0.1, 0.65 + 0) = 0.9.

98  P  Algorithms in Action

Tables 6.8 shows the final result.

TABLE 6.8  The final cost table

0 1 2 3 4 5

1 0 0.25 0.65 0.9 1.3 2.15
2 0 0.2 0.4 0.8 1.45
3 0 0.1 0.35 0.9
4 0 0.15 0.6
5 0 0.3

In order to compute the actual BST, for each subproblem we need also to store the
root of the corresponding subtree

= − + +
≤ ≤

i j i r r jroot[,] argmin{OPT[, 1] OPT[1,]}.
i r j

See table 6.9 for the root indices.

TABLE 6.9  The table root[i, j] of root indices

0 1 2 3 4 5

1 1 1 2 2 2
2 2 2 2 4
3 3 4 5
4 4 5
5 5

6.4 The Bellman-Ford Algorithm
In chapter 4.5 we explored Dijkstra’s algorithm for finding the shortest paths from a
single source vertex to all other vertices. Dijkstra’s algorithm works only on graphs with

nonnegative-weight edges. If some edge weights are negative,
then Dijkstra’s algorithm could return incorrect results. As an
example, consider the graph in figure 6.6. Dijkstra’s algorithm
would visit vertex C first and return the distance 3. However,
there is a shorter path S-A-B-C with the distance 1. Due to the
greedy nature of the algorithm, the new distance to C won’t
be recorded.

You may think that there is an easy way to fix the algorithm
by adding a large constant to each edge weight. Unfortunately,

–9

5

53

C

S

B

A

FIGURE 6.6  Dijkstra’s al-
gorithm does not work if
there are negative edges.

Chapter 6  Dynamic Programming  P  99

this idea does not work. That is because paths with more edges
will be penalized disproportionately. If we add 9 to all edge
weights in the previous graph and run Dijkstra’s algorithm,
the path S-A-B-C isn’t the shortest anymore. This is illustrated
in figure 6.7.

There are two ideas to fix Dijkstra’s algorithm: either to
add a large constant to each path (Johnson’s algorithm, which
we won’t cover in this book) or to relax all edges V-1 times
(Bellman-Ford’s algorithm). In this section we will consider
the latter, since the former is not a dynamic programming algo-
rithm. How can we use dynamic programming to find the shortest path? We need to
somehow define ordered subproblems, otherwise we may get an exponential runtime.
Consider the shortest v-u path v = w0, w1, …, wk-1, wk = u. To have an optimal substruc-
ture the path v = w0, w1, …, wk-1 must be the shortest path from v to to wk-1. Thus, we will
be counting the number of edges in the shortest path. This is how we order subproblems.

Let D[v, k] denote the length of the shortest path from s to v that uses at most k edges.
How do we compute D[v, k]? By reducing it to subproblems of the smaller size. We can
go to some neighbor w of v and then take the shortest path from s to w that uses at most
k - 1 (which is already solved).

In figure 6.8 the paths P1 = D[v, k - 1] and P2 = D[u,
k - 1] use at most k - 1 edges. The vertex v is adjacent
to u. Then the path P3 = P2 + (u, v) uses at most k edges
and its length is D[v, k] = w(u,v) + D[v, k - 1].

Now there are two s-v paths: P1 = D[v, k - 1] and
P3 = D[v, k]. We do not know which path is actually shorter; therefore, we have to try
both possibilities and then choose the minimum:

= − + −
∈

v k v k w u v v kD[,] min {D[, 1], (,) D[, 1]}.
u v E(,)

This recursive definition is terminated by D[v, 0] = 0.
Here is a pseudocode:

D[v,0] = 0; for all v
for k = 1 to V-1:
  for each v in V:
   D[v, k] = D[v, k-1]
  for each edge (u,v)ÎE
   D[v, k] = min(D[v, k-1], w(u, v) + D[u, k-1])

0

14

1412

C

S

B

A

FIGURE 6.7  Reweighted
graph.

P2

w(e)

P1

u
s

v

FIGURE 6.8  Defining subproblems.

100  P  Algorithms in Action

Note that the Bellman-Ford algorithm is designed only for directed graphs. For undi-
rected graphs with negative-weight edges the shortest path problem is more complex
and requires different algorithms.

Let us trace the algorithm on the example below (figure 6.9).

1

1

1–2

2

3

B

A

S

D

C
A B C D

3 2

0 2 4 3

D[v, 1]

D[v, 2]

0D[v, 3] 2 1 3

0D[v, 4] 2 1 2

FIGURE 6.9  Tracing the algorithm.

Runtime. There are V 2 subproblems, and each subproblem takes O(V) time to compute.
Thus, the total running time is O(V 3).

Note that the algorithm only finds the length of the shortest paths, but not the actual
shortest paths. For that we need to store some axillary information. We create another
array of vertices p[0 … V - 1], where for each vertex v we store its predecessor in the
shortest s-v path as in figure 6.10.

2

1

1–2

2

3

B

A

S

D

C

A B C D

B S A Cp

FIGURE 6.10  Graph and its table of predecessors.

Having table of predecessors, we restore the path recursively. For example, to get
the S-D path, we have to first get to p[D] = C, and then to p[C] = A, and then to p[A] = B,
and finally to p[B] = S.

How would we apply the Bellman-Ford algorithm to find out if a graph has a negative
cycle? Consider the following graph. The S-C distance is 3 if we take just an S-D edge. On
the other hand, the distance is 1 if we take a path S-A-B-C. Moreover, the S-C distance
is -1, if we take S-A-B-C-A-B-C path. The S-C distance can be as low as we want by going
through a negative cycle C-A-B-C. This tells us that the shortest path problem does not
have a solution in presence of a negative cycle.

Chapter 6  Dynamic Programming  P  101

–9

5

523

C

S

B

A

FIGURE 6.11  A graph with a negative weight cycle.

However, the Bellman-Ford algorithm can easily detect if a graph has a negative
cycle. The procedure is the following: Do not stop after V - 1 iterations, perform one
extra round, and if anything changes in the table, then we know there is a negative cycle.

6.5 The Shortest Path in DAGs
In this chapter we will solve a shortest distance problem in weighed directed acyclic
graphs (DAG). For these special graphs we will develop a dynamic programming algo-
rithm that is faster than the Bellman-Ford algorithm from the previous chapter and
the Dijkstra algorithm from chapter 4.5. We do not require edge weights to be nonneg-
ative and we don’t have to worry about negative-weight cycles, since a DAG is acyclic.

Recall a topological sort from chapter 1.3.2. If graph G = (V, E) is a DAG, it is always
possible to arrange vertices in a topological order. The runtime complexity of the algo-
rithm is linear O(V + E). Figure 6.12 demonstrates a DAG and one possible ordering.

2

1

1
1

–2

2

3

D

A

S

C

B

–2 1 1
13

2

2
S D A B C

FIGURE 6.12  A DAG with a topological ordering.

You can see from the picture that whenever we have an edge from u to v, the order-
ing visits u before v. Therefore, in the dynamic programming approach we organize
subproblems according to the topological ordering. We will pass through the ordered
list and compute distances just like in Dijkstra’s algorithm. Let d(v) denote the length

102  P  Algorithms in Action

of the shortest path from s to v for each v Î V. We compute d(v) as the minimum over all
adjacent vertices:

d v d u w u v() min { () (,)}.
u v E(,)

= +
∈

Note that vertex u is preceding vertex v. In figure 6.12, d(C) = min(d(B) + 1, d(D) + 2).
Here is a pseudocode:

d[s] = 0, d[v] = infinity for all v Î V\{s}
topologically sort the vertices
for each v taken in topological order
   for each u Î adjacent[v]
     if d[v] > d[u] + w(u, v) then d[v] = d[u] + w(u, v)

The runtime complexity is Q(V + E), since it requires a single pass over vertices in
topological ordering and relaxing each edge that leaves each vertex. As an example, we
run the algorithm over a graph from figure 6.12.

2

1

1
1

–2

2

3

D

A

S

C

B
A B C D

3 ∞

0 3 4

∞ 2S

D

A 1

B 2

FIGURE 6.13  Steps of the algorithm.

In figure 6.13 we show a table d[v], where each row represents a vertex in a topo-
logical ordering S-D-A-B-C. The table is filled in row-by-row fashion. In each table
entry (i, j) we record an updated distance from the vertex s to vertex j via an adjacent
vertex i. If the table entry is empty, then the distance was not updated. The algorithm
does not find the actual shortest paths, but only calculates the distances. As with the
Bellman-Ford algorithm, we can add an array p[] such that p[v] stores the vertex pre-
vious to v in the shortest path from s to v. This will allow us to reconstruct the actual
shortest paths.

Chapter 6  Dynamic Programming  P  103

REVIEW QUESTIONS

1.	 (T/F) If a dynamic programming algorithm has n subproblems, then its running
time complexity is W(n).

2.	 (T/F) It is possible for a dynamic programming algorithm to have an exponen-
tial runtime complexity.

3.	 (T/F) In a dynamic programming formulation, the subproblems must be
mutually independent.

4.	 (T/F) A pseudo-polynomial time algorithm is always asymptotically slower than
a polynomial time algorithm.

5.	 (T/F) If a dynamic programming solution is set up correctly (i.e., the recurrence
equation is correct) and each unique sub-problem is solved only once, then the
resulting algorithm will always find the optimal solution in polynomial time.

6.	 (T/F) If a problem can be solved by divide and conquer, then it can always be
solved by dynamic programming.

7.	 (T/F) If a problem can be solved by dynamic programming, then it can always
be solved by exhaustive search.

8.	 (T/F) The Bellman-Ford algorithm always fails to find the shortest path between
two nodes in a graph if there is a negative cycle present in the graph.

9.	 (T/F) In a dynamic programming solution, the space requirement is always at
least as big as the number of unique sub problems.

10.	 (T/F) In a connected, directed graph with positive edge weights, the Bellman-
Ford algorithm runs asymptotically faster than the Dijkstra algorithm.

11.	 (T/F) The dynamic programming for the knapsack problem runs in
polynomial time.

12.	 (T/F) The longest simple path can be computed by negating the weights of all
the edges in the graph and then running the Bellman-Ford algorithm.

13.	 (T/F) There exist some problems that can be solved by dynamic programming
but cannot be solved by greedy algorithms.

14.	 (T/F) The Bellman-Ford algorithm always finds the shortest path in
undirected graphs.

15.	 Which of the following standard algorithms are solved using dynamic
programming?

a.	 Bellman-Ford’s algorithm
b.	 Dijkstra’s algorithm
c.	 Prim’s algorithm
d.	 Karatsuba’s algorithm

104  P  Algorithms in Action

EXERCISES

1.	 Design a DP algorithm that solves the 0-1 knapsack problem, which allows rep-
etitions (i.e., assume that there are unlimited quantities of each item available).
What is its space complexity?

2.	 Design a DP algorithm that takes a string and returns the length of the longest
palindromic subsequence. A subsequence of a string is obtained by deleting zero
or more symbols from that string. A subsequence is palindromic if it reads the
same left and right. For example, the string QRAECCETCAURP has several pal-
indromic subsequences, but the longest one is RACECAR.

3.	 Given a non-empty string str and a dictionary containing a list of unique words,
design a dynamic programming algorithm to determine if str can be segmented
into a sequence of dictionary words. For example, if str =“algorithmdesign” and
your dictionary contains “algorithm” and “design,” then your algorithm should
answer yes since str can be segmented to “algorithm” and “design.” You may
assume that a dictionary lookup can be done in O(1) time.

4.	 You are given n balloons, indexed from 0 to n - 1, where each balloon is painted
with a number on it represented by array nums. You are asked to burst all the bal-
loons. If you burst balloon i you will get nums[left] · nums[i] · nums[right] coins.
Here, left and right are adjacent indices of i. After the burst, the left and right
then becomes adjacent. You may assume nums[-1] = nums[n] = 1, and they are
not real; therefore, you cannot burst them. For example, if you have the nums =
[3, 1, 5, 8], the optimal solution would be 167, where you burst balloons in the
order of 1, 5, 3 and 8. The array nums after each step is [3, 1, 5, 8] ® [3, 5, 8] ®
[3, 8] ® [8] ® []. Design a dynamic programming algorithm to find the maxi-
mum coins you can collect by bursting the balloons. Analyze the running time
of your algorithm.

5.	 A rope has length of n units, where n is an integer. You are asked to cut the rope (at
least once) into different smaller pieces pj of integer lengths so that the product
of lengths of those new smaller ropes is maximized. Design a dynamic program-
ming algorithm and analyze its running time. Explain how you would find the
optimal set of cutting positions.

6.	 There is a series of n > 0 jobs lined up one after the other. The i-tℎ job has a dura-
tion ti Î � units of time, and you earn pi ³ 0 amount of money for doing it. Also,
you are given the number si Î � of immediately following jobs that you cannot
take if you perform that i-tℎ job. Design a dynamic programming algorithm to
maximize the amount of money one can make in T units of time.

Chapter 6  Dynamic Programming  P  105

7.	 You are to compute the minimum number of coins needed to make change for a
given amount m. Assume that we have an unlimited supply of coins. All denom-
inations dk are sorted in ascending order: 1 = d1 < d2 < … < dn. Design a dynamic
programming algorithm to minimize the amount of coins.

8.	 Given an unlimited supply of coins of denominations d1 < d2 < … < dn, we wish
to make change for an amount m. This might not be always possible. Your goal
is to verify if it is possible to make such change. Design an algorithm by reduc-
tion to the knapsack problem.

9.	 There are two strings: string S of length n, and string T of length m. Design a
dynamic programming algorithm to compute their longest common subse-
quence. A subsequence is a subset of elements in the sequence taken in order
(with strictly increasing indexes.)

10.	 A polygon is called convex if all its internal angles are less than 180°. A convex
polygon is represented as an array V with n vertices in counterclockwise order,
where each vertex is in the form of a coordinate pair (x, y). Given is a convex poly-
gon, we would like to triangulate this polygon (i.e., decompose it into disjoint
triangles by adding line segments (diagonals) between its corners (vertices)).
Design a dynamic programming algorithm for triangulating a convex polygon
while minimizing the total perimeter of all the triangles.

11.	 Given a row of n houses that can each be painted red, green, or blue with a cost
P(i, c) for painting house i with color c, design a dynamic programming algo-
rithm to find a minimum cost coloring of the entire row of houses such that no
two adjacent houses are the same color.

12.	 A tourism company is providing boat tours on a river with n consecutive segments.
According to previous experience, the profit they can make by providing boat
tours on segment i is known as ai. Here, ai could be positive (they earn money),
negative (they lose money), or zero. Because of the administration convenience,
the local community requires that the tourism company do their boat tour busi-
ness on a contiguous sequence of the river segments (i.e., if the company chooses
segment i as the starting segment and segment j as the ending segment, all the
segments in between should also be covered by the tour service, no matter
whether the company will earn or lose money). The company’s goal is to deter-
mine the starting segment and ending segment of boat tours along the river,
such that their total profit can be maximized. Design a dynamic programming
algorithm to achieve this goal and analyze its runtime.

106  P  Algorithms in Action

13.	 You have two rooms to rent out. There are n customers interested in renting the
rooms. The ith customer wishes to rent one room (either room you have) for d[i]
days and is willing to pay bid[i] for the entire stay. Customer requests are nonne-
gotiable in that they would not be willing to rent for a shorter or longer duration.
Design a dynamic programming algorithm to determine the maximum profit
that you can make from the customers over a period of D days.

14.	 You are to plan the fall 2025 schedule of classes. Suppose that you can sign up
for as many classes as you want, and you’ll have infinite amount of energy to
handle all the classes, but you cannot take two classes at the same time. Also
assume that the problem reduces to planning your schedule for one particular
day. Thus, consider one day of the week and all the classes happening on that day:
c1, …, cn. Associated with each class ci is a start time si and a finish time fi such that
si < fi. Also, there is a score vi assigned to that class, ci, based on your interests
and your program requirement. You would like to choose a set of courses for that
day to maximize the total score. Design a dynamic programming algorithm for
planning your schedule.

15.	 There are n trading posts along a river numbered n, n - 1 …, 1. At any of the posts
you can rent a canoe to be returned at any other post downstream. (It is impos-
sible to paddle against the river.) For each possible departure point i and each
possible arrival point j < i, the cost of a rental is C[i, j]. However, it can happen that
the cost of renting from i to j is higher than the total costs of a series of shorter
rentals. In this case you can return the first canoe at some +post k between i
and j and continue your journey in a second (and, maybe, third, fourth, and so on)
canoe. There is no extra charge for changing canoes in this way. Design a dynamic
programming algorithm to determine the minimum cost of a trip by canoe from
each possible departure point i to each possible arrival point j. Analyze the run-
ning time of your algorithm in terms of n.

16.	 Given a weighted directed acyclic graph G = (V, E) in which we allow negative
edge weights, design a dynamic programming algorithm to find the longest
simple path between two given vertices.

17.	 Design a dynamic programming algorithm for counting the number of paths
between two given vertices in a DAG.

  107

I n this chapter we will learn our fourth major algorithm design technique (after
greedy, divide-and-conquer, and dynamic programming). Network flow is an import-

ant design technique because it can be used to express a wide variety of problems. When
we think of networks, we typically envision a physical network, like an electrical network
(with an electrical current flow), or a hydraulic network (with a water, gas, or oil flow), or
a communication network (with a voice, data, or video flow), or a transportation network
(with passengers, vehicles, or freight flow). Transportation networks are the most popu-
lar; they are designed to model complex distribution and logistics decisions. In this model,
a shipper with an inventory of goods at its warehouses must ship to disperse retail centers
(with different customer demands) given transportation routes. Each route has a distribu-
tion capacity and cost. The goal is to ship the maximum amount of goods.

7.1 Introduction
We start with a directed weighted graph G = (V, E) with two distinguished vertices s (the
source) and t (the sink), in which each edge (u, v) Î E has a nonnegative capacity c(u, v). The
graph should never have edges between u and v in both directions, so there are no loops.
Also, if u, v Î V but (u, v) Ï E, we assume that c(u, v) = 0. We call this graph a flow network.
Next, we define a flow as a function f that assigns nonnegative real values to the edges of G
and satisfies two axioms:

1.	 Capacity constraint: 0 £ f(u, v) £ c(u, v), for each u, v Î V
2.	 Conservation constraint: ∑ =∑f u v f v w(,) (,)

u w
, for each v Î V - {s, t}

Network Flow

Chapter 7

108  P  Algorithms in Action

In other words, the flow does not exceed the capacity on any edge, and the flow enter-
ing a vertex equals the flow leaving the vertex at every vertex other than the source
and the sink.

We also define a value of the flow: the total flow that the source s can send,
=Σf f s v| | (,)v . Since s and t are the only nodes that are not beholden to the conser-

vation law, the value of f can be equivalently stated as the amount of flow entering t.
The max-flow problem is stated as to find the maximum flow value into the

target t.

3 2

2 1

1 5 3 12

s a b

d c t

FIGURE 7.1  A flow network.

In the graph in figure 7.1, |f| = 4, however, the max flow is only 3; we push 2 units of
flow along the edge (s, a), and one unit of flow along the edge (s, d). How do we prove
that this is the max flow? The flow saturates edges (s, a) and (d, a). If we remove them,
the graph becomes disconnected.

Let us consider a greedy approach to the max-flow problem: choosing an edge leav-
ing the source with the largest capacity. This greedy algorithm does not find the max
flow in general graphs. A simple counterexample can be seen in figure 7.2.

12

1 2

3

u

v

ts

1

1

1

u

v

ts

FIGURE 7.2  Pushing 2 units of flow via s-u-v-t.

In figure 7.2, the greedy algorithm has made a first choice to push 2 units of flow
through s-u-v-t path—the maximum flow has not been achieved. The optimal flow
value is 3: We push one unit via s-u-t and then another unit via s-v-t, and one more unit
via s-u-v-t. The problem with a greedy approach is that we pushed too much flow via
the (u, v) edge. We want to redo our previously made decision and push on that edge

Chapter 7  Network Flow  P  109

only one unit of flow. Unfortunately, a greedy approach does not allow us to change the
previously made decisions. But what if we can push a unit of flow back through (u, v)?
This will mean that we cancel the previously pushed flow by one unit. This is the rough
idea of the Ford–Fulkerson algorithm. We modify the greedy algorithm such that we
can revise the paths later by flow cancelation. Thus, there are two ways to increase a
flow value:

•	 Find unused capacity

•	 Find cancelable flow

We will keep track of how much additional flow can be pushed directly (over an edge)
between any pair of vertices u and v (in each direction). This requires constructing
another directed graph Gf, called the residual network of f, which has the same vertices
as G, but a different set of edges Ef.. Assume a flow network with some flow f on each
edge. Then, for each edge (u, v) Î E we create

•	 a forward edge, and we include edge (u, v) into Gf with the residual capacity
cf (u, v) = c(u, v) - f(u, v); and

•	 a backward edge, and we include edge (v, u) into Gf with the residual capacity
cf (v, u) = f(u, v).

G

Flow 6
Cap 10

u v

Gf

Cap 4

Cap 6
u v

FIGURE 7.3  Example of residual capacities.

Having backward edges allows us to fix the greedy approach by erasing a flow on some
edges. Next, we define an augmenting path. Let P be a simple (with no cycles) path from
s to t in Gf. We can find such a path by running a graph traversal. The residual capacity
of P is the smallest capacity on any edge of P, namely cf (P) = min{cf (u, v): (u, v) Î P}. If
cf (P) > 0, then P is an augmenting path in Gf.

As an example, consider the graph G in figure 7.4. Suppose we push two units of flow
on s-d-b-t path. We will end up with the residual graph Gf. Note that edge (d, b) is satu-
rated, cf(d, b) = 0; we do not include that edge into Gf.

110  P  Algorithms in Action

3

1 2

4

3

G 2

3

3

s

a b

d c

t

3

21 2

2

2

3

Gf 2

3

1

s

a b

d c

t

FIGURE 7.4  Residual graph.

In Gf we can find another augmenting path, for example, s-a-b-d-c-t, and push two
units of flow along the path.

2

1

1 2 2

2

2

2

1
Gf 2

2

1

1

s

a b

d c

t

FIGURE 7.5  Augmenting flow along s-a-b-d-c-t path.

Note in this path we erased the previous flow on (d, b) edge. From this example we
see that in the residual network Gf = (V, Ef) we can increase the flow by using forward
as well as backward edges as long as there is an augmenting path. The residual network
and augmenting along an s-t path are the cornerstone of Ford-Fulkerson algorithm.

7.2 The Ford–Fulkerson Algorithm
For the purpose of this algorithm, we will assume that all capacities and all flows take
only nonnegative, integral values. The algorithm begins with the zero flow f and suc-
cessively improves f by finding an augmenting s-t path P and pushing as much flow as
possible along the path. It terminates if there are no more s-t paths in Gf. The Ford–
Fulkerson algorithm is essentially a greedy algorithm; it finds a locally optimal solution
which turns out to be a global optimum. Here is a pseudocode for the algorithm:

Given a flow network: (G=(V, E), s, t, c)
1.  start with f(u, v)=0 and G

f
 = G //initialization

2.  while (there exist an augmenting path P in Gf):
3.       find a bottleneck cf(P) = min{cf (u, v): (u, v) Î P}.
4.       augment the flow f along P
5.      update the residual graph Gf

Chapter 7  Network Flow  P  111

7.2.1 Example
Let us run Ford–Fulkerson’s algorithm on the graph G in figure 7.6.

9

62 8

10

10

4

10

10

s

a b

C d

t

FIGURE 7.6  The original graph G.

We will illustrate iterations of the algorithm on the residual graph Gf. There will be
multiple augmenting paths in Gf, so we will make an arbitrary choice. There are many
heuristics for choosing an augmenting path, which we will address later. We start
with a zero flow and Gf = G. We find an augmenting path s-a-d-t with the bottleneck 8.
We push 8 units of flow and augment the flow along that path and update the residual
graph as in figure 7.7.

9

62 8

2

10

8

2
4

8

10

s

a b

c d

t

FIGURE 7.7  Residual graph Gf after pushing 8 units.

Next, we find another augmenting path s-a-c-d-t in Gf with the bottleneck 2. We push
2 units of flow and augment the flow along that path and update the residual graph as
in figure 7.8. The total flow now is 10.

2

7

62 8

10

10

4

10

10

s

a b

c d

t

FIGURE 7.8  Residual graph Gf after second iteration.

112  P  Algorithms in Action

Then again, we find an augmenting path s-c-a-b-t with the bottleneck 2. We push
2 units of flow and augment the flow along that path and update the residual graph as
in figure 7.9. The total flow now is 12.

2

7

62 8
2

2

8

10

2

2

10

8

s

a b

c d

t

FIGURE 7.9  Residual graph Gf after third iteration.

On the next iteration we pick an augmenting path s-c-d-b-t with the bottleneck 6. The
updated residual graph is depicted in figure 7.10. The total flow now is 18.

8

1

62 8

8

8

2

10

2

2

10

2

s

a b

c d

t

FIGURE 7.10  Residual graph Gf after fourth iteration.

On the fifth iteration we pick an augmenting path s-c-d-a-b-t with the bottleneck 1.
The updated residual graph is depicted in figure 7.11. The total flow now is 19.

9

62 7
1 9

9

1

10

1

3

10

1

s

a b

c d

t

FIGURE 7.11  Residual graph Gf after fifth iteration.

That was the algorithm’s last iteration. As you easily see from figure 7.11 the residual
graph is disconnected—there is no an s-t path in it. Therefore, we found the maximum
flow of 19 units. In figure 7.12 we demonstrate the original network flow graph G with
each edge labeled by flow/capacity.

Chapter 7  Network Flow  P  113

9/9

6/60/2 7/8

3/4

10/10

9/10

9/10

10/10

s

a b

c d

t

FIGURE 7.12  Network flow graph with flow/capacity on each edge.

7.2.2 Complexity of the Ford–Fulkerson Algorithm
We find an augmenting path (line 2 in the pseudocode) through a graph traversal in O(E)
time (since the number of edges in Gf is at most 2E). In each step of the algorithm we tra-
verse the path to find a bottleneck (line 3) and traverse it again to update the residual
graph (line 5). These also take O(E) time. The question remains, “How many steps are
in the while loop (lines 2–5)?” Since the edge capacities are integral, the bottleneck =
min {cf (u, v): (u, v) Î P} is also integral. It follows that in the worst case we increase the
value of flow by at least one. Hence, the algorithm stops after at most =Σf f s v| | (,)v
steps. This implies that the running time of the Ford–Fulkerson algorithm is O(E · | f |)
for integral capacities. The algorithm is pseudo-polynomial (see Chapter 6.2.1) because
it depends on the size of the integers in the input.

The following example demonstrates an extreme case of the algorithm’s slow con-
vergence. Consider a graph where four edges have capacities of c = 109 and one edge
has capacity of 1. On each iteration we choose an augmenting path in such a way that
nodes u and v are always in the path.

109

a) Original graph

109109
1

109
v t

s u
c

b) First iteration

c-11c-11
1

c
v t

s u
c-1

c) Second iteration

c-1c-11 1
1

1

1

c-1
v t

s u

FIGURE 7.13  Extreme case of the Ford–Fulkerson algorithm.

Since each iteration increases the flow value by 1, the algorithm terminates after
2 · 109 steps.

Note that the algorithm may never terminate if the edge capacities are arbitrary real
numbers. The algorithm can loop forever, always finding smaller and smaller augment-
ing paths. See the example of this effect by U. Zwick.1

1	 “Ford–Fulkerson Algorithm,” Wikipedia, https://en.wikipedia.org/wiki/Ford–Fulkerson_
algorithm#Non-terminating_example

114  P  Algorithms in Action

7.2.3 Proof of Correctness
When no more augmenting paths can be found, the graph becomes disconnected and
therefore no more flow can be pushed from s to t in the residual network. This proves
that the flow we found is maximal. Is this the maximum? Maximum is not the same as
maximal. Since we choose the augmenting paths arbitrarily, it seems it may happen that
when running the algorithm for the second time we will get a bigger flow. We prove the
maximum flow by using the duality principle. An optimization problem may be viewed
from two perspectives, the primal (minimization) problem or the dual (maximization)
problem. The solution to the dual problem provides a lower bound to the solution of the
primal problem. We think of the maximum flow problem as the dual problem. We will
formulate the primal problem in terms of a vertex cut.

A vertex s-t cut of a flow network is a partition of the vertices V into disjoint subsets
A and B such that s Î A and t Î B. We define the cut capacity, cap(A, B), as the sum of
capacities of all the edges going from partition A to partition B. In figure 7.14, partition
A consists of vertices s, a, b, and partition B consists of vertices t, c, d. The cut capacity
is cap(A, B) = 10 + 2 + 8 + 10 = 30.

9

62 8

4

10

10

10

10

s

a b

c d

t

A

B

FIGURE 7.14  st-cut and its capacity.

The minimum cut problem is to compute an s-t cut whose capacity is as small
as possible. We will show that the value of any flow is at most the capacity of
any cut.

Lemma 1. For any flow and any cut:

∑ ∑ ∑= = −
∈ ∈ ∈ ∈

f f s v f u v f v u| | (,) (,) (,).
v u A v B u A v B, ,

Chapter 7  Network Flow  P  115

Proof. Since there are no incoming edges to s, we have that f(v, s) = 0, and therefore

∑ ∑ ∑= = −f f s v f s v f v s| | (,) (,) (,).
v v v

Next, we observe that due to the flow conservation law

∑ ∑=f u v f v u(,) (,)
v v

for any vertex u except s and t. It follows,

∑ ∑ ∑ ∑ ∑= −









= −

∈ ∈ ∈ ∈ ∈

f f u v f v u f u v f v u| | (,) (,) (,) (,).
u A v u u A v B u A v B, ,

This concludes the proof. ∎

The graph in figure 7.15 illustrates Lemma 1.

9/9

6/60/2 7/8

3/4

10/10

9/10

9/10

10/10

s

a b

c d

t

A

B

FIGURE 7.15  This demonstrates Lemma 1.

The flow from the source |f| is 19. The flow from partition A to B is 9 + 7 + 9 = 25.
The flow from partition B to A is 6. The flow difference is 19, same as |f|.

Lemma 2. For any flow and any (A, B)- cut:

£f cap A B| | (,).

Proof. By previous Lemma 1 and taking into account the capacity constraint, we obtain

∑ ∑ ∑= − ≤
∈ ∈ ∈ ∈ ∈ ∈

f f u v f v u f u v| | (,) (,) (,).
u A v B u A v B u A v B, , ,

116  P  Algorithms in Action

Taking into account the capacity constraint, we obtain

f f u v c u v cap A B(,) (,) (,).
u A v B u A v B, ,

∑ ∑≤ ≤ =
∈ ∈ ∈ ∈

This concludes the proof. ∎

Lemma 2 proved that the solution to the min-cut problem provides an upper bound
to the solution of the max-flow problem:

f cap A Bmax| | min (,).
f A B(,)

£

In fact, this bound is tight.

Theorem 1. The Ford–Fulkerson algorithm outputs the maximum flow.

Proof. When the algorithm terminates there is no augmenting path from s to t in the
residual graph Gf. Let A be a set of vertices reachable from s in Gf and let set B be all
other vertices in V including t. We will prove that |f| = cap(A, B). Consider any edge
(u, v) from A to B in the original flow network. This edge cannot exist in Gf, because
otherwise vertex v will be reachable from s, which contradicts the definition of the s-t
cut. It follows that that edge must be saturated f(u, v) = c(u, v) in Gf. Now consider any
edge (v, u) from B to A in the original flow network. The flow on this edge must be zero
f(v, u) = 0. If f(v, u) > 0, then there will be an edge in the opposite direction (u, v) in Gf,
and therefore vertex v will be reachable from s. Again, we reached a contradiction to
the definition of s-t cut. Then by Lemma 1, we have

f f u v f v u c u v cap A B| | (,) (,) (,) 0 (,).
u A v B u A v B u A v B, , ,

∑ ∑ ∑= − = − =
∈ ∈ ∈ ∈ ∈ ∈

Thus, the Ford–Fulkerson algorithm outputs the maximum flow, the cut (A, B) is a min-
imum cut, and the max-flow equals the capacity of the min-cut. ∎

7.3 Reduction to Network Flow
A reduction is a problem-solving method for transforming instances of problem Y into
instances of another problem X, so that an algorithm for solving problem X efficiently

Chapter 7  Network Flow  P  117

can be used to solve problem Y efficiently. Formally, to reduce a problem Y to a problem
X (we write Yp £ X) we want a function f that maps Y to X such that

1.	 f is a polynomial time computable and
2.	 " instance y Î Y is solvable if and only if f(y) Î X is solvable.

Figure 7.16 illustrates the idea of problem solving by polynomial-time reduction.

Instance of
y ε y

Output of
y

Instance of
f(y) ε X

Output of
X

f

X-solver

f

FIGURE 7.16  Solving by reduction.

If problem X can be solved in polynomial time and Yp £ X, then Y can be solved in poly-
nomial time. This is the most common use of reductions. In chapter 9 we will see that
reductions also can be used to prove that problem X is NP -hard.

7.3.1 Dinner Party
This is our first example of solving a problem by using a reduction to network flow.

At a dinner party, there are n families f1, f2, …, fn and m tables t1, t2, …, tm.
The i-th family fi has ri relatives and the j-th table bj has sj seats. Everyone is
interested in making new friends between families; therefore, the dinner
party planner wants to seat people such that no two members of the same
family are seated at the same table. Design an algorithm that decides if
there exists a seating assignment such that everyone is seated and no two
members of the same family are seated at the same table. What would be
a seating arrangement?

We start by setting the problem as a bipartite graph problem. In this graph one
partition is a set of vertices, fi, representing all n families. Another partition is a set of
m tables tj. Then, we connect each family fi to all tables tj by directed edges with the
capacity 1.

Next, we extend the bipartite graph to a network flow. We add the source s and con-
nect it to every family vertex fi by an edge (s, fi) of capacity ri. We add the target t and
for every table vertex tj, we add an edge (tj, t) of capacity sj.

118  P  Algorithms in Action

Claim. The original problem has a solution (a valid seating assignment is indeed possible)
if and only if the constructed network has a max-flow of value r1 + r2 + … + rn.

Proof. Þ) Assume that there is a solution. It means that every family member is seated.
So, we can push a flow of ri from the source s to each family. On the edges between
families and tables, we assign a flow of 1 or 0. Since no two members of the same
family are seated at the same table, each family vertex will have outgoing flow of
value 1. On the edges between tables and the sink, we assign a flow value equal to the
number of people seated at that table. This must be possible, since we have a valid
assignment.

Conversely Ü) Assume there is a max-flow of value r1 + r2 + … + rn. This means that
each family vertex will get a flow of ri. Due to capacity constrain (each edge (fi, tj) has a
unit capacity) no two members will sit at the same table. We also observe that no table
is overloaded due to the capacity condition si. ∎

Lastly, we get a seating assignment by running a network flow algorithm and pick
edges (fi, tj) with a unit flow.

7.3.2 Reallocation Problem
As the second example of using a reduction to network flow, we consider the
following problem:

A company has n locations in city A and plans to move some of them
(or all) to another city B. The i-th location costs ai per year if it is in the
city A and bi per year if it is in the city B. The company also needs to pay
an extra cost, cij > 0, per year for traveling between locations i and j. We
assume that cij = cji. Design an efficient algorithm to decide which company
locations in city A should be moved to city B in order to minimize the total
annual cost.

We start with constructing a flow network. Create a complete graph where each
vertex vi, i = 1,2, …, n is a company location in city A. Any two vertices vi and vj are con-
nected by a bidirectional edge with capacity cij > 0. We connect the source s to all vertices
vi, i = 1, 2, …, n with capacity bi on edge (s, vi). Finally, we connect all vertices vi, i = 1,
2, …, n to the sink t with capacity ai on edge (vi, t).

Chapter 7  Network Flow  P  119

V1 c12

c34

V3
b3

b4

“city A” “city B”

b2

b1

s t

V2

a4

a3

a2

a1

V4

FIGURE 7.17  Flow network for 4 cities.

We have constructed a flow network with V = n + 2 vertices and E = 2n + n
(n - 1)/2 edges. Figure 7.17 demonstrates a flow network of four cities. Next, we run the
Ford–Fulkerson algorithm (see Exercise 1) to separate all vertices into two partitions
in such a way that the cut capacity is the smallest. See figure 7.18 for a possible min-cut.

V1 c12

c34

V3
b3

b4

“city A” “city B”

b2

b1

s t

V2

a4

a3

a2

a1

V4

FIGURE 7.18  A min-cut for 4 cities.

The min-cut in figure 7.18 suggests that locations v2 and v4 should be moved to
city B. Noting that max flow is a1 + a3 + b2 + b4 + c12 + c14 + c32 + c34, we propose the
following claim.

Claim. The total annual cost is minimized if and only if the constructed flow network has
a max flow of the following value

∑ ∑ ∑+ +
∈ ∈ ∈ ∈

a b c .
i A

i
j B

j
i A j B

ij
,

120  P  Algorithms in Action

Proof. Þ) The max flow is exactly the annual cost of moving the locations from city A
to city B. Thus, the minimum cut of this network corresponds to the optimal solution
of the relocation problem.

Conversely Ü) Consider the network with the max flow. By the property of the min-cut,

•	 the blue edges with capacity bj are saturated, meaning that the location vj is
moved to city B;

•	 the red edges with capacity ai are saturated, meaning that the location vi stays
in city A; and

•	 the black edges with capacity cij are saturated, meaning that the cost of for trav-
eling between locations vi and vj.

The runtime complexity, assuming the Ford–Fulkerson algorithm, is O(E ·|f |) =
O(n2 ·|f|). ∎

7.4 Augmenting Path Heuristics
We have seen in figure 7.13 that the way augmenting paths are chosen can significantly
impact the algorithm’s performance. Here, we consider a couple of heuristics (due to
Jack Edmonds and Richard Karp) of selecting augmenting paths to avoid that extreme
performance of the Ford–Fulkerson algorithm.

One suggestion is that we should select edges with high capacities, called the “max-
imum bottleneck path.” In the residual network in figure 7.13, the paths s-v-t and s-u-t
have weight 109, while the path s-v-u-t has weight 1.

Another suggestion is that we should find the shortest augmenting path in terms of
the number of edges. This approach does not consider the edge capacities at all. In the
residual network in figure 7.13, the paths s-v-t and s-u-t are one edge shorter than the
path s-v-u-t.

There are many other augmenting path heuristics for the Ford–Fulkerson algorithm.

7.4.1 Edmonds–Karp 1: Augmenting Path with Largest Capacity
We consider an implementation of the Ford–Fulkerson algorithm in which we pick
the augmenting path with the largest bottleneck value. In this scenario, we need to
repeatedly find the path between two vertices whose minimum capacity is the largest.
That path can be found using an algorithm similar to Dijkstra’s shortest-path algo-
rithm. Instead of maintaining the shortest path length to a vertex, we maintain the

Chapter 7  Network Flow  P  121

bottleneck. Let bottleneck(v) be the capacity of the highest-capacity path from s to v.
In this array we will keep a track of the lowest capacity edge on s-v path discovered so
far. We will also maintain a spanning tree T of vertices, rooted at s, for which we have
bottleneck(v). If we find another s-v path with a higher bottleneck value, we update
bottleneck(v). Here is the updated rule:

v u c u vbottleneck() max {min(bottleneck(), (,))}
u T
u v E(,)

=
∈
∈

and a pseudocode for finding the largest-capacity path:

while T ≠ V
   for each v Î V adjacent to T:
     update bottleneck(v);
   add v to T;
end

That path can be found in O(E · log V) time using a binary max heap. The runtime
analysis is the same as in Dijkstra’s algorithm.

So far, we have addressed the runtime complexity of a single iteration in the Edmonds–
Karp algorithm. Next, we compute the upper bound on the total number of iterations in
terms of the value of the maximum flow. In the Ford–Fulkerson algorithm we increase
the flow by any path bottleneck (which could be as low as just 1); in the Edmonds–Karp
algorithm we increase the flow by the maximum path bottleneck.

Claim 1. If the max flow in the network is |f |, then there exists an s-t path with capacity
of ³ |f |E.

Proof. To prove the existence of such a path, we delete all edges with capacity < |f|/E.
Let us call this graph G .́ We claim that G´ is not disconnected and has an s-t augment-
ing path. Suppose that G´ is disconnected. Then, every edge on an s-t cut has capacity
< |f|/E. Since in the worst case there could be E edges on that cut, it follows that the
cut capacity is cap(A, B) < E · |f|/E = |f|. This is a contradiction, since Lemma 2 says
|f| £ cap(A, B). ∎

Claim 2. Edmonds–Karp makes O(E · log |f|) iterations.

122  P  Algorithms in Action

Proof. The previous claim says that each iteration adds at least 1/E fraction of the
flow found so far. But let us run the algorithm backward. On each iteration the flow F
gets reduced by at least | f |/E. So, after the first step the max in the residual network
is at most

− ⋅ = ⋅ −








f f

E
f

E
| | | |

1
| | 1

1
.

After the second step, the flow is at most

⋅ −








− ⋅ −









⋅ = ⋅ −









f

E
f

E E
f

E
| | 1

1
| | 1

1 1
| | 1

1
.

2

Proceeding in the same way, after x steps, the max flow is at least | f | · (1 - 1/E)x. How
many iterations x do we need to have in order to reduce the max-flow |f | to 1? To answer
that we need to solve the following inequality:

⋅ −








 ≤| | 1

1
1.f

E

x

Noticing that 1 + z £ ez (where e is the Euler constant), we find that x = O(E · log | f |).
This says that the flow decreases exponentially with the number of iterations. ∎

We conclude that for graphs with integer capacities, the Edmonds-Karp 1 algorithm
runs in O(E2 · log V · log | f |) time.

As an example, let us consider a graph in figure 7.6 and run a few iterations of the
above algorithm. The first augmenting path we choose is s-c-d-t. We push 9 units of flow
and augment the flow along the path.

9

62 8

4

10

10

10

10

s

a b

c d

t

9

62 8 9
1

9

10

4

1

10

s

b

c

a

d

t

FIGURE 7.19  The residual graph after first iteration.

Chapter 7  Network Flow  P  123

The next augmenting path with the largest bottleneck is s-a-d-b-t. We push 6 units
of flow and augment the flow along the path.

9

62 2

6 6

9
1

9
6

4

4

1

4

s

a b

c d

t

9

62 2
6

9
1

9

10

4

1

10

s

b

c d

t

FIGURE 7.20  The residual graph after second iteration.

The last augmenting path is s-a-b-t. Comparing this algorithm with the Ford–Fulkerson
algorithm, we see that we reached the max flow in only three iterations.

7.4.2 Edmonds–Karp 2: Shortest Augmenting Path
In this heuristic, we repeatedly select the shortest augmenting path, in terms of the
number of edges. The resulting network flow algorithm is known as the Edmonds–Karp
2 algorithm. The shortest path can be found in O(E) time by running a breadth-first
search in the residual graph. The subtle question is, “How many iterations does the
algorithm take?” It can be shown that this requires only O(V · E) iterations. Thus, the
total runtime is O(V · E2). The proof is quite elaborate and beyond the scope of this book.

7.5 The Circulation Problem
In this section we modify and extend the network flow problem, but this time there will
be no source and sink. Also, we add demand d(v) on each vertex and the lower bounds
on the capacities on the given edges. This leads to the notion of circulations on graphs.

7.5.1 Circulation with Demands
Given a directed graph, in addition to having capacities c(u, v) ³ 0 on each edge, we
associate each vertex v with a supply/demand value d(v). We say that a vertex v is a
demand if d(v) > 0 and a supply if d(v) < 0. If d(v) = 0 then the vertex simply receives
and transmits flow.

The demand function d(v) describes how much of an excess flow must be injected or
extracted at each vertex. Next, we define a circulation with demands as a function f that
assigns nonnegative real values to the edges of G and satisfies the following two axioms:

1.	 Capacity constraint: 0 £ f(u, v) £ c(u, v), for each u, v Î V
2.	 Conservation constraint: ∑ −∑ =f u v f v w d v(,) (,) ()u w , for each v Î V

124  P  Algorithms in Action

See figure 7.21 for an example, in which supply vertex a must send 3 units of flow
and demand vertex b must receive 4 units of flow.

3

22 3

4
a b

–3 4

d c 1–2

FIGURE 7.21  Circulation with demands (in red).

We call a circulation feasible if it meets the capacity and demand constraints. The cir-
culation problem is stated as to find a feasible circulation. First, we note, that if there is
a feasible circulation, then ∑ =d v() 0v . We prove this by taking the conservation con-
straints and summing them up over all vertices:

∑ ∑ ∑ ∑−









=f u v f v w d v(,) (,) ().

v u w v

The left-hand side of the equality is zero, since the flow on every edge is summed
twice, once as a coming-in flow, and then as a coming-out flow. This implies the claim.
See figure 7.22.

3

22 3

4
a b

–3 4

d c 1–2
2/3

1/21/2 1/3

2/4
a b

–3 4

d c 1–2

FIGURE 7.22  Left: Circulation with demands; right: Feasible circulation (flow/capacity).

We will find a feasible flow (or determine if one does not exist) using a reduction
to a maximum flow problem. We construct a graph G´ as follows: Add two extra ver-
tices s and t to graph G; connect the source s with every vertex v that has a negative
demand; assign a capacity -d(v) to each (s, v) edge; connect each vertex with a positive
demand with the sink t; and assign a capacity d(v) to each (v, t) edge. See figure 7.23 for
an example.

Chapter 7  Network Flow  P  125

3

22 3

4
a b

–3 4

d c 1–2
3

22 3

2

3

4

1

4

s

a b

d c

t

FIGURE 7.23  Left: Circulation with demands; right: A flow network.

The max flow in G´ must saturate all the edges coming out of the source s; otherwise,
there is no feasible solution.

Claim. There is a feasible circulation with demands d(v) in G if and only if the max-flow
value in G´ is =∑

>
D d v()v d v: () 0

.

Proof. Þ) In graph G´ we send -d(v) units of flow along each edge from s, with the total
flow | f| = D. Since there is a feasible circulation, that flow will reach the sink t, and
moreover it is the maximum.

Ü) If the max-flow value in G´ is D, then edges incident on s and t must be saturated.
Remove those edges to get a feasible circulation. Figure 7.24 demonstrates a transfor-
mation from a flow network to a feasible circulation.

2/3

1/21/2 1/3

2/2

3/3

2/4

1/1

4/4

s

a b

d c
2/3

1/21/2 1/3

2/4
a b

d c

t

FIGURE 7.24  Left: A flow network; right: Feasible circulation.

7.5.2 Circulation with Lower Bounds
Now we impose restrictions on the edge capacity in a directed graph G. For every edge
(u, v) we add a constraint 0 £ l(u, v) £ c(u, v), which is a lower bound to how much flow
must be on this edge. By setting a lower bound l(u, v) > 0, we can force a particular edge
to be used by flow.

126  P  Algorithms in Action

We define a circulation with demands and lower bounds as a function f that assigns
nonnegative real values to the edges of G and satisfies the following axioms:

1.	 Capacity constraint: l(u, v) £ f(u, v) £ c(u, v), for each u, v Î V
2.	 Conservation constraint: ∑ −∑ =f u v f v w d v(,) (,) ()u w , for each v Î V

We call a circulation feasible if it meets all these constraints. The question is if there
exists feasible circulation. Figure 7.25 provides an example of a graph with demands
on each vertex (in red) and capacity on each edge in the form [l, c], meaning l(u, v) £
f(u, v) £ c(u, v).

0 3
[2, 5][5, 10]

[2, 2]

–10

–5 12
[3, 7]

[5, 7] [1, 3]

a

b c

e d

FIGURE 7.25  Circulation with demands and lower bounds.

We reduce this problem to the existence of a feasible circulation with demands. Let
us start by pushing a flow f0 on every edge with a value that is exactly equal to its lower
bound l(u, v). In the graph in figure 7.25, we push 2 units of flow on edge (a, b), 3 units
on edge (b, c), 5 units on edges (a, e), and so on. A flow f0(u, v) = l(u, v) is a valid flow as
far as capacities and lower bounds, but it might violate the conservation constraints.
So, we need to compute

∑ ∑ ∑∑− = − =f u v f v w l u v l v w L v(,) (,) (,) (,) ()
u u ww

0 0

for each vertex. If L(v) = d(v), then flow f0 satisfies the required demand. Otherwise,
there is flow imbalance at vertex v. We fix this by transferring L(v) to the vertex
demand by setting a new demand d´(v) = d(v) - L(v). In particular, for this graph, L(e) =
5 - (5 + 2) = -2 and d(e) = 0 - (-2) = 2. We have constructed a graph G´ with new
demands, d (́v) = d(v) - L(v), and new capacities, c (́u, v) = c(u, v) - l(u, v). See figure 7.26
for details.

Chapter 7  Network Flow  P  127

2 0
35

0

–3

–4 5
4

2 2

a

b c

e d

FIGURE 7.26  G´ with new demands and capacities.

Claim. There is a feasible circulation in G if and only if there is a feasible circulation
in G .́

Proof. Þ) Let f be a feasible circulation in G. Then by construction (we pushed an
initial flow of the value l(u, v) on each edge), f ́ (u, v) = f (u, v) - l(u, v) is a feasible circu-
lation in G .́

Ü) Let f ́ be a feasible circulation in G .́ Construct a new flow, f (u, v) = f ́ (u, v) + f0(u, v).
How do we find f0(u, v)? Since we know the old c(u, v) and new c´(u, v) capacities on
each edge, we compute f0(u, v) = l(u, v) = c(u, v) - c´(u, v). Next, we need to verify
that f is a feasible circulation in G. First, we check the capacity constraints for
circulation f:

l(u, v) £ f(u, v) £ c(u, v) Û l(u, v) £ f ́ (u, v) + l(u, v) £ c (́u, v) + l(u, v) Û 0 £ f ́ (u, v) £ c (́u, v).

Then we check the demand conditions for circulation f:

∑ ∑− = ⇔f u v f v w d v(,) (,) ()
u w

∑ ∑+ − + = + ⇔f u v l u v f v w l v w d v L v(´(,) (,)) (´(,) (,)) ´() ()
u w

∑ ∑ ∑ ∑− + − = + ⇔l u v l v w f u v f v w d v L v(,) (,) ´(,) ´(,) ´() ()
u w u w

∑ ∑− =f u v f v w d v´(,) ´(,) ´().
u w

128  P  Algorithms in Action

7.5.3 Circulation Problem Example
As an example of the circulation problem with demands and lower bounds, we consider
the following problem:

Given the network (see figure 7.27) with the demand values on vertices and lower bounds
on edge capacities, determine if there is a feasible circulation in this graph.

(a) �Turn the circulation with lower bounds problem into a circulation problem
without lower bounds.

(b) �Turn the circulation with demands problem into the maximum flow problem.

(c) �Does a feasible circulation exist?

[2, 3]

[2, 5]

[2, 5]

[1, 4]
[3, 4]

[2, 4]

[2, 6]
b:5 c:–4

a:7

e:3 d:–11

FIGURE 7.27  Circulation problem with demands and lower bounds.

Part (a): First, we check the necessary condition for a feasible circulation: The sum of
demands must be equal to zero. Then we turn the circulation with lower bounds prob-
lem into a circulation problem without lower bounds. We push a flow with the value of
the lower bound l(u, v) on each edge and compute the flow excess L(v) = f in(v) – f out(v)
for each vertex v.

L(a) = (2 + 2) - 0 = 4,

L(b) = (2 + 1) - (2 + 3) = -2,

L(c) = 2 - 2=0,

L(d) = 0 - (1 + 2 + 2) = -5,

L(e) = (2 + 3) - 2 = 3.

Next, we recompute the demands d´(v) = d(v) - L(v) to get

d´(a) = 7 - 4 = 3, d´(b) = 5 - (-2) = 7, d´(c) = -4 - 0 = -4,
d´(d) = -11 - (-5) = -6, d´(e) = 3 - 3 = 0.

Chapter 7  Network Flow  P  129

We have reduced the original problem in a circulation problem without lower bounds.
See figure 7.28.

1

3

3

31

2

4
b:7 c:–4

a:3

e:0 d:–6

FIGURE 7.28  Circulation problem with no lower bounds.

Part (b): In order to reduce the circulation problem from part (a) into the max-flow
network problem, we construct a new graph by adding two extra vertices, s and t. We
connect the source s with vertices c and d by edges with capacities 4 and 6, respectively.
We connect vertices a and b with the target t by edges with capacities 3 and 7, respec-
tively. See figure 7.29 for the resulting graph.

s

6

4

1
2

3

3

3

3
1

7
4

b c

t

a
e d

FIGURE 7.29  The max-flow network.

Part (c): Running the Ford–Fulkerson algorithm, we find that the max flow has value
10 and saturates all the edges coming out of the source s. Figure 7.30 is a feasible circu-
lation to the original problem.

s

6/6

4/4

1/3
0/2

3/3

3/3

3/3

3/3
0/1

7/7
4/4b c

t

a
e d

FIGURE 7.30  Network flow graph with flow/capacity on each edge.

130  P  Algorithms in Action

7.6 Reduction to Circulation
As an example of using a reduction to circulation, consider the following problem:

Consider LAX, a notoriously busy airport with many arriving passengers
who want to get to their destinations as soon as possible. There is an avail-
able fleet of n Uber drivers to accommodate all passengers. However, there
is a traffic regulation at the airport that limits the total number of Uber
drivers at any given hour-long interval to 0 £ k < n simultaneous drivers.
Assume that there are p time intervals. Each driver provides a subset of
the time intervals he or she can work at the airport, with the minimum
requirement of aj hour(s) per day and the maximum bj hour(s) per day.
Lastly, the total number of Uber drivers available per day must be at least
m to maintain a minimum customer satisfaction and loyalty. Design an
algorithm to determine if there is a valid way to schedule the Uber driv-
ers with respect to these constraints.

We will reduce the Uber driver’s problem to a circulation problem. First, we build a
bipartite graph (see figure 7.31) having the drivers Ubi on one side and hour-long time
intervals Ij on the other side. We insert the edge between driver Ubi and time interval Ij
if the driver prefers to work at that hour. The capacity of this edge is 1. There could be
many drivers willing to work at that hour, so having flow 0 on that edge is interpreted
as a driver not covering that time interval.

Ub1 1

Ub2

I1

I2

I3

Ub3

Ub4

FIGURE 7.31  A bipartite graph.

Next, we add two new vertices x and y. Connect x to all Ubi and all Ij to y. The edge
(x, Ubi) has lower bound ai and upper bound bi. The edge (Ij, y) has capacity k. Finally, we

Chapter 7  Network Flow  P  131

add the edge (y, x). The flow on this edge represents the total number of Uber drivers
serving the airport. We set the lower bound on that edge to m. See figure 7.32 for the
resulting graph H with n = 4 and p = 3.

Ub1

x

1 [m, ∞]

k

[a4, b4]

[a3, b3]

[a2, b2]

[a1, b1]

y

Ub2

I1

I2

I3

Ub3

Ub4

FIGURE 7.32  The Uber driver’s problem as a circulation problem.

Claim. There is a valid way to schedule the Uber drivers if and only if there is a feasible
circulation in H.

Proof. Þ) Assume that there is a valid way to schedule at least m Uber drivers per day.
We construct a flow in H as follows. If a driver Ubi works during a time interval Ij, we
create a flow of one unit on edge (Ubi, Ij). A particular driver Ubi may work during sev-
eral time intervals. Therefore, we set the flow along the edge (s, Ubi) to the number of
time intervals that driver works. We set the flow along the edge (Ij, t) to the number
of drivers who work during that time interval Ij. Finally, we set the flow on edge (t, s)
to the total number of Uber drivers serving the airport. Thus, we have constructed a
feasible circulation.

Ü) Consider a feasible circulation in H. For each edge (Ubi, Ij) that carries one unit of
flow, driver Ubi works at hour Ij. Flow on the edge (s, Ubi) represents the total number
hours that driver works. By the flow conservation law, that number is between ai and
bi. Similarly, the flow along the edge (Ij, t) cannot exceed k, implying that only at most k
drivers can work at that hour Ij. ∎

If we want to know under what conditions a feasible circulation graph H exists, we
need to turn the circulation problem into the max-flow network problem. We proceed

132  P  Algorithms in Action

as in section 7.4.2. See figure 7.33 for a newly constructed graph H´ by removing the
lower bounds and vertex demands. There we assume that −∑m ai i > 0, so that vertex x
is a supply. It follows that there is a feasible circulation in H if and only if the max-flow
value in H´ is m.

Ub1

x

s a4

a3

a2

a1

1
∞

k

m

b4 – a4

m – Σai

b3 – a3

b2 – a2

b1 – a1

y

t

Ub2

I1

I2

I3

Ub3

Ub4

FIGURE 7.33  Graph H´ for the max-flow problem.

REVIEW QUESTIONS

1.	 What is a flow?
2.	 What is a flow network?
3.	 What is an augmenting path?
4.	 What is the relationship between a flow value and a cut capacity?
5.	 Among all cuts, how do you distinguish a min-cut in the residual network?
6.	 How do you find a min-cut?
7.	 Is a min-cut unique?
8.	 How do you force the flow to use certain edges?
9.	 (T/F) A residual network is a flow network.

10.	 (T/F) The Ford–Fulkerson algorithm always terminates.
11.	 (T/F) The Ford–Fulkerson algorithm is a polynomial time algorithm.
12.	 (T/F) The Ford–Fulkerson algorithm is a greedy algorithm.
13.	 (T/F) The Edmonds-Karp 1 algorithm is a pseudo-polynomial time algorithm.
14.	 (T/F) The Edmonds-Karp 2 algorithm is a polynomial time algorithm.

Chapter 7  Network Flow  P  133

15.	 (T/F) If all capacities in a flow network are integers, then every maximum flow
in the network is such that the flow value on each edge is an integer.

16.	 (T/F) If we add the same positive number to the capacity of every directed edge,
then the minimum cut (but not its value) remains unchanged.

17.	 (T/F) Given a max-flow value you can find a min-cut in O(E).
18.	 (T/F) Given a min-cut value you can find a max-flow value in O(E).
19.	 (T/F) Every flow is a circulation.
20.	 (T/F) There is a feasible circulation with demands {dv} if Svdv = 0.

EXERCISES

1.	 Given a flow network N = (G = (V, E), s, t, c), where E might contain edges (u, v)
and (v, u) in both directions for some pair of vertices u, v, we would like to use
the Ford–Fulkerson algorithm to solve the flow problem on G, but G is not a flow
network. Reduce this problem to the network flow problem.

2.	 Suppose we have a directed weighted graph G = (V, E) with multiple sources
s1, s2, …, sn and multiple sinks t1, t2, …, tm. Reduce this problem to the network
flow problem.

3.	 Given a flow network N = (G = (V, E), s, t, c), find the maximum number of edge dis-
joint paths from s to t. A set of paths is edge disjoint if no two paths share an edge.

4.	 Given a flow network N = (G = (V, E), s, t, c), find the maximum number of vertex
disjoint paths from s to t. A set of paths is vertex disjoint if no two paths share
a vertex.

5.	 Given a flow network N = (G = (V, E), s, t, c), in which, in addition to having a
capacity c(u, v) for every edge, we also have a capacity c(v) for every vertex. The
flow coming to a vertex v cannot exceed the vertex capacity c(v). Reduce this
problem to the network flow problem.

6.	 You have successfully computed a maximum s-t flow for a network G = (V, E) with
positive integer edge capacities. Your manager now gives you another network G’
that is identical to G except that the capacity of exactly one edge is decreased by
one. You are also explicitly given the edge whose capacity was changed. Describe
how you can compute a maximum flow for G’ in linear time.

7.	 The vertex cover of an undirected graph G = (V, E) is a subset of the vertices that
touches every edge; that is, a subset S Ì V such that for each edge (u, v) Î E, one or
both of u, v are in S. Show that the problem of finding the minimum vertex cover
in a bipartite graph reduces to the maximum flow problem.

134  P  Algorithms in Action

8.	 A subset of edges is a matching if no two edges have a common vertex. A maxi-
mum matching is a matching with the largest possible number of edges. Our goal
is to find the maximum matching in a bipartite graph. Show that the problem of
finding the maximum matching in a bipartite graph reduces to the maximum
flow problem.

9.	 There are n students in a class. We want to choose a subset of k students to join a
committee. There has to be m1 number of freshmen, m2 number of sophomores,
m3 number of juniors, and m4 number of seniors on the committee. Each student
is from one of k departments, where k = m1 + m2 + m3 + m4. Exactly one stu-
dent from each department has to be chosen for the committee. We are given a
list of students, their home departments, and their class (freshman, sophomore,
junior, or senior). Describe an efficient algorithm based on network flow tech-
niques to select who should be on the committee such that these constraints
are all satisfied.

10.	 Consider a set of mobile computing clients in a certain town who each need to
be connected to one of several possible base stations. We’ll suppose there are n
clients, with the position of each client specified by its (x, y) coordinates in the
plane. There are also k base stations; the position of each of these is specified
by (x, y) coordinates as well. For each client, we wish to connect it to exactly one
of the base stations. Our choice of connections is constrained in the following
ways. There is a range parameter R, which means that a client can only be con-
nected to a base station that is within distance R. There is also a load parameter
L, which means that no more than L clients can be connected to any single base
station. Given the positions of a set of clients and a set of base stations, as well as
the range and load parameters, decide whether every client can be connected
simultaneously to a base station.

11.	 The computer science department course structure is represented as a directed
acyclic graph G = (V, E) where the vertices correspond to courses and a directed
edge (u, v) exists if and only if course u is a prerequisite for course v. By taking
a course w Î V, you gain a benefit of pw which could be a positive or negative
number. Note, to take a course, you have to take all of its prerequisites. Design
an efficient algorithm that picks a subset S Ì V of courses such that the total
benefit is maximized.

12.	 The edge connectivity of an undirected graph G = (V, E) is the minimum number
of edges that must be removed to disconnect the graph. For example, the edge
connectivity of a tree is 1. Show how the edge connectivity of an undirected
graph can be determined by running a maximum-flow algorithm.

Chapter 7  Network Flow  P  135

13.	 There is a precious diamond that is on display in a museum at m disjoint time
intervals. There are n security guards who can be deployed to protect the pre-
cious diamond. Each guard has a list of intervals for which he or she is available
to be deployed. Each guard can be deployed to at most M time slots and has to
be deployed to at least L time slots. Design an algorithm that decides if there is a
deployment of guards to intervals such that each interval has either one or two
guards deployed.

14.	 Your local police department has asked you to help set up the work shift schedule
for the next month. There are n policemen on the staff and m days in the month.
Each policeman gives a list of the days of the month that he or she is available
to work. Let di denote the number of days that each policeman i is available to
work. Then he or she should be scheduled to work at least di/2 of these days.
Each day there must be exactly 2 policemen on duty. Design an algorithm that
decides whether there exists a schedule that satisfies all of these requirements.

  137

I n this chapter we will describe a very general design technique called linear pro-
gramming (LP). Like network flow and dynamic programming, it can be used to express

a wide variety of linear optimization problems given certain constraints. We can use
algorithms for linear programming to solve the shortest distance problem, the max-flow
problem, and many other optimization problems. The latter especially includes problems
of allocating resources and business supply-chain applications given limited resources and
competing constraints.

The technique of linear programming was originally formulated by Russian economist
L.V. Kantorovich in 1939. Later in 1975 he was awarded the Nobel prize in economics for
contributions to the theory of optimum allocation of resources.

The word programming in linear programming is not used in the sense of computer pro-
gramming as we understand it today. Its etymology is similar to dynamic programming (see
chapter 6.) The world linear indicates the linear relationships between different variables.

8.1 Introduction: A Production Problem
Before we proceed with the theory, let us start with a motivating example.

A jewelry company wishes to produce two types of rings: The first type will
result in a profit of $100, and the second type in a profit of $120. To manufac-
ture the first type of ring requires 2 rubies and 1 sapphire. The second type
of ring requires 1 ruby and 3 sapphires. There are 200 rubies and 300 sap-
phires available. How many rings of each type should the company make in
order to maximize its profit?

Linear Programming

Chapter 8

138  P  Algorithms in Action

A linear programming problem consists of a linear objective function to be max-
imized or minimized, subject to certain constraints, in a form of linear equations or
inequalities. First, we start with defining variables. Let x ³ 0 be the number of the first
type rings and y ³ 0 be the number of the second type rings to be made. Then the total
profit the company makes is given by 100 x + 120 y. Therefore, the objective function
for the problem is

+max100 120 .
,

x y
x y

Next, we define constraints on x and y. The total amount of rubies is 2x + y is and
must not exceed 200. The total amount of sapphire is x + 3y and must not exceed 300.
These lead to the following system of inequalities

+ ≤

+ ≤

≥

2 200

3 300

, 0.

x y
x y
x y

This is an example of a linear program: All our constraints are linear inequalities
and the objective function is also linear.

We can solve our linear program by graphing the set of points in the plane that sat-
isfies all the constraints and then finding the maximum of the objective function. A
linear equation in x and y defines a line, and a linear inequality defines a half space,
the region on one side of the line. Figure 8.1 represents a half space for inequality
2x + y £ 200.

FIGURE 8.1  A half space for 2x + y £ 200.

2x + y ≤ 200

100 200

100

x

y

2x + y = 200

200

Drawing other inequalities in the constraint set will give us a convex polygon S (see
figure 8.2.) The set S (in blue) is the intersection of all four half spaces. Each point in S

Chapter 8  Linear Programming  P  139

is a candidate for the solution to our linear program and the whole set represents all
feasible solutions.

FIGURE 8.2  Feasible solutions.

100

S

200 300

100

x
x + 3y = 300

2x + y = 200

200
y

We want to find a feasible point in S that maximized the objective function.
For that, we draw an objective line 100 x + 120 y = p, where p can take any real
value and move it parallel to itself, up and to the right to get the larger and larger
profit p (see figure 8.3). Ideally, we want to get as far as possible within the fea-
sible region S and find the last point where the objective line intersects the
feasible region. It is easy to see that the objective function always takes on its
maximum value at a corner point of the feasible region. In our example that point
is at the vertex (60, 80) and the objective function value is 15,600. The point(s)
that optimizes the objective function of the linear program is called an optimal
solution.

FIGURE 8.3  The arrow shows a direction of increasing profit.

(60, 80)

100 200 300

100

x

y

x + 3y = 300

2x + y = 200

100x + 120y = p

200

Although it does not happen in our example, an entire polygon edge could be the
optimal solution. This happens when an objective function line is parallel with one
of the constraint lines. In this case a linear program has infinitely many optimal
solutions.

140  P  Algorithms in Action

8.1.1 Infeasibility and Unboundedness
Not all linear programs have solutions. In certain circumstances a linear program can
be either infeasible or unbounded. Both situations are commonly due to shortcomings
in the constraints formulation or to some wrong numbers in the data. Consider the fol-
lowing linear program:

≤
≥

max

1

2.

x

x
x

x

For this program, the constraint set S is empty. Since there is no assignment to the
variables that satisfies all the constraints, the problem has no solution and is called
infeasible.

Feasible sets may be bounded or unbounded. A problem is said to be unbounded if
the constraints do not restrict the objective function and the optimal objective may be
improved indefinitely. Here is an example:

³

max

2.

x

x
x

If the feasible region is unbounded, the optimal objective value may or may not be
finite. Consider the following unbounded linear program (depicted in figure 8.4), in
which an objective function line is parallel to a constraint:

−

− ≤

≥

max

1

, 0.

,
x y

x y
x y

x y

The feasible region S is clearly unbounded, since any point x = y belongs to it. On
other hand, there is a finite solution to the problem, which occurs at the corner x = 1
and y = 0. Note that the solution is not unique; x = 2, y = 1 is another solution.
Actually, the whole edge of the region S is a solution. We could make a unique solution
by adding another constraint x £ 1.

https://en.wikipedia.org/wiki/Bounded_set

Chapter 8  Linear Programming  P  141

FIGURE 8.4  An unbounded linear program.

S

1

1

–1

x

x – y ≤ 1

y

If a linear program is both feasible and bounded, then it has at least one finite
optimal solution.

8.2 The Standard Maximum Problem
A linear program is the problem of optimizing a linear objective function in n variables,
x1, …, xn, subject to m linear inequalities. In standard inequality form, a linear program
is written as

+…+
…
max()
, , 1 1

1

c x c x
x x n n

n

subject to



+…+ ≤

+…+ ≤

11 1 1 1

1 1

a x a x b

a x a x b

n n

m mn n m

where each variable xj satisfies the non-negativity constraint

≥ … ≥0, , 0.
1
x xn

Most of the application problems do not automatically arise in standard form, though
there is a variety of techniques to rephrase problems in standard form. All LP problems
can be converted to standard form by the following techniques:

1.	 A minimum problem can be changed to a maximum problem by multiplying the
objective function by -1.

142  P  Algorithms in Action

2.	 Constraints of the form a xj ³ b can be changed to –a xj £ –b.
3.	 An equality constraint a xj = b can be transformed into inequality form by replac-

ing each equation by two inequalities, a xj £ b and –a xj £ –b.
4.	 An unrestricted (free) variable xj can be replaced by the difference of two vari-

ables, xj = u – v, where u ³ 0, v ³ 0.
5.	 A variable constraint of the form xj ³ c can be transformed into zj ³ 0 by replac-

ing xj = zj – c.

The standard form is useful when we want to state theoretical results about linear
programs without going through all special cases. From the application point of view,
it’s not necessary to convert a problem into standard form. The LP solver packages (like
LINDO, CPLEX, Gurobi) carry out all necessary conversions.

A standard problem can be written in a matrix form if we introduce the
following notations:

�

� � �
�

=
…













=
…













=
…













=













, , , .

1

2

1

2

1

2

11 1

1

x

x

x

x

c

c

c

c

b

b

b

b

A
a a

a a
n n m

n

m mn

By applying some basic linear algebra, this problem becomes

max()c xT
x

subject to

≤
≥0.

A x b
x

For example, in the production problem from chapter 8.1, we have

=










=










=










c b A100

120
, 200

300
, 2 1

1 3
.

Chapter 8  Linear Programming  P  143

Every inequality of the form +…+ ≤11 1 1 1a x a x bn n in the constraint set divides the
space n into two regions, called half spaces, with the hyperplane + + =11 1 1 1a x a x bn n
being the boundary between them. An intersection of these half spaces forms a polyhe-
dron, which is a convex set in n dimensions. A polytope is a bounded polyhedron. A cube
and a tetrahedron are examples of polytopes. Corner points of a polytope are intersec-
tions of hyperplanes and called extreme points.

Theorem (Fundamental theorem). The linear program either

1.	 has no optimal solution, in which case a feasible set is empty or unbounded; or,

2.	 has an optimal solution that must occur at one of the vertices of the polytope.

In linear program we do not allow strict inequalities such as a x < b, since the solu-
tion is not guaranteed to exist at extreme points. Here is an example:

<

max

2.

x

x
x

The maximum x = 2 does not lie in the feasible region.
An important consequence of this theorem is that an algorithm for solving a linear

program only needs to examine all the extreme points of the polytope. How many
vertices can there be? In a system with m constraints and n variables, that is the same
as the number of ways to choose n linear independent rows from m rows, at most ()mn .
Thus, we have discovered an exponential time algorithm (in the worst case) for solv-
ing a linear program: Enumerate all vertices of the polytope, calculate the value of
the objective function for each vertex, and take the maximum. This is the outline of
an algorithm called the simplex algorithm, invented by G. Dantzig in 1947. The algo-
rithm is very efficient in practice and runs in O(n2 m) time in most cases, even with
tens of thousands of variables and constraints (on modern computers).

The first polynomial time algorithm, the ellipsoid method, was discovered in 1979
by L. Khachian. The algorithm is terribly slow and not competitive with the simplex
algorithm in practice, though it makes a theoretically powerful tool; for instance, it
is used for combinatorial optimization problems. In 1984, N. Karmarkar described a
faster polynomial time algorithm called the interior point method. However, the sim-
plex algorithm remains the most popular method for solving linear programming
problems.

144  P  Algorithms in Action

8.3 A Few Applications
In this chapter we express problems that are familiar to us, for which we have developed
efficient algorithms in the previous chapters, as linear programs. Though the linear
programming approach is less efficient when using specialized algorithms, the main
point here is to demonstrate how linear programming can be applied, and to illustrate
its generality. Reducing a problem to linear programming may provide a quicker way
(from a software engineering standpoint) to solve it, rather than to invent a custom
algorithm for it.

8.3.1 The Shortest-Path Problem
In chapters 4.5 and 6.4 we have discussed the problem of finding the shortest directed
path from s and t in a weighted directed graph G = (V, E). In this section we will reduce
the shortest path problem to linear programming. Recall the definition of a polynomial
reduction from chapter 7.3.

We construct a linear program as follows. We define a variable d(v) that denotes a
distance from a source s to each vertex v Î V. Since the edge weights are allowed to be
negative, each d(v) is unrestricted in sign. For the source vertex, d(s) = 0. For every
directed edge (u, v) Î E, we add the constraint d(v) £ d(u) + w(u, v), where w(u, v) is the
edge weight. This is illustrated in figure 8.5.

FIGURE 8.5  The relaxation constraint.

u

v

s
w(u, v)

d(v)

d(u)

The relaxation constraint implies that d(v) £ min u (d(u) + w(u, v)) is at most the
shortest path distance from s to v. So, d(v) is the largest value in the set {d(u) + w(u, v)}.
It follows that in order to get the shortest distance to the target t, we need maximize
d(t). Another argument for why the objective function is to be maximized is that if we
minimize d(t) we will get a trivial solution. We do not require edge weights to be non-
negative, but we have to watch out for negative weight cycles (see Exercise 8).

Here is the LP formulation for the single-source shortest-path problem, assuming
no negative weight cycles:

Chapter 8  Linear Programming  P  145

max d t()

subject to

d v d u w u v u v E() () (,), for every (,)− ≤ ∈

d s d v v V s() 0, () are unrestricted for every \{ }.= ∈

As an example, consider the directed weighted graph (figure 8.6). We need to calcu-
late the shortest distance between s to t.

FIGURE 8.6  A shortest path problem.

3

6

–95

4

5
11

2 13

11

5

t

1

S
4

2

This problem can be formulated as a following linear program:

max d(t)

subject to

d(1) £ d(s) +5 , d(2) £ d(1) + 4, d(2) £ d(4) + 5, d(2) £ d(s) +11, d(3) £ d(4) +13,

d(3) £ d(2) – 9,d(3) £ d(1) + 6, d(4) £ d(s) +2, d(t) £ d(2) + 5, d(t) £ d(3) +11,

where

d(s) = 0, d(1) ³ -9, d(2) ³ -9, d(3) ³ -9, d(4) ³ -9, d(t) ³ -9.

Solving the above LP yields the correct results, d(t) = 9. However, the dis-
tance d(1) = 3 is underestimated. The optimal solution guarantees only the
shortest distance from s to t. For other vertices, d(v) may be an underestimate of
the true distance. This could be easily fixed by changing the objective function (see
Exercise 7).

What happens to the LP if there is no s-t path in the given graph? Consider the fol-
lowing graph (figure 8.7) in which the vertex t is unreachable.

146  P  Algorithms in Action

FIGURE 8.7  A graph with an unreachable vertex t.

3

6

–95

4

5
11

2 13

11

5

t

1

S
4

2

A linear programming formulation is

max d(t)

d(1) £ d(s) +5 , d(2) £ d(1) + 4, d(2) £ d(4) + 5, d(2) £ d(s) +11, d(3) £ d(4) +13,

d(3) £ d(2) – 9, d(3) £ d(1) + 6, d(4) £ d(s) +2, d(2) £ d(t) + 5, d(3) £ d(t) +11,

d(s) = 0, d(1) ³ -9, d(2) ³ -9, d(3) ³ -9, d(4) ³ -9, d(t) ³ -9.

As it turns out the linear program is unbounded. It follows from the last two
constraints:

≤ +

≤ +








d d t
d d t
(2) () 5

(3) () 11

We can readily calculate the shortest distances d(2) = 7 and d(3) = –2. The above
inequalities therefore can be rewritten as

d t

d t

() 2

() 13

≥

≥−








which means that the maximum d(t) cannot be reached.

8.3.2 The Max-Flow Problem
Recall the max-flow problem defined in chapter 7.1. Given a network (G = (V, E), s, t, c)
with a designated source s and sink t, and a nonnegative capacity c(u, v) for each edge
(u, v) Î E, we need to maximize the flow from s to t. The max-flow problem can be easily
reduced to a linear program by following the definition of feasible flow. We introduce

Chapter 8  Linear Programming  P  147

a variable f(u, v) that denotes a flow across the edge (u, v) Î E. There are two types of
constraints in a flow network:

1.	 Capacity constraint: 0 £ f(u, v) £ c(u, v), for each edge (u, v) Î E
2.	 Conservation constraint: ∑ =∑f u v f v w(,) (,)u w , for each v Î V - {s, t}

The objective function is to maximize a flow emanating from the source s (or
descend to the sink t). The linear program has E variables and 2E + V – 2 constraints.
If we want to write this LP in the standard from, we need to change the equal-
ities, ∑ =∑f u v f v w(,) (,),u w

 into inequalities, ∑ − ≤∑ −f u v f v w(,) (,)u w and

∑ ≤∑f u v f v w(,) (,)u w
.

As an example, consider the flow network in figure 8.8. We need to calculate the
max-flow between s to t.

FIGURE 8.8  The flow network.

t
2

2

3
1

4 3

3

3

a

S

d

b

c

This problem can be formulated as a following linear program:

max f(s, a) + f(s, d)

subject to

0 £ f(s, a) £ 3, 0 £ f(s, d) £ 4, 0 £ f(a, b) £ 2, 0 £ f(a, c) £ 1,

0 £ f(b, t) £ 3, 0 £ f(c, t) £ 3, 0 £ f(d, c) £ 3, 0 £ f(d, b) £ 2,

f(s, a) = f(a, b) + f(a, c), f(a, b) + f(d, b) = f(b, t),

f(a, c) + f(d, c) = f(c, t), f(s, d) = f(d, b) + f(d, c).

8.3.3 The Knapsack Problem
Recall the knapsack problem from chapter 6.1. You are given a set of n unique items, with
weights w1, …, wn and values v1, …, vn, where the weights and values are all integers. The

148  P  Algorithms in Action

problem is to find a subset of the most valuable items such that their total weight does
not exceed W. We assume that all items are unbreakable. We formalize the problem by
introducing an indicator variable xk for each item k = 1, 2, …, n:

=







1, if item is selected

0, otherwise.
x k
k

Then, we write the 0-1 Knapsack problem as follows

∑

∑ ≤

=

=

max
1

1

v x

w x W

k

n

k k

k

n

k k

Notice that since the variables Î {0, 1}xk are integers, we do not have an
ordinary linear program. This is an integer linear programming (ILP) prob-
lem that cannot be solved by the Simplex method. It’s even worse: There is no
polynomial algorithm that solves this problem. On the other hand, there is no proof
that such an algorithm does not exists. We will prove in chapter 9 that ILP is a NP-hard
problem.

8.4 The Dual Linear Program
Generally, the duality principle allows us to prove that a solution to an optimi-
zation problem is optimal. In chapter 7.2.3 we have used duality to prove the
maximum flow. In this chapter we will describe how to formulate a dual linear
program in which we minimize an objective function. We call the original linear
program the primal. The dual of a dual linear program is the original primal
linear program.

Given a primal linear program in standard maximum form

≤

≥

max()

subject to

0

c x

Ax b
x

x

T

Chapter 8  Linear Programming  P  149

we define the dual as standard minimum problem:

³

³

min()

subject to

0

b y

A y c
y

y

T

T

As an example, consider the production problem from section 8.1:

+

+ ≤

+ ≤

≥

max100 120

2 200

3 300

, 0

,
x y

x y

x y
x y

x y

Here, the variables x and y represent the number of the first and second types of rings
correspondingly. The dual to the previous linear program is in the variables u and v,
which represent the shadow prices.

FIGURE 8.9  A dual to the production problem.

v

(36, 28)

S
min 200 u + 300 v

2u + v ≥ 100
u + 3v ≥ 120

u, v ≥ 0

u,v

40

50 120
u

u + 3v = 120

2u + v = 100

100

A shadow price is the value per unit of a resource, which in our case is rubies and
sapphires. Figure 8.9 shows that the objective function takes its minimum value at a
corner point of the feasible region, at the vertex with coordinates (36, 28). These num-
bers are the minimal prices at which we are willing to sell each ruby and sapphire. If
we compute the value of resources based on shadow prices, we get our optimal profit:
200 ́ 36 + 300 ́ 28 = 15,600. The objective function value is the same as in the primal
problem. This is not a coincidence but reflects a fundamental property of primal and
dual programs.

150  P  Algorithms in Action

The relation between a standard problem and its dual is given in the following the-
orems and corollaries.

Theorem 1. (The weak duality) Let P and D be primal and dual LP correspondingly. If x
is a feasible solution for P and y is a feasible solution for its dual D, then £c x b yT T .

Proof. Since y is feasible solution, we have

= ≤ = ≤() () .c x x c x A y A x y b yT T T T T T

The first inequality follows from the fact that y is feasible solution; the second inequal-
ity follows since x is feasible solution. ∎

The theorem says that the optimum of the dual is an upper bound to the optimum of
the primal. The difference between them, -c x b yT T , is called a duality gap.

Corollary 1. If a standard problem and its dual are both feasible, then both are
feasible bounded.

Proof. Since the dual is an upper bound to the optimum of the primal, then the primal
is bounded. If the primal is a lower bound to the optimum of the dual, then the dual is
bounded. ∎

Corollary 2. If one problem has an unbounded solution, then the dual of that problem is
infeasible.

Proof. Suppose that the dual is feasible. Then, the dual would provide an upper bound
on the primal. This contradicts the fact that the primal problem is unbounded. The
argument for the dual is analogous. ∎

Theorem 2. (The strong duality) Let P and D be primal and dual LP correspondingly.
If x is a feasible solution for P and y is a feasible solution for its dual D, then =c x b yT T .

The proof of this theorem is beyond the scope of this book.
Table 8.1 demonstrates all possible relations between the primal P and the dual

D. In the table we use the following notations: F.B. (feasible bounded), F.U. (feasible
unbounded), I. (infeasible). The NO in the table shows the impossibilities that follow

Chapter 8  Linear Programming  P  151

either from Corollary 1 or 2. The YES in the table means the possibility, and we provide
a corresponding example.

TABLE 8.1  Relations between the primal and the dual

P/D F.B. F.U. I.
F.B. YES (1) NO NO
F.U. NO NO YES (2)

I. NO YES (3) YES (4)

Example 1. (P and D are F.B.)

+

+ ≤

− ≤

≥

+

+ ≥

− ≥

≥

max(4)

3

2

, 0

min(3 2)

1

4

, 0

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

x x

x x

x x

x x

y y

y y

y y

y y

Example 2. (P is F.U. and D is I.)

+

− ≤

− ≤

≥

+

+ ≥

− − ≥

≥

max(4)

3

2

, 0

min(3 2)

1

4

, 0

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

x x

x x

x x

x x

y y

y y

y y

y y

Example 3. (P is I. and D is F.U.)

+

+ ≤−

− ≤

≥

− +

+ ≥

− ≥

≥

max(4)

3

2

, 0

min(3 2)

1

4

, 0

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

x x

x x

x x

x x

y y

y y

y y

y y

152  P  Algorithms in Action

Example 4. (P and D are I.)

+

− + ≤−

− ≤

≥

− +

− + ≥

− ≥

≥

max(4)

3

2

, 0

min(3 2)

1

4

, 0

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

x x

x x

x x

x x

y y

y y

y y

y y

Theorem 2 states that if the primal and dual problems have optimal solutions, then
the optimal objective function values must be equal. But it does not mean that a dual-
ity gap of the linear program is always zero. It is possible for both the primal and dual
problems to be infeasible. In this case the duality gap is infinity (see Exercise 14).

REVIEW QUESTIONS

1.	 What is linear programming?
2.	 What is an objective function?
3.	 What are the nonnegativity constraints?
4.	 What is an optimal solution?
5.	 What is a feasible solution?
6.	 (T/F) Every LP has an optimal solution.
7.	 (T/F) If an LP has an optimal solution it occurs at an extreme point.
8.	 (T/F) If an LP is feasible and bounded, then it must have an optimal solution.
9.	 (T/F) An LP allows strict inequalities in the constraints.

10.	 (T/F) An LP for which the feasible region is unbounded has the finite
optimal solution.

11.	 (T/F) The weak duality theorem does not always hold for an integer
linear program.

12.	 (T/F) An LP must be infeasible if its dual problem is unbounded.
13.	 (T/F) Both the primal and the dual can be infeasible.
14.	 (T/F) There is no duality gap in linear programming.

Chapter 8  Linear Programming  P  153

EXERCISES

1.	 A furniture company produces two types of chairs. The first type takes 10 hours
to make and uses 2 square yards of fabric and 20 pounds of padding. The second
type takes 70 hours to make and uses 3 square yards of fabric and 10 pounds of
padding. The profit of the first type is $2 per chair, and the profit of the second
type is $5 per chair. The resources available for production for both chairs are
490 hours of labor, 32 yards of fabric, and 240 pounds of padding. How many
chairs of each type should the company make in order to maximize its profit?

2.	 A cargo plane can carry a maximum weight of 100 tons and a maximum volume
of 60 cubic meters. There are three materials to be transported, and the cargo
company may choose to carry any amount of each, up to the maximum available
limits provided in the table below

Density Volume Price

Material 1 2 tons/m3 40 m3 $1,000 per m3

Material 2 1 tons/m3 30 m3 $2,000 per m3

Material 3 3 tons/m3 20 m3 $12,000 per m3

Write a linear program that optimizes revenue given the constraints.

3.	 A furniture company produces three types of couches. The first type uses 1 foot
of framing wood and 3 feet of cabinet wood. The second type uses 2 feet of fram-
ing wood and 2 feet of cabinet wood. The third type uses 2 feet of framing wood
and 1 foot of cabinet wood. The profit of the three types of couches is $10, $8, and
$5, respectively. The factory produces 500 couches each month of the first type,
300 of the second type, and 200 of the third type. However, this month there is
a shortage of cabinet wood to only 600 feet, but the supply of framing wood is
increased by 100 feet. How should the production of the three types of couches
be adjusted to minimize the decrease in profit?

4.	 You have $1,000 to invest. There are three types of investments. The first type
is every dollar invested yields $0.10 a year from now and $1.30 three years from
now. The second type is every dollar invested yields $0.20 a year from now and
$1.10 two years from now. The third type is every dollar invested a year from
now yields $1.50 three years from now. The most that can be invested into a
single investment is $500. During each year all leftover cash is placed into money
markets that yield 6% per year. Write a linear program to maximize your invest-
ment in three years from now.

154  P  Algorithms in Action

5.	 The Canine Products company has two dogfood products, Frisky Pup and Husky
Hounds, that are made from a blend of two raw materials, cereal and meat. One
pound of cereal and 1.5 pounds of meat are needed to make a package of Frisky
Pup, and it sells for $7 a package. Two pounds of cereal and 1 pound of meat are
needed to make a package of Husky Hound, and it sells for $6 a package. Raw
cereal costs $1 per pound and raw meat costs $2 per pound. It also costs $1.40 to
package the Frisky Pup and $.60 to package the Husky Hound. A total of 240,000
pounds of cereal and 180,000 pounds of meat are available per month. The pro-
duction bottleneck is that the factory can only package 110,000 bags of Frisky
Pup per month. Write a linear program to maximize profit.

6.	 Rewrite the following linear programs in the standard maximum form:
a.	 Maximize	 2 x + 3 y

subject to	 5 x – 6 y ³ 7

					 7 x + 8 y £ 9

					 x ³ 0, y ³ 2

b.	 Maximize	 2 x + 3 y
subject to	 5 x – 6 y ³ 7

					 7 x + 8 y = 9

					 x ³ 0

c.	 Minimize	 5 x – 2 y + 9 z
subject to	 3 x + y + 4 z = 8

					 2 x + 7 y – 6 z £ 4

					 x £ 0, z ³ 1

7.	 Modify the linear program in section 8.3.1 to find the shortest distance from the
source s to all other vertices.

8.	 What happens to the LP in section 8.3.1 if a given graph has negative weight cycles?
9.	 The all-pairs shortest-paths problem is to find a shortest path between any pair of

vertices, u to v. Formulate the all-pairs shortest-paths problem as a linear program.
10.	 Given a bipartite graph, G = (V, E), a subset of edges is a matching if no two edges

have a common vertex. A maximum matching is a matching with the largest pos-
sible number of edges. Our goal is to find the maximum matching in a bipartite
graph G. Write a linear program that solves the maximum-matching problem.

Chapter 8  Linear Programming  P  155

11.	 There are n people and n jobs. You are given a cost matrix, where each element
C(i, j) represents the cost of assigning person i to do job j. You need to assign all
the jobs in such a way that each person performs only one job and each job is
assigned to only one person. Write a linear program that minimizes the total
cost of the assignment.

12.	 Given an infinite supply of bins, each of which can hold the maximum weight
of 1, and there are also n objects, each of which has a weight wi £ 1, your goal is to
place all the objects into bins in such a way that the total number of used bins is
minimized. Formulate the problem as an integer linear programming problem.

13.	 Write the duals to the following linear programs:
a.	 Maximize	 x1 + x2 + 2 x3

subject to	 x1 + 2 x3 £ 3

					 –x1 + 3 x3 £ 2

					 2 x1 + x2 + x3 £ 1

					 x1, x2, x3 ³ 0

b.	 Maximize	 3 x1 – 2 x2 + x3

subject to	 x1 – x2 + x3 £ 4

					 3 x1 + x2 + 2 x3 £ 6

					 –x1 + 2 x3 = 3

					 x1 + x2 + x3 £ 8

					 x1, x2, x3 ³ 0

c.	 Minimize	 3 y1 – 2 y2 + 5 y3

subject to	 – y2 + 2 y3 ³ 1

					 y1 + y3 ³ 1

					 2 y1 – 3 y2 + 7 x3 ³ 5

					 y1, y2, y3 ³ 0

14.	 Create an example of a linear program showing that the strong duality theorem
does not always hold for an integer linear program.

15.	 Create an example of a linear program showing that the primal and the dual can
be both infeasible.

  157

I n previous chapters we have seen different algorithms that run in worst-case poly-
nomial time. We say that those algorithms are efficient. At the same time, we have seen

problems that cannot be computed in polynomial time. That raises two questions: What is
computable? and What is efficiently computable? These are the fundamental questions of
computer science. To answer these questions, we have to introduce an abstract model of
computation—the Turing machine. Turing machines provide a precise, formal definition of
what it means to be computable. In this chapter we will consider a class of hard problems
for which it is unknown if they can be solved in polynomial time. At the heart of these is the
most famous unsolved problem in computer science:  versus NP.

9.1 A Brief Introduction to the Turing Machines
In the 1900 International Congress of Mathematicians, D. Hilbert presented a list of 23 chal-
lenging (unsolved) problems in mathematics. One of them (known today as Hilbert’s 10th
problem) was formulated (my rephrasing) as follows:

Given a multivariate polynomial with integer coefficients, devise a process
according to which it can be determined, in a finite number of operations,
whether it has an integer root.

In modern terminology, Hilbert was asking for an algorithm to decide whether a
Diophantine equation has a solution in integers. This problem sparked the great interest
in the research community. For many years people have tried to devise such an algorithm

Chapter 9

NP Completeness

158  P  Algorithms in Action

without success. Eventually, they began to think that it could not be done at all, so they
started to search for proof that there is no such algorithm at all. Only in the mid-1930s
did Alonzo Church and Alan Turing show that some problems have no algorithmic
solution. In other words, they are unsolvable. Turing’s proof introduced the notion of
computation by machine, nowadays called the Turing machine. The machine precisely
defines the meaning of an algorithm. An algorithm is a Turing machine in the sense that
if an algorithm exists, then a Turing machine can run it. We say that a problem is com-
putable if there is an algorithm for solving it in a finite number of steps. Therefore, an
algorithm must always halt.

The Turing machine is a computing device, consisting of a head with a tape of unbounded
length passing through it—a tape divided into cells. Each cell contains one symbol. The
machine can perform only the following types of operations—read, write, move left,
move right, change state, and halt. Based on the symbol it is currently reading, and its
current state, the Turing machine either writes a new symbol in that location, moves
to a new state, or stays in place. Once the computation is completed, the machine will
come to a halt state. Figure 9.1 shows an example of a Turing machine that takes a binary
string and appends 0 to its left side.

FIGURE 9.1  An Example of a Turing machine.

halt

0,1,R ∆,1,L

∆,0,L

0,0,R

1,1,R

1,0,R

S0

S1

The states are represented by vertices and the transitions are represented by edges.
Each transition has a triple of the form read, write, and direction. For example, (0,1,R)
means if reading a 0, then write a 1 and move the head right. ∆ denotes an empty cell.
Computation starts at state S0. If, for example, the first character of the input is a 1, we
output a 0, move the head to the next character, and transition to state S1. A computa-
tion may consist of millions of transitions. The Turing machines we have described here
are deterministic: For every state there must be exactly one transition.

Despite its simplicity, the Turing machine is capable of computing anything that the
modern computer can compute. According to the Church-Turing thesis (conjecture),
everything that can be computed can be computed by a Turing machine. That is not a

Chapter 9  NP Completeness  P  159

theorem; it has not been and cannot be proven. Also, as of today no counterexample
has yet been constructed.

9.2 Computational Intractability
With the Turing machine we are ready to define the runtime complexity and com-
plexity classes. The runtime complexity is the function f: � ® � such that f(n) is the
maximum number of steps (transitions) that the Turing machine uses on any input of
length n.

Definition. A fundamental complexity class  (or PTIME) is a class of decision problems
that can be solved by a deterministic Turing machine in polynomial time.

A fundamental complexity class EXPTIME is a class of decision problems that can
be solved by a deterministic Turing machine in O(2p(n)) time, where p(n) is a poly-
nomial. By a decision problem we mean a problem that can be formulated as a
“yes-no” question. Considering decision problems only does not reduce the scope of
all problems, since every computational problem is equivalent to a decision prob-
lem. For instance, any optimization problem can be converted into a decision problem
(see Exercise 1.)

A decision problem is decidable if it can be solved by a Turing machine that always
halts; otherwise, it is called undecidable. An undecidable problem cannot be solved by
any Turing machine. The most famous example of an unsolvable problem is the halt-
ing problem. That is the problem of whether a given Turing machine will terminate on
a given input or instead it will run forever.

Theorem (A. Turing, 1936). The halting problem is undecidable (unsolvable).

Proof. We will prove it by a self-referencing contradiction as in the famous liar’s para-
dox, the one about saying, “I am lying.” If that statement is true, then it’s not true. But if
the statement is not true, then it is true.

Let P(x) denote the output that arises from running program P on input x, assuming
that P eventually halts. Then P(P) means the output obtained from running program P
on the text of its own source code. Let K be the set of all programs P such that P(P) halts:

K P P P{program | () halts}.=

160  P  Algorithms in Action

Clearly a set K is not empty; a Java program could be an element of that set. Next, we
define a program HALT as follows:

P K P P

P K P P
HALT(P)

yes, if , so () halts.

no, if , so () doesn t halt.
=

∈

∉ ′








Let us assume that such program HALT does exist. Finally, we define a new program
CONFUSE that calls HALT as a subroutine:

bool CONFUSE(P) {
 if (HALT(P) == True)
	 then loop forever;
 else return True;
}

Does CONFUSE(CONFUSE) halt? Consider two cases:

1.	 Assume CONFUSE(CONFUSE) does halt.

Then, by the definition of program HALT, we have that HALT(CONFUSE)
is true. And by the definition of program CONFUSE, we have that
CONFUSE(CONFUSE) loops forever.

2.	 Assume CONFUSE(CONFUSE) does not halt.

Then, by the definition of program HALT, we have that HALT(CONFUSE) is false.
And by the definition of CONFUSE, we have that CONFUSE(CONFUSE) returns true.

This is a contradiction. We have assumed that HALT exists; therefore, such a pro-
gram HALT cannot exist. ∎

Why is the halting problem so important? There are two reasons. First, a lot of prac-
tical problems are the halting problem in disguise. For example, there is no algorithm
that can reliably detect all software viruses. Second, if the halting problem could be
solved, many other problems could be decided. For example, the famous Goldbach’s con-
jecture could be decided. This conjecture states that every even integer greater than
2 can be expressed as the sum of two primes. We can write a program that runs until
it finds the first counterexample to Goldbach’s conjecture. If the halting problem was
decidable then Goldbach’s conjecture would be true if this program never halted and
would be false if it did halt.

https://brilliant.org/wiki/the-goldbach-conjecture/
https://brilliant.org/wiki/the-goldbach-conjecture/

Chapter 9  NP Completeness  P  161

In his original 1936 paper, Turing also defined an extension of his deterministic
machine that is known today as nondeterministic Turing machines. However, the con-
cept of nondeterminism did not get much interest until works by M. Rabin and D. Scott
in the early 1960s. Formally, a nondeterministic Turing machine has all the components
of a standard deterministic Turing machine, except that at every state there is a set of
possible transitions, any of which can be chosen by the machine. Therefore, a nonde-
terministic machine specifies a computation rooted tree. In this tree, a path from the
root to a leaf is a computation. In a deterministic machine, the computation tree is just
a single path. The power of a nondeterministic Turing machine is that it does computa-
tions in parallel. Using this machine, we can define new computational classes.

Definition. A fundamental complexity class NP is a class of decision problems that can
be solved by a nondeterministic Turing machine in polynomial time.

For example, consider the problem of coloring the vertices of a graph with k > 2
colors so that no two adjacent vertices have the same color belongs to the NP class. A
nondeterministic algorithm can simply guess an assignment of colors and then check
in polynomial time if all pairs of adjacent vertices have distinct colors.

There is another view of the NP class that uses an alternative verifier-based definition.

Definition. A fundamental complexity class NP is a class of decision problems where
each provides a certificate that can be verified by a deterministic Turing machine in
polynomial time.

Consider the Hamiltonian path problem (see chapter 1.3.6). Assume we were given a
sequence of vertices. We could verify in polynomial time whether they form a Hamiltonian
path by visiting all vertices in the sequence. NP problems can be viewed as finding a
needle in a haystack: It is hard to find it but it’s always easy to verify once the needle
is found.

Unfortunately, a mighty nondeterministic machine is a pure abstraction since no phys-
ical computer (even a quantum computer) can support unlimited parallelism. It is easy
to see (running a breadth-first search) that a deterministic machine can recompute the
entire computational tree of a nondeterministic machine. We can state that if a problem
can be solved by a nondeterministic Turing machine, then it can be solved by a deter-
ministic one. The difficulty is that such simulation between machines takes exponential
time. But can we do it efficiently (i.e., in polynomial time)? The famous  versus NP
conjecture would answer this question: We cannot hope to simulate nondeterministic

162  P  Algorithms in Action

Turing machines in polynomial time. Therefore, we believe that these two classes are
not equal since researchers have devoted an enormous amount of time trying to find
polynomial time algorithms for some NP problems without success.

Next, we describe two more complexity classes: the NP-hard and NP-complete. For
that we need to recall the definition of polynomial reduction (see chapter 7.3)

Definition. A polynomial-time reduction of a decision problem Y to a decision problem X
(we write it as Y £ p X) is a map f: Y ® X such that

1.	 f is a polynomial time computable, and
2.	 "y Î Y is yes-instance if and only if f(y) Î X is yes-instance.

In the previous chapters we use reductions to solve problems. A reduction Y £ p X
means that if we have an algorithm for problem X, we can use it to solve problem Y fol-
lowing these steps:

•	 Reduce an input of Y into an input of X

•	 Solve X

•	 Reduce the solution back to Y

In particular, if we can solve X in polynomial time, then we can solve Y in polyno-
mial time.

In this chapter we use reductions to show that we cannot solve some problems. The
contrapositive of the previous statement is, “If we cannot solve Y in polynomial time,
then we cannot solve X in polynomial time.” Therefore, the second meaning of Y £ p X
is that knowing that problem Y is hard (it has no an efficient algorithm), we prove that
X is at least as hard as Y.

An example is Independent Set £p Vertex Cover.
Recall the definitions of an independent set and a vertex cover from chapter 1.3.6.

Given a graph G = (V, E). A set of vertices C is a vertex cover if every edge in E has at least
one endpoint in C. A set of vertices I is an independent set if no two vertices of I are con-
nected by an edge of E. We define decision problems as follows:

Vertex cover problem: Given a graph G and integer k > 0, decide whether there is a vertex
cover of size k.

Independent set problem: Given a graph G and integer k > 0, decide whether there is an
independent set of size k.

Chapter 9  NP Completeness  P  163

The proof of reduction from an independent set problem to a vertex cover problem
is based on the fact that a graph G = (V, E) has an independent set of size ³ k if and only
if G has a vertex cover of size £ V – k.

Definition. A problem X is in NP-hard is for any Y Î NP it holds that Y £p X.

Definition. A decision problem X is in NP-complete if X Î NP and X Î NP-Hard.

An NP-hard problem does not necessarily belong to the NP class. The halting problem
is an example. Also, not all NP-hard problems are decision problems; some of them are
optimization problems. We already know that these two kinds of problems are essen-
tially equivalent. However, they belong to two different complexity classes.

These are two of the most important and interesting classes of problems. If an NP-
hard (or NP-complete) problem can be solved in polynomial time, then all NP (and NP-
complete) problems will be solved in polynomial time. Therefore, if one solves such a
problem, it would follow that  = NP.

The diagram in figure 9.2 shows the graphical relationships between different com-
plexity classes, assuming P NP¹ .

FIGURE 9.2  Complexity classes.

Chess
TSP

P

NP

NP-complete

NP-hard

Tetris
Vertex Cover
Knapsack

Graph
isomorphism

Note a gap?

Halting Problem

9.3 NP-Complete Problems
In this section we will take a look at a specific class of problems for which no efficient
algorithms are known. These are NP-complete problems. As we learned in the pre-
vious section, if a polynomial time algorithm were to be found for any one of these
problems, then we could derive polynomial time algorithms for all of the problems in
this class. There are hundreds of NP-complete problems that have been identified.1

1“NP-Complete Problems,” Wikipedia, https://en.wikipedia.org/wiki/List_of_NP-complete_problems

164  P  Algorithms in Action

In this chapter we will consider only a few of them. Our first example is the satisfiabil-
ity problem, which we will call SAT for short.

9.3.1 SAT Problem
Given a logical formula consisting of Boolean variables and operators AND (conjunc-
tion, Ù), OR (disjunction, Ú), NOT (negation, ¬), we say that a formula is in conjunctive
normal form (CNF) if it is a conjunction of clauses, where each clause is a disjunction of
literals. A literal is a Boolean variable or its negation. For example,

¬ ¬∨ ∧ ∨ ∨ ∨ ∧ ∨ ∨() () ()
1 2 1 2 4 5 2 3 5

x x x x x x x x x

A formula is in disjunctive normal form (DNF) if it is a disjunction of clauses, where
each clause is a conjunction of literals:

¬ ¬ ¬∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧() () ()
1 3 5 1 2 5 3 4

x x x x x x x x

A formula is said to be satisfiable if it can be made TRUE by assigning appropriate
logical values (TRUE, FALSE) to its variables. Therefore, SAT is the problem of deter-
mining if there exists an assignment that satisfies a given formula. We would like to find
an algorithm whose worst-case running time is polynomial in the number of variables.
It is easy to see that such an algorithm exists for DNF satisfiability. Any DNF formula is
satisfiable if and only if at least one of its clauses is satisfiable. A conjunctive clause is
satisfiable if and only if it does not contain both a literal and its negation. However, CNF
satisfiability is NP-complete, so no polynomial time algorithm has been found yet. At
the same time, it is not proven that such an algorithm does not exists.

Theorem 1. (Cook-Levin theorem, 1971) CNF-SAT is NP-complete.

We won’t prove the theorem here since it’s beyond the scope of the book. This result
seems paradoxical, because using De Morgan’s laws

¬ ¬ ¬

¬ ¬

∧ = ∨

∨ =¬ ∧

()

()

x y x y
x y x y

we can convert any CNF formula into an equivalent DNF formula. The catch is that
this conversion may require an exponential number of variables (or clauses) in the
worst-case scenario.

Chapter 9  NP Completeness  P  165

Once we have one NP-complete problem, the task of showing other problems to be
NP-complete becomes much easier, since we can use a polynomial reduction between
two problems. To show that a problem X is NP-complete, we will follow these three steps:

1.	 Show that X is in NP
2.	 Pick a problem Y, known to be an NP-complete
3.	 Show that X is in NP-hard, namely prove Y £p X

This is the technique that we will use for all subsequent NP-completeness (and
NP-hardness) proofs. In order to illustrate this technique, we consider a special case
of Boolean satisfiability. We say that a CNF formula is k-CNF if no clause contains more
than k literals. Therefore, k-SAT is the problem of determining satisfiability for a given
k-CNF formula. Next, we will show that 3-SAT is NP-complete.

Theorem 2. 3-SAT is NP-complete.

Proof. The fact that 3-SAT is in NP follows immediately from the observation that if we
have a truth assignment, we can substitute it into a given 3-CNF and then evaluate the
expression in polynomial time. Another way to prove that 3-SAT is in NP is to non-de-
terministically guess values for all the variables and then evaluate the formula. This
can be done in nondeterministic polynomial time.

To prove NP-hardness, we reduce CNF-SAT to 3-SAT. Since instances of CNF-SAT are
already in CNF, we only need to ensure the number of literals in each clause. We will
do this by breaking up clauses that are too long into clauses containing only 3 literals.
For clauses with three literals or less, we do nothing. Consider a clause with four liter-
als (a Ú b Ú c Ú d) and let us break it into two clauses of 3 literals. The first obvious try
is as follows

(a Ú b Ú c Ú d) ® (a Ú b Ú c) Ù (b Ú c Ú d).

Unfortunately, it does not work, since not every assignment that satisfies the left-
hand side of the expression will satisfy the right-hand side. Indeed, a = T, b = c = d = F
is an example of such an assignment. We learn from this example that we need
leverage, namely a free variable that does not belong to a given SAT. Let us intro-
duce a new variable, x, and replace (a Ú b Ú c Ú d) with the following conjunction of
clauses:

(a Ú b Ú c Ú d) ® (a Ú b Ú x) Ù (¬ x Ú c Ú d).

166  P  Algorithms in Action

Note that this statement is not a logical equivalence, since there are different vari-
ables on both sides of the statement.

If there is a truth assignment that satisfies the left-hand side, then at least one of its
literals must be true. Let a = T. Then, to satisfy the right-hand side, we need to satisfy
(¬ x Ú c Ú d) for any c and d. We do this by setting the extra variable x = F.

We now claim that any assignment that satisfies the new clauses will also satisfy
(a Ú b Ú c Ú d). We prove this by contradiction. Suppose that (a Ú b Ú c Ú d) is not satisfied
(i.e., a = b = c = d = F). In order for the first new clause (a Ú b Ú x) to be satisfied, the vari-
able x must be true. Then the second clause (¬ x Ú c Ú d) is not satisfied—a contradiction.

Next, let us consider a clause with five literals (a Ú b Ú c Ú d Ú e). Denoting d Ú e by a
new variable DE and using the breaking rule for four literals twice, we get

(a Ú b Ú c Ú d Ú e) = (a Ú b Ú c Ú DE)

= (a Ú b Ú x) Ù (¬ x Ú c Ú DE)

= (a Ú b Ú x) Ù (¬ x Ú c Ú y) Ù (¬ y Ú d Ú e).

This leads to 3 new clauses with two new variables. We apply this transformation to
each clause having more than 3 literals. Clearly this transformation takes polynomial
time, since we traverse an original CNF-SAT and replace each clause with new clauses.
We also need to make sure that we won’t get an exponential number of new variables
and clauses. During this transformation, a clause with m literals will be replaced by
(m - 2) clauses with (m - 3) new variables. The number of clauses and variables is
polynomially bounded. Thus, we have proved that the resulting 3-CNF formula is sat-
isfiable if and only if CNF-SAT is satisfiable. ∎

9.3.2 Independent Set Problem
An independent set in an undirected graph G is a subset S of the vertices such that no
pair of vertices in S is adjacent in G. The independent set problem (IS, in short) is to
decide, for a given undirected graph G and natural number k > 0, whether G has an
independent set of size k.

Theorem 3. The independent set problem is NP-complete.

Proof. First, we show that IS Î NP. Assume we have an independent set S. For each vertex
in S we check every edge incident to it. If there is an edge that connects two vertices in
S, the solution is not an independent set. Otherwise we accept S as the independent set.

Chapter 9  NP Completeness  P  167

In order to show that IS Î NP-hard, we use a polynomial reduction from 3-SAT to IS.
We will construct an undirected graph G from the 3-SAT instance with k clauses. The
construction is based on the following ideas:

1.	 For each Boolean variable in 3-SAT we create a vertex in G.
2.	 All vertices corresponding to a given clause are connected to each other. This

is because we want to make sure that only one vertex per clause is chosen in an
independent set. This step creates k triangle subgraphs. If there are fewer than
three literals, we can set the missing literals to any present literals.

3.	 Connect a vertex corresponding to a literal x to all vertices in G corresponding
to its negation ¬x. We do not want to have two complementary vertices in one
independent set.

FIGURE 9.3  The graph constructed from (x Ú y Ú z) Ù (x Ú ¬ y Ú z) Ù (¬ x Ú y Ú ¬ z) Ù (¬ x Ú ¬ y).

ZX

¬y

ZX

y

¬Z¬X

y

¬X

¬y

For example, figure 9.3 shows the graph constructed from 3-SAT formula (x Ú y Ú z)
Ù (x Ú ¬ y Ú z) Ù (¬ x Ú y Ú ¬ z) Ù (¬ x Ú ¬ y). We conclude the construction with an obser-
vation that its runtime complexity is O(k2).

Claim: 3-SAT instance with k clauses is satisfiable if and only if the constructed graph G
has an independent set of size k.

Proof. We must show the implication in both directions.

Þ) Assume we have a truth assignment. Since the assignment makes each clause true,
then at least one literal of each clause must be true. For some clauses we may have a
few of such literals; we then arbitrarily pick one. Construct a set S of k vertices in G by
choosing the vertex corresponding to the selected literal from each clause. S is an inde-
pendent set. For the example in figure 9.4, let us choose the following truth assignment:
x = T, y = F, and z = F. The corresponded independent set S is shown in figure 9.5.

Ü) Suppose G has an independent set S of size k. Then S must include exactly one vertex
from each clause. Also, S cannot have vertices representing a literal and its negation. We

168  P  Algorithms in Action

set all vertices in S to true. For vertices not in S, we choose the assignment arbitrarily.
Thus, the independent set S yields a satisfying truth assignment.

FIGURE 9.4  The independent set (shown in red) built from x = T, y = F and z = F.

ZX

¬y

ZX

y

¬Z¬X

y

¬X

¬y

Consider the independent set in figure 9.5. We set all green vertices to true (i.e., z =
T and ¬ x = T). The vertex y can be set either to true or false. It is easy to see that we
have a truth assignment for (x Ú y Ú z) Ù (x Ú ¬ y Ú z) Ù (¬ x Ú y Ú ¬ z) Ù (¬ x Ú ¬ y). ∎

FIGURE 9.5  The independent set in green.

ZX

¬y

ZX

y

¬Z¬X

y

¬X

¬y

9.3.3 Vertex Cover Problem
The vertex cover problem (VC, in short) is to decide, for a given undirected graph G
and natural number k > 0, whether G has a vertex cover of size k. In section 9.2 we
showed that the independent set (IS) problem is polynomial time reducible to the vertex
cover (VC) problem (i.e., IS £p VC). Therefore, combining this with the fact that IS Î
NP-complete, and VC Î NP, we conclude that VC is NP-complete.

Let us restrict the instances of VC to undirected graphs with only even degree ver-
tices. We will call this problem vertex cover even (VCE, in short).

Chapter 9  NP Completeness  P  169

Theorem 4. The vertex cover even problem is NP-complete.

Proof. VCE Î NP follows immediately from the fact that VC Î NP. VCE is the same prob-
lem as VC, only with more restrictions placed on the input.

In order to show that VCE is NP-hard, we will use reduction from VC (i.e., VC £ p
VCE. We need to convert any graph G into a graph with all even degree vertices G .́ Note
a simple fact that any undirected graph has an even number of odd degree vertices.
Therefore, we construct G´ by adding an extra vertex to G and connecting it to all ver-
tices of odd degrees. See figure 9.6 for an example. ∎

FIGURE 9.6  Graph G is in blue. We construct G´ by adding a yellow vertex.

Claim: G has a vertex cover of size k if and only if G´ has a vertex cover of size k + 1.

Proof. Þ) Assume G has a vertex cover of size k. Then the vertex cover of G´ is created
by adding the new vertex. Thus, the vertex cover size is k + 1.

Ü) Assume G´ has a vertex cover of size k + 1. In order to get the vertex cover of G,
we have to remove one vertex. Unfortunately, it does not always work. Consider G´ in
figure 9.6. The vertex cover of G´ does not necessarily contain a yellow vertex. Assume
that the vertex cover of G´ is comprised of four blue vertices. If we remove one, we get
a vertex cover of the smaller size but for a different graph—a graph with the yellow
vertex. Its vertex cover is not identical to the vertex cover of G.

And so, the reduction we have described is not correct.
We revise our construction and add three new vertices to G. One of those new verti-

ces is connected to all vertices of odd degrees. See figure 9.7.

170  P  Algorithms in Action

FIGURE 9.7  Graph G is in blue. We construct G´ by adding three new vertices.

Claim: G has a vertex cover of size k if and only if G´ has a vertex cover of size k + 2.

Proof. Þ) Assume G has a vertex cover of size k. Then the vertex cover of G´ is created
by adding two extra vertices (yellow and red in figure 9.5). Thus, the vertex cover size
is k + 2.

Ü) Assume G´ has a vertex cover of size k + 2. In order to get the vertex cover of G, we
have to remove two vertices. Those two vertices are easily identified; they must from
the set of extra vertices. In figure 9.7, we remove yellow and red vertices to get the right
vertex cover for G. ∎

9.3.4 Graph Coloring Problem
The graph coloring problem is to decide, for a given undirected graph G and integer
number k > 0, whether all vertices in G can be colored with k colors so that any two
adjacent vertices are colored differently. There are certain classes of graphs when the
coloring problem can be solved in polynomial time. One special case is when a graph is
planar (see chapter 1.3.4). The second special case is k = 2, in which we are to decide
if a graph is bipartite (see chapter 1.3.5). Unfortunately, for general graphs with k ³ 3,
the problem is NP-complete. To prove this, let us restrict the instances of the graph
coloring problem to k = 3. We will call this problem 3-COLORING.

Theorem 4. 3-COLORING is NP-complete.

Proof. First, we show that 3-COLORING Î NP . Assume we have a 3-color assign-
ment S. For each vertex u in S we deterministically check its adjacent vertices. If there
is an adjacent vertex of the same color as u, we reject this solution. Another way to

Chapter 9  NP Completeness  P  171

prove that 3-COLORING Î NP is to non-deterministically guess an assignment of
colors and then check each vertex. In either case this can be done in nondeterministic
polynomial time.

In order to show that 3-COLORING Î NP-hard, we use a polynomial reduction from
3-SAT. We will construct an undirected graph G from the 3-SAT instance. The construc-
tion is based on using “gadgets.” A part of the original 3-SAT instance is translated into
a “gadget” (a colored subgraph) that handles some details of the problem. These gadget
subgraphs are then connected together to create a graph G. Our reduction consists of
three gadgets. We associate the green-colored vertex with true and the red-colored
vertex with false. We do not assign any special meaning to a blue vertex. The truth gadget
is a triangle subgraph where each vertex has a different color. There will be only one
truth gadget in G. The variable gadget is a subgraph with two vertices, colored either
green or red. One vertex is associated with a variable, another with its negation. There
will as many such gadgets as there are variables in the given 3-SAT instance. The vari-
able gadgets are connected with the truth gadget via the blue vertex; see figure 9.8 for
an example. Any 3-coloring of the that subgraph defines a valid truth assignment! And
vice versa.

FIGURE 9.8  The truth and variable gadgets.

T F

b ¬ba ¬a c ¬c

Finally, we have to make sure that the truth assignments satisfy the given clauses.
This requires a new gadget for each clause. This gadget contains five unlabeled
vertices that are connected with the truth and variable gadgets, as it’s shown in
figure 9.9.

FIGURE 9.9  The clause gadget for (a Ú b Ú c).

T

a

Tb

c

172  P  Algorithms in Action

This gadget can be always colored with 3 colors except the case when all three lit-
erals, a, b, and c, are colored red (false). The proof is left as an exercise to the reader.
Thus, if all the variables in a clause are false, the gadget cannot be 3-colored. On the
other hand, if the clause gadget can be colored with 3 colors, then the associated clause
in 3-SAT is satisfied.

Next, we put these gadgets together: Connect a truth gadget with the variable gadgets,
connect the variable gadgets with the clause gadgets, and connect the clause gadgets
with the truth gadget. As an example, the formula (a Ú b Ú c) would be transformed into
the graph shown in figure 9.10.

We conclude the construction noting that runtime complexity of building a graph G
is O(n), where n is the number of clauses in the original 3-SAT. The total number of ver-
tices in G is also O(n).

FIGURE 9.10  The graph for (a Ú b Ú c).

¬bba ¬a c ¬c

FT

Claim: 3-SAT instance is satisfiable if and only if G is 3-colorable.

Proof. Þ) Assume we have a truth assignment. In the constructed graph G, we color the
variables with true or false according to the assignment. Coloring for the rest of verti-
ces in the clause gadgets is forced.

Chapter 9  NP Completeness  P  173

Ü) Assume G is 3-colorable. We can extract a satisfying assignment from any 3-coloring
by traversing the variable gadgets. We set a Boolean variable to true if in G it’s colored
green. We set a Boolean variable to false if in G it’s colored red. ∎

REVIEW QUESTIONS

1.	 What is an algorithm?
2.	 What is the Church–Turing thesis?
3.	 What is a decision problem?
4.	 What is an undecidable problem?
5.	 What is the Halting problem?
6.	 What is the  versus NP conjecture?
7.	 (T/F) If someone proves  = NP, then it would imply that every decision prob-

lem can be solved in polynomial time.
8.	 (T/F) Any problem in  is also in NP.
9.	 (T/F) Every decision problem is in NP.

10.	 (T/F) Every problem in NP can be solved in exponential time by a determinis-
tic Turing machine.

11.	 (T/F) All NP-hard problems are in NP.
12.	 (T/F) If a problem X can be reduced to linear programming in polynomial time,

then X is in  .
13.	 (T/F) If SAT £p A, then A is NP-hard.
14.	 (T/F) If 3-SAT £p 2-SAT, then  = NP.
15.	 (T/F) If a problem Y £p X, then it follows that X £p Y.
16.	 (T/F) If A £p B and B is in NP, then A is in NP.
17.	 (T/F) If a problem X can be reduced to a known NP-hard problem, then X must

be NP-hard.

EXERCISES

1.	 Prove that any optimization problem can be converted into a decision problem
and vice versa.

2.	 Prove that if A £p B and B Î NP then A Î NP.

174  P  Algorithms in Action

3.	 Prove that if A £p B and B £p C then A £p C.
4.	 Prove that if Z £p Y and Y £p X then Z £p X.
5.	 Prove that the Halting problem is in NP-hard class.
6.	 Assume that you are given a polynomial time algorithm that given a 3-SAT

instance decides in polynomial time if it has a satisfying assignment. Describe
a polynomial time algorithm that finds a satisfying assignment (if it exists) to a
given 3-SAT instance.

7.	 Assume that you are given a polynomial time algorithm that decides if a directed
graph contains a Hamiltonian cycle. Describe a polynomial time algorithm that
outputs a sequence of vertices (in order) that form a Hamiltonian cycle.

8.	 Prove by reduction from 3-SAT that an integer linear program is NP-complete.
9.	 The vertex cover problem (VC, in short) is to decide, for a given undirected graph

G and natural number k > 0, whether G has a vertex cover of size k. Prove that
VC is in NP-complete class by reduction from 3-SAT. No other reductions can
be used.

10.	 You are given a set S of n people and a set L of pairs of people that are mutually
friends. Can these n people be seated for dinner around a circular table such
that each person will sit next to friends on both sides? Prove that the problem
(in short, DINNER) of finding such a sitting arrangement is NP-complete.

11.	 Consider the 5-COLOR problem of deciding whether all vertices in undirected
graph G can be colored with 5 colors so that any two adjacent vertices are
colored differently. Prove that 5-COLOR is NP -complete by reducing from
3-COLOR.

12.	 You are given an undirected connected graph G = (V, E) in which a certain number
of tokens t(v) ³ 1 placed on each vertex v. You will now play the following game.
You pick a vertex u that contains at least two tokens, remove two tokens from u,
and add one token to any one of adjacent vertices. The objective of the game is
to perform a sequence of moves such that you are left with exactly one token in
the whole graph. You are not allowed to pick a vertex with a 0 or 1 token. Prove
that the problem of finding such a sequence of moves is NP-complete by reduc-
tion from the Hamiltonian path.

13.	 We want to become celebrity chefs by creating a new dish. There are n ingredi-
ents and we’d like to use as many of them as possible. However, some ingredients
don’t go so well with others. There is n ́ n matrix D giving discord between any
two ingredients, where D[i, j] is a real value between 0 and 1. Any dish prepared

Chapter 9  NP Completeness  P  175

with these ingredients incurs a penalty, which is the sum of the discords between
all pairs of ingredients in the dish. We would like the total penalty to be as small
as possible. Consider the decision problem EXPERIMENTAL CUISINE: can we
prepare a dish with at least k ingredients and with the total penalty at most p?
Show that EXPERIMENTAL CUISINE is NP-complete by giving a reduction from
INDEPENDENT SET.

14.	 Given an undirected graph with positive edge weights, the BIG-HAM-CYCLE prob-
lem is to decide if it contains a Hamiltonian cycle C such that the sum of weights
of edges in C is at least half of the total sum of weights of edges in the graph. Show
that BIG-HAM-CYCLE is NP-complete by reduction from the Hamiltonian cycle.

15.	 We know that finding a Hamiltonian cycle in a graph is NP-complete. Show that
finding a Hamiltonian path—a path that visits each vertex exactly once and isn’t
required to return to its starting point—is also NP-complete.

16.	 Given a graph G = (V, E) and a positive integer k, the longest-cycle problem is the
problem of determining whether a simple cycle (no repeated vertices) of length
k exists in a graph. Show that this problem is NP-complete by reduction from
the Hamiltonian cycle.

17.	 Given a graph G = (V, E) and a positive integer k, the longest-path problem is the
problem of determining whether a simple path (no repeated vertices) of length
k exists in a graph. Show that this problem is NP-complete by reduction from
the Hamiltonian path.

18.	 You are given an undirected weighted graph G = (V, E) with positive edge costs,
a subset of vertices R Í V, and a number C. Is there a tree in G that spans all verti-
ces in R (and possibly some other in V) with a total edge cost of at most C? Prove
that this problem is NP-complete by reduction from vertex cover.

	Table of Contents
	Preface
	Chapter 1: Review
	Chapter 2: Amortized Analysis
	Chapter 3: Heaps
	Chapter 4: Greedy Algorithms
	Chapter 5: Divide-and-Conquer Algorithms
	Chapter 6: Dynamic Programming
	Chapter 7: Network Flow
	Chapter 8: Linear Programming
	Chapter 9: NP Completeness

